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Abstract 
With increasing computational power, investigation of turbulent combustion by the Large Eddy 

Simulation (LES) method has emerged as a potential and reliable technique compared to the 

conventional Reynolds-averaged Navier-Stokes (RANS) approach. However, the turbulent 

premixed combustion modelling offers a problem of great importance since the flame thickness 

is typically too thin to be resolved on the typical LES filter sizes and thus, a model is required to 

describe the extent of subgrid scale flame wrinkling. In the present work the Flame Surface 

Density (FSD) method is used to model the filtered LES reaction rate. There are two well-

established approaches for FSD modelling. In one approach the FSD is modelled in terms of a 

transport equation, while the other approach involves an algebraic formulation where equilibrium 

of production and dissipation of FSD is assumed. The present work is focused on the latter 

approach. In this work a recently developed LES subgrid FSD premixed combustion model has 

been used to investigate various features of significant importance. Firstly, the performance of a 

simplified version of the aforementioned model is investigated and validated with the original 

model and well documented experimental data. It is found that both original and simplified 

models are suitable for LES of low to high turbulent premixed combustion in ambient and 

elevated pressure conditions. Secondly, the performance of the original model is investigated in 

conjunction with more refined sub-grid scalar flux (SGSF) modelling. A significant change of the 

overall flame speed is not observed for different SGSF models. However, the flame shape and 

thickness respond to the modelling of SGSF. The detailed explanations for the observed behavior 

are presented. Thirdly, the effects of high pressure and the Lewis number (Le = thermal 

diffusivity/mass diffusivity) in premixed turbulent combustion are analytically and numerically 

investigated using some of the popular algebraic FSD models available in open literature. The 

original models are tuned to incorporate these two effects using an extensive parametric study 

based on numerical findings as well as on theoretical argumentation. The tuned models give 

satisfactory agreement with the experimental data. Fourthly, a RANS version of the FSD model 

is developed which is the focus of the current work. The performance of the RANS model is 

compared with the original LES model and validated with the experimental data. It is found that 

the RANS version of the model shows a reasonable agreement with the experimental data. 

Lastly, 1D flame calculations are done to investigate the effects of |∇𝑐̅| versus|∇�̃�| in the 

generalized FSD expression in combination with different counter gradient type SGSF models. 
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Kurzzusammenfassung 
Mit zunehmender Rechenleistung hat sich die Large-Eddy-Simulation (LES) neben der herkö-
mmlich Reynolds-gemittelten Navier-Stokes-Simulation (RANS) zu einer vielversprechenden 
und zuverlässigen Simulationsmethode für die turbulente Verbrennung entwickelt. Eine große 
Schwierigkeit bei der LES turbulent vorgemischter Verbrennungen stellen die typischen LES-
Filterweiten dar, welche zu weit sind, um die dünnen Flammendicken aufzulösen. Daher sind 
weitere Modelle erforderlich, um die Feinstrukturflammenfaltung zu beschreiben. In der vorlie-
genden Arbeit wird ein Flammenoberflächendichte-Modell (FSD) eingesetzt, um die LES-
gefilterte Reaktionsrate zu modellieren. Innerhalb der FSD-Modellierungen haben sich zwei 
zentrale Ansätze etabliert. In einem Ansatz wird eine Transportgleichung für die FSD formuliert 
und gelöst. Alternativ kann, unter der Annahme eines  Gleichgewichts zwischen Produktion und 
Dissipation, die FSD durch eine algebraische Formulierung beschrieben werden. Diese Arbeit 
verwendet den letzteren Ansatz. Mit dem neu entwickelten FSD-Modell werden folgende 
zentrale Eigenschaften mittels LES untersucht. Erstens, das ebengenannte vereinfachte FSD-
Modell wird anhand experimenteller Daten validiert und die Leistungsfähigkeit mit dem 
Ausgangsmodells verglichen. Dabei zeigt sich, dass sowohl das ursprüngliche Modell als auch 
das vereinfachte Modell für die LES schwach bis stark turbulenter Vormischverbrennungen bei 
Umgebungsdruck bis hin zu hohen Drücken geeignet sind. Zweitens wird der Einfluss 
modifizierter Feinstrukturskalar-fluss-Modelle (SGSF) im Ausgangsmodell untersucht. Für die 
verschiedenen SGSF-Modelle sind keine signifikanten Veränderungen der resultierenden 
Flammengeschwindigkeit zu erkennen. Hingegen unterscheiden sich die berechneten Flammen-
formen und Flammendicken. Diese Abweichungen werden anschließend ausführlich in der 
Arbeit diskutiert. Drittens, die Gültigkeit des neuen Modells bei hohen Drücken und Variationen 
der Lewis-Zahl (Le = thermische Diffusivität/Diffusivität der Masse) für vorgemischte turbul-
ente Verbrennungen wird analytisch untersucht und mit vorhandenen FSD-Modellen aus der 
Literatur verglichen. Dazu werden die bestehenden Modellansätze erweitert und in einer 
umfangreichen Parameterstudie untersucht. Die Ergebnisse der modifizierten Modelle weisen 
gute Übereinstimmungen mit den experimentellen Daten auf. Viertens, eine RANS-Version des 
FSD-Modells wird mit den Daten aus der LES verglichen und mit experimentellen Daten 
validiert. Dabei zeigt sich, dass die RANS hinreichend genaue Ergebnisse im Vergleich zu den 
Experimenten bietet. Abschließend werden eindimensionale Flammen simuliert, um die Effekte 
von |∇𝑐̅| bzw. |∇�̃�| in der verallgemeinerten FSD-Modellierung in Verbindung mit verschie-
denen sog. Gegengradient-SGSF-Modellen zu analysieren. 
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Nomenclature 
English symbols  
𝐴𝐿  Laminar flame surface area      m2 

𝐴𝑡  Wrinkled flame surface area      m2 
𝐵(𝑟)  Flux limiter function        ̶   
c  Reaction progress variable       ̶ 
𝐶𝐾1  LES Keppeler model constant      ̶ 
𝐶𝐾2  RANS Keppeler model constant      ̶ 
𝐶𝑀  Muppala model constant       ̶ 
𝐶𝐴  Angelberger model constant       ̶ 
𝐶𝑍  Zimont model constant       ̶ 
𝐶𝐸𝐸𝐸  Eddy break-up model constant      ̶ 
𝐶𝑠  Smagorinsky constant        ̶  
𝐶𝑃  Specific heat at constant pressure     J/kgK  
𝐷  Fractal dimension        ̶ 
𝐷𝑡ℎ  Thermal diffusivity       m2/s  
𝐷𝑡  Turbulent diffusivity       m2/s  
𝐷𝐷  Damköhler number        ̶ 
𝐷𝐷∆  Subgrid Damköhler number       ̶  
𝐸(ҡ)  Turbulent kinetic energy as a function of wavenumber ҡ   m3/s2 
𝐹  Thickening factor for ATF model      ̶ 
𝐹𝐶,𝑓  Convective fluxes over cell face 𝑓      ̶  
𝐹𝐷,𝑓  Diffusive fluxes over cell face 𝑓      ̶ 
𝐺  Scalar quantity used in G-equation model     ̶  
𝐺∗  Chosen 𝐺 iso-level        ̶ 
ℎ  Enthalpy        J/kg 
𝑘  Turbulent kinetic energy      m2/s2 

𝑘𝑠𝑠𝑠  Turbulent kinetic energy      m2/s2 
𝐾𝐷  Karlovitz number        ̶ 
𝐾𝐷∆  Subgrid Karlovitz number       ̶   
𝑙0  Integral length scale of turbulence     m 
𝑙𝜂   Kolmogorov length scale of turbulence    m 
Le  Lewis number         ̶ 
Ma  Markstein number        ̶ 
M          Mach number         ̶ 
𝑁і  Resolved flame normal in the i-direction     ̶ 
𝜕  Pressure        Pa 
𝑅𝑅  Reynolds number        ̶ 
𝑅𝑅𝑐𝑐𝑖𝑡  Critical Reynolds number       ̶ 
𝑅𝑅𝑡  Turbulent Reynolds number       ̶ 
st  Turbulent flame speed       m/s 
𝑠𝐿0  Un-stretched laminar flame speed     m/s 
𝑠𝐿  Stretched laminar flame speed     m/s 
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Sij  Shear stress tensor       1/s 

Sct  Schmidt number        ̶ 
t  Time         s 
𝑡𝜂  Kolmogorov time scale      s 
𝑇  Temperature        K 
𝑇𝑎  Activation temperature      K 
𝑇𝑎𝑚  Adiabatic temperature       K 
𝑇𝑏  Burnt temperature       K 
𝑇𝑢  Unburnt temperature       K 
𝑢′  RMS turbulent velocity      m/s 
𝑢∆′   Subgrid scale velocity fluctuations     m/s 
𝑢і  Velocity component       m/s 
U  Bulk velocity at inlet       m/s 
𝑢𝜂  Kolmogorov velocity       m/s 
V  Volume        m3 
xi   Spatial coordinate i       m 
𝑌𝑘  Mass fraction of species 𝑘             ̶ 
 
Greek 
α  Diffusivity        m2/s 
𝛤           Efficiency function        ̶ 
𝛿𝐿0  Thermal flame thickness      m 
𝛿𝐿𝑡  Total flame thickness       m 
𝛿𝑡  Turbulent flame brush thickness     m 
𝛿𝐿  Zeldovich flame thickness      m 
∆  Filter size        m 
∆𝑥  Grid spacing        m 
𝜖  Turbulent energy dissipation rate     m2/s3 
𝜀і  Inner cut off scale       m 
𝜀𝑚  Outer  cut off scale       m 
η  Kolmogorov length scale      m 
κ  Flame stretch rate       1/s 
κs  Flame strain rate       1/s 
μ  Dynamic viscosity       kg/ms 
𝜇𝑡  Turbulent dynamic viscosity      kg/ms 
ν  Kinematic viscosity       m2/s 
ν𝑡  Kinematic viscosity       m2/s 
ρ  Density        kg/m3 

Σ  Flame surface density       1/m 
τ  Heat release factor        ̶ 
𝜏𝑐  Chemical time scale       s 
𝜏𝑓  Flow or mixing time scale      s 
𝜏іϳ  Stress tensor        kg/ms2 
𝜏іϳ
𝑠𝑠𝑠  Subgrid stress tensor       kg/ms2 

Φ  Equivalence ratio        ̶ 
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φ           Flame angle        radian  
�̇�  Turbulent reaction source term     kg/m3s 
Ξ  Flame wrinkling factor        ̶ 
 
Superscripts and subscripts 
(. )′′  Backward reaction 
(. )′  Forward reaction 
(. )0  Initial state at 𝑡 = 0  
(. )𝑛  Quantity at time level 𝑛 
(. )𝑎𝑚  Adiabatic 
(. )𝑏  Burnt state 
(. )𝑓  Cell face quantity 
(. )E  Quantity at midpoint of a cell located east of cell 𝑃 
(. )e  Quantity at the east face of cell 𝑃 
(. )∆  Filter size as length scale 
(. )𝑖  Inner 
(. )𝑘  𝑘𝑡ℎ species 
(. )𝑚  Outer 
(. )P  Quantity at midpoint of cell 𝑃 
(. )𝑐𝑚𝑠  Resolved 
(. )𝑠𝑠𝑠  Subgrid scale 
(. )𝑡  Turbulent 
(. )𝑡ℎ  Thermal 
(. )𝑡𝑚𝑡  Total 
(. )𝑢  Unburnt state 
(. )W  Quantity at midpoint of a cell located west of cell 𝑃 
(. )w  Quantity at the west face of cell 𝑃 
 
 
Abbreviation 
1D   One dimensional 
3D   Three dimensional 
ATF   Artificially thickened flame 
BML   Bray Moss Libby analysis 
BRZ   Broken reaction zones 
CD   Central differencing scheme 
CF  Corrugated flamelet 
CFD   Computational fluid dynamics 
CFL   Courant Friedrich Levy criterion 
CGT   Counter-gradient transport 
CV   Control volume 
DNS   Direct numerical simulation 
EBU   Eddy break-up  
FFFD   Filtered flame front displacement 
FDF  Flame density function 
F-TACLES Filtered tabulated chemistry for LES 
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FSD   Flame surface density 
FV   Finite volume  
GT   Gradient transport 
KPP  Kolmogorov, Petrovski and Piskunov 
LES   Large eddy simulation 
LHS   Left-hand-side of an equation 
PDE  Partial differential equation 
RANS   Reynolds-averaged Navier-Stokes/simulation 
RHS   Right-hand-side of an equation 
SGS   Subgrid scale 
SGSF  Subgrid scalar flux 
SAFSD  Static algebraic flame surface density 
TRZ   Thin reaction zones 
TVD   Total variation diminishing 
UD   Upwind differencing scheme 
WF   Wrinkled flamelet 
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Chapter 1 

Introduction  

It is estimated that the total world energy consumption will be increased by 48% from 2012 to 

2040 [1]. The global energy demand is primarily fulfilled by burning fossil fuels. Though 

extremely important in our daily lives, the dependence on fossil fuels has led to an issue of 

considerable significance‒environmental pollution. The main pollutants produced by combustion 

are carbon dioxide, which is a main contributor to global warming, unburned harmful gases like 

nitrogen oxides (NO and NO2), carbon monoxide and sulphur oxides (SO2 and SO3). Worldwide, 

there is a growing tendency of shifting towards alternative clean energy resources such as hydro, 

wind, solar etc., but they are unlikely to substitute fossil fuels in the foreseeable future, as it is 

estimated that about 78% of energy demand will still be accounted by consuming fossil fuels in 

2040 [1]. Thus a detailed understanding of combustion and its control are essential to enhance 

the efficiency, safety, reliability and pollutants emission control of practical combustion devices.  

The turbulent premixed combustion is the focus of the current work. It is encountered in many 

useful engineering devices, e.g., spark-ignition engines, industrial gas turbines, reheat systems in 

jet engines, industrial gas burners and gaseous explosions in a turbulent environment. Figure 1.1 

shows four different examples of combustion chamber configurations involving premixed 

flames. In this mode of combustion, the fuel and oxidizer are mixed prior to chemical reaction 

and it is characterized by a flame front propagating into a mixture of fresh premixed reactants. It 

offers the advantages of lower emissions and better combustion efficiency. Because of the 

complex processes of flame folding on different length and time scales, many aspects of this type 

of combustion are still not fully understood. Also the combustors may experience combustion 

instabilities, producing oscillations that effectively reduce the combustor’s lifetime. This can be 

prevented by better combustor designs, which is often accompanied by enhanced understanding 

of combustion processes. Experimental studies were used as the most direct method to achieve 

this goal in the times when computing power was lacking and numerical methods were not as 

developed as they are in recent rimes. Moreover, experimental studies are often limited by high 

equipment costs, handling difficulties and the accessibility issues in taking optical measurements 

of situations similar to the real combustors.  
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Figure 1.1: (a) classical Bunsen burner showing premixing in the Bunsen tube [2] (b) 
spherical premixed flame propagation in a combustion vessel [2] (c) turbulent counter flow 
premixed flames [2] (d) swirl burner with a freely stabilized premixed flame [2] 
 

Increasing computational power and recent advances in the numerical methods have made 

possible the numerical study of combustion phenomenon, the predictions of unsteady turbulent 

reactive flows and offered a supportive tool for better design and development of combustors. 

Several robust and reliable modelling approaches have been developed which can describe the 

turbulence–chemistry interactions for different flow configurations. The RANS method is still a 

popular choice in the industrial sector, offering fast efficient simulation results with relatively 
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low computational resources. However, the ability to compute only temporally averaged 

quantities has restricted the application of RANS method in predicting instantaneous flow 

features and combustion instabilities. At the other extreme of the available computational 

methods is Direct Numerical Simulation (DNS) approach which removes the necessity of any 

numerical model as it resolves all the turbulent and chemical length and time scales of the flow 

field. Although DNS can be effectively used as a research tool for a model development but it 

requires highly expensive computational effort that restricts its use for practical engineering 

systems. The intermediate approach between RANS and DNS is LES approach, which has 

become quite famous in recent times. In LES, large scale geometry dependent flow structures are 

resolved and directly computed, while small scale turbulent structures are modelled. This 

presents the accurate prediction of large scale unsteadiness of the flow which is particularly 

important in the study of combustion instabilities. The small scale structures with sizes below the 

LES filter width, which are considered isotropic, are modelled. Rapidly increasing computational 

power has increased the use of LES method and allowed simulations of complex and moderate 

Reynolds number combustion cases. LES is computationally more expensive than RANS, but its 

advantages may compensate the costs as reported in [3,4].  

1.1 Literature overview  

Large Eddy Simulation (LES) has, in recent times, shown potential to remove the limitations 

imposed by the traditional RANS methods for the predictions of turbulent reactive flows [3,4]. 

However, in the turbulent premixed combustion a pertinent problem lies in the subgrid scale 

(SGS) modelling. It is difficult because of the flame thickness, which is typically too thin to be 

resolved on the typical LES filter sizes. Several modelling approaches have been developed by 

different researchers to overcome this issue, such as the flame front tracking method (level-set of 

G-equation [2,5]), the Artificially Thickened Flame (ATF) technique [6,7] and the concept of 

Flame Surface Density (FSD) [8,9]. The aforementioned three approaches generally describe the 

closure of the reaction rate through changes in flame surface area. The subgrid scale flame 

wrinkling is the main contributor to this change, whose extent can be measured by the wrinkling 

factor Ξ, which can also be described as a ratio of the turbulent to laminar flame speeds 𝑠𝑡/𝑠𝐿 in 

the case of little variation of local flame speed.   
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The well-established FSD based reaction rate closure approach exists with two main variants. In 

one approach the concept is implemented through algebraic expressions [8], while the other 

involves solving an additional FSD transport equation [9]. The latter offers certain advantages as 

it avoids the assumption of equilibrium of subgrid production and dissipation of FSD and 

accounts for the processes of resolved flame strain, curvature and propagation. These 

characteristics provide a way to capture unsteady flame propagation with combustion 

instabilities or conditions where the flame experiences progressive flame wrinkling with time. 

But it adds considerable complexity and presents a number of difficult modelling challenges. 

Thus, the method has been applied only to a limited number of a priori and LES studies [10-13]. 

In the Dynamic FSD concept [14,15], which is an another variant of algebraic formulation, the 

extent of wrinkling based on instantaneous resolved flame characteristics is automatically 

adjusted and thus it has the potential for modelling conditions with progressive flame wrinkling. 

The dynamic formulation relies on scale similarity between different filter sizes, thus it may 

encounter practical difficulties in selecting a correct combination of test filter width, averaging 

procedure and updating frequency. Several static algebraic flame surface density (SAFSD) 

models have been developed and applied in different premixed flame burners [16,17]. They can 

be simpler, less expensive in terms of computational time and numerically more robust than their 

counterparts. A further approach, to model premixed combustion, is to retain the FSD method 

and introduce the tabulation of precomputed detailed chemistry through the filtered tabulated 

chemistry for LES. This is called F-TACLES model and it uses the filter size larger than the grid 

spacing [18]. Recently Fiorina et al. [19] gave a state-of-the-art picture for a set of five 

modelling approaches for the investigation of stratified combustion. They compared filtered 

tabulated chemistry model (F-TACLES), combined artificial flame thickening and tabulated 

chemistry approach, coupled G-equation/progress variable formalism, flame surface density 

model and no combustion model (LES on a very fine grid). The simulations results were 

validated with data from the Darmstadt stratified flame series. They found out that most 

simulation results agree well with the experimental data.  

