Logo
Benutzer: Gast  Login
Autoren:
Kumar, Vivek; Ntoutsi, Eirini; Rajawat, Pushpraj Singh; Medda, Giacomo; Recupero, Diego Reforgiato 
Dokumenttyp:
Sonstiges / Other Publication 
Titel:
Unlocking LLMs: Addressing Scarce Data aUnlocking LLMs: Addressing Scarce Data and Bias Challenges in Mental Healthnd Bias Challenges in Mental Health 
Jahr:
2024 
Sprache:
Englisch 
Abstract:
Large language models (LLMs) have shown promising capabilities in healthcare analysis but face several challenges like hallucinations, parroting, and bias manifestation. These challenges are exacerbated in complex, sensitive, and low-resource domains. Therefore, in this work we introduce IC-AnnoMI, an expert-annotated motivational interviewing (MI) dataset built upon AnnoMI by generating in-context conversational dialogues leveraging LLMs, particularly ChatGPT. IC-AnnoMI employs targeted prompts...    »
 
Article-ID:
arXiv:2412.12981 
Fakultät:
Fakultät für Informatik 
Institut:
INF 7 - Institut für Datensicherheit 
Professur:
Ntoutsi, Eirini 
Open Access ja oder nein?:
Ja / Yes 
Art der OA-Lizenz:
CC BY 4.0 
Sonstige Angaben:
Preprint auf arXiv; Presented at the First International Conference on Natural Language Processing and Artificial Intelligence for Cyber Security (NLPAICS)