
Symbolic Software Tools for Flatness of
Linear Systems with Delays and

Nonlinear Systems

Gregor Günther Verhoeven

Vollständiger Abdruck der von der Fakultät für Elektrotechnik und
Informationstechnik der Universität der Bundeswehr München zur Erlangung
des akademischen Grades eines

Doktors der Ingenieurwissenschaften
(Dr.-Ing.)

genehmigten Dissertation.

Gutachter/Gutachterin:
1. Prof. Dr. rer. nat. habil. Claus Hillermeier
2. Prof. Dr. Jean Lévine

Die Dissertation wurde am 18.09.2015 bei der Universität der Bundeswehr
München eingereicht und durch die Fakultät für Elektrotechnik und Informa-
tionstechnik am 19.04.2016 angenommen. Die mündliche Prüfung fand am
03.06.2016 statt.

ii

Acknowledgment

This doctoral thesis was written during my work as an external doctoral stu-
dent for the Department for Measurement and Automation of the University
of the German Armed Forces in Munich.

First of all, I would like to thank Prof. Dr. rer. nat. habil. Claus Hiller-
meier for making this possible and providing my posting. He introduced me
to control theory during my studies and inspired me to lay the focus of my
scientific work on this field.

Furthermore, I would like to thank Dr.-Ing. habil. Felix Antritter for the long
lasting scientific collaboration on the topic of flatness of linear and nonlinear
systems. He initiated this thesis, supervised it during his time as professor
at the University of the German Armed Forces and supported me greatly in
order to finish this thesis, even after he had left the University of the German
Armed Forces.

Moreover, I would like to thank Prof. Dr. Jean Lévine for supporting me and
agreeing to be the second doctoral supervisor of my thesis. This thesis would
not have been possible without his scientific research in flatness determination.

Further thanks go to the staff of the Chair for Automation and Control for the
great scientific cooperation.

I would also like to thank Katharina Verhoeven and Dipl.-Ing. Thomas Krönert
for proofreading this thesis.

Finally, I would like to thank my family for their support and encourage-
ment.

Netphen, June 2016 Gregor Günther Verhoeven

iii

iv

Kurzfassung / Abstract

Flachheit als Eigenschaft linearer und nichtlinearer Systeme ermöglicht eine
vergleichsweise einfache Konstruktion von Steuerungen und Reglern zur Lösung
des Trajektorienfolgeproblems. Dieser Ansatz erfordert allerdings die Berech-
nung von flachen Ausgängen für das jeweilige System. Je nach Komplexität
des Systems kann diese Berechnung sehr aufwändig sein. Im Rahmen dieser
Arbeit wurden zwei Toolboxen für das Computer-Algebra-System Maple en-
twickelt, die die Berechnung von flachen Ausgängen für lineare Systeme (mit
und ohne Totzeitglieder) und nichtlineare Systeme ermöglichen.
Im Falle linearer Systeme basieren die implementierten Datentypen und Meth-
oden auf dem von F. Antritter, F. Cazaurang, J. Lévine und J. Middeke en-
twickelten Algorithmus, der einen Ansatz mit Schiefpolynommatrizen verwen-
det. Im Falle nichtlinearer Systeme basiert die implementierte Toolbox auf dem
von J. Lévine entwickelten Algorithmus, der einen differentialgeometrischen
Ansatz verfolgt.

Flatness as a system property of linear and nonlinear systems allows a rela-
tively simple construction of feed-forward controllers and feedback controllers
in order to solve the tracking problem. However, this approach makes the
computation of flat outputs of the respective system necessary. Depending on
the complexity of the system these computations can be very elaborate. In the
context of this thesis, two toolboxes for the computer algebra system Maple
were developed which allow the computation of flat outputs for linear systems
(with and without delays) and for nonlinear systems.
In case of linear systems, the implemented data types and methods are based
on the algorithm developed by F. Antritter, F. Cazaurang, J. Lévine and J.
Middeke, which uses an approach with skew polynomial matrices. In case of
nonlinear systems, the implemented toolbox is based on the algorithm devel-
oped by J. Lévine, which makes use of a differential geometric approach.

v

vi

Contents

1 Introduction 1

2 About the Used Computer Algebra System Maple 3
2.1 Features of Maple . 3
2.2 Used Development Environment 4
2.3 Overview of the Developed Toolboxes 5

3 Mathematical Basics 7
3.1 Introduction of the Mathematical Framework 7

3.1.1 The Skew Polynomial Rings K
[
d
dt

]
, K [δ] 7

3.1.2 The Skew Polynomial Ring K
[
δ, d

dt

]
. 10

3.1.3 The Field of Left Fractions, lclm and gcrd 10
3.1.4 The Skew Polynomial Ring K (δ)

[
d
dt

]
. 12

3.1.5 Hyper-regularity as Property of Matrices over Skew Poly-
nomials . 13

3.1.6 Minimal Bases for the Decomposition of Skew Polyno-
mial Matrices . 14

3.2 Differential and π-Flatness of Linear Systems 19
3.2.1 Flatness Analysis for Linear Time-Invariant Systems . . 19
3.2.2 Flatness Analysis for Linear Time-Varying Systems . . . 23
3.2.3 Flatness Analysis for Linear Time-Varying Systems with

Delays . 23
3.3 Differential Flatness of Nonlinear Systems 25

3.3.1 Flatness of Explicit Nonlinear Systems 25
3.3.2 Flatness of Implicit Nonlinear Systems 26
3.3.3 Introduction of Differential Forms and Operators 28
3.3.4 A First Characterization of Flatness 30
3.3.5 Construction of a Flat Output of the Variational System 31
3.3.6 Integrability of the Variational Flat Output 32
3.3.7 A Sequential Procedure 33

4 Developing a Data Structure for Linear Systems 35
4.1 Analysis of the Mathematical Structures 35
4.2 Criteria for the Implementation Approach 37
4.3 Practical Possibilities in Terms of Implementation 37

vii

Contents

4.3.1 Available Basic Data Structures in Maple 37
4.3.2 Possible Approaches for the Implementation 40

4.4 Choosing an Appropriate Data Structure in Maple Based on the
Defined Criteria . 42

5 Developing a Data Structure for Nonlinear Systems 47
5.1 Analysis of the Mathematical Structures 47
5.2 Practical Possibilities in Terms of Implementation 50
5.3 Choosing an Appropriate Data Structure in Maple 52
5.4 Special Case: Minimal Basis Decomposition 55

6 Issues of the Implementation 57
6.1 Using functions versus symbols 57

6.1.1 Introducing Regular Expressions for Function Names . . 57
6.1.2 Spell Checking to Avoid Invalid Functions and Constants 59
6.1.3 Implementing the Time Derivative for Arbitrary Terms . 60
6.1.4 Consequences of Using symbols instead of functions . . . 61

6.2 Discussion on the Need of a Unique Data Structure 63
6.3 On the Treatment of Local Variables to Improve the Computa-

tional Performance . 65

7 Introduction of the Developed Toolboxes 67
7.1 General Remarks . 67
7.2 DifferentialDelays . 69

7.2.1 Internal Structure of the Toolbox 69
7.2.2 Main Module . 69
7.2.3 Decompose . 89
7.2.4 LeftFractionUtils . 96
7.2.5 PiFlatUtils . 102

7.3 DifferentialForms . 104
7.3.1 Internal Structure of the Toolbox 104
7.3.2 Main Module . 105
7.3.3 MinimalbasisDecomp . 132

8 Usage of the Toolboxes on the Basis of a Few Examples 143
8.1 Linear Time-Varying System Without Delays 143
8.2 Linear Time-Varying System With Delays 146
8.3 Nonlinear System - Non-Holonomic Car 149
8.4 Nonlinear System - Sine Example 152

9 Conclusions and Future Work 159

A Files and Worksheets 161
A.1 Source code . 161
A.2 Component tests . 162

viii

Contents

A.3 Examples . 162

Index 163

Bibliography 165

ix

Contents

x

Chapter 1

Introduction

The concept of differential flatness as a system property for linear and nonlinear
systems was introduced in [13] and [27]. This system property was extended
to describe linear systems with delays as well, for instance in [2]. Roughly
speaking, if a control system is flat, it is possible to describe its inputs and
states by a (fictional) flat output (and its derivatives) of the system, while this
flat output can be expressed by the states and inputs (and their derivatives).
In case of linear systems, this property is equivalent to controllability.
If found, such a flat output will offer a relatively simple way to construct a
flatness-based controller for the system. For linear systems with and without
delays, there exist many approaches for constructing a flat output (for instance
in [2, 4, 10, 12, 23, 31]). In case of nonlinear multi-input systems, there exist
necessary and sufficient conditions (see [21, 22]) which allow an almost auto-
mated flatness determination of nonlinear systems. Nevertheless, constructing
a flat output is very difficult, due to the computational complexity of this
problem.

Since the computations which have to be made in order to determine whether
a control system is flat or not are very elaborate, a toolbox for automated
evaluation seems inevitable. At the moment, there exist a few toolboxes which
are partially able to handle the computations for flatness determination.
In [4] a Maple-toolbox for the flatness determination of linear systems with
delays was presented. It was based on the OreTools-package of Maple.
In [12] a Maple-toolbox was presented which offers features to determine con-
trollability and parametrizability of linear control systems, as well as evaluate
whether a linear system is π-flat.
In [33] a toolbox for the flatness determination of nonlinear systems was de-
veloped. The purpose of that toolbox was to show the feasibility of developing
a toolbox in Maple which is capable of computing the flat output of nonlinear
systems. But that toolbox was neither user-friendly nor laid its focus on a
high computational performance.

1

Chapter 1. Introduction

Therefore, no existing toolbox is able to handle the thorough flatness deter-
mination in case of linear systems with delays and nonlinear systems while
providing a high computational performance. In this thesis, two toolboxes
will be developed which are capable of computing the flat output (in case
of nonlinear systems) resp. the defining operators and the polynomial π (in
case of linear systems with delays). Therefore, they can be used to explore the
current approaches for flatness determination (for instance of [22]) more deeply.

The development of the two toolboxes follows three main issues: a high com-
putational performance, a high maintainability and the ability to be reused as
a framework for future algorithms and toolboxes.

At first, the used computer algebra system Maple will briefly be introduced in
chapter 2.
Afterwards, in chapter 3, the mathematical basics of flatness determination
will be explained. We will recall the required mathematical framework and
the specific conditions for differential and π-flatness. We will also define al-
gorithms which can be used in order to evaluate whether these conditions are
met for a certain system.
This will allow us to set up the requirements which have to be met by the
toolboxes. For this purpose, we will analyze the desired mathematical struc-
tures and how they can be represented by using suitable data types in Maple
in chapters 4 and 5. At the end of these chapters, we will define data types to
execute the flatness determination in case of linear systems (with and without
delays) and nonlinear systems.
Furthermore, in chapter 6, we are going to look at some specific technical is-
sues of the implementation of the two toolboxes.
In chapter 7, we take a look at the two Maple-toolboxes which were developed
in the context of this thesis. We will describe all features in detail and illus-
trate some of them by using small examples.
Afterwards, in chapter 8, we will demonstrate the power of the toolboxes by
analyzing two linear and two nonlinear systems and computing the defining
matrices resp. the flat outputs of these systems.
Finally, we will take a look at possible future works and what might be the
next developments in future versions of the toolboxes.

2

Chapter 2

About the Used Computer
Algebra System Maple

In this chapter the features and functionality of the used computer algebra
system (CAS) will be described briefly. Furthermore, additional software of
the used development environment will be listed. At the end of the chapter, a
short overview of the implemented toolboxes will be given.

2.1 Features of Maple

The computer algebra system Maple of the Waterloo Maple Inc. company [34]
was used to develop the toolboxes which are introduced in this thesis. The
used version was version 15.011.
To implement the algebraic transformations and computations of sections 3.2
and 3.3, the computer algebra system has to meet several requirements:

i) ability to compute numerical and symbolic2

ii) ability to solve partial differential equations

iii) providing a programming language to implement and develop custom
algorithms and toolboxes

Maple meets all of these requirements. Most notably, Maple offers a very
capable solver for symbolic partial differential equations. In addition, it comes
with several useful libraries which extend the functionality of Maple massively.
In this thesis, the following libraries (in Maple also called packages) were used:

1Maple undergoes continuous development, thus several methods of the Maple framework
(like the including libraries) can be enhanced or completely changed over the versions. We
experienced this in case of the integrated solver for partial differential equations. Because of
this, it may be possible that the toolboxes do not work properly or work only with limited
functionality under other Maple-versions.

2Symbolic computation means that the software is able to perform calculations with
not specified variables and functions (such as: f(x1(t), x2(t)). This is also called algebraic
computation.

3

Chapter 2. About the Used Computer Algebra System Maple

Toolbox Description
LinearAlgebra This library offers fundamental functionalities for calcula-

tions with matrices and vectors, like computing the kernel
of a matrix.

ListTools A collection of methods for manipulating the Maple data
type list, like searching in lists for a certain element.

Maplets The maplets represent the components to build a GUI in
Maple. Similar to the JComponents of Java, the maplets
match a container pattern which allows to form the user
interface as needed.

PDETools The library PDETools contains methods for handling sym-
bolic partial differential equations.

RandomTools This library allows to create generators for random num-
bers.

StringTools This library offers methods for manipulating strings.

2.2 Used Development Environment

The computer algebra system Maple is delivered with its own development
environment, the Maple User Interface [26]. This environment can be used
to develop custom Maple programs, which can be interpreted using the Maple
Computation Engine. However, this development environment has several dis-
advantages and restrictions compared to other environments3, e.g. Eclipse (an
integrated development environment for several programming languages from
the Eclipse Foundation). For instance, we have no automatic indenting for
if-statements, loops and other structures which contain code-blocks. Also the
environment will slow down significantly (for no reason) if we have a large
code basis. Even basic behavior like syntax highlighting works very limited.
Because of these disadvantages, we strongly recommend not to use the Maple
User Interface for software solutions with a bigger code basis, but to use an
alternative editor for implementing and to use the Maple User Interface only
for converting the code into Maple packages afterwards.
In this thesis, the editor Notepad++ [35] was used to develop the toolboxes.
The editor Notepad++ can be appropriately enhanced to support Maple code.
Also the plugin Compare, which is able to compare different versions of the
toolboxes, was used.
If we use an external editor, we can use the following approach: With the editor
(in this case Notepad++), the Maple source code is saved into ANSI-encoded
text files (in this thesis the complete source code was saved into map-files).
Afterwards we can import it in the Maple User Interface and transform it into
a mla-library. Here an example of this approach using the source code of the
toolbox DifferentialDelays:

3Remark: The disadvantages we sum up here are based on the version 15.01 of Maple.
They may be solved in later versions of Maple.

4

2.3. Overview of the Developed Toolboxes

Listing 2.1: Transformation of the source code

> restart ;
#Maple s ea r che s the re f o r packages
libname := libname , ” D i f f e r en t i a lDe l a y s ” ;
#Import the source code
read (” D i f f e r en t i a lDe l a y s .map”) ;
#Create a d i r e c t o r y f o r the too lbox
mkdir(” D i f f e r en t i a lDe l a y s ”) ;
#Create the mla− f i l e
march(’ c reate ’ , ” D i f f e r en t i a lDe l a y s \\Di f f e r en t i a lDe l a y s . mla”) ;
#Def ine where the l i b r a r y s h a l l be saved
savelibname := ” D i f f e r en t i a lDe l a y s \\Di f f e r en t i a lDe l a y s . mla” ;
#The ac tua l t rans fo rmat ion in to a mla− f i l e
savelib (’ D i f f e r e n t i a lDe l a y s ’) ;

2.3 Overview of the Developed Toolboxes

In this section, the functionalities of the developed toolboxes shall be described
briefly. First of all a short remark: Libraries are implemented in Maple in form
of modules. To stay general, we will call associated modules which serve a cer-
tain common purpose toolbox, in this thesis.
The implemented toolboxes are strictly separated according to the mathe-
matical use they fulfill. Both toolboxes have so called submodules, i.e. inner
libraries, which are able to compute a very certain kind of mathematical tasks.
They can be accessed using the [..] command in Maple.

Toolbox Description
DifferentialDelays The main part of the toolbox offers all meth-

ods for handling skew polynomials and matri-
ces over skew polynomials in order to find a flat
output of a given linear system, except for the
functionality in the subordinate packages.

↪→[Decompose] This submodule can be used to decompose ma-
trices using minimal basis decomposition in case
of flatness determination of linear systems with
and without delays.

↪→[LeftFractionUtils] This submodule contains all methods for han-
dling matrices over left fractions.

↪→[PiFlatUtils] This submodule offers methods to compute and
verify the operator π, which is used in case of
linear systems with delays.

DifferentialForms The main part of the toolbox contains all meth-
ods to compute the flat output of a nonlinear
system, except for the minimal basis decompo-
sition.

↪→[MinimalbasisDecomp] This submodule can be used to decompose ma-
trices using minimal basis decomposition in case
of flatness determination of nonlinear systems.

5

Chapter 2. About the Used Computer Algebra System Maple

6

Chapter 3

Mathematical Basics

In this chapter we are going to recall differential flatness as a system property
of linear and nonlinear systems and π-flatness as a system property of linear
systems with delays. Therefore, we will introduce the mathematical framework
which we need in order to express conditions for flatness at the beginning of
this chapter.
Then, we are going to introduce differential and π-flatness of linear systems
and present a procedure to compute the defining operators referring to [4].
Furthermore, necessary and sufficient conditions for differential flatness of non-
linear systems will be recalled from [22], leading to the construction of a flat
output.

3.1 Introduction of the Mathematical Frame-

work

In this section, we will briefly explain the theoretical basics and concepts which
are fundamental for the following considerations.

3.1.1 The Skew Polynomial Rings K
[
d
dt

]
, K [δ]

For the determination of flatness according to [1, 4], we need detailed infor-
mation about skew polynomials and how to handle them. Generally speaking,
we handle polynomials over a non commutative ring whose multiplication has
specific properties, introduced by Ø. Ore in [30].
First, we have to introduce the σ-derivation in order to describe skew polyno-
mials:

Definition 1 ([9, 29, 30]). Let K be a ring without zero divisors and σ : K →
K an injective endomorphism. Any map ϑ : K → K is called σ-derivation if
and only if it fulfills the conditions

i) ϑ(a+ b) = ϑ(a) + ϑ(b)

7

Chapter 3. Mathematical Basics

ii) ϑ(ab) = σ(a)ϑ(b) + ϑ(a)b (σ-Leibniz rule)

∀a, b ∈ K.

The elements of the skew polynomial ring over K are given by polynomials in
Z of the structure

p = p0Z
0 + p1Z

1 + . . .+ pnZ
n, deg(p) = n (3.1)

with pi ∈ K. The multiplication of Z with elements of field K is given by
([4, 9, 30])

Za = σ(a)Z + ϑ(a), ∀a ∈ K. (3.2)

Therefore, the degree of the product of two skew polynomials p and q is given
by

deg(pq) = deg(p) + deg(q). (3.3)

We denote the skew polynomial ring over K with the two maps σ and ϑ by
K[Z;σ, ϑ], referring to the mathematical notation from [10].
Let σ = id, ϑ = d

dt
and let us roughly choose d

dt
as symbol. If we choose the

field of meromorphic functions K as ring K, we obtain the skew polynomial
ring of differential operators K

[
d
dt

; id, d
dt

]
= K

[
d
dt

]
(see [4]) with

d

dt
(ak) = ak

d

dt
+ ȧk, ∀ak ∈ K (3.4)

and

d

dt

(
ak
dk

dtk

)
= ak

d

dt

(
dk

dtk

)
+
d

dt
(ak)

dk

dtk
(3.5)

with ak
dk

dtk
an arbitrary monomial ∈ K

[
d
dt

]
. Obviously, the given ring K

[
d
dt

]
is generally not commutative because we have

d

dt
(ak) 6= ak

d

dt
. (3.6)

If K = R, we obtain the skew polynomial ring over the field of real numbers.
In this special case, the ring is commutative according to multiplication since
d
dt
ai ≡ 0, ∀ai ∈ R. Because of that the equation (3.5) leads to

d

dt

(
ak
dk

dtk

)
= ak

dk+1

dtk+1
. (3.7)

The sum of two skew polynomials a, b ∈ K
[
d
dt

]
with deg(a) = n, deg(b) =

m,n ≥ m also results in a skew polynomial:

c = a+ b

=
n∑
i=0

ai
di

dti
+

m∑
j=0

bj
dj

dtj

=
m∑
i=0

(ai + bi)
di

dti
+

n∑
j=m+1

ai
dj

dtj
. (3.8)

8

3.1. Introduction of the Mathematical Framework

In fact, we have deg(c) = n.
The multiplication of two skew polynomials a, b ∈ K

[
d
dt

]
with deg(a) =

n, deg(b) = m is given by:

c = a · b

=
n∑
i=0

ai
di

dti
·
m∑
j=0

bj
dj

dtj

=
n∑
i=0

(
ai
di

dti

(
m∑
j=0

bj
dj

dtj

))

=
n∑
i=0

(
ai

m∑
j=0

di

dti

(
bj
dj

dtj

))
. (3.9)

In fact, we have deg(c) = deg(a) + deg(b) ([29]).

If we set K = K, ϑ = 0 and σ = δ, we obtain the skew polynomial ring
of delay operators K [δ; δ, 0] = K [δ] ([4]). In this case, δ is defined as a delay
operator with the following properties:

i) δ(f(t)) = f(t− τ) (delay)

ii) δ−1(f(t)) = f(t+ τ) (prediction)

iii) δ · f(t) = f(t− τ)δ

with a fixed τ ∈ R in each property. Because of property iii) K [δ] is not
commutative.
Similar to (3.8), the sum of two skew polynomials a, b ∈ K [δ] with deg(a) =
n, deg(b) = m,n ≥ m is given by:

c = a+ b

=
n∑
i=0

aiδ
i +

m∑
j=0

bjδ
j

=
m∑
i=0

(ai + bi) δ
i +

n∑
j=m+1

aiδ
j. (3.10)

I.e. we have deg(c) = n.
Similar to (3.9), the multiplication of two skew polynomials a, b ∈ K [δ] with

9

Chapter 3. Mathematical Basics

deg(a) = n, deg(b) = m is given by:

c = a · b

=
n∑
i=0

aiδ
i ·

m∑
j=0

bjδ
j

=
n∑
i=0

(
aiδ

i

(
m∑
j=0

bjδ
j

))

=
n∑
i=0

(
ai

m∑
j=0

δi(bj)δ
j+i

)
. (3.11)

In fact, we have deg(c) = deg(a) + deg(b).

3.1.2 The Skew Polynomial Ring K
[
δ, ddt

]
As written in [2, 4], we are able to enhance the skew polynomial ring K

[
d
dt

]
to

have elements ∈ K [δ] as coefficients. We denote this extended skew polynomial
ring by K[Z;σ1, ϑ1][Y ;σ2, ϑ2] and set ϑ1 = 0, σ1 = δ, σ2 = id and ϑ2 = d

dt

and choose the field of meromorphic functions K as ring K. Thus, we obtain
the skew polynomial ring K[δ; δ, 0][d

dt
; id, d

dt
] = K

[
δ, d

dt

]
. This is possible since

both maps δ and d
dt

commute by the chain rule (see [2, 4] for more details).
Therefore, we have the computation rules

d

dt
(δ) = 0 (3.12)

and

δ
d

dt
=

d

dt
δ. (3.13)

3.1.3 The Field of Left Fractions, lclm and gcrd

For the analysis of linear systems with delays, it is also important to consider
the field of left fractions, denoted by K (δ). Elements in K (δ) are of the form
b−1a with a, b ∈ K [δ]. In this section, we will discuss some of the more im-
portant properties of this field. Detailed information about this field and its
construction can be found e.g in [18].
To define addition and multiplication for the field of left fractions, it is re-
quired to compute the least common left multiple of two skew polynomials in
K [δ] and the corresponding cofactors. These are important to multiply the
denominators and numerators of left fractions:

Definition 2 ([4, 9]). Let a, b be two skew polynomials ∈ K [δ] \{0}. ra ∈ K [δ]
and sb ∈ K [δ] are called common left multiple of a and b if and only if

ra = sb, r, s ∈ K [δ] \{0}. (3.14)

10

3.1. Introduction of the Mathematical Framework

In addition, ra ∈ K [δ] and sb ∈ K [δ] are called least common left multiple
of a and b (denoted by lclm(a, b)) if and only if ∀r′, s′ ∈ K [δ] \{0} which satisfy
r′a = s′b exists t ∈ K [δ] \{0} such that tr = r′ ∧ ts = s′.
The two skew polynomials r and s are called cofactors of a and b.

In [9] an algorithm for the computation of the least common left multiple of
two skew polynomials was developed. This algorithm was used and improved
for automated computation of the cofactors of two skew polynomials in K [δ]
as part of this thesis:

Algorithm 1: Computation of Cofactors
Input: Two arbitrary skew polynomials A,B ∈ K [δ] \{0} with deg(A) ≥

deg(B)1

Output: Ai (cofactor of A), −Bi (cofactor of B)

1 A0 = 1
2 A1 = 0
3 B0 = 0
4 B1 = 1
5 R0 = A
6 R1 = B
7 i = 2
8 while true do

9 Q0 = lc(Ri−2)
δ∆(lc(Ri−1)) · δ

∆ , ∆ = deg(Ri−2)− deg(Ri−1)

10 Ci = Ri−2 −Q0 ·Ri−1

11 i f deg(Ci) < deg(Ri−1) then
12 Qi−1 = Q0

13 Ri = Ci
14 else

15 Q1 = lc(Ci)
δ∆(lc(Ri−1)) · δ

∆ , ∆ = deg(Ci)− deg(Ri−1)

16 Qi−1 = Q0 +Q1

17 Ri = Ci −Q1 ·Ri−1

18 end i f
19 Ai = Ai−2 −Qi−1 ·Ai−1

20 Bi = Bi−2 −Qi−1 ·Bi−1

21 i f deg(Ri) = −∞ then
22 break
23 end i f
24 i = i+ 1
25 end do
26 return Ai , −Bi

The two return values Ai and −Bi represent the cofactors of A and B, i.e.:

Ai · A = −Bi ·B = lclm(A,B) (3.15)

Now, we are able to describe the addition and multiplication of left fractions
over K [δ]:

1If deg(A) < deg(B), we have to switch A and B.

11

Chapter 3. Mathematical Basics

Theorem 1 ([4]). The sum of two left fractions b−1a and d−1c with a, b, c, d
∈ K [δ] and rb = sd = lclm(b, d) is given by

b−1a+ d−1c = (rb)−1(ra) + (sd)−1(sc)

= (rb)−1(ra+ sc). (3.16)

Theorem 2 ([4]). The product of two left fractions b−1a and d−1c with a, b, c, d
∈ K [δ] and ra = sd = lclm(a, d) is given by

b−1a · d−1c = (rb)−1(ra) · (sd)−1(sc)

= (rb)−1(sc). (3.17)

In the field of left fractions, we also need to define the notion greatest common
right divisor of two skew polynomials in K [δ].

Definition 3 ([9, 19, 28]). Let a, b be two skew polynomials ∈ K [δ] \{0}. A
polynomial f ∈ K [δ] is called common right divisor of a and b if and only
if

rf = a and sf = b, r, s ∈ K [δ] \{0}. (3.18)

In addition, f ∈ K [δ] is called greatest common right divisor of a and b
(denoted by gcrd(a, b)) if and only if ∀g ∈ K [δ] \{0} which satisfy r′g = a and
s′g = b with r′, s′ ∈ K [δ] \{0} exists t ∈ K [δ] \{0} such that tg = f .

3.1.4 The Skew Polynomial Ring K (δ)
[
d
dt

]
Since we also need to be able to express predictions, we have to extend the skew
polynomial ring K

[
δ, d

dt

]
and introduce the skew polynomial ring K (δ)

[
d
dt

]
.

Similar to the skew polynomial ring K
[
d
dt

]
, we choose the maps σ = id and

ϑ = d
dt

, but decide to use the field of left fractions over K [δ] as ring K. So we
obtain the skew polynomial ring K (δ)

[
d
dt

]
[4].

Because of the properties of ϑ, it is now possible to get derivatives of left
fractions. Thus, we have to introduce the following computation rule:

Theorem 3 ([4, 18]). The derivative of a left fraction b−1a with a, b ∈ K [δ]
and d

dt
(b) 6= 0 with respect to t is given by

d

dt

(
b−1a

)
= (sb)−1(s

d

dt
(a)− ra) (3.19)

with rb = s d
dt

(b) = lclm(b, d
dt

(b)). If d
dt

(b) = 0, the derivative is given by

d

dt

(
b−1a

)
= b−1

d

dt
(a). (3.20)

12

3.1. Introduction of the Mathematical Framework

3.1.5 Hyper-regularity as Property of Matrices over Skew
Polynomials

In this section, we consider all matrices to be matrices over the ring of skew
polynomials K

[
d
dt

]
. Thus, there is no commutativity in general.

Furthermore, the inverse M−1 of a skew polynomial matrix M ∈ K
[
d
dt

]
is,

in general, no skew polynomial matrix itself, because it may contain fractions
with d

dt
in the denominator. In this thesis, we want to focus on matrices which

have a skew polynomial matrix as inverse.

Definition 4. A matrix M ∈ K
[
d
dt

]n×n
is called unimodular if and only if

its inverse M−1 is in K
[
d
dt

]n×n
. The set of such unimodular matrices is also

possibly referred to as the linear group Gln
(
K
[
d
dt

])
.

A very important tool for the determination of a flat output of linear and
nonlinear systems is the decomposition of skew polynomial matrices. To serve
this purpose, we introduce the Smith-Jacobson decomposition:

Theorem 4 ([10]). Every matrix M ∈ K
[
d
dt

]r×s
can be transformed into the

Smith-Jacobson form2 by using two unimodular matrices V ∈ K
[
d
dt

]r×r
,

U ∈ K
[
d
dt

]s×s
:

VMU =

(

∆r 0r×(s−r)
)

if r ≤ s(
∆s

0(r−s)×s

)
if r ≥ s

(3.21)

∆r and ∆s must satisfy3 ∆r = diag (λ1, . . . , λr) resp. ∆s = diag (λ1, . . . , λs)
with λi‖λj ∀i < j4.

Definition 5 ([23]). A matrix M ∈ K
[
d
dt

]r×s
is called hyper-regular if and

only if it satisfies Theorem 4 and in (3.21) we have ∆r = Ir resp. ∆s = Is.

Let us recall, that the inverse M−1 of an unimodular matrix M is always
unimodular itself and both left and right inverse of M5.

Theorem 5. Every square hyper-regular matrix M ∈ K
[
d
dt

]r×r
is also uni-

modular6.

2The Smith-Jacobson form is also called Smith form or Jacobson form.
3The order of elements on the diagonal can be changed using simple row or column

operations. That means we can always transform ∆r and ∆s into the needed form by
switching the rows or columns of V and U . The matrices V and U will stay unimodular.

4λi‖λj means λi totally divides λj , i.e. ∃α ∈ K
[
d
dt

]
: λi‖α‖λj ∧ kα = αk, ∀k ∈ K

[
d
dt

]
.

5This can easily be shown by computing the left and right inverse of M from VMU = I.
6This can also easily be shown by an algebraic transformation of VMU = I.

13

Chapter 3. Mathematical Basics

3.1.6 Minimal Bases for the Decomposition of Skew Poly-
nomial Matrices

The decomposition of skew polynomial matrices via minimal bases is a special
case of the Smith-Jacobson decomposition and will be described in detail in
this section. All matrix decompositions in the developed toolboxes will be done
via minimal bases since the minimal basis decomposition is very convenient
for the automated evaluation of linear and nonlinear systems7. In a first step
the terms module and submodule will be defined.

Definition 6 ([19]). An abelian group M together with a bilinear map
R ×M → M is called left R-module over the ring R if and only if the
map satisfies

i) 1Rm = m ∀m ∈M (identity element)

ii) r(m+ n) = rm+ rn ∀r ∈ R and m,n ∈M

iii) (r + s)m = rm+ sm ∀r, s ∈ R and m ∈M

iv) (rs)m = r(sm) ∀r, s ∈ R and m ∈M

The right R-module is similarly defined with a bilinear map M×R→M.
If R is a commutative ring, the left R-module and the right R-module are
identical. In this case it is simply called R-module.

Definition 7 ([19]). A subgroup N ⊆M is called submodule of the module
M over the ring R if and only if rn ∈ N ∀r ∈ R and n ∈ N .

Definition 8 ([10, 19]). LetM be a module over the ring R. M is called free
if and only if ∀m ∈M we have

∃m1, . . . ,mn ∈M : m = r1m1 + · · ·+ rnmn (3.22)

with ri ∈ R.

Definition 9 ([19]). Let M be a free module over the ring R. The distinct
set of elements {m1, . . . ,mn} which satisfy (3.22) with m1, . . . ,mn linearly
independent is called basis of M over R.

The K
[
d
dt

]
-module M over the ring of skew polynomials K

[
d
dt

]
, which is

spanned by the basis {b1, . . . , bn}, bi ∈ K
[
d
dt

]1×n
, admits the representation

M = {r1b1 + . . .+ rnbn | ri ∈ K
[
d
dt

]
, bi ∈ K

[
d
dt

]1×n}. (3.23)

Furthermore, the terms row degree, column degree, row order and column order
will be recalled:

7It should be mentioned at this point that the decomposition via minimal bases is only
able to decompose hyper-regular matrices. In general, minimal basis decomposition cannot
create a Smith-Jacobson form for non-hyper-regular matrices.

14

3.1. Introduction of the Mathematical Framework

Definition 10 ([28, 33]). The highest degree in d
dt

among the elements of the

i’th row Mi of a skew polynomial matrix M ∈ K
[
d
dt

]r×s
is called row degree

of the i’th row:

degreerow(Mi) = max{deg(Mi,j)}, j = 1..s. (3.24)

The column degree of the j’th column Mj is defined similar as the highest
occurring degree in d

dt
of the j’th column:

degreecolumn(Mj) = max{deg(Mi,j)}, i = 1..r. (3.25)

Definition 11 ([28]). Let M ∈ K
[
d
dt

]r×s
. The row order of M is given by

orderrow(M) =
r∑
i=1

degreerow(Mi). (3.26)

The column order of M is given by

ordercolumn(M) =
s∑
j=1

degreecolumn(Mj). (3.27)

Now we are able to recall the definition for minimal basis :

Definition 12 ([17, 28]). Let the rows of a skew polynomial matrix G

∈ K
[
d
dt

]r×s
be a basis for a submodule U ∈ K

[
d
dt

]1×s
. The rows of G are

called minimal basis if G has the lowest row order among all bases for the
submodule U .
Similarly, the columns of a skew polynomial matrix G ∈ K

[
d
dt

]r×s
are called

minimal basis if the columns of G are a basis for a submodule U ∈ K
[
d
dt

]r×1
and if G has the lowest column order among all bases for the submodule U .

In conjunction with this definition, we are able to find another way to check a
skew polynomial matrix for hyper-regularity:

Theorem 6 ([4, 29, 33]). The skew polynomial matrix M ∈ K
[
d
dt

]r×s
with

r ≥ s is hyper-regular if and only if the rows of M are a basis of Rs.
If r ≤ s, the columns of M have to be a basis of Rr.

Remark about Theorem 6: The two assertions

• the rows resp. columns of M are a basis of Rs resp. Rr

• the minimal basis of M has degree 0 in d
dt

are equivalent.
Based on Theorem 6, we are now able to construct an algorithm to check
skew polynomial matrices for hyper-regularity. The algorithm described in this
section is adapted from [28] to run in Maple. But first, we have to introduce
the leading coefficient matrix :

15

Chapter 3. Mathematical Basics

Definition 13 ([28]). Let C(i) be for each row Mi a set of column indexes
such that

C(i) = {j| deg(Mij) = degreerow(Mi)}, i = 1..r, j = 1..s. (3.28)

Additionally, let lc(Mij) be the leading coefficient of the polynomial Mij. Then
we obtain the row leading coefficient matrix LCrow (M) ∈ Kr×s, whose
elements are defined by

LCrow (M)ij =

{
0 if j /∈ C(i)

lc(Mij) if j ∈ C(i)
, i = 1..r, j = 1..s. (3.29)

Similar to that, we are able to define the leading coefficient matrix of M
column-wise: Let R(j) be for each column Mj a set of row indexes such that

R(j) = {i| deg(Mij) = degreecolumn(Mj)}, i = 1..r, j = 1..s. (3.30)

Then we obtain the column leading coefficient matrix LCcolumn (M) ∈
Kr×s:

LCcolumn (M)ij =

{
0 if i /∈ R(j)

lc(Mij) if i ∈ R(j)
, i = 1..r, j = 1..s. (3.31)

Now it is possible to determine whether the corresponding matrix M is a
minimal basis by evaluating the rank of the leading coefficient matrix:

Definition 14 ([28]). The matrix M ∈ K
[
d
dt

]r×s
is called row-reduced if

and only if its row leading coefficient matrix has full rank.
Similar to that, the matrix M ∈ K

[
d
dt

]r×s
is called column-reduced if and

only if its column leading coefficient matrix has full rank.

Theorem 7 ([28]). Let M ∈ K
[
d
dt

]r×s
be a skew polynomial matrix whose

rows (in case of r ≥ s) resp. columns (in case of r ≤ s) span the submodule

U ⊆ K
[
d
dt

]max{r,s}
. In this case both assertions are equivalent:

• M is row- resp. column-reduced

• the rows resp. the columns of M are a minimal basis of U

Theorem 7 is a simplified and abridged version of the main theorem of minimal
bases, which is described in greater detail in [28].

From Theorems 6 and 7 results that a matrix M ∈ K
[
d
dt

]r×s
is hyper-regular

if and only if its leading coefficient matrix has full rank and the rows (in case
of r ≥ s) resp. columns (in case of r ≤ s) of M span the module Rmin{r,s}8.
To construct the minimal basis of a skew polynomial matrix M , it is necessary
to reduce the row degrees resp. column degrees step by step to zero using row
resp. column operations. In case of r > s the reduction has to be done by row

8This is equivalent to the assertion that the minimal basis of M has degree 0 in d
dt .

16

3.1. Introduction of the Mathematical Framework

operations and in case of r < s by column operations. In the special case of a
square matrix (i.e. r = s) both ways are possible ([33]).
The leading coefficient matrix of M has full rank if and only if M is a minimal
basis. That means, as long as M is no minimal basis, there exists a linear
combination of rows resp. columns of M to reduce the degree of a row resp. a
column at least by 1.
First, we want to describe the algorithm for row-wise reduction:

Algorithm 2: Row-wise Decomposition
Input: An arbitrary skew polynomial matrix M ∈ K

[
d
dt

]r×s
with r ≥ s.

Output: If M is hyper-regular, an unimodular skew polynomial matrix
V ∈ K

[
d
dt

]r×r
which transforms M into a Smith-Jacobson form. Else NULL.

