Automatic Generation of Building Models with Levels of Detail 1-3
Herausgeber Sammlung:
International Society for Photogrammetry and Remote Sensing (ISPRS)
Titel Konferenzpublikation:
XXIII ISPRS Congress, Commission III, 12-19 July 2016, Prague, Czech Republic
Zeitschrift:
The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences
Heftnummer:
XLI-B-3
Veranstalter (Körperschaft):
International Society for Photogrammetry and Remote Sensing (ISPRS)
Konferenztitel:
International Society for Photogrammetry and Remote Sensing Congress (23., 2016, Prag)
Tagungsort:
Prag
Jahr der Konferenz:
2016
Datum Beginn der Konferenz:
12.07.2016
Datum Ende der Konferenz:
19.07.2016
Verlegende Institution:
International Society for Photogrammetry and Remote Sensing (ISPRS)
Jahr:
2016
Seiten von - bis:
649-654
Sprache:
Englisch
Abstract:
We present a workflow for the automatic generation of building models with levels of detail (LOD) 1 to 3 according to the CityGML standard (Gröger et al., 2012). We start with orienting unsorted image sets employing (Mayer et al., 2012), we compute depth maps using semi-global matching (SGM) (Hirschmüller, 2008), and fuse these depth maps to reconstruct dense 3D point clouds (Kuhn et al., 2014). Based on planes segmented from these point clouds, we have developed a stochastic method for roof model selection (Nguatem et al., 2013) and window model selection (Nguatem et al., 2014). We demonstrate our workflow up to the export into CityGML. «
We present a workflow for the automatic generation of building models with levels of detail (LOD) 1 to 3 according to the CityGML standard (Gröger et al., 2012). We start with orienting unsorted image sets employing (Mayer et al., 2012), we compute depth maps using semi-global matching (SGM) (Hirschmüller, 2008), and fuse these depth maps to reconstruct dense 3D point clouds (Kuhn et al., 2014). Based on planes segmented from these point clouds, we have developed a stochastic method for roof mod... »