Logo
Benutzer: Gast  Login
Autoren:
Panagiotou, Emmanouil; Heurich, Manuel; Landgraf, Tim; Ntoutsi, Eirini 
Dokumenttyp:
Konferenzbeitrag / Conference Paper 
Titel:
TABCF: Counterfactual Explanations for Tabular Data Using a Transformer-Based VAE 
Titel Konferenzpublikation:
ICAIF '24: Proceedings of the 5th ACM International Conference on AI in Finance 
Konferenztitel:
ACM International Conference on AI in Finance (5., 2024, New York) 
Tagungsort:
New York 
Jahr der Konferenz:
2024 
Datum Beginn der Konferenz:
14.11.2024 
Datum Ende der Konferenz:
17.11.2024 
Verlagsort:
New York 
Verlag:
ACM 
Jahr:
2024 
Seiten von - bis:
274-282 
Sprache:
Englisch 
Abstract:
In the field of Explainable AI (XAI), counterfactual (CF) explanations are one prominent method to interpret a black-box model by suggesting changes to the input that would alter a prediction. In real-world applications, the input is predominantly in tabular form and comprised of mixed data types and complex feature interdependencies. These unique data characteristics are difficult to model, and we empirically show that they lead to bias towards specific feature types when generating CFs. To ove...    »
 
ISBN:
979-8-4007-1081-0 
Fakultät:
Fakultät für Informatik 
Institut:
INF 7 - Institut für Datensicherheit 
Professur:
Ntoutsi, Eirini 
Open Access ja oder nein?:
Ja / Yes 
Art der OA-Lizenz:
CC BY 4.0