1 V = Ir
2 while ∃α 6= 0 : αT LCrow (M) = 0 do
3 n = index o f the uppermost row o f M with h i ghe s t row degree
4 and αn 6= 0
5 for i = 1..r

6 α̃i = αi
d∆

dt∆ , ∆ = degreerow(Mn)− degreerow(Mi)
7 end for
8 for i = 1..r
9 i f i = n then

10 V ′i,1..r = α̃T

11 else
12 V ′i,1..r = ei (un i t vec to r)

13 end i f
14 end for
15 M = V ′ ·M
16 V = V ′ · V
17 end do
18 i f max{degreerow(Mi)|i = 1..r} = 0 then
19 for i = 1..r
20 i f degreerow(Mi) = −∞
21 j = index o f the uppermost row with degreerow(Mj) = 0
22 Switch i ’ th row and j ’ th row o f M
23 Switch i ’ th row and j ’ th row o f V
24 end i f
25 end for
26 i f ∃(r − s) ze ro rows in M then
27 M−1 = l e f t i n v e r s e o f M
28 V = M−1 · V
29 return V
30 else
31 return NULL
32 end i f
33 else
34 return NULL
35 end i f

The types of the used variables are: V ∈ K
[
d
dt

]r×r
, α ∈ Kr×1, n ∈ N, α̃ ∈

K
[
d
dt

]r×1
, V ′ ∈ K

[
d
dt

]r×r
und M−1 ∈ K

[
d
dt

]r×r
.

17

Chapter 3. Mathematical Basics

Remark: In this algorithm the essential condition αT LCrow (M) = 0 ignores
all α which represent only linear combination of all zero rows of LCrow (M).
The matrix V ′ which contains the particular row operation is composed row-
wise. The n’th row represents the modified vector α. All other rows are those
of an identity matrix.

Similar to the algorithm above, we are able to describe the algorithm for
column-wise reduction (in case of r ≤ s):

Algorithm 3: Column-wise Decomposition
Input: An arbitrary skew polynomial matrix M ∈ K

[
d
dt

]r×s
with r ≤ s.

Output: If M is hyper-regular, an unimodular skew polynomial matrix
U ∈ K

[
d
dt

]s×s
which transforms M into a Smith-Jacobson form. Else NULL.

1 U = Is
2 while ∃α 6= 0 : LCcolumn (M)α = 0 do
3 n = index o f the f i r s t column o f M with h i ghe s t column degree
4 and αn 6= 0
5 for i = 1..s

6 α̃i = αi
d∆

dt∆ , ∆ = degreecolumn(Mn)− degreecolumn(Mi)
7 end for
8 for i = 1..s
9 i f i = n then

10 U ′1..s,i = α̃

11 else
12 U ′1..s,i = ei (un i t vec to r)

13 end i f
14 end for
15 M = M · U ′
16 U = U · U ′
17 end do
18 i f max{degreecolumn(Mi)|i = 1..s} = 0 then
19 for i = 1..s
20 i f degreecolumn(Mi) = −∞
21 j = index o f the f i r s t column with degreecolumn(Mj) = 0
22 Switch i ’ th column and j ’ th column o f M
23 Switch i ’ th column and j ’ th column o f U
24 end i f
25 end for
26 i f ∃(s− r) ze ro columns in M then
27 M−1 = r i g h t i n v e r s e o f M
28 U = U ·M−1

29 return U
30 else
31 return NULL
32 end i f
33 else
34 return NULL
35 end i f

The types of the used variables are: U ∈ K
[
d
dt

]s×s
, α ∈ Ks×1, n ∈ N,

18

3.2. Differential and π-Flatness of Linear Systems

α̃ ∈ K
[
d
dt

]s×1
, U ′ ∈ K

[
d
dt

]s×s
. The matrix U ′ which contains the particu-

lar column operation is composed column-wise. The n’th column represents
the modified vector α. All other columns are those of an identity matrix.

3.2 Differential and π-Flatness of Linear Sys-

tems

The main goal of this thesis is the symbolic computation of flat outputs of
finite dimensional control systems. At first, we deal with linear systems. They
can be written in the form

Ax = Bu (3.32)

with A ∈ K
[
d
dt

]n×n
, B ∈ K

[
d
dt

]n×m
, x = (x1, . . . , xn)T and u = (u1, . . . , um)T .

Let us give an informal definition that will be made precise in sections 3.2.1 –
3.2.3: If the system (3.32) is flat, there exists a flat output y of the system.
One of the properties of a flat output is that all xi and ui can be described as
functions of the entries yi of the flat output and a finite number of their time
derivatives y

(j)
i . Based on such a flat output we are able to construct a flatness-

based controller or feedback controller for this system (for more information
see e.g. [14, 15, 21, 27]). This section is about the determination of a flat
output for the linear system (3.32).

3.2.1 Flatness Analysis for Linear Time-Invariant Sys-
tems

First, we take a look at linear time-invariant systems (also known as LTI

systems) of the form (3.32) with A ∈ R
[
d
dt

]n×n
and B ∈ R

[
d
dt

]n×m
. Now

differential flatness as a system property can be defined in the following:
We assume that B is hyper-regular. This is equivalent to the assertion that the
inputs of the system are independent. In addition, we assume that the rows
of (A,B) are linearly independent. This ensures that there are no redundant
equations in (3.32) (see [1]). The informal definition from the introduction,
specialized to this case, is the following:

Definition 15 ([23]). The linear time-invariant system in the form of (3.32)

with A ∈ R
[
d
dt

]n×n
and B ∈ R

[
d
dt

]n×m
is called differentially flat if and

only if there exist matrices9 P ∈ R
[
d
dt

]m×n
, Q ∈ R

[
d
dt

]n×m
and R ∈ R

[
d
dt

]m×m
such that:

y = Px, x = Qy, u = Ry, PQ = Im. (3.33)

The vector y is called flat output of the system.
Remark: The flat output y is not unique.

9The three matrices P,Q and R are also called defining operators.

19

Chapter 3. Mathematical Basics

Theorem 8. In case of linear systems, both system properties differential flat-
ness and controllability are equivalent.

Theorem 8 results from [14], see also [23, 21, 1, 2].
From now on, we will always assume that the number of independent inputs
ui is less or equal to the number of partial states xi, i.e. n ≥ m10.
Since B is hyper-regular, according to the assumption above, there exists an
unimodular matrix M̃ ∈ R

[
d
dt

]n×n
(referring to the results given in section

3.1.6) such that

M̃B =

(
Im

0n−m×m

)
. (3.34)

Applying M̃ to the system (3.32), we get

M̃Ax = M̃Bu =

(
Im

0n−m×m

)
u =

u1
...
um

0n−m×1

 . (3.35)

Since we can set the inputs u arbitrarily, they can always be set to

u =
(
Im 0m×n−m

)
M̃Ax (3.36)

to satisfy the first m equations of (3.35). Thus, only the last n − m rows
remain in (3.35). They represent the implicit equations of the linear system.

By introducing the matrix F ∈ R
[
d
dt

]n−m×n
with

F =
(

0n−m×m In−m
)
M̃A (3.37)

we are able to introduce the implicit system representation of the system (3.32)
resp. (3.35):

Fx = 0n−m×1. (3.38)

A condition for F is brought by the following theorem:

Theorem 9 ([21, 22]). The system (3.32) is flat if and only if the matrix F
in (3.37) is hyper-regular, i.e.:

∃Q̃ ∈ R
[
d
dt

]n×n
: FQ̃ =

(
In−m 0n−m×m

)
. (3.39)

10In the special case n = m the system is always flat. In this case a solution for (3.33) is
given by P = In, Q = In and R = B−1A with y = x as flat output. At this point we want
to recall that the flat output is not unique.

20

3.2. Differential and π-Flatness of Linear Systems

Now, we want to demonstrate that hyper-regularity of F provides the differ-
ential flatness according to Definition 15. This shall motivate the algorithms
later in this section.
By decomposing the last m columns of Q̃ from (3.39) via minimal bases

Q = Q̃

(
0n−m×m
Im

)
(3.40)

we can easily prove that there exists an unimodular matrix P̃ ∈ R
[
d
dt

]n×n
such

that

P̃Q =

(
Im

0n−m×m

)
. (3.41)

It can be shown that a flat output of the system (3.32) is given by

y =
(
Im 0m×n−m

)
P̃︸ ︷︷ ︸

P

x = Px (3.42)

and the differential parameterization of x is given by

x = Qy. (3.43)

Furthermore, we may set the parameterization of x from (3.43) into (3.38) and
obtain:

Fx = FQy

= FQ̃

(
0n−m×m
Im

)
y

=
(
In−m 0n−m×m

)(0n−m×m
Im

)
︸ ︷︷ ︸

0n−m×m

y = 0n−m×1 (3.44)

Thus, the parameterization x = Qy satisfies ∀y the implicit system represen-
tation (3.38).

Due to the fact that Q̃ is unimodular, it is also possible to compute the ma-
trix Q̃−1 simultaneously with Q̃ according to the minimal basis decomposition
(3.39). Using that, the second minimal basis decomposition (3.41) can be

avoided. A matrix P̃ satisfying (3.41) is given by

P̃ =

(
0m×n−m Im
In−m 0n−m,m

)
Q̃−1. (3.45)

With (3.42) P results in

P =
(

0m×n−m Im
)
Q̃−1. (3.46)

21

Chapter 3. Mathematical Basics

And indeed, with (3.40) – (3.42) we get:

Px = PQy =
(
Im 0m×n−m

)
P̃Qy

=
(
Im 0m×n−m

)(Im
0n−m×m

)
y

= Imy = y. (3.47)

The still missing parameterization of u results from (3.36):

u =
(
Im 0m×n−m

)
M̃Ax

=
(
Im 0m×n−m

)
M̃AQ︸ ︷︷ ︸

R

y. (3.48)

This leads to the following theorem:

Theorem 10 ([22, 2]). If the matrix F in (3.37) is hyper-regular, a possible
solution for (3.33) is given by the three matrices

P =
(

0m×n−m Im
)
Q̃−1 (3.49)

Q = Q̃

(
0n−m×m
Im

)
(3.50)

R =
(
Im 0m×n−m

)
M̃AQ. (3.51)

This leads to an algorithm for the flatness analysis of linear systems in order
to compute a flat output (if possible) to:

Algorithm 4: Computing the Defining Operators for Linear Time-Invariant
Systems

Input: The two matrices A ∈ R
[
d
dt

]n×n
, B ∈ R

[
d
dt

]n×m
, which characterize

the linear system (3.32). It must be n ≥ m.

Output: If the system is flat, the defining operators P ∈ R
[
d
dt

]m×n
,

Q ∈ R
[
d
dt

]n×m
and R ∈ R

[
d
dt

]m×m
. Else NULL.

1 i f not ∃M̃ : M̃B =

(
Im

0n−m×m

)
then

2 return NULL
3 end i f

4 i f ∃α 6= 0 : αT
(
A B

)
= 0 then

5 return NULL
6 end i f

7 M̃B =

(
Im

0n−m×m

)
⇒ M̃

8 F =
(

0n−m×m In−m
)
M̃A

9 i f not ∃Q̃ : FQ̃ =
(
In−m 0n−m×m

)
then

10 return NULL
11 end i f

22

3.2. Differential and π-Flatness of Linear Systems

12 FQ̃ =
(
In−m 0n−m×m

)
⇒ Q̃

13 Q̃−1Q̃ = In ⇒ Q̃−1

14 P =
(

0m×n−m Im
)
Q̃−1

15 Q = Q̃

(
0n−m×m
Im

)
16 R =

(
Im 0m×n−m

)
M̃AQ

17 return P , Q , R

3.2.2 Flatness Analysis for Linear Time-Varying Sys-
tems

In case of linear time-invariant systems, the system matrices A and B in (3.32)
are always defined over the ring R

[
d
dt

]
. In case of linear time-varying systems,

the system matrices are based on the ring of meromorphic functions K
[
d
dt

]
.

That means the coefficients of the occurring skew polynomials are now mero-
morphic functions of t. The field of meromorphic functions has no zero divisors,
that is if

k(t) · l(t) = 0⇒ k(t) = 0 ∨ l(t) = 0 (3.52)

with k(t), l(t) ∈ K. Furthermore time derivatives of meromorphic functions
are also meromorphic11.
Because of the generalization of the used skew polynomial ring, we do not have
a commutative multiplication of skew polynomials.
The flatness analysis of the linear time-varying system (3.32) withA ∈ K

[
d
dt

]n×n
,

B ∈ K
[
d
dt

]n×m
, x ∈ Kn and u ∈ Km works similar to the analysis of the linear

time-invariant system, which is described in section 3.2.1 and especially in
algorithm 4. We only have to change the skew polynomial ring of the used
matrices to K

[
d
dt

]
.

Remark: We have to keep in mind that there is no commutativity in K
[
d
dt

]
.

This has to be considered in algorithm 4.

3.2.3 Flatness Analysis for Linear Time-Varying Sys-
tems with Delays

In case of linear systems with delays, we consider the ring K
[
δ, d

dt

]
. The reader

will find a thorough discussion on this choice in [2]. In order to use flatness
as a system property for a system (3.32) which has been extended with delays
we have to specialize the informal definition from the introduction:

Definition 16 ([2, 4]). The linear system of the form (3.32) with A ∈ K
[
δ, d

dt

]n×n
and B ∈ K

[
δ, d

dt

]n×m
is called π-flat if and only if there exist an operator

11A detailed analysis of meromorphic functions can be found in [11].

23

Chapter 3. Mathematical Basics

π ∈ K [δ] and matrices P ∈ K
[
δ, d

dt

]m×n
, Q ∈ K

[
δ, d

dt

]n×m
and R ∈ K

[
δ, d

dt

]m×m
such that:

y = π−1P︸ ︷︷ ︸
P

x, x = π−1Q︸ ︷︷ ︸
Q

y, u = π−1R︸ ︷︷ ︸
R

y, P Q = Im. (3.53)

The vector y is called π-flat output of the system.

Remark: Since P , Q and R contain fractions in δ, the further computations
must be done in K (δ)

[
d
dt

]
.

In order to compute a suitable operator π which satisfies (3.53) we can use
the approach according to [4]: First of all, we construct operators πP , πQ and
πR which eliminate all predictions in the corresponding matrices.12 Then π is
given by

π = lclm(πP , πQ, πR). (3.54)

The algorithm 4 can now be extended to:

Algorithm 5: Computing the Defining Operators for Linear Time-Varying
Systems with Delays

Input: The two matrices A ∈ K
[
δ, d

dt

]n×n
, B ∈ K

[
δ, d

dt

]n×m
which charac-

terize the linear system (3.32). It must be n ≥ m.

Output: If the system is π−flat, the matrices P ∈ K (δ)
[
d
dt

]m×n
,

Q ∈ K (δ)
[
d
dt

]n×m
and R ∈ K (δ)

[
d
dt

]m×m
and the delay operator π. Else

NULL.

1 i f not ∃M̃ : M̃B =

(
Im

0n−m×m

)
then

2 return NULL
3 end i f

4 i f ∃α 6= 0 : αT
(
A B

)
= 0 then

5 return NULL
6 end i f

7 M̃B =

(
Im

0n−m×m

)
⇒ M̃

8 F =
(

0n−m×m In−m
)
M̃A

9 i f not ∃Q̃ : FQ̃ =
(
In−m 0n−m×m

)
then

10 return NULL
11 end i f

12 FQ̃ =
(
In−m 0n−m×m

)
⇒ Q̃

13 Q̃−1Q̃ = In ⇒ Q̃−1

14 P =
(

0m×n−m Im
)
Q̃−1

15 Q = Q̃

(
0n−m×m
Im

)
12A possible option is to take all occurring denominators of left fractions of the corre-

sponding matrix and compute the least common left multiple of them.

24

3.3. Differential Flatness of Nonlinear Systems

16 R =
(
Im 0m×n−m

)
M̃AQ

17 Compute πP : πPP ∈ K
[
δ, ddt

]m×n
18 Compute πQ : πQQ ∈ K

[
δ, ddt

]n×m
19 Compute πR : πRR ∈ K

[
δ, ddt

]m×m
20 π = lclm(πP , πQ, πR)

21 P = πP

22 Q = πQ

23 R = πR
24 return P , Q , R , π

It has to be mentioned that certain restrictions for the trajectories of y exist
(for more details see [2]).

3.3 Differential Flatness of Nonlinear Systems

In section 3.2 flatness for linear systems was introduced. Now this system
property will also be defined for nonlinear systems. The mathematical struc-
tures, which will be introduced in this chapter, are reduced to their properties
which are relevant to the determination of flatness. The mathematical back-
ground of the differential geometry of manifolds of jets of infinite order, which
is applied here, may be found in [21].

3.3.1 Flatness of Explicit Nonlinear Systems

A definition for flatness of explicit nonlinear systems is given by:

Definition 17 ([14, 15, 20, 21, 22]). The explicit nonlinear system

ẋ = f(x, u), rank

(
∂f

∂u

)
= m (3.55)

with x ∈ X ⊂ Rn, u ∈ U ⊂ Rm and f ∈ K (field of meromorphic functions
over X ×U) is called differentially flat if and only if there exists an output

y =
(
yi . . . ym

)T
such that

y = ψ0(x, u, u̇, . . .). (3.56)

In addition, there must exist expressions of x and u such that

x = ϕx(y, ẏ, . . . , y
(κ−1)) (3.57)

u = ϕu(y, ẏ, . . . , y
(κ)). (3.58)

The output y is called flat output of the system (3.55). It is not unique.

25

Chapter 3. Mathematical Basics

3.3.2 Flatness of Implicit Nonlinear Systems

If an explicit system (3.55) satisfies rank
(
∂f
∂u

)
= m, x ∈ X ⊂ Rn, u ∈ U ⊂ Rm,

we can assume without loss of generality that

rank

(
∂(fn−m+1, . . . , fn)

∂u

)
= m. (3.59)

This means that we can solve the last m equations of the explicit system for
u. This yields

u = µ(x, ẋn−m+1, . . . , ẋn). (3.60)

By substituting (3.60) into the first n − m equations of (3.55), we gain the
implicit system representation

F (x, ẋ) = 0, rank

(
∂F

∂ẋ

)
= n−m. (3.61)

This corresponds to equation (3.38) in case of linear systems.
Every implicit system can also be transformed into an equivalent explicit sys-
tem (see [5]).
In order to go more into detail referring to the system class of nonlinear sys-
tems, we have to introduce several differential geometric constructs. First of
all, we introduce the infinitely differentiable manifold

X = X × Rn
∞ (3.62)

as prolongation of the state space X with dimX = n. The coordinates of the
prolongation X are given by

x = (x, ẋ, . . .). (3.63)

In a second step, the tangent space TxX of X shall be introduced. This is the
tangent space of the prolongation X at the arbitrary point x ∈ X. The tangent
space is spanned by the basis vectors

∂

∂x1
,
∂

∂x2
, . . . ,

∂

∂x
(k)
j

, . . . (3.64)

Now we introduce the trivial Cartan field of X

τX =
n∑
i=1

∑
j≥0

x
(j+1)
i

∂

∂x
(j)
i

(3.65)

which allows for any arbitrary meromorphic function φ(x) the identification

LτXφ(x) =
n∑
i=1

∑
j≥0

x
(j+1)
i

∂φ(x)

∂x
(j)
i

=
d

dt
φ(x). (3.66)

26

3.3. Differential Flatness of Nonlinear Systems

LτXφ(x) is also called Lie derivative of φ(x) along the trivial Cartan field τX
13.

Now we are able to define the system class of regular implicit systems:

Definition 18 ([20]). The triple (X, τX, F) consisting of a prolongation
X = X × Rn

∞, the associated trivial Cartan field τX and a meromorphic func-
tion F which maps TX to Rn−m with rank

(
∂F
∂ẋ

)
= n − m is called regular

implicit system.

If the set of solutions of the system (3.61) is denoted by the manifold

X0 = {x|LkτXF = 0 ∀ k ≥ 0}, (3.67)

Lie-Bäcklund equivalence can be defined by:

Definition 19 ([22]). Two regular implicit systems (X, τX, F) and (Y, τY, G)
are called Lie-Bäcklund equivalent at the pair of points (x0, y0) ∈ X0×Y0

if and only if the assertions

i) there exist a neighborhood X0 of x0 in X0 and a neighborhood Y0 of y0 in
Y0 and a meromorphic map Φ such that

Φ = (ϕ0, ϕ1, . . .) : Y0 → X0 with Φ(y0) = x0 (3.68)

ii) the associated trivial Cartan fields are Φ-related, i.e. Φ∗τY = τX

iii) there exists a one-to-one meromorphic map Ψ such that

Ψ = (ψ0, ψ1, . . .) : X0 → Y0 with Ψ(x0) = y0 (3.69)

iv) the associated trivial Cartan fields are Ψ-related, i.e. Ψ∗τX = τY

are satisfied. In this case the meromorphic map Φ called Lie-Bäcklund iso-
morphism with the inverse Ψ.
The two systems (X, τX, F) and (Y, τY, G) are called locally Lie-Bäcklund
equivalent if they are Lie-Bäcklund equivalent at every pair of points
(x,Ψ(x)) = (Φ(y), y) of an open dense subset Z of X0 × Y0, with Φ and
Ψ mutually inverse Lie-Bäcklund isomorphisms on Z.

Now we are able to introduce differential flatness:

Definition 20 ([15]). The regular implicit system (X, τX, F) is called differ-
entially flat around (x0, y0) ∈ X0×Rm

∞ if and only if the system is Lie-Bäck-
lund equivalent to the trivial implicit system (Rm

∞, τRm
∞ , 0) in a neighborhood of

(x0, y0).
It is called differentially flat if it is differentially flat around every pair of
points (x0, y0) of an open dense subset of X0 × Rm

∞.

13The k’th Lie derivative is denoted by LkτXφ(x) = dk

dtk
φ(x)

27

Chapter 3. Mathematical Basics

3.3.3 Introduction of Differential Forms and Operators

Based on the tangent space TxX the cotangent space T ∗xX can be introduced.
It is spanned by the basis vectors

dx1, dx2, . . . , dxn, dẋ1, dẋ2, . . . , dẋn, . . . , dx
(j)
i , . . . (3.70)

which satisfy

< dx
(j)
i ,

∂

∂x
(l)
k

>= δikδjl with δik =

{
1 if i = k
0 if i 6= k

(3.71)

Because of that T ∗xX is also called dual space of TxX. A finite linear combina-
tion of basis vectors of the cotangent space is called 1-form:

ω =
∞∑
j=0

n∑
i=1

ωi,j(x)dx
(j)
i (3.72)

with the coefficients ωi,j as meromorphic functions of the state and its deriva-
tives with respect to time. The space of 1-forms is also denoted by Λ1 (X).
By using the so called wedge product it is possible to introduce the space of
p-forms Λp (X) which is spanned by the basis vectors

dx
(j1)
i1
∧ . . . ∧ dx(jp)ip

. (3.73)

The properties of the wedge product ∧ applied to differentials are

ω ∧ θ = (−1)p·qθ ∧ ω, ω ∈ Λp (X) , θ ∈ Λq (X) (3.74)

and

ω ∧ ω ≡ 0 ∀ω ∈ Λ1 (X) . (3.75)

Therefore, a p-form ω ∈ Λp (X) is given by

ω =
∑

i1,j1,...,ip,jp

ωi1,j1,...,ip,jp(x)dx
(j1)
i1
∧ . . . ∧ dx(jp)ip

. (3.76)

The derivative with respect to time of a differential form ω ∈ Λp (X) is given
by the Leibniz-rule:

d

dt
ω =

d

dt

∑
i1,j1,...,ip,jp

ωi1,j1,...,ip,jp(x)dx
(j1)
i1
∧ . . . ∧ dx(jp)ip

=
∑

i1,j1,...,ip,jp

(
ω̇i1,j1,...,ip,jp(x)dx

(j1)
i1
∧ . . . ∧ dx(jp)ip

+ ωi1,j1,...,ip,jp(x)
d

dt

(
dx

(j1)
i1
∧ . . . ∧ dx(jp)ip

))
(3.77)

28

3.3. Differential Flatness of Nonlinear Systems

with

d

dt

(
dx

(j1)
i1
∧ . . . ∧ dx(jp)ip

)
= dẋ

(j1)
i1
∧ . . . ∧ dx(jp)ip

+ dx
(j1)
i1
∧ dẋ(j2)i2

∧ . . . ∧ dx(jp)ip
+ . . .

+ dx
(j1)
i1
∧ . . . ∧ dẋ(jp)ip

(3.78)

(see also [22]).
Furthermore, the operator d shall be introduced whose main ability is to trans-
form p-forms into (p+1)-forms. The operator d is also called exterior deriva-
tive. It has the property14:

d(ω ∧ θ) = dω ∧ θ + (−1)pω ∧ dθ (3.79)

with ω ∈ Λp (X) and θ ∈ Λq (X). We also have ∀ω ∈ Λp (X)

d(d(ω)) ≡ 0. (3.80)

Computing the exterior derivative of an arbitrary 1-form ω ∈ Λ1 (X) yields

d(ω) = d

(
∞∑
j=0

n∑
i=1

ωi,j(x)dx
(j)
i

)

=
∞∑
j=0

n∑
i=1

d(ωi,j(x)) ∧ dx(j)i (3.81)

with

d(ωi,j(x)) =
∞∑
l=0

n∑
k=1

∂ωi,j(x)

∂x
(l)
k

dx
(l)
k (3.82)

as the exterior derivative of a meromorphic function ωi,j(x). Together with
the anti-derivation property (3.79), the concrete exterior derivative of p-forms
can be computed.
The operator d can now be used to define the operator µ ∈ L (Λp (X) ,Λp+q (X))
which transforms p-Forms into (p+q)-forms:

µ = µ0 ∧+µ1 ∧
d

dt
+ . . .+ µn ∧

dn

dtn
(3.83)

with µi ∈ Λq (X) , i = 0..n. If we apply the operator µ ∈ L (Λp (X) ,Λp+q (X))
to a differential form ω ∈ Λp (X), we will get

µω = µ0 ∧ ω + µ1 ∧ ω̇ + . . .+ µn ∧ ω(n) ∈ Λp+q (X) . (3.84)

14This property is also known as anti-derivation-property.

29

Chapter 3. Mathematical Basics

The exterior derivative mapping d can be extended to a mapping d to the class
of previous operators µ ∈ L (Λp (X) ,Λp+q (X)) as follows:

d(µ) = dµ0 ∧+dµ1 ∧
d

dt
+ . . .+ dµn ∧

dn

dtn
(3.85)

with µi ∈ Λq (X) , i = 0..n. Similar to operator d, we also have

d(d(µ)) ≡ 0, ∀µ ∈ L
(
Λp (X) ,Λp+q (X)

)
. (3.86)

The time derivative of an operator µ ∈ L (Λp (X) ,Λp+q (X)) results from the
Leibniz-rule:

d

dt
µ =

n∑
i=0

(
d

dt
(µi) ∧

di

dti
+ µi ∧

di+1

dti+1

)
. (3.87)

3.3.4 A First Characterization of Flatness

For further evaluation of necessary and sufficient conditions for differential
flatness of nonlinear systems, we use the following theorem:

Theorem 11 ([22]). The regular implicit system (X, τX, F) is locally flat in a
neighborhood of the pair of points (x0, y0) ∈ X0×Rm

∞ if and only if there exists
a local invertible meromorphic function Φ : Rm

∞ → X0 with Φ(y0) = x0, whose
pull-back Φ∗ : T ∗xX→ T ∗yRm

∞ satisfies the equation

Φ∗ (dF) = 0. (3.88)

The differential dF ∈ Λ1 (X) in (3.88) is, referring to [20], given by

dF =
∂F

∂x
dx+

∂F

∂ẋ
dẋ (3.89)

with dx =
(
dx1 . . . dxn

)T
and dẋ =

(
dẋ1 . . . dẋn

)T
.

By introducing the skew polynomial matrix PF ∈ K
[
d
dt

]n−m×n
such that

PF =
∂F

∂x
+
∂F

∂ẋ

d

dt
(3.90)

with K the field of meromorphic functions over X (see (3.63)), we are able to
rewrite (3.89):

dF = PFdx. (3.91)

By setting (3.91) = 0, we obtain the variational system with the system dy-
namics PF :

PFdx = 0. (3.92)

30

3.3. Differential Flatness of Nonlinear Systems

We deduce from equation (3.68) that for the Lie-Bäcklund isomorphism Φ in
Theorem 11 we have

Φ(y) = (ϕ0(y), ϕ1(y), ϕ2(y), . . .)

= (ϕ0(y), ϕ̇0(y), ϕ̈0(y), . . .) = (x, ẋ, ẍ, . . .) = x. (3.93)

We can show that we have ([22])

Φ∗ (dF) = Φ∗ (PFdx) = PFPϕ0dy (3.94)

with the skew polynomial matrix

Pϕ0 =
∑
j≥0

∂ϕ0

∂y(j)
dj

dtj
. (3.95)

Let us assume that y is a flat output. Then, Φ∗ (dF) = 0 is equivalent to

PFPϕ0 = 0. (3.96)

To determine a function ϕ0, whose pull-back satisfies (3.88), we first determine

all unimodular (i.e. invertible) skew polynomial matrices Q ∈ K
[
d
dt

]n×n
which

satisfy

PFQ = 0. (3.97)

Afterwards we evaluate if there exists a solution for Q which also satisfies the
equation

Qdy = dϕ0. (3.98)

I.e. it has to be analyzed if Qdy is the differential of a function ϕ0. If that
is true, ϕ0 can be computed by the integration of Qdy. Also in this case, the
equations (3.88) and (3.94) are satisfied with Pϕ0 = Q.

3.3.5 Construction of a Flat Output of the Variational
System

Remark: The necessary condition for differential flatness of the nonlinear
system (3.61) is the differential flatness of the variational system (3.92) (see
[22]).
This leads to the following approach: First we construct an integrable flat
output ω of the variational system (3.92). Then we get the flat output of the
nonlinear system (3.61) by integrating ω.

Theorem 12 ([22]). The variational system PFdx = 0 with PF ∈ K
[
d
dt

]n−m×n
is called differentially flat if and only if PF is hyper-regular. I.e. there has to
exist an unimodular skew polynomial matrix Q̃ ∈ K

[
d
dt

]n×n
such that

PF Q̃ =
(
In−m 0n−m×m

)
. (3.99)

31

Chapter 3. Mathematical Basics

Both the construction of a flat output ω of the variational system and the
expression of ω using dx are executed similar to the linear case in section 3.2.1:
So, in this case we have to compute Pϕ0 = Q such that (3.96) is satisfied. This
is equivalent to (3.99) with

Q = Q̃

(
0n−m×m
Im

)
. (3.100)

Then, a minimal basis decomposition of Q yields the unimodular skew poly-
nomial matrix P̃ ∈ K

[
d
dt

]n×n
such that

P̃Q =

(
Im

0n−m×m

)
. (3.101)

It can be shown (see [6]) that a flat output of the variational system is always
given by

ω =
(
Im 0m×n−m

)
P̃︸ ︷︷ ︸

P

dx. (3.102)

To express the differential dx in coordinates of ω we can use (see [22, 6])

dx = Qω. (3.103)

Like in the linear case, we can avoid the second minimal basis decomposition
by using (3.45) – (3.46). This yields the following theorem:

Theorem 13. If the matrix PF ∈ K
[
d
dt

]n−m×n
of the variational system

PFdx = 0 is hyper-regular, P ∈ K
[
d
dt

]m×n
can be computed by the equation

P =
(

0m×n−m Im
)
Q̃−1. (3.104)

Remark: ω is interpreted as a flat output of the variational system. P and
Q are the corresponding defining operators. Therefore, the algorithms in the
time-varying linear case apply.

3.3.6 Integrability of the Variational Flat Output

Referring to [22], we have a link between the flat output ω of the variational
system (3.92) and the flat output y of the nonlinear system (3.61):
If ω is a closed form, i.e.

dω = 0, (3.105)

a flat output of the nonlinear system will be given by the integration of

ω = Pdx. (3.106)

32

3.3. Differential Flatness of Nonlinear Systems

If the condition (3.105) is not fulfilled, we will have to find an unimodular skew

polynomial matrix M ∈ K
[
d
dt

]m×m
such that

d (Mω) = 0. (3.107)

It can be shown that Mω is also a flat output of the variational system (3.92)
(see [22, 6]). Therefore, we can use the following theorem:

Theorem 14 ([21]). The system (X, τX, F) is flat, if and only if there ex-
ist an operator µ ∈ L (Λ1 (X) ,Λ2 (X))

m×m
and an unimodular matrix M ∈

K
[
d
dt

]m×m
such that:

dω = µω, d (µ) = µµ, d (M) = −Mµ. (3.108)

If µ and M exist, a flat output y can be obtained by integrating dy = Mω.

In order to find suitable matrices µ ∈ L (Λ1 (X) ,Λ2 (X))
m×m

andM ∈ K
[
d
dt

]m×m
which satisfies (3.108), the following approach from [21] can be used: Assuming

the entries of M ∈ K
[
d
dt

]m×m
are elements in L (Λ1 (X) ,Λ1 (X)), the exterior

derivative of (3.107) combined with the (for the operator d extended) anti-
derivation-property (3.79) is given by

d (M)ω +Mdω = 0

⇔ dω = −M−1d (M)ω. (3.109)

Now, if we construct an operator matrix µ ∈ L (Λ1 (X) ,Λ2 (X))
m×m

such that

µ = −M−1d (M) , (3.110)

µ and M satisfy the conditions dω = µω and d (M) = −Mµ because of their
structure. In addition, we have to have d (d (M)) = 0, i.e.

d (d (M)) = d (−Mµ)

0 = −d (M)µ−Md (µ)

Md (µ) = −d (M)µ

⇒ d (µ) = −M−1d (M)µ = µµ. (3.111)

Thus also the second condition, which has to be satisfied by the operators µ
and M , can be derived from (3.111).

3.3.7 A Sequential Procedure

This yields to the following algorithm for the determination of a flat output of
the implicit nonlinear system (3.61), according to [6]:

1. Compute PF = ∂F
∂x

+ ∂F
∂ẋ

d
dt

.

33

Chapter 3. Mathematical Basics

2. Algebraic flatness analysis of PF : Compute ω = Pdx according to the
equations (3.99) – (3.102).

3. Compute µ such that µω = dω.

4. Determine all µ which also satisfy d(µ) = µ2.

5. Compute M such that d (M) = −Mµ.

6. Discard all non-unimodular matrices M . A flat output can be obtained
by integrating dy = Mω.

7. If no suitable unimodular matrix M exists, the system is not flat.

This algorithm has to be executed in several iteration steps. In each step the
degree in d

dt
of the operators µ and M (and therefore the number of degrees

of freedom) will be increased by one until a flat output was found. It is
still uncertain whether an upper limit for the degree in d

dt
of the operators µ

and M exists or not (and therefore it remains unclear whether the algorithm
terminates automatically after a certain number of steps). This question is
currently a subject of research ([22]).

34

Chapter 4

Developing a Data Structure for
Linear Systems

In section 3.2 we described the mathematical operations we need for the flat-
ness determination in case of linear systems (with and without delays). At the
beginning of this chapter, we will analyze the mathematical structures which
are needed for the flatness determination. In a second step, we are going to
define criteria for the decision on the implementation approach. Furthermore,
we will discuss practical possibilities of the implementation. Finally, we are
going to choose an appropriate data structure based on the previously defined
criteria.

4.1 Analysis of the Mathematical Structures

For the linear flatness determination the decision was made to implement only
a single toolbox which is able to handle the determination of differential and
π-flatness of linear systems. This requires common data structures in order to
be compatible between the different features. Since linear time-varying sys-
tems with delays include linear time-varying systems and linear time-invariant
systems we can use the same data structure to describe them.
Let us start with data structures that suit linear time-invariant systems and
then extend them for the other system classes: Considering the computations
made in section 3.2.1, it becomes evident that we need a technical representa-
tion of operator matrices M ∈ R

[
d
dt

]r×s
and therefore of operators p ∈ R

[
d
dt

]
which are of the form:

p =
N∑
i=0

pi
di

dti
, pi ∈ R, deg(p) = N ∈ N0 (4.1)

with N0 = N ∪ {0}.
In order to consider linear time-varying systems from section 3.2.2 as well, we

35

Chapter 4. Developing a Data Structure for Linear Systems

simply enhance the representation of the operators (4.1) to

p(t) =
N∑
i=0

pi(t)
di

dti
, pi(t) ∈ K, deg(p) = N ∈ N0. (4.2)

We consider K to be the field of meromorphic functions. At this point, we
decide to implement only a representation of ordinary functions in t and not
of Laurent series.
To enhance the data structure in order to support also delays and predic-
tions, we have to extend the polynomials to the ring K (δ)

[
d
dt

]
. I.e. we have

polynomials of the form:

p(t) =
N∑
i=0

bi(t)
−1ai(t)

di

dti
, deg(p) = N ∈ N0, (4.3)

while the polynomials ai(t) ∈ K [δ] , bi(t) ∈ K [δ] \{0} are of the form:

ai(t) =

Ri∑
j=0

ai,j(t)δ
j, ai,j(t) ∈ K, deg(ai) = Ri ∈ N0, (4.4)

bi(t) =

Si∑
j=0

bi,j(t)δ
j, bi,j(t) ∈ K, deg(bi) = Si ∈ N0. (4.5)

Additionally, to compute the minimal basis decomposition mentioned in sec-
tion 3.1.6, we need a representation of matrices of left fractions, too.
In order to separate the data structure into smaller parts, a possible solution
is to distinguish:

• polynomial ai(t) resp. bi(t) ∈ K [δ]

• left fraction bi(t)
−1ai(t) ∈ K (δ)

• matrix ∈ K (δ)n×m

• polynomial p(t) ∈ K (δ)
[
d
dt

]
• matrix ∈ K (δ)

[
d
dt

]n×m
Therefore, a target data structure for the representation of polynomials ∈ K [δ]
needs to provide the information:

i) the degree of the polynomial in δ

ii) a mapping from a degree to the corresponding coefficient of the polyno-
mial

To describe left fractions ∈ K (δ) we simply need the information:

36

4.2. Criteria for the Implementation Approach

i) denominator

ii) numerator

Polynomials ∈ K (δ)
[
d
dt

]
can be expressed by the information:

i) the degree of the polynomial in d
dt

ii) a mapping from a degree to the corresponding coefficient of the polyno-
mial

For matrices ∈ K (δ)
[
d
dt

]n×m
and ∈ K (δ)n×m we need:

i) the number of rows

ii) the number of columns

iii) a mapping from the pair (row, column) to the corresponding entry

4.2 Criteria for the Implementation Approach

The most important property which shall be fulfilled by the toolbox is to have
good performance characteristics. In order to achieve this, the data structures
have to provide a low requirement for both computation time and memory.
Furthermore, we want to rely on Maple-own data structures if sustainable
referring to its performance. Thereby, we are able to use Maple-own methods
for handling the data structures, so we do not need to implement everything
new.

4.3 Practical Possibilities in Terms of Imple-

mentation

4.3.1 Available Basic Data Structures in Maple

Since we want to rely on existing basic data structures in Maple, let us take a
look at those at the beginning of this section:
Generally, we have two groups of data structures in Maple (see [26]): mutable
and immutable data structures. In case of mutable data structures, we are
able to change the attributes of an instance after its instantiation. In case of
immutable data structures, this is not possible. Instead, a copy of the orig-
inal instance, but with changed attribute values, will be created automatically.

Set
Sets belong to the immutable data structures in Maple. The elements in a set

37

Chapter 4. Developing a Data Structure for Linear Systems

are unique. Doubled entries will be deleted1. Furthermore, the elements in
sets have no specified order and thus they cannot be distinctly called by their
index2. Because of that they only come into consideration for very specific
data structures3.

