
ISPRS Journal of Photogrammetry and Remote Sensing 79 (2013) 44–52
Contents lists available at SciVerse ScienceDirect

ISPRS Journal of Photogrammetry and Remote Sensing

journal homepage: www.elsevier .com/ locate/ isprs jprs
Spatiotemporal dynamic of surface water bodies using Landsat time-series
data from 1999 to 2011

Mirela G. Tulbure a,⇑, Mark Broich b

a Australian Wetlands, Rivers and Landscapes Centre, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW 2052, Australia
b Plant Functional Biology and Climate Change Cluster, University of Technology Sydney, Broadway, NSW 2007, Australia

a r t i c l e i n f o
Article history:
Received 22 March 2012
Received in revised form 15 January 2013
Accepted 31 January 2013
Available online 16 March 2013

Keywords:
Optical remote sensing
Surface water body detection
Large area wetland inventory
Swan Coastal Plain
Western Australia
Long term trends
0924-2716/$ - see front matter � 2013 International
http://dx.doi.org/10.1016/j.isprsjprs.2013.01.010

⇑ Corresponding author.
E-mail address: Mirela.Tulbure@unsw.edu.au (M.G
a b s t r a c t

Detailed information on the spatiotemporal dynamic in surface water bodies is important for quantifying
the effects of a drying climate, increased water abstraction and rapid urbanization on wetlands. The Swan
Coastal Plain (SCP) with over 1500 wetlands is a global biodiversity hotspot located in the southwest of
Western Australia, where more than 70% of the wetlands have been lost since European settlement. SCP is
located in an area affected by recent climate change that also experiences rapid urban development and
ground water abstraction. Landsat TM and ETM+ imagery from 1999 to 2011 has been used to automat-
ically derive a spatially and temporally explicit time-series of surface water body extent on the SCP. A
mapping method based on the Landsat data and a decision tree classification algorithm is described.
Two generic classifiers were derived for the Landsat 5 and Landsat 7 data. Several landscape metrics were
computed to summarize the intra and interannual patterns of surface water dynamic. Top of the atmo-
sphere (TOA) reflectance of band 5 followed by TOA reflectance of bands 4 and 3 were the explanatory
variables most important for mapping surface water bodies. Accuracy assessment yielded an overall clas-
sification accuracy of 96%, with 89% producer’s accuracy and 93% user’s accuracy of surface water bodies.
The number, mean size, and total area of water bodies showed high seasonal variability with highest
numbers in winter and lowest numbers in summer. The number of water bodies in winter increased until
2005 after which a decline can be noted. The lowest numbers occurred in 2010 which coincided with one
of the years with the lowest rainfall in the area. Understanding the spatiotemporal dynamic of surface
water bodies on the SCP constitutes the basis for understanding the effect of rainfall, water abstraction
and urban development on water bodies in a spatially explicit way.
� 2013 International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS) Published by Elsevier

B.V. All rights reserved.
1. Introduction

Large scale wetland inventories and knowledge of wetland dis-
tribution and dynamic in space and time are essential for their
management and conservation planning (Finlayson et al., 1999;
Pressey and Adam, 1995; Zedler and Kercher, 2005). Wetlands pro-
vide a wide range of ecosystem services such as water supply and
purification, carbon sequestration, flood and climate regulation,
and coastal protection (Millenium Ecosystem Assessment, 2005;
Mitsch and Gosselink, 1993). However, they are among the most
threatened ecosystems in the world and changes in land use and
land cover exacerbated by global climate change are contributing
to their decline (Davis et al., 2010; Finlayson et al., 2011; Millen-
nium Ecosystem Assessment, 2005). While under the Ramsar Con-
vention wetlands encompass areas of marsh, fen, peatland or
water, natural or artificial, permanent or temporary (UNESCO,
Society for Photogrammetry and R

