Logo
Benutzer: Gast  Login
Autoren:
Karg, Michelle; Seiberl, Wolfgang; Kreuzpointner, Florian; Haas, Johannes-Peter; Kulic, Dana 
Dokumenttyp:
Zeitschriftenartikel / Journal Article 
Titel:
Clinical Gait Analysis 
Untertitel:
Comparing Explicit State Duration HMMs Using a Reference-Based Index 
Zeitschrift:
IEEE Transactions on Neural Systems and Rehabilitation Engineering 
Jahrgang:
23 
Heftnummer:
Jahr:
2015 
Seiten von - bis:
319-331 
Sprache:
Englisch 
Stichwörter:
Algorithms ; Gait ; Models, Statistical ; Adolescent ; Child ; Computer Simulation ; Female ; Gait Disorders, Neurologic-diagnosis-physiopathology ; Humans ; Image Interpretation, Computer-Assisted-methods-standards ; Machine Learning; Male ; Markov Chains ; Pattern Recognition, Automated-methods-standards ; Physical Examination-methods-standards ; Reference Values ; Reproducibility of Results ; Sensitivity and Specificity ; Whole Body Imaging-methods-standards 
Abstract:
In clinical gait analysis, the gait of a patient is recorded with optical motion capture and compared with a healthy reference group. High-dimensional gait datasets are difficult to interpret; machine learning can provide guidance regarding the most relevant gait phases and joint angles for visual analysis and quantify the difference between healthy and pathological gait. We propose an explicit state duration hidden Markov model (HMM) modeling the timeseries data of a subject or a group and the...    »
 
ISSN:
1558-0210 ; 1534-4320 
Open Access ja oder nein?:
Nein / No