Listing 4.1: Creating a set

> example se t 1 := {a , b , c } ;
example se t 1 := {a , b , c}

> example se t 2 := {c , b , b , a , c } ;
example se t 2 := {a , b , c}

Since doubled entries are going to be deleted, the two sets above are completely
identical.

List
Lists also belong to the immutable data structures of Maple. But unlike sets,
their elements are not unique and have a specific order. Thus, they have an
unique index and can be accessed by it.

Listing 4.2: Creating a list

> e xamp l e l i s t := [a , b , c , c] ;
e x amp l e l i s t := [a , b , c , c]

#Get the number o f e lements
> nops (e x amp l e l i s t) ;

4

Maple offers a lot of methods for the manipulation of lists and sets. So work-
ing with them can be easily handled without implementing additional methods.

Table
Tables belong to the mutable data structures. That means that if we change
the attribute values of a table, Maple will not create a whole new table, but
instead the attributes of this very instance will be changed.
Tables consist of key-value pairs, i.e. there exists at most one value to each
key. The data type of the key and the value may be different. Thus, a table
correlates with a mapping from keys to values.

Listing 4.3: Creating a table

> example tab le := table ([1 = a , 2 = b , 3 = c , 4 = c]) ;
#Access ing the value to the key ”2”
> example tab le [2] ;

b

1Since there exists no automatic simplification of mathematical terms in Maple, it may
be possible that there occur doubled entries in sets, so we have to simplify those by our own,
to make sure that all elements in a set are unique.

2In fact, we can use the index to get elements of the set, but since Maple does the internal
sorting of the elements we cannot be sure which element we get.

3Note that even sums cannot be represented by a Maple-own set, because an unsimplified
sum may contain the very same element several times. Automatically deleting those would
corrupt the sum!

38

4.3. Practical Possibilities in Terms of Implementation

Array
Arrays are multidimensional data fields which can be filled with arbitrary data
types. They are implemented as rtables (a more general data structure in
Maple), just like the Maple data structures Matrix and Vector. They belong to
the mutable data structures, i.e. changing the entries does not force Maple to
create a new instance.

Listing 4.4: Creating an Array

#One−dimens iona l Array
> example array := Array ([a , b , c , c]) ;
#Access ing the second value o f the array
> example array [2] ;

b
#Mult id imens iona l Array with two rows and four columns
> example array := Array ([[a , b , c , c] , [d , e , f , f]]) ;
#Access ing the value at (2 , 3) o f the array
> example array [2 , 3] ;

f

Record
Records are data structures which consist of a specific number of named at-
tributes. Those attributes have to be defined by the programmer and may
not be changed after its instantiation. Records are mutable data structures.
Their attribute values can be read, copied and changed using specific Maple
commands.

Listing 4.5: Creating a Record

#Create a record with unass igned a t t r i b u t e s
> example record := Record (’ foo ’ , ’ bar ’) ;
#Set the a t t r i b u t e s
> example record :− f oo := a ;
> example record :−bar := b ;
#Get the value o f a t t r i b u t e ’ foo ’
> example record :− f oo ;

a

Matrix and Vector
Although Matrix and Vector are not exactly basic data structures of Maple,
we still want to describe them briefly at this point since we consider using
them in our data structure. Both are mutable data structures and represent
matrices and vectors in Maple. In Maple there are a lot of predefined methods
for manipulating both Vectors and Matrices.
Remark: Matrix, Vector and Array share the same internal data structure
rtable (see [26] for more details).

Listing 4.6: Creating a Matrix

> example matrix := Matrix (3 , 2 , {
(1 , 1) = a ,
(1 , 2) = b ,
(2 , 1) = c ,

39

Chapter 4. Developing a Data Structure for Linear Systems

(2 , 2) = d ,
(3 , 1) = e ,
(3 , 2) = f
}) ;

#Get the element at p o s i t i o n (2 , 1)
> example matrix [2 , 1] ;

c
#Change the element at p o s i t i o n (2 , 1)
> example matrix [2 , 1] := x ;

The Vector works similar to that. In addition, you can add an orientation of
the Vector to specify it to be a row or column vector.

4.3.2 Possible Approaches for the Implementation

Looking at the data, which has to be stored in the new data types, and the
possible basic data structures Maple already provides, many possible solutions
come into consideration. We will now discuss a few different approaches for
an implementation of the data structures mentioned in section 4.1.
Remark: Besides their internal implementation, both data structures list and
Array provide similar features, therefore we will treat them interchangeable as
long as we do not consider performance issues.

Polynomials ∈ K [δ] and ∈ K (δ)
[
d
dt

]
Since both data structures contain the same sort of information (the degree of
the polynomial and a mapping from a degree to the corresponding coefficient),
they can be expressed the same way in Maple:
1.) Using a table: Since a table is a mapping, we can simply map the degree to
the corresponding coefficient, sparing all degrees whose coefficient is zero. The
degree of such a polynomial representation can then be obtained by the highest
occurring degree. Therefore, there is no need to store the degree separately.
E.g. the polynomial xδ + yδ3 could be stored as:

Listing 4.7: Polynomial as table

> poly := table ([1 = x , 3 = y]) ;
> max(indices (poly , ’ n o l i s t ’)) ;

3

2.) Using a list or Array: We can store a polynomial into a list resp. Array
by simply storing the coefficient to the n’th degree at position n+ 1 and then
filling the empty positions with zeros. The degree of the polynomial is then
given by the number of entries minus 1. E.g. the polynomial xδ + yδ3 could
be stored as4:

Listing 4.8: Polynomial as list

> poly := [0 , x , 0 , y] ;
> nops (poly) − 1 ;

3

4The representation of a polynomial as Array works similar.

40

4.3. Practical Possibilities in Terms of Implementation

Left fractions ∈ K (δ)
Since we only handle left fractions, we do not need to store the orientation
(left or right) of the fraction, but only the denominator and numerator. A few
possible approaches to store this information are:
1.) Using a list or Array: We can simply store denominator and numerator as
two entries in a list resp. Array. The position of the numerator resp. denom-
inator must be equal in all left fractions (e.g. denominator at position 1 and
numerator at position 2):

Listing 4.9: Left fraction as list

> l e f t F r a c := [denom , numer] ;
#Access ing the numerator
> l e f t F r a c [2] ;

numer

2.) Using a Record: Since every left fraction consists of a denominator and a
numerator, it is possible to use a Record for this purpose:

Listing 4.10: Left fraction as Record

> l e f t F r a c := Record (’ denominator ’ , ’ numerator ’) ;
> l e f t F r a c :−denominator := denom ;
> l e f t F r a c :−numerator := numer ;
#Access ing the numerator
> l e f t F r a c :−numerator ;

numer

Matrices ∈ K (δ)
[
d
dt

]n×m
and ∈ K (δ)n×m

Although a matrix can be seen as a mapping from the indexes to the entries,
we decide at this point not to use a table, because handling this data structure
would be impractical. This leaves over the following possibilities:
1.) Using a list or Array: We can use a multidimensional list resp. Array to
store all elements of the matrix. The dimensions of the matrix can then be
evaluated by the size of the list resp. Array.

Listing 4.11: Matrix as list

> matr ix 32 := [[entry 11 , ent ry 12] , [entry 21 , ent ry 22] , [entry 31 ,
ent ry 32]] ;
#Number o f rows :
> nops (matr ix 32) ;

3
#Number o f columns :
> nops (matr ix 32 [1]) ;

2

2.) Using the Maple-own Matrix: Since the Matrix allows us to insert every kind
of data, we are able to use the Maple-own Matrix and all predefined methods
for it, such as those from the LinearAlgebra package.
Remark: For vectors of polynomials or left fractions, we can use the Maple-
own structures Matrix and Vector as well.

41

Chapter 4. Developing a Data Structure for Linear Systems

Listing 4.12: Matrix as Matrix

> matr ix 32 := Matrix (3 , 2 , {
(1 , 1) = entry 11 ,
(1 , 2) = entry 12 ,
(2 , 1) = entry 21 ,
(2 , 2) = entry 22 ,
(3 , 1) = entry 31 ,
(3 , 2) = entry 32
}) ;

> LinearAlgebra [RowDimension] (matr ix 32) ;
3

> LinearAlgebra [ColumnDimension] (matr ix 32) ;
2

4.4 Choosing an Appropriate Data Structure

in Maple Based on the Defined Criteria

First of all, we will determine how much time the different read and write
accesses and the creation of the eligible data structures need in Maple, using a
simple performance test. Based on the results, we are able to decide which data
structures are suitable in order to achieve good performance characteristics.
For this test, we use the following four terms as our test data:

a = sin(x1(t))x2(t) (4.6)

b = tan(x1(t)) (4.7)

c = 2x1(t)x2(t) (4.8)

d = cos(x2(t)) (4.9)

During the test, we create 4 million instances of the eligible data structures,
which are always filled with these four attributes of our test data but in dif-
ferent order. Afterwards, we select every attribute of one instance of the data
structure 1 million times and overwrite every attribute of one instance 1 million
times. This yields the result:

Data structure Reading Writing Creating
Set 1,747 sec -5 10,514 sec
List 1,810 sec 4,103 sec 9,797 sec

Table 2,231 sec 2,730 sec 43,727 sec
Array 0,546 sec 2,902 sec 16,846 sec

Record 2,121 sec 2,777 sec 17,488 sec

From this result it can be derived that tables, Arrays and Records are not
applicable to use them in a basic data structure. The reason for this assertion
is that we have to create a lot of instances of the data structures in order

5Since there is no actual way to override specific elements in sets, this is not comparable
with the other structures.

42

4.4. Choosing an Appropriate Data Structure in Maple Based
on the Defined Criteria

to implement the required algorithms, thus causing an enormous amount of
computation time.
Since sets do not have a specified order, manipulating a set while iterating over
it could cause errors due to the internal sorting of Maple. So we determine at
this point that we focus on lists.
Matrices and Vectors have not been evaluated in this performance test, due
to the fact that they are not directly comparable to the other data structures
(except for multidimensional Arrays). In fact, we will use many matrix and
vector operations in the toolbox. Nevertheless, the number of actual matrices
and vectors which will be created is far from being as high as the number of
polynomials, etc. So, we decide at this point to use the Maple-own Matrix and
Vector structures to be able to use the already defined methods for matrix and
vector manipulations.
Now we are able to define the concrete implementation of the data structures
which have been determined in section 4.1. To define new data types in Maple,
we can use the type command6:

Listing 4.13: Usage of type for type definition

> ‘ type/<NameOfDataType>‘ := <FormOfDataType>;

This leads to the following list of new data types:

Polynomial ∈ K [δ]
Data type name: DelayPolynomial

Listing 4.14: Definition of DelayPolynomial in Maple

> ‘ type/DelayPolynomial ‘ := l i s t (Not(l i s t)) ;

Examples:

Math. expression DelayPolynomial
x1(t)δ

2 + x2(t) [x2D0T07, 0, x1D0T0]

φ̈(t+ τ) [phiD2P1]
δ3 + δ [0, 1, 0, 1]

Left fraction ∈ K (δ)
Data type name: LeftFraction

Listing 4.15: Definition of LeftFraction in Maple

> ‘ type/LeftFraction ‘ := [DelayPolynomial , DelayPolynomial] ;

6By using specific commands, it is possible to implement those data types in a special
way in order to define them automatically when the user accesses the toolbox by using the
with command of Maple. Thus, the user does not have to worry about the internal type
definitions and may use them instantly like standard Maple types.

7To increase the performance, we do not use the data type function to express func-
tions of time. However, to describe derivatives and delays (resp. predictions), a special
transformation is used. A detailed description can be found in section 6.1.

43

Chapter 4. Developing a Data Structure for Linear Systems

Note: We define that we always keep the order [denominator, numerator].

Examples:

Math. expression LeftFraction
(δ)−1(1) [[0, 1], [1]]

(x1(t))
−1(ẋ1(t)δ

2) [[x1D0T0], [0, 0, x1D1T0]]

(φ̈(t+ τ))−1(δ) [[phiD2P1], [0, 1]]

Matrix ∈ K (δ)n×m

Data type name: LeftFractionMatrix

Listing 4.16: Definition of LeftFractionMatrix in Maple

> ‘ type/LeftFractionMatrix ‘ := ’Matrix (LeftFraction) ’ ;

In this case, we omit examples since a LeftFractionMatrix is simply a Maple-
own matrix with LeftFractions as entries.

Vector ∈ K (δ)n

Data type name: LeftFractionVector

Listing 4.17: Definition of LeftFractionVector in Maple

> ‘ type/LeftFractionVector ‘ := ’Vector (LeftFraction) ’ ;

In this case, we omit examples since a LeftFractionVector is simply a Maple-own
vector with LeftFractions as entries. For the type definition it is not necessary
to have a row or column vector. Both kinds are valid.

Polynomial ∈ K (δ)
[
d
dt

]
Data type name: OrePolynomial

Listing 4.18: Definition of OrePolynomial in Maple

> ‘ type/OrePolynomial ‘ := l i s t (LeftFraction) ;

Examples:

Math. expression OrePolynomial
(δ)−1s(t) d

dt
[[[1], [0]], [[0, 1], [sD0T0]]]

x1(t)x2(t)
d2

dt2
+ x1(t)

d
dt

+ 1 [[[1], [1]], [[1], [x1D0T0]], [[1], [x1D0T0 * x2D0T0]]]

x1(t)
d
dt

+ s(t)δ2 − s(t)δ [[[1], [0, -sD0T0, sD0T0]], [[1], [x1D0T0]]]

Matrix ∈ K (δ)
[
d
dt

]n×m
Data type name: OreMatrix

Listing 4.19: Definition of OreMatrix in Maple

> ‘ type/OreMatrix ‘ := ’Matrix (OrePolynomial) ’ ;

In this case, we omit examples since an OreMatrix is simply a Maple-own ma-
trix with OrePolynomials as entries.

44

4.4. Choosing an Appropriate Data Structure in Maple Based
on the Defined Criteria

Vector ∈ K (δ)
[
d
dt

]n
Data type name: OreVector

Listing 4.20: Definition of OreVector in Maple

> ‘ type/OreVector ‘ := ’Vector (OrePolynomial) ’ ;

In this case, we omit examples since an OreVector is simply a Maple-own vector
with OrePolynomials as entries. For the type definition it is not necessary to
have a row or column vector. Both kinds are valid.

Therefore, the final data structure of the linear toolbox is given by:

Figure 4.1: Abridged class diagram for DifferentialDelays

45

Chapter 4. Developing a Data Structure for Linear Systems

46

Chapter 5

Developing a Data Structure for
Nonlinear Systems

We determined in chapter 4 which data structure we need in case of linear
systems with and without delays. Now we want to evaluate in this chapter
which data structure we require for nonlinear systems in order to implement
methods for the algorithms from section 3.3.
Similar to chapter 4, we will analyze the mathematical structures we need to
implement first. Furthermore, we are going to discuss practical approaches in
terms of implementation. Then, we will choose an appropriate data structure
for the toolbox. Finally, we are going to discuss the special case of the minimal
basis decomposition.
Since we have already declared criteria for the evaluation of data structures in
section 4.2, we will not repeat them in this chapter, but use the same criteria
to choose among the different approaches.

5.1 Analysis of the Mathematical Structures

Like in the linear case, the decision was made to implement only a single
toolbox with a common data structure which is able to handle the flatness
determination for nonlinear systems. First, let us recall the data structure
for nonlinear systems. The basic mathematical structures which we need are
differential forms and operators. Furthermore, we need to handle matrices over
these two structures.
A general differential p-form ω ∈ Λp (X) is given by (3.76):

ω =
∑

i1,j1,...,ip,jp

ωi1,j1,...,ip,jp(x)dx
(j1)
i1
∧ . . . ∧ dx(jp)ip

(5.1)

with ωi1,j1,...,ip,jp be an arbitrary meromorphic function of the state and its
derivatives with respect to time. An operator µ ∈ L (Λp (X) ,Λp+q (X)) is

47

Chapter 5. Developing a Data Structure for Nonlinear
Systems

given by extending a p-form with the differential operator d
dt

(see (3.83)):

µ = µ0 ∧+µ1 ∧
d

dt
+ . . .+ µn ∧

dn

dtn
, µi ∈ Λq (X) . (5.2)

In a first step, we split these two data structures into smaller parts in order to
have a modular design of the data structures. This allows us to reuse several
components and methods inside the toolbox. Both differential forms (6.12) and
operators (5.2) are represented by sums of monomial p-differential forms
(in case of differential forms) and monomial operators (in case of operators).
A single monomial differential form is given by

θ = θc(x)dx
(j1)
i1
∧ . . . ∧ dx(jp)ip

, (5.3)

while a single monomial operator is given by

ν = νc(x)dx
(j1)
i1
∧ . . . ∧ dx(jq)iq

∧ dn

dtn
(5.4)

with θc, νc be meromorphic functions of the state and its derivatives with re-
spect to time.
Considering (5.3) and (5.4), it becomes evident that both have a specific num-

ber of monomial differential forms dx
(j)
i in a fixed order1. This gives reason

to treat these monomial differential forms as an own data structure. In fact,
monomial differential forms may contain general p-forms (e.g. the monomial
differential form ω ∈ Λ3 (X)) as well, so we need to create a very general data
structure.
So, we distinguish the following data structures:

• monomial differential form

• monomial p-differential form ∈ Λp (X)

• general p-form, i.e. ∈ Λp (X)

• monomial operator ∈ L (Λp (X) ,Λp+q (X))

• operator ∈ L (Λp (X) ,Λp+q (X))

• matrix ∈ Λp (X)n×m

• matrix ∈ L (Λp (X) ,Λp+q (X))
n×m

The data structure for the representation of monomial differential forms needs
to provide:

i) the information whether it is closed or not2

1This order has to be kept in the implementation since the wedge product is not com-
mutative (see (3.74)).

2Let us recall that a differential ω with the property d(ω) = 0 is called closed.

48

5.1. Analysis of the Mathematical Structures

ii) the meromorphic function (resp. its time derivative)

iii) of how many 1-forms it consists

The first and third attributes are required due to the possibility of unknown,
i.e. not completely substituted, differentials during the computation. A short
example may illustrate this: The differential form ω ∈ Λ3 (X) may be described
in several ways using these unknown differentials:

ω = dx1 ∧ dẋ2 ∧ dx2
= dx1 ∧ θ with θ = dẋ2 ∧ dx2
= dχ ∧ θ, with χ = x1, θ = dẋ2 ∧ dx2
= χ ∧ β ∧ γ with χ = dx1, β = dẋ2, γ = dx2

= ϑ with ϑ = dx1 ∧ dẋ2 ∧ dx2. (5.5)

The ’closed’ attribute is primarily required to speed up the computations, be-
cause in case of an exterior derivative of a closed differential form (known or
unknown) we can automatically consider the whole differential form as zero,
because of (3.80).
However, the information about how many forms a differential consists of is
very important and may not be omitted because of the permutation rule (3.74).

A representation of a monomial p-differential form must provide:

i) the coefficient of the monomial p-differential form (i.e. a meromorphic
functions of the state and its derivatives with respect to time)

ii) an arbitrary number of monomial differential forms with a fixed order

Similarly, a representation of a monomial operator must provide:

i) the coefficient of the monomial operator (i.e. a meromorphic functions
of the state and its derivatives with respect to time)

ii) an arbitrary number of monomial differential forms with a fixed order

iii) the degree of the operator in d
dt

Then, both general differential p-forms ∈ Λp (X) and operators ∈ L (Λp (X) ,Λp+q (X))
can be expressed by:

i) all consisting summands (which are monomial p-differential forms resp.
monomial operators)

For matrices ∈ Λp (X)n×m and ∈ L (Λp (X) ,Λp+q (X))
n×m

we need:

i) the number of rows

ii) the number of columns

iii) a mapping from the pair (row, column) to the corresponding entry

49

Chapter 5. Developing a Data Structure for Nonlinear
Systems

5.2 Practical Possibilities in Terms of Imple-

mentation

Since we have already recalled suitable basic data structures of Maple in section
4.3.1, we will not repeat them in this section. Because of the thoughts given
in section 4.4, we decide at this point to use lists instead of sets and Arrays.
Since we will encounter sums of forms and operators, let us briefly discuss
using actual sums (which is possible in Maple) in order to use the plus sign in
Maple terms:

Listing 5.1: Using actual sums

> dif fSum := di f fForm 1 + di f fForm 2 ;

In this case we simply overload the addition defined in Maple in order to extend
it for the application on differential forms and operators. This can be done by
using the overload-option:

Listing 5.2: Overloading ’+’

arbitraryModule := module ()
option package ;
export ‘+ ‘ ;
‘+ ‘ := proc (a : :DiffForm , b : :DiffForm) option overload ;
#Handle the add i t i on

end proc ;
end module ;

The method above allows us to simply write ω+θ in our worksheets, but causes
a tremendous decrease of computational performance. Obviously, we overload
the plus-sign, causing Maple to check the parameters every time a plus-sign is
parsed, even if none of the parameters is a DiffForm. Thus, we determine not
to use overloading for sums. This yields the following data types in Maple:

Monomial differential form
In this case we just need to store three details. This can be done by the fol-
lowing approaches:
1.) Using a list: We can simply store the three details in a list by using fixed
entries for each type of information:

Listing 5.3: Monomial differential form as list

> monoDiff := [i sClosed , theFunction , numberOfForms] ;
#E. g . the monomial d i f f e r e n t i a l form dx 1 could be expres sed by
> monoDiff := [true , x 1 , 1] ;
#whi le an a rb i t r a r y unc losed 3−form would be expres sed by
> monoDiff := [false , omega , 3] ;

2.) Using a Record: Since we have three separated attributes, we can store the
information in a Record as well:

Listing 5.4: Monomial differential form as Record

> monoDiff := Record (’ i sC losed ’ , ’ theFunction ’ , ’ numberOfForms ’) ;
> monoDiff :− i sC l o s ed := fa l se ;

50

5.2. Practical Possibilities in Terms of Implementation

> monoDiff :− theFunction := omega ;
> monoDiff :−numberOfForms := 3 ;

Monomial p-differential form ∈ Λp (X)
In this case, we have to keep in mind that we need a fixed order for the con-
taining monomial differential forms. Therefore, a simple list may be the most
appropriate representation for this. Nevertheless, we have these approaches
for the monomial p-differential form:
1.) Using a list: If we consider fixed positions for the coefficient and the list of
monomial differential forms, we may use a list:

Listing 5.5: Monomial p-differential form as list

> di f fForm := [c o e f f i c i e n t , [monomial d i f f e r e n t i a l forms . . .]] ;

2.) Using a Record: Another approach is to treat the coefficient and the list of
monomial differential forms as attributes of a Record:

Listing 5.6: Monomial p-differential form as Record

> di f fForm := Record (’ c o e f f i c i e n t ’ , ’ monoDiffForms ’) ;
> di f fForm :− c o e f f i c i e n t := c o e f f z ;
> di f fForm :−monoDiffForms := [monomial d i f f e r e n t i a l forms . . .] ;

Monomial operator ∈ L (Λp (X) ,Λp+q (X))
Assuming that a monomial operator is just a monomial p-differential form
which has been extended with the operator d

dt
, we can reuse the two approaches

above and simply add the degree of the monomial operator in d
dt

to the existing
data structure:
1.) Using a list:

Listing 5.7: Monomial operator as list

> operForm := [c o e f f i c i e n t , [monomial d i f f e r e n t i a l forms . . .] , degreeInDdt] ;

2.) Using a Record:

Listing 5.8: Monomial operator as Record

> operForm := Record (’ c o e f f i c i e n t ’ , ’ monoDiffForms ’ , ’ degreeInDdt ’) ;
> operForm:− c o e f f i c i e n t := c o e f f z ;
> operForm:−monoDiffForms := [monomial d i f f e r e n t i a l forms . . .] ;
> operForm:−degreeInDdt := degree ;

General p-forms ∈ Λp (X) and operators ∈ L (Λp (X) ,Λp+q (X))
Since a general differential p-form (resp. an operator) is actually just a sum
of monomial p-differential forms (resp. monomial operators), we can simply
express these data structures by using a list3:

3Although a sum of monomial p-differential forms or monomial operators has no fixed
order, we must not use the Maple-own type set since then doubled summands would be
automatically deleted by Maple.

51

Chapter 5. Developing a Data Structure for Nonlinear
Systems

Listing 5.9: General p-form resp. operator as list

> dif fSum := [di f fForm 1 , di f fForm 2 , . . .] ;
> operSum := [operForm 1 , operForm 2 , . . .] ;

Matrices ∈ Λp (X)n×m and ∈ L (Λp (X) ,Λp+q (X))n×m

Since we have already evaluated in chapter 4 that the Maple-own data types
Matrix and Vector proved to be the most suitable representation for matrices
and vectors, we decide at this point to rely on Matrix and Vector.

5.3 Choosing an Appropriate Data Structure

in Maple

Based on the results from section 4.4, we maintain using lists as a basic data
structure. This decision rewards us with both good performance character-
istics and an easy handling of those structures using predefined methods of
Maple. Furthermore, we obtain the new data types:

Monomial differential form
Data type name: MonoDiffForm

Listing 5.10: Definition of MonoDiffForm in Maple

> ‘ type/MonoDiffForm ‘ := [boolean , symbol , integer] ;

The first parameter describes whether the MonoDiffForm is closed. If the mono-
mial differential form is not closed or if it is unknown whether the monomial
differential form is closed, this parameter must be set to false.
The second parameter is the meromorphic function (resp. its time derivative)
of the monomial differential form.
The third parameter describes how many 1-forms the monomial differential
form consists of (e.g. 2 in case of a monomial differential form ∈ Λ2 (X)).

Examples:

Math. expression MonoDiffForm
dx1 ∈ Λ1 (X) [true, x1D04, 1]
ω ∈ Λ3 (X) [false, omegaD0, 3]

dθ̇ ∈ Λ2 (X) [true, thetaD1, 2]

4To increase the performance, we do not use the data type function to express functions of
time. However, a special transformation is used in order to describe derivatives. A detailed
description can be found in section 6.1.

52

5.3. Choosing an Appropriate Data Structure in Maple

Monomial p-differential form
Data type name: DiffForm

Listing 5.11: Definition of DiffForm in Maple

> ‘ type/DiffForm ‘ := [Not(l i s t) , l i s t (MonoDiffForm)] ;

The first parameter is the coefficient of the monomial p-differential form.
The second parameter is a list of the monomial differential forms of the mono-
mial p-differential form.

Examples:

Math. expression DiffForm
sin(x1(t))dx1 ∧ dx2 [sin(x1D0), [[true, x1D0, 1], [true, x2D0, 1]]]

x1(t)ω [x1D0, [[false, omegaD0, 3]]]
−dx1 ∧ dx2 ∧ dθ [-1, [[true, x1D0, 1], [true, x2D0, 1], [true,

thetaD0, 2]]]

with ω ∈ Λ3 (X) and θ ∈ Λ2 (X).

Monomial operator
Data type name: OperForm

Listing 5.12: Definition of OperForm in Maple

> ‘ type/OperForm‘ := [Not(l i s t) , l i s t (MonoDiffForm) , integer] ;

The first and second parameter are the same as in the DiffForm.
The third parameter represents the degree of the operator d

dt
of the monomial

operator.

Examples:

Math. expression OperForm
sin(x1(t))dx1 ∧ dx2 ∧ d

dt
[sin(x1D0), [[true, x1D0, 1], [true, x2D0, 1]], 1]

x1(t)ω∧ [x1D0, [[false, omegaD0, 3]], 0]

−dx1 ∧ dx2 ∧ dθ ∧ d3

dt3
[-1, [[true, x1D0, 1], [true, x2D0, 1], [true,

thetaD0, 2]], 3]

1 ∧ d
dt

[1, [], 1]

with ω ∈ Λ3 (X) and θ ∈ Λ2 (X).

General p-form ∈ Λp (X)
Data type name: DiffSum

Listing 5.13: Definition of DiffSum in Maple

> ‘ type/DiffSum ‘ := And(l i s t (DiffForm) , Not ([])) ;

In this case, we omit examples since a DiffSum is simply a Maple-own list of
DiffForms. In case of an empty list, the toolbox will assert that it is no DiffSum.
This is important, otherwise we would not be able to tell whether we have a

53

Chapter 5. Developing a Data Structure for Nonlinear
Systems

differential p-form or an operator.

Operator ∈ L (Λp (X) ,Λp+q (X))
Data type name: OperSum

Listing 5.14: Definition of OperSum in Maple

> ‘ type/OperSum‘ := And(l i s t (OperForm) , Not ([])) ;

In this case we also omit examples since a OperSum is simply a Maple-own list
of OperForms. Similar to the DiffSum, the toolbox will not accept empty lists
as OperSums.

Matrix ∈ Λp (X)n×m

Data type name: DiffMatrix

Listing 5.15: Definition of DiffMatrix in Maple

> ‘ type/DiffMatrix ‘ := ’Matrix ({DiffForm , DiffSum}) ’ ;

In this case, we omit examples since a DiffMatrix is simply a Maple-own matrix
with DiffForms and/or DiffSums as entries. So we do not need to transform
single DiffForms into DiffSums.

Matrix ∈ L (Λp (X) ,Λp+q (X))n×m

Data type name: OperMatrix

Listing 5.16: Definition of OperMatrix in Maple

> ‘ type/OperMatrix ‘ := ’Matrix ({OperForm, OperSum}) ’ ;

In this case, we omit examples since a OperMatrix is simply a Maple-own matrix
with OperForms and/or OperSums as entries. So we do not need to transform
single OperForms into OperSums.

54

5.4. Special Case: Minimal Basis Decomposition

Therefore, we obtain the data structure for handling differential forms and
operators:

Figure 5.1: Abridged class diagram for DifferentialForms

5.4 Special Case: Minimal Basis Decomposi-

tion

The minimal basis decomposition from (3.99) and (3.101) is executed with

matrices ∈ K
[
d
dt

]n×m
. Using the data types defined in section 5.3 would

entail the usage of OperMatrices without differentials to express matrices ∈
K
[
d
dt

]n×m
. This data type however needs more memory than necessary. More-

over, the methods for handling operators take more computation time since
they are implemented to handle the far more complex case in which we have
L (Λp (X) ,Λp+q (X)) with q ≥ 1. Therefore, we decided to use a specialized
data structure for this purpose.5

In case of the minimal basis decomposition we have matrices ∈ K
[
d
dt

]n×m
, i.e.

we have matrices over polynomials of the form:

p(t) =
N∑
i=0

ci(t)
di

dti
, ci(t) ∈ K, deg(p) = N ∈ N0. (5.6)

I.e. we need to store the information:

i) the degree of the polynomial in d
dt

ii) a mapping from a degree to the corresponding coefficient of the polyno-
mial

5This new data structure shall not directly be available for the user of the toolbox.
Instead, the minimal basis decomposition shall convert between the ’regular’ OperMatrices
and our specialized data structure.

55

Chapter 5. Developing a Data Structure for Nonlinear
Systems

For matrices ∈ K
[
d
dt

]n×m
we need:

i) the number of rows

ii) the number of columns

iii) a mapping from the pair (row, column) to the corresponding polynomial

Like in case of polynomials ∈ K (δ)
[
d
dt

]
and matrices ∈ K (δ)

[
d
dt

]n×m
(see

chapter 4) we decide to implement the data types as lists, Matrices and Vectors:

Polynomial ∈ K
[
d
dt

]
Data type name: SkewPolynomial

Listing 5.17: Definition of SkewPolynomial in Maple

> ‘ type/SkewPolynomial ‘ := l i s t (Not(l i s t)) ;

Examples:

Math. expression SkewPolynomial
sin(x1(t)) + 1 [sin(x1D0) + 1]

x1(t) + x2(t)
d
dt

[x1D0, x2D0]

− d
dt

+ ẋ2(t)
d3

dt3
[0, -1, 0, x2D1]

Matrix ∈ K
[
d
dt

]n×m
Data type name: SkewMatrix

Listing 5.18: Definition of SkewMatrix in Maple

> ‘ type/SkewMatrix ‘ := ’Matrix (SkewPolynomial) ’ ;

In this case, we omit examples since a SkewMatrix is simply a Maple-own ma-
trix with SkewPolynomials as entries.

Vector ∈ K
[
d
dt

]n
Data type name: SkewVector

Listing 5.19: Definition of SkewVector in Maple

> ‘ type/SkewVector ‘ := ’Vector (SkewPolynomial) ’ ;

In this case we also omit examples since a SkewVector is simply a Maple-own
matrix with SkewPolynomials as entries.

Therefore, the final data structure of the minimal basis decomposition for
nonlinear systems is given by:

Figure 5.2: Abridged class diagram for the submodule MinimalbasisDecomp

56

Chapter 6

Issues of the Implementation

This chapter discusses several certain issues concerning the implementation
which allow a higher performance of the algorithms or improve the toolboxes
concerning usability and quality.

6.1 Using functions versus symbols

The most important issue during the implementation was using symbols instead
of functions to express function of time in both of the toolboxes in order to
decrease the needs of computation time and memory.

6.1.1 Introducing Regular Expressions for Function Names

Usually, functions of time are represented in Maple by the common mathe-
matical notation:

Listing 6.1: Function of time

> x (t) ;
x (t)

The derivative of a not specified function can be computed via the method diff
or the operator D:

Listing 6.2: Differentiate a function

> d i f f (x (t) , t) ;
d/dt x (t)

> D[1] (x) (t)
D(x) (t)

#The r e s u l t o f the D−operator can be converted to the d i f f−notat ion
> convert (D[1] (x) (t) , d i f f) ;

d/dt x (t)
#And v i c e ver sa

> convert (d i f f (x (t) , t) , D) ;
D(x) (t)

This also works in case of delays or predictions:

57

Chapter 6. Issues of the Implementation

Listing 6.3: Differentiate a function with a delay

> d i f f (f (t−tau) , t) ;
D(f) (t − tau)

Thus, we could use the standard Maple-own functions to represent the mero-
morphic functions we encounter. To increase the performance of the imple-
mented algorithms, the decision was made to use the Maple data type symbol
instead of function1. In order to do this, we convert the function-based notation
into a symbol-based one using a special pattern for the name.
In case of linear systems, we need three attributes within the name:

i) the actual function name

ii) the degree of the derivative of the function with respect to t

iii) the magnitude of the delay resp. prediction of the function

This yields the following regular expression for function names (for an expla-
nation of the syntax of regular expressions see [32]):

ˆ [a-zA-CE-OQ-SU-Z0-9]+︸ ︷︷ ︸
i)

D[0-9]+︸ ︷︷ ︸
ii)

(T[0-9]+|P[1-9][0-9]*)︸ ︷︷ ︸
iii)

$ (6.1)

The capitalized letters D, T and P are keywords and must not be used inside
the function name. All other letters (including the lowercased d, t and p),
numbers and the underscore are allowed to be used in function names as well
as in standard Maple. The name is followed by the keyword D and the degree
of the derivative of the function. Finally, the expression waits for the keyword
T (in case of delays) or P (in case of predictions) followed by the magnitude.
We define a function with neither delays nor predictions as T0. A few examples
shall demonstrate the regular expression:

Math. function In DifferentialDelays
x(t− τ) xD0T1
ẍ(t) xD2T0

ω̇y(t+ 3τ) omega yD1P3
Foo Bar 1(t) Foo Bar 1D0T0

y(12)(t− 10τ) yD12T10

In a second step, we have to define constrains for possible names of constants,
too. Otherwise we would not be able to differentiate between constants and
functions. Thus, we consider constants to fit the regular expression

ˆ[a-zA-CE-OQ-SU-Z0-9]+$ (6.2)

i.e. constants must not contain the keywords D, T and P. A few examples for
constants:

1We will illustrate the improvement of the performance at a later point in this section.

58

6.1. Using functions versus symbols

Math. constant In DifferentialDelays
τ tau
C1 C1

In case of nonlinear systems, we omit the delays resp. predictions yielding the
regular expression for functions:

ˆ [a-zA-CE-Z0-9]+︸ ︷︷ ︸
i)

D[0-9]+︸ ︷︷ ︸
ii)

$ (6.3)

As we can see in (6.3), only the keyword D exists due to the fact that we do
not have delays and predictions in the nonlinear case. Thus, we are allowed to
use the formerly keywords T and P in function names:

Math. function In DifferentialForms
x(t) xD0

δ̈(t) deltaD2
ẏflat(t) y flatD1
Ψ 1(t) Psi 1D0

Similar to the linear case, all constants have to fit the regular expression

ˆ[a-zA-CE-Z0-9]+$ (6.4)

A few examples for constants:

Math. constant In DifferentialForms
Θ Theta
C1 C1

6.1.2 Spell Checking to Avoid Invalid Functions and
Constants

To ensure that all functions and constants have valid names, there exist meth-
ods for spell checking in the toolboxes which validate all user-entered expres-
sions whether they fit the corresponding regular expressions. These validations
are only executed when the user creates new instances of the data types and
not during the computation itself. Because of the internal use of functions and
constants of the toolbox, it is not possible that invalid functions and/or con-
stants may be created during the computations, thus additional spell checking
would need more computation time without creating any benefits.
For instance, in case of the nonlinear toolbox, the internal spell checking
method is:

Listing 6.4: spellingChecker

1 local spe l l i ngChecke r := proc (term : :Not(l i s t) ,
{ onlyFunct ionsAl lowed : : boolean := fa l se })

59

Chapter 6. Issues of the Implementation

2 description ”This method checks the s p e l l i n g o f the func t i ons and
cons tant s . I f t he re are func t i ons which do not f i t the r e gu l a r expres s ion
ˆ [a−zA−CE−Z0−9]+D[0−9]+$ or cons tant s which do not f i t ˆ [a−zA−CE−Z0−9]+$,
the method w i l l r a i s e an error and exp l a in why ! ” ;

3 local
4 #l i s t (name)
5 varLi s t ,
6 #name
7 va r i ab l e ;
8

9 va rL i s t := indets (term , name) ;
10 for va r i ab l e in va rL i s t do
11 i f (not Str ingToo l s [RegMatch] (” ˆ [a−zA−CE−Z0−9]+D[0−9]+$” , v a r i a b l e)) then
12 i f (onlyFunct ionsAl lowed) then
13 error (”The expres s ion %1 i s no func t ion . Please s p e l l your func t i ons

compat ib l e to [a−zA−CE−Z0−9]+D[0−9]+” , v a r i a b l e) ;
14 else
15 i f (not Str ingToo l s [RegMatch] (” ˆ [a−zA−CE−Z0−9]+$” , v a r i a b l e)) then
16 error (”The expres s ion %1 i s ne i t h e r a func t i on nor a constant .

Please s p e l l your func t i ons compat ib l e to [a−zA−CE−Z0−9]+D[0−9]+
and your cons tant s compat ib l e to [a−zA−CE−Z0−9]+” , v a r i a b l e) ;

17 end i f ;
18 end i f ;
19 end i f ;
20 end do ;
21 return NULL;
22 end proc :

So the user will immediately get an error if he enters invalid spelled functions
resp. constants. The option onlyFunctionsAllowed occurring in line 1 and 12 is
used for the spell checking of certain terms which may only contain functions
such as MonoDiffForms (see section 5.3). In those cases, even right spelled
constants will be invalid. The spell checking method in the linear case works
similar but checks for the regular expressions (6.1) and (6.2).