. Tulbure).
1971), here we focused on surface water bodies which comprise
basin wetlands and estuaries (sensu Hill et al., 1996) as they repre-
sent the vast majority of wetlands in the study area, the Swan
Coastal Plain (SCP). The SCP includes a biodiversity hotspot of glo-
bal importance and is one region most vulnerable to climate
change impacts given that rainfall has dropped by 15% since
1997 (Braganza and Church, 2011; Cleugh et al., 2011). Wetlands
on the SCP retain significant biodiversity values (e.g., breeding hab-
itat for waterbirds) and several of them are of national and interna-
tional importance (e.g., Forrestdale and Thomsons Lakes). More
than 70% of the wetlands on the SCP have been lost since European
settlement in the early 1800s due to land clearing for urban devel-
opment and agriculture and increased water abstraction (Davis
and Froend, 1999). The major threats to wetlands on the SCP at
present are declining surface water level caused by direct (e.g., re-
duced rainfall in the past decades, Braganza and Church, 2011) and
indirect (e.g., increased evapotranspiration) effects of climate
change, increase in groundwater abstraction for domestic, indus-
trial and commercial consumption and changes in land use and
emote Sensing, Inc. (ISPRS) Published by Elsevier B.V. All rights reserved.
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Fig. 1. Location of the Swan Coastal Plain study area in the southwest of Western
Australia and a mosaic of Landsat 7 ETM+ images displayed as Red band 7 (2090–
2350 nm), Green band 4 (770–900 nm), Blue band 2 (520–600 nm). (For interpre-
tation of the references to colour in this figure legend, the reader is referred to the
web version of this article.)
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land cover due to rapid urban sprawl in the Perth metropolitan
area (Froend and Sommer, 2010; Horwitz et al., 2008; Sommer
and Horwitz, 2009; Weller, 2009). The number and size of surface
water bodies are naturally dynamic in space and time (Alsdorf
et al., 2007) and most wetlands on the SCP experience seasonal dy-
namic, with winter filling and summer drawdown (Townley et al.,
1993). Baseline knowledge of the natural dynamics of surface
water in space and time is needed to quantifying their decline.

Satellite remote sensing records synoptic data across space and
time making it suitable for mapping and monitoring the extent and
distribution of wetlands across large geographic areas and Landsat
imagery has been commonly used for this purpose (Ozesmi and
Bauer, 2002). Water extent can be mapped and quantified as the
infrared and visible bands on the Thematic Mapper (TM) and
Enhanced Thematic Mapper Plus (ETM+) on Landsat 5 and 7,
respectively allow the separation of surface water from the land
surface. Band 5 (wavelength 1.55–1.75 lm) is sensitive to water
content in vegetation and soil as water absorbs most of the incom-
ing radiation in this wavelength domain (Frazier and Page, 2000;
Kingsford et al., 2004; USGS, 2003). The other two Landsat infrared
bands, band 7 (wavelength 2.09–2.35 lm, (Smith, 1997) and band
4 (0.75–0.90 lm) have been used to map water bodies (Johnston
and Barson, 1993).

Image data from both the TM and ETM+ sensors have been pre-
viously used for mapping wetlands in various areas such the Yel-
lowstone National Park, USA, New South Wales, Australia and
The Democratic Republic of Congo in Central Africa (Baker et al.,
2006, 2007; Bwangoy et al., 2010; Kingsford et al., 2004; Wright
and Gallant, 2007). Previous studies were based on two or a few
time steps of cloud free images (e.g., flooding or drought) or image
composites that were aggregated from multiple cloud affected
images into a cloud free representation (Frohn et al., 2009; Kings-
ford et al., 2004; Wright and Gallant, 2007). With the opening of
the USGS/EROS Landsat archive as of September 2010 (Williams
et al., 2006), new monitoring and mapping opportunities for aqua-
tic systems are provided. Previous studies were mostly based on a
few time steps because of limited project budgets for purchasing
data. Free access to the USGS/EROS archive now allows analysing
the entirely systematically acquired record of Landsat imagery.
Here we present a method that utilizes 605 images acquired by
Landsat 5 and 7 over a time interval between 1999 and 2011 for
mapping surface water bodies on the SCP as a test bed. This area
has been chosen as a test site because it experienced a climatic
drying trend and rapid urban expansion. Quantifying surface water
dynamics in this area is essential for planning purposes and biodi-
versity conservation. The last wetland inventory on the SCP has
been conducted in 1996 (Hill et al., 1996) and the history of wet-
land dynamic and loss on the SCP is poorly documented and has
not been quantified in a spatially and temporally explicit way.