One of the physical aspects that can be exploited, are the fractal characteristics of premixed 

flames which have been confirmed in several experimental works. The usage of fractal analysis 

to turbulence began with Mandelbrot’s investigation that surfaces of constant properties of a 

passive scalar in turbulent flows hold fractal character [20], followed by a series of 
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investigations: see Sreenivasan [21] for a review. Many experimental studies have investigated 

the fractal character of turbulent premixed flames (e.g. [22]). It has been shown that the fractal 

analysis provides reasonable estimates of the turbulent flame speed for the assumed values of the 

cut off scales and the fractal dimension. Several models have been proposed for premixed flames 

using fractal analysis (e.g. [23,24]). It is assumed that the wrinkled flame front surfaces may be 

characterized by a fractal surface of dimension 𝐷, for a range of length scales between the inner 

cut off 𝜀і and the outer cut off 𝜀𝑚, using a power law relation [8,25]. The availability of reliable 

models for fractal dimension and cut off scales is the key ingredient in the success and the 

applicability of fractal-based models. In the corrugated flamelet regime, the difference between 

laminar and turbulent flame speed is mainly due to the increased flame-surface area. The 

problem of estimation of the flame speed is thus largely dependent on the prediction of that area. 

In LES, since a major portion of the wrinkled flame front is resolved, the problem is further 

reduced to the estimation of the unresolved wrinkling. The resolution dependency of the 

unresolved area is, therefore, critical for proper LES modelling, and this is basically what the 

fractal analysis can provide. 

The turbulent premixed combustion can be characterized by the reaction progress variable 

𝑐 =  (𝑇 − 𝑇𝑢)/(𝑇𝑏 − 𝑇𝑢), which is a normalised quantity that changes monotonically from 0 in 

reactants to 1 in completely burned products. The terms which need to be modelled in the Favre-

filtered transport equation for the progress variable c correspond to the filtered reaction rate ω̇�  

and the sub-grid turbulent scalar flux �𝐹𝑖
𝑠𝑠 = �̅�𝑢і𝑐� − �̅�𝑢і� �̃��. The turbulent scalar flux consists of 

two contributions of entirely different nature, one produced by thermal expansion and the other 

by turbulent motions. The turbulent transport is of the gradient type for a sufficiently high level 

of turbulence as the flame is unable to impose its own dynamics to the flow field and the flame 

front motions are dominated by the turbulence. On the other hand, the turbulent transport is of 

the counter gradient type when the turbulence level is relatively low, the thermal expansion due 

to heat release dominates and the flame gets able to impose its own dynamics to the flow field. 

Traditionally, the sub-grid scalar flux (SGSF) is modelled using a gradient hypothesis. With 

using the gradient hypothesis based model, the counter gradient subgrid scalar fluxes cannot be 

explicitly modelled. Theoretical [26,27], experimental [28-33] and Direct Numerical Simulations 

(DNS) [34-39] studies have shown that the turbulent sub-grid scalar flux (SGSF) can exhibit 

counter gradient behaviour under some conditions. The SGSF is related to conditional mean 



21 
 

velocities in the Bray-Moss-Libby (BML) model [28] and the counter-gradient diffusion may 

occur in case when the conditional burned-gas velocity is larger than the unburned-gas 

counterpart.  The counter-gradient diffusion is attributed to differential acceleration of burned 

and unburned gases due to the pressure gradients across the flame brush. The DNS based 

analysis by Veynante et al. [35] indicated a simple criterion to delineate between the gradient 

and counter-gradient turbulent transport regimes. This criterion suggests that the counter-

gradient (gradient) diffusion is obtained for low (high) values of the ratio of root-mean-square 

value of turbulent velocity to unstrained laminar flame speed 𝑢′/𝑠𝐿0 and high (low) values of heat 

release parameter 𝜏 = (𝑇𝑎𝑚 − 𝑇𝑢) 𝑇𝑢⁄   where 𝑇𝑢 and 𝑇𝑎𝑚 are the unburned gas and adiabatic 

flame temperatures respectively. Pfadler et al. [40,41] and Lecocq et al. [42] assessed the 

performances of different possible models of turbulent scalar flux. Recently, Gao et al. [43,43] 

have carried out a detailed assessment of different LES models for turbulent scalar flux for a 

range of different Lewis numbers based on a-priori analysis of DNS data. They concluded that 

the SGSF models, which account for the alignment of local resolved velocity and scalar 

gradients, perform better than the other existing models. The models by Huai et al. [45] and 

Clark et al. [46] were found to capture adequately both the qualitative and quantitative 

behaviours of (𝐹𝑖
𝑠𝑠) for ∆> 𝛿𝐿0 in all cases, where ∆ denotes the LES filter width.  

The practical industrial devices involving premixed combustion operate under high-pressure 

conditions with a variety of fuels. In general, a numerical model should be able to account for the 

influence of pressure and fuel effects on reaction closure to claim its generality. However, quite 

often, most of the existing SAFSD models have been validated over a small range of conditions 

mainly limited to atmospheric methane flames. Pressure is known to affect both the turbulent 

flow field through a change of viscosity and laminar premixed flame structure. Experimentally 

[47-49], it is observed that as the flame wrinkling increases, the smaller turbulence scales (Taylor 

scales, Kolmogorov scales) decrease, while the turbulent integral length scale remains nearly 

unchanged with increment in pressure at constant inlet velocity. This can be explained by the 

classical turbulence theory. The kinematic viscosity 𝜈 = 𝜇/𝜌 is decreased, thus increased 

pressure brings higher turbulent Reynolds number 𝑅𝑅𝑡 = 𝑢′𝑙0/ 𝜈 (if the mean bulk velocity is 

kept constant, typically the turbulence intensity is also weakly influenced by pressure). The 

smaller turbulence scales are inversely dependent on 𝑅𝑅𝑡, thus measured turbulence energy 

spectra are shifted to higher frequency region [47]. The laminar flame speed 𝑠𝐿 and laminar 
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flame thickness 𝛿𝐿 also scale with pressure. The pressure scaling for methane and propane fuels 

are 𝑠𝐿0 ∝ 𝜕−0.5, 𝛿𝐿 ∝ 𝜕−0.5 and 𝑠𝐿0 ∝ 𝜕−0.25, 𝛿𝐿 ∝ 𝜕−0.75, respectively. The influence of Le 

number on turbulent reaction rate is explained elaborately in the work of [50]. Le > 1 represents 

faster heat diffusion away from the flame front compared to the diffusion of species, which may 

result in reduced flame propagation. So the numerical models, without explicit Le number 

dependency, might be expected to predict higher values of turbulent flame speed especially at 

moderate to high turbulence.  

The present study uses the concept of algebraic FSD modelling to perform LES and RANS 

investigations of turbulent premixed combustion at conditions typical for spark-ignition engines 

and industrial gas turbines. Chakraborty and Klein [51] extensively investigated different 

algebraic FSD models in a-priori DNS study of freely propagating statistically planar turbulent 

premixed flames falling in the corrugated flamelet and thin reaction zone regimes and provided a 

detailed insight into the formulations of the models. The performance of various algebraic FSD 

models is also investigated by performing LES of the ORACLES burner and Volvo Rig in a 

recent study by Ma et al. [52].  

1.2 Motivation and Thesis objectives 

In this work, an LES subgrid combustion model, which was derived and validated in a previous 

work by Keppeler et al. [53], has been used (henceforth denoted as Keppeler model). The 

Keppeler model offers a closure of the combined filtered reaction rate and molecular diffusion 

term with the help of a fractal based Flame Surface Density (FSD) formulation while the sub-

grid turbulent scalar flux is modelled using the conventional gradient transport (GT) 

approximation. Experimental and DNS databases were used to estimate the fractal parameters, 

e.g., inner and outer cut off scales, fractal dimension, etc. The validation exercise reported in 

[53] shows excellent agreement with experimental data from turbulent Bunsen flames over a 

wide range of 𝑢′/𝑠𝐿0 and pressures between 1 and 20 bar, at conditions which are typical for 

spark-ignition engines and industrial gas turbines. The Keppeler model is derived on the basis of 

Lindstedt and Váos [54] model, which shows a good performance in the context of RANS. 

However, the latter model neither incorporates the effect of strain on the laminar flame speed nor 

shows correct behaviour in low Reynolds numbers limit. The new LES model takes into account 
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the linear theory of instabilities and is extended to cover the low Re regime. In addition, it was 

shown that the time-averaged turbulent flame speed predicted by the subgrid combustion model 

is quite robust with respect to changes in grid resolution, meaning that on a coarser grid the 

modelled subgrid source term increases such that the averaged turbulent flame speed stays 

approximately constant [53]. This is necessary, since in the high-pressure cases only 20% of the 

flame folding is resolved in the LES, although 80% of the turbulent kinetic energy is resolved as 

required for a “good” LES. In contrast, most of the flame wrinkling was resolved in the 1 bar 

cases [53]. These favourable properties of the Keppeler model prompted the author to choose it 

as the basis of the present investigation of various features of turbulent premixed combustion of 

significant importance. 

The main objectives of this thesis are: 

• In the work [53], a simplified version was proposed but not further investigated. The new 

model is simpler and without any model constants and blending functions. In the present 

work the performance of this simplified version is assessed, compared to the original 

model and validated with the experimental data.  

• In the original Keppeler model, the SGSF was modelled using a classical gradient 

hypothesis [53]. With the model based on the aforementioned assumption, the counter 

gradient subgrid scalar fluxes cannot be modelled. Theoretical, experimental and Direct 

Numerical Simulations (DNS) studies have shown that the turbulent subgrid scalar flux 

(SGSF) can exhibit counter gradient behaviour under some conditions. In the present 

work, the performance of the original Keppeler model [53] is investigated in conjunction 

with more refined SGSF modelling, which showed good performance in a DNS based 

analysis of different SGSF models [43,44].  

• Large-scale industrial devices such as internal combustion engines, gas turbine 

combustors, etc. operate under high-pressure conditions and use a variety of fuels. 

Contrary to these applications, most of the existing numerical modelling methodologies 

do not include explicit high-pressure and the Lewis number effects in premixed turbulent 

combustion. However, a numerical model should include both these effects to claim 

generality of the model. In the present work, some of the popular SAFSD models 
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available in open literature are analytically and numerically investigated for pressure and 

Le number effects in the modelling of premixed flames. 

• Several LES combustion models have a direct counterpart in the RANS context. This can 

provide an advantage as it offers a good basis for the judgement of the strengths and 

weaknesses of the RANS and LES modelling approaches in the context of turbulent 

premixed combustion. This motivated to develop a RANS version of the Keppeler model 

[53] and assess its performance in comparison with the original LES model. 

 
• Lastly, the effects of |∇𝑐̅| versus|∇�̃�| in the generalized FSD expression are investigated 

in conjunction with different CGT SGSF models in a 1D formulation.   

1.3 Thesis outline 
The thesis is comprised of seven chapters. Following the introduction, chapter 2 of the thesis 

provides the fundamental concepts of fluid mechanics i.e. the governing equations for mass, 

momentum, energy and scalar transport, the structure of turbulence, some concepts that are 

commonly encountered in premixed combustion and an overview of different methods used for 

premixed combustion modelling. Chapter 3 presents the main elements of the finite volume 

formulation, including the spatial and time advancement schemes and boundary conditions. 

Chapter 4 describes the combustion models used in the present study. Chapter 5 presents the 

numerical setup and the experimental database used for the validation of the numerical 

predictions. Chapter 6 presents a detailed discussion on the obtained results. Finally the 

conclusions are presented in chapter 7.  
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Chapter 2 

Theoretical background 

Turbulent reactive flow involves a strong interaction between heat, mass and energy transfer. 

The complex interaction between turbulence and chemical reactions further increases the 

complexity of the problem. In this chapter an overview of the basic elements required for the 

analysis of turbulent reactive flows is presented. A general overview of the governing equations 

for reactive flows is presented first. This is followed by the characteristics of turbulence, 

premixed flames and the approaches used for their reaction rate closure. Lastly the available 

computation methods are discussed with emphasis placed on LES and RANS methods, which 

form the basis of this study.  

2.1 Governing equations for reactive flows  

The problem of a reactive flow can be described by a set of partial differential equations known 

as the governing equations of mass, momentum, energy, species mass fraction and scalar 

transport. In this section, a short overview of these equations is presented.  

2.1.1 Continuity equation  

The continuity equation is based on the statement that mass is a conserved quantity. The three 

dimensional continuity or mass conservation equation at a point in a compressible fluid under 

unsteady conditions can be written as: 

𝜕𝜌
𝜕𝑡

+ 
𝜕(𝜌𝑢і)
𝜕𝑥і

= 0                                                                                    (2.1) 

where 𝑥і, 𝑡 and 𝑢 denote the distance in the i-direction, time and flow velocity respectively. Any 

source term is absent in Eq. (2.1) since mass can neither be created nor be destroyed. The first 

term on the left hand side (LHS) of Eq. (2.1) shows the change in the density 𝜌 with respect to 

time while the second term is known as the convective transport which describes the net rate of 

flow of mass through the control volume.  
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2.1.2 Momentum equation  

The momentum or Navier-Stokes equation is based on the Newton’s second law of motion that 

the resultant force acting on a fluid element equals the time rate of change of the momentum of 

the element. In Cartesian form, the momentum equation can be written as: 

𝜕(𝜌𝑢і)
𝜕𝑡

+
𝜕�𝜌𝑢і𝑢ϳ�
𝜕𝑥ϳ

=
𝜕𝜏іϳ
𝜕𝑥ϳ

−
𝜕𝜕
𝜕𝑥і

+ 𝜌𝑓і                                                     (2.2) 

where 𝜕, 𝜏іϳ and 𝑓і represent the pressure or normal stress, viscous stresses and external body 

forces (e.g. gravitational, centrifugal or Coriolis) respectively. The second term on the LHS of 

Eq. (2.2) represents the convective transport. The viscous stresses 𝜏іϳ can be written in terms of 

linear and volumetric deformations using the Newton’s law of viscosity:  

𝜏іϳ = 2𝜇𝑆іϳ −
2
3

 𝜇𝛿іϳ
𝜕𝑢𝑘
𝜕𝑥𝑘

                                                                    (2.3) 

where 𝜇 and 𝛿іϳ are the dynamic viscosity and Kronecker delta (𝛿іϳ = 1 if і = ϳ and 𝛿іϳ = 0 

otherwise). In Eq. (2.3), 𝑆іϳ represents the strain rate and can be written like this: 

𝑆іϳ =
1
2

 �
𝜕𝑢і
𝜕𝑥ϳ

+
𝜕𝑢ϳ
𝜕𝑥і

�                                                                        (2.4) 

Neglecting the body forces and substituting Eq. (2.3) into Eq. (2.2), the momentum equation for 

a compressible Newtonian fluid becomes: 

𝜕(𝜌𝑢і)
𝜕𝑡

+
𝜕�𝜌𝑢і𝑢ϳ�
𝜕𝑥ϳ

=
𝜕
𝜕𝑥ϳ

�𝜇 �2𝑆іϳ −
2
3

 𝛿іϳ
𝜕𝑢𝑘
𝜕𝑥𝑘

�� −
𝜕𝜕
𝜕𝑥і

                                     (2.5) 

2.1.3 Species mass fraction 

A combustion process involves many species and chemical reactions. In order to numerically 

simulate a reactive flow, a set of species transport equations needs to be solved along with the 

Navier-Stokes equations for the flow field. The composition of a mixture is usually represented 

in terms of the constituent mass fractions. The mass fraction of species 𝑘, 𝑌𝑘, is a ratio of the 

mass of species 𝑘 and the total mixture mass: 
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𝑌𝑘 =
𝑚𝑘

𝑚𝑡𝑚𝑡
                                                                            (2.6) 

where k = 1,2,…..N and N is the number of total species. The sum of all the constituent mass 

fractions must be unity: 

�𝑌𝑘

𝑁

𝑘=1

= �
𝑚𝑘

𝑚𝑡𝑚𝑡

𝑁

𝑘=1

= 1                                                            (2.7) 

The transport equation for 𝑌𝑘 can be written as: 

∂(𝜌𝑌𝑘)
∂𝑡

+
∂(𝜌𝑢і𝑌𝑘)
∂𝑥і

= −
∂𝑗і𝑘

∂𝑥і
+ �̇�𝑘                                                 (2.8) 

The first and second terms on the right-hand side (RHS) of Eq. (2.8) are the diffusive fluxes and 

the formation rate of species 𝑘 respectively. Although, the molecular transport processes that 

form the diffusive fluxes 𝑗і𝑘 are very complex, 𝑗і𝑘 can be estimated using Fick’s law: 

𝑗𝑖𝑘 = −𝜌𝛼𝑘
∂𝑌𝑘
∂𝑥і

                                                                        (2.9) 

where 𝛼𝑘 is the diffusion coefficient of species 𝑘.  

2.1.4 Conservation of energy 

Poinsot and Veynante [55] have discussed various forms of the energy conservation equations. In 

OpenFOAM, the CFD tool used for the present work, the energy conservation is taken into 

account by solving a simplified equation for enthalpy ℎ = ℎ𝑡𝑚𝑡 − 𝑢і𝑢ϳ/2:   

𝜕𝜌ℎ
𝜕𝑡

+
𝜕𝜌𝑢іℎ
𝜕𝑥і

=
𝐷𝜕
𝐷𝑡

−
∂𝑞і
∂𝑥і

+ 𝜏𝑖𝑖
∂𝑢і
∂𝑥ϳ

+ �̇� + 𝜌𝑢і𝑓і                                       (2.10) 

where 𝜏іϳ ∂𝑢і/ ∂𝑥ϳ, �̇� and 𝜌𝑢і𝑓і represent the viscous heating term, the heat source term and the 

power produced by volume forces 𝑓і respectively. The energy flux 𝑞і is the sum of a heat 

diffusion given by the Fourier’s law and the diffusion of species given by Fick’s law (Eq. (2.9)): 

𝑞𝑖 = −𝜆
𝜕𝑇
𝜕𝑥і

−�ℎ𝑘

𝑁

𝑘=1

𝜌𝛼𝑘
∂𝑌𝑘
∂𝑥і

                                                              (2.11) 
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The relationship between ℎ and ℎ𝑘 is defined as: 

ℎ = �𝑌𝑘

𝑁

𝑘=1

ℎ𝑘                                                                                (2.12) 

 Equation (2.11) is often written in term of a gradient of ℎ [56, 57]: 

𝑞і = −
𝜆
𝐶𝑝

𝜕ℎ
𝜕𝑥і

+ 𝜇��
𝜆

𝜌𝐶𝑝𝛼𝑘
− 1�

1
𝑆𝑐𝑘

ℎ𝑘

𝑁

𝑘=1

∂𝑌𝑘
∂𝑥і

                                            (2.13) 

where 𝜆/ 𝜌𝐶𝑝𝛼𝑘 is known as the Lewis number (𝐿𝑅𝑘) which is a ratio of thermal diffusion to 

mass or species diffusion. 𝑆𝑐𝑘 is the Schmidt number which is defined as a ratio of momentum 

diffusivity to species diffusivity: 

𝐿𝑅𝑘 =
𝜆

𝜌𝐶𝑝𝛼𝑘
=
𝛼𝑡ℎ
𝛼𝑘

                                                                  (2.14) 

𝑆𝑐𝑘 =
𝜇
𝜌𝛼𝑘

                                                                             (2.15) 

If the fluid is assumed to be an ideal gas, the thermodynamic variables 𝜌, 𝜕 and 𝑇 can be related 

using the ideal gas equation of state: 

𝜕 = 𝜌𝑅𝑇�
𝑌𝑘
𝑀𝑘

𝑁

𝑘=1

                                                                 (2.16) 

The relationship between enthalpy and temperature is defined as: 

ℎ𝑘 = ℎ𝑘,0 + � 𝐶𝑝,𝑘

𝑇

𝑇0
𝑑𝑇                                                              (2.17) 

The specific heat capacity 𝐶𝑝,𝑘 is estimated with the following fit polynomial: 

𝐶𝑝,𝑘 =
𝑅
𝑀𝑘

(𝐷0 + 𝐷1𝑇 + 𝐷2𝑇2 + 𝐷3𝑇3 + 𝐷4𝑇4)                                      (2.18) 

Substituting Eq. (2.18) into Eq. (2.17) and after integrating, it is possible to calculate ℎ𝑘: 

ℎ𝑘 = ℎ𝑘,0 +
𝑅
𝑀𝑘

�𝐷0𝑇 +
𝐷1
2
𝑇2 +

𝐷2
3
𝑇3 +

𝐷3
4
𝑇4 +

𝐷4
5
𝑇5�                             (2.19) 
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The coefficients in Eq. (2.18) and (2.19) are calculated from the JANAF tables provided in [58]. 