6.1.3 Implementing the Time Derivative for Arbitrary
Terms

Due to the fact that we no longer have Maple-functions of t, we have to im-
plement our own method to differentiate arbitrary terms with functions and
constants in them with respect to t. In order to do this, we use the Lie deriva-
tive along the Cartan field to differentiate the term. This shall be illustrated
by a simple example: Let x(t) + y(t)ż(t) be the term we want to differentiate.
Then, we are able to compute the differentiation by applying the operator

ẋ(t)
d

dx(t)
+ ẏ(t)

d

dy(t)
+ z̈(t)

d

dż(t)
(6.5)

to the term. Written in the syntax of the toolbox the operator would be

xD1
d

dxD0
+ yD1

d

dyD0
+ zD2

d

dzD1
. (6.6)

In the nonlinear toolbox, this can be done with the local method timeDeriva-
tive:

60

6.1. Using functions versus symbols

Listing 6.5: timeDerivative

1 local t imeDer ivat ive := proc (term : :Not(l i s t))
2 description ”This method d i f f e r e n t i a t e s the g iven term with r e spec t to

time . ” ;
3 local
4 #l i s t (name)
5 varLi s t ,
6 #l i s t (s t r i n g)
7 s p l i t t e d ,
8 #name
9 var i ab l e ,

10 #Not (l i s t)
11 derivTerm ;
12

13 derivTerm := 0 ;
14 va rL i s t := indets (term , name) ;
15 for va r i ab l e in va rL i s t do
16 i f (SearchText (”D” , v a r i a b l e) = 0) then next ; end i f ;
17 s p l i t t e d := Str ingToo l s [S p l i t] (va r i ab l e , ”D”) ;
18 derivTerm := derivTerm + d i f f (term , va r i ab l e) ∗ convert (cat (s p l i t t e d [1] ,

”D” , parse (s p l i t t e d [2] , statement)+1) , symbol) ;
19 end do ;
20 return derivTerm ;
21 end proc :

In the linear toolbox, the differentiation is done similarly, but there is one
difference: To represent t in terms (which is important in case of linear sys-
tems), the decision was made to define t as tD0T0. Analog t− xτ and t+ xτ
are represented by tD0Tx resp. tD0Px with x ∈ N0. Derivations of t ± xτ
are represented by tDyTx resp. tDyPx with y as the degree of the differ-
entiation. The internal simplification methods will automatically substitute
occurring tD1Tx resp. tD1Px for 1 and tDyTx resp. tDyPx with y > 1
for 0.

6.1.4 Consequences of Using symbols instead of func-
tions

First of all, we discover a small performance loss, using the time derivative
via the Cartan field (6.5). But in return, we encounter the big benefit of not
having functions of t in Maple anymore. This yields three advantages

1.) faster handling of terms with symbols instead of functions

2.) much faster evaluation of the included functions

3.) no need for conversion between D and diff-notation

1.) The data type symbol seems to be more lightweight since handling terms
with symbols instead of functions needs less computation time than vice versa2.
Since the algorithms in the toolboxes will produce mathematical terms with

2A simple performance test showed a reduction about 30-40%, depending on the size of
the terms. The bigger the terms get, the higher the performance boost due to using symbols
instead of functions is.

61

Chapter 6. Issues of the Implementation

a high complexity, fast methods for simplification, canceling, multiplication,
etc. are very important.

2.) In many methods of the toolbox, but especially in the implementation
of the exterior derivative (3.81) in case of nonlinear systems, it is required to
evaluate the concrete functions (including their current differentiation degree)
which are contained in a specific term. A small example to illustrate this
requirement: Let F (x), x ∈ X be

F (x) = x1(t)− ẍ2(t) + sin(x3(t)
2). (6.7)

The exterior derivative d(F (x)) according to (3.82) is given by

d(F (x)) = d(x1(t)) + d(ẍ2(t)) + 2x3(t)cos(x3(t))d(x3(t)). (6.8)

I.e. there has to be a method which (in this example) returns the functions
x1(t), ẍ2(t) and x3(t) in order to work properly. For this purpose Maple offers
the method indets, which evaluates the indeterminates of an expression. It can
be specified by providing the data type:

Listing 6.6: Usage of indets

#Find a l l f un c t i on s
> indets (x 1 (t) − d i f f (x 2 (t) , t$2) + s i n (x 3 (t) ˆ2) , function) ;

{ d i f f (x 2 (t) , t) , d i f f (x 2 (t) , t , t) , s i n (x 3 (t) ˆ2) , x 1 (t) ,
x 2 (t) , x 3 (t) }

#Find a l l f un c t i on s o f symbols
> indets (x 1 (t) − d i f f (x 2 (t) , t$2) + s i n (x 3 (t) ˆ2) , function (symbol)) ;

{x 1 (t) , x 2 (t) , x 3 (t) }

Even the approach of iterating over the more general indets result and dif-
ferentiating with respect to each function to see whether the function as a
whole exists in the term will not work in case of nested functions (like e.g.
sin((x3(t))

2)). It may be possible to implement a method which returns the
needed functions using a combination of the techniques mentioned above, but
this method would take without much doubt a lot of computation time due to
the variety of cases that has to be considered.
In the toolbox developed in [33], this problem was solved by storing the oc-
curring functions in a special attribute of each coefficient. But this approach
caused a high need of computation time since this function-list had to be main-
tained during the algorithms.
Without the time dependency the evaluation of the functions is quite simple.
We just have to evaluate all symbols in the specific term and then exclude all
symbols without the keyword D in it (to exclude all constants):

Listing 6.7: Get all functions of a term

1 #varL i s t conta in s a l l symbols in the term (cons tant s and func t i on s)
2 va rL i s t := indets (term , symbol) ;
3 f un c t i on s := [] ;
4 for va r i ab l e in va rL i s t do
5 #Does the va r i ab l e conta in the keyword D?

62

6.2. Discussion on the Need of a Unique Data Structure

6 i f (SearchText (”D” , v a r i a b l e) = 0) then next ; end i f ;
7 #Add a found func t i on to the l i s t o f f un c t i on s
8 f un c t i on s := [op(f un c t i on s) , v a r i ab l e] ;
9 end do ;

3.) There exist two notations for the differentiation of functions in Maple:
the D and diff-notation. Actually D is handled as an operator while diff is
a function. Both can be used for the differentiation of terms with respect to
variables as seen in listing 6.2 and can be converted in the opposite notation
via the convert method of Maple. But it cannot be determined without doubt
when Maple uses the diff notation and when the D notation since both can
be used in a similar way3. Also users may use both notations to represent
differentiations in the system matrices. Thus, it would be necessary to convert
every term that could contain differentiations into one of the two notations,
which would cause an enormous performance loss.
Without the time dependency, we have an own representation of differentia-
tions and therefore there exists no need for conversion between the two repre-
sentations in Maple.

6.2 Discussion on the Need of a Unique Data

Structure

As explained in chapter 4 and 5 the decision was made to develop two separated
data structures4 instead of a common data structure for all kinds of control
systems. In this section, we will discuss the possibility of merging those data
structures into a single data structure and the consequences in terms of per-
formance and usability.
At first, let us recall the key data type OrePolynomial of the linear toolbox. It
represents a polynomial p(t) ∈ K (δ)

[
d
dt

]
:

p(t) =
N∑
i=0

bi(t)
−1ai(t)

di

dti
, ai(t), bi(t) ∈ K [δ] , deg(p) = N ∈ N0 (6.9)

with the polynomials ai(t), bi(t) ∈ K [δ]:

ai(t) =

Ri∑
j=0

ai,j(t)δ
j, ai,j(t) ∈ K, deg(ai) = Ri ∈ N0 (6.10)

bi(t) =

Si∑
j=0

bi,j(t)δ
j, bi,j(t) ∈ K, deg(bi) = Si ∈ N0 (6.11)

3For example, during the development of the toolboxes it was discovered that the result
of the partial differential equation solver of Maple changed the kind of notation when a
higher version of Maple was used.

4For the minimal basis decomposition in case of nonlinear systems, we used a specialized
internal data structure in order to speed up the computations. This is mentioned in section
5.4.

63

Chapter 6. Issues of the Implementation

Although this polynomial is clearly an operator, we will not find a matching
data type among the operators of the nonlinear toolbox. A possible approach
for merging the data structures would be to enhance the data structures for
the monomial operators of the nonlinear toolbox. Since the monomial operator
itself is an extension of the monomial p-differential form, we have to extend
the monomial p-differential form ω ∈ Λp (X) (see (5.3)) to

θ = θc(x)dx
(j1)
i1
∧ . . . ∧ dx(jp)ip

= θcD(x)−1θcN (x)dx
(j1)
i1
∧ . . . ∧ dx(jp)ip

(6.12)

with θcD and θcN ∈ K [δ]. Moreover, the extension of the monomial operator
(see 5.4) is given by

ν = νc(x)dx
(j1)
i1
∧ . . . ∧ dx(jq)iq

∧ dn

dtn

= νcD(x)−1νcN (x)dx
(j1)
i1
∧ . . . ∧ dx(jq)iq

∧ dn

dtn
(6.13)

with νcD and νcN ∈ K [δ]. I.e. we use left fractions over polynomials in δ
as coefficients for monomial p-differential forms (and therefore monomial op-
erators) to enable a representation for delays and predictions. This way, we
may represent a monomial of the operator ∈ K (δ)

[
d
dt

]
as a monomial oper-

ator (6.13) with no attached monomial differential forms. Since an operator
∈ L (Λp (X) ,Λp+q (X)) is defined as a sum of monomial operators, we may
represent our polynomials ∈ K (δ)

[
d
dt

]
as operators ∈ L (Λp (X) ,Λp (X)).

This yields the hypothetical data structure:

Figure 6.1: Abridged class diagram for the merged data structure

The biggest advantage of a merged data structure would be that we could
handle linear and nonlinear systems with and without delays with a single
toolbox5, making it easier for the user to handle the implemented features.

5Remark: This does not necessarily mean that we have fewer lines of code.

64

6.3. On the Treatment of Local Variables to Improve the
Computational Performance

On the other hand, we will definitely encounter a huge loss of performance since
we would have to implement the most general case for every computation. E.g.
in case of the differentiation of a DiffForm, we would have to consider delays
resp. predictions in the coefficients and also contained monomial differential
forms. In case of a specialized data structure for each system class, we simply
do not implement such cases since they do not appear. In addition, we would
have to store more information than needed inside the data types causing
Maple to allocate more memory than required.
Since computational performance is the key issue of the toolboxes, we maintain
a separated data structure.

6.3 On the Treatment of Local Variables to

Improve the Computational Performance

Maple has by default a weak typing for local variables in methods. I.e. it
does not check the data type of local variables before an assignment during
the runtime:

Listing 6.8: Assign an invalid type to a variable

> ass ignmentTest := proc (arb i t raryParameter : : anything)
#Set the type o f ’ r e su l t ’ to ’ i n t ege r ’
local r e s u l t : : integer ;
r e s u l t := arb i t raryParameter ;
return r e s u l t ;

end proc ;
> ass ignmentTest (42) ;

42
> ass ignmentTest (” foobar ”) ;

” foobar ”

However, Maple also supports a strong typing by changing the assertLevel (see
[26] for more details):

Listing 6.9: Enable strong typing

> ke rne l op t s (a s s e r t l e v e l = 2) ;

This will cause the second method call above to raise an assertion error, but
causes a noticeably performance loss6. So, the decision was made to omit
typing local variables at all and just write the type of the variables as an inline
comment in order to support the developers:

Listing 6.10: Example for type-comments

local t imeDer ivat ive := proc (term : :Not(l i s t))
description ”This method d i f f e r e n t i a t e s the g iven term with r e spec t to
time . ” ;
local

#l i s t (name)
varL i s t ,

6A simple performance test showed a lack of performance of 15% and more, depending
on the number of local variables and assignments.

65

Chapter 6. Issues of the Implementation

#l i s t (s t r i n g)
s p l i t t e d ,
#name
var i ab l e ,
#Not (l i s t)
derivTerm ;
. . .

Of course, this leaves us with the usual problems of weak typing, such as
unrecognized assertion errors, etc. In this case we accept these in order to
speed up the computation. Another approach would be to enable the strong
typing for tests and disable it for the actual application. But since we do not
know the setting of the assertion level in the environment which is used by the
user of the toolboxes, we will not follow this approach.

66

Chapter 7

Introduction of the Developed
Toolboxes

In this chapter, the internal structure of the toolboxes and their functionali-
ties will be described in detail. We will also take a look at the methods the
toolboxes provide and how to use1 them.

7.1 General Remarks

Since the toolboxes introduce own data types for skew polynomials, left frac-
tions and differential forms resp. operators, almost every computation rule and
algorithm must explicitly be implemented in the toolboxes. The toolboxes do
not use the Maple libraries OreTools, DifferentialGeometry and JetCalculus in
order to focus on the very particular case of flatness determination. This will
distinctly increase the computational performance since we do not consider
more general mathematical cases (which the above mentioned libraries are ca-
pable of). Nevertheless, this decision leads to the implementation of a lot of
methods. To organize the toolboxes, the methods are ordered2 by their type
resp. their visibility:

1.) Initialization
These methods are automatically executed when the respective toolbox
gets loaded by the with command of Maple. They are not visible to the
user.

2.) Constructors
Constructors are used for creating instances of the data types developed

1Some of the methods are not directly visible to the user (due to the Maple modifier local).
To demonstrate the usage of those methods, the toolbox was altered in order to export these
methods. If we want to access them directly, we will have to change the visibility modifier
of the methods.

2This order corresponds to the order of the methods in the actual source code and in the
following chapters.

67

Chapter 7. Introduction of the Developed Toolboxes

in the chapters 4 and 5. Although these are also exported methods, they
are treated as an own type of methods since they serve the same pur-
pose.
The matrix- and vector-based data types (such as LeftFractionVector,
OreMatrix, DiffMatrix, etc.) do not have constructors since they are sim-
ply Maple-own matrices resp. vectors with custom entries and may still
be created by the Maple commands Matrix and Vector.

3.) Local methods
These methods can only be called from other methods of the toolbox but
not from the user himself.

4.) Exported methods
These methods are visible to the user and offer the core features of the
respective toolbox.

Besides the default Maple language core, the toolboxes only need the following
libraries (resp. methods of them) in order to work3:

DifferentialDelays:

Library Used methods
LinearAlgebra ColumnDimension, Dimension, RowDimension
Maplets Display, various methods from the package Elements
StringTools RegMatch, RegSubs, Split, StringBuffer, SubstituteAll

DifferentialForms:
Library Used methods
LinearAlgebra ColumnDimension, Dimension, MatrixInverse, NullSpace,

RowDimension
Maplets Display, various methods from the package Elements
ListTools Search
PDETools difforder, dsubs
RandomTools Generate
StringTools RegMatch, RegSubs, Split, StringBuffer, SubstituteAll

Please note that the DifferentialForms toolbox uses the method pdsolve from
the Maple language core to solve the occurring differential equations.

In addition, we may spend a few words referring to the naming of the meth-
ods and variables4: In both toolboxes, all constructor methods are written in

3This is not a fixed list and may be extended in future versions of the toolboxes. It shall
just illustrate that the toolboxes are mainly based on the Maple language core and therefore
mainly independent from other libraries.

4This notation is not specified by Maple. Nevertheless, it has been chosen to increase the
readability of the source code.

68

7.2. DifferentialDelays

upper camel case, while all variables, parameters and methods are written in
lower camel case5 similar to the common notation in Java.

7.2 DifferentialDelays

7.2.1 Internal Structure of the Toolbox

The toolbox for flatness determination in case of linear systems with and with-
out delays consists of the main module and the submodules Decompose, Left-
FractionUtils and PiFlatUtils. Each part offers a certain kind of functionality of
the toolbox. By including the toolbox in a worksheet using the with command,
we automatically gain access to all exported methods of the toolbox and its
submodules.

Figure 7.1: Structure of DifferentialDelays

In the following sections the main module and its submodules will be explained
in detail.

7.2.2 Main Module

In this section, all methods of the main module of the toolbox DifferentialDelays
are described in detail. The main module offers the core methods which are
used in order to handle the most of the computation rules, which are defined
in chapter 4.
In order to improve the differentiation of the methods, all exported methods
which handle DelayPolynomials ∈ K [δ] start with delay, while all methods for
LeftFractions ∈ K (δ) start with lFraction and finally methods for OrePolynomi-
als ∈ K (δ)

[
d
dt

]
start with ore.

5Upper camel case means that the first letter of every word within a name is capitalized
while all other letters are lowercased (e.g. DelayPolynomial). Lower camel case is like upper
camel case, but the very first letter is also lowercased (e.g. delayShift).

69

Chapter 7. Introduction of the Developed Toolboxes

7.2.2.1 Initialization

7.2.2.1.1 initializeMe

Visibility: local

Parameters: −
Return type: −
Description: This method will automatically be called when using the with-
command of Maple. It initializes the different data types defined in section
4.4. This method also displays these data types and the current version of the
toolbox. Roughly speaking, it is the maintenance method of the toolbox.

7.2.2.2 Constructors

7.2.2.2.1 DelayPolynomial

Visibility: export

Parameters:
coefficients :: seq(Not(list))

Return type: DelayPolynomial

Description: This method is one of the constructors of this toolbox. It can be
used to create a single DelayPolynomial ∈ K [δ]. The parameter coefficients has
to be a comma separated sequence of coefficients for the new skew polynomial ∈
K [δ]. The first entry represents the coefficient to degree 0 in δ. The coefficients
must be of type Not(list) (i.e. any function ∈ K). If the parameter coefficients
is missing, the constructor will create a zero as DelayPolynomial. I.e. the
polynomial

a0 + a1δ + a2δ
2 + . . .+ anδ

n (7.1)

with ai ∈ K is created by the command

Listing 7.1: Create a general DelayPolynomial

> DelayPolynomial (a 0 , a 1 , . . . , a n) ;

The constructor automatically checks the spelling of the variables and con-
stants as defined in section 6.1.

Examples:

Listing 7.2: Create DelayPolynomials

> po ly 1 := DelayPolynomial (0 , 1) ;
> po ly 2 := DelayPolynomial (x1D0T0 , x2D1T0 , 1) ;

These two commands create the polynomials

poly1 = δ

poly2 = x1(t) + ẋ2(t)δ + δ2 (7.2)

70

7.2. DifferentialDelays

7.2.2.2.2 LeftFraction

Visibility: export

Parameters:
denominator::Or(DelayPolynomial, Not(list)),
numerator::Or(DelayPolynomial, Not(list))

Return type: LeftFraction

Description: This method is one of the constructors of this toolbox. It can
be used to create a single LeftFraction ∈ K (δ). The first parameter is the
denominator and the second parameter the numerator of the left fraction.
Numerator and denominator can be of type

• DelayPolynomial or

• Not(list) (any function ∈ K)

The user may use different types in one LeftFraction. Entered Not(list) will
automatically be converted to DelayPolynomials. If the denominator is missing
(i.e. there is only one parameter), the denominator will be treated as 1. I.e.
the general LeftFractions

f1 = b−1 · a
f2 = 1−1 · c (7.3)

with a, b, c ∈ K [δ] are created by the commands

Listing 7.3: Create general LeftFractions

> f 1 := LeftFraction (b , a) ;
> f 2 := LeftFraction (c) ;

Without any parameters the LeftFraction will be treated as zero. The con-
structor also checks the spelling of the variables and constants as defined in
section 6.1.

Examples:

Listing 7.4: Create LeftFractions

> f r a c 1 := LeftFraction (x1D0T0) ;
> f r a c 2 := LeftFraction (DelayPolynomial (x1D0T0 , 0 , 1)) ;
> f r a c 3 := LeftFraction (x2D0T0 , 1) ;
> f r a c 4 := LeftFraction (DelayPolynomial (0 , 1) , DelayPolynomial (x1D0T0 ,
x2D1T0 , 1)) ;

These fractions correspond to

frac1 = (1)−1 · x1(t)
frac2 = (1)−1 · (x1(t) + δ2)

frac3 = (x2(t))
−1 · 1

frac4 = (δ)−1 · (x1(t) + ẋ2(t)δ + δ2) (7.4)

71

Chapter 7. Introduction of the Developed Toolboxes

7.2.2.2.3 OrePolynomial

Visibility: export

Parameters:
coefficients :: seq(Or(DelayPolynomial, LeftFraction, Not(list)))

Return type: OrePolynomial

Description: This method is one of the constructors of this toolbox. It
can be used to create a single OrePolynomial ∈ K (δ)

[
d
dt

]
. The parameter

coefficients has to be a comma separated sequence of coefficients for the new
skew polynomial ∈ K (δ)

[
d
dt

]
. The first entry represents the coefficient to

degree 0 in d
dt

. The coefficients can be of type

• LeftFraction

• DelayPolynomial

• Not(list) (any function ∈ K)

The types of the coefficients may be mixed. Entered DelayPolynomials and
Not(list) will automatically be converted to LeftFractions. Therefore the user
is able to enter the simpler types without converting them by himself. If the
parameter coefficients is missing, the constructor will create a zero as OrePoly-
nomial. I.e. the polynomial

f0 + f1
d

dt
+ f2

d2

dt2
+ . . .+ fn

dn

dtn
(7.5)

with fi ∈ K (δ) is created by the command

Listing 7.5: Create a general OrePolynomial

> OrePolynomial (f 0 , f 1 , . . . , f n) ;

The constructor checks the spelling of the variables and constants as defined
in section 6.1.

Examples:

Listing 7.6: Create OrePolynomials

> po ly 1 := OrePolynomial (0 , 1) ;
> po ly 2 := OrePolynomial (0 , 0 , DelayPolynomial (0 , x1D0T0) , 1) ;
> po ly 3 := OrePolynomial (LeftFraction (DelayPolynomial (0 , 1) ,
DelayPolynomial (x2D0T2 , 1)) , s i n (x2D0T1) ∗ x1D0T0) ;

These commands create the skew polynomials

poly1 =
d

dt

poly2 = (x1(t)δ)
d2

dt2
+
d3

dt3

poly3 = (δ)−1 · (x2(t− 2τ) + δ) + (sin(x2(t− τ))x1(t))
d

dt
(7.6)

72

7.2. DifferentialDelays

7.2.2.3 Local methods

7.2.2.3.1 convertTermToLatex

Visibility: local

Parameters:
term::Not(list)
Option: substituteGreekLetters ::boolean:=true

Return type: string

Description: This method is used by the exported latexPrinting-methods of
this toolbox (see the methods delayLatexPrinting, lFractionLatexPrinting and
oreLatexPrinting). It converts the given term into LaTeX -code. It contains
several features, which shall be described in detail:

1.) substitute functions

2.) substitute certain characters

3.) substitute Greek letters (if enabled)

1.) As explained in section 6.1, all functions are represented by symbols which
satisfy a certain regular expression which contains the differentiation degree
and the delay resp. prediction. An exceptional case is t since t is itself a
function of t, but shall not be converted to t(t). In a first step, these symbols
will be converted into LaTeX -code. A few examples shall illustrate this:

Function as symbol Converted function
x1D0T1 x1(t - \tau)

yD2P2 \ddot{y}(t + 2 \tau)

yD4T0 y^{(4)}(t)

tD0P1 t + \tau

tD1T0 \dot{t}

2.) To increase the readability of the produced LaTeX -code we also substitute
the characters _ with _ and * with \cdot.

3.) This method uses the local method substituteGreekLettersInTerm (7.2.2.3.5)
to substitute Greek letters. If the option substituteGreekLetters is enabled, all
lowercased Greek letters except ’eta’, ’delta’, ’psi’ and ’tau’ will be substi-
tuted with the corresponding LaTeX -expressions. ’eta’ and ’psi’ may not be
substituted to avoid conversion problems since they are literally contained in
other Greek letters (e.g. in ’theta’). The letters ’delta’ and ’tau’ will not be
substituted in order to avoid getting confused with the delays and predictions
of the functions.
If a Greek letter is followed by another character, the toolbox will use the
underscore to separate the Greek letter from the following characters. A few
examples with Greek letters shall illustrate the substitution:

73

Chapter 7. Introduction of the Developed Toolboxes

Function Converted function
2*sin(thetaD1P2) 2\cdot sin(\dot{\theta}(t + 2 \tau))

upsilon1 _\upsilon_1

omega1D0T0 +
muxD0T1

\omega_1(t) + \mu_x(t - \tau)

7.2.2.3.2 lclmMultipliers

Visibility: local

Parameters:
polyA::DelayPolynomial
polyB::DelayPolynomial

Return type: DelayPolynomial, DelayPolynomial

Description: This method computes the cofactors of polyA and polyB which
lead to the least common left multiple. I.e. the result of the method are two
DelayPolynomials r, s ∈ K [δ] such that

r · polyA = s · polyB. (7.7)

In addition, r and s satisfy the conditions defined in Definition 2 for being the
cofactors of polyA and polyB. That means that

r · polyA = s · polyB = lclm(polyA, polyB). (7.8)

The used algorithm corresponds algorithm 1, but the user do not have to take
care of the degrees of the given polynomials. The method will automatically
correct the order of the parameters.

Examples: In the first example, we compute the cofactors of the two Delay-
Polynomials

poly1 = x1(t)
d

dt
poly2 = x2(t) (7.9)

with the commands

Listing 7.7: Compute cofactors

> po ly 1 := DelayPolynomial (0 , x1D0T0) ;
po ly 2 := DelayPolynomial (x2D0T0) ;
mult 2 , mult 1 := l c lmMu l t i p l i e r s (poly 2 , po ly 1) ;

This returns

74

7.2. DifferentialDelays

i.e. the cofactors are:

mult1 = 1

mult2 =
x1(t)

x2(t− τ)

d

dt
(7.10)

In the second example, we compute the cofactors of the two DelayPolynomials

poly1 = sin(x1(t)) + x1(t− τ)
d

dt

poly2 = cos(x1(t)) +
1

x2(t+ 3τ)

d

dt
(7.11)

Listing 7.8: Compute cofactors

> po ly 1 := DelayPolynomial (s i n (x1D0T0) , x1D0T1) ;
po ly 2 := DelayPolynomial (cos (x1D0T0) , 1/x2D0P3) ;
mult 1 , mult 2 := l c lmMu l t i p l i e r s (poly 1 , po ly 2) ;

This yields the cofactors:

mult1 =
cos(x1(t))

Λ
− 1

Ψ

d

dt

mult2 =
sin(x1(t))

Λ
− x1(t− 2τ)x2(t+ 2τ)

Ψ

d

dt
(7.12)

with

Λ = − sin(x1(t)) + x1(t− τ)x2(t+ 3τ) cos(x1(t)) (7.13)

Ψ = x2(t+ 3τ)(sin(x1(t− τ))− x1(t− 2τ)x2(t+ 2τ) cos(x1(t− τ)))

7.2.2.3.3 shift

Visibility: local

Parameters:
term::Not(list)
shiftDegree :: integer:=1

Return type: Not(list)

Description: This method computes the application of δn to the given term,

75

Chapter 7. Introduction of the Developed Toolboxes

which can be any coefficient of a DelayPolynomial. n corresponds to the value
of the parameter shiftDegree, which is optional. If shiftDegree is negative, this
method will compute the prediction of the given term.

Examples: For instance, to apply δ1 to the polynomial

term1 = x1(t+ τ) +
sin(x1(t))

cos(ẍ2(t− τ))
(7.14)

we may use the commands

Listing 7.9: Apply delta1

> term 1 := x1D0P1 + s in (x1D0T0) / cos (x2D2T1) ;
s h i f t (term 1) ;

To apply δ−1 to the same polynomial, we may use the commands

Listing 7.10: Apply delta−1

> term 1 := x1D0P1 + s in (x1D0T0) / cos (x2D2T1) ;
s h i f t (term 1 , −1) ;

7.2.2.3.4 spellingChecker

Visibility: local

Parameters:
term::Not(list)

Return type: −
Description: This method is used by the constructor methods of the toolbox
in order to check whether all functions and constants are spelled correctly
referring to the regular expressions

ˆ[a-zA-CE-OQ-SU-Z0-9]+D[0-9]+(T[0-9]+|P[1-9][0-9]*)$ (7.15)

for functions and

ˆ[a-zA-CE-OQ-SU-Z0-9]+$ (7.16)

76

7.2. DifferentialDelays

for constants (see section 6.1 for more details). This method evaluates all
occurring functions and constants in the given term and will raise an error if
there are wrong spelled functions or constants. Otherwise this method will
simply return NULL.

7.2.2.3.5 substituteGreekLettersInTerm

Visibility: local

Parameters:
termAsLatexString::string

Return type: string

Description: This method substitutes all lowercased Greek letters except
’eta’, ’delta’, ’psi’ and ’tau’. For more details see the description of method
convertTermToLatex (7.2.2.3.1).

7.2.2.3.6 timeDerivative

Visibility: local

Parameters:
term::Not(list)

Return type: Not(list)

Description: This method differentiates the given term with respect to time.
Since there are no more Maple-functions of t in the occurring terms (see section
6.1 for further details), the time derivative has to be implemented using the
Lie derivative along the Cartan field. For a detailed description of the Lie
derivative see section 6.1.3.

7.2.2.4 Exported methods

7.2.2.4.1 delayDegree

Visibility: export

Parameters:
poly ::DelayPolynomial

Return type: integer

Description: This method returns the degree of the given DelayPolynomial
according to δ.

7.2.2.4.2 delayDerivative

Visibility: export

Parameters:
toDifferentiate :: DelayPolynomial

77

Chapter 7. Introduction of the Developed Toolboxes

Return type: DelayPolynomial

Description: This method computes the time derivative of the given Delay-
Polynomial a ∈ K [δ] which is defined as:

d

dt
(a) =

d

dt

deg(a)∑
i=0

ai(t)δ
i

 =

deg(a)∑
i=0

d

dt
(ai(t))δ

i with ai(t) ∈ K (7.17)

Examples: In this case we compute the time derivative of the two polynomials
x1(t) + δ + ẋ2(t+ τ)δ2 and 2 + cos(x1(t))δ:

Listing 7.11: Differentiate DelayPolynomials

> po ly 1 := DelayPolynomial (x1D0T0 , 1 , x2D1P1) ;
r e s u l t 1 := de l ayDer iva t i v e (po ly 1) ;

> po ly 2 := DelayPolynomial (2 , cos (x1D0T0)) ;
r e s u l t 2 := de l ayDer iva t i v e (po ly 2) ;

The Maple-results are

i.e.

result1 = ẋ1(t) + ẍ2(t+ τ)δ2

result2 = − sin(x1(t)) · ẋ1(t)δ (7.18)

7.2.2.4.3 delayEquals

Visibility: export

Parameters:
leftPolynomial :: DelayPolynomial
rightPolynomial::DelayPolynomial

Return type: boolean

Description: This method evaluates whether the two DelayPolynomials are
equal. Two DelayPolynomials a, b ∈ K [δ] are called equal if we have

deg(a) = deg(b) and ai = bi ∀i ∈ {0, . . . , deg(a)}. (7.19)

7.2.2.4.4 delayLatexPrinting

Visibility: export

Parameters:
argumentToPrint::DelayPolynomial
Option: substituteGreekLetters ::boolean:=true

78

7.2. DifferentialDelays

Return type: string

Description: The internal representation of the data types in Maple was not
designed to be human readable, but to suit the given requirements best. Nev-
ertheless, the toolbox contains several methods to convert the internal data
types into LaTeX -code, to offer a readable output. This method is used to
convert DelayPolynomials.
Furthermore, this method has the boolean option substituteGreekLetters (with
true as default value). This option forces the method to convert all lowercased
Greek letters except ’eta’, ’delta’, ’psi’ and ’tau’ (see method convertTermTo-
Latex (7.2.2.3.1) for more details).
The regular expressions as defined in section 6.1 will also be converted.

Examples:

Listing 7.12: Convert DelayPolynomials

> de lay 1 := DelayPolynomial (0 , 0 , 1) ;
de layLatexPr int ing (de lay 1) ;

> de lay 2 := DelayPolynomial (0 , alpha) ;
de layLatexPr int ing (de lay 2) ;

> de lay 3 := DelayPolynomial (thetaD0T0 , C3 , ups i lon1 , 2 ∗ s i n (thetaD1P2)) ;
de layLatexPr int ing (de lay 3) ;

These three examples lead to the following LaTeX -output:

delay1 = δ2

delay2 = (α) δ

delay3 = θ(t) + (C3) δ + (υ 1) δ2 +
(

2 · sin(θ̇(t+ 2τ))
)
δ3 (7.20)

7.2.2.4.5 delayMultiply

Visibility: export

Parameters:
leftPoly :: DelayPolynomial
rightPoly :: DelayPolynomial

Return type: DelayPolynomial

Description: This method computes the multiplication of two DelayPolyno-
mials ∈ K [δ] according to the computation rules defined in (3.11).

7.2.2.4.6 delayPlus

Visibility: export

Parameters:
leftSummand::DelayPolynomial
rightSummand::DelayPolynomial

Return type: DelayPolynomial

Description: This method computed the sum of two DelayPolynomials ∈ K [δ]
according to the computation rules defined in (3.10).

79

Chapter 7. Introduction of the Developed Toolboxes

7.2.2.4.7 delayPrinting

Visibility: export

Parameters:
argumentToPrint::DelayPolynomial

Return type: symbol

Description: As told in the description of method delayLatexPrinting (7.2.2.4.4)
the internal data structure of the toolbox is not designed to be human readable.
Besides the thorough conversion into LaTeX -code using delayLatexPrinting, we
can use the method delayPrinting which transforms DelayPolynomials into a
more readable Maple-output. Note that this method does not substitute the
regular expressions defined in section 6.1.

7.2.2.4.8 delayShift

Visibility: export

Parameters:
polyToShift::DelayPolynomial
shiftDegree :: integer:=1

Return type: DelayPolynomial

Description: This method computes the multiplication of δn with the given
DelayPolynomial. The second and optional parameter corresponds to n. Only
positive integers and zero are allowed. The default value is 1. I.e. in case of a
DelayPolynomial a ∈ K [δ] with deg(a) = m, this method computes

δshiftDegree · a = δshiftDegree ·
m∑
j=0

ajδ
j

=
m∑
j=0

δshiftDegree(aj)δ
j+shiftDegree. (7.21)

7.2.2.4.9 delaySimplifier

Visibility: export

Parameters:
toSimplify :: DelayPolynomial
Option: simplifyCoefficients :: boolean:=true
Option: eraseZeros :: boolean:=true

Return type: DelayPolynomial

Description: This method is the equivalent to the Maple command sim-
plify. It simplifies the given DelayPolynomial. Every method in this toolbox
which manipulates DelayPolynomials automatically calls this simplifier. The
delaySimplifier composes the features:

80

7.2. DifferentialDelays

1.) simplify the coefficients of the DelayPolynomial

2.) substitute all derivatives of t

3.) erase dispensable leading zeros (if enabled)

1.) This is done by the Maple command simplify. This is very important and
may not be spared since otherwise terms may be created which are actually
zero, but Maple does not recognize that until they get simplified.

2.) Let us recall that the variable t is represented by tD0T0. The delays
and predictions of t, i.e. t± xτ are represented by tD0Tx resp. tD0Px (for
a detailed description see section 6.1). This feature substitutes its derivatives,
i.e.

dn

dtn
(t± τ) =

{
1 if n = 1
0 if n ≥ 2

(7.22)

3.) This feature erases all leading zeros from the DelayPolynomial, i.e. all
coefficients ai of the DelayPolynomial a(t) ∈ K [δ] which satisfy i > deg(a).
This is necessary due to the fact that the data type is implemented as list with
the size equal to the degree of the polynomial plus 1.

7.2.2.4.10 delaySubtract

Visibility: export

Parameters:
leftArgument::DelayPolynomial
rightArgument::DelayPolynomial

Return type: DelayPolynomial

Description: This method subtracts the rightArgument from the leftArgu-
ment, i.e. the method computes the result of

c = a− b =
n∑
i=0

aiδ
i −

m∑
j=0

bjδ
j

=

∑m

i=0 (ai − bi) δi +
∑n

j=m+1 aiδ
j if n ≥ m∑n

i=0 (ai − bi) δi +
∑m

j=n+1−biδj if n ≤ m
(7.23)

with a, b ∈ K [δ] , deg(a) = n, deg(b) = m. The second parameter rightAr-
gument is optional. If it is missing, the method will compute the negative of
leftArgument.

81

Chapter 7. Introduction of the Developed Toolboxes

7.2.2.4.11 lFractionDerivative

Visibility: export

Parameters:
toDifferentiate :: LeftFraction

Return type: LeftFraction

Description: This differentiates the given LeftFraction ∈ K (δ) with respect
to t according to the differentiation rules defined in Theorem 3.

7.2.2.4.12 lFractionEquals

Visibility: export

Parameters:
argumentOne::LeftFraction
argumentTwo::LeftFraction

Return type: boolean

Description: This method evaluates whether the two given LeftFractions ar-
gumentOne and argumentTwo are equal. This method is based on the following
assumption: Two LeftFractions b−1a, d−1c ∈ K (δ) are equal if and only if

ra = sc with rb = sd = lclm(b, d) (7.24)

is fulfilled.

7.2.2.4.13 lFractionInvert

Visibility: export

Parameters:
toInvert :: LeftFraction

Return type: LeftFraction

Description: This method returns the inverse of the given LeftFraction toIn-
vert. Note that the inverse of a LeftFraction is both left and right inverse.

7.2.2.4.14 lFractionLatexPrinting

Visibility: export

Parameters:
rawArgument::Or(LeftFraction, LeftFractionVector, LeftFractionMatrix)
Option: substituteGreekLetters ::boolean:=true

Return type: string

Description: Similar to method delayLatexPrinting (7.2.2.4.4), this method
converts LeftFractions resp. LeftFractionVectors and LeftFractionMatrices into
LaTeX -code in order to offer a more readable output. Like delayLatexPrint-
ing this method offers the functionality to convert lowercased Greek letters by

82

7.2. DifferentialDelays

using the option substituteGreekLetters (for more details see method delayLat-
exPrinting (7.2.2.4.4)).
All regular expressions for variables and constants as defined in section 6.1 will
be converted, too.

Examples:

Listing 7.13: Convert LeftFractions

> f r a c t i o n 1 := LeftFraction (DelayPolynomial (thetaD0T0 , C3 , 0 , 2 ∗
s i n (thetaD1P2)) , DelayPolynomial (cos (thetaD0T0) , 0 , 1)) ;

lF rac t i onLatexPr in t ing (f r a c t i o n 1) ;
> f r a c t i o n 2 := LeftFraction (DelayPolynomial (0 , 0 , thetaD0T0 , C3 , 0 , 2 ∗
s i n (thetaD1P2))) ;

lF rac t i onLatexPr in t ing (f r a c t i o n 2) ;

These two examples lead to the following LaTeX -output:

fraction1 =
(
θ(t) + (C3) δ +

(
2 · sin(θ̇(t+ 2τ))

)
δ3
)−1
·
(
cos(θ(t)) + δ2

)
fraction2 = (θ(t)) δ2 + (C3) δ3 +

(
2 · sin(θ̇(t+ 2τ))

)
δ5 (7.25)

7.2.2.4.15 lFractionMultiply

Visibility: export

Parameters:
argumentOne::LeftFraction
argumentTwo::LeftFraction

Return type: LeftFraction

Description: This method computes the product of two LeftFractions accord-
ing to the computation rules defined in Theorem 2.

7.2.2.4.16 lFractionPlus

Visibility: export

Parameters:
argumentOne::LeftFraction
argumentTwo::LeftFraction

Return type: LeftFraction

Description: This method computes the sum of the two given LeftFractions
according to the computation rules defined in Theorem 1.

