Grasso, M. Antonietta; Koch, Michael; Rancati, Alessandro
Herausgeber:
Hayne, Stephen C.
Dokumenttyp:
Konferenzbeitrag / Conference Paper
Titel:
Augmenting Recommender Systems by Embedding Interfaces into Practices
Titel Konferenzpublikation:
Proceedings of the international ACM SIGGROUP Conference on Supporting Group Work
Untertitel Konferenzpublikation:
GROUP '99
Konferenztitel:
International ACM SIGGROUP Conference on Supporting Group Work (1999, Phoenix, AZ)
Tagungsort:
Phoenix
Jahr der Konferenz:
1999
Datum Beginn der Konferenz:
14.11.1999
Datum Ende der Konferenz:
17.11.1999
Verlagsort:
New York, NY
Verlag:
ACM Press
Jahr:
1999
Seiten von - bis:
267-275
Sprache:
Englisch
Abstract:
Automated collaborative filtering systems promote the creation of a meta-layer of information describing the usersâ evaluation of the quality and relevance of information items like scientific papers, books, and movies. A rich meta-layer is needed in these systems in order to statistically elaborate good predictions of the interest of the information items; this makes the extensiveness of usersâ contribution of feedback an essential aspect to have these systems to produce good prediction quality. The work presented here first analyses the issues around recommendation collection, then proposes a set of design principles for improving the collection of recommendations, and finally presents how these principles have been applied in two settings. «
Automated collaborative filtering systems promote the creation of a meta-layer of information describing the usersâ evaluation of the quality and relevance of information items like scientific papers, books, and movies. A rich meta-layer is needed in these systems in order to statistically elaborate good predictions of the interest of the information items; this makes the extensiveness of usersâ contribution of feedback an essential aspect to have these systems to produce good prediction qualit... »