The temperature dependence of the molecular viscosity 𝜇 is estimated using the Sutherland 

model: 

𝜇 =
𝐴𝑠𝑇0.5

1 + 𝑇𝑠𝑇−1
                                                                     (2.20) 

For air 𝐴𝑠 = 1.485 ∗ 10−6 kg/msK0.5 and 𝑇𝑠 = 110.4 𝐾. 

2.1.5 Scalar transport equation 

To properly characterize a chemically reactive flow, a transport equation for scalar is required in 

addition to the mass, momentum and energy equations. The transport equation for an arbitrary 

scalar 𝑄 (the mass fraction or progress variable in premixed combustion) takes the following 

form: 

𝜕(𝜌𝑄)
𝜕𝑡

+
𝜕(𝜌𝑄𝑢і)
𝜕𝑥і

=
𝜕
𝜕𝑥і

�𝜌𝛼
𝜕𝑄
𝜕𝑥і

� + �̇�𝑄                                          (2.21) 

where the temporal change and convective transport of the scalar are represented by the two 

terms on the LHS of Eq. (2.21) while the two terms on the RHS denote the molecular diffusion 

of 𝑄 assuming Fick’s second law of diffusion with diffusivity 𝛼 and the source term describing 

the production or destruction of the scalar respectively.  

A turbulent low-speed premixed flame can be expressed using a transport equation for the 

progress variable 𝑐 [2,55]. This is a normalized quantity which takes a value equal to zero for 

unburned reactants and unity for fully burned products. The progress variable 𝑐 can be defined in 

terms of mass fraction 𝑌𝑘 or temperature 𝑇, the present work applies the latter: 

𝑐 =
𝑇 − 𝑇𝑢
𝑇𝑏 − 𝑇𝑢

                                                                      (2.22) 

where subscripts ‘u’ and ‘b’ denote unburnt and burnt states. This implies a one-step irreversible 

chemical reaction and the temperature is raised from 𝑇𝑢 to 𝑇𝑏 as a result of the corresponding 

heat release. Under the assumptions of low Mach number 𝑀𝐷, unity Le number and in the 

absence of heat losses, the transport equation for 𝑐 takes the following form: 
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𝜕(𝜌𝑐)
𝜕𝑡

+
𝜕(𝜌𝑐𝑢і)
𝜕𝑥і

=
𝜕
𝜕𝑥і

�𝜌𝛼
𝜕
𝜕𝑥і

� + �̇�                                          (2.23) 

With the algebraic FSD method, the problem of premixed combustion involving homogenous 

mixtures at low velocities can be described with a set of transport equations of mass, momentum, 

energy, progress variable and the equation of state.  

2.2 Turbulence 

In this section, a short overview of the basics of turbulence and its modelling techniques is 

presented. 

2.2.1 Turbulence definition and description 

The turbulence is characterized by apparent random unsteadiness associated with the fluid 

velocity at each point in the flow. It results when viscous actions are not sufficient to properly 

damp the instabilities formed in a flow. There is no complete definition of turbulence as it is 

among the least-known physical processes. A turbulent flow is: 

• irregular 

• diffusive 

• rotational 

• dissipative 

• characterized by a wide range of scales 

and a purely continuum phenomenon featuring fluid flows as even the smallest scales in a 

turbulent flow are typically far larger than any molecular length scale. The random fluctuations 

in a turbulent flow result in enhanced mixing, that increases the rate of mass, momentum and 

energy transfer. This feature plays an important role in the reactive flows and can increase the 

combustion rate.  

The transition of a flow from laminar to turbulent state can be indicated by the Reynolds number, 

which is interpreted as the ratio of inertia and viscous forces: 
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𝑅𝑅 =
𝐹𝐼
𝐹𝑉

=
𝜌𝑈2/𝐿
𝜇𝑈/𝐿2

=
𝜌𝑈𝐿
𝜇

=
𝑈𝐿
𝜈

                                               (2.24) 

where 𝑈, 𝐿 and 𝜈 denote the characteristic velocity, length scale and kinematic viscosity. The 

existence of laminar or turbulent flow through a particular system or geometry can be found by 

comparing this dimensionless parameter against the critical value 𝑅𝑅𝑐𝑐𝑖𝑡. For a pipe flow the 

typical value 𝑅𝑅𝑐𝑐𝑖𝑡 is 2300 when 𝐿 is taken to be the pipe diameter.  

One particularly useful approach to characterize turbulent flows quantitatively is Reynolds 

decomposition approach. In this method, any turbulent flow property is decomposed into mean 

and fluctuating components. For example, denoting the instantaneous, mean and fluctuating 

velocities by 𝑢𝑖, 𝑢�𝑖 and 𝑢𝑖′, respectively, we can write for the instantaneous velocity: 

𝑢𝑖(𝑡) = 𝑢�𝑖 + 𝑢𝑖′(𝑡)                                                                (2.25) 

Here, the mean component is calculated by time averaging over a sufficiently large time interval.  

In turbulent reactive flows, large random fluctuations in species, density and temperature fields 

are also observed, as defined by: 

𝑌𝑘(𝑡) = 𝑌�𝑘 + 𝑌𝑘′(𝑡);   𝜌(𝑡) = �̅� + 𝜌′(𝑡);   𝑇 = 𝑇�  + 𝑇′(𝑡)          (2.26) 

2.2.2 Turbulent scales 

For a turbulent flow many length scales have been defined, however, two of them are frequently 

cited. In the order of decreasing size, these scales are integral scale 𝑙0 and Kolmogorov scale 𝑙𝜂. 

The large eddies in a turbulent flow contain the most energy and have length scales that are 

limited by the flow geometry. The size of eddies 𝑙 can be related to wave number ҡ, by ҡ =

2𝜋/𝑙, which shows that small wave number eddies correspond to large eddies in a turbulent 

flow. The integral length scale 𝑙0 physically characterizes the mean size of these eddies. It is 

always smaller than the largest length scale in the system but has same order of magnitude. On 

the other hand, the Kolmogorov scale 𝑙𝜂 represents the smallest scale associated with a turbulent 

flow. At this length scale, the viscous forces are dominant and the dissipation of turbulent kinetic 

energy to fluid internal energy occurs. The Kolmogorov length, velocity and time scales as a 
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function of kinematic viscosity and the kinetic energy dissipation rate can be derived by a 

dimensional analysis and are given by [59]: 

𝑙𝜂 = �
𝜈3

𝜖
�
1/4

;          𝑢𝜂 = (𝜈𝜖)1/4 ;       𝑡𝜂 = �
𝜈
𝜖
�
1/2

                                     (2.27) 

The rate of dissipation of turbulent kinetic energy 𝜖 can be approximated as: 

𝜖 =
𝑢′3

𝑙0
                                                                              (2.28) 

where 𝑢′ is the turbulence intensity corresponding to the size of eddy 𝑙0. The turbulent Reynolds 

number based on 𝑢′ and 𝑙0 can be defined as: 

𝑅𝑅𝑚𝑜 =
𝑢′𝑙0
𝜈

                                                                       (2.29) 

Equations (2.27) and (2.28) defining the integral length scale and the dissipation rate can be 

combined with Eq. (2.29) to relate the smallest (𝑙𝜂) and largest length (𝑙0) scales: 

𝑙𝜂 = 𝑙0𝑅𝑅𝑚𝑜
−3/4                                                                (2.30) 

Equation (2.30) shows that for a fixed 𝑙0, the small-scale turbulence becomes increasingly finer 

with increasing Re, leading to a greater range of scales that would increase the mixing in a 

turbulent flow field.   

2.2.3 Energy cascade 

The eddies with a size of the order of integral length scale 𝑙0 carry most of the turbulent kinetic 

energy 𝑘, which can be defined as: 

𝑘 =
1
2
�𝑢і′𝑢і′�������                                                                   (2.31) 

For homogenous isotropic turbulence, it becomes 𝑘 = 3𝑢і′
2����/2, where і = x, y or z. Eddies of 

different sizes exist in a turbulent flow. This is because of the fact that the large eddies have a 

tendency of continuously breaking up into smaller eddies, which in turn break up into even 

smaller eddies. This process is continued until the viscous forces become dominant and the 
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smallest eddies are dissipated. An external source would be needed to make up for the loss of 

kinetic energy and sustain a turbulent flow. In the absence of external energy source, the 

turbulence would have a decaying trend of turbulent kinetic energy. This phenomenon of energy 

transfer from the large scale eddies to the small scale eddies is known as the energy cascade [59] 

and is illustrated in Fig. 2.1. Figure 2.2 shows a log-log plot of the energy spectrum 𝐸(ҡ) of 

homogenous, isotropic turbulence versus the wave number ҡ or the reciprocal of the eddy size. 

The region bounded between the integral length scale and the Kolmogorov length scale is called 

the inertial subrange, which is characterized by a constant rate of energy transfer with a slope of 

−5/3. 

2.3 Computational modelling approaches  

In order to describe a reacting flow the continuity (Eq. (2.1)), momentum (Eq. (2.3)) and reactive 

scalar (Eq. (2.21)) equations need to be solved. However, in most practical applications the 

analytical solution is difficult to achieve. One way is to solve these equations numerically using 

computational modelling approaches. The three main computational approaches are Reynolds- 

averaged Navier-Stokes (RANS), Large Eddy Simulation (LES) and Direct Numerical 

Simulation (DNS). The choice of the suitable method is decided by the characteristics of the flow 

and geometry, the purpose of simulation, required accuracy and the computational power. The 

RANS method is commonly used in industry, but with the increased availability of 

computational power and advantage of providing more details about the flow problems, LES is 

becoming a popular practical option. On the other hand, the application of DNS is still limited by 

 
   
Figure 2.1: Schematic representation of energy cascade [61] 
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Figure 2.2: Turbulence energy spectrum plotted as a function of wave number 

 

the current and foreseeable computational recourses to small and moderate Re number flows. In 

this section a short description of the three methods is presented.   

2.3.1 Direct Numerical Simulation (DNS) 

Direct Numerical Simulation can be claimed to obtain a complete and accurate description of a 

turbulent flow as it resolves all the length and time scales from the largest to the finest 

Kolmogorov scales and hence, modelling is not required. After the experimental results, the DNS 

results are widely trusted and used to validate the prediction obtained with the RANS and LES 

methods. However, a DNS study for a flow through a practical system requires a huge amount of 

computational time and resources. High order discretization schemes are required to reduce the 

numerical errors in the estimation of the governing equations. The selection of appropriate 

turbulence boundary conditions also demands considerable attention. Although, the 

computational resources and techniques have experienced a rapid increase and development in 

recent years, even with the currently available computational power the DNS method can still be 

applied only to low and moderate Re number flows involving simple geometries.     
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2.3.2 Reynolds-averaged Navier-Stokes (RANS) Method 

As mentioned earlier, RANS method is the most commonly used numerical technique for 

industrial applications. Contrary to DNS, it models all turbulent structures in the energy 

spectrum. In this method, the grid size is significantly greater than DNS giving faster and 

cheaper numerical results. However, only averaged flow fields can be obtained as a solution. To 

obtain all the governing equations in the Reynolds-averaged form, each flow variable is 

decomposed into mean and fluctuating components using the Reynolds decomposition method 

and then time-averaging is applied to each term in the equation over a sufficiently large time 

interval ∆𝑡 = 𝑡2 − 𝑡1. Time averaging applied to any flow property 𝑞 is given by: 

𝑞� = lim
∆𝑡→∞

1
∆𝑡
� 𝑞(𝑡)𝑑𝑡
𝑡2

𝑡1
 ; 𝑞(𝑡) =  𝑞� + 𝑞′(𝑡)                                           (2.32) 

For unsteady cases, the averaging method needs to be redefined as ensemble average to account 

for the time dependence of mean quantities. When the Reynolds-averaging method, as defined in 

Eq. (2.32), is applied to a reactive flow that features changes in the density, the correlations of 

density and velocity fluctuations are formed, which need additional modelling. Such 

complications can be avoided by using Favre-averaging (density weighted averaging) for any 

flow property 𝑞 of reactive flows: 

𝑞� =
𝜌𝑞����
�̅�

;  𝑞(𝑡) =  𝑞� + 𝑞′(𝑡);    𝑞′ � = 0;   𝑞�� = 𝑞�                                      (2.33) 

Substitution of Eq. (2.33) into mass, momentum, species and energy equations result in the well-

known Favre-averaged Navier Stokes Equations:  

𝜕�̅�
𝜕𝑡

+
𝜕(�̅�𝑢і�)
𝜕𝑥і

 = 0                                                                         (2.34) 

𝜕(�̅�𝑢і�)
𝜕𝑡

+
𝜕��̅�𝑢і�𝑢ϳ��
𝜕𝑥ϳ

=
𝜕�𝜏іϳ� − �̅�𝑢′і𝑢′ϳ��

𝜕𝑥ϳ
−
𝜕�̅�
𝜕𝑥і

+ 𝜌𝑓і����                                  (2.35) 

𝜕��̅�𝑌𝑘� �
𝜕𝑡

+
𝜕��̅�𝑢і�𝑌𝑘� �
𝜕𝑥і

= −
𝜕𝚥і𝑘�

𝜕𝑥і
−
𝜕��̅�𝑢′і𝑌𝑘′��

𝜕𝑥і
+ �̇�𝑘 �����                                     (2.36) 
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𝜕��̅�ℎ��
𝜕𝑡

+
𝜕��̅�𝑢і�ℎ��
𝜕𝑥𝑖

=
𝐷𝜕
𝐷𝑡
����

−
𝜕��̅�𝑢′іℎ′��

𝜕𝑥і
−
𝜕𝑞і�
𝜕𝑥𝑖

+ 𝜏іϳ
𝜕𝑢і
𝜕𝑥ϳ

��������
+ �̇�� + 𝜌𝑢і𝑓і �������                         (2.37) 

There are two major consequences of the averaging process. First, the fine details of the flow are 

eliminated and secondly, some new terms appear in the time-averaged equations that are not 

present in the original time-dependent governing equations. For example, in the time-averaged 

momentum equation an additional term 𝑢′і𝑢′ϳ�  appears, which represents turbulent stresses or 

Reynolds stresses. The method to calculate or approximate these stresses or any other additional 

unknowns that appeared because of the averaging process is termed as the closure problem. The 

closure of the Reynolds stress tensor can be achieved by either the eddy viscosity concept as 

proposed by Boussinesq [61] or by solving a transport equation for the Reynolds stresses. The 

latter method is numerically more demanding as it offers the challenge of solving more unknown 

closure terms. The zero-equation model, one-equation model or two-equation models are based 

on the Boussinesq approximation and they offer the modelling of eddy viscosity. The zero-

equation model is based on mixing length hypothesis as proposed by Prandtl [62], which 

represent the eddy viscosity as a product of characteristic turbulent velocity, fluid density and a 

length scale called the mixing length. The one-equation model solves an additional transport 

equation for turbulent kinetic energy 𝑘, whereas the two-equation models solve the combination 

of either 𝑘 and 𝜖, or 𝑘 and 𝜔. The energy and scale of the turbulence are determined by the 

variable 𝑘 and 𝜖 (turbulent dissipation) or 𝜔 (specific dissipation), respectively. Among these 

three types of models, the two-equation models are commonly used. The 𝑘 − 𝜖 and SST 𝑘 − 𝜔 

models, the most popular two-equation models, are explained in detail.  

2.3.2.1 𝑘 − 𝜖 Two-equation model 

The 𝑘 − 𝜖 model represents the turbulent flow properties by solving two additional transport 

equations for 𝑘 and 𝜖. Several formulations of this model are available, starting from the earliest 

development effort of Chou [63] to the formulation of Launder and Sharma [64]. The form of the 

model presented in [64] is mostly used and typically referred as the Standard 𝑘 − 𝜖 model. The 

𝑘 − 𝜖 model has shown very good performance for many industrial relevant flows. The model 

gives satisfactory performance in thin shear layer flow problems with relatively small pressure 
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gradients and in confined flows where the Reynolds shear stresses are dominant. The 

implementation of 𝑘 − 𝜖 model in OpenFOAM for compressible flow is given by: 

𝜕(𝜌𝑘)
𝜕𝑡

+
𝜕(𝜌𝑢𝑖𝑘)
𝜕𝑥𝑖

= 𝑃𝑘 − 𝜌𝜖 +
𝜕
𝜕𝑥𝑖

��𝜇 +
𝜇𝑡
𝜎𝑘
�
𝜕𝑘
𝜕𝑥𝑖

�                                         (2.38) 

𝜕(𝜌𝜖)
𝜕𝑡

+
𝜕(𝜌𝑢𝑖𝜖)
𝜕𝑥𝑖

= 𝐶1𝜖
𝜖
𝑘
𝑃𝑘 − 𝐶2𝜖𝜌

𝜖2

𝑘
+

𝜕
𝜕𝑥𝑖

��𝜇 +
𝜇𝑡
𝜎𝜖
�
𝜕𝜖
𝜕𝑥𝑖

�                           (2.39) 

𝜇𝑡 = 𝐶𝜇𝜌
𝑘2

𝜖
,     𝑙0 =  

𝐶𝜇3/4𝑘3/2

𝜖
                                                      (2.40) 

where 𝑃𝑘 = 2𝜇𝑡𝑆іϳ𝑆іϳ is the production of turbulence. The constants used in the model are: 

𝐶1𝜖 = 1.44;    𝐶2𝜖 = 1.92;    𝐶𝜇 = 0.09;    𝜎𝑘 = 1;    𝜎𝜖 = 1.3                     (2.41)  

2.3.2.2 SST 𝑘 − 𝜔 Two-equation model 

The standard 𝑘 − 𝜖 has shown only moderate agreement in free turbulent flows e.g. wake, 

mixing layer and free jet flows. The model severely over-predicts the spreading rate of 

axisymmetric jets in stagnant surroundings. The model also does not show satisfactory 

performance in low Re number flows, flows with high spatial gradients and flows with an 

adverse pressure gradient, recirculation regions, large extra strains or stress anisotropy. The 

𝑘 − 𝜔 model presented by [65], eliminates most of the problems observed with the 𝑘 − 𝜖 model 

as it can be directly used in the near wall regions without any need of wall-damping functions in 

low Re number applications. However, this model also has a drawback that its performance is 

greatly dependent on the assumed free stream turbulence properties. This led to the development 

of SST 𝑘 − 𝜔 model [66,67] which combines the best features of the 𝑘 − 𝜖 and 𝑘 − 𝜔 models. 