7.2.2.4.17 lFractionPrinting

Visibility: export

Parameters:
rawArgument::Or(LeftFraction, LeftFractionVector, LeftFractionMatrix)

Return type: symbol

83

Chapter 7. Introduction of the Developed Toolboxes

Description: Similar to the method delayPrinting (7.2.2.4.7) this method
transforms LeftFractions resp. LeftFractionVectors and LeftFractionMatrices into
a more readable Maple-output. The transformation is not as detailed as it is in
lFractionLatexPrinting, but it gives us a short overview of the given argument.
Note that this method does not substitute the regular expressions defined in
section 6.1.

7.2.2.4.18 lFractionSimplifier

Visibility: export

Parameters:
toSimplify :: Or(LeftFraction, LeftFractionMatrix, LeftFractionVector)
Option: simplifyCoefficients :: boolean:=true
Option: eraseZeros :: boolean:=true
Option: cancelFractions :: boolean:=false

Return type: Or(LeftFraction, LeftFractionMatrix, LeftFractionVector)

Description: This method simplifies the given argument toSimplify, which can
be of type LeftFraction, LeftFractionMatrix or LeftFractionVector. This method
uses the delaySimplifier to simplify all containing DelayPolynomials, using the
features which are explained in the description of the method delaySimplifier
(7.2.2.4.9).
In addition, this method is able to cancel LeftFractions. If the option can-
celFractions is enabled, the method will evaluate whether denominator and
numerator are equal (according to the computation rules described in method
delayEquals (7.2.2.4.3)). If they are equal, the method will cancel the fractions
returning ones as LeftFractions.

7.2.2.4.19 lFractionSubtract

Visibility: export

Parameters:
argumentOne::LeftFraction
argumentTwo::LeftFraction

Return type: LeftFraction

Description: This method subtracts argumentTwo from argumentOne, i.e.
the method computes the result of b−1a − d−1c with a, b, c, d ∈ K [δ] which is
given by (analog to Theorem 1)

b−1a− d−1c = (rb)−1(ra)− (sd)−1(sc)

= (rb)−1(ra− sc) (7.26)

with rb = sd = lclm(b, d). The second parameter argumentTwo is optional. If
it is missing, the method will compute the negative of argumentOne.

84

7.2. DifferentialDelays

7.2.2.4.20 oreDerivative

Visibility: export

Parameters:
toDifferentiate :: Or(OrePolynomial, OreMatrix)

Return type: Or(OrePolynomial, OreMatrix)

Description: This method computes the time derivative of the given Ore-
Polynomial ∈ K (δ)

[
d
dt

]
resp. of an OreMatrix ∈ K (δ)

[
d
dt

]n×m
. In case of an

OrePolynomial p ∈ K (δ)
[
d
dt

]
with pi ∈ K (δ) , i = 1..n the differentiation with

respect to time is defined as

d

dt
p =

d

dt

(
n∑
i=0

pi
di

dti

)

=
n∑
i=0

d

dt

(
pi
di

dti

)
=

n∑
i=0

d

dt
(pi)

di

dti
+ pi

di+1

dti+1

=
d

dt
(p0) +

n∑
i=1

((
pi−1 +

d

dt
(pi)

)
di

dti

)
+ pn

dn+1

dtn+1
(7.27)

7.2.2.4.21 oreEquals

Visibility: export

Parameters:
argumentOne::Or(OrePolynomial, OreMatrix)
argumentTwo::Or(OrePolynomial, OreMatrix)

Return type: boolean

Description: This methods evaluates whether the two given arguments are
equal. In case of two OrePolynomials p, q ∈ K (δ)

[
d
dt

]
, the method will return

true if the two polynomials fulfill

deg(p) = deg(q) and pi = qi ∀i ∈ {0, . . . , deg(p)}. (7.28)

Two OreMatrices are equal if they have the same dimensions and the corre-
sponding OrePolynomials are equal.

7.2.2.4.22 oreIdentityMatrix

Visibility: export

Parameters:
dimension::integer

Return type: OreMatrix

85

Chapter 7. Introduction of the Developed Toolboxes

Description: This method creates an identity matrix over OrePolynomials
with the given dimension, i.e. it returns a matrix M ∈ K (δ)

[
d
dt

]n×n
with

Mi,j =

{
1 if i = j
0 if i 6= j

(7.29)

7.2.2.4.23 oreLatexPrinting

Visibility: export

Parameters:
argumentToPrint::Or(OrePolynomial, OreMatrix, OreVector)
Option: substituteGreekLetters ::boolean:=true

Return type: string

Description: The purpose of this method is to convert OrePolynomials (resp.
matrices and vectors which contain OrePolynomials) into LaTeX -code in order
to offer a more readable output. Like the methods delayLatexPrinting (7.2.2.4.4)
and lFractionLatexPrinting (7.2.2.4.14) this method offers the functionality to
convert lowercased Greek letters by using the option substituteGreekLetters (for
more details see method delayLatexPrinting (7.2.2.4.4)).
All regular expressions for variables and constants as defined in section 6.1 will
be converted, too.

Examples:

Listing 7.14: Convert OrePolynomial and OreVector

> po ly 1 := OrePolynomial (s i n (theta1D0T0) , DelayPolynomial (0 , thetaD2T1 ,
mu 2)) ;

o reLatexPr int ing (po ly 1) ;
> vec t 1 := Vector [column] (3 , {

1 = OrePolynomial (LeftFraction (DelayPolynomial (s i n (x1D0T0)))) ,
2 = OrePolynomial (0) ,
3 = OrePolynomial (x1D0T0 , 0 , 1)
}) ;
o reLatexPr int ing (vec t 1) ;

These two examples lead to the following LaTeX -output:

poly1 = sin(θ 1(t)) +
((
θ̈(t− τ)

)
δ + (µ 2) δ2

)
· d
dt

vect1 =

 sin(x1(t))
0

x1(t) + d2

dt2

 (7.30)

7.2.2.4.24 oreMultiply

Visibility: export

Parameters:
argumentOne::Or(OrePolynomial, OreMatrix)
argumentTwo::Or(OrePolynomial, OreMatrix)

86

7.2. DifferentialDelays

Return type: Or(OrePolynomial, OreMatrix)

Description: This method computes the product of the two given arguments
argumentOne and argumentTwo. In case of two OrePolynomials a, b ∈ K (δ)

[
d
dt

]
the multiplication is defined as (similar to (3.9)):

c = a · b

=
n∑
i=0

ai
di

dti
·
m∑
j=0

bj
dj

dtj

=
n∑
i=0

(
ai
di

dti

(
m∑
j=0

bj
dj

dtj

))

=
n∑
i=0

(
ai

m∑
j=0

di

dti

(
bj
dj

dtj

))
(7.31)

with ai, bj ∈ K (δ) and d
dt

(bj) defined in Theorem 3.

In case of two OreMatrices the product of two matricesA·B = C ∈ K (δ)
[
d
dt

]n×p
with A ∈ K (δ)

[
d
dt

]n×m
and B ∈ K (δ)

[
d
dt

]m×p
is defines as6:

ci,j =
m∑
k=1

ai,k · bk,j (7.32)

The multiplication of two LeftFractions is defined in Theorem 2. The multipli-
cation of an OrePolynomial and an OreMatrix and vice versa is not defined and
will return an error.

7.2.2.4.25 orePlus

Visibility: export

Parameters:
argumentOne::Or(OrePolynomial, OreMatrix)
argumentTwo::Or(OrePolynomial, OreMatrix)

Return type: Or(OrePolynomial, OreMatrix)

Description: This method computes the sum of two OrePolynomials or Ore-
Matrices. The two parameters must be of the same type, otherwise an error
will be raised. The sum of two OrePolynomials a, b ∈ K (δ)

[
d
dt

]
, deg(a) =

n, deg(b) = m is defined as

c = a+ b =
n∑
i=0

ai
di

dti
+

m∑
j=0

bj
dj

dtj

=

∑m

i=0 (ai + bi)
di

dti
+
∑n

j=m+1 ai
dj

dtj
if n ≥ m∑n

i=0 (ai + bi)
di

dti
+
∑m

j=n+1 bi
dj

dtj
if n ≤ m

(7.33)

6The number of columns of the left matrix and the number of rows of the second matrix
must be the same. Otherwise the multiplication is not defined.

87

Chapter 7. Introduction of the Developed Toolboxes

The sum of two OreMatrices is defined as the usual matrix addition, i.e. the
sum of two OreMatrices with the same dimensions is computed element-wise.

7.2.2.4.26 orePrinting

Visibility: export

Parameters:
argumentToPrint::Or(OrePolynomial, OreMatrix, OreVector)

Return type: symbol

Description: Similar to the methods delayPrinting (7.2.2.4.7) and lFractionLa-
texPrinting (7.2.2.4.17) this method transforms OrePolynomials resp. OreVec-
tors and OreMatrices into a more readable Maple-output. The transformation
is not as detailed as it is in oreLatexPrinting, but it gives us a short overview
of the given argument. Note that this method does not substitute the regular
expressions defined in section 6.1.

Examples:

Listing 7.15: Print an OrePolynomial

> po ly 1 := OrePolynomial (s i n (x1D0T0) , 0 , 0 , LeftFraction (DelayPolynomial (0 ,
−sD0T0 , sD0T0) , DelayPolynomial (1))) ;

o r ePr in t i ng (po ly 1) ;

This method call produces the Maple result:

7.2.2.4.27 oreSimplifier

Visibility: export

Parameters:
toSimplify :: Or(OrePolynomial, OreMatrix, OreVector)
Option: simplifyCoefficients :: boolean:=true
Option: eraseZeros :: boolean:=true
Option: cancelFractions :: boolean:=false

Return type: Or(OrePolynomial, OreMatrix, OreVector)

Description: This method is able to simplify OrePolynomials, OreMatrices
and OreVectors. It uses the methods lFractionSimplifier and delaySimplifier to
simplify all containing LeftFractions and DelayPolynomials. The features of the
simplification process is described in the descriptions of the methods delaySim-
plifier (7.2.2.4.9) and lFractionSimplifier (7.2.2.4.18). In addition, the option
eraseZeros, which is also used by the delaySimplifier, erases all leading zeros
of the polynomials. All methods that handle OrePolynomials, OreMatrices or
OreVectors usually use this method to simplify the result before returning it.

88

7.2. DifferentialDelays

7.2.2.4.28 oreSubtract

Visibility: export

Parameters:
argumentOne::Or(OrePolynomial, OreMatrix)
argumentTwo::Or(OrePolynomial, OreMatrix)

Return type: Or(OrePolynomial, OreMatrix)

Description: This method subtracts argumentTwo from argumentOne. The
two parameters must be of the same type, otherwise an error will be raised. The
subtraction of two OrePolynomials a, b ∈ K (δ)

[
d
dt

]
, deg(a) = n, deg(b) = m is

defined as

c = a− b =
n∑
i=0

ai
di

dti
−

m∑
j=0

bj
dj

dtj

=

∑m

i=0 (ai − bi) di

dti
+
∑n

j=m+1 ai
dj

dtj
if n ≥ m∑n

i=0 (ai − bi) di

dti
+
∑m

j=n+1−bi
dj

dtj
if n ≤ m

(7.34)

The subtraction of two OreMatrices is defined as the usual matrix subtraction,
i.e. the subtraction of two OreMatrices with the same dimensions is computed
element-wise.
The second parameter argumentTwo is optional. If it is missing, the method
will compute the negative of argumentOne.

7.2.3 Decompose

This module contains the methods needed for the minimal basis decomposi-
tion of OreMatrices over LeftFractions. There is only one exported method:
decompose (7.2.3.2.1). All other methods are local methods which are used
from the method decompose.

7.2.3.1 Local methods

7.2.3.1.1 degreeOfVector

Visibility: local

Parameters:
selectedVector :: OreVector

Return type: extended numeric

Description: This method computes the row degree resp. column degree of
the given row vector resp. column vector according to Definition 10. I.e. this
method returns the highest occurring degree in d

dt
. Since this method is called

very often during the decomposition process, this method does not simplify the
coefficients of the given vector. So it is important to simplify selectedVector

89

Chapter 7. Introduction of the Developed Toolboxes

(if necessary) before calling this method to make sure that the right degree is
returned.
It is necessary to use the data type extended numeric in order to extend the
integer with −∞.

7.2.3.1.2 degreeVectorOfMatrix

Visibility: local

Parameters:
testedMatrix::OreMatrix
Option: rowwise::boolean:=false
Option: columnwise::boolean:=false

Return type: Vector(extended numeric)

Description: This method computes a degree vector v of the given matrix
A ∈ K (δ)

[
d
dt

]n×m
. The degree vector is created row-wise or column-wise, so

one of the two options rowwise or columnwise must be set to true. Otherwise
the method will raise an error. I.e. in case of a row-wise created degree vector
the method returns a vector v such that

vi = degreerow(Ai,1..m), i = 1..n (7.35)

resp.

vi = degreecolumn(A1..n,i), i = 1..m (7.36)

in case of a column-wise created vector.
This method will be used in the algorithms 2 and 3 to compute the vectors α
and α̃.

7.2.3.1.3 findModifiedAlpha

Visibility: local

Parameters:
testedMatrix::OreMatrix
Option: rowwise::boolean:=false
Option: columnwise::boolean:=false
Option: chooseFirstAlpha::boolean:=false
Option: chooseLowMemoryAlpha::boolean:=false
Option: chooseLowDegreeAlpha::boolean:=false
Option: chooseAlphaByUser::boolean:=false
Option: debugMode::boolean:=false

Return type: OreVector

Description: In every step of the minimal basis decomposition (see the algo-
rithms 2 and 3) the row degree (resp. column degree) of the uppermost row

90

7.2. DifferentialDelays

(resp. first column) of the remaining matrix with highest row degree (resp. col-
umn degree) among the linear dependent rows (resp. columns) of the leading
coefficient matrix is reduced by at least 1. The vector α describes a possible
linear combination of the rows (resp. columns) of the leading coefficient ma-
trix.
To reduce the degree of a row (resp. a column) according to the description
above, the chosen vector α has to be enhanced with degrees in d

dt
. This en-

hanced α is called α̃ and will be returned by this method.
Since there may be several possible α which could reduce the row degree (resp.
column degree) of the given matrix testedMatrix, this method computes all
possible vectors α and chooses one of them according to the given options (we
have to set exactly one of these options to true):

• chooseFirstAlpha

• chooseLowMemoryAlpha

• chooseLowDegreeAlpha

• chooseAlphaByUser

chooseFirstAlpha: This option forces the method to randomly choose one of
the found α.

chooseLowMemoryAlpha: In this case the method evaluates the size of the
α and chooses the α which has the lowest number of mathematical characters.

chooseLowDegreeAlpha: This option forces the method to choose the α
which would cause the lowest occurring degree in d

dt
in α̃.

chooseAlphaByUser: This option opens a maplet which shows all possible
α and allows the user to choose by himself.

Afterwards, the method computes the corresponding α̃ and returns it.
This method can be used for row-wise or column-wise decomposition. But we
have to set one of the options rowwise or columnwise to true in order to compute
the right α.
The option debugMode enables a few console logs which show information to
the found resp. chosen α.

7.2.3.1.4 indexOfFirstEntryWithDegreeZero

Visibility: local

Parameters:
orePolynomialVector::OreVector

Return type: integer

91

Chapter 7. Introduction of the Developed Toolboxes

Description: This method returns the index of the first entry of the given
OreVector which has a degree in d

dt
of zero. This is used in the method de-

compose (7.2.3.2.1) to evaluate the row (resp. column) which shall be reduced
during each step.

7.2.3.1.5 leadingCoeffMatrix

Visibility: local

Parameters:
testedMatrix::OreMatrix
Option: rowwise::boolean:=false
Option: columnwise::boolean:=false

Return type: LeftFractionMatrix

Description: This method computes the row (resp. column) leading coef-
ficient matrix of the given OreMatrix testedMatrix, referring to Definition 13.
Therefore, one of the two options rowwise or columnwise must be set to true.
Note that the returned leading coefficient matrix is of type LeftFractionMatrix
since we have a matrix filled with leading coefficients of OrePolynomials.

Examples: To compute the row and column leading coefficient matrices of
the matrix

matrix1 =

x(t) + d2

dt2
d
dt

x(t) · d
dt

x(t) + d
dt

ÿ(t+ τ) · sin(ẏ(t+ τ)) ẏ(t) + d
dt

x(t)
(
(x(t− τ))−1 · (ẋ(t))

)
· d
dt

0
−1 1 ẏ(t) · d

dt

 , (7.37)

we may use the commands

Listing 7.16: Compute the leading coefficient matrix

> matr ix 1 := Matrix (4 , 3 , {
(1 , 1) = OrePolynomial (LeftFraction (xD0T0 , yD0T0) , 0 , 1) ,
(1 , 2) = OrePolynomial (0 , 1) ,
(1 , 3) = OrePolynomial (0 , xD0T0) ,
(2 , 1) = OrePolynomial (xD0T0 , 1) ,
(2 , 2) = OrePolynomial (yD2P1 ∗ s i n (yD1P1)) ,
(2 , 3) = OrePolynomial (yD1T0 , 1) ,
(3 , 1) = OrePolynomial (xD0T0 , 0) ,
(3 , 2) = OrePolynomial (0 , LeftFraction (xD0T1 , xD1T0)) ,
(3 , 3) = OrePolynomial (0) ,
(4 , 1) = OrePolynomial(−1 , 0) ,
(4 , 2) = OrePolynomial (1) ,
(4 , 3) = OrePolynomial (0 , yD1T0)
}) ;

> Decompose [l ead ingCoe f fMatr ix] (matrix 1 , rowwise = true) ;
> Decompose [l ead ingCoe f fMatr ix] (matrix 1 , columnwise = true) ;

This yields the row leading coefficient matrix
1 0 0
1 0 1

0 (x(t− τ))−1 · (ẋ(t)) 0
0 0 ẏ(t)

 (7.38)

92

7.2. DifferentialDelays

and the column leading coefficient matrix
1 1 x(t)
0 0 1

0 (x(t− τ))−1 · (ẋ(t)) 0
0 0 ẏ(t)

 (7.39)

7.2.3.1.6 mapletForCustomAlpha

Visibility: local

Parameters:
alphas :: list (LeftFractionVector)
degreeVector::Vector(extended numeric)

Return type: integer

Description: This method shows a maplet which displays the given LeftFrac-
tionVectors alphas together with their complexity (i.e. number of mathematical
characters). The user can choose one of them and the method will dispose the
maplet and return the index of the chosen vector α. In addition the given
vector degreeVector is displayed. It represents the row (resp. column) degrees
of the current matrix during the decomposition process. The data type ex-
tended numeric extends integer with −∞.

Examples:

Listing 7.17: Create the maplet

> degreeVector := Vector (4 , { (1) = 0 , (2) = 1 , (3) = 0 , (4) = 0}) ;
> a lpha 1 := Vector [column] (4 , {

(1) = LeftFraction (2 ∗ phi1 , −1) ,
(2) = LeftFraction (1) ,
(3) = LeftFraction (0) ,
(4) = LeftFraction (0)
}) :

> a lpha 2 := Vector [column] (4 , {
(1) = LeftFraction (2 ∗ phi1 , 2 ∗ phi2) ,
(2) = LeftFraction (0) ,
(3) = LeftFraction (−2 , 1) ,
(4) = LeftFraction (1)
}) :

> a lphas := [alpha 1 , a lpha 2] ;
> returnedValue := Decompose [mapletForCustomAlpha] (alphas , degreeVector) ;

93

Chapter 7. Introduction of the Developed Toolboxes

In the example above, the following dialog will be shown:

Figure 7.2: The dialog created by mapletForCustomAlpha

7.2.3.1.7 switchColumns

Visibility: local

Parameters:
matrixToChange::OreMatrix
indexOne::integer
indexTwo::integer

Return type: OreMatrix

Description: This method switches two columns of the given OreMatrix ma-
trixToChange. It returns a copy in which the indexOne’th and indexTwo’th
column had been switched. This does not affect the given matrixToChange.

7.2.3.1.8 switchRows

Visibility: local

Parameters:
matrixToChange::OreMatrix
indexOne::integer
indexTwo::integer

Return type: OreMatrix

Description: Similar to the method switchColumns (7.2.4.1.4), this method
switches two rows of the given OreMatrix matrixToChange. It returns a copy in
which the indexOne’th and indexTwo’th row had been switched. This does not
affect the given matrixToChange.

94

7.2. DifferentialDelays

7.2.3.2 Exported methods

7.2.3.2.1 decompose

Visibility: export

Parameters:
selectedMatrix ::OreMatrix
Option: rowwise::boolean:=false
Option: columnwise::boolean:=false
Option: chooseFirstAlpha::boolean:=false
Option: chooseLowMemoryAlpha::boolean:=false
Option: chooseLowDegreeAlpha::boolean:=false
Option: chooseAlphaByUser::boolean:=false
Option: returnInverseOperator::boolean:=false
Option: debugMode::boolean:=false

Return type: OreMatrix, OreMatrix

Description: This method computes the minimal basis decomposition of the
OreMatrix selectedMatrix according to the algorithms 2 (in case of row-wise
decomposition) and 3 (in case of column-wise decomposition). We have to set
the option rowwise or columnwise to true. The method has been optimized in
order to increase the computational performance7.
The method is able to additionally compute the inverse of the operator ma-
trix. In order to do this, we have to set the option returnInverseOperator to
true. This feature ensures that we can omit the second minimal basis decom-
position needed to compute the defining operator P by computing P directly
using Q̃−1 in Theorem 10.
In each step of the minimal basis decomposition the method computes a vec-
tor α which shows the linear dependent rows (resp. columns) of the lead-
ing coefficient matrix of the remaining matrix which shall be reduced. The
options chooseFirstAlpha, chooseLowMemoryAlpha, chooseLowDegreeAlpha and
chooseAlphaByUser determine how the vector α is chosen (see method findMod-
ifiedAlpha (7.2.3.1.3) for a detailed description).
The option debugMode enables a few console logs which show information
about the steps of the minimal basis decomposition.
The method has four possible orders of the return values, depending on the
set options:

7E.g. the method does not compute temporary operator matrices for each step, but
modifies the remaining matrix and the operator matrix in the same way in order to omit
redundant operations.

95

Chapter 7. Introduction of the Developed Toolboxes

returnInverseOperator = false
rowwise = true

operator, remainder
columnwise =

false
rowwise = false

remainder, operator
columnwise =

true

returnInverseOperator = true
rowwise = true

inverse, operator, remainder
columnwise =

false
rowwise = false

remainder, operator, inverse
columnwise =

true

Let us recall that in case of a row-wise decomposition of M ∈ K (δ)
[
d
dt

]r×s
we

have

V︸︷︷︸
operator

M =

(
Is

0(r−s)×s

)
︸ ︷︷ ︸

remainder

. (7.40)

Since V is unimodular, there exists an inverse operator V −1, which can be
computed by using the option returnInverseOperator. In case of a column-wise
decomposition we have

M U︸︷︷︸
operator

=
(
Ir 0r×(s−r)

)︸ ︷︷ ︸
remainder

. (7.41)

Since U is unimodular, there exists an inverse operator U−1, which can be
computed by using the option returnInverseOperator.
If the matrix selectedMatrix is not hyper-regular, the method also returns the
operator matrix and remaining matrix, but adds a console log that the matrix
is not hyper-regular.

7.2.4 LeftFractionUtils

This module contains several methods for handling LeftFractionMatrices. These
methods are necessary since every leading coefficient matrix of an OreMatrix is a
LeftFractionMatrix which Maple cannot handle by default. In case of nonlinear
systems, this problem will not occur since every appearing leading coefficient
matrix is still a matrix over meromorphic functions.

96

7.2. DifferentialDelays

7.2.4.1 Local methods

7.2.4.1.1 computeNullSpace

Visibility: local

Parameters:
computeKernelOf::LeftFractionMatrix
Option: enforceComputationsFromRight::boolean:=false
Option: showRemainderMatrix::boolean:=false
Option: withoutSimpleBasis::boolean:=false
Option: debugMode::boolean:=false

Return type: set(LeftFractionVector)

Description: Computes the null space of the given matrix. I.e. for the given
matrix computeKernelOf this method computes the basis vectors bi such that
∀ki ∈ K (δ) we have

computeKernelOf · α = 0 with α = k1b1 + . . .+ knbn (7.42)

The option enforceComputationsFromRight forces the method to apply all oper-
ations during the internal Gauß-Jordan algorithm from the right8. To compute
the null space which is created by the rows of a certain matrix, we have to
enter the transposed matrix and set the option enforceComputationsFromRight
to true.

The option showRemainderMatrix adds a second result value which represents
the remaining matrix after applying the Gauß-Jordan algorithm before evalu-
ating the basis vectors of the null space. In this case the result values are of
the order:

remaining matrix, basis vectors

If the option withoutSimpleBasis is set to true (false by default), the method
will only result basis vectors which are different from an identity vector.
The option debugMode enables several console logs which show information
about the applied Gauß-Jordan algorithm.

7.2.4.1.2 computeLeftInverse

Visibility: local

Parameters:
toInvert :: LeftFractionMatrix
showRemainderMatrix::boolean:=false
debugMode::boolean:=false

8This is important since the multiplication of DelayPolynomials and therefore LeftFractions
is not commutative.

97

Chapter 7. Introduction of the Developed Toolboxes

Return type: LeftFractionMatrix

Description: This methods computes the left inverse of the given LeftFrac-
tionMatrix toInvert by using the Gauß-Jordan algorithm.

The option showRemainderMatrix adds a second result value which represents
the remaining matrix of the Gauß-Jordan algorithm. This matrix must al-
ways be the identity matrix. Therefore, this option is used for test and debug
reasons. In this case the result values are of the order:

left inverse, remaining matrix

The option debugMode enables several console logs which show information
about the applied Gauß-Jordan algorithm.

7.2.4.1.3 computeRightInverse

Visibility: local

Parameters:
toInvert :: LeftFractionMatrix
showRemainderMatrix::boolean:=false
debugMode::boolean:=false

Return type: LeftFractionMatrix

Description: Similar to method computeLeftInverse (7.2.4.1.2), this methods
computes the left inverse of the given LeftFractionMatrix toInvert by using the
Gauß-Jordan algorithm.
The options showRemainderMatrix and debugMode are explained in the descrip-
tion of the method computeLeftInverse (7.2.4.1.2).

7.2.4.1.4 switchColumns

Visibility: local

Parameters:
matrixToChange::LeftFractionMatrix
indexOne::integer
indexTwo::integer

Return type: LeftFractionMatrix

Description: This method switches two columns of the given LeftFraction-
Matrix matrixToChange. It returns a copy in which the indexOne’th and in-
dexTwo’th column had been switched. This does not affect the given matrix-
ToChange.

98

7.2. DifferentialDelays

7.2.4.1.5 switchRows

Visibility: local

Parameters:
matrixToChange::LeftFractionMatrix
indexOne::integer
indexTwo::integer

Return type: LeftFractionMatrix

Description: Similar to the method switchColumns (7.2.4.1.4), this method
switches two rows of the given LeftFractionMatrix matrixToChange. It returns a
copy in which the indexOne’th and indexTwo’th row had been switched. This
does not affect the given matrixToChange.

7.2.4.2 Exported methods

7.2.4.2.1 equalsMatrix

Visibility: export

Parameters:
leftMatrix :: LeftFractionMatrix
rightMatrix::LeftFractionMatrix

Return type: boolean

Description: This method evaluates whether the two given LeftFraction-
Matrices leftMatrix and rightMatrix are equal. Two LeftFractionMatrices A ∈
K (δ)r×s , B ∈ K (δ)n×m are called equal if and only if the two assertions

i) r = n ∧ s = m

ii) Ai,j = Bi,j, i = 1..r, j = 1..s

are satisfied. Let us recall that the equality of two LeftFractions ∈ K (δ) is
checked by the method lFractionEquals (7.2.2.4.12).

7.2.4.2.2 identityMatrix

Visibility: export

Parameters:
dimension::integer

Return type: LeftFractionMatrix

Description: This method returns an identity matrix over LeftFractions of
the given dimension.

99

Chapter 7. Introduction of the Developed Toolboxes

7.2.4.2.3 invertMatrix

Visibility: export

Parameters:
toInvert :: LeftFractionMatrix
Option: leftInverse :: boolean:=false
Option: rightInverse :: boolean:=false
Option: showRemainderMatrix::boolean:=false
Option: debugMode::boolean:=false

Return type: LeftFractionMatrix

Description: This method computes the inverse of the given matrix toInvert
∈ K (δ)n×m. Let us recall that the left inverse of a LeftFractionMatrix and the
right inverse of a LeftFractionMatrix may be different. Therefore, we have to
set one of the options leftInverse or rightInverse to true in order to force the
method to compute the desired inverse.
This method uses the functionality of the local methods computeLeftInverse
(7.2.4.1.2) and computeRightInverse (7.2.4.1.3) in order to fulfill its purpose.
The options showRemainderMatrix and debugMode are explained in the descrip-
tion of the method computeLeftInverse (7.2.4.1.2).

Examples: In this example, we compute the left inverse of

matrix1 =

(
5−1 · (x1(t) + x1(t)δ) δ−1 · (x1(t) + x2(t− τ)δ2)

x1(t)−1 · x2(t) ((x1(t)) δ)−1 · δ

)
(7.43)

by using the commands

Listing 7.18: Compute the left inverse of a LeftFractionMatrix

> matr ix 1 := Matrix (2 , 2 , {
(1 , 1) = LeftFraction (5 , DelayPolynomial (x1D0T0 , x1D0T0)) ,
(1 , 2) = LeftFraction (DelayPolynomial (0 , 1) , DelayPolynomial (x1D0T0 , 0 ,
x2D0T1)) ,
(2 , 1) = LeftFraction (x1D0T0 , x2D0T0) ,
(2 , 2) = LeftFraction (DelayPolynomial (0 , x1D0T0) , DelayPolynomial (0 , 1))
}) ;
> l e f t I n v e r s eMa t r i x := Le f tF r a c t i onUt i l s [inver tMatr ix] (matrix 1 ,
l e f t I n v e r s e=true) :

7.2.4.2.4 multiplyMatrix

Visibility: export

Parameters:
leftMatrix :: Or(LeftFractionMatrix, LeftFractionVector)
rightMatrix::Or(LeftFractionMatrix, LeftFractionVector)

Return type: LeftFractionMatrix

Description: This method computes the multiplication of two LeftFraction-
Matrices resp. LeftFractionVectors. We may multiply a LeftFractionMatrix with
a LeftFractionVector and vice versa as long as they fit according to their di-
mensions.

100

7.2. DifferentialDelays

7.2.4.2.5 nullSpaceMatrix

Visibility: export

Parameters:
computeKernelOf::LeftFractionMatrix
Option: rowwise::boolean:=false
Option: columnwise::boolean:=false
Option: showRemainderMatrix::boolean:=false
Option: withoutSimpleBasis::boolean:=false
Option: debugMode::boolean:=false

Return type: set(LeftFractionVector)

Description: Computes the basis vectors of the null space (kernel) of the
given matrix computeKernelOf. There are two options rowwise and columnwise
which allow to specify whether the rows or columns of the given matrix shall be
used to compute the basis vectors of the null space. Let us recall that during
the minimal basis decomposition we need the basis vectors of the null space to
find the linear dependent rows resp. columns of the leading coefficient matrix.
Therefore the two options correlate with the kind of decomposition:
In case of a row-wise decomposition we need to compute the row leading co-
efficient matrix of the matrix M we want to decompose in order to compute
the basis vectors α of the null space of the rows. I.e. the basis vectors α have
to satisfy the equation

αT LCrow (M) = 0. (7.44)

All possible vectors α can be computed by the method nullSpaceMatrix and
the option rowwise:

Listing 7.19: Compute the row-wise null space basis

> a lphas := Le f tF r a c t i onUt i l s [nul lSpaceMatr ix] (l ead ingCoe f f zMatr ix ,
rowwise=true) ;

In case of a column-wise decomposition we are looking for all vectors α which
satisfy the equation

LCcolumn (M)α = 0. (7.45)

In order to compute all possible vectors α we use the option columnwise:

Listing 7.20: Compute the row-wise null space basis

> a lphas := Le f tF r a c t i onUt i l s [nul lSpaceMatr ix] (l ead ingCoe f f zMatr ix ,
columnwise=true) ;

The options showRemainderMatrix, withoutSimpleBasis and debugMode have
already been described in the description of the method computeNullSpace
(7.2.4.1.1).

Examples: Let us assume that we would like to compute the basis vectors of

101

Chapter 7. Introduction of the Developed Toolboxes

the null space of the rows of
δ + δ2 x(t) + (x(t− 2τ)) δ 0 y(t) + (y(t− 2τ)) δ

0 δ2 0 (y(t+ 7τ)) δ
0 0 0 (x(t+ 7τ)) δ
0 δ + (x(t+ 2τ)) δ2 0 0

 . (7.46)

This can be done by

Listing 7.21: Compute the basis vectors of a LeftFractionMatrix

> computeKernelOf := Matrix (4 , 4 , {
(1 , 1) = LeftFraction (DelayPolynomial (0 , 1 , 1)) ,
(1 , 2) = LeftFraction (DelayPolynomial (xD0T0 , xD0T2)) ,
(1 , 3) = LeftFraction (0) ,
(1 , 4) = LeftFraction (DelayPolynomial (yD0T0 , yD0T2)) ,
(2 , 1) = LeftFraction (0) ,
(2 , 2) = LeftFraction (DelayPolynomial (0 , 0 , 1)) ,
(2 , 3) = LeftFraction (0) ,
(2 , 4) = LeftFraction (DelayPolynomial (0 , yD0P7)) ,
(3 , 1) = LeftFraction (0) ,
(3 , 2) = LeftFraction (0) ,
(3 , 3) = LeftFraction (0) ,
(3 , 4) = LeftFraction (DelayPolynomial (0 , xD0P7)) ,
(4 , 1) = LeftFraction (0) ,
(4 , 2) = LeftFraction (DelayPolynomial (0 , 1 , xD0P2)) ,
(4 , 3) = LeftFraction (0) ,
(4 , 4) = LeftFraction (0)
}) :
ba s i sVec to r s := Le f tF r a c t i onUt i l s [nul lSpaceMatr ix] (computeKernelOf ,
rowwise=true) ;

and yields the one basis vector
0

−δ−1 · (1 + (x(t+ τ)) δ)

−δ−1 ·
(
− y(t+7τ)
x(t+7τ)

+
(
−x(t+ τ) · y(t+6τ)

x(t+6τ)

)
δ
)

1

 . (7.47)

7.2.5 PiFlatUtils

In case of linear systems with delays, we encounter the need to compute the
operator π which eliminates all predictions in the defining operators P , Q and
R (see Definition 16 and algorithm 5). This module offers methods to compute
and verify this specific operator π. Therefore, this submodule is not needed in
case of linear systems without delays.

7.2.5.1 Local methods

7.2.5.1.1 computePiForMatrix

Visibility: local

Parameters:
argumentOne::OreMatrix

102

7.2. DifferentialDelays

Return type: DelayPolynomial

Description: This method computes the DelayPolynomial π which eliminates
all predictions in the given OreMatrix argumentOne9. A possible way to com-
pute π is evaluating all denominators of the given matrix argumentOne and
compute the least common left multiple of these. I.e. in case of an OreMatrix
M ∈ K (δ)

[
d
dt

]r×s
the operator π is given by

π = lclm(denominatorOf(M1,1), . . . , denominatorOf(Mr,s)). (7.48)

By using this computation rule, we ensure that πM ∈ K
[
δ, d

dt

]r×s
.

Examples: In this example, we compute the operator π for the matrix

matrix1 =

 (s(t)δ − s(t)δ2)−1 · d2
dt2

1((
s(t)2

ṡ(t)
δ2 − s(t)2

ṡ(t)
δ3
)−1
· (−1)

)
· d
dt

δ−1 · d
dt

 . (7.49)

Listing 7.22: Compute the operator π

> matr ix 1 := Matrix (2 , 2 , {
(1 , 1) = OrePolynomial (0 , 0 , LeftFraction (DelayPolynomial (0 , sD0T0 , −sD0T0) ,
1)) ,
(1 , 2) = OrePolynomial (1) ,
(2 , 1) = OrePolynomial (0 , LeftFraction (DelayPolynomial (0 , 0 , sD0T0ˆ2/sD1T0 ,
−sD0T0ˆ2/sD1T0) , −1)) ,
(2 , 2) = OrePolynomial (0 , LeftFraction (DelayPolynomial (0 , 1) , 1))
}) ;
> pi := P iF l a tUt i l s [computePiForMatrix] (matr ix 1) ;

The resulting operator π is

π =
s(t)2

ṡ(t)
δ2 − s(t)2

ṡ(t)
δ3. (7.50)

7.2.5.2 Exported methods

7.2.5.2.1 computePi

Visibility: export

Parameters:
matrixP bar::OreMatrix
matrixQ bar::OreMatrix
matrixR bar::OreMatrix

Return type: DelayPolynomial

Description: This method computes the operator π for the three defining
operators P ∈ K (δ)

[
d
dt

]m×n
, Q ∈ K (δ)

[
d
dt

]n×m
and R ∈ K (δ)

[
d
dt

]m×m
such

that

πP ∈ K
[
δ, d

dt

]m×n
, πQ ∈ K

[
δ, d

dt

]n×m
, πR ∈ K

[
δ, d

dt

]m×m
(7.51)

9Remark: The operator π is not unique.

103

Chapter 7. Introduction of the Developed Toolboxes

(see Definition 16 and algorithm 5 for more details). This method uses the local
method computePiForMatrix (7.2.5.1.1) to compute the temporary operators
πP , πQ and πR ∈ K [δ] which eliminate the predictions in the particular matrix.
Finally, the least common left multiple of these three operators is computed
and returned.

7.2.5.2.2 verifyPi

Visibility: export

Parameters:
polynomialPi::DelayPolynomial
referringMatrix :: OreMatrix
Option: showTransformedMatrix::boolean:=false

Return type: boolean

Description: This method tests whether the given DelayPolynomial polyno-
mialPi eliminates all predictions in the given OreMatrix referringMatrix. I.e. in
case of a DelayPolynomial π ∈ K [δ] and an OreMatrix M ∈ K (δ)

[
d
dt

]
it evalu-

ates the condition πM ∈ K
[
δ, d

dt

]
.

In addition, if the option showTransformedMatrix is set to true, the method will
also return the product of the operator π and the matrix M as a second return
value.

Examples: In this example, we use the matrix and the operator π from the
example of the method computePiForMatrix (7.2.5.1.1) in order to show that
the computed π satisfies the condition, which is given by Definition 16.

Listing 7.23: Verify a given π

> matr ix 1 := Matrix (2 , 2 , {
(1 , 1) = OrePolynomial (0 , 0 , LeftFraction (DelayPolynomial (0 , sD0T0 , −sD0T0) ,
1)) ,
(1 , 2) = OrePolynomial (1) ,
(2 , 1) = OrePolynomial (0 , LeftFraction (DelayPolynomial (0 , 0 , sD0T0ˆ2/sD1T0 ,
−sD0T0ˆ2/sD1T0) , −1)) ,
(2 , 2) = OrePolynomial (0 , LeftFraction (DelayPolynomial (0 , 1) , 1))
}) ;
> pi := DelayPolynomial (0 , 0 , sD0T0ˆ2/sD1T0 , −sD0T0ˆ2/sD1T0) ;
> P iF l a tUt i l s [v e r i f yP i] (pi , matr ix 1) ;

7.3 DifferentialForms

7.3.1 Internal Structure of the Toolbox

The toolbox for flatness determination in case of nonlinear systems consists of
the main module and the only submodule MinimalbasisDecomp. All function-
alities that affects the handling of differential forms and operators are kept by
the main module. The purpose of the submodule MinimalbasisDecomp is to
provide a fast way to decompose operator matrices with the ansatz of minimal
bases.

104

7.3. DifferentialForms

Figure 7.3: Structure of DifferentialForms

In the following sections the main module and its submodule will be explained
in detail.

7.3.2 Main Module

In this section, all methods of the main module of the DifferentialForms-toolbox
are described in detail. The main module contains all methods in order to
perform the flatness determination in case of nonlinear systems, except for the
minimal basis decomposition.
Unlike in the toolbox DifferentialDelays, most of the exported methods do not
have a restriction of the data types for the parameters. The reason for this is
that the methods can be used for most of the data types, i.e. the particular
method will check the data types of the parameters and rise an error if the data
types do not fit10. E.g. the method derivative (7.3.2.4.2) is used to compute
the time derivative of DiffForms, OperForms, DiffSums, OperSums, DiffMatrices
or OperMatrices.

7.3.2.1 Initialization

7.3.2.1.1 initializeMe

Visibility: local

Parameters: −
Return type: −
Description: This method will automatically be called when using the with-
command of Maple. It initializes the data types defined in section 5.3. This
method also displays the new data types and the current version of the toolbox.
It also initializes the submodule MinimalbasisDecomp and its internal data types
(since the minimal basis decomposition in case of nonlinear systems uses an
internal data structure in order to improve the computational performance).
Roughly speaking, it is the maintenance method of the toolbox.

10I.e. the internal algorithm determines the data type of the given arguments and specify
the computation. Additional parameter checks in the method signature would be dispens-
able.

105

Chapter 7. Introduction of the Developed Toolboxes

7.3.2.2 Constructors

7.3.2.2.1 MonoDiffForm

Visibility: export

Parameters:
extDerivative :: boolean:=true
variable :: And(symbol, Not(boolean)):=D
differentialDegree :: integer:=1

Return type: MonoDiffForm

Description: This constructor can be used to create a MonoDiffForm. This
correlates to a monomial differential form from section 5.3. The construc-
tor allows to create unknown monomial differential forms, such as an n-form
ω ∈ Λn (X). The three parameters are:
extDerivative: This (optional) boolean describes whether the monomial differ-
ential form is closed or not. If this parameter is missing, the constructor will
assume that it is a closed monomial differential form.
variable: This (mandatory) symbol11 represents the name of the meromorphic
function resp. variable name. Let us recall that all functions and constants in
the toolboxes are expressed by regular expressions without a time dependency
in order to increase the computational performance - for more details see sec-
tion 6.1.
The constructor automatically checks the spelling of variable as defined in sec-
tion 6.1. differentialDegree: This (optional) integer shows the number of actual
differentials (in case of an unknown monomial differential form) which is repre-
sented by the MonoDiffForm (i.e. n in case of an n-form ω ∈ Λn (X)). In case of
a simple differential of a meromorphic function, we may omit this parameter,
forcing the constructor to take the MonoDiffForm as a 1-form.

Examples:

Listing 7.24: Create MonoDiffForms

> d i f f 1 := MonoDiffForm(x1D0) ;
> d i f f 2 := MonoDiffForm(x3D2) ;
> d i f f 3 := MonoDiffForm(false , omegaD0 , 2) ;
> d i f f 4 := MonoDiffForm(true , omegaD1 , 3) ;

These four commands above create the MonoDiffForms:

diff1 = dx1

diff2 = dẍ2

diff3 = ω

diff4 = dω̇ (7.52)

11The method signature says that variable is optional and must not be a boolean. This
has technical reasons since it is not possible in Maple to have mandatory parameters after
optional ones. If the parameter variable is missing, the constructor will raise an error after
all.

106

7.3. DifferentialForms

Please note that in this case diff3 represents a 2-form and diff4 a 3-form since
we set this in the parameters.

7.3.2.2.2 MonoDiffForms

Visibility: export

Parameters:
variables :: seq(And(symbol, Not(boolean)))

Return type: seq(MonoDiffForm)

Description: In many cases we will have to enter a sequence of MonoDiff-
Forms in order to create differential forms or operators. This method offers a
fast way to create a sequence of closed 1-forms, so we do not have to use the
constructor MonoDiffForm when creating 1-forms. Using the method Mono-
DiffForms is not necessary, but can save us a lot of time describing the 1-forms
of the differential forms resp. operators.
This constructor checks the spelling of the variables as defined in section 6.1.
Remark: A sequence of MonoDiffForms (used in the constructors for differen-
tial forms and operators) represents MonoDiffForms which are connected with
the ∧-operator (see method DiffForm (7.3.2.2.3) for more details).

Examples: To create an ordered sequence of 1-forms we usually have to use
the constructor MonoDiffForm:

Listing 7.25: Create a sequence of 1-forms

> s eq 1 := MonoDiffForm(x1D0) , MonoDiffForm(x2D0) , MonoDiffForm(x1D1) ;

If we use the method MonoDiffForms, we can just write

Listing 7.26: Create a sequence of 1-forms

> s eq 1 := MonoDiffForms (x1D0 , x2D0 , x1D1) ;

in order to create the same sequence.

7.3.2.2.3 DiffForm

Visibility: export

Parameters:
coefficient :: Not(list)

monoDiffForms::seq(MonoDiffForm)

Return type: DiffForm

Description: This constructor can be used to create a monomial p-differential
form (5.3). The first parameter is a meromorphic function of the state and its
derivatives with respect to time as coefficient of the DiffForm. The second (and
optional) parameter is a sequence of the MonoDiffForms (i.e. the differentials)
of the DiffForm.

107

Chapter 7. Introduction of the Developed Toolboxes

Examples: In the following example, we create a few simple monomial p-
differential forms using the constructors DiffForm, MonoDiffForm and Mono-
DiffForms:

form1 = x1 cos(ẋ2)dx1 ∧ dx2 ∧ dẋ1
form2 = σ(x1, x2)dx2 ∧ dx1
form3 = C1

form4 = dω ∧ θ (7.53)

with ω a 1-form (and therefore dω a 2-form) and θ a 3-form.

Listing 7.27: Create DiffForms

> form 1 := DiffForm (x1D0 ∗ cos (x2D1) , MonoDiffForms (x1D0 , x2D0 , x1D1)) ;
> form 2 := DiffForm (sigma (x1D0 , x2D0) , MonoDiffForms (x2D0 , x1D0)) ;
> form 3 := DiffForm (C1) ;
> form 4 := DiffForm (1 , MonoDiffForm(true , omegaD0 , 2) , MonoDiffForm(false ,
thetaD0 , 3)) ;

7.3.2.2.4 OperForm

Visibility: export

Parameters:
coefficient :: Not(list)

monoDiffForms::seq(MonoDiffForm)
operatorDegree::integer:=0

Return type: OperForm

Description: This constructor can be used to create a monomial operator
(5.4) which transforms p-forms into p+q-forms. The first parameter is a mero-
morphic function of the state and its derivatives with respect to time as coef-
ficient of the OperForm. The second (and optional) parameter is a sequence of
the MonoDiffForms (i.e. the differentials) of the OperForm. The third parame-
ter is the degree in d

dt
of the monomial operator. If this parameter is missing,

the constructor will create an operator with degree 0 in d
dt

.

Examples: We would like to illustrate the usage of the constructor OperForm
in order to create the following monomial operators:

oper1 = µ(x1, ẋ1, x2)dx1 ∧ dẋ1 ∧
d

dt
oper2 = sin(ẋ2)dx2 ∧ ω ∧

oper3 = ∧ d
dt

oper4 = dx1∧ (7.54)

with ω a 3-form.

108

7.3. DifferentialForms

Listing 7.28: Create OperForms

> oper 1 := OperForm(mu(x1D0 , x1D1 , x2D0) , MonoDiffForms (x1D0 , x1D1) , 1) ;
> oper 2 := OperForm(s i n (x2D1) , MonoDiffForm(x2D0) , MonoDiffForm(false ,
omegaD0 , 3)) ;
> oper 3 := OperForm(1 , 1) ;
> oper 4 := OperForm(1 , MonoDiffForm(x1D0)) ;

7.3.2.2.5 DiffSum

Visibility: export

Parameters:
forms::seq(DiffForm)

Return type: Or(DiffForm, DiffSum)

Description: This constructor is used to create a general p-form (6.12). It
also simplifies the given DiffForms and merges them, if possible.
If the result (after the simplification) turns out to be just one DiffForm, the
method will return this very DiffForm instead of a DiffSum with only one sum-
mand.

7.3.2.2.6 OperSum

Visibility: export

Parameters:
forms::seq(OperForm)

Return type: Or(OperForm, OperSum)

Description: Similar to the constructor DiffSum (7.3.2.2.5), this constructor
is used to create an operator (5.2). It also simplifies the given OperForms and
merges them, if possible.
If the result (after the simplification) turns out to be just one OperForm, the
method will return this very OperForm instead of an OperSum with only one
summand.

7.3.2.3 Local methods

7.3.2.3.1 cleanEquations

Visibility: local

Parameters:
equations :: list

Return type: list

Description: This method removes all zeros from the given list equations.
This method is used to remove dispensable equations of pde-systems.

109

Chapter 7. Introduction of the Developed Toolboxes

7.3.2.3.2 compareTwoDifferentials

Visibility: local

Parameters:
leftMonoDiffForms::list(MonoDiffForm)
rightMonoDiffForms::list(MonoDiffForm)

Return type: integer

Description: This method is used by internal simplifier methods. In order
to merge two DiffForms resp. OperForms, the two differentials of those two
differential forms resp. operators must be the same but only permuted. If
that is fulfilled, we can merge the two DiffForms resp. OperForms according to
the computation rules in the description of method simplifier (7.3.2.4.10). For
this purpose this method computes whether the two lists of MonoDiffForms are
the same but permuted. If they are not the same, the method will return 0.
If they are the same, but permuted, the method will return a multiplier. The
right list of MonoDiffForms has to be multiplied with that multiplier, in order
to permute the differentials12.

7.3.2.3.3 convertTermToLatex

Visibility: local

Parameters:
term::Not(list)
Option: showTimeDependency::boolean:=true
Option: substituteGreekLetters ::boolean:=true

Return type: string

Description: This method is used by the exported method latexPrinting
(7.3.2.4.6). It converts the given term (any function or symbol) into LaTeX -
code. Like the similar method in the linear toolbox, it contains several features,
which shall be described in detail:

1.) substitute functions

2.) substitute certain characters

3.) substitute Greek letters

1.) As explained in section 6.1, all functions are represented by symbols which
satisfy a certain regular expression containing the differentiation degree. The
first conversion step is to convert these symbols into LaTeX -code. A few ex-
amples shall illustrate this:

12The reason behind this is the property (3.74) of the wedge product ∧. This property
may cause the algebraic sign of the differentials to change if we permute them.

110

7.3. DifferentialForms

Function as symbol Converted function
x1D0 x1(t)

var11D2 \ddot{var11}(t)

yD4 y^{(4)}(t)

If the option showTimeDependency is set to false, the method will not show
the dependency of t, thus forcing the method to transform e.g. x1D1 into
\dot{x1} instead of \dot{x1}(t).

2.) To increase the readability of the produced LaTeX -code we also sub-
stitute the characters _ with _ and * with \cdot.

3.) This method uses the local method substituteGreekLettersInTerm (7.3.2.3.9)
to substitute Greek letters. If the option substituteGreekLetters is enabled, all
lowercased Greek letters except ’eta’ and ’psi’ will be substituted with the cor-
responding LaTeX -expressions. ’eta’ and ’psi’ may not be substituted to avoid
conversion problems since they are literally contained in other Greek letters
(e.g. in ’theta’).
If a Greek letter is followed by another character, the toolbox will use the
underscore to separate the Greek letter from the following characters. A few
examples with Greek letters shall illustrate the substitution:

Function as symbol Converted function
2*sin(thetaD1) 2\cdot sin(\dot{\theta}(t))

upsilon1 _\upsilon_1

omega1D0 + muxD0 \omega_1(t) + \mu_x(t)

7.3.2.3.4 extDerivativeDifferentials

Visibility: local

Parameters:
argumentOne::list(MonoDiffForm)

Return type: list (DiffForm)

Description: This methods handles the anti-derivation property of the ex-
terior derivative defined in (3.79). I.e. this method computes the exterior
derivative of the given list of MonoDiffForms which represents the ordered n-
forms of a DiffForm resp. OperForm. Since the result of an exterior derivative
of a differential may be a differential form, this method returns a list of Diff-
Forms13.

Examples: First, we are going to compute the exterior derivative of the dif-

13Actually, this is not a DiffSum since due to technical reasons this method may return
a list with only one DiffForm or even an empty list, which is not a DiffSum according to the
data type definition.

111

Chapter 7. Introduction of the Developed Toolboxes

ferential

dx1 ∧ dx2 ∧ dẋ1 ∧ dx3, (7.55)

which will obviously be zero since the exterior derivative of a closed form is
always zero (see (3.80)). The corresponding method call

Listing 7.29: Compute the exterior derivative

> forms 1 := [MonoDiffForms (x1D0 , x2D0 , x1D1 , x3D0)] ;
> r e s u l t 1 := e x tD e r i v a t i v eD i f f e r e n t i a l s (forms 1) ;

will return an empty list.
In a second example, we compute the exterior derivative of the differential

ω̇ ∧ ω ∧ θ (7.56)

with ω ∈ Λ3 (X) and θ ∈ Λ4 (X). The method call

Listing 7.30: Compute the exterior derivative

> forms 2 := [MonoDiffForm(false , omegaD1 , 3) , MonoDiffForm(false , omegaD0 ,
3) , MonoDiffForm(false , thetaD0 , 4)] ;
> r e s u l t 2 := e x tD e r i v a t i v eD i f f e r e n t i a l s (forms 2) ;

returns the DiffSum

dω̇ ∧ ω ∧ θ − ω̇ ∧ dω ∧ θ + ω̇ ∧ ω ∧ dθ. (7.57)

7.3.2.3.5 extractNONPDEs

Visibility: local

Parameters:
pdeSystem::list

Return type: list

Description: This method is used in the method solvePDEs (7.3.2.3.7) to
separate partial differential equations from algebraic equations. In order to do
this, the method simply evaluates the given list of equations and returns a list
which contains only the algebraic equations that are in the given system.

7.3.2.3.6 integrableDiffsIncludedIn

Visibility: local

Parameters:
argumentOne::Or(DiffForm, DiffSum)

Return type: list (symbol)

Description: This method determines which integrable differentials are in-
cluded in the given argumentOne, which can be of type DiffForm or DiffSum. In
this case, integrable means that the contained differential forms have exactly

112

7.3. DifferentialForms

one closed 1-form each. I.e. argumentOne has to be ∈ Λ1 (X). If argumen-
tOne does not fit that assertion, the method will raise an error. Otherwise the
method returns a list which contains the variables of the contained MonoDiff-
Forms.

Examples: In case of the following DiffSum

x
(3)
1 ẋ2dx1 + x

(3)
1 dx2 − dẋ2 (7.58)

the method call

Listing 7.31: Get the variables of integrable differentials

> form 1 := DiffSum(DiffForm (x1D3 ∗ x2D1 , MonoDiffForm(x1D0)) , DiffForm (x1D3 ,
MonoDiffForm(x2D0)) , DiffForm(−1 , MonoDiffForm(x2D1))) ;
> i n t e g r ab l eD i f f s I n c l ud ed I n (form 1) ;

returns the following list:

7.3.2.3.7 solvePDEs

Visibility: local

Parameters:
pdeList :: list
Option: useSeparation::boolean:=false
Option: chooseByComplexity::boolean:=true

Return type: set

Description: This method solves the given system of partial differential equa-
tions. In addition, this method is capable of solving ordinary differential equa-
tions and algebraic equations as well. This method is used in the solver for
equations of differential forms and operators and the integrator for differential
forms of this toolbox.
The equation system has to be entered as list with each equation (the whole
equation or, if the right side of the equation is zero, only the left side) as one
entry.
The option useSeparation forces the method so separate between algebraic
equations and differential equations. First, the method tries to solve the sys-
tem of algebraic systems without using the differential ones. Afterwards, the
method will substitute the result of the algebraic system (if a possible solution
exists) and continue solving the whole system.
The option chooseByComplexity ensures that the method always chooses the
solution with the lowest complexity. If this option is set to false, the internal
algorithm will randomly pick among the possible solutions.

113

Chapter 7. Introduction of the Developed Toolboxes

7.3.2.3.8 spellingChecker

Visibility: local

Parameters:
term::Not(list)
Option: onlyFunctionsAllowed::boolean:=false

Return type: −
Description: This method is used by the constructor methods of the toolbox
in order to check whether all functions and constants are spelled correctly
referring to the regular expressions

ˆ[a-zA-CE-Z0-9]+D[0-9]+$ (7.59)

for functions and

ˆ[a-zA-CE-Z0-9]+$ (7.60)

for constants. This method evaluates all occurring functions and constants in
the given term and will raise an error if there are wrong spelled functions or
constants. Otherwise this method will simply return NULL.
If the option onlyFunctionsAllowed is set to true, the method will only allow
functions in the given term. This option is used in the constructors MonoDiff-
Form and MonoDiffForms in which no constants are allowed since a differential
is the exterior derivative of a meromorphic function.

7.3.2.3.9 substituteGreekLettersInTerm

Visibility: local

Parameters:
termAsLatexString::string

Return type: string

Description: This method substitutes all lowercased Greek letters except
’eta’ and ’psi’ since they are literally contained in other Greek letters. For
more details see the description of method convertTermToLatex (7.3.2.3.3).

7.3.2.3.10 timeDerivative

Visibility: local

Parameters:
term::Not(list)

Return type: Not(list)

Description: This method differentiates the given term with respect to time.
Since there are no more Maple-functions of t in the occurring terms (see section
6.1 for further details), the time derivative has to be implemented using the Lie
derivative along the Cartan field (for a detailed description see section 6.1.3).

114

7.3. DifferentialForms

7.3.2.4 Exported methods

7.3.2.4.1 createDiffFormVector

Visibility: export

Parameters:
functions :: seq(symbol)
Option: extDerivativeDegree::integer:=0
Option: timeDerivativeDegree::integer:=0

Return type: DiffMatrix

Description: During the process of flatness determination, we will often need
a simple vector filled with differential forms (for instance if we want to create
a general vector x, dy or ω). This method supports us, since we do not have
to create such a vector manually. We just have to enter a sequence of the
coefficients of the desired differential forms. This will create a vector14 of
DiffForms with the given coefficients.
The option extDerivativeDegree allows to compute directly the n’th exterior
derivative of the vector (e.g. extDerivativeDegree = 1 computes the normal
exterior derivative of the vector).
The option timeDerivativeDegree works similar. It computes the n’th derivative
with respect to t of the vector (e.g. timeDerivativeDegree = 2 computes the
2nd time derivative of the vector).

Examples: In a first step we create the vector

x =
(
x1, x2, x3

)T
. (7.61)

Listing 7.32: Create a vector without options

> vec to r 1 := createDi f fFormVector (x1D0 , x2D0 , x3D0) ;

In order to create the vector

dx =
(
dx1, dx2, dx3

)T
, (7.62)

we simply have to use the option extDerivativeDegree:

Listing 7.33: Create a vector with exterior derivative

> vec to r 1 := createDi f fFormVector (x1D0 , x2D0 , x3D0 , extDer ivat iveDegree=1) ;

14Please note that all vectors over differential forms and operators in the toolbox Differ-
entialForms are represented by DiffMatrices and OperMatrices, i.e. one-columned matrices
instead of actual vectors.

115

Chapter 7. Introduction of the Developed Toolboxes

7.3.2.4.2 derivative

Visibility: export

Parameters:
argumentOne::Or(DiffForm, DiffSum, DiffMatrix, OperForm, OperSum,

OperMatrix)

Return type: Or(DiffForm, DiffSum, DiffMatrix, OperForm, OperSum,
OperMatrix)

Description: This method computes the time derivative of the given argumen-
tOne, whether it is a DiffForm, DiffSum, DiffMatrix or one of the corresponding
operator types. The result of the method will automatically be simplified, us-
ing the method simplifier (7.3.2.4.10). The time derivative will be computed
according to the following rules:
The time derivative of a monomial p-differential form (DiffForm) is given by
the computation rules defined in (3.77)–(3.78):

d

dt

(
ωc(x)dx

(j1)
i1
∧ . . . ∧ dx(jp)ip

)
=

d

dt
(ωc(x)) dx

(j1)
i1
∧ . . . ∧ dx(jp)ip

+ ωc(x)dẋ
(j1)
i1
∧ . . . ∧ dx(jp)ip

+ ωc(x)dx
(j1)
i1
∧ dẋ(j2)i2

∧ . . . ∧ dx(jp)ip

+ . . .

+ ωc(x)dx
(j1)
i1
∧ . . . ∧ dẋ(jp)ip

(7.63)

with the coefficient of the monomial p-differential form ωc as a meromorphic
function of the state and its derivatives with respect to t.
The time derivative of a monomial operator, which transforms p-forms into
p+q-forms, (OperForm) is given by the computation rules defined in (3.87)
and (7.63):

d

dt

(
µc(x)dx

(j1)
i1
∧ . . . ∧ dx(jq)iq

∧ dn

dtn

)
=

d

dt

(
µc(x)dx

(j1)
i1
∧ . . . ∧ dx(jq)iq

)
∧ dn

dtn

+ µc(x)dx
(j1)
i1
∧ . . . ∧ dx(jq)iq

∧ dn+1

dtn+1
(7.64)

with the coefficient of the monomial operator µc as a meromorphic function of
the state and its derivatives with respect to t.

116

7.3. DifferentialForms

In case of a DiffSum, we use the sum rule for differentiation:

d

dt

 ∑
i1,j1,...,ip,jp

ωi1,j1,...,ip,jp(x)dx
(j1)
i1
∧ . . . ∧ dx(jp)ip

=

∑
i1,j1,...,ip,jp

d

dt

(
ωi1,j1,...,ip,jp(x)dx

(j1)
i1
∧ . . . ∧ dx(jp)ip

)
(7.65)

In case of an OperSum, we also use the sum rule.
The time derivative of a matrix over differential forms or operators is given by
differentiating the entries of the matrix.

7.3.2.4.3 equals

Visibility: export

Parameters:
leftArgument::Or(DiffForm, DiffSum, DiffMatrix, OperForm, OperSum,

OperMatrix)
rightArgument::Or(DiffForm, DiffSum, DiffMatrix, OperForm, OperSum,

OperMatrix)

Return type: boolean

Description: This method evaluates whether the two given arguments leftAr-
gument and rightArgument are equal. In order to do this, the method evaluates
the (simplified) result of

leftArgument− rightArgument = 0. (7.66)

Two arguments must be of the same data type. There are only two exceptions:
DiffForms may be compared with DiffSums and OperForms with OperSums since
they could be equal after a simplification of the sum. Any other combination
of data types will automatically return false.

7.3.2.4.4 extDerivative

Visibility: export

Parameters:
argumentOne::Or(DiffForm, DiffSum, DiffMatrix, OperForm, OperSum,

OperMatrix)

Return type: Or(DiffForm, DiffSum, DiffMatrix, OperForm, OperSum,
OperMatrix)

Description: This method computes the exterior derivative of the given ar-
gumentOne, whether it is a DiffForm, DiffSum, DiffMatrix or one of the cor-
responding operator types. The result of the method will automatically be
simplified using the method simplifier (7.3.2.4.10). The exterior derivative will

117

Chapter 7. Introduction of the Developed Toolboxes

be computed according to the computation rules defined in (3.79)–(3.82) and
(3.85).

Examples: In the first example, we would like to compute the (very simple)
exterior derivative of ω ∈ Λ2 (X) with the commands

Listing 7.34: Exterior derivative of a 2-form

> form 1 := DiffForm (1 , MonoDiffForm(false , omegaD0 , 2)) ;
> r e s u l t 1 := extDer i va t i v e (form 1) ;

resulting in dω ∈ Λ3 (X).
In the second example, we would like to compute the exterior derivative of the
operator (OperForm)

form1 =
cos(x2)√

1− ẋ23
dẋ1 ∧

d

dt
. (7.67)

The commands

Listing 7.35: Exterior derivative

> form 1 := OperForm(cos (x2D0) / sq r t (1−(x3D1) ˆ2) , MonoDiffForm(true , x1D1 ,
1) ,1) ;
> r e s u l t 1 := extDer i va t i v e (form 1) ;

yield the result (an OperSum)

result1 = − sin(x2)√
1− ẋ23

dx2 ∧ dẋ1 ∧
d

dt

+
cos(x2)ẋ3

(1− ẋ23)
3/2
dẋ3 ∧ dẋ1 ∧

d

dt
. (7.68)

7.3.2.4.5 integration

Visibility: export

Parameters:
argumentOne::Or(DiffForm, DiffSum, DiffMatrix, OperForm, OperSum,

OperMatrix)
Option: showSolution::boolean:=false
Option: useSeparation::boolean:=false
Option: chooseByComplexity::boolean:=true

Return type: Or(DiffForm, DiffMatrix)

Description: This method integrates the given DiffForm, DiffSum or DiffMa-
trix with respect to its differentials. I.e. this method is able to invert the

118

7.3. DifferentialForms

exterior derivative (for instance to compute the flat output of a nonlinear sys-
tem based on the flat output of the variational system).
This method will only work if all the DiffForms that occur in argumentOne have
exactly one closed 1-form. Before the actual integration, the method simplifies
the given argument using the method simplifier (7.3.2.4.10).
In case of a DiffForm or DiffSum ω ∈ Λ1 (X), the internal algorithm tries to
compute a function y which satisfies

d(y) = ω. (7.69)

In case of a DiffMatrix, the algorithm expects a vector of DiffForms and/or
DiffSums Ω ∈ Λ1 (X)n×1 (i.e. a one-columned DiffMatrix). Then, the internal
algorithm tries to compute a vector y = (y1, . . . , yn)T which satisfies

d(y) = Ω. (7.70)

This method offers three options to customize the integration:
showSolution adds the result of the internal pde-solver as a second return value.
It is recommended to enable this option in order to reveal dependencies among
internal functions (see the second example below).
The options useSeparation and chooseByComplexity are given to the internal
pde-solver. Please see the method description of solvePDEs (7.3.2.3.7) for
more details.

Examples: In the first example, we integrate the DiffSum

sum1 = dψ + sin(ψ̇)dψ̇. (7.71)

Listing 7.36: Integrate a DiffSum

> form 1 := DiffForm (1 , MonoDiffForm(psiD0)) ;
> form 2 := DiffForm (s i n (psiD1) , MonoDiffForm(psiD1)) ;
> sum 1 := DiffSum(form 1 , form 2) ;
> resultOne , s o l u t i o n s := i n t e g r a t i o n (sum 1 , showSolut ion=true) ;

This yields the result

which represents the function

resultOne = ψ − cos(ψ̇) + C1. (7.72)

In the second example, we integrate the DiffMatrix

M omega =

(
dx1 − arcsin(ẋ3)dx2 + Ψ1dx3 + Ψ2dẋ3

dx3

)
(7.73)

119

Chapter 7. Introduction of the Developed Toolboxes

with

Ψ1 =

(
∂

∂x3
K(x3, ẋ3) + F5(x3)

)
(7.74)

Ψ2 =
−x2 + ∂

∂ẋ3
K(x3, ẋ3)

√
1− ẋ23√

1− ẋ23
(7.75)

Listing 7.37: Integrate a DiffMatrix

> Ps i 1 := (D[1] (K)) (x3D0 , x3D1)+ F5 (x3D0) ;
> Ps i 2 := (−x2D0+(D[2] (K)) (x3D0 , x3D1) ∗ s q r t (1−x3D1ˆ2)) / sq r t (1−x3D1ˆ2) ;
> M omega := Matrix (2 , 1 , {
(1 , 1) = DiffSum(DiffForm (1 , MonoDiffForms (x1D0)) , DiffForm(− a r c s i n (x3D1) ,
MonoDiffForms (x2D0)) , DiffForm (Ps i 1 , MonoDiffForms (x3D0)) , DiffForm (Ps i 2 ,
MonoDiffForms (x3D1))) ,
(2 , 1) = DiffForm (1 , MonoDiffForm(x3D0))
}) ;
> y := i n t e g r a t i o n (M omega) ;

This yields the vector

y =

(
x1 − arcsin(ẋ3) · x2 + F6(x3, ẋ3)

x3 + C1

)
. (7.76)

But we encounter one problem. We do not know how the functions K(x3, ẋ3),
F5(x3) and F6(x3, ẋ3) are connected. Therefore, we use the option showSo-

lution to reveal the dependencies:

Listing 7.38: Integrate a DiffMatrix

> y , s o l u t i o n s := i n t e g r a t i o n (M omega , showSolut ion = true) ;

This yields the output

showing the dependencies between the functions.

7.3.2.4.6 latexPrinting

Visibility: export

Parameters:
argumentOne::Or(DiffForm, DiffSum, DiffMatrix, OperForm, OperSum,

OperMatrix)
Option: substituteGreekLetters ::boolean:=true

Return type: string

Description: The internal representation of the data types of this toolbox

120

7.3. DifferentialForms

was not designed to be human readable but to suit the given requirements
best. Nevertheless, the toolbox offers this method to convert the data types
DiffForm, DiffSum, DiffMatrix and the corresponding operator types into La-
TeX -code, to offer a readable output.
Furthermore, this method has the boolean option substituteGreekLetters (with
true as default value). This option forces the method to convert all lowercased
Greek letters except ’eta’ and ’psi’ since they are literally contained in other
Greek letters. The actual substitution of Greek letters is done by the method
substituteGreekLettersInTerm (7.3.2.3.9).
The regular expressions as defined in section 6.1 will also be converted.

Examples: At this point, we want to demonstrate the functionality of this
method by converting the following arguments into LaTeX -code:

Listing 7.39: Instantiate several data structure

> d i f f f o rm := DiffForm (mu1D1∗mu2D0, MonoDiffForm(true , xD0 , 1) ,
MonoDiffForm(true , xD1 , 1) , MonoDiffForm(false , omegaD1 , 3)) ;
> oper form := OperForm(xD1 , 3) ;
> d i f f sum := DiffSum(DiffForm (omegaD0 , MonoDiffForms (omegaD1)) , DiffForm (1 ,
MonoDiffForms (mu1D0)) , DiffForm (mu2D0, MonoDiffForms (zD0))) ;
> d i f f ma t r i x := Matrix (3 , 2 , {
(1 , 1) = DiffForm (0) ,
(1 , 2) = DiffForm (1) ,
(2 , 1) = DiffForm (xD0 , MonoDiffForms (xD0)) ,
(2 , 2) = DiffForm (0) ,
(3 , 1) = DiffForm (0) ,
(3 , 2) = DiffSum(DiffForm(−1 , MonoDiffForms (xD0)) , DiffForm (1 ,
MonoDiffForms (yD0)) , DiffForm (zD0 , MonoDiffForms (zD0)))
}) ;

By using this method

Listing 7.40: latexPrinting

> l a t e xP r i n t i n g (d i f f f o rm) ;
> l a t e xP r i n t i n g (oper form) ;
> l a t e xP r i n t i n g (d i f f sum) ;
> l a t e xP r i n t i n g (d i f f ma t r i x) ;

we get these unmodified representations in LaTeX :

diff form =
(

˙µ 1(t) · µ 2(t)
)
· d (x) ∧ d (ẋ) ∧ ω̇

oper form = ẋ(t) ∧ d3

dt3

diff sum = (ω(t)) · d (ω̇) + d (µ 1) + (µ 2(t)) · d (z)

diff matrix =

 0 1
(x(t)) · d (x) 0

0 (−1) · d (x) + d (y) + (z(t)) · d (z)

121

Chapter 7. Introduction of the Developed Toolboxes

7.3.2.4.7 multiply

Visibility: export

Parameters:
coefficient :: And(Not(list), Not(Matrix))

argumentTwo::Or(DiffForm, DiffSum, DiffMatrix, OperForm, OperSum,
OperMatrix)

Return type: Or(DiffForm, DiffSum, DiffMatrix, OperForm, OperSum,
OperMatrix)

Description: This method is used for the multiplication of an arbitrary coeffi-
cient with a DiffForm, OperForm, DiffSum, OperSum, DiffMatrix or OperMatrix.
The result will automatically be simplified.
Remark: The multiplication of differential forms or operators (resp. matrices
over them) with other differential forms or operators is not defined! Please use
the method wedge (7.3.2.4.14) to apply operators to differential forms or other
operators.

Examples: In the first example, we just compute the negative of the given
DiffSum by multiplying with −1:

Listing 7.41: Multiply a DiffSum

> form 1 := DiffForm(−1/(a r c s i n (x3D1) ˆ2∗ s q r t (1−(x3D1) ˆ2)) , MonoDiffForm(true ,
x1D0 , 1)) ;
> form 2 := DiffForm (cos (x2D0) / sq r t (1−(x3D1) ˆ2) , MonoDiffForm(true , x1D1 , 1)) ;
> form 3 := DiffForm (cos (x2D0) , MonoDiffForm(true , x1D3 , 1)) ;
> sum 1 := DiffSum(form 1 , form 2 , form 3) ;
> r e s u l t 1 := mult ip ly (−1 , sum 1) ;

In the second example, we want to multiply an OperMatrix with the coefficient
sin(x1)− ẋ2:

Listing 7.42: Multiply an OperMatrix

> form 1 := OperForm(−1/(a r c s i n (x3D1) ˆ2∗ s q r t (1−(x3D1) ˆ2)) ,
MonoDiffForm(x1D0) , 1) ;
> form 2 := OperForm(cos (x2D0) / sq r t (1−(x3D1) ˆ2) , MonoDiffForm(x1D1) , 0) ;
> form 3 := OperForm(cos (x2D0) , MonoDiffForm(x1D3) , 3) ;
> form 4 := OperForm(cos (x2D0) , MonoDiffForm(x1D3) , 2) ;
> matr ix 1 := Matrix (2 , 2 , {
(1 , 1) = OperSum(form 1 , form 2) ,
(1 , 2) = OperSum(form 1 , form 3) ,
(2 , 1) = OperSum(form 3 , form 2) ,
(2 , 2) = OperSum(form 1 , form 4)
}) ;
> r e s u l t 1 := mult ip ly (s i n (x1D0) − x2D1 , matr ix 1) ;

7.3.2.4.8 plus

Visibility: export

Parameters:
summandOne::Or(DiffForm, DiffSum, DiffMatrix, OperForm, OperSum,

OperMatrix)

122

7.3. DifferentialForms

summandTwo::Or(DiffForm, DiffSum, DiffMatrix, OperForm, OperSum,
OperMatrix)

Return type: Or(DiffForm, DiffSum, DiffMatrix, OperForm, OperSum,
OperMatrix)

Description: This method computes the sum of the two given terms summan-
dOne and summandTwo. The result will automatically be simplified. We may
only add differential forms (DiffForms and/or DiffSums) to other differential
forms and operators (OperForm and/or OperSum) to other operators. In case
of matrices we may only add DiffMatrices to DiffMatrices and OperMatrices to
OperMatrices.
Please note that in case of DiffForms and OperForms it does not make any dif-
ference whether we use the method plus or DiffSum (resp. OperSum) to create
DiffSums (resp. OperSums).

Examples: In this example, we add the two DiffSums

sum1 =
cos(x2)√

1− ẋ23
dẋ1 + θdx2

sum2 = sin(x1)dx1 + δdẋ1 (7.77)

with the commands

Listing 7.43: Compute the sum of two DiffSums

> sum 1 := DiffSum(DiffForm (cos (x2D0) / sq r t (1−(x3D1) ˆ2) , MonoDiffForm(x1D1)) ,
DiffForm (theta , MonoDiffForm(x2D0))) ;
> sum 2 := DiffSum(DiffForm (s i n (x1D0) , MonoDiffForm(x1D0)) , DiffForm (de l ta ,
MonoDiffForm(x1D1))) ;
> r e s u l t 1 := plus (sum 1 , sum 2) ;

to get the DiffSum

result1 =

(
cos(x2)√

1− ẋ23
+ δ

)
dẋ1 + θdx2 + sin(x1)dx1. (7.78)

7.3.2.4.9 printing

Visibility: export

Parameters:
argumentOne::Or(DiffForm, DiffSum, DiffMatrix, OperForm, OperSum,

OperMatrix)

Return type: symbol

Description: As told in the description of method latexPrinting (7.3.2.4.6)
the internal data structure of the toolbox is not designed to be human read-
able. Besides the thorough conversion into LaTeX -code using latexPrinting
(7.3.2.4.6), we can use this method to transform DiffForms, DiffSums, DiffMa-
trices, OperForms, OperSums and OperMatrices into a more readable Maple-
output. Note that this method does not substitute the regular expressions
defined in section 6.1.

123

Chapter 7. Introduction of the Developed Toolboxes

7.3.2.4.10 simplifier

Visibility: export

Parameters:
argumentOne::Or(DiffForm, DiffSum, DiffMatrix, OperForm, OperSum,

OperMatrix)
Option: deleteZeros :: boolean:=true
Option: gatherForms::boolean:=true
Option: simplifyCoefficients :: boolean:=true
Option: subSimplifier :: boolean:=true

Return type: Or(DiffForm, DiffSum, DiffMatrix, OperForm, OperSum,
OperMatrix)

Description: This method is the equivalent to the Maple command simplify.
It simplifies the given parameter (which can be of type DiffForm, DiffSum,
DiffMatrix, OperForm, OperSum or OperMatrix) according to certain rules. Al-
most every method in this toolbox simplifies the result automatically with this
method. Some of the features can be disabled by using the options of the
method, but this is not recommended!
The features of this method are:

1.) checking for doubled differentials

2.) simplifying the coefficients (if enabled)

3.) erasing dispensable zeros (if enabled)

4.) merging differential forms and operators (if enabled)

1.) The method will determine the differentials which are contained by the
differential forms and operators of argumentOne. If the method finds the same
differential two times (or more) in the same differential form or operator, it
will replace this differential form (resp. operator) with zero since we have the
property (3.75) of the wedge-product.
Let us also recall that the differential ω ∧ θ ∧ ω = 0 with ω ∈ Λ1 (X) , θ ∈
Λp (X) , p ∈ N0 since we have

ω ∧ θ ∧ ω = (−1)p ω ∧ ω︸ ︷︷ ︸
=0

∧θ = 0. (7.79)

2.) This feature is triggered by the option simplifyCoefficients. If this option is
set to true, the method will simplify all coefficients with the Maple-command
simplify. This is important since it is possible to have mathematical terms as
coefficients which are actually zero but without having Maple recognizing that.
But on the other hand, the Maple-command simplify needs a lot of computa-
tion time, thus it can make sense to omit the simplification of the coefficients
during computations if we are aware of the fact that some of the coefficients

124

7.3. DifferentialForms

might be zero.
The exported methods of this toolbox apply the coefficient-simplification au-
tomatically in order to ensure valid coefficients.

3.) If the argument is of type DiffSum, DiffMatrix, OperSum or OperMatrix,
this method will remove all containing DiffForms resp. OperForms which are
actually zero. It is possible (but not recommended) to disable this feature by
setting the option deleteZeros to false.

4.) This is triggered by the option gatherForms. It will force this method
to merge DiffForms and OperForms in all occurring DiffSums resp. OperSums
if they have the same differentials (and degree in d

dt
in case of OperForms). It

will automatically permute the differentials (and will therefore modify the sign
of the coefficient) if the order of the differentials is different among the forms
which shall be merged. This feature is very important to speed up the compu-
tations. Disabling this option (without a specific purpose) is not recommended.

The option subSimplifier will only take effect if we use the method on Diff-
Sums, OperSums, DiffMatrices or OperMatrices. If it is disabled, the method
will not apply the simplifications 1.) and 2.).
Remark: If a DiffSum or OperSum turns out to be a DiffForm or OperForm
after the simplification, this method will return a DiffForm resp. OperForm
instead of a DiffSum resp. OperSum with only one entry.

7.3.2.4.11 solver

Visibility: export

Parameters:
solveEquation::Or(list = list , Matrix = Matrix, list, Matrix)
Option: useSeparation::boolean:=false
Option: chooseByComplexity::boolean:=true

Return type: set

Description: This method solves the given equation and returns a set with
the solutions for the degrees of freedom. If we enter only one side of the
equation, the method will assume the other side to be zero. If we enter an
equation, the data types of the left and right side will have to be compatible.
The following tables will give an overview over possible combinations15:

XXXXXXXXXXXXleft side
right side

DiffForm DiffSum DiffMatrix

DiffForm X X -
DiffSum X X -

DiffMatrix - - X

15X describes a possible combination.

125

Chapter 7. Introduction of the Developed Toolboxes

XXXXXXXXXXXXleft side
right side

OperForm OperSum OperMatrix

OperForm X X -
OperSum X X -

OperMatrix - - X

Operators and differential forms are not compatible.
The options useSeparation and chooseByComplexity are given to the internal
pde-solver. Please see the method description of solvePDEs (7.3.2.3.7) for
more details.

Examples: Let us assume, we want to compute the solution of the equation

sum1 = sum2 (7.80)

with

sum1 = φ(x, ẋ)dx1 ∧ dx2 + θ(x, ẋ)dẋ1 ∧ dx2
+ ψ(x, ẋ)dẋ1 ∧ dẋ2 + φ(x, ẋ)dx1 ∧ dẋ2 (7.81)

sum2 = (sin(ẋ1) + cos(ẋ2)) dx2 ∧ dẋ1 +
1

sin(x2)
dẋ2 ∧ dx1

+
∂

∂x1
υ(x, ẋ)dx1 ∧ dx2 (7.82)

and with (x, ẋ) = (x1, ẋ1, x2, ẋ2). This can be done by the commands

Listing 7.44: Solve an equation

> form 1 := DiffForm (phi (x1D0 , x1D1 , x2D0 , x2D1) , MonoDiffForm(x1D0) ,
MonoDiffForm(x2D0)) ;
> form 2 := DiffForm (theta (x1D0 , x1D1 , x2D0 , x2D1) , MonoDiffForm(x1D1) ,
MonoDiffForm(x2D0)) ;
> form 3 := DiffForm (p s i (x1D0 , x1D1 , x2D0 , x2D1) , MonoDiffForm(x1D1) ,
MonoDiffForm(x2D1)) ;
> form 4 := DiffForm (phi (x1D0 , x1D1 , x2D0 , x2D1) , MonoDiffForm(x1D0) ,
MonoDiffForm(x2D1)) ;
> sum 1 := DiffSum(form 1 , form 2 , form 3 , form 4) ;

> form 5 := DiffForm (s i n (x1D1) + cos (x2D1) , MonoDiffForm(x2D0) ,
MonoDiffForm(x1D1)) ;
> form 6 := DiffForm (1/ s i n (x2D0) , MonoDiffForm(x2D1) , MonoDiffForm(x1D0)) ;
> form 7 := DiffForm (d i f f (ups i l on (x1D0 , x1D1 , x2D0 , x2D1) , x1D0) ,
MonoDiffForm(x1D0) , MonoDiffForm(x2D0)) ;
> sum 2 := DiffSum(form 5 , form 6 , form 7) ;

> s o l v e r (sum 1 = sum 2) ;

This will return the Maple-result16:

16The number of possible solutions is the number of solutions of the equation system which
are found by Maple.

126

7.3. DifferentialForms

I.e. the found solution is

φ(x, ẋ) = − 1

sin(x2)

ψ(x, ẋ) = 0

θ(x, ẋ) = − sin(ẋ1)− cos(ẋ2)

υ(x, ẋ) = − x1
sin(x2)

+ F1(x1, x2, ẋ2) (7.83)

Remark: We may easily substitute the solution into the initial expressions
by using the method substitute (7.3.2.4.12) of this toolbox.

7.3.2.4.12 substitute

Remark: This method has been overloaded three times, i.e. it has three dif-
ferent parameter sequences which offer a different feature each17.

Visibility: export

Parameters (feature 1):
subsEquation::(Not(list) = Not(list))
argumentOne::Or(DiffForm, DiffSum, DiffMatrix, OperForm, OperSum,

OperMatrix)
Option: subsDiffDegree::integer:=0

Parameters (feature 2):
subsEquations::Or(set((Not(list)= Not(list))),list((Not(list) = Not(list))))
argumentOne::Or(DiffForm, DiffSum, DiffMatrix, OperForm, OperSum,

OperMatrix)
Option: subsDiffDegree::integer:=0

Parameters (feature 3):
subsEquation::(MonoDiffForm = Or(DiffForm, DiffSum))
argumentOne::Or(DiffForm, DiffSum, DiffMatrix, OperForm, OperSum,

OperMatrix)
Option: subsDiffDegree::integer:=0

Return type: Or(DiffForm, DiffSum, DiffMatrix, OperForm, OperSum,
OperMatrix)

17In fact, the method has been overloaded four times, but the fourth overloaded method
only catches illegal parameter combinations.

127

Chapter 7. Introduction of the Developed Toolboxes

Description: This method is used for different kinds of substitutions in Diff-
Forms, DiffSums, DiffMatrices, OperForms, OperSums and OperMatrices. The
three features of the method are:

Feature 1: Substitute a single expression in coefficients: The method can
be used to substitute a single expression (e.g. φ(x1) = sin(x1)) in all occurring
coefficients of argumentOne. The first parameter subsEquation is the equation
which shall be substituted.

Feature 2: Substitute multiple expressions in coefficients: The method can
also be used to handle multiple substitutions simultaneously. In order to do
that, we may enter a set or list of substitutions as parameter subsEquations.

Feature 3: Substitute a monomial differential form: The method can be
used to substitute all occurrences of a monomial differential form by a Diff-
Form or DiffSum in the given argumentOne (e.g. dω = dx1 ∧ dx2 + dẋ1 ∧ dx2).

In all three cases, the option subsDiffDegree allows us to automatically substi-
tute time derivatives of the substitute, too. I.e. if we substitute φ(x1) = sin(x1)
with subsDiffDegree set to 2, the method will also substitute φ̇(x1) = ẋ1 cos(x1)
and φ̈(x1) = −ẋ21 sin(x1) + ẍ1 cos(x1). The same applies to MonoDiffForms.

Examples:
For feature 1: Substitute a single expression in coefficients: Let us substitute
the expression υ(x1, x2) = sin(x1) + cos(x2) in the vector

matrix1 =

(
υ(x1, x2) + x1dx2
∂
∂x2
υ(x1, x2)dẋ2

)
. (7.84)

This can be done by the commands

Listing 7.45: Substitute a single expression

> matr ix 1 := Matrix (2 , 1 , {
(1 , 1) = DiffForm (ups i l on (x1D0 , x2D0) + x1D0 , MonoDiffForms (x2D0)) ,
(2 , 1) = DiffForm (d i f f (ups i l on (x1D0 , x2D0) , x2D0) , MonoDiffForms (x2D1))
}) ;

> r e s u l t 1 := sub s t i t u t e (ups i l on (x1D0 , x2D0) = s i n (x1D0) + cos (x2D0) ,
matr ix 1) :
> r e s u l t 1 ;

and yields

result1 =

(
sin(x1) + cos(x2) + x1dx2

− sin(x2)dẋ2

)
. (7.85)

For feature 2: Substitute multiple expressions in coefficients: Let us assume

128

7.3. DifferentialForms

that we had to substitute the expressions

υ(x1, x2) = sin(x2)

θ(ẋ1) = 0

µ(ẋ2) =
1

ẋ2
(7.86)

in the vector

matrix1 =

 υ(x1, x2) + θ(ẋ1) + µ(ẋ2)dx2
υ(x1, x2) + ∂

∂ẋ1
θ(ẋ1)dx2

∂
∂x2
υ(x1, x2) + µ(ẋ2)dẋ2

 . (7.87)

This can easily be accomplished with the method substitute

Listing 7.46: Substitute multiple expressions

> matr ix 1 := Matrix (3 , 1 , {
(1 , 1) = DiffForm (ups i l on (x1D0 , x2D0) + theta (x1D1) + mu(x2D1) ,
MonoDiffForms (x2D0)) ,
(2 , 1) = DiffForm (ups i l on (x1D0 , x2D0) + d i f f (theta (x1D1) , x1D1) ,
MonoDiffForms (x2D0)) ,
(3 , 1) = DiffForm (d i f f (ups i l on (x1D0 , x2D0) , x2D0) + mu(x2D1) ,
MonoDiffForms (x2D1))
}) ;

> s u b s t i t u t i o n s := { ups i l on (x1D0 , x2D0) = s i n (x2D0) , theta (x1D1) = 0 ,
mu(x2D1) = 1/x2D1 } ;
> r e s u l t 1 := sub s t i t u t e (s ub s t i t u t i on s , matr ix 1) :
> r e s u l t 1 ;

and yields the vector

result1 =

 sin(x2) + 1
ẋ2
dx2

sin(x2)dx2
cos(x2) + 1

ẋ2
dẋ2

 . (7.88)

For feature 3: Substitute a monomial differential form: If we want to sub-
stitute a formerly unknown monomial differential form by the written-out p-
differential form, we may do this like in the following: In this example, we
have the operator (in this case an OperSum)

µ = ω̇ ∧+ω ∧ d

dt
(7.89)

with ω ∈ Λ1 (X). Let us assume that we discovered that ω = sin(x1)dx1 +
cos(x2)dx2. In order to substitute ω and ω̇ correctly, we may use

Listing 7.47: Substitute a monomial differential form

> mu := OperSum(OperForm(1 , MonoDiffForm(false , omegaD1 , 1) , 0) , OperForm(1 ,
MonoDiffForm(false , omegaD0 , 1) , 1)) ;
> subs 1 := DiffSum(DiffForm (s i n (x1D0) , MonoDiffForm(x1D0)) ,
DiffForm (cos (x2D0) , MonoDiffForm(x2D0))) ;
> mu := sub s t i t u t e (MonoDiffForm(false , omegaD0 , 1) = subs 1 , mu,
subsDi f fDegree = 1) ;

129

Chapter 7. Introduction of the Developed Toolboxes

which yields

µ = cos(x1)ẋ1dx1 ∧+ sin(x1)dẋ1 ∧ − sin(x2)ẋ2dx2 ∧

+ cos(x2)dẋ2 ∧+ sin(x1)dx1 ∧
d

dt
+ cos(x2)dx2 ∧

d

dt
. (7.90)

7.3.2.4.13 subtract

Visibility: export

Parameters:
summandOne::Or(DiffForm, DiffSum, DiffMatrix, OperForm, OperSum,

OperMatrix)
summandTwo::Or(DiffForm, DiffSum, DiffMatrix, OperForm, OperSum,

OperMatrix)

Return type: Or(DiffForm, DiffSum, DiffMatrix, OperForm, OperSum,
OperMatrix)

Description: This method subtracts summandTwo from summandOne. The
result will automatically be simplified. We can only subtract differential
forms (DiffForms and/or DiffSums) from other differential forms and opera-
tors (OperForm and/or OperSum) from other operators. In case of matrices we
can only subtract DiffMatrices from DiffMatrices and OperMatrices from Oper-
Matrices.
The second parameter summandTwo is optional. If it is missing, the method
will compute the negative of summandOne.

Examples: In this example, we compute ω − θ with

ω =
cos(x2)√

1− ẋ23
dẋ1 + x1dx2

θ = sin(x1)dx1 + dẋ1 (7.91)

with the commands

Listing 7.48: Subtract a DiffSum from a DiffSum

> omega := DiffSum(DiffForm (cos (x2D0) / sq r t (1−(x3D1) ˆ2) , MonoDiffForm(x1D1)) ,
DiffForm (x1D0 , MonoDiffForm(x2D0))) ;
> theta := DiffSum(DiffForm (s i n (x1D0) , MonoDiffForm(x1D0)) , DiffForm (1 ,
MonoDiffForm(x1D1))) ;
> r e s u l t 1 := subt rac t (omega , theta) ;

to get the DiffSum

result1 =

(
cos(x2)√

1− ẋ23
− 1

)
dẋ1 + x1dx2 − sin(x1)dx1. (7.92)

130

7.3. DifferentialForms

7.3.2.4.14 wedge

Visibility: export

Parameters:
argumentOne::Or(DiffForm, DiffSum, DiffMatrix, OperForm, OperSum,

OperMatrix)
argumentTwo::Or(DiffForm, DiffSum, DiffMatrix, OperForm, OperSum,

OperMatrix)

Return type: Or(DiffForm, DiffSum, DiffMatrix, OperForm, OperSum,
OperMatrix)

Description: This method computes the wedge product of the two given
arguments as defined in section 3.3.3. Note that not every combination of
differential forms and operators is defined. Therefore, argumentOne and argu-
mentTwo have to be suitable. In case of differential forms and operators the
allowed combinations are18:

``````````````̀argumentOne

argumentTwo
DiffForm DiffSum OperForm OperSum

DiffForm X X - -
DiffSum X X - -

OperForm X X X X
OperSum X X X X

In case of matrices of differential forms and operators we may apply the wedge
product according to:

``````````````̀argumentOne

argumentTwo
DiffMatrix OperMatrix

DiffMatrix X -
OperMatrix X X

Examples: In the first example, we want to compute

ω ∧ θ, ω ∈ Λ1 (X) , θ ∈ Λ1 (X) (7.93)

with

ω = dx1 + dx2 (7.94)

θ = x1dx1 + x2dẋ2 (7.95)

by using the commands

Listing 7.49: Wedge a DiffSum to a DiffSum

> omega := DiffSum(DiffForm (1 , MonoDiffForm(x1D0)) , DiffForm (1 ,
MonoDiffForm(x2D0))) ;

18X describes a possible combination.

131

Chapter 7. Introduction of the Developed Toolboxes

> theta := DiffSum(DiffForm (x1D0 , MonoDiffForm(x1D0)) , DiffForm (x2D0 ,
MonoDiffForm(x2D1))) ;
> r e s u l t 1 := wedge (omega , theta) ;

This returns the DiffSum

result1 = x2dx1 ∧ dẋ2 + x1dx2 ∧ dx1 + x2dx2 ∧ dẋ2. (7.96)

In the second example, we want to compute

µ ∧ ω, µ ∈ L
(
Λ1 (X) ,Λ2 (X)

)
, ω ∈ Λ1 (X) (7.97)

with

µ = υ(x1, x2)dx1 ∧
d

dt
(7.98)

ω = sin(x1)dx1 + tan(x2)dx2 (7.99)

by using the commands

Listing 7.50: Wedge an OperForm to a DiffSum

> mu := OperForm(ups i l on (x1D0 , x2D0) , MonoDiffForm(x1D0) , 1) ;
> omega := DiffSum(DiffForm (s i n (x1D0) , MonoDiffForm(x1D0)) ,
DiffForm (tan (x2D0) , MonoDiffForm(x2D0))) ;
> r e s u l t 1 := wedge (mu, omega) ;

This returns the DiffSum

result1 = υ(x1, x2) sin(x1)dx1 ∧ dẋ1 +
υ(x1, x2)ẋ2

cos(x2)2
dx1 ∧ dx2

+ υ(x1, x2) tan(x2)dx1 ∧ dẋ2. (7.100)

7.3.3 MinimalbasisDecomp

This module contains the methods needed for the minimal basis decomposition
of OperMatrices. There is only one exported method: decompose (7.3.3.4.1)
which offers the minimal basis decomposition of OperMatrices. All other meth-
ods are local methods which are used for the minimal basis decomposition.
Since we use a specialized data structure19 in this submodule (in order to
increase the computational performance), all OperMatrices entered will auto-
matically be transformed into the internal data type SkewMatrix. The result
will also be automatically transformed back.
Many methods of this submodule work similar to the methods implemented in
the Decompose submodule of the DifferentialDelays-toolbox. Therefore, we will
refer to those methods when appropriate and only emphasize the differences.

19For more information see section 5.4.

132

7.3. DifferentialForms

7.3.3.1 Initialization

7.3.3.1.1 initializeSubPackage

Visibility: local

Parameters: -

Return type: −
Description: This method initializes the three internal data types SkewPoly-
nomial, SkewVector and SkewMatrix. This method will automatically be called
when the DifferentialForms-toolbox is loaded by the with-command of Maple.

7.3.3.2 Constructors

7.3.3.2.1 SkewPolynomial

Visibility: export

Parameters:
coefficients :: seq(Not(list))

Return type: SkewPolynomial

Description: This is the only constructor method in this submodule. It is
used by other methods of this submodule in order to create SkewPolynomials20.
A SkewPolynomial is the technical representation of a polynomial ∈ K

[
d
dt

]
, i.e.

it has the form

p(t) =
N∑
i=0

ci(t)
di

dti
, ci(t) ∈ K, deg(p) = N ∈ N0 (7.101)

The parameter coefficients is a comma separated list of the coefficients of the
desired polynomial, starting with the coefficient to the degree 0 in d

dt
. The

parameter coefficients is optional. If it is missing, the method will create a
polynomial p(t) = 0.

Examples: In this example, we will create three different SkewPolynomials:

poly1 =
d

dt
poly2 = β

poly3 = x2 + (1 + sin(x3))
d2

dt2
+
sin(ẋ1)

cos(ẍ1)

d4

dt4
(7.102)

Listing 7.51: Create SkewPolynomials

> po ly 1 := MinimalbasisDecomp [SkewPolynomial] (0 , 1) ;
> po ly 2 := MinimalbasisDecomp [SkewPolynomial] (beta) ;
> po ly 3 := MinimalbasisDecomp [SkewPolynomial] (x2D0 , 0 , 1+s i n (x3D0) , 0 ,
s i n (x1D1) / cos (x1D2)) ;

20It is not intended to use this method outside the toolbox. The visibility of this method
is set to export due to technical reasons.

133

Chapter 7. Introduction of the Developed Toolboxes

Since all coefficients are checked by the spellingChecker (7.3.2.3.8) of the main
module, calls with invalid coefficients will cause an error:

7.3.3.3 Local methods

7.3.3.3.1 convertToDiffForms

Visibility: local

Parameters:
objectToConvert::Or(SkewMatrix, SkewPolynomial)

Return type: Or(OperForm, OperSum, OperMatrix)

Description: This methods converts the given SkewMatrix or SkewPolynomial
into an OperForm, OperSum or OperMatrix, depending on the structure of the
objectToConvert. This method is used to convert the result of the minimal
basis decomposition back into the usual data structure of the toolbox Differ-
entialForms.

Examples: In this example, we will convert the SkewPolynomial ∈ K
[
d
dt

]
poly1 = x2 + (1 + sin(x3))

d2

dt2
(7.103)

into an OperSum ∈ L (Λp (X) ,Λp (X))

oper1 = x2 ∧+ (1 + sin(x3)) ∧
d2

dt2
(7.104)

by using

Listing 7.52: Convert a SkewPolynomial

> po ly 1 := MinimalbasisDecomp [SkewPolynomial] (x2D0 , 0 , 1+s i n (x3D0)) ;
> oper 1 := MinimalbasisDecomp [convertToDiffForms] (po ly 1) ;

7.3.3.3.2 convertToMinBasis

Visibility: local

Parameters:
objectToConvert::Or(OperForm, OperSum, OperMatrix)

Return type: Or(SkewMatrix, SkewPolynomial)

Description: This methods converts the given OperForm, OperSum or Oper-
Matrix into a SkewPolynomial (in case of OperForms and OperSums) or SkewMa-
trix (in case of OperMatrices). This submodule uses this method to transform

134

7.3. DifferentialForms

the incoming data types into the internal data structure in order to increase
the computational performance. The result will automatically be simplified.
There are restrictions for the structure of the given operators. All operators
in objectToConvert must not contain MonoDiffForms. If they do, an error will
be raised since they cannot be transformed into elements ∈ K

[
d
dt

]
.

Examples: In this example, we will convert the OperSum ∈ L (Λp (X) ,Λp (X))

oper1 = x2 ∧+ (1 + sin(x3)) ∧
d2

dt2
(7.105)

into a SkewPolynomial ∈ K
[
d
dt

]
poly1 = x2 + (1 + sin(x3))

d2

dt2
(7.106)

by using

Listing 7.53: Convert an OperSum

> oper 1 := OperSum(OperForm(x2D0) , OperForm(1 + s i n (x3D0) , 2)) ;
> po ly 1 := MinimalbasisDecomp [convertToMinBasis] (oper 1) ;

7.3.3.3.3 degreeOfVector

Visibility: local

Parameters:
selectedVector :: SkewVector

Return type: extended numeric

Description: This method is similar to method degreeOfVector (7.2.3.1.1) but
works on SkewVectors instead of OreVectors.

7.3.3.3.4 degreeVectorOfMatrix

Visibility: local

Parameters:
testedMatrix::SkewMatrix
Option: rowwise::boolean:=false
Option: columnwise::boolean:=false

Return type: Vector(extended numeric)

Description: This method is similar to method degreeVectorOfMatrix (7.2.3.1.2)
but works on SkewMatrices instead of OreMatrices.

135

Chapter 7. Introduction of the Developed Toolboxes

7.3.3.3.5 findModifiedAlpha

Visibility: local

Parameters:
testedMatrix::SkewMatrix
Option: rowwise::boolean:=false
Option: columnwise::boolean:=false
Option: chooseFirstAlpha::boolean:=false
Option: chooseLowMemoryAlpha::boolean:=false
Option: chooseLowDegreeAlpha::boolean:=false
Option: chooseAlphaByUser::boolean:=false
Option: debugMode::boolean:=false

Return type: SkewVector

Description: This method is similar to method findModifiedAlpha (7.2.3.1.3)
but works on SkewMatrices instead of OreMatrices.

7.3.3.3.6 indexOfFirstEntryWithDegreeZero

Visibility: local

Parameters:
skewPolynomialVector::SkewVector

Return type: integer

Description: This method is similar to method indexOfFirstEntryWithDe-
greeZero (7.2.3.1.4) but works on SkewVectors instead of OreVectors.

7.3.3.3.7 leadingCoeffMatrix

Visibility: local

Parameters:
testedMatrix::SkewMatrix
Option: rowwise::boolean:=false
Option: columnwise::boolean:=false

Return type: Matrix(Not(list))

Description: This method is similar to method leadingCoeffMatrix (7.2.3.1.5)
but works on SkewMatrices instead of OreMatrices.

7.3.3.3.8 mapletForCustomAlpha

Visibility: local

Parameters:
alphas :: list (Vector(Not(list)))
degreeVector::Vector(extended numeric)

Return type: integer

136

7.3. DifferentialForms

Description: This method is similar to method mapletForCustomAlpha (7.2.3.1.6)
but expects usual Maple functions as entries of the vectors alphas instead of
LeftFractions.

7.3.3.3.9 skewDerivative

Visibility: local

Parameters:
argumentOne::SkewPolynomial

Return type: SkewPolynomial

Description: This method differentiates the given SkewPolynomial argument-
One with respect to t. I.e. in case of an arbitrary skew polynomial p(t)
∈ K

[
d
dt

]
, ci(t) ∈ K, deg(p) = N ∈ N0 it returns

d

dt
(p(t)) =

d

dt

(
N∑
i=0

ci(t)
di

dti

)

=
d

dt
(c0(t)) +

N∑
i=1

ci−1(t) +
d

dt
(ci(t))

di

dti

+ cN(t)
dN+1

dtN+1
(7.107)

The result will automatically be simplified by the method skewSimplifier (7.3.3.3.13).

7.3.3.3.10 skewIdentityMatrix

Visibility: local

Parameters:
dimension::integer

Return type: SkewMatrix

Description: This method returns a SkewMatrix in form of an identity matrix
with the given dimension dimension.

Examples: For instance, we may easily create an identity matrix ∈ K
[
d
dt

]3×3
with the command

Listing 7.54: Create a skew identity matrix

> matr ix 1 := MinimalbasisDecomp [skewIdent i tyMatr ix] (3) ;

which will create the matrix

matrix1 =

 1 0 0
0 1 0
0 0 1

 . (7.108)

137

Chapter 7. Introduction of the Developed Toolboxes

7.3.3.3.11 skewMultiply

Visibility: local

Parameters:
argumentOne::Or(SkewPolynomial, SkewMatrix)
argumentTwo::Or(SkewPolynomial, SkewMatrix)

Return type: Or(SkewPolynomial, SkewMatrix)

Description: This method computes the product of two SkewPolynomials or
two SkewMatrices. Note that the product of two SkewPolynomials p(t), q(t)
∈ K

[
d
dt

]
, deg(p) = N ∈ N0, deg(q) = M ∈ N0 with the coefficients pi(t), qj(t)

∈ K is given by

p(t) · q(t) =
N∑
i=0

pi(t)
di

dti
·
M∑
j=0

pj(t)
dj

dtj

=
N∑
i=0

pi(t) ·
di

dti

(
M∑
j=0

pj(t)
dj

dtj

)
︸ ︷︷ ︸

as defined in (7.107)

. (7.109)

Examples: In this example, we want to compute p(t) · q(t) with

p(t) = x1 +
d

dt

q(t) = ẋ2 +
d

dt
+ sin(ẋ3)

d2

dt2
. (7.110)

This can be done by the commands

Listing 7.55: Multiply two SkewPolynomials

> p := MinimalbasisDecomp [SkewPolynomial] (x1D0 , 1) ;
> q := MinimalbasisDecomp [SkewPolynomial] (x2D1 , 1 , s i n (x3D1)) ;
> r e s u l t 1 := MinimalbasisDecomp [skewMultiply] (p , q) ;

and yields the result

result1 = x1ẋ2 + ẍ2 + (x1 + ẋ2)
d

dt

+ (x1 sin(ẋ3) + 1 + cos(ẋ3)ẍ3)
d2

dt2
+ sin(ẋ3)

d3

dt3
. (7.111)

7.3.3.3.12 skewPlus

Visibility: local

Parameters:
argumentOne::Or(SkewPolynomial, SkewMatrix)
argumentTwo::Or(SkewPolynomial, SkewMatrix)

138

7.3. DifferentialForms

Return type: Or(SkewPolynomial, SkewMatrix)

Description: This method computes the sum of two SkewPolynomials or two
SkewMatrices.

7.3.3.3.13 skewSimplifier

Visibility: local

Parameters:
theArgument::Or(SkewPolynomial, SkewMatrix)
Option: simplifyCoefficients :: boolean:=true
Option: eraseZeros :: boolean:=true

Return type: Or(SkewPolynomial, SkewMatrix)

Description: This method is the equivalent to the Maple-command simplify.
It simplifies the given parameter theArgument (which can be of type SkewPoly-
nomial or SkewMatrix) according to certain rules.
The features of this method are:

1.) simplifying the coefficients (if enabled)

2.) erasing dispensable leading zeros (if enabled)

1.) This feature is triggered by the option simplifyCoefficients. If this option is
set to true, the method will simplify all coefficients with the Maple-command
simplify. This is important since it is possible to have mathematical terms as
coefficients which are actually zero but without having Maple recognizing that.
On the other hand, the Maple-command simplify needs a lot of computation
time. Therefore, it can make sense to omit the simplification of the coefficients
during computations as long as we are aware of the fact that some of the co-
efficients might be zero.

2.) This feature erases all leading zeros from the SkewPolynomial, i.e. all
coefficients ci of the SkewPolynomial p(t) ∈ K [δ] which satisfy i > deg(p). This
is necessary due to the fact that the data type is implemented as list with the
size equal to the degree of the polynomial plus 1.

7.3.3.3.14 skewSubtract

Visibility: local

Parameters:
argumentOne::Or(SkewPolynomial, SkewMatrix)
argumentTwo::Or(SkewPolynomial, SkewMatrix)

Return type: Or(SkewPolynomial, SkewMatrix)

Description: This method subtracts argumentTwo from argumentOne. The
result will automatically be simplified. We can only subtract SkewPolynomials

139

Chapter 7. Introduction of the Developed Toolboxes

from other SkewPolynomials and SkewMatrices from other SkewMatrices.
The second parameter argumentTwo is optional. If only the parameter argu-
mentOne is given, the method will compute the negative of argumentOne.

Examples: In this example, we want to compute p(t)− q(t) with

p(t) = 1 + x1
d

dt
+ sin(x3)

d3

dt3

q(t) = ẋ2 +
d

dt
+ tan(ẋ3)

d2

dt2
(7.112)

This can easily be done by using

Listing 7.56: Subtract two SkewPolynomials

> p := MinimalbasisDecomp [SkewPolynomial] (1 , x1D0 , 0 , s i n (x3D0)) ;
> q := MinimalbasisDecomp [SkewPolynomial] (x2D1 , 1 , tan (x3D1)) ;
> d i f f e r e n c e 1 := MinimalbasisDecomp [skewSubtract] (p , q) ;

This yields the result

difference1 = 1− ẋ2 + (x1 − 1)
d

dt
− tan(ẋ3)

d2

dt2
+ sin(x3)

d3

dt3
. (7.113)

7.3.3.3.15 switchColumns

Visibility: local

Parameters:
matrixToChange::SkewMatrix
indexOne::integer
indexTwo::integer

Return type: SkewMatrix

Description: This method is similar to method switchColumns (7.2.4.1.4) but
works on SkewMatrices instead of OreMatrices.

7.3.3.3.16 switchRows

Visibility: local

Parameters:
matrixToChange::SkewMatrix
indexOne::integer
indexTwo::integer

Return type: SkewMatrix

Description: This method is similar to method switchRows (7.2.4.1.5) but
works on SkewMatrices instead of OreMatrices.

140

7.3. DifferentialForms

7.3.3.4 Exported methods

7.3.3.4.1 decompose

Visibility: export

Parameters:
selectedMatrix ::OperMatrix
Option: rowwise::boolean:=false
Option: columnwise::boolean:=false
Option: chooseFirstAlpha::boolean:=false
Option: chooseLowMemoryAlpha::boolean:=false
Option: chooseLowDegreeAlpha::boolean:=false
Option: chooseAlphaByUser::boolean:=false
Option: returnInverseOperator::boolean:=false
Option: debugMode::boolean:=false

Return type: SkewMatrix, SkewMatrix

Description: This method is similar to method decompose (7.2.3.2.1) but
works on OperMatrices instead of OreMatrices. The given OperMatrix selected-
Matrix will automatically be transformed into a SkewMatrix and the resulting
matrices will automatically be transformed back into OperMatrices once the
decomposition is finished.

141

Chapter 7. Introduction of the Developed Toolboxes

142

Chapter 8

Usage of the Toolboxes on the
Basis of a Few Examples

In this chapter, the usage of the toolboxes will be illustrated by computing the
flat output resp. the defining operators for a few systems. The corresponding
worksheets and packages can be found in the appendix.

8.1 Linear Time-Varying System Without De-

lays

In the first example, we want to compute the defining matrices of a linear
time-varying system from [24] in order to show whether the system is flat
or not. This example can be found in the worksheet Compute flat output
(linear time-varying system) - Example.mw. The system matrices for the system
representation (3.32) are

A =

 d
dt

−1 0
2 · sin(µt) −6 + d

dt
0

0 0 −2 · cos(µt) + d
dt

 , B =

 0 0
1 1

2

0 1

 (8.1)

To describe the system in Maple, we can use the constructor OrePolynomial of
the toolbox DifferentialDelays. The other constructors will not be used in this
example since we do not have any delays in the system.

Listing 8.1: Initializing the system matrices

> A := Matrix (3 , 3 , {
(1 , 1) = OrePolynomial (0 , 1) ,
(1 , 2) = OrePolynomial(−1) ,
(1 , 3) = OrePolynomial (0) ,
(2 , 1) = OrePolynomial (2 ∗ s i n (mu ∗ tD0T0)) ,
(2 , 2) = OrePolynomial(−6 , 1) ,
(2 , 3) = OrePolynomial (0) ,
(3 , 1) = OrePolynomial (0) ,
(3 , 2) = OrePolynomial (0) ,
(3 , 3) = OrePolynomial(−2 ∗ cos (mu ∗ tD0T0) , 1)
}) ;

143

Chapter 8. Usage of the Toolboxes on the Basis of a Few
Examples

> B := Matrix (3 , 2 , {
(1 , 1) = OrePolynomial (0) ,
(1 , 2) = OrePolynomial (0) ,
(2 , 1) = OrePolynomial (1) ,
(2 , 2) = OrePolynomial (1/2) ,
(3 , 1) = OrePolynomial (0) ,
(3 , 2) = OrePolynomial (1)
}) ;

Note that (as told in section 6.1) tD0T0 is used to represent t. The toolbox
will automatically substitute all differentiations of t.
Now we have to check whether the preconditions

i) the system matrix B is hyper-regular

ii) the rows of (A,B) are linearly independent

are fulfilled. To ensure i), we use the row-wise minimal basis decomposition of
B from (3.34):

Listing 8.2: Minimal basis decomposition of B

> M tilde , remainderOfB := Decompose [decompose] (B, rowwise = true ,
chooseFirs tAlpha = true) ;

By analyzing the structure of remainderOfB, we can evaluate whether B is
hyper-regular, referring to Definition 5. In this case the result is

To convert the result into a more readable form, we can use the two methods
orePrinting and oreLatexPrinting since we have matrices of type OreMatrix. This
yields

M̃ =

 0 1 −1/2
0 0 1
1 0 0

remainderOfB =

 1 0
0 1
0 0

 . (8.2)

So we can easily see that B is hyper-regular because of the structure of re-
mainderOfB.
To ensure precondition ii), we simply determine the form of (A,B):

Listing 8.3: Construct A B

> A B := Matrix (3 , 5) :
A B [. . , 1 . . 3] := copy (A) :
A B [. . , 4 . . 5] := copy (B) :

144

8.1. Linear Time-Varying System Without Delays

The resulting structure of the OreMatrix A B shows that the rows are linear
independent since there is no possible way to create a row filled with zeros by
using a linear combination of the rows of A B:

A B =

 d
dt

−1 0 0 0
2 · sin(µt) −6 + d

dt
0 1 1/2

0 0 −2 · cos(µt) + d
dt

0 1

 (8.3)

Since we have computed M̃ in (8.2), we may also compute F ∈ K
[
d
dt

]1×3
using

(3.37):

Listing 8.4: Compute F

> F := oreMult ip ly (M ti lde , A) [3 . . 3 , . .] ;

This yields the result

F =
(

d
dt
−1 0

)
. (8.4)

According to Theorem 9, the linear system is flat if and only if F is hyper-
regular, so we will use the minimal basis decomposition to evaluate the hyper-
regularity of F :

Listing 8.5: Minimal basis decomposition of F

> remainderOfF , Q t i lde , Q t i l d e i n v e r s e := Decompose [decompose] (F ,
columnwise = true , chooseFirs tAlpha = true , r e turnInver seOperator = true) ;

Since the method decompose allows us to compute and return additionally the
inverse operator matrix, we do this in order to omit the second minimal basis
decomposition (3.101). This yields the three matrices

remainderOfF =
(

1 0 0
)

Q̃ =

 0 1 0
−1 d

dt
0

0 0 1

Q̃−1 =

 d
dt
−1 0

1 0 0
0 0 1

 . (8.5)

Because of the structure of remainderOfF, we can be sure that F is hyper-
regular and therefore the linear system is flat referring to Theorem 9. Finally,
we want to compute the defining operators P , Q and R from Theorem 10.

Listing 8.6: Compute the defining operators

> P := Q t i l d e i n v e r s e [2 . . 3 , . .] ;
> Q := Q t i l d e [. . , 2 . . 3] ;
> R := oreMult ip ly (M ti lde , o reMult ip ly (A, Q)) [1 . . 2 , . .] ;

This leads to the matrices

145

Chapter 8. Usage of the Toolboxes on the Basis of a Few
Examples

P =

(
1 0 0
0 0 1

)

Q =

 1 0
d
dt

0
0 1

R =

(
2 · sin(µt)− 6 · d

dt
+ d2

dt2
cos(µt)− 1/2 · d

dt

0 −2 · cos(µt) + d
dt

)
. (8.6)

8.2 Linear Time-Varying System With Delays

In the next example, we want to compute the defining operators and the
operator π of a linear time-varying system with delays from [4]. This example
can be found in the worksheet Compute flat output (linear system with delays) -
Example 1.mw.
The system matrices for the system representation (3.32) are

A =

(
d
dt
−s(t)δ + s(t)δ2

0 d
dt

)
, B =

(
0
δ

)
(8.7)

In contrast to the example in section 8.1, we additionally have to use the
constructor DelayPolynomial since we encounter delays in this example. Since
all denominators of occurring left fractions in this example are of degree 0 in
δ, we do not have to initialize them as LeftFractions explicitly.

Listing 8.7: Initializing the system matrices

> A := Matrix (2 , 2 , {
(1 , 1) = OrePolynomial (0 , 1) ,
(1 , 2) = OrePolynomial (DelayPolynomial (0 , −sD0T0 , sD0T0)) ,
(2 , 1) = OrePolynomial (0) ,
(2 , 2) = OrePolynomial (0 , 1)
}) ;

> B := Matrix (2 , 1 , {
(1 , 1) = OrePolynomial (0) ,
(2 , 1) = OrePolynomial (DelayPolynomial (0 , 1))
}) ;

At first, we will check for the preconditions:

146

8.2. Linear Time-Varying System With Delays

i) the system matrix B is K (δ)
[
d
dt

]
-hyper-regular

ii) the rows of (A,B) are K (δ)
[
d
dt

]
-linearly independent

Again, to ensure i), we use the row-wise minimal basis decomposition of B
from (3.34):

Listing 8.8: Minimal basis decomposition of B

> M tilde , remainderOfB := Decompose [decompose] (B, rowwise = true ,
chooseFirs tAlpha = true) ;

This yields the result

This corresponds to the matrices1

M̃ =

(
0 δ−1

1 0

)
remainderOfB =

(
1
0

)
(8.8)

Obviously, remainderOfB satisfies Definition 5 and therefore B is hyper-regular.
To ensure precondition ii), we simply determine the form of (A,B):

Listing 8.9: Construct A B

> A B := Matrix (2 , 3) :
A B [. . , 1 . . 2] := copy (A) :
A B [. . , 3] := copy (B) :

The resulting structure of the OreMatrix A B shows that the rows are linear
independent since there is no possible way to create a row filled with zeros by
using a linear combination of the rows of A B:

A B =

(
d
dt
−s(t)δ + s(t)δ2 0

0 d
dt

δ

)
(8.9)

As a next step, we compute the matrix F ∈ K
[
d
dt

]1×2
using (3.37)

Listing 8.10: Compute F

> F := Matrix (oreMult ip ly (M ti lde , A) [2 , . .]) ;

This yields

F =
(

d
dt
−s(t)δ + s(t)δ2

)
. (8.10)

Referring to Theorem 9, we will now evaluate whether F is hyper-regular using
the minimal basis decomposition:

1We may use the method oreLatexPrinting to convert the matrices into LaTeX code.

147

Chapter 8. Usage of the Toolboxes on the Basis of a Few
Examples

Listing 8.11: Minimal basis decomposition of F

> remainderOfF , Q t i lde , Q t i l d e i n v e r s e := Decompose [decompose] (F ,
columnwise = true , chooseFirs tAlpha = true , r e turnInver seOperator = true) ;

Like in example 8.1, we use the option returnInverseOperator to force the
method to additionally compute the inverse operator matrix Q̃−1. This yields
the three matrices

remainderOfF =
(

1 0
)

Q̃ =

(
0 1

(−s(t)δ + s(t)δ2)
−1

(s(t)δ − s(t)δ2)−1 · d
dt

)
Q̃−1 =

(
d
dt
−s(t)δ + s(t)δ2

1 0

)
(8.11)

Because of the structure of remainderOfF, we can be sure that F is hyper-
regular and therefore the linear system is flat referring to Theorem 9. Moreover,
we want to compute the defining operators P , Q and R from Definition 16.

Listing 8.12: Compute the defining operators

> P bar := Matrix (Q t i l d e i n v e r s e [2 , . .]) ;
> Q bar := Matrix (Q t i l d e [. . , 2]) ;
> R bar := Matrix (oreMult ip ly (M ti lde , o reMult ip ly (A, Q bar)) [1 , . .]) ;

This leads to the matrices

P =
(

1 0
)

Q =

(
1

(s(t)δ − s(t)δ2)−1 · d
dt

)
R =

((
s(t)2

ṡ(t)
δ2 − s(t)2

ṡ(t)
δ3
)−1
· d
dt

+ (s(t)δ2 − s(t)δ3)−1 · d2
dt2

)
(8.12)

Finally, we have to compute the operator π which eliminates all predictions in
the defining operators P , Q and R:

Listing 8.13: Compute the operator π

> pi := P iF l a tUt i l s [computePi] (P bar , Q bar , R bar) ;

148

8.3. Nonlinear System - Non-Holonomic Car

This yields the DelayPolynomial

π =
s(t)2

ṡ(t)
δ2 +

−s(t)2

ṡ(t)
δ3 (8.13)

We may verify the computed π and simultaneously compute the transformed
matrices P , Q and R by using the verify method:

Listing 8.14: Verify π and compute the transformed matrices

> returnValue , P := P iF l a tUt i l s [v e r i f yP i] (pi , P bar , showTransformedMatrix =
true) ;
> returnValue , Q := P iF l a tUt i l s [v e r i f yP i] (pi , Q bar , showTransformedMatrix =
true) ;
> returnValue , R := P iF l a tUt i l s [v e r i f yP i] (pi , R bar , showTransformedMatrix =
true) ;

In all three cases, returnValue is true indicating that the operator π is valid.
Furthermore, we obtain the three matrices:

P =
(

s(t)2

ṡ(t)
δ2 − −s(t)

2

ṡ(t)
δ3 0

)
Q =

(
s(t)2

ṡ(t)
δ2 − −s(t)

2

ṡ(t)
δ3

s(t)2

ṡ(t)s(t−τ)δ ·
d
dt

)
R =

(
− d
dt

+ s(t)
ṡ(t)
· d2
dt2

)
(8.14)

Remark: A second (and more complex) example from [4] has been computed
in the worksheet Compute flat output (linear system with delays) - Example 2.mw.
You can find this commented worksheet in the appendix. Since this example
has the same computation steps as the example above, we omit an extra section
for this example in this chapter.

8.3 Nonlinear System - Non-Holonomic Car

In this example, we will analyze the system of the so called non-holonomic car
(see [21] for more details). The system matrix of the variational system (3.92)
is given by

PF =
(

sin(x3) ∧ d
dt
− cos(x3) ∧ d

dt
ẋ1 · cos(x3) + ẋ2 · sin(x3)∧

)
. (8.15)

Remark: To shorten the expressions, we use the notation xi instead of xi(t)
for the states in this example.
To initialize this matrix PF ∈ L (Λp (X) ,Λp (X)), we simply use the constructor
OperForm:

Listing 8.15: Initialize the system matrix

> P F := Matrix (1 , 3 , {
(1 , 1) = OperForm(s i n (x3D0) , 1) ,
(1 , 2) = OperForm(−cos (x3D0) , 1) ,
(1 , 3) = OperForm(x1D1∗ cos (x3D0)+x2D1∗ s i n (x3D0))
}) ;

149

Chapter 8. Usage of the Toolboxes on the Basis of a Few
Examples

Referring to Theorem 12, we have to determine whether PF is hyper-regular
and compute the matrix Q̃ which transforms PF into Smith-Jacobson-form.
We can check this by using the method decompose of the submodule Minimal-
basisDecomp:

Listing 8.16: Minimal basis decomposition of PF

> remainderOfP F , Q t i l d e := MinimalbasisDecomp [decompose] (P F , columnwise =
true , chooseAlphaByUser = true) ;

This yields

which corresponds to the matrices2

remainderOfP F =
(

1∧ 0∧ 0∧
)

(8.16)

and

Q̃ =

 0∧ 0∧ 1∧
0∧ 1∧ 0∧
Γ∧ cos(x3) · Γ ∧ d

dt
− sin(x3) · Γ ∧ d

dt

 (8.17)

with

Γ =
1

ẋ1 · cos(x3) + ẋ2 · sin(x3)
. (8.18)

Then, we compute Q like in (3.100) and compute the operator matrix which
transforms Q into Smith-Jacobson-form:

Listing 8.17: Minimal basis decomposition of Q

> Q := Q t i l d e [. . , 2 . . 3] ;
> P t i l d e , remainderOfQ := MinimalbasisDecomp [decompose] (Q, rowwise = true ,
chooseFirs tAlpha = true) ;

This yields the matrices

remainderOfP Q =

 1∧ 0∧
0∧ 1∧
0∧ 0∧

 (8.19)

2To convert the result into a more readable form we may use the two methods printing
and latexPrinting.

150

8.3. Nonlinear System - Non-Holonomic Car

and

P̃ =

 0∧ 1∧ 0∧
1∧ 0∧ 0∧

sin(x3) · Γ ∧ d
dt
− cos(x3) ∧ d

dt
1∧

 (8.20)

with

Γ =
1

ẋ1 · cos(x3) + ẋ2 · sin(x3)
. (8.21)

Since P is given by the first two rows of P̃ (3.102), we may compute P by

Listing 8.18: Compute P

> P := P t i l d e [1 . . 2 , . .] ;

which yields the Maple output

In order to compute the flat output of the variational system ω from (3.102),

we need to construct a vector dx =
(
dx1 dx2 dx3

)T
. The toolbox Differ-

entialForms offers a shortcut to instantiate this vector:

Listing 8.19: Initialize dx

> dx := createDi f fFormVector (x1D0 , x2D0 , x3D0 , extDer ivat iveDegree = 1) ;

In a second step, we compute ω = Pdx by using the method wedge:

Listing 8.20: Compute ω

> omega := wedge (P, dx) :

This yields the vector

ω =

(
dx2
dx1

)
. (8.22)

Now we are able to determine whether ω is integrable by computing the exterior
derivative (see (3.105)):

Listing 8.21: Exterior derivative of ω

> ex tDer i va t i v e (omega) ;

This yields the vector
(

0 0
)T

, thus ω is integrable and a flat output of
the nonlinear system is given by the integration of ω. We use the method
integration in order to compute the flat output y:

Listing 8.22: Integrate ω

> y := i n t e g r a t i o n (omega) :

This finally yields the flat output of the nonlinear system

y =

(
x2 + C1
x1 + C2

)
, C1, C2 ∈ R (8.23)

151

Chapter 8. Usage of the Toolboxes on the Basis of a Few
Examples

8.4 Nonlinear System - Sine Example

In this example, we will analyze the so called sine example (see [3] for more
details). The system matrix of the variational system (3.92) is given by

PF =

(
−

cos(
ẋ1
ẋ2

)

ẋ2
∧ d

dt

ẋ1·cos(
ẋ1
ẋ2

)

ẋ22
∧ d

dt
1 ∧ d

dt

)
. (8.24)

Remark: To shorten the expressions, we use the notation xi instead of xi(t)
for the states in this example.
In Maple we simply write

Listing 8.23: Initialize the system matrix

> P F := Matrix (1 , 3 , {
(1 , 1) = OperForm(−cos (x1D1/x2D1) /x2D1 , 1) ,
(1 , 2) = OperForm(x1D1∗ cos (x1D1/x2D1) /x2D1ˆ2 , 1) ,
(1 , 3) = OperForm(1 , 1)
}) ;

in order to initialize the system matrix PF . Referring to Theorem 13, we
have to evaluate whether PF is hyper-regular. This can be done by a minimal
basis decomposition of PF and will give us the operator matrix Q̃. By using
the shortcut mentioned in (3.45) – (3.46), we simultaneously compute Q̃−1

in order to compute P directly without the need of a second minimal basis
decomposition. This can be done by using a special parameter of the method
decompose:

Listing 8.24: Minimal basis decomposition of PF

> remainderOfP F , Q t i lde , Q t i l d e i n v e r s e :=
MinimalbasisDecomp [decompose] (P F , columnwise = true , r e turnInver seOperator =
true , chooseAlphaByUser = true) ;

Since the matrix remainderOfP F has the structure

remainderOfP F =
(

1∧ 0∧ 0∧
)
, (8.25)

we can be sure that PF is hyper-regular and therefore P may be computed
referring to Theorem 13:

Listing 8.25: Compute P

> P := Q t i l d e i n v e r s e [2 . . 3 , . .] ;

This yields the matrix

P =

(
− ẋ2
ẋ1
∧ 1∧ 0∧

0∧ 0∧ 1∧

)
. (8.26)

In order to compute the flat output of the variational system ω from (3.102),

we need to construct a vector dx =
(
dx1 dx2 dx3

)T
. The toolbox Differ-

entialForms offers a shortcut to instantiate this vector:

152

8.4. Nonlinear System - Sine Example

Listing 8.26: Initialize dx

> dx := createDi f fFormVector (x1D0 , x2D0 , x3D0 , extDer ivat iveDegree = 1) ;

In a second step, we compute ω = Pdx by using the method wedge:

Listing 8.27: Compute ω

> omega := wedge (P, dx) :

This yields the Maple result

This corresponds to the vector

ω =

(
− ẋ2
ẋ1
dx1 + dx2
dx3

)
. (8.27)

Furthermore, we have to check whether (3.105) is satisfied. We may do this
by using the method extDerivative:

Listing 8.28: Exterior derivative of ω

> ex tDer i va t i v e (omega) ;

Examining the result, we notice that ω is not directly integrable:

d(ω) =

(ẋ2
ẋ21
dẋ1 ∧ dx1 − 1

ẋ1
ẋ2 ∧ dx1

0

)
6= 0 (8.28)

I.e. we have to find an operator µ ∈ L (Λ1 (X) ,Λ2 (X))
m×m

and an unimodular

matrix M ∈ K
[
d
dt

]m×m
which satisfy Theorem 14. At first, we construct a

µ ∈ L (Λ1 (X) ,Λ2 (X))
m×m

which satisfies

dω = µω. (8.29)

But before that, we substitute

ẋ1 = arcsin(ẋ3) · ẋ2 (8.30)

which is given by the system equation of the nonlinear system into ω using the
method substitute of this toolbox:

Listing 8.29: Substitute

> omega := sub s t i t u t e (x1D1 = a r c s i n (x3D1) ∗ x2D1 , omega) ;

Since we need to find a µ which satisfies (8.29), we will take a look at dω after
the substitution (8.30) by using extDerivative

153

Chapter 8. Usage of the Toolboxes on the Basis of a Few
Examples

Listing 8.30: Exterior derivative of ω

> ex tDer i va t i v e (omega) ;

which yields

dω =

(
1

arcsin(ẋ3)2
√

1−ẋ23
dẋ3 ∧ dx1

0

)
. (8.31)

Therefore, a suitable operator µ may be created with the structure

µ =

(
0∧ Ψ0 ∧+Ψ1 ∧ d

dt

0∧ 0∧

)
(8.32)

with

Ψi = µi,1(x, ẋ)dx1 + µi,2(x, ẋ)dx2 + µi,3(x, ẋ)dx3

+ µi,4(x, ẋ)dẋ1 + µi,5(x, ẋ)dẋ2 + µi,6(x, ẋ)dẋ3 (8.33)

with (x, ẋ) = (x1, ẋ1, x2, ẋ2, x3, ẋ3). We are able to create this µ using the
constructors OperForm, OperSum and MonoDiffForm:

Listing 8.31: Initialize µ

> coo rd ina t e s := x1D0 , x1D1 , x2D0 , x2D1 , x3D0 , x3D1 ;
> mu := Matrix (2 , 2 , {
(1 , 1) = OperForm(0) ,
(1 , 2) = OperSum(
OperForm(mu01(coo rd ina t e s) , MonoDiffForm(x1D0)) ,
OperForm(mu02(coo rd ina t e s) , MonoDiffForm(x2D0)) ,
OperForm(mu03(coo rd ina t e s) , MonoDiffForm(x3D0)) ,
OperForm(mu04(coo rd ina t e s) , MonoDiffForm(x1D1)) ,
OperForm(mu05(coo rd ina t e s) , MonoDiffForm(x2D1)) ,
OperForm(mu06(coo rd ina t e s) , MonoDiffForm(x3D1)) ,
OperForm(mu11(coo rd ina t e s) , MonoDiffForm(x1D0) , 1) ,
OperForm(mu12(coo rd ina t e s) , MonoDiffForm(x2D0) , 1) ,
OperForm(mu13(coo rd ina t e s) , MonoDiffForm(x3D0) , 1) ,
OperForm(mu14(coo rd ina t e s) , MonoDiffForm(x1D1) , 1) ,
OperForm(mu15(coo rd ina t e s) , MonoDiffForm(x2D1) , 1) ,
OperForm(mu16(coo rd ina t e s) , MonoDiffForm(x3D1) , 1)
) ,
(2 , 1) = OperForm(0) ,
(2 , 2) = OperForm(0)
}) ;

Now we are able to compute µω, i.e. the right side of (8.29):

Listing 8.32: Compute µω

> mu omega := wedge (mu, omega) ;

Solving the actual equation can be done by the method solver of this toolbox:

Listing 8.33: Solve the equation

> r e s u l t := s o l v e r (d omega = mu omega) ;

The method will return

154

8.4. Nonlinear System - Sine Example

Hence, we have

µ0,1(x, ẋ) = 0

µ0,2(x, ẋ) = 0

µ0,4(x, ẋ) = 0

µ0,5(x, ẋ) = 0

µ1,1(x, ẋ) = − 1

arcsin(ẋ3)2
√

1− ẋ23
µ1,2(x, ẋ) = 0

µ1,3(x, ẋ) = µ0,6(x, ẋ)

µ1,4(x, ẋ) = 0

µ1,5(x, ẋ) = 0 (8.34)

We can easily substitute this equation system into µ using the substitute-
method of DifferentialForms:

Listing 8.34: Substitute the result into µ

> mu := sub s t i t u t e (r e su l t , mu) ;

According to Theorem 14, the operator µ must also satisfy the assertion

d(µ) = µµ. (8.35)

Therefore, we compute the two sides of equation (8.35):

Listing 8.35: Compute left and right side of equation

> dmu := extDer i va t i v e (mu) :
> mu square := wedge (mu, mu) ;

Again, we let the toolbox solve the equation system:

Listing 8.36: Solve the equation

> r e s u l t := s o l v e r (dmu = mu square) ;

155

Chapter 8. Usage of the Toolboxes on the Basis of a Few
Examples

We obtain the Maple-result:

Since the used Maple version is unable to solve the partial differential equation
systems with more complex integrals, we have to substitute those using the
fictional functions G(x3, ẋ3) and H(x3):

G(x3, ẋ3) =

∫ ∫
F1(x3, ẋ3)dẋ3dẋ3

H(x3) =

∫
F2(x3)dx3 (8.36)

In order to substitute all occurrences of G(x3, ẋ3) and H(x3) into the result of
equation (8.35), we use default Maple functionality:

Listing 8.37: Substitute with G and H

> r e s u l t := subs (Int (Int (d i f f (F1 (x3D0 , x3D1) , x3D0 , x3D0) , x3D1) , x3D1) =
D[1 , 1] (G) (x3D0 , x3D1) , r e s u l t) :
> r e s u l t := subs (Int (d i f f (F1 (x3D0 , x3D1) , x3D0) , x3D1) = D[1 , 2] (G) (x3D0 ,
x3D1) , r e s u l t) :
> r e s u l t := subs (F1 (x3D0 , x3D1) = D[2 , 2] (G) (x3D0 , x3D1) , r e s u l t) :
> r e s u l t := subs (F2 (x3D0) = D[1] (H) (x3D0) , r e s u l t) ;

Afterwards, we may substitute the final result into µ:

Listing 8.38: Substitute the result into µ

> mu := sub s t i t u t e (r e su l t , mu) ;

This leads to the operator

µ =

(
0∧ Ψ0 ∧+Ψ1 ∧ d

dt

0∧ 0∧

)
(8.37)

with

Ψ0 = µ0,3(x, ẋ)dx3 + µ0,6(x, ẋ)dẋ3

Ψ1 = − 1

arcsin(ẋ3)2
√

1− ẋ23
dx1 + µ0,6(x, ẋ)dx3 + µ1,6(x, ẋ)dẋ3 (8.38)

Next, referring to Theorem 14, we have to construct an unimodular matrix

M ∈ K
[
d
dt

]2×2
which satisfies

d (M) = −Mµ. (8.39)

156

8.4. Nonlinear System - Sine Example

Because of the structure of the chosen µ, we use the following approach for an
unimodular M :

M =

(
1∧ M0(x, ẋ) ∧+M1(x, ẋ) ∧ d

dt

0∧ 1∧

)
(8.40)

with (x, ẋ) = (x1, ẋ1, x2, ẋ2, x3, ẋ3). To initialize this matrix in Maple we use3

Listing 8.39: Initialize M

> M := Matrix (2 , 2 , {
(1 , 1) = OperForm(1) ,
(1 , 2) = OperSum(OperForm(M0(coo rd ina t e s)) , OperForm(M1(coo rd ina t e s) , 1)) ,
(2 , 1) = OperForm(0) ,
(2 , 2) = OperForm(1)
}) ;

Then, we compute d (M) and Mµ:

Listing 8.40: Compute d (M) and Mµ

> d M := extDer i va t i v e (M) ;
> M mu := wedge (M,mu) ;

Afterwards, we may solve the equation (8.39) using the already known method
solver:

Listing 8.41: Solve the equation

> r e s u l t := s o l v e r (d M = subt rac t (M mu)) ;

We obtain the result:

Again, we encounter larger integrals, which have to be substituted. Therefore,
we use the fictional function

K(x3, ẋ3) =

∫
F4(x3, ẋ3)dẋ3 (8.41)

to substitute into the result:

Listing 8.42: Substitute with K

> r e s u l t := subs (Int (d i f f (F4 (x3D0 , x3D1) ,x3D1 , x3D0) ,x3D1) =
D[2 , 1] (K) (x3D0 , x3D1) , r e s u l t) :
> r e s u l t := subs (d i f f (F4 (x3D0 , x3D1) ,x3D1) = D[2 , 2] (K) (x3D0 , x3D1) , r e s u l t) :
> r e s u l t := subs (F4 (x3D0 , x3D1) = D[2] (K) (x3D0 , x3D1) , r e s u l t) ;

3Note that the variable coordinates has been assigned before in listing 8.31 in order to
construct µ.

157

Chapter 8. Usage of the Toolboxes on the Basis of a Few
Examples

In order to gain the final µ and M , we simply substitute the result into them:

Listing 8.43: Substitute into µ and M

> mu := sub s t i t u t e (r e su l t , mu) ;
> M := sub s t i t u t e (r e su l t , M) ;

Finally, we compute the integrable4 matrix Mω:

Listing 8.44: Compute Mω

> M omega := wedge (M, omega) ;

which returns

Mω =

(
ξ1dx1 + dx2 + ξ2dx3 + ξ3dẋ3

dx3

)
ξ1 = − 1

arcsin(ẋ3)

ξ2 =
∂2K(x3, ẋ3)

∂x3∂ẋ3
+ F5(x3)

ξ3 =
x1 + ∂2K(x3,ẋ3)

∂ẋ3∂ẋ3
arcsin(ẋ3)

2
√

1− ẋ23
arcsin(ẋ3)2

√
1− ẋ23

(8.42)

As a last step, we compute the flat output y of the nonlinear system using the
method integration of the toolbox DifferentialForms:

Listing 8.45: Compute the flat output

> f l a t o u t pu t := i n t e g r a t i o n (M omega) ;

This finally yields

y =

(
x2 − x1

arcsin(ẋ3)
+ ∂

∂ẋ3
F6(x3, ẋ3)

x3 + C1

)
. (8.43)

4This can easily be shown by using the method extDerivative of the toolbox.

158

Chapter 9

Conclusions and Future Work

It was demonstrated in this thesis that the mathematical framework which
is needed for the flatness determination of linear and nonlinear systems can
successfully be implemented using Maple. The two toolboxes DifferentialDelays
and DifferentialForms, which have been developed in the context of this thesis,
provide a suitable framework with an outstanding computational performance.
Both are designed for being used as basic structures for future toolboxes which
extend the functional range in respect of the flatness determination of linear
and nonlinear systems.

This thesis put emphasis on computational performance, reusability and be-
ing as much general as possible. Nevertheless, the performance might still be
improved by using aspects such as multi-threading.
During the development, the toolboxes were thoroughly tested by using unit
tests for each method in order to reach a code coverage above 90%. In order
to reduce the time needed for testing in the future, it might be promising to
develop a fully automated test framework for the toolboxes which uses the
Maple-own test suit CodeTools[Test].

Furthermore, the toolbox DifferentialDelays was designed to handle linear sys-
tems regardless of whether delays in the system matrices exist or not. The
internal algorithms will evaluate whether there are delays and react appropri-
ately. In case of linear systems without delays, this creates a computational
overhead which can be omitted by using a specialized toolbox for linear sys-
tems without delays.

According to the functional range, there are several promising approaches for
both toolboxes: In case of linear systems, the most interesting new function-
ality would be the implementation of the ring of formal Laurent series K ((δ))
in δ with coefficients in K as described in detail in [2] in order to describe the
signal space properly.
In case of nonlinear systems, the next step with good prospects would be to

159

Chapter 9. Conclusions and Future Work

develop an algorithm for an automated creation of approaches for the matrices
µ and M in Theorem 14. The current main problem is that increasing the
degrees of freedom in the approaches for µ and M increases the computation
time, which is needed for solving the resulting partial differential equations,
massively. In addition, we have to consider that the system equations contain
possible simplifications which have to be applied in order to solve the occur-
ring equations. At the moment, this still takes a skilled user to decide how to
create the approaches and interpret the result.
It might be also advantageous to integrate fraction-free algorithms (see [7])
into the toolboxes to enhance the decomposition of skew polynomial matrices.

Another problem which we are facing right now are the limitations which are
given by the pde-solver of Maple. Though it is very powerful, the pde-solver
of Maple cannot solve larger systems of partial differential equations with too
many degrees of freedom or integrals. We encountered this in some examples.
Thus, we need the user to simplify the equations to a certain level at which
Maple can solve the remaining pde-system. It may also be promising to deter-
mine whether other powerful algebraic pde-solvers are available which could
be used in this context.

160

Appendix A

Files and Worksheets

The following folders and files are also part of this thesis. They include the
source code, component tests and examples.

A.1 Source code

• DifferentialDelays - module.map
source code of the main module of the toolbox DifferentialDelays (see
section 7.2.2)

• DifferentialDelays[Decompose].map
source code of the submodule Decompose (see section 7.2.3)

• DifferentialDelays[LeftFractionUtils].map
source code of the submodule LeftFractionUtils (see section 7.2.4)

• DifferentialDelays[PiFlatUtils].map
source code of the submodule PiFlatUtils (see section 7.2.5)

• DifferentialDelays - module.mw
worksheet, which transforms the map-files into a single mla-file

• DifferentialForms - module.map
source code of the main module of the toolbox DifferentialForms (see
section 7.3.2)

• DifferentialForms[MinimalbasisDecomp].map
source code of the submodule MinimalbasisDecomp (see section 7.3.3)

• DifferentialForms - module.mw
worksheet, which transforms the map-files into a single mla-file

161

Index

A.2 Component tests

• DifferentialDelays - unit tests
folder, which contains all unit tests of the toolbox DifferentialDelays

• DifferentialForms - unit tests
folder, which contains all unit tests of the toolbox DifferentialForms

A.3 Examples

• Compute flat output (linear time-varying system) - Example.mw
example from section 8.1

• Compute flat output (linear system with delays) - Example 1.mw
example from section 8.2

• Compute flat output (linear system with delays) - Example 2.mw
advanced example, which is mentioned in section 8.2

• Compute flat output (nonlinear system) - Example 1.mw
example from section 8.3

• Compute flat output (nonlinear system) - Example 2.mw
example from section 8.4

These files can be received from the Chair for Automation and Control of the
Department for Measurement and Automation of the University of the German
Armed Forces in Munich (www.unibw.de/eit8 1).

162

Index

Symbols
K [δ] . 9
K
[
δ, ddt

]
. 10

Λp (X) . 28
K
[
d
dt

]
. 8

LCcolumn (. . .) . 16
LCrow (. . .) . 16
L (Λp (X) ,Λp+q (X)) 29
δ . 9
R-module . 14
X .26
X0 .27
d . 30
π-flatness . 23
d
dt . 8
d . 29

A
Array . 39

B
basis . 14

C
Cartan field . 26
CAS . 3
cleanEquations 109
closed . 48
cofactor . 11
column degree . 15
column order . 15
common right divisor 12
compareTwoDifferentials110
computeLeftInverse 97
computeNullSpace97
computePi . 103
computePiForMatrix102
computeRightInverse 98

convertTermToLatex 73, 110

convertToDiffForms 134

convertToMinBasis 134

cotangent space 28

createDiffFormVector 115

D
Decompose . 89

decompose 95, 141

defining operators 19

degreeOfVector 89, 135

degreeVectorOfMatrix 90, 135

delay . 23

delay operator . 9

delayDegree . 77

delayDerivative . 77

delayEquals . 78

delayLatexPrinting78

delayMultiply .79

delayPlus . 79

DelayPolynomial 70

DelayPolynomial 43

delayPrinting . 80

delayShift . 80

delaySimplifier . 80

delaySubtract . 81

derivative . 116

differential flatness 19, 20, 27

differential operator8

DifferentialDelays69

DifferentialForms 104

DiffForm .107

DiffForm . 53

DiffMatrix . 54

DiffSum . 109

DiffSum . 53

dual space . 28

163

Index

E
equals . 117
equalsMatrix . 99
explicit system 25
extDerivative .117
extDerivativeDifferentials 111
exterior derivative 29
extractNONPDEs 112

F
findModifiedAlpha 90, 136
free module .14

G
gcrd . 12

H
hyper-regular 13, 15

I
identityMatrix . 99
implicit system 26
indexOfFirstEntryWithDegreeZero . 91,

136
initializeMe70, 105
initializeSubPackage 133
integrableDiffsIncludedIn 112
integration . 118
invertMatrix . 100

L
latexPrinting . 120
lclm . 11
lclmMultipliers . 74
leading coefficient matrix 16
leadingCoeffMatrix 92, 136
left R-module . 14
LeftFraction .71
LeftFraction .43
LeftFractionMatrix 44
LeftFractionUtils 96
LeftFractionVector 44
lFractionDerivative 82
lFractionEquals .82
lFractionInvert . 82
lFractionLatexPrinting 82
lFractionMultiply 83
lFractionPlus . 83
lFractionPrinting 83

lFractionSimplifier 84
lFractionSubtract 84
Lie derivative . 27
Lie-Bäcklund equivalence 27
linear system . 19
list . 38
LTI system . 19

M
Maple . 3
Maple . 3
mapletForCustomAlpha 93, 136
Matrix . 39
minimal basis .15
MinimalbasisDecomp 132
MonoDiffForm 106
MonoDiffForm . 52
MonoDiffForms 107
monomial operator 48
monomial p-differential form 48
multiply . 122
multiplyMatrix 100

N
non holonomic car 149
nonlinear system 25
nullSpaceMatrix 101

O
OperForm . 108
OperForm .53
OperMatrix . 54
OperSum . 109
OperSum . 54
Ore polynomial . 7
oreDerivative . 85
oreEquals . 85
oreIdentityMatrix 85
oreLatexPrinting 86
OreMatrix . 44
oreMultiply . 86
orePlus . 87
OrePolynomial . 72
OrePolynomial . 44
orePrinting . 88
oreSimplifier . 88
oreSubtract . 89
OreVector .45
overload . 50

164

Index

P
PiFlatUtils . 102

plus . 122

printing . 123

prolongation . 26

R
Record . 39

regular implicit system 27

right R-module 14

row degree . 15

row order .15

S
set . 37

shift . 75

simplifier .124

sine example . 152

skew polynomial 7

skew polynomial ring 7

skewDerivative 137

skewIdentityMatrix 137

SkewMatrix . 56

skewMultiply . 138

skewPlus .138

SkewPolynomial 133

SkewPolynomial 56

skewSimplifier .139

skewSubtract . 139
SkewVector . 56
Smith-Jacobson form 13
solvePDEs . 113
solver .125
spellingChecker 76, 114
submodule . 14
substitute . 127
substituteGreekLettersInTerm . 77, 114
subtract . 130
switchColumns94, 98, 140
switchRows 94, 99, 140

T
table .38
tangent space .26
timeDerivative 77, 114

U
unclosed . 48
unimodular . 13

V
variational system 30
Vector . 39
verifyPi . 104

W
wedge . 131

165

Index

166

Bibliography

[1] F. Antritter: On Computational Aspects of Differentially Flat Systems,
Habilitation Treatise, Neubiberg, 2010. 7, 19, 20

[2] F. Antritter, F. Cazaurang, J. Lévine, J. Middeke: On the computation of
π-flat outputs for linear time-varying differential-delay systems, Systems
& Control Letters, 71:14-22, 2014. 1, 10, 20, 22, 23, 25, 159

[3] F. Antritter, J. Lévine: Flatness Characterization: Two Approaches, In
Advances in the Theory of Control, Signals and Systems with Physical
Modeling, J. Lévine, P. Müllhaupt, Lecture Notes in Control and Infor-
mation Sciences, 407:127-139, Springer, 2011. 152

[4] F. Antritter, J. Middeke: A Toolbox for the Analysis of Linear Systems
with Delays, Proceedings of IEEE CDC - ECC 2011, Orlando, USA, 2011.
1, 7, 8, 9, 10, 12, 15, 23, 24, 146, 149

[5] F. Antritter, G. Verhoeven: On Symbolic Computation of Flat Outputs for
Differentially Flat Systems, Proceedings of IFAC NOLCOS 2010, Bologna,
2010. 26

[6] F. Antritter, G. Verhoeven: Ein Werkzeug zur automatisierten Flachheits-
analyse nichtlinearer Systeme, at-Automatisierungstechnik, 1/2013:60-71,
2013. 32, 33

[7] B. Beckermann, H. Cheng, G. Labahn: Fraction-free row reduction of
matrices of Ore polynomials, Journal of Symbolic Computation 41, 513-
543, 2006. 160

[8] I. Bronstein, K. Semendjajew, G. Musiol, H. Mühling: Taschenbuch der
Mathematik, Frankfurt am Main, 2006.

[9] M. Bronstein, M. Petkovsek: An introduction to pseudo-linear algebra,
Theoretical Computer Science 157:3-33, Elsevier Science, 1996. 7, 8, 10,
11, 12

[10] P. Cohn: Free Rings and Their Relations, Academic Press, London, 1985.
1, 8, 13, 14

167

Bibliography

[11] E. Chirka: Meromorphic function, Encyclopaedia of Mathematics,
Springer, Berlin, 2002. 23

[12] F. Chyzak, A. Quadrat, D. Robertz: Effective algorithms for parametriz-
ing linear control systems over Ore algebras, Appl. Algebra Eng., Com-
mun. Comput., 16(5):319–376, 2005. 1

[13] M. Fliess, J. Lévine, Ph. Martin, P. Rouchon: Sur les systèmes non
linéaires différentiellement plats, C.R. Acad. Sci. Paris, I-315:619-624,
1992. 1

[14] M. Fliess, J. Lévine, Ph. Martin, P. Rouchon: Flatness and defect of non-
linear systems: introductory theory and examples, International Journal
of Control, 61(6):1327-1361, 1995. 19, 20, 25

[15] M. Fliess, J. Lévine, Ph. Martin, P. Rouchon: A Lie-Bäcklund approach
to equivalence and flatness of nonlinear systems, IEEE Trans. Automat.
Control, 44(5):922-937, 1999. 19, 25, 27

[16] M. Fliess: Some basic structural properties of generalized linear systems,
Systems & Control Letters, 15:391-396, 1990.

[17] G. David Forney, JR: Minimal bases of rational vector spaces with ap-
plications to multivariable linear systems, SIAM J. Control, 13:493-520,
1975. 15

[18] J. Jezek: Non-commutative rings of fractions in algebraical approach to
control theory, Kybernetika, vol. 32, no. 1, 81-94, 1996. 10, 12

[19] S. Lang: Undergraduate Algebra, Third Edition, New Haven, 2004. 12, 14

[20] J. Lévine: On Necessary and Sufficient Conditions for Differential Flat-
ness, Proceedings of IFAC NOLCOS 2004, Stuttgart, 2004. 25, 27, 30

[21] J. Lévine: Analysis and Control of Nonlinear Systems, Springer, Heidel-
berg, 2009. 1, 19, 20, 25, 33, 149

[22] J. Lévine: On necessary and sufficient conditions for differential flat-
ness, Applicable Algebra in Engineering, Communication and Computing,
22(1):47-80, 2010. 1, 2, 7, 20, 22, 25, 27, 29, 30, 31, 32, 33, 34

[23] J. Lévine, D. Nguyen: Flat output characterization for linear systems
using polynomial matrices, Systems & Control Letters, 48:69-75, 2003. 1,
13, 19, 20

[24] S. Limanond: Adaptive and non-adaptive control of multivariable linear
time-varying plants, Arizona State University, 1994. 143

168

Bibliography

[25] T. Linz, A. Spillner: Basiswissen Softwaretest, dpunkt.verlag, Heidelberg,
2012.

[26] Maplesoft: Maple Programming Guide, 2011. 4, 37, 39, 65

[27] Ph. Martin: Contribution à l’Étude des Systèmes Diffèrentiellement Plats,
PhD thesis, École des Mines de Paris, 1992. 1, 19

[28] J. Middeke: Normalformen von Matrizen über Schiefpolynomringen und
ihre Berechnung, Diploma Thesis, Oldenburg, 2007. 12, 15, 16

[29] J. Middeke: A computational view on normal forms of matrices of Ore
polynomials, Doctoral Thesis, Linz, 2011. 7, 9, 15

[30] Ø. Ore: Theory of non-commutative polynomials, Annals of Mathematics,
vol. 34, 480-508, 1933. 7, 8

[31] P. Rocha, J. Willems: Behavioural controllability of delay-differential sys-
tems, SIAM J. Control Optimiz., pp. 254–264, 1997. 1

[32] T. Stubblebine: Reguläre Ausdrücke - kurz & gut, O’Reilly, Köln, 2008.
58

[33] G. Verhoeven: Automatisierte Auswertung notwendiger und hinreichender
Kriterien für differentielle Flachheit mittels Computer Algebra, Diploma
Thesis, Neubiberg, 2009. 1, 15, 17, 62

[34] http://www.maplesoft.com 3

[35] http://www.notepad-plus-plus.org 4

169

	1 Introduction
	2 About the Used Computer Algebra System Maple
	2.1 Features of Maple
	2.2 Used Development Environment
	2.3 Overview of the Developed Toolboxes

	3 Mathematical Basics
	3.1 Introduction of the Mathematical Framework
	3.1.1 The Skew Polynomial Rings K[hangddt], K[]
	3.1.2 The Skew Polynomial Ring K[, hangddt]
	3.1.3 The Field of Left Fractions, lclm and gcrd
	3.1.4 The Skew Polynomial Ring K()[hangddt]
	3.1.5 Hyper-regularity as Property of Matrices over Skew Polynomials
	3.1.6 Minimal Bases for the Decomposition of Skew Polynomial Matrices

	3.2 Differential and -Flatness of Linear Systems
	3.2.1 Flatness Analysis for Linear Time-Invariant Systems
	3.2.2 Flatness Analysis for Linear Time-Varying Systems
	3.2.3 Flatness Analysis for Linear Time-Varying Systems with Delays

	3.3 Differential Flatness of Nonlinear Systems
	3.3.1 Flatness of Explicit Nonlinear Systems
	3.3.2 Flatness of Implicit Nonlinear Systems
	3.3.3 Introduction of Differential Forms and Operators
	3.3.4 A First Characterization of Flatness
	3.3.5 Construction of a Flat Output of the Variational System
	3.3.6 Integrability of the Variational Flat Output
	3.3.7 A Sequential Procedure

	4 Developing a Data Structure for Linear Systems
	4.1 Analysis of the Mathematical Structures
	4.2 Criteria for the Implementation Approach
	4.3 Practical Possibilities in Terms of Implementation
	4.3.1 Available Basic Data Structures in Maple
	4.3.2 Possible Approaches for the Implementation

	4.4 Choosing an Appropriate Data Structure in Maple Based on the Defined Criteria

	5 Developing a Data Structure for Nonlinear Systems
	5.1 Analysis of the Mathematical Structures
	5.2 Practical Possibilities in Terms of Implementation
	5.3 Choosing an Appropriate Data Structure in Maple
	5.4 Special Case: Minimal Basis Decomposition

	6 Issues of the Implementation
	6.1 Using functions versus symbols
	6.1.1 Introducing Regular Expressions for Function Names
	6.1.2 Spell Checking to Avoid Invalid Functions and Constants
	6.1.3 Implementing the Time Derivative for Arbitrary Terms
	6.1.4 Consequences of Using symbols instead of functions

	6.2 Discussion on the Need of a Unique Data Structure
	6.3 On the Treatment of Local Variables to Improve the Computational Performance

	7 Introduction of the Developed Toolboxes
	7.1 General Remarks
	7.2 DifferentialDelays
	7.2.1 Internal Structure of the Toolbox
	7.2.2 Main Module
	7.2.3 Decompose
	7.2.4 LeftFractionUtils
	7.2.5 PiFlatUtils

	7.3 DifferentialForms
	7.3.1 Internal Structure of the Toolbox
	7.3.2 Main Module
	7.3.3 MinimalbasisDecomp

	8 Usage of the Toolboxes on the Basis of a Few Examples
	8.1 Linear Time-Varying System Without Delays
	8.2 Linear Time-Varying System With Delays
	8.3 Nonlinear System - Non-Holonomic Car
	8.4 Nonlinear System - Sine Example

	9 Conclusions and Future Work
	A Files and Worksheets
	A.1 Source code
	A.2 Component tests
	A.3 Examples

	Index
	Bibliography