The overall aims of our research were to (1) develop a spatially
and temporally explicit time-series of water bodies by automati-
cally mapping the extent of water bodies on the SCP utilizing the
Landsat archive from 1999 to 2011; (2) analyze the intra and inter-
annual patterns of surface water dynamics using landscape
metrics.
2. Methods

2.1. Study area

The Swan Coastal Plain (SCP), an area of 36,000 km2, is located
in the southwest of Western Australia between the Darling Scarp
to the east, and the Indian Ocean to the west (Fig. 1). It
encompasses the Perth Coastal Plain and Dandaragan Plateau bio-
regions characterized by sandy soils of aeolian and alluvial origin
(Department of Sustainability, 2009). The SCP has a warm Mediter-
ranean climate with hot dry summers and cool wet winters. Rain-
fall ranges between 600 and 1000 mm annually and most of it
occurs in winter (May until October) when temperature is the low-
est. Monthly average temperatures vary between 10 �C in mid win-
ter to 25 �C in mid summer. The SCP is divided into three dune
systems that run north-south parallel to the coastline and corre-
spond to different geological units. The majority of water bodies
on the SCP are shallow (<3 m deep), small (<100 m along the lon-
gest axis) permanent lakes or seasonal basin wetlands, commonly
occurring in the inter-dunal depressions (Davis et al., 2010; Town-
ley et al., 1993). Hill et al. (1996) recorded 10,000 basin and palus-
plain wetlands at the beginning of 1990s.

2.2. Data used and data processing

Fig. 2 overviews the methodological steps undertaken to pro-
duce a time-series of surface water bodies. We used imagery
acquired by the Landsat Thematic Mapper (Landsat 5) and the
Enhanced Thematic Mapper Plus (ETM+) (Landsat 7) sensors be-
tween 1999 and 2011. The sensors have an overpass frequency of
16 days. The SCP is covered by 6 Landsat World Reference System



Fig. 2. Methodological overview showing the input data and the steps taken to produce a time-series of surface water bodies on the SCP, Western Australia.
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path/row combinations (paths 112–113 and rows 81–83). We
downloaded Level 1 terrain corrected (L1T) Landsat 5 and Landsat
7 images for the study period from USGS/EROS (http://land-
sat.usgs.gov/). The USGS/EROS L1T standard product is radiometri-
cally and geometrically corrected and includes geometric
correction for relief displacement (Roy et al., 2010). For the period
from April 1999 to May 2003 we downloaded 159 Landsat 7
images. To represent the period after the Landsat 7 scan line cor-
rector failure (June 2003–December 2011), we downloaded 446
Landsat 5 images. The Landsat 7 scan line corrector failure led to
track-parallel data gaps that rendered 22% of each image unusable
(Maxwell et al., 2007) and thus unsuitable for characterizing spa-
tial-temporal dynamics of water bodies. In total, there were 278
image time steps for the study area derived from Landsat 5 and 7
imagery combined. We only downloaded images that had 650%
cloud cover over the study area. Using this rule we sourced and
processed 52% of all images available in the USGS/EROS archive.
According to the metadata the average percent cloud cover of the
selected images was 4% with 50% of the images cloud free.

We used ENVI/IDL 4.8 software (Exelis Visual Information Solu-
tions, 2011) and R systems (R Development Core Team, 2008) to
develop a generic classification model to automatically map sur-
face water bodies. While it is possible to classify surface water
bodies using a supervised or unsupervised classification for every
image, deriving a generic supervised classifier applicable across
space and time is less time consuming given the large number of
images (605 images; an average of eight images per path-row
and year). To enable mapping of water bodies with a generic clas-
sification model, imagery acquired over different location and at
different points in time needed to be radiometrically normalized.
We normalized the imagery by converting the optical bands’ digi-
tal numbers (DN) to top of atmosphere (TOA) reflectance and the
thermal band DNs to TOA brightness temperature using the equa-
tions and coefficients provided in Chander et al. (2009). Normaliza-
tion aimed to correct for changes in the instrument radiometric
calibration, and variations of sun–earth distance, exoatmospheric
solar irradiance, and solar geometry between images acquired over
different locations and at different times. We resampled the 120 m
and 60 m thermal bands of TM and ETM+ respectively to the 30 m
optical bands.

We used a classification tree algorithm trained across the study
area and on images acquired at various points in time to account
for seasonality. We selected training samples via photo interpreta-
tion of Landsat images. We selected training samples to represent
both the spectral signature of water bodies and non-water areas
across the study area and seasons. The training data sets included
75,000 pixels for the Landsat 5 model and 20,000 pixels for the
Landsat 7 classification. This combination of radiometric image
normalization and training across space and time allowed the der-
ivation of a generic algorithm.

The training data were used to derive generic statistical classi-
fication rules with a supervised classification tree (CT) algorithm.
CT approaches have been extensively used to characterize remo-
tely sensed data sets across space and time (Baker et al., 2006,
2007; Broich et al., 2011a, 2011b; Brown de Colstoun et al.,
2003; Friedl and Brodley, 1997; Hansen et al., 2008; Roy et al.,
2010). The CT algorithm is a nonparametric classifier (it does not
assume any distribution of the data) that predicts class member-
ship for multiple explanatory variables. This is done by recursively
splitting the training data into more homogeneous subsets
(‘‘nodes’’). This recursive splitting selects a split point on an
explanatory variable that separates the data into the most homo-
geneous subsets of the response variables (Breiman, 1996). The de-
rived splitting rules are then applied to the entire dataset to be
classified. The CT algorithm accommodates abrupt, non-monotonic
and non-linear relationships between the explanatory and re-
sponse variables (Breiman, 1996; Breiman et al., 1984). Explana-
tory variables consisted of TOA reflectance in every spectral
band, brightness temperature, normalized difference vegetation
index (NDVI), and the mean values within a 3 � 3 moving window
for all of the above variables (Table 1). Two generic CT models were
derived, one for each Landsat 5 and Landsat 7 data. Each model was
applied to all pixels acquired by the respective sensor over the
study period. The classification result was per pixel likelihoods of
surface water for every image acquired over 13 years that were
turned into time-series of surface water maps by thresholding
per pixel likelihoods at 50%.

Optically thick clouds preclude Landsat surface observations
(Roy et al., 2010). Areas affected by clouds, haze and cloud shad-
ows were manually masked. While automated cloud and cloud
shadow masking has been demonstrated for Landsat images
(Broich et al., 2011a, 2011b; Hansen et al., 2008; Roy et al.,
2010), water bodies are challenging to automatically differenti-
ate from cloud shadows as spectra of shadows are highly vari-
able and indistinguishable from those of water bodies. Thus,
we opted for a manual masking approach which did not aim
at per pixel flagging of clouds or shadows but masked wider
areas affected by clouds and shadows.

http://landsat.usgs.gov/
http://landsat.usgs.gov/


Table 1
Explanatory variables used in the decision tree models based on Landsat 5 and 7.

Number Variables Number Variables

1 TOA of band 1 9 Mean in a 3 � 3 window of TOA of
band 1

2 TOA of band 2 10 Mean in a 3 � 3 window of TOA of
band 2

3 TOA of band 3 11 Mean in a 3 � 3 window of TOA of
band 3

4 TOA of band 4 12 Mean in a 3 � 3 window of TOA of
band 4

5 TOA of band 5 13 Mean in a 3 � 3 window of TOA of
band 5

6 TOA of band 7 14 Mean in a 3 � 3 window of TOA of
band 7

7 Brightness
temperature

15 Mean in a 3 � 3 window of
Brightness temperature

8 NDVI 16 Mean in a 3 � 3 window of NDVI
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We filled data gaps due to clouds and cloud shadows in a given
image by inserting the most common classification result per pixel
(surface water or non-water) for the respective season. This most
common result was determined from the number of times a given
pixel was observed as surface water in each season (winter, spring,
summer and autumn beginning 1st of June, 1st of September, 1st of
December, and 1st of March, respectively) over a period of three
years (e.g. winter 1999–2001). For example, if clouds covered part
of an image acquired in the winter of 2003, the cloud-obscured
pixel was filled by the most common classification result for this
pixel in winter for the 2002–2004 time period.
2.3. Accuracy assessment

To assess the accuracy of the surface water body time-series we
randomly sampled three time steps for each of the four seasons
(summer, autumn, winter, and spring) which resulted in twelve
time steps that were used in the accuracy assessment. While ide-
ally each time step would be sampled, it was logistically impracti-
cal to sample 278 time steps of the time-series. The temporal
stratification by season was chosen to derive evaluation data
across seasons and years. We used a stratified sampling design tar-
geting areas where water bodies are expected to occur. The strati-
fication was based on the geomorphic wetlands dataset mapped by
the Department of Environment and Conservation (DEC) of Wes-
tern Australia (Semeniuk and Semeniuk, 1995). For each of the
12 time steps we evaluated 100 pixels, with 50 pixels randomly se-
lected within the area mapped as surface water bodies by DEC and
50 pixels randomly selected in the remaining area. This resulted in
1200 pixels being assessed.

By sampling within the area mapped as surface water bodies by
DEC, we aimed to increase the chance of sampling the ‘‘rare’’
surface water body class, which according to our results only
encompassed a maximum of 2.3% of the study area in winter of
some years. This approach of specifically targeting the rare class
is critical to the success of mapping projects when the rare class
is of interest (Stehman and Czaplewski, 1998; Stehman et al.,
2003). However, most errors in image classification are spatially
concentrated at the boundaries between land cover classes rather
than in the homogeneous class interior and are caused by the
occurrence of mixed pixels along the class boundaries (Foody,
2002; Smith et al., 2003). Mixed pixels are caused by the boundary
of land cover classes falling within pixels. To investigate the accu-
racy of the surface water body time-series, we buffered the edge of
the mapped surface water bodies by 90 m on either side. Within
the resulting ‘edge’ stratum that included both water and non-
water, we randomly sampled 50 pixels for each of the 12 time
steps. The aim of evaluating these additional 600 pixels was to spe-
cifically evaluate the areas where misclassification is most likely to
occur. For each randomly sampled pixel, we derived reference data
by visually interpreting the Landsat image for the sampled time
step and labelled the pixel as water body or non-water body
accordingly. We computed classification accuracies of the surface
water body time-series as overall accuracy, user’s and producer’s
accuracy of surface water bodies and non-surface water bodies
using a confusion matrix (Foody, 2002).

2.4. Spatial configuration of water bodies

To quantify the spatial configuration of water bodies on the SCP
across time we generated landscape metrics using FRAGSTATS
(McGarigal et al., 2002). For the purpose of our study, four metrics
(McGarigal et al., 2002) were generated using the surface water
time-series. These metrics are commonly used in landscape ecol-
ogy and depict the changes and dynamics of seasonally continuous
surface water body time-series. Number of water bodies (NW) is a
count of water bodies across the area. Mean surface water body
area (MWA) is the summed area of all water bodies divided by
the total number of water bodies: MWA =

P
Xi/NW, where Xi is

the corresponding surface water body i within the landscape and
NW is number of water bodies in the landscape. The coefficient
of variation (CV) of MWA stands for the standard deviation of the
MWA divided by the mean, multiplied by 100 to convert the rate
to a percentage. Total area of water bodies (TAW) refers to the total
area (m2) of water bodies in the landscape.
3. Results

3.1. Classification tree results

Two classification tree models were applied for each Landsat 5
and Landsat 7 using sixteen explanatory variables (Table 1). The
first most important variable in the Landsat 5 model was TOA
reflectance of band 5, which explained 51% deviance followed by
TOA reflectance of bands 4 and 3 which accounted for 20% and
12% of deviance reduction, respectively.

The first most important variable in the Landsat 7 model was
TOA reflectance of band 5, which explained 56% deviance followed
by TOA reflectance of bands 4 and 3 which accounted for 27% and
10% of deviance reduction, respectively. It is known that the infra-
red bands and the red band due to its relevance for vegetation
quantification are most relevant for the classification of the land
surface (Hansen and Loveland, 2012) including mapping of water
bodies (Wright and Gallant, 2007). The reason for this is the
increasing absorption of longer wavelengths by water. Short wave-
length bands tend to have limited use due to the high level of
atmospheric scattering.

3.2. Accuracy assessment of the time-series

For the combined sample of pixels inside and outside of the area
mapped as surface water bodies by DEC (n = 1200) the overall clas-
sification accuracy was 97% and user’s and producer’s accuracies of
surface water bodies were 98% and 93%, respectively (Table not
shown). We visually identified 18.3% of the 1200 pixel sampled
as surface water bodies showing that our stratification based on
the DEC survey effectively targeted surface water. Inside and out-
side of the area mapped as surface water by DEC we flagged
35.5% and 1.2% of the sampled pixels as water, respectively. This
showed that surface water bodies occurred outside of the area
mapped as water bodies by DEC. The reverse was also true, the area
mapped as surface water by DEC was not covered by water in every



Table 3
The error matrix, overall, producer’s and user’s accuracies of water bodies and non-
water bodies resulting from classification trees of Landsat data from 1999 to 2011.

Reference classification (based on visual interpretation)

Water
bodies

Non-water
bodies

Row
total

User’s accuracy

Classification results
Water bodies 396 30 426 93%
Non-water

bodies
51 1323 1374 96%

Column total 447 1353
Producer’s

Accuracy
89% 98% Overall

accuracy = 96%
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time step sampled here. This is not surprising given that the DEC
survey was conducted from aerial photography in the beginning
of 1990s and seasonal and interannual fluctuations of surface
water extent have occurred since then.

Within the ‘edge’ stratum, 34.3% of the 600 sample pixels were
flagged as water. The resulting overall accuracy near the edge of
land cover classes was 90% with a user’s and producer’s accuracy
of the majority class (non surface water) being 91% and 94%,
respectively (Table 2). The user’s and producer’s accuracy of sur-
face water bodies was 89% and 84% respectively. We expected low-
er user’s and producer’s accuracies of surface water bodies when
concentrating sampling effort along the edge of classes as this ap-
proach evaluates the accuracy specifically in areas were errors are
most likely to occur rather than the entire study area. When com-
bining the 1800 samples taken across the three strata (within the
area mapped as surface water by DEC, outside of this area, and
within 90 m of the mapped class boundary) the overall accuracy
was 96% with a user’s and producer’s accuracy of non-water bodies
of 96% and 98% respectively (Table 3). The user’s and producer’s
accuracy of surface water bodies was 93% and 89%, respectively
(Table 3).
3.3. Intra and interannual dynamic of surface water bodies

The number of water bodies on the SCP varied from a minimum
of 871 in January 2009 to a maximum of 5069 in July 2005 (Fig. 3a).
The number of water bodies showed high seasonal variability with
highest numbers in winter when there was more surface water in
the landscape and lower numbers in summer when the landscape
on the SCP was dry (Figs. 3a and 4). The mean size of water bodies
varied from 6.5 ha to 26.6 ha in June 2005 and January 2009,
respectively (Fig. 3b). The mean size of water bodies showed sea-
sonal variability with mean size of water bodies being highest in
the southern hemisphere summer (February) and lowest in winter
(August). The coefficient of variation of mean size also showed sea-
sonal variability and was highest in winter and lowest in summer,
which suggests that in summer most water bodies are larger in
size, whereas in winter the size is more heterogeneous (Fig. 3b
and c). There was a high positive correlation (R2 = 0.89) between
number of water bodies and variability in the water body size
(Fig. 3a and c). The total water area in the SCP landscape varied
from 22,404 ha in February 2003 to 35,671 ha in September 1999
(Fig. 3d) which represented 1.5% and 2.3% of the entire SCP, respec-
tively. Total water area in the landscape showed high seasonal var-
iability with highest values in winter and lowest in summer. While
the seasonality in number of water bodies was high, the number
and size of water bodies also showed variability in winter and
summer across years (Fig. 5). Among years, an increase in number
of water bodies can be observed in winter until 2005 after which a
decline can be visually noted (Fig. 3a). The mean area of water
Table 2
The error matrix, overall, producer’s and user’s accuracies of water bodies and non-
water bodies in the ‘edge’ stratum resulting from classification trees of Landsat data
from 1999 to 2011.

Reference classification (based on visual interpretation)

Water
bodies

Non-water
bodies

Row
total

User’s accuracy

Classification results
Water bodies 183 23 206 89%
Non-water

bodies
35 359 394 91%

Column total 218 382
Producer’s

Accuracy
84% 94% Overall

accuracy = 90%
bodies increased in winter after 2005, whereas the CV of mean
water body area increased in winter until 2005 and decreased after
2005 and decreased in summer until 2005 and increased after that.
The total water area decreased until February 2005 in both winter
and summer, after which a sharper decline can be visually noted
(Fig. 3d). In summary, all four landscape metrics showed intra
and interannual dynamics of surface water bodies.
4. Discussion and conclusions

Our study integrating time-series of Landsat data with land-
scape metrics identified and characterized the dynamic of surface
water bodies on the SCP. We derived spatially and temporally ex-
plicit dynamics in surface water bodies and quantified the change
in their numbers, extent and total area from 1999 to 2011. The
opening of the USGS/EROS Landsat satellite image archive provided
a unique opportunity for seasonally continuous mapping of surface
water extent using time-series of moderate spatial resolution
images. Seasonally continuous time-series of surface water body
data are important for several analyses such as understanding
how the size of water bodies changes with water abstraction,
applications for landscape connectivity analysis and linking the
time-series of surface water bodies with climate change data to
determine how the spatiotemporal variability of the surface water
bodies changes in a warming climate.

Similar to previous studies mapping wetlands and water bodies,
bands 5, 4 and 3 were useful in classifying water bodies (Baker
et al., 2006; Bwangoy et al., 2010; Frazier and Page, 2000; Johnston
and Barson, 1993; Kingsford et al., 2004; Smith, 1997). Previous
studies also found that ancillary data such as soils and DEM-de-
rived terrain variables were important for separating wetlands
from uplands (Bwangoy et al., 2010; Ozesmi and Bauer, 2002;
Wright and Gallant, 2007). In this study, the variables used for
mapping surface water bodies are solely based on Landsat spectral
information. An SRTM-derived 90 m � 90 m digital elevation mod-
el (Rabus et al., 2003;USGS, 2006) was initially included in algo-
rithm tests over a subset of the study area but taken out of the
final model run as it only explained less than 1% of the variability
while substantially increasing computation time. Major water
bodies of the study area are situated in depressions between dunes
but numerous small water bodies are located in small depression
on a gently sloping terrain. These small depressions were not cap-
tured in the DEM tested but were captured using the spectral vari-
ables. Future development of the mapping algorithms should test a
high resolution digital elevation model derived from airborne
LiDAR.

Our overall accuracy of 96% for surface water bodies was similar
to what previous studies have found when mapping surface water
(Bwangoy et al., 2010; Wright and Gallant, 2007). It is known that a
simple random sample is unlikely to provide a precise estimate of
classification accuracy of a rare class unless the sample is large.



Fig. 3. (a) Number of water bodies, (b) mean area of water bodies, (c) coefficient of variation of mean area of number of water bodies and (d) total area of water bodies on the
SCP landscape. It should be noted that the dotted line that unites the 278 time steps is inserted to support visualisation of dynamics only and should not be interpreted as a
statistical trend.
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Stratifying the SCP into the three strata to sample randomly across
each area increased the number of samples representing water
bodies. Increasing the number of samples along the edge of water
bodies provided a robust basis for evaluating the accuracy of our
surface water body time-series. Both our overall accuracies esti-
mated from the combination of samples as well as along class
boundaries were above 90%. Ideally, higher spatial resolution refer-
ence imagery would be used to evaluate the accuracy of change.
Limited project resources and historic data availability did not
allow us to acquire higher spatial resolution imagery suitable to
represent the spatiotemporal dynamics quantified with Landsat
across 36,000 km2 and 13 years. The Landsat-based spatiotemporal
accuracy assessment conducted here is sufficiently high. Further
evaluation of the change in water bodies against other datasets
such as ground measured water level records and precipitation
data will be valuable.

The total number of water bodies showed, as anticipated,
high seasonality with higher numbers of water bodies in the
southern hemisphere winter, the season with the majority of
rainfall, and lower in summer when rainfall is sparse, tempera-
tures are high and the landscape is drier (Figs. 3a and 4). How-
ever, mean water body area was reduced in winter and had a
higher coefficient of variation than in summer as shown in
Figs. 3b, c and 4. The increased number of water bodies in win-
ter is mainly due to seasonal filling of small and mid-sized water
bodies that dry up in summer. This observation explains the sea-
sonal pattern of the larger mean water body size and the lower
coefficient of variation in summer.

A decline in number of water bodies during the winter was
observed between 2005 and 2010 followed by a recent increase
in 2011. 2010 was a year of exceptionally low rainfall through-
out most of south-western Australia and Perth (Bureau of
Meteorology, 2011). The fact that the number of water bodies
declined after 2005 could be due to lower average precipitation
after 2005 compared to previous years (Raupach et al., 2006,
2009).

The surface water body time-series presented in this research is
timely since the latest acquisition was in 2011 and annual updates
were anticipated. Therefore it can be used as the basis for under-
standing and quantifying the synergistic effects of climate impacts,
water abstraction and urban development. SCP is undergoing rapid
urban development (Hall et al., 2010) but no other recent survey of
water bodies on the SCP is available. Necessary information on
how to minimize the negative impacts of urban growth is pertinent
for making decisions that consider how urban development might
affect surface water bodies.

This information can support water and wetland management
by government and urban water utilities as well as urban planning.
Future work should support decisions on which wetlands should
be preserved to meet conservation goals, how much of the catch-
ment around these sites should be excluded from urban develop-
ment and what groundwater abstraction rates are acceptable.
The spatially explicit linkage between surface water body dynam-
ics, ground water levels, climate, and urbanisation leading to in-
creased ground water abstraction and reduced recharge should
be investigated with the aim of informing sustainable water use
policy.

Several limitations of our study should be noted. First, our
method does not differentiate between surface water bodies that
fill up and dry out naturally or artificially. As the hydrological cycle



Fig. 4. Landsat images (path/row 112/082, bands 4, 5, 6 (RGB)) showing the seasonal variability as well as the results of the classification (a) summer season imagery, (b)
winter season image, (c) result of the classification for the summer season and (d) result of the classification for the winter season image. Water bodies are shown in black in
all images.

Fig. 5. Classification tree results for a subarea of the SCP south of the Swan River (inset in Fig. 5a) for three time steps (b) August 2000, (c) August 2001 and (d) August 2002
highlighting interannual differences in number of water bodies (top three circles) and in size of water bodies (bottom rectangles).
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is the dominant factor influencing the physiochemical and
biological processes of the surface water bodies and wetlands on
the SCP (Chambers and Davis, 1989), the Environmental
Protection Authority manages the water levels in a number of
wetlands to prevent drying (Sommer et al., 2008). Future work
should obtain spatially explicit information on water bodies
where water level is artificially maintained. The surface water
body data presented in this research should not be directly com-
pared with the number of wetlands mapped by Hill et al (1996),
but rather interpreted as a comparison across seasons and time.
Second, we are mapping surface water bodies rather than
wetlands. However, most of the wetlands on the SCP are either
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shallow lakes or basin wetlands and the ability to map surface
water extent is a first important step in mapping hydrological
dynamics of wetlands. Future work should include mapping of
fringing wetland vegetation.

Landsat satellite imagery provided appropriate spatial and tem-
poral resolution necessary for assessing the extent and distribution
of water bodies over time on the SCP. The time-series presented
here should be updated as new Landsat data become available.
Future work will utilize the time-series for understanding in a spa-
tially and temporally explicit way the effect of climate, water
abstraction and land use on surface water dynamic as well as
assessing their connectivity for bioata in a changing climate.
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