This is a hybrid model which activates the standard 𝑘 − 𝜖 in the fully turbulent region far from 

the wall and the 𝑘 − 𝜔 model in the near wall region. The implementation of SST 𝑘 − 𝜔 model 

in OpenFOAM for compressible flow is given by: 

𝜕(𝜌𝑘)
𝜕𝑡

+
𝜕(𝜌𝑢𝑖𝑘)
𝜕𝑥𝑖

= 𝑃𝑘� − 𝛽∗𝜌𝜔𝑘 +
𝜕
𝜕𝑥𝑖

��𝜇 +
𝜇𝑡
𝜎𝑘1

�
𝜕𝑘
𝜕𝑥𝑖

�                               (2.42) 

𝜕(𝜌𝜔)
𝜕𝑡

+
𝜕(𝜌𝑢𝑖𝜔)
𝜕𝑥𝑖

=
𝛾
𝜈𝑡
𝑃𝑘 − 𝛽𝜌𝜔2 +

𝜕
𝜕𝑥𝑖

��𝜇 +
𝜇𝑡
𝜎𝜔1

�
𝜕𝑘
𝜕𝑥𝑖

� + (1 − 𝐹1) 2𝜌𝜎𝜔2
1
𝜔
𝜕𝑘
𝜕𝑥𝑖

 
𝜕𝜔
𝜕𝑥𝑖

 (2.43) 
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𝑃𝑘 = 𝜏𝑖𝑖
𝜕𝑢і
𝜕𝑥і

;     𝑃𝑘� = 𝑚𝑚𝑛(𝑃𝑘, 𝑐𝑚𝜖);   𝜇𝑡 =
𝐷1𝑘

𝑚𝐷𝑥�𝐷1𝜔,√2𝑆𝐹2�
 ;     𝑆 = �𝑆іϳ𝑆іϳ             (2.44) 

𝐹1 = 𝑡𝐷𝑛ℎ(𝐷𝑟𝑎14);     𝐹2 = 𝑡𝐷𝑛ℎ(𝐷𝑟𝑎22);    𝜏𝑖𝑖 =  𝜇𝑡 �
𝜕𝑢і
𝜕𝑥ϳ

+
𝜕𝑢ϳ
𝜕𝑥і

−
2
3
𝜕𝑢𝑘
𝜕𝑥𝑘

� −
2
3
𝜌𝑘𝛿іϳ      (2.45) 

𝐷𝑟𝑎1 = 𝑚𝑚𝑛 �𝑚𝐷𝑥 �
√𝑘
𝛽∗𝜔𝜔

,
500𝜈
𝜔2𝜔

� ,
4𝜌𝜎𝜔2𝑘
𝐶𝐷𝑘𝜔𝜔2

� ;  𝐶𝐷𝑘𝜔 = 𝑚𝐷𝑥 �2𝜌𝜎𝜔2
1
𝜔
𝜕𝑘
𝜕𝑥𝑖

 
𝜕𝜔
𝜕𝑥𝑖

, 1𝑅−10�   (2.46) 

𝐷𝑟𝑎2 = 𝑚𝐷𝑥 �2
√𝑘
𝛽∗𝜔𝜔

,
500𝜈
𝜔2𝜔

�  ,     𝑙0 =  
𝐶𝜇−1/4𝑘1/2

𝜔
                               (2.47) 

The transformation between the 𝑘 − 𝜔 and 𝑘 − 𝜖  models is obtained using 𝜑 = 𝐹1𝜑1 +

(1 − 𝐹1)𝜑2, where 𝜑1,𝜑2 stand for the coefficients of the 𝑘 − 𝜔 and 𝑘 − 𝜖 models respectively. 

The constants used in the model are: 

𝜎𝑘1 = 1.176,   𝜎𝜔1 = 2.000,   𝜅 = 0.41,     𝛾1 = 0.5532,    𝛽1 = 0.0750,     𝛽∗ = 0.09,   𝑐𝑚 = 10 

𝜎𝑘2 = 1.000,   𝜎𝜔2 = 1.168,   𝜅 = 0.41,      𝛾2 = 0.4403,    𝛽2 = 0.0828,     𝛽∗ = 0.09        (2.48)          

2.3.3 Large Eddy Simulation (LES) 

An intermediate method between RANS and DNS is known as Large Eddy Simulation (LES) 

method. The essence of this technique is that the larger eddies need to be filtered out and 

resolved directly while only the smaller eddies, which are nearly isotropic and have a universal 

behaviour with sizes below the defined filter width, should be modelled. This is contrary to the 

RANS method where all the turbulent structures are modelled. Instead of the time-averaging 

process used in the RANS method, a spatial filtering procedure is used to separate the smaller 

and larger eddies in the LES method. Due to spatial filtering, the information related to the 

smaller or filtered-out turbulent structures is lost. This and the effects of interactions between the 

smaller unresolved turbulent structures and the larger resolved ones produce the subgrid scale 

(SGS) stresses and need to be modelled by means of a subgrid scale model. For reactive flows, 

the SGS modelling becomes more difficult since the chemical reactions are characterized by 

propagating surfaces that are much thinner than the typical filter width. Thus the turbulence-

chemistry interactions demand considerable attention and need to be modelled entirely. In the 
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following paragraphs the filtering process will be described first and then the LES filtered 

equations will be presented.  

2.3.3.1 LES filtering 

In LES the spatial filtering operation is applied by means of a filter function 𝐹(�⃗� − �⃗�∗) as 

follows [68]: 

𝑞�(�⃗�) = � 𝑞
+∞

−∞
(�⃗�∗) 𝐹(�⃗� − �⃗�∗)𝑑�⃗�∗                                               (2.49) 

In three-dimensional LES computations, the commonly used spatial filters are: 

• Top-hat or box filter: 

𝐹(�⃗�) = 𝐹(𝑥𝑖) = �1/∆3, if|𝑥і| ≤
∆
2

, і = 1,2,3

0,  𝑜𝑡ℎ𝑅𝑟𝑒𝑚𝑠𝑅
                          (2.50) 

• Gaussian filter: 

𝐹(�⃗�) = 𝐹(𝑥𝑖) = �
6
𝜋∆2

�
3/2

 𝑅𝑥𝜕 �−
6
∆2

(𝑥12 + 𝑥22 + 𝑥32)�                     (2.51) 

Where (𝑥1, 𝑥2, 𝑥3) represent the spatial coordinates of the location �⃗� and ∆ is the filter width. The 

filter functions are defined such that their integral over the whole domain is equal to 1: 

� � � 𝐹(𝑥1, 𝑥2, 𝑥3)𝑑𝑥1
+∞

−∞

+∞

−∞

+∞

−∞
𝑑𝑥2𝑑𝑥3 = 1                          (2.52) 

For reactive flows, a density weighted Favre filtering process can be applied as: 

�̅�𝑞�(�⃗�) = � 𝜌𝑞
+∞

−∞
(�⃗�∗) 𝐹(�⃗� − �⃗�∗)𝑑�⃗�∗                                               (2.53) 

For anisotropic grids, the size of the filter width can be calculated as ∆= �∆𝑥1∆𝑥2∆𝑥3�
1/3

. 

2.3.3.2 LES filtered governing equations 

By applying the spatial filtering procedure defined above, the LES-filtered equations for mass, 

momentum, species, and energy can be obtained: 
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𝜕�̅�
𝜕𝑡

+
𝜕(�̅�𝑢і�)
𝜕𝑥і

  = 0                                                                   (2.54) 

𝜕(�̅�𝑢і�)
𝜕𝑡

+
𝜕��̅�𝑢і�𝑢ϳ��
𝜕𝑥ϳ

= −
𝜕
𝜕𝑥ϳ

��̅��𝑢і 𝑢ϳ�−𝑢і�𝑢ϳ��� +
𝜕𝜏іϳ�
𝜕𝑥ϳ

−
𝜕�̅�
𝜕𝑥і

+ 𝜌𝑓і����                      (2.55) 

𝜕��̅�𝑌𝑘� �
𝜕𝑡

+
𝜕��̅�𝑢і�𝑌𝑘� �
𝜕𝑥і

= −
𝜕
𝜕𝑥і

��̅��𝑢і 𝑌𝑘� −𝑢і�𝑌𝑘� �� −
𝜕𝚥і𝑘�

𝜕𝑥і
+ �̇�𝑘����                           (2.56) 

𝜕��̅�ℎ��
𝜕𝑡

+
𝜕��̅�𝑢і�ℎ��
𝜕𝑥𝑖

= −
𝜕
𝜕𝑥і

��̅��𝑢іℎ� − 𝑢і�ℎ��� +
𝐷𝜕
𝐷𝑡
����

−
∂𝑞і�
∂𝑥𝑖

+ 𝜏іϳ
∂𝑢і
∂𝑥ϳ

�������
+ �̇�� + 𝜌𝑢і𝑓і �������                 (2.57𝐷) 

where  

𝐷𝜕
𝐷𝑡
����

=
𝜕�̅�
𝜕𝑡

+ 𝑢і
𝜕𝜕
𝜕𝑥і

�������
                                                                             (2.57𝑏) 

The LES-filtered governing equations look similar to RANS equations with the difference that 

the overbar indicates spatially filtered flow variables. In Eqs. (2.55)-(2.57) the following terms 

need suitable closure models as discussed below: 

2.3.3.3 Modelling of Reynolds stresses �u і u ϳ� − u і�u ϳ�� 

The first term on RHS side of Eq. (2.55) is known as subgrid scale stresses and they are caused 

by the convective momentum transfer due to interactions of unresolved eddies. These stresses are 

modelled with a so-called SGS turbulence model. The closure of the SGS stress tensor can be 

obtained with a variety of methods, most of which use the local resolved velocity field. The eddy 

viscosity models, which are commonly used in the LES computations, describe the dissipation of 

energy from large to small scales through SGS viscous effects. These models are based on the 

Bousinessq approximation and assume a constant SGS eddy viscosity to represent SGS stresses 

in terms of resolved-flow strain rate. The commonly used eddy viscosity SGS models are the 

Smagorinsky model [69], the dynamic Smagorinsky model [70], one-equation eddy viscosity 

model [71], etc. The last of these models, as developed by Schumann [71] and further 

investigated by Fureby et al. [72], is used in the present work to close the SGS stresses. The one-

equation eddy viscosity model solves an additional transport for the SGS turbulent kinetic energy 

𝑘𝑠𝑠𝑠.  
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𝜕�̅�𝑘𝑠𝑠𝑠
𝜕𝑡

+
𝜕��̅�𝑢і�𝑘𝑠𝑠𝑠�

𝜕𝑥і
−

𝜕
𝜕𝑥і

�𝜇𝑚𝑓𝑓
𝜕𝑘𝑠𝑠𝑠
𝜕𝑥і

� = −�̅�𝑆𝑖𝑖𝐵𝑖𝑖 − 𝐶𝑚�̅�
𝑘𝑠𝑠𝑠

3
2

∆
                    (2.58) 

𝐵𝑖𝑖 =
2
3
𝑘𝑠𝑠𝑠𝛿𝑖ј − 2𝜈𝑠𝑠𝑠 �𝑆𝑖𝑖 −

1
3
𝑡𝑟�𝑆𝑖𝑖 �𝛿𝑖ј� ;    𝜇𝑠𝑠𝑠 = 𝐶𝑘�̅��𝑘𝑠𝑠𝑠∆  ; 𝜈𝑠𝑠𝑠 = 𝐶𝑘�𝑘𝑠𝑠𝑠∆       (2.59) 

where 𝜇𝑚𝑓𝑓 = 𝜇 + 𝜇𝑠𝑠𝑠 is the effective viscosity with 𝜇𝑠𝑠𝑠 and 𝜈∆ being eddy dynamic and 

kinematic viscosities respectively. In the present analysis the model coefficients 𝐶𝑚 and 𝐶𝑘 are 

taken to be 1.05 and 0.095 respectively. The sub-grid turbulent kinetic energy transport equation 

does not explicitly account for pressure dilatation effects (such a model is yet to be introduced in 

existing literature) but dilatation effects are implicitly included in the production and dissipation 

mechanisms of sub-grid turbulent kinetic energy transport equation. Although, the computational 

cost is increased by solving an additional equation, the method offers few advantages over the 

Smagorinsky model. The non-equilibrium effects in production and dissipation of 𝑘𝑠𝑠𝑠 are 

accounted for and the model makes sure that the SGS stresses disappear for laminar flow as 

𝑘𝑠𝑠𝑠 → 0. 

2.3.3.4 Modelling of species fluxes �𝑢і 𝑌𝑘� −𝑢і�𝑌𝑘� � and enthalpy 

fluxes �𝑢іℎ� − 𝑢і�ℎ�� 

The gradient hypothesis based model is commonly used to model turbulent fluxes of the 

unresolved fine structures: 

𝑢і 𝑌𝑘� −𝑢і�𝑌𝑘� = −
𝜈𝑠𝑠𝑠
𝑆𝑐𝑡

𝜕𝑌𝑘�
𝜕𝑥і

                                                      (2.60) 

𝑢іℎ� − 𝑢і�ℎ� = −
𝜈𝑠𝑠𝑠
𝑃𝑟𝑡

𝜕ℎ�
𝜕𝑥і

                                                         (2.61) 

The values of 𝑆𝑐𝑡 and 𝑃𝑟𝑡 are based on experience and chosen between 0.5-1. 

2.3.3.5 Modelling of filtered laminar diffusion fluxes 𝚥і𝑘�  
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The filtered laminar diffusion flux for species 𝚥і𝑘�  can be modelled using a simple gradient 

assumption i.e. 𝜌 �𝛼𝑘���𝜕𝑌𝑘� /𝜕𝑥і. 

2.3.3.6 Modelling of pressure velocity term 𝑢і(𝜕𝜕/𝜕𝑥і)�������������� 

The pressure velocity term 𝑢і(𝜕𝜕/𝜕𝑥і)�������������� is usually modelled as 𝑢і�(∂�̅�/ ∂xі). 

2.3.3.7 Modelling of filtered reaction rate �̇�𝑘���� 

The modelling of filtered reaction rate is discussed in detail in section 2.5. 

2.4 Basics of Premixed Combustion  

Combustion can be broadly classified as premixed combustion and non-premixed (or diffusion) 

combustion. These two broad classes of combustion are distinguished by the state of mixedness 

of the reactants. In premixed combustion, the oxidizer and fuel are mixed perfectly before the 

occurrence of a chemical reaction. The premixed flame is characterized by the propagation of a 

thin reaction zone, usually referred to as a flame, converting the reactants into hot products of 

combustion and leading to temperature and pressure rise in the direction of flame propagation. 

The premixed flames can also be classified according to the flow characteristics as laminar or 

turbulent flames. The turbulence results in the increased flame surface area, leading to faster 

flame propagation and consumption of the reactants. In this section, some basic concepts and 

different modelling methods of premixed combustion will be discussed.  

 

2.4.1 Rate of chemical reaction  

A chemical reaction may involve several species and many elementary reactions. For a chemical 

reaction with 𝑁 species reacting through 𝑀 elementary reactions, one can write for ϳ𝑡ℎ species in 

the і𝑡ℎ reaction: 
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�𝜗ϳі′
𝑁

ϳ=1

𝑋ϳ ⇋   �𝜗ϳі′′
𝑁

ϳ=1

𝑋ϳ          𝑓𝑜𝑟 і = 1,2, … . . ,𝑀                            (2.62) 

where 𝜗ϳі′  and 𝜗ϳі′′ are the stoichiometric coefficients of the reactants and products respectively. 

The net chemical reaction rate of each species in a multistep chemical reaction can be written as: 

�̇�ϳ = ��𝜗ϳі′′ − 𝜗ϳі′�
𝑀

і=1

�𝐾і′��𝑋ϳ�
𝜗ϳі
′

𝑁

ϳ=1

− 𝐾і′′��𝑋ϳ�
𝜗ϳі
′′

𝑁

ϳ=1

�                          (2.63) 

where 𝐾і′ and 𝐾і′′ represent the forward and reverse rate coefficients respectively and �𝑋ϳ� is the 

molar concentration. The rate coefficients can be calculated using the Arrhenius law: 

𝐾і = 𝐴і𝑇𝛽і𝑅𝑥𝜕 �−
𝑇𝑎і
𝑇
�                                                         (2.64) 

where 𝐴і, 𝛽і and 𝑇𝑎і represent the pre-exponential factor, temperature exponents and activation 

temperature for the reaction і. The computation of a premixed flame requires the calculation of 

the chemical reaction rate for all species. However, due to complex nature of the reacting system, 

the process is computationally expensive, preventing the method to be used for practical 

engineering situations. Therefore, the simplifications of chemistry and transport are required to 

tackle the complex problems. Poinsot and Veynante [55] have discussed various useful 

assumptions, for example, one-step chemistry mechanism, to simplify the problem. The intense 

non-linear nature of the mean reaction rate is preserved even after the simplification and it offers 

the greatest challenge in turbulent combustion modelling  

2.4.2 Laminar flame structure  

A structure of a typical one-dimensional (1D) laminar premixed flame is comprised of three 

regions: the preheat zone, the inner layer and the oxidation zone [2]. Figure 2.3 shows the 

structure of 1D methane-air laminar premixed flame where the flame is stationary and the 

reactants are entering the flame with a speed equal to the flame propagation speed 𝑠𝐿0 [2]. In the 

preheat zone, the temperature of the unburnt reactants is raised by heat transfer from the inner 

zone through thermal diffusion. However, chemical reaction does not occur in this region as the 

temperature  is  below  the  activation  temperature  of  the  chemical  reaction.  The  most  of the  
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Figure 2.3: The structure of a premixed methane-air flame [2]  

 
 

chemical reaction takes place in the inner zone where the temperature is higher than the 

activation temperature. The bulk of the chemical energy is released in this region. The inner zone 

is quite thin (approximately 0.1 times the laminar flame thickness at atmospheric pressure [2]) 

and it is followed by a much wider region of slow chemistry where the radicals are recombined 

in exothermic reactions. The balance of mass and heat diffusion maintains the three-zone flame 

structure. The thickness of the inner zone also determines different turbulent premixed regimes. 

The structure of the inner zone is affected by the turbulence when the smallest turbulent eddies 

are smaller than the thickness of the inner zone. The turbulent mixing would enhance heat 

conduction and diffusion of radicals out of it. The unburnt reactants from the preheat zone are 

transferred to the inner zone through mass diffusion, while the heat produced through chemical 

reactions occurring in both the inner and oxidation zones, is transferred into the preheat zone 

because of the temperature gradient. The ratio of thermal to mass diffusivity of a reactant 

mixture is given by Le number (Eq. 2.14).   
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2.4.3 Laminar flame properties: thickness and speed  

Defining and estimating the laminar flame thickness is an important parameter in the numerical 

modelling of premixed flames. It is not only used as a parameter in the combustion models, but 

also controls the required mesh resolution so that the flame structure is properly resolved. The 

flame thickness can be defined using many ways, as described in [55]. One way of defining the 

flame thickness is to use the distance over which the progress variable changes from 0.01 to 0.99 

and the calculated thickness is known the total flame thickness 𝛿𝐿𝑡. The limits are selected 

arbitrarily and this method would result in a thicker flame and can be misleading to determine 

the grid resolution [55]. A more useful way of calculating thickness is to use the temperature 

profile and compute the maximum gradient of temperature. The flame thickness calculated from 

this method is known as the thermal flame thickness: 

𝛿𝐿0 =
𝑇2 − 𝑇1

max ��𝜕𝑇𝜕𝑥��
                                                               (2.65) 

𝛿𝐿𝑡 and 𝛿𝐿0 can only be calculated during the post-processing of the flame front propagation 

results, for example, in a one-dimensional laminar flame study using a certain air-fuel mixture 

ratio.  The calculation  of  𝛿𝐿𝑡   and  𝛿𝐿0 is illustrated in Fig. 2.4. From scaling laws, another useful  

 
Figure 2.4: Calculation of thermal and total flame thicknesses for a premixed flame. 
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definition of the flame thickness, known as the Zeldovich thickness [73], can be constructed 

which depends on the laminar flame speed 𝑠𝐿0 and thermal diffusivity 𝛼𝑡ℎ, and can be calculated 

before the start of the actual simulation.  

𝛿𝐿 =
𝜆

𝜌𝑢𝐶𝑝𝑠𝐿0
=
𝛼𝑡ℎ
𝑠𝐿0

                                                        (2.66) 

In the present work, the Zeldovich thickness is used.  

Another important parameter in the modelling of premixed flames is the laminar flame speed 𝑠𝐿0, 

which is defined as the speed at which the flame front propagates towards the fresh unburnt 

mixture. It can also be defined as the magnitude of the fresh mixture velocity to keep the flame at 

the same spatial position, i.e. no propagation towards the reactants. As shown in Fig. 2.5, it is 

directed normal to the flame from products to reactants. The laminar flame speed can either be 

calculated experimentally [74,75] or estimated by algebraic expressions [55]. The classical 

analysis of Zeldovich, Frank-Kamenetski and von Karman (ZFK) or the analysis based on the 

Arrhenius expression [55], are used as the basis of most algebraic expressions. The expressions 

for  𝑠𝐿0,  using  these  methods  as  described  in  [55], are   proportional  to  the square root of the  

 

 

Figure 2.5: Laminar flame speeds when the flame propagation is (a) normal (b) oblique to the 

fresh gas flow. 
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product of the reaction and diffusion coefficients. Another useful way of calculating 𝑠𝐿0 is the 

numerical computation of 1D flames using detailed chemistry. In the present work, the 

experimental values of 𝑠𝐿0 are used in the numerical simulations of premixed flames.  

For a given fuel, the laminar flame speed 𝑠𝐿0 depends on the equivalence ratio, pressure and the 

initial temperature of the reactants. The influence of pressure and unburnt gas temperature on 𝑠𝐿0 

for selected fuels is described in the experimental studies [74,75]. Generally, 𝑠𝐿0 decreases with 

increasing pressure and increases with increasing fresh gas temperature, but the influence of 

changing temperature is stronger than pressure.  

 2.4.4 Effect of turbulence on flame front 

The practical industrial devices involve the reactive processes in a turbulent environment. The 

introduction of turbulence increases the rate of consumption of reactants and the rate of heat 

released to much greater values compared to those under laminar environment. Turbulence 

induces the wrinkling of the flame due to an interaction of eddies with the flame front and results 

in an increased flame propagation, which is known as the turbulent flame speed 𝑠𝑡. One of the 

simplest ways to study the effect of flame wrinkling on the flame propagation speed is to 

consider a 1D laminar flame propagating in the negative x-direction against the turbulent flow of 

fresh reactants as shown in Fig. 2.6. The flame wrinkling increases the flame area, therefore, the 

ratio of 𝑠𝑡 to 𝑠𝐿 is simply a ratio of the wrinkled flame front area to the laminar flame area: 

𝑠𝑡
𝑠𝐿

=
𝐴𝑡
𝐴𝐿

                                                                       (2.67) 

Many theoretical [76-79] and experimental [80-83] attempts have been made by several 

researchers to relate the turbulent flame speed to flow properties. The first model was presented 

by Damköhler [77] and can be written as: 

𝑠𝑡
𝑠𝐿

= 1 +
𝑢′

𝑠𝐿
                                                                       (2.68) 
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Figure 2.6: A schematics representation of a propagating flame front in a turbulent flow field   

 

Several researchers have also represented the ratio 𝑠𝑡/𝑠𝐿0 in terms of flow properties using a 

general power law of the form: 

𝑠𝑡
𝑠𝐿

= 1 + 𝐶 �
𝑢′

𝑠𝐿
�
𝑛

                                                                (2.69) 

where 𝐶 and 𝑛 can take a range of values [2]. When the turbulence intensity is small, or the 

flame thickness is smaller than the Kolmogorov scale, thus the turbulence can only wrinkle the 

flame but cannot disturb the inner laminar flame structure. This regime of premixed combustion 

is known as the wrinkled Flamelet regime. On the other hand, for high-intensity turbulence, the 

smallest turbulent eddies are smaller than the flame thickness. These eddies can enter into the 

preheat zone and enhance the transport of heat and radicals within the chemically inert preheat 

zone. This regime is known as the thin reaction zone regime. Different premixed combustion 

regimes will be discussed in detail in section 2.4.5.  Based on the scaling of laminar flame speed 

with the molecular kinematic viscosity: 

𝑠𝐿~ �
𝜈
𝜏𝑐
�
0.5

                                                                       (2.70) 

Damköhler [77] argued that 𝜈 in the thin reaction zone regime should be replaced with the 

turbulent kinematic viscosity and the turbulent flame speed can be written as: 
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𝑠𝑡~ �
𝜈𝑡
𝜏𝑐
�
0.5

                                                                       (2.71) 

From Eq. (2.70) and (2.71), a relation between 𝑠𝑡 and 𝑠𝐿 can be written as: 

𝑠𝑡
𝑠𝐿

~ �
𝜈𝑡
𝜈
�
0.5

                                                                       (2.72) 

The above paragraphs discussed the effect of turbulence on the flame front, however, the 

turbulent flow field can also be influenced by the combustion. The combustion is accompanied 

by a large temperature rise, which increases the kinematic viscosity and decreases the Re 

number, so the flow can be re-laminarized. On the other hand, the flow experiences flame 

generated turbulence due to a rapid acceleration through the thin flame front, hence, generating 

higher velocity fluctuations. The increment in the velocity through the flame front is significant 

(of the order of 4-5 m/s) for typical hydrocarbons flames [55]. Moreover, such flames have the 

typical flame thicknesses of the order of 0.1 mm, which means that the flow acceleration across 

the flame is occurring through a very thin region and thus modifies the turbulent flow field. The 

velocity and density changes also lead to a change in the vorticity field and results in the so-

called flame generated turbulence. However, the effects of flame fronts on turbulent field depend 

on different factors. Some flows experiences re-laminarization while a few studies suggest that 

the flow experiences an enhancement of the turbulent flow field when burning [55].    

2.4.5 Premixed combustion regimes 

In premixed combustion, different regime diagrams have been proposed to describe the 

turbulence-chemistry interactions. Borghi [84], Peters [2], Abdel-Gayed and Bradley [85], 

Poinsot and Veynante [55], Düsing et al. [86] and others have presented different forms of 

regime diagrams in terms of length and velocity scale ratios. Along with the length and velocity 

scale ratios, three dimensionless numbers, i.e. the turbulent Reynolds number, the Damköhler 

number and the Karlovitz number, are also used in this regime diagram to identify different 

combustion regimes. Figure 2.7a shows the regime diagram proposed by Peters [2], which plots 

the velocity ratio 𝑢′/𝑠𝐿0 versus length scale ratio 𝑙0/𝛿𝐿.  

The turbulent Reynolds number in terms of flame properties can be written as: 
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𝑅𝑅𝑡 =
𝑢′𝑙0
𝑠𝐿𝛿𝐿

                                                                       (2.73) 

𝑅𝑅𝑡 < 1 represents the laminar Flamelet regime in Fig. 2.7a. Because of the low turbulence 

level, this regime yields little interest in technical combustion devices. 

The turbulent Damköhler number represents the ratio of a characteristics flow or mixing time to 

a characteristics chemical time scale: 

𝐷𝐷 =
𝜏𝑓
𝜏𝑐

=
𝑙0𝑠𝐿0

𝛿𝐿𝑢′
                                                               (2.74) 

𝐷𝐷 ≫ 1 represents the fast chemistry regime where the rate of chemical reaction is faster than 

the fluid mixing rate. On the other hand, 𝐷𝐷 ≪ 1 represents a well-stirred reactor regime where 

the reaction rate is slower than the mixing rate.  

The Karlovitz number represents the ratio of chemical time scale to the Kolmogorov time scale 

and describes the turbulence-chemistry interaction on the smallest turbulent scales. It can be 

defined as: 

𝐾𝐷 =
𝜏𝑐
𝜏𝜂

= �
𝑢′

𝑠𝐿0
�
3/2

 �
𝛿𝐿
𝑙0
�
1/2

= �
𝛿𝐿
𝑙𝜂
�
2

                                             (2.75) 

Using 𝐾𝐷 and 𝐷𝐷, various combustion regimes can be identified in Fig. 2.7a. 𝐾𝐷 < 1 (𝐷𝐷 >1) 

represents the flamelet regime where the laminar flame thickness is small in comparison with the 

Kolmogorov scales. Turbulence can therefore only wrinkle the thin laminar flame, but cannot 

disturb the laminar flame structure. On the basis of the values of 𝑢′/𝑠𝐿0, the flamelet regime can 

be further be divided into two regimes i.e. the wrinkled flamelet (𝑢′/𝑠𝐿0 < 1) and the corrugated 

flamelet regime (𝑢′/𝑠𝐿0 > 1). The criterion for the existence of flamelet regime is sometimes 

referred to as the Williams-Klimov criterion [87] (𝐾𝐷 = 1). On the other hand 𝐾𝐷 > 1 

represents the thin reaction zone regime (TRZ) where the Kolmogorov scale gets smaller than 

the flame thickness but remains bigger than the reaction zone thickness, which can be estimated 

to be one order of magnitude smaller than the flame thickness. In this regime, the transport 

within the preheat region is increased by the turbulent mixing while the thin reaction zone retains 

a laminar structure. The most practical engineering systems are operated in the thin reaction zone 

regime, because the enhanced mixing leads to a higher heat release and shorter combustion 
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times. 𝐾𝐷 ≈ 100 represents the other extreme in the regime diagram where all the turbulent 

scales are smaller than the reaction zone thickness, which is known as broken reaction zone 

(BRZ) regime. The molecular processes become no longer responsible for the transport within 

the reaction zone, but solely controlled by the turbulence. The Karlovitz number can also be 

defined in terms of the reaction zone thickness which is typically 0.1𝛿𝐿, such that 𝐾𝐷𝛿can be 

written as: 

𝐾𝐷𝛿 = �
0.1𝛿𝐿
𝑙𝜂

�
2

= 0.01𝐾𝐷                                             (2.76) 

The 𝐾𝐷𝛿  can be used to divide the thin reaction zone regime and the broken reaction zone 

regime. 𝐾𝐷𝛿 > 1 represents the broken reaction zone regime. The broken reaction zone regime is 

usually avoided in the most practical engineering systems because of the noise, instabilities and 

flame extinction problems. 

The regime diagram presented by Peters [2], as shown in Fig 2.7a, is based on physical quantities 

only. A similar regime diagram for LES is proposed by Pitsch and Duchamp de Lageneste [88] 

and Pitsch [89] using the filter size ∆ as the length scale and the sub-filter velocity fluctuation 𝑢∆′  

as the velocity scale. This LES regime diagram introduces both physical and modelling 

parameters and describes the sub-filter turbulence-chemistry interactions. This regime diagram 

uses the ratio of filter width to laminar flame thickness ∆/𝛿𝐿 and the sub-grid Karlovitz number 

𝐾𝐷∆ as the axes of the diagram, as shown in Fig. 2.7b. The sub-filter Reynolds number, the 

Damköhler number and the Karlovitz number relevant in Fig. 2.7b can be defined by replacing 

𝑢′ and 𝑙0 with 𝑢∆′  and ∆, respectively.  

𝑅𝑅𝛥 =
𝑢𝛥′  𝛥
𝑠𝐿0𝛿𝐿

, 𝐷𝐷∆ =
𝛥 𝑠𝐿0

𝛿𝐿𝑢𝛥′  
, 𝐾𝐷∆ = �

𝑢𝛥′  
𝑠𝐿0
�
3/2

 �
𝛿𝐿
𝛥 
�
1/2

= �
𝛿𝐿
𝑠𝐿0

3 𝜖�
1/2

             (2.77) 

The second definition of 𝐾𝐷∆ in Eq. (2.77) is obtained by substituting the value of 𝑙𝜂 from Eq. 

(2.27) with 𝜈 = 𝑠𝐿0𝛿𝐿 into the length scale ratio definition of 𝐾𝐷 in Eq. (2.75). This shows that, 

although 𝐾𝐷∆ is defined in terms of physical and modelling parameters but it remains a physical 

quantity independent of filter width as the dissipation rate is constant within the inertial sub-

range. Therefore, in LES, for a given flow field and chemistry, 𝐾𝐷∆ is a fixed quantity such that 

the  changes  in  the  filter  width  are  counterbalanced by the subsequent changes in 𝑢∆′ . Another  
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Figure 2.7: Premixed combustion regime diagrams proposed by (a) Peters [2] (b) Pitsch [89] 

interesting feature of the LES regime diagram is that a transition between different combustion 

regimes is not observed as the filter width is changed at constant Karlovitz number. The 

influence of changing ∆ can be studied, by starting from any of the combustion regimes at large 

∆/𝛿𝐿. As ∆ is reduced, the 𝑅𝑅∆ eventually becomes smaller than one. This regime corresponds to 

the resolved turbulence regime as ∆ is smaller than the Kolmogorov scales. However, in order to 

resolve the entire flame including the reaction zone, the filter width should be much smaller than 

the reaction zone thickness.  

 2.5 Overview of Premixed Combustion models 
The main challenge in the numerical modelling of premixed flames using LES method, is the 

modelling of the filtered reaction rate. When the LES filtering process is applied, the effect of the 

unresolved turbulence on the flame front wrinkling is neglected. Another main challenge in the 

LES premixed combustion modelling is that a premixed flame is generally much smaller than the 

LES filter width ∆, as shown in Fig. 2.8. Thus for a major part of the regime diagram the flame is 

mostly on the sub-filter scale. The flame front cannot be resolved on typical LES mesh, which 

leads to numerical problems. A suitable modelling of the filtered reaction rate is the main task of 

premixed combustion modelling. In this section, different modelling methods based on the 

Flamelet assumption (i.e. assuming the flame front a thin surface separating burnt and fresh 

gases) will be discussed. 
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Figure 2.8: Comparison between premixed flame thickness and typical LES mesh size ∆ 

 

2.5.1 The Arrhenius approach 

The Arrhenius approach represents the reaction rate in terms of mean quantities. In LES, this is 

equivalent to compute the filtered reaction rate based on the resolved quantities. This approach 

neglects the effects of turbulence on the turbulent combustion by retaining only the first term in 

the Taylor series of the exponential function and discarding the subgrid scale fluctuations: 

�̇�� = �̇��(�̃�) = −𝐴�̅�(1 − �̃�)𝑅𝑥𝜕 �−
𝑇𝑎

𝑇𝑢 + (𝑇𝑏 − 𝑇𝑢)�̃�
�                                          (2.78) 

This model is applicable only in the low Damköhler limit where reactants burn slowly but mix 

rapidly and can be effectively used for a simple analysis. Nieuwstadt and Meeder [90] have used 

this approach for modelling chemical reactions in atmospheric boundary layers. However, in the 

context of premixed combustion, the model is inadequate [91] and can lead to significant errors 

of orders of magnitude [55].  

2.5.2 The eddy break-up model (EBU) 

The eddy break up model (EBU) was first proposed by Spalding [92]. Contrary to the Arrhenius 

model, the eddy break up model assumes that the turbulent structures control the reaction rate 
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and the chemistry does not play any explicit role. Thus, the model is applicable to fast chemistry 

regime, which is characterized by high Reynolds and Damköhler numbers. Based on these 

assumptions, the reaction rate can be written in terms of characteristic turbulent mixing time 𝜏𝑡 

and the temperature fluctuations 𝑇′2� = �̃�(1 − �̃�) [56]:   

�̇�� = 𝐶𝐸𝐸𝐸�̅�
�̃�(1 − �̃�)

𝜏𝑡
                                                         (2.79) 

where 𝐶𝐸𝐸𝐸 is a model constant. In the RANS context, the turbulence time 𝜏𝑡 can be calculated 

using the turbulent kinetic energy 𝑘 and its dissipation rate 𝜖: 

𝜏𝑡 =
𝑘
𝜖

                                                                       (2.80) 

The eddy break up model can also be extended for the context of LES: 

�̇�� = 𝐶𝐸𝐸𝐸�̅�
�̃�(1 − �̃�)
𝜏𝑡𝑠𝑠𝑠

                                                      (2.81) 

where 𝜏𝑡𝑠𝑠𝑠is the sub-grid turbulent time scale: 

𝜏𝑡𝑠𝑠𝑠 =
𝛥

�𝑘𝑠𝑠𝑠
                                                             (2.82) 

The sub-grid turbulent kinetic energy 𝑘𝑠𝑠𝑠 is modelled either using algebraic expressions or 

solving an additional transport equation for 𝑘𝑠𝑠𝑠 as discussed in section 2.3.3.3. The EBU model 

is attractive because of its simple formulation and its applications are found in most commercial 

codes. However, its basic form has an obvious shortcoming that the reaction rate is independent 

of chemical reaction. The model also tends to over-predict the reaction rate, especially in zones 

of high strain as 𝜖/ 𝑘 becomes large [55]. Another drawback is the model constant 𝐶𝐸𝐸𝐸, which 

depends on various parameters and needs to be adjusted for each test case. Said and Borghi [93] 

proposed some modifications of 𝐶𝐸𝐸𝐸to incorporate the chemical effects. Fureby and Moeller 

[94] coupled the EBU model and the Arrhenius law to limit the mean reaction rate using the 

chemistry effects.  
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2.5.3 The artificially thickened flame model (ATF) 

The artificially thickened flame model solves the issue of resolving the laminar premixed flame 

on an LES mesh by artificially modifying the transport-chemistry interaction to obtain a 

thickened flame that can be resolved on a given mesh, as shown in Fig 2.9. The flame is 

artificially thickened by multiplying the flame diffusivity by a constant factor. Then, the reaction 

rate needs to be divided by the same factor to obtain the same flame speed as in the un-thickened 

case. The model based on this principle was first presented by Butler and O’Rouke [6]. Based on 

the laminar premixed flame theories [95,96], the flame speed 𝑠𝐿 and the flame thickness 𝛿𝐿 can 

be written as: 

𝑠𝐿 ∝ �𝛼𝑡ℎ�̇�� ;        𝛿𝐿 ∝
𝛼𝑡ℎ
𝑠𝐿

= �
𝛼𝑡ℎ
�̇��

                                                 (2.83) 

It can be seen that when 𝛼𝑡ℎ is multiplied and �̇�� is divided by a thickening factor 𝐹, the flame 

speed remains constant but the flame thickness becomes 𝐹𝛿𝐿. Unfortunately, the thickening of 

the flame from 𝛿𝐿 to 𝐹𝛿𝐿 is accompanied by a change in the turbulence-chemistry  interactions as  

 

 

 
 
 

Figure 2.9: Schematic representation of the artificially thickened flame method  
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indicated by a decrement in the Damköhler number (Eq. (2.73)) by a factor F. This means that 

the thickened flame becomes more and more insensitive to turbulent motions as F is increased. 

The thickened flame experiences lesser wrinkling induced by the turbulent structure compared to 

the un-thickened flame.  Angelberger et al. [97] and Colin et al. [7] investigated these effects 

using DNS of flame/vortex interactions. They proposed that the reaction rate should be 

empirically modified by multiplying with an efficiency function 𝐸 to compensate for the loss in 

the flame wrinkling such that the thickened flame propagates with a turbulent speed of 𝐸𝑠𝐿. 

Assuming single step chemistry, the LES filtered progress variable transport equation, to model 

an artificially thickened flame model, can be written as: 

𝜕�̅��̃�
𝜕𝑡

+  
𝜕�̅�𝑢і� �̃�
𝜕𝑥і

 =
𝜕
𝜕𝑥і

 ��̅�𝐸𝐹𝛼𝑡ℎ
𝜕�̃�
𝜕𝑥і

� +
𝐸�̇��
𝐹

                                (2.84) 

Where the Arrhenius law is used to express �̇� [26,98]: 

�̇�� = 𝐴�̅�(1 − �̃�)𝑅𝑥𝜕 �−
𝑇𝑎
𝑇
�                                                   (2.85) 

The ATF model offers the advantage of modelling the situations of ignition, quenching, flame-

wall interaction and complex chemistry [55]. However, the artificial thickening modifies the 

interaction between chemistry and turbulence, such that the model performance depends on the 

proper estimation of thickening factor and the efficiency function to compensate for the loss of 

flame wrinkling.   

2.5.4 G-equation model  

Contrary to the ATF method, G-equation model assumes the flame thickness to be infinitely thin 

and the position of the flame front is described by an iso-level 𝐺∗, which separates the reactant 

domain into fresh (𝐺 > 𝐺∗) and burnt (𝐺 < 𝐺∗)  gas zones, as shown in Fig. 2.10. The transport 

equation for the field variable 𝐺 can be written as: 

𝜕�̅�𝐺�
𝜕𝑡

+
𝜕�̅�𝑢і�𝐺�
𝜕𝑥і

= 𝜌𝑢𝑠𝑡� |∇�̅�|                                                       (2.86) 
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Figure 2.10: Schematic representation of the G-equation method  

 

The comparison of above equation with the transport equation of the progress variable, Eq. 

(2.86), shows that the G-transport equation does not have a filtered molecular diffusion and sub-

grid scalar transport terms and the mean reaction rate is replaced by 𝜌𝑢𝑠𝑡� |∇�̅�|. Despite of the 

simple formulation of G-equation model, the absence of molecular diffusivity can lead to 

numerical difficulties. The numerical flame cusps can be formed, which require the addition of 

artificial diffusivity in the expression of 𝑠𝑡�  [98,99]. The inherent numerical diffusion present in 

some combustion codes may also smear out the flame cusps [100]. Kim et al. [101] and Im et al. 

[98] included the subgrid transport in the G-equation model and modelled it using a simple 

gradient hypothesis. The subgrid scale turbulent flame speed 𝑠𝑡�  needs to be properly modelled 

and its closure is generally based on Eq. (2.68): 

𝑠𝑡�
𝑠𝐿

= 1 + 𝐶 �
𝑢∆′

𝑠𝐿
�
𝑛

                                                                (2.87) 

where 𝑢∆′  is the subgrid scale turbulence level. 𝑠𝑡�  is not a well-defined quantity and lacks the 

availability of a universal mode [55]. Yakhot [102], Pocheau [103] and Kim et al. [101] 

developed and investigated the performance of algebraic models for 𝑠𝑡�  for an accurate prediction 

of the flame location. Peters [2] discussed a closure model for 𝑠𝑡�  appropriate for the corrugated 

Flamelet and thin reaction zone regimes. The model was further developed by Pitsch and De 
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Lagneste [88] for LES of turbulent Bunsen flames. Despite these limitations, the G-equation 

model is a popular method for premixed combustion modelling.  

 

2.5.5 Flame surface density model (FSD) 

The FSD method for LES was presented by Boger et al. [8]. Contrary to the G-equation model, 

which arbitrarily defines a G-field, the FSD model characterizes the premixed flame propagation 

in terms of physical quantities, such as the progress variable and the flame surface densities that 

can be extracted from DNS or experimental measurements. In RANS context, the FSD 

represents the mean flame surface area per control volume, while in LES context it represents the 

flame surface within the filter volume. In the LES filtered progress variable transport equation, 

the sum of filtered molecular diffusion term and the reaction can be described in terms of 

generalized flame surface density 𝛴𝑠𝑚𝑛. The term “generalized” is used here to refer to the 

independence of 𝛴𝑠𝑚𝑛 on any chosen progress variable contour. There are two well-established 

approaches for FSD modelling. In one approach, the FSD is modelled in terms of a transport 

equation [8,10-13], while the other approach involves an algebraic formulation [97,53,104-106]. 

The FSD method and some of the popular algebraic FSD models will be discussed in detail in 

chapter 4.   
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Chapter 3 

Numerical Methodology  

This chapter presents the numerical methodology used for the discretization of the set of 

equations of mass, momentum, energy and progress variable that were described in chapter 2. 

The set of aforementioned partial differential equations (PDEs) characterize the main flow 

variables that vary across time and space domains. In order to obtain a solution using a 

computational code, the set of PDEs is discretized on a computational grid and undergoes time 

and spatial advancement. The term discretization is defined as a process of approximating a 

problem into discrete quantities and converts a PDE that is usually non-linear, into a simple 

algebraic expression. The CFD package used in the present work is an open source software 

known as OpenFOAM.  

3.1 Spatial discretization 

3.1.1 Grid structure  

Figure 3.1a shows the spatial discretization of the space domain in OpenFOAM. The space 

domain is converted into a computational mesh that consists of a number of contiguous cells or 

control volumes and the PDEs are subsequently discretized on this mesh. The cells completely 

fill the domain and do not overlap one another. The code principally uses a collocated grid 

arrangement where the dependent variables and other properties are stored at the cell centroids. 

However, they may also be defined at the cell faces or vertices. The collocated grid needs more 

interpolation than the staggered grid as the quantities stored at cell faces must first be 

interpolated to the cell centres. However, the collocated arrangement offers greater simplicity in 

handling the different control volumes for different variables. It also minimizes the number of 

coefficients that must be calculated and stored. In OpenFOAM, an arbitrarily unstructured mesh 

can be created with no limitation on the number of faces bounding each cell nor any restriction 

on the alignment of each face. This gives greater freedom in spatial discretization, particularly 

when  the  geometry  of  the   domain is complex. Figure 3.1b shows a two-cell arrangement with  
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Figure 3.1: (a) Spatial discretization of the solution domain (b) Parameters in finite volume 
discretization   

 

centroids P and 𝑀. The surface connecting the two cells has surface area 𝑆𝑓 and normal unit 

vector 𝑛𝑓.  

3.1.2 Finite volume method  

The finite volume (FV) method and others such as finite difference and finite elements methods, 

all transform the set of PDEs into a system of linear algebraic equations. The FV method is 

commonly used in the modern CFD tools and also in OpenFOAM as a discretization method. It 

has gained high popularity in recent times because of the high flexibility it provides as a 

discretization method. The discretization can be performed directly in the physical domain 

without any requirement for transformation between the physical and computational coordinate 

systems. The adoption of collocated grid arrangement allowed this method to cover a wide range 

of applications from simple to complex geometries, while holding the simplicity of its 

mathematical formulation. The inherent conservation property in dealing with the face fluxes 

makes the FV method a preferred choice among modern CFD tools. Since the unknown variables 

are evaluated at the cell centres, the implementation of a variety of boundary conditions is quite 

easy [107]. A brief description of FV method is presented in the next paragraphs and the 

interested reader is referred to [107, 108] for more detail.  
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The FV discretization of each term of the PDEs is formulated by first doing an integration of the 

term over a cell volume. Then, the volume integrals of the most spatial derivative terms are 

replaced by integrals over the cell surfaces through the use of the Gauss’s theorem: 

�
𝜕
𝜕𝑥і

(∅) 𝑑𝑑
𝑉

=    �∅𝑛𝑖
𝑆

𝑑𝑆                                                           (3.1) 

where 𝑛𝑖 represents a normal vector pointing outwards from the control volume surface. The 

surface integral can be easily calculated as the sum over all cell surfaces:  

   �∅𝑛𝑖
𝑆

𝑑𝑆 = �∅𝑓𝑛𝑓𝑆𝑓
𝑓

                                                           (3.2) 

where 𝑓 represents the cell face with surface area 𝑆𝑓. With the application of the FV method, the 

general transport equation for a conserved scalar 𝑄 (setting ∅ = 𝜌𝑄 in Eq. (2.21)) can be written 

for a control volume 𝑃 as: 

� ��
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 𝑑𝑡      (3.3) 

Assuming that the control volumes do not change with time and using the Gauss’s theorem for 

the volume integral of the convective and diffusive terms, Eq. (3.3) can be written as: 
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 =  � [�̇�𝑃𝑑𝑃]

𝑡+∆𝑡

𝑡
 𝑑𝑡     (3.4) 

Since ∅ is stored at the cell centroid, it needs to be interpolated to the center of the cell surface in 

order to calculate the convective and diffusive fluxes in above equation. The diffusive fluxes are 

normally calculated using a second order central differencing scheme while a variety of 

interpolation schemes are available in OpenFOAM to evaluate the convective fluxes as discussed 

in the next section. The notation used in explaining these schemes is illustrated in Fig. 3.2. The 

mass and momentum equations can be discretized using a similar approach by setting ∅ equal to 

𝜌 and 𝜌𝑢𝑖 respectively.  
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Figure 3.2: Nomenclature for a 2D collocated grid showing cells in the North (N), West (W), 
East (E) and South (S) directions with respect to the control volume P. The upper case letters 
denote the cell centroids while lower case letters represent the cell faces.  

 

3.1.3 Convective fluxes (𝐹𝐶,𝑓) 

The convective flux for the east face, 𝑅, of the control volume 𝑃 can be written as: 

𝐹𝐶,𝑚 = ∅𝑚𝑢𝑚𝑛𝑚𝑆𝑚                                                                     (3.5) 

If the grid is equidistant, the normal velocity on the east face 𝑢𝑚 can be calculated using linear 

interpolation: 

𝑢𝑚 =
𝑢𝑃 + 𝑢𝐸  

2
                                                                    (3.6) 

The remaining term ∅𝑚 in Eq. (3.4) can be calculated using a variety of schemes, each of which 

hold varying degrees of order (accuracy) and stability. Only three basic schemes are described 

here, the interested readers are referred to [108] for detailed explanations of other schemes.   

The upwind differencing (UD) scheme is first order accurate and it determines ∅𝑚 from the 

direction of the flow. It is bounded at the expense of accuracy.  

∅𝑚 = �∅𝑃   𝑚𝑓𝑢𝑚 > 0 
∅𝐸    𝑚𝑓𝑢𝑚 < 0                                                                      (3.7) 
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A major inadequacy of this scheme is that it produces incorrect results, due to its diffusive 

nature, when the flow direction is oblique to the grid lines. The diffusive characteristic of UD 

scheme can be demonstrated by taking a Taylor series expansion of ∅𝑚 around point 𝑃. The first 

truncation term is ∆𝑥(𝜕∅/𝜕𝑥)𝑃 which resembles the diffusive flux and can lead to erroneous 

solutions.  

The central differencing (CD) scheme is second order accurate but un-bounded. For a uniformly 

spacing grid, ∅𝑚, using CD scheme can be written as: 

∅𝑚 =
∅𝑃 + ∅𝐸  

2
                                                                    (3.8) 

One of the major drawbacks of this scheme is its inability to identify the flow direction. The ∅𝑚 

is always influenced by both ∅𝑃 and ∅𝐸. In the case of strongly convective flow from west to 

east, this calculation gives erroneous results because the east cell face should get much stronger 

influencing from node 𝑃 than the node 𝐸. The central differencing scheme is normally used for 

the convective term in the momentum equation and is not ideal for the scalar transport equation 

as it can give undershoots and overshoots. The CD scheme is also less diffusive than the UD 

scheme, as the leading truncation term in the Taylor series expansion of  ∅𝑚 around point 𝑃 is of 

the order of ~𝑂(∆𝑥)2 contrary to UD schemes (~𝑂(∆𝑥)). It also shows that the truncation error 

reduces by a power of two and one in the CD and UD schemes, respectively, with the grid 

refinement. 

It has been described that an accurate and stable solution cannot be obtained using UD or CD 

schemes. Several high order schemes have been designed to overcome the inadequacies of the 

UD scheme but they produce oscillations or wiggles, which can give physically erroneous 

negative values and instability. The total variation diminishing (TVD) schemes are designed to 

overcome the aforementioned issue. In TVD schemes, the undesirable oscillatory behaviour is 

stabilized by adding an artificial diffusion part or weighting towards upstream contribution.  The 

general form of a TVD scheme can be written as: 

∅𝑚 = ∅𝑃 + 𝐵(𝑟)
∅𝑃 − ∅𝑊 

2
 ;  𝑟 =

∅𝐸 − ∅𝑃
∅𝑃 − ∅𝑊

                                        (3.9) 

where 𝑟 is the flux limiter function. A variety of flux limiter functions exist [112] and a few of 

them are given below: 
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• SMART limiter 

𝐵(𝑟) = max�0, min{2𝑟, 0.75𝑟 + 0.25,4}�                                    (3.10) 

• CHARM limiter 

𝐵(𝑟) =
𝑟(3𝑟 + 1)
(𝑟 + 1)2 ,   𝐵(𝑟) = 0 𝑓𝑜𝑟 𝑟 ≤ 0                                    (3.11) 

• Superbee limiter 

𝐵(𝑟) = max�0, min{2𝑟, 1}, min{𝑟, 2}�                                    (3.12) 

• Minmod limiter 

𝐵(𝑟) = max�0, min{𝑟, 1}�                                                  (3.13) 

After selecting an appropriate interpolation scheme, the total convective flux 𝐹𝐶,𝑃 for control 

volume 𝑃 can be calculated by summing the fluxes over all faces of the control volume.  

 

3.1.4 Diffusive fluxes (𝐹𝐷,𝑓) 

The diffusive flux for the east face, 𝑅, of the control volume 𝑃 can be written as: 

𝐹𝐷,𝑚 = 𝐷𝑚
𝜕∅𝑚
𝜕𝑥𝑖

𝑛𝑚𝑆𝑚                                                                       (3.14) 

where the diffusion coefficient 𝐷𝑚 is obtained by interpolating the values at the centers of cells 𝑃 

and  𝐸. The term 𝜕∅𝑚/𝜕𝑥1 can be calculated using a second order central differencing scheme: 

𝜕∅𝑚
𝜕𝑥1

=
∅𝐸 − ∅𝑀

∆𝑥
                                                                     (3.15) 

where ∆𝑥 is the distance between the cell centers 𝑃 and 𝐸. The total diffusive flux 𝐹𝐷,𝑃 for 

control volume 𝑃 can be obtained by summing the fluxes over all faces of the control volume. 

3.2 Temporal discretization 

Having discretized all the spatial terms, this section will discuss the temporal discretization of 

Eq. (3.3). If we represent all the spatial terms as 𝐴∅ for control volume 𝑃, Eq. (3.3) can be 

written as: 
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� ��
𝜕∅
𝜕𝑡𝑉𝑃

𝑑𝑑� 𝑑𝑡
𝑡+∆𝑡

𝑡
 =  � �� 𝐴∅

𝑉𝑃
𝑑𝑑�

𝑡+∆𝑡

𝑡
 𝑑𝑡                                                 (3.16) 

∅𝑃𝑛 − ∅𝑃0

∆𝑡
 𝑑𝑃∆𝑡 =  � 𝐴∗∅

𝑡+∆𝑡

𝑡
 𝑑𝑡                                                      (3.17) 

where  ∅𝑃𝑛 = ∅𝑃(𝑡 + ∆𝑡) and ∅𝑃0 = ∅𝑃(𝑡) and 𝐴∗ represents the spatial discretization of 𝐴. The 

time integral of the RHS term can be performed with three different ways as explained in the 

following sections. 

3.2.1 Euler implicit method 

This method is based on the implicit discretization of the spatial terms and uses the values at the 

current time step: 

� 𝐴∗∅
𝑡+∆𝑡

𝑡
 𝑑𝑡 = 𝐴∗∅𝑛∆𝑡                                                              (3.18) 

This form of temporal discretization offers boundedness and is unconditionally stable. However, 

it requires a system of linear equations to be solved and thus, needs greater computational time. 

This method is first-order accurate in time.  

3.2.2 Explicit method 

This method is based on the explicit discretization of the spatial terms and uses the values at the 

old time step: 

� 𝐴∗∅
𝑡+∆𝑡

𝑡
 𝑑𝑡 = 𝐴∗∅0∆𝑡                                                              (3.19) 

This method is also first-order accurate in time but it does not require solving a system of linear 

equations. However, it becomes unstable if the Courant number 𝐶𝑚 gets greater than 1. The 𝐶𝑚 is 

defined as: 

𝐶𝑚 =
𝑈𝑓∆𝑡
∆𝑥

                                                                        (3.20) 

where 𝑈𝑓 is the characteristic velocity, e.g. flow velocity.  
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3.2.3 Crank Nicholson method  

This method is based on the trapezoidal rule to discretize the spatial terms and uses the values at 

both old and current time steps: 

� 𝐴∗∅
𝑡+∆𝑡

𝑡
 𝑑𝑡 = 𝐴∗ �

∅𝑛 + ∅0

2
�∆𝑡                                                   (3.21) 

This form of temporal discretization does not offer boundedness of the solution, but is 

unconditionally stable. This method is second order accurate in time.  

3.3 Boundary conditions 

A computational grid is comprised of a series of internal and boundary faces. The latter coincide 

with the boundaries of the physical domain under consideration. All CFD problems require a 

suitable specification of initial and boundary conditions. Boundary conditions can be split into 

two basic types. 

3.3.1 Dirichlet boundary condition  

It specifies the value of the variable on the boundary. It is also known as fixed value boundary 

condition.  

3.3.2 Neumann boundary condition  

It specifies the gradient of the dependent variable normal to the boundary under consideration. It 

is also known as fixed gradient boundary condition.  

The most of the physical boundary conditions are defined in terms of the aforementioned two 

basic types of boundary conditions. For an incompressible flow, the physical boundaries are 

defined as described in the following sections. 
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3.3.3 Inlet boundary condition 

The inlet boundary conditions for the velocity field as well as other scalar variables like 

temperature, progress variable, etc. are specified by means of Dirichlet boundary condition. On 

the other hand, Neumann boundary condition is set for pressure at the inlet. For a turbulent case, 

a suitable method is required to provide a turbulent velocity field matching the data used for the 

validation of the CFD results.  

3.3.4 Outlet boundary condition  

Dirichlet boundary condition is used for pressure while Neumann boundary condition is 

specified for velocity and other variables at the outlet boundary condition.  

3.3.5 Wall boundary condition 

Dirichlet boundary condition is used for the velocity of the fluid in grid nodes conjoined with the 

walls, and for the walls, fluid velocity is set equal to the wall movement. In case of a fixed wall, 

the velocity of the fluid near the wall is zero. The pressure is specified with Neumann boundary 

condition as the flow flux through the solid wall is zero.  

3.3.6 Symmetry boundary condition  

The symmetry boundary condition features no flow and no scalar flux across the boundary. It is 

defined by specifying the component of the gradient normal to the plane to zero. The 

components parallel to the plane are projected on the symmetry plane from the inside of the 

domain.  

3.3.7 Periodic or cyclic boundary condition  

The periodic or cyclic boundary condition can be applied on two boundary faces by setting the 

flux of all flow variables leaving one boundary face equal to the flux entering the other boundary 

face.  
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For compressible flows at low Mach numbers, the physical boundaries are defined with the same 

approach as described above. However, the boundary conditions need to be modified for 

transonic and supersonic flows. For these cases, the interested reader is referred to [109].  

For turbulent flows, Dirichlet and Neumann boundary conditions are typically used at the inlet 

and outlet, respectively, for turbulence variables (𝑘 and 𝜖, for example). The wall boundary 

conditions depend on the form of the selected turbulence model and the near-wall treatment. 

 

3.4 Solution algorithm 

The solution of Eqs. (2.1) and (2.5) offers the issues of non-linearity of the momentum equation 

and pressure velocity coupling. The non-linearity is originated from the convective term of the 

momentum equation which contains the quantity 𝜌𝑢і𝑢ϳ. The set of equations are coupled as every 

velocity component appears in each momentum equation and in the continuity equation. The role 

played by the pressure also needs to be resolved as it appears in the momentum equation but a 

transport equation for the calculation of pressure is evidently not available in incompressible 

flows. These issues are resolved by using pressure-based iterative solution strategies such as the 

Pressure Implicit Splitting of Operator (PISO) for transient calculations or the Semi Implicit 

Method for Pressure-linked Equations (SIMPLE) algorithm for steady-state calculations. The 

pressure-based solvers (PISO/SIMPLE) were originally designed for the incompressible flows 

but they are now improved and can be used for compressible flows with low Mach numbers. 

This offers an advantage of using a unified solver which is valid over a wide range of flow 

regime. Many density-based solvers, where the velocity field, temperature and density are 

calculated with the momentum equation, energy equation and continuity equation respectively 

and the pressure is obtained from the ideal gas law, which are developed for highly compressible 

flows are extended to incompressible flows through preconditioning for the same reason. In the 

present work PISO method is used. Only a short description of the method is presented here, the 

interested readers are referred to [108] for detailed explanations. The working of the PISO 

algorithm can be summed up as follows: 

1. The boundary and initial conditions are set up for all field values. 

2. The discretized momentum equation is solved to compute an intermediate velocity field. 
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3. The mass fluxes are calculated at the cells faces. 

4. The pressure equation, deduced from the continuity equation, is solved. 

5. The mass fluxes are corrected at the cell faces. 

6. The velocities are corrected on the basis of the new pressure field. 

7. The boundary conditions are updated. 

8. The PISO loop starting from step 3 can be solved for the prescribed number of times. 

9. Using the pressure and velocity fields all the other equations in the system are solved. 

10. The time step is increased and the algorithm is repeated from step 1. 
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Chapter 4 

Combustion Model Development 

Turbulent premixed combustion at constant pressure can be characterised by the reaction 

progress variable 𝑐 =  (𝑇 − 𝑇𝑢)/(𝑇𝑏 − 𝑇𝑢), which is a normalised quantity that changes 

monotonically from 0 in reactants to 1 in completely burned products. Here subscripts ‘u’ and ‘b’ 

denote unburnt and burnt states. Under the assumptions of a unity Le number, adiabaticity and 

low Mach number, the Favre-filtered transport equation for 𝑐 can be written as: 

𝜕�̅��̃�
𝜕𝑡

+
𝜕�̅��̃�𝑢і�
𝜕𝑥𝑖

+
𝜕
𝜕𝑥𝑖

(�̅�𝑢і𝑐� − �̅�𝑢і� �̃�) =
𝜕
𝜕𝑥і

�𝜌𝛼
𝜕𝑐
𝜕𝑥і

��������
� + �̇��                               (4.1) 

where ρ, ui, α, 𝜔 ̇ represent the density, flow velocity vector, progress variable diffusivity, 

progress variable chemical reaction rate and the overbar denotes an LES filtering operation. 

Using the FSD concept, the sum of the molecular diffusion of the reaction progress variable and 

the LES filtered reaction rate can be written as: 

𝜕
𝜕𝑥і

�𝜌𝛼
𝜕𝑐
𝜕𝑥і

��������
� + �̇�� = (𝜌𝑆𝑚)�������𝑆𝛴𝑠𝑚𝑛   ≈  𝜌𝑢𝑠𝐿𝛴𝑠𝑚𝑛                                       (4.2) 

where Σ𝑠𝑚𝑛 = |∇𝑐|����� is the generalised FSD and the surface-filtered value of the density weighted 

displacement speed (𝜌𝑆𝑚)�������𝑆 is approximated as 𝜌𝑢𝑠𝐿, where the surface weighted filtering 

operation (. )𝑆����� is given by (𝑞)𝑆������ = 𝑞|𝛻𝑐|�������/|∇𝑐|����� [8]. This indicates that the filtered reaction rate 

closure depends on the proper modelling of Σ𝑠𝑚𝑛 and 𝑠𝐿. The generalised FSD can also be related 

to the subgrid scale wrinkling factor 𝛯 = |𝛻𝑐|����� / |𝛻𝑐̅|, with this Eq. (4.2) becomes: 

𝜕
𝜕𝑥і

�𝜌𝛼
𝜕𝑐
𝜕𝑥і

��������
� + �̇�� =  𝜌𝑢𝑠𝐿 𝛴𝑠𝑚𝑛 = 𝜌𝑢𝑠𝐿 𝛯 |𝛻𝑐̅|                                              (4.3) 

The fractal characteristic of premixed flames is well known and has been well proven 

experimentally. The wrinkling factor 𝛯 can be expressed in a form derived for a fractal-based 

method as proposed by Gouldin [23]: 
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𝛯 = �1 +
𝜀𝑚
𝜀𝑖
�
𝐷−2

                                                                 (4.4) 

where 𝜀𝑖, 𝜀𝑚 and 𝐷 denote inner and outer cut-off scales and fractal dimension of the premixed 

flame, respectively. The success and applicability of fractal-based models mainly depend on the 

availability of reliable models for the fractal dimension and cut-off scales.  

4.1 Original Keppeler FSD combustion model 

A short introduction of the Keppeler FSD combustion model is presented in section 1.2. The 

derivation and validation of the Keppeler LES subgrid combustion model were presented in 

detail in [53]. A short summary of the main ingredients of the model is provided here for the 

sake of completeness. Readers interested in the details of the model derivation and its validation 

are referred to [53]. 

The FSD is modelled assuming a fractal character of the flame folding as proposed by Gouldin et 

al. [23, 24]. The flame front 𝑆 per volume 𝐿3 wrinkled between an inner cut off scale 𝜀𝑖 and outer 

cut off scale L can be described as: 

𝑆
𝐿3

 ~ �
𝜀𝑖
𝐿
�
2−𝐷

𝐿−1                                                                (4.5) 

where 𝐷 is called the fractal dimension and it ranges close to 2 when the unresolved flame 

surface is smooth and becomes 3 when the control volume is completely filled by the unresolved 

surface. Gouldin et al. [24] in the RANS context utilized a probability density function: 

𝑃𝑐 =  �̃�(1 − �̃�) 
𝐿
𝛿𝑡

                                                                 (4.6) 

for finding a flamelet along the flame normal 𝑧. This ensures the probability of finding the flame 

surface within the turbulent flame brush thickness becomes 1. Using a proportionality 

constant 𝐶𝐾1, the FSD can be written as: 

𝛴 =  𝐶𝐾1 �
𝜀𝑖
𝐿
�
2−𝐷 �̃�(1 − �̃�) 

𝛿𝑡
                                                     (4.7)  

In the LES context, 𝑃𝑐 is interpreted as the subgrid filtered density function and 𝛿𝑡 becomes the 

locally resolved flame brush thickness. 
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Normally the filter width ∆ is used as an outer cut off scale. Here utilizing the Nyquist criteria, 

that at least 2 cells are required to resolve the largest non-resolved flame wrinkling length scale, 

the outer cut off scale is modelled as: 

𝜀𝑚 = 2.2𝛥                                                                         (4.8) 

Gülder and Smallwood [110] examined numerous experimental and DNS databases and reported 

that the non-dimensional inner cut off scale 𝜀𝑖/𝛿𝐿 is proportional to 𝐾𝐷𝛽 where 𝛽 is a constant 

that ranges between -1/2 ≤ 𝛽≤ -1/3. Additionally, the investigation of inner cut off scale for the 

Kobayashi database in [111] reported a scaling of 𝜀𝑖~𝛿𝐿𝐾𝐷−1/2. Therefore, the inner cut off 

scale is modelled as: 

𝜀𝑖 = max�𝛿𝐿𝐾𝐷∆
−1/2, 2𝛿𝐿�     where    𝐾𝐷𝛥 = �

𝑢𝛥′

𝑠𝐿0
�

3
2
�
𝛥
𝛿𝐿
�
−12

                            (4.9) 

and is limited to a value proportional to laminar flame thickness.  

The expression for the fractal dimension is developed based on the work of Giacomazzi et al. 

[112] and is limited to a maximum value of 8/3: 

𝐷 =
8/3𝐾𝐷𝛥  + 2𝐶𝐷
𝐾𝐷𝛥 + 𝐶𝐷

                                                              (4.10) 

A value of 0.03 is chosen for constant 𝐶𝐷 to obtain a good agreement with the expression 

developed for fractal dimension in [112]. A KPP-analysis of the present LES combustion model, 

as described, e.g. in Poinsot and Veynante [53], supports the use of an upper value of 8/3 for 

fractal dimension to get the correct pressure scaling at high turbulence values.  An upper value of 

8/3 is also reported by Chatakonda et al. [113] at high turbulence values. However, discrepancy 

in the upper values of fractal dimension is reported in experimental investigations, e.g [114]. The 

investigation of Constantin et al. [115] and Klimenko [116] clarified this discrepancy by 

indicating maximum values of about 8/3 in the fully turbulent inner portion of a jet and upper 

values of about 7/3 in the region mainly affected by the boundaries of the jet by Lagrangian 

investigations as well as experimental calculations.  

The maximum gradient method [50] in flame normal direction z is utilized to model the turbulent 

flame brush thickness: 
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𝛿𝑡−1 = max �
𝜕�̃�
𝜕𝑧
�                                                                   (4.11) 

Normalizing the flame normal direction with 𝛿𝑡 gives a universal profile of the progress variable 

in a fully developed turbulent flame brush, that can be approximated quite well by the 

complementary error function [50].  

�̃� = 1 −
1
2

 𝑅𝑟𝑓𝑐�𝜉√𝜋�                                                             (4.12) 

The slope of progress variable can be described as a function of the progress variable 𝐹(�̃�) =

𝜕�̃�/𝜕ξ by differentiating Eq. (4.12) with respect to the flame normalized flame normal 

direction ξ = (z − 𝑧0)/𝛿𝑡. The turbulent flame brush thickness can finally be written as: 

𝛿𝑡
−1 ≈  |𝛻�̃�| 𝐹(�̃�)−1                                                          (4.13) 

where 

𝐹(�̃�) = 𝑅−�𝑚𝑐𝑓𝑐−1�2(1−𝑐̃ )��
2
                                                      (4.14) 

In the implementation of the code, 𝐹(�̃�) is calculated by a simple polynomial fit: 𝐹(�̃�) = 𝐷1 −

𝐷2(�̃� − 0.5)2 − 𝐷3(�̃� − 0.5)4 with 𝐷1 = 0.995176, 𝐷2 = 2.81811 and 𝐷3 = 4.30724.  

The laminar flame speed takes different values when the flame is stretched (curved or strained or 

both). According to the asymptotic studies [78, 96, 102], the stretched flame structure in the limit 

of small strain and curvature terms depends on the stretch κ. In the present work, the linear 

theory of instabilities as described by Clavin [117] is utilized to model the stretched laminar 

flame speed: 

𝑠𝐿 = 𝑠𝐿0 −  𝑀𝐷𝑐 𝜅 𝛿𝐿                                                            (4.15) 

The change in the laminar flame speed from the un-stretched one occurs through a linear 

relationship and is proportional to the stretch κ, where Markstein number 𝑀𝐷𝑐 is the 

proportionality constant. The unknown parameters are estimated according to correlations of 

Müller et al. [118] and Gӧttgens et al. [119]. The stretch κ is estimated considering only strain 

effects. Following the work of Hawkes and Cant [12], the strain effects are calculated as: 

𝜅 ≈  𝜅𝑠 = �𝛿𝑖ј − 𝑛𝑖ј�
𝜕𝑢і�
𝜕𝑥ј

+ 𝛤 �
𝑘𝑠𝑠𝑠
𝑠𝐿0

,
𝛿𝐿
𝛥
�  
�𝑘𝑠𝑠𝑠
𝛥

                                          (4.16𝐷) 
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utilizing a modified efficiency function Γ as proposed by [120]. Here 𝛿𝑖ј is the Kronecker delta, 

𝑘𝑠𝑠𝑠 is the sub-grid scale turbulent kinetic energy, 𝑛іј = (𝑁і)�����𝑠�𝑁ј�������
𝑠

 + �𝛿𝑖𝑖 3⁄ �[1 − (𝑁𝑘)������𝑠(𝑁𝑘)������𝑠 ] 

is the flame orientation factor with (𝑁і)�����𝑠 = −(𝜕𝑐̅/𝜕𝑥𝑖)/𝛴 being the ith component of flame 

surface-weighted normal vector. The first and second terms in the RHS of Eq. (4.16a) arise due 

to the strain rates resulting from the resolved and unresolved scales respectively. The efficiency 

function Γ is calculated as: 

𝑙𝑜𝑎10( 𝛤) = −
1

𝑠 + 0.4
𝑅𝑥𝜕{−(𝑠 + 0.4)} + [1 − 𝑅𝑥𝜕{−(𝑠 + 0.4)}] �𝜎 �

𝑢𝛥′

𝑠𝐿0
� 𝑠 − 0.11�           (4.16𝑏) 

𝑠 = 𝑙𝑜𝑎10 �
𝛥
𝛿𝐿
� ;  𝜎 �

𝑢𝛥′

𝑠𝐿0
� =

2
3 �

1− 0.5𝑅𝑥𝜕 �−�
𝑢𝛥′

𝑠𝐿0
�
1/3

�� ;  𝑢𝛥′ = �
2
3
𝑘𝑠𝑠𝑠�

0.5
                (4.16𝑐) 

Putting all modelled parameters in Eq. (4.7), the FSD can finally be written as: 

𝛴 = 𝐶𝐾1 �
2.2𝛥

max (𝛿𝐿𝐾𝐷𝛥
−1/2, 2𝛿𝐿)

�
𝐷−2

�̃�(1 − �̃�)|𝛻�̃�|𝐹(�̃�)−1               (4.17) 

where 𝐶𝐾1 = 4.5 provides the best agreement in the validation of numerical results with 

experimental data.  

The blending functions as proposed by Chakraborty and Klein [51] are used to obtain the 

theoretically exact behaviour of Eq. (4.17) [𝛴 → |𝛻�̃�|] in the limit of fully resolved wrinkling: 

𝛴 = �exp�
−𝛥
𝜀𝑖

Ө� + �1 − exp�
−𝛥
𝜀𝑖

Ө��𝐶𝐾1 �
2.2𝛥

max (𝛿𝐿𝐾𝐷∆
−1/2, 2𝛿𝐿)

�
𝐷−2

�̃�(1 − �̃�)𝐹(�̃�)−1� |𝛻�̃�|(4.18) 

Following [49], Ө = 2.5 is used. 

4.2 Simplified Keppeler FSD combustion model  

The model Eq. (4.17) can be simplified by examining a plot of �̃�(1 − �̃�), 𝐹(�̃�) and �̃�(1 −

�̃�)𝐹(�̃�)−1 versus c�. It is shown in Fig. 4.1 that the product of �̃�(1 − �̃�)𝐹(�̃�)−1 in Eq. 4.17 is 

nearly constant with a value of around 0.22 over the whole range of �̃�. The expression �̃�(1 −

�̃�)𝐹(�̃�)−1 has maximum and mean values of around 0.25 and 0.22 respectively. The  value  drops  
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Figure 4.1:   Evaluation of �̃�(1 − �̃�), 𝐹(�̃�) and �̃�(1 − �̃�)𝐹(�̃�)−1 

 

to zero at the extreme ends of �̃�, but this occurs at �̃� ≈ 0 and �̃� ≈ 1. Incorporating this finding in 

Eq. (4.17) yields a simplified combustion model: 

𝛴 = �
2.2𝛥

max (𝛿𝐿𝐾𝐷𝛥
−1/2, 2𝛿𝐿)

�
2−𝐷

|𝛻�̃�| =  𝛯 |𝛻�̃�|                                   (4.19) 

The model Eq. (4.19) is simpler and with a model constant of 1. Also, it shows a correct 

behaviour in the limit of fully resolved flame wrinkling, so no correction or blending functions 

are required. This eliminated any possible numerical effects produced with the blending 

functions. With the simplified model, there is no need to calculate the slope of progress variable 

as a function of the progress variable 𝐹(�̃�). The model Eq. (4.19) can also be used to make an 

analytic evaluation of flame wrinkling factor (𝛯 = 𝛴/|𝛻�̃�|). However, it is important to note that 

the simplified Eq. (4.19) is obtained by approximating the product of the terms 𝐶𝐾1�̃�(1 −

�̃�)𝐹(�̃�)−1 to 1.0. Thus, it is expected that the simplified model underestimates the values of FSD 

as compared with Eq. (4.17). On very fine grids with filter width below the flame thickness 

(∆ <  𝛿𝐿), Eq. (4.19) gives wrinkling factor less than one. This situation can be avoided using 

blending functions as used in Eq. (4.18). However, this situation would appear on approaching a 

DNS grid resolution (∆ <  0.1 mm) where a flame is fully resolved. In chapter 6, the 

performance of the simplified version of the original LES model is discussed and compared to 

the original model. The numerical results are validated with the experimental database of 

Kobayashi et al. [47,83].  
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4.3 Subgrid scalar flux modelling  

The other term, which needs to be modelled in Eq. (4.1), is the subgrid scalar transport �𝐹𝑖
𝑠𝑠 =

�̅�𝑢і𝑐� − �̅�𝑢і� �̃��. In the original and simplified Keppeler models, it is modelled using the gradient 

hypothesis: 

 𝐹𝑖
𝑠𝑠 =  −�̅�

𝜈𝑠𝑠𝑠
𝑆𝑐𝑡

 
𝜕�̃�
𝜕𝑥𝑖

                                                                   (4.20) 

here Sct and 𝜈𝑠𝑠𝑠 denote the turbulent Schmidt number and subgrid scale kinematic viscosity.  

The counter gradient subgrid scalar fluxes are not explicitly modelled when using the gradient 

hypothesis based model. It has been shown in many theoretical, experimental and Direct 

Numerical Simulations (DNS) studies that the turbulent sub-grid scalar flux (SGSF) can exhibit 

counter gradient behaviour under some conditions. In the present work, the performance of the 

original Keppeler model is investigated with subgrid scalar flux models presented by Huai et al. 

[45] (see Eq. (4.21)) and Clark et al. [46] (see Eq. (4.22)), which showed satisfactory 

performance in a-priori analysis of different subgrid scalar flux models [43,44].  

𝐹𝑖
𝑠𝑠 = −�̅�𝜈𝑠𝑎𝑠𝑆𝑐𝑡−1(𝜕�̃�/𝜕𝑥𝑖) + �̅� 𝐷𝑎𝑛𝛥2𝑆і𝑘�(𝜕�̃�/𝜕𝑥𝑘)                             (4.21) 

𝐹𝑖
𝑠𝑠 = �̅�(𝛥2/12)(𝜕𝑢і�/𝜕𝑥𝑘)(𝜕�̃�/𝜕𝑥𝑘)                                                          (4.22) 

In Eq. (4.21), 𝐷𝑎𝑛 is model parameter, which is taken to be 0.14 [45, 51] in the present analysis. 

The SGFS model by Clark et al. [46] explicitly accounts for the relative alignment of the 

resolved velocity gradients and scalar gradients. Thus, the model inherently takes into account 

the possibility of dominance of the transport due to turbulent velocity fluctuations over the 

transport due to flame normal acceleration and vice versa. This behaviour, which can also be 

explained based on a scaling analysis [44], makes the model to predict both gradient and counter-

gradient type transport. Similar to the Clark model, the SGSF model according to Huai et al. [45] 

also addresses the relative alignment between resolved strain rate and scalar gradients and thus 

takes into account the local flame normal acceleration effects. The model can predict both 

gradient and counter-gradient type transport depending on the relative strength of turbulent 

velocity fluctuation and flame normal acceleration. It can be seen from Eqs. (4.21) and (4.22) 

that the CGT components of all the SGSF models considered here disappear in the limit of ∆→ 0  
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(i.e. when the flow is completely resolved). The models given by Eq. (4.20), Eq. (4.21) and Eq. 

(4.22) are referred to as GRAD, HUAI and CLARK respectively in this work. The performance 

of the original Keppeler model with GRAD, HUAI and CLARK models is discussed in detail in 

Chapter 6.  

Richard [121] and Richard et al. [13] used a different model for 𝐹𝑖
𝑠𝑠(see Eq. (4.23)) as proposed 

by Rymer [122]. Boger [123] and Weller et al. [124] considered a model similar to Eq. (4.23) but 

multiplying the term responsible for counter-gradient transport (CGT) by wrinkling factor 𝛯  (see 

Eq. (4.24)) 

𝐹𝑖
𝑠𝑠 = −�̅�

𝜈𝑠𝑠𝑠
𝑆𝑐𝑡

 
𝜕�̃�
𝜕𝑥𝑖

− 𝜌𝑢𝑠𝐿 𝑁і (𝑐̅ − �̃�)                                                   (4.23) 

𝐹𝑖
𝑠𝑠 = −�̅�

𝜈𝑠𝑠𝑠
𝑆𝑐𝑡

 
𝜕�̃�
𝜕𝑥𝑖

− 𝜌𝑢𝑠𝐿 𝛯 𝑁і (𝑐̅ − �̃�)                                               (4.24) 

where 𝑁і = −∇𝑐̅/|∇𝑐̅| = −∇�̃�/|∇�̃�| is the normal to the iso-surface of the filtered progress 

variable. The models given by Eq. (4.23) and Eq. (4.24) are referred to as RICHARD and 

WELLER models, respectively, in this work. Due to increased extent of subgrid scale wrinkling 

with increasing ∆, the wrinkling factor takes a greater magnitude for larger values of ∆. This 

suggests that contribution due to CGT in the WELLER model takes a greater magnitude as 

compared to the contribution in the RICHARD model, especially for larger values of ∆. For 

small values of ∆, where 𝛯 ≈ 1, the performance of the RICHARD and WELLER models 

remain close to each other.  

Tullis and Cant [124] (see Eq. (4.25)) and Rymer [123] (see Eq. (4.26)) extended the RANS 

model by Venante et al. [35] and proposed the following models for 𝐹𝑖
𝑠𝑠.  

𝐹і
𝑠𝑠 = −𝛼𝐸�̅�

𝜈𝑠𝑠𝑠
𝑆𝑐𝑡

 
𝜕�̃�
𝜕𝑥𝑖

− �̅�𝑠𝐿 𝛯 𝑁і𝜏 �̃�(1 − �̃�)                                            (4.25) 

𝐹і
𝑠𝑠 = −𝛼𝐸�̅�

𝜈𝑠𝑠𝑠
𝑆𝑐𝑡

 
𝜕�̃�
𝜕𝑥𝑖

− �̅�𝑠𝐿 𝑁і𝜏 �̃�(1 − �̃�)                                             (4.26) 

where 𝛼𝐸 is the efficiency function included to account for the effects of subgrid scale Schmidt 

number and the wrinkling that the turbulent eddies can produce. It ranges from the order of unity 

to zero when the turbulent structures are too small to wrinkle the flame front. For the present 
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work 𝛼𝐸 = 1 is used. The scalar transport due to velocity fluctuations and flame normal 

acceleration are presented by first and second terms on RHS of Eqs. (4.25) and (4.26). The 

models given by Eq. (4.25) and Eq. (4.26) are referred to as TULLIS and RYMER models, in 

this work, respectively. Similar to the WELLER model, the TULLIS model predicts a greater 

magnitude of CGT due to the presence of 𝛯 as compared to the corresponding contribution in the 

RYMER model. For small values of ∆, the predictions of the TULLIS and RYMER models 

remain close to each other but their predictions differ from each other for large values of ∆. 

Moreover, using a BML model-type Flamelet flame density function (FDF) 𝑐̅ = (1 + 𝜏)�̃�/(1 +

𝜏�̃�), 𝜌𝑢(𝑐̅ − �̃�) can be transformed into �̅�𝜏�̃�(1 − �̃�), where �̅� = 𝜌𝑢/(1 + 𝜏�̃�). Thus the second 

term on RHS of the WELLER (RICHARD) model approaches to the second term on RHS of the 

TULLIS (RYMER) model.  

4.4 Investigation of Pressure and Le number effects 

in different FSD models 

In Chapter 6, the performance of some the well-known SAFSD models, available in open 

literature, is examined under high-pressure conditions and non-unity Le number. The selected 

models are developed by Angelberger et al. [97], Fureby [104], Muppala et al. [105] and Zimont 

[106]. The original Keppeler model, which showed good performance for turbulent Bunsen 

flames over a wide range of turbulence and pressures between 1 and 20 bar, is also investigated 

for Le number dependency. The numerical results are compared with the broad set of 

experimental data of Kobayashi et al. [47,82,83]. The selected models are referred in the rest of 

the paper with the last name of the first author mentioned in the original work. 

Angelberger et al. [97] developed their model based on a DNS study of flame stretch and vortex 

pair interaction [117] and expressed 𝛯 in the following form:  

𝛯 = �1 + 𝐶𝐴 𝛤 
𝑢𝛥′

𝑠𝐿
�                                                                       (4.27) 

where 𝐶𝐴 = 1 is a model constant and 𝛤 is the efficiency function, which accounts for the net 

straining effect of all the vortices smaller than the LES filter width ∆. This parameter is modelled 

as:  
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𝛤 = 𝐴 ∗ 𝑅𝑥𝜕 �
−𝐵

(𝑢𝛥′ /𝑠𝐿)0.3� ∗ �
𝛥
𝛿𝐿
�
2/3

                                                       (4.28) 

where 𝐴 =0.75 and 𝐵 =1.2.  

Fureby [104] developed his model based on the fractal approach to model 𝛯, which is given by 

Eq. (4.4). In this model the inner and outer cut-off scales, fractal dimension and wrinkling factor 

are modelled with the following expressions: 

𝜀𝑖 =
𝑠𝐿 𝛥
𝑢𝛥′  𝛤

                                                                                  (4.29𝐷) 

𝜀𝑚 = ∆                                                                                    (4.29𝑏) 

𝐷 =
2.05𝑠𝐿
𝑢𝛥′ + 𝑠𝐿

+
2.35𝑢𝛥′

𝑢𝛥′ + 𝑠𝐿
                                                                     (4.29𝑐) 

𝛯 = �1 +
𝛤 ∗ 𝑢𝛥′

𝑠𝐿
�
𝐷−2

                                                               (4.29𝑑) 

Zimont and Lipatnikov [106] used the expression for Σ𝑠𝑚𝑛 as a function of 𝑢Δ′  and the Damköhler 

number Da.  

𝛯 = �1 + 𝐶𝑍  �
𝑢𝛥′

𝑠𝐿
�
3/4

�
𝛥
𝛿𝐿
�
1/4

�                                                            (4.30) 

where 𝐶𝑍 = 0.51 is a model constant. The model was initially derived for RANS simulations and 

for high turbulence cases. For additional details about the models, the reader is referred to the 

original papers where these models have been presented.  The key features of all the models used 

in the present study are summarised in Table 4.1. 

4.5 RANS version of the Keppeler model 

In section 4.4, the development of the Keppeler model in the LES context is presented. This 

model has shown a satisfactory performance in applications where a correct prediction of 

turbulent flame speeds with changing pressure is important. It would be interesting to see the 

applicability of the same reaction closure with suitable modifications in the RANS context. 
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Table 4.1: Summary of the selected algebraic FSD models 

 
Model name Original version Tuned version 

 
Angelberger 
[97] 

 

𝛤 = 𝐴 ∗ 𝑅𝑥𝜕 �
−𝐵

(𝑢𝛥′ /𝑠𝐿)0.3� ∗ �
𝛥
𝛿𝐿
�
2/3

 

𝐴 = 0.75       𝐵 = 1.2 

𝛯 = �1 + 𝐶𝐴 𝛤 
𝑢𝛥′

𝑠𝐿
�     

𝐶𝐴 = 1.0       

 

𝛤 = 𝐴 ∗ 𝑅𝑥𝜕 �
−𝐵

(𝑢𝛥′ /𝑠𝐿)0.3� ∗ �
𝛥
𝛿𝐿
�
2/3

 

𝐴 = 9.5       𝐵 = 1.2 

𝛯 = �1 + 𝐶𝐴 𝐶𝐿𝑚 𝐶𝑝 𝛤 
𝑢𝛥′

𝑠𝐿
�          

𝐶𝐴 = 0.4  ,  𝐶𝐿𝑚 =
1
𝐿𝑅

,𝐶𝑝 = �
𝜕
𝜕𝑚
�
𝑛

 

 
Fureby [104] 

 

𝐷 =
2.05𝑠𝐿
𝑢𝛥′ + 𝑠𝐿

+
2.35𝑢𝛥′

𝑢𝛥′ + 𝑠𝐿
 

𝛤 = 𝐴 ∗ 𝑅𝑥𝜕 �
−𝐵

(𝑢𝛥′ /𝑠𝐿)0.3� ∗ �
𝛥
𝛿𝐿
�
2/3

 

𝐴 = 0.75       𝐵 = 1.2 

𝜀𝑖 =
𝑠𝐿 𝛥
𝑢𝛥′  𝛤

;   𝜀𝑚 = 𝛥 

 𝛯 = �1 +
𝜀𝑚
𝜀𝑖
�
𝐷−2

 

 

𝐷 =
8/3𝐾𝐷𝛥  + 2𝐶𝐷
𝐾𝐷𝛥 + 𝐶𝐷

 

𝛤 = 𝐴 ∗ 𝑅𝑥𝜕 �
−𝐵

(𝑢𝛥′ /𝑠𝐿)0.3� ∗ �
𝛥
𝛿𝐿
�
2/3

 

𝐴 = 9.5       𝐵 = 1.2 

𝜀𝑖 = max�
𝑠𝐿  𝛥
𝑢𝛥′  𝛤

, 𝛿𝐿� ;   𝜀𝑚 = 𝛥 

𝛯 =  𝐶𝐿𝑚 �1 +
𝜀𝑚
𝜀𝑖
�
𝐷−2

;    𝐶𝐿𝑚 = 1/𝐿𝑅 

 
Keppeler 
[53] 

 

𝐷 =
8/3𝐾𝐷𝛥  + 2𝐶𝐷
𝐾𝐷𝛥 + 𝐶𝐷

 

𝜀𝑖 = max �𝛿𝐿𝐾𝐷𝛥
−1/2, 2𝛿𝐿� 

𝛯 = �
2.2𝛥
𝜀𝑖

�
𝐷−2

 

 

𝐷 =
8/3𝐾𝐷𝛥  + 2𝐶𝐷
𝐾𝐷𝛥 + 𝐶𝐷

 

𝜀𝑖 = max �𝛿𝐿𝐾𝐷∆
−1/2, 2𝛿𝐿� 

𝛯 =  𝐶𝐿𝑚 �
2.2𝛥
𝜀𝑖

�
𝐷−2

;   𝐶𝐿𝑚 = 1/𝐿𝑅 

 
Zimont 
[106] 

 

𝛯 = �1 + 𝐶𝑍  �
𝑢𝛥′

𝑠𝐿
�
3/4

�
𝛥
𝛿𝐿
�
1/4

� 

𝐶𝑍 = 0.51 

 

𝛯 = �1 + 𝐶𝑍 𝐶𝐿𝑚 𝐶𝑝 �
𝑢𝛥′

𝑠𝐿
�
3/4

�
𝛥
𝛿𝐿
�
1/4

� 

𝐶𝑍 = 1.2,  𝐶𝐿𝑚 =
1
𝐿𝑅

,𝐶𝑝 = �
𝜕
𝜕𝑚
�
𝑛

 

 

Lipatnikov and Chomiak [126], Veynante and Versich [127] and Bray et al. [128] have carried 

out an extensive evaluation and review of RANS models for premixed combustion modelling. 



81 
 

Several LES premixed combustion models based on the FSD approach, as investigated in [51, 

52], have a direct counterpart in the context of RANS approach. This situation can provide a 

good basis for investigating the pros and cons of the LES and RANS modelling approaches. 

Hence, a RANS version of the Keppeler model is developed and its performance is investigated 

in comparison with the LES version. The results are presented in Chapter 6.  

The Keppeler model is transformed into the RANS context by replacing the subgrid scale 

quantities, e.g. subgrid scale velocity fluctuations 𝑢Δ′  and the filter width ∆ with total velocity 

fluctuations 𝑢′ and the integral length scale 𝑙0 . With these changes, the inner and outer cut-off 

scales, fractal dimension and wrinkling factor expressions in the RANS model can be written as: 

𝜀𝑖 = max�𝛿𝐿𝐾𝐷−1/2, 2𝛿𝐿�     𝑒ℎ𝑅𝑟𝑅    𝐾𝐷 = �
𝑢′

𝑠𝐿0
�

3
2
�

  𝑙0 

𝛿𝐿
�
−12

                                       (4.31) 

𝜀𝑚 =   𝑙0                                                                           (4.32) 

𝐷 =
8/3𝐾𝐷 + 2𝐶𝐷
𝐾𝐷 + 𝐶𝐷

                                                              (4.33) 

𝛴 = 𝐶𝐾1 �
  𝑙0 

max (𝛿𝐿𝐾𝐷−1/2, 2𝛿𝐿)
�
𝐷−2

�̃�(1 − �̃�)|𝛻�̃�|𝐹(�̃�)−1               (4.34) 

It has been found that the RANS Keppeler model under-predicts the turbulent flame speed values 

when compared with the corresponding experimental data.  A new model constant  𝐶𝐾2 = 1.4 

provides the best agreement in the validation of numerical results with the experimental data. 

Along with 𝐶𝐾2, Eq. (4.34) requires the blending functions (as used in Eq. (4.18)). 

𝛴 = �exp �−
  𝑙0 

𝜀𝑖
Ө� + �1 − exp �−

  𝑙0 

𝜀𝑖
Ө�� 

𝐶𝐾1𝐶𝐾2 �
  𝑙0 

max (𝛿𝐿𝐾𝐷∆
−1/2, 2𝛿𝐿)

�
𝐷−2

�̃�(1 − �̃�)𝐹(�̃�)−1� |𝛻�̃�|      (4.35) 

where Ө = 2.5 is used. 

As discussed in section 4.3, the Eq. (4.34) can be simplified as the terms 𝐶𝐾1�̃�(1 − �̃�)𝐹(�̃�)−1 ≈

1.  
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𝛴 = 𝐶𝐾2 �
  𝑙0 

max (𝛿𝐿𝐾𝐷−1/2, 2𝛿𝐿)
�
𝐷−2

|𝛻�̃�|                                       (4.36) 

It can be seen that Eq. (4.36) also needs the blending functions to obtain the theoretically exact 

behaviour [Σ → |∇c�|] in the limit of no flame wrinkling. This yields the following expression for 

Σ in the RANS context: 

𝛴 = �𝑅𝑥𝜕 �−
 𝑙0 

𝜀𝑖
Ө� + �1 − 𝑅𝑥𝜕 �−

𝑙0 

𝜀𝑖
Ө��𝐶𝐾2 �

  𝑙0 

max (𝛿𝐿𝐾𝐷−1/2, 2𝛿𝐿)
�
𝐷−2

� |𝛻�̃�|   (4.37) 

The strain effects, as used in Eq. (4.15) to estimate the stretched laminar flame speed, are 

calculated as: 

𝜅 ≈  𝜅𝑠 = �𝛿іј − 𝑛іј�
𝜕𝑢і�
𝜕𝑥ј

+ 𝛤 �
𝑘
𝑠𝐿0

,
𝛿𝐿
  𝑙0 

�  
√𝑘
  𝑙0 

                                          (4.38𝐷) 

𝑙𝑜𝑎10( 𝛤) = −
1

𝑠 + 0.4
𝑅𝑥𝜕{−(𝑠 + 0.4)} + [1 − 𝑅𝑥𝜕{−(𝑠 + 0.4)}] �𝜎 �

𝑢′

𝑠𝐿0
� 𝑠 − 0.11�     (4.38𝑏) 

𝑠 = 𝑙𝑜𝑎10 �
  𝑙0 

𝛿𝐿
� ;  𝜎 �

𝑢′

𝑠𝐿0
� =

2
3
�1 − 0.5𝑅𝑥𝜕 �−�

𝑢′

𝑠𝐿0
�
1/3

�� ;  𝑢′ = �
2
3
𝑘�

0.5

                (4.38𝑐) 

The scalar transport (�̅�𝑢і𝑐� − �̅�𝑢і� �̃�), in the RANS version of the Keppeler models, is modelled 

using the gradient hypothesis: 

 𝐹𝑖
𝑠𝑠 =  −�̅�

𝜈𝑡
𝑆𝑐𝑡

 
𝜕�̃�
𝜕𝑥𝑖

                                                                   (4.39) 

where νt denotes the turbulent kinematic viscosity. The turbulent quantities, e.g. 𝑘, νt and 𝑙0 are 

calculated using the SST k-𝜔 model (see section 2.3.2.2).  
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Chapter 5 

Numerical and Experimental setup 
In this chapter the numerical setup and the experimental database used for the validation of 

numerical predictions are presented.  

5.1 Numerical setup 

The combustion models have been implemented in the open source CFD toolbox, OpenFOAM. 

Table 5.1 shows the inlet and operating conditions for the combustion cases used in the present 

study. The computational domain is cylindrical with a diameter of 80 mm and a length of 120 

mm. A structured mesh, which is concentrated in the flame regions (expansion ratio = width of 

end cell/width of first cell = 1.8), is used thus avoiding any problems associated with anisotropic, 

inhomogeneous grids. The dimensions of the computational domain are selected to ensure that 

the results are not affected by boundaries. The maximum Courant number is set to 0.3 to achieve 

numerical stability and accuracy. For time advancement, backward Euler scheme is used. An 

unlimited second order linear scheme is used to discretize the convective term of the momentum 

equation [58]. A second order linear scheme with a flux limiter (limitedLinear) [58] is used to 

discretize the convective term in the scalar transport equation. A second order linear scheme is 

applied to discretize the diffusive terms [58]. At the inlet for all parameters Dirichlet boundary 

condition is used, except for the pressure. Neumann boundary condition is used for temperature 

at all the boundaries except at the inlet where the temperature is set to 300 K. The correct 

turbulence intensity and the integral length at the inlet is provided by using the turbulence 

generator as proposed by Kempf et al. [129] and successfully implemented by Tangermann et al. 

[130] in OpenFOAM. The subgrid scale viscosity is modelled by a one-equation eddy-viscosity 

model as developed by Schumann [71] and used by Fureby et al. [72]. The sub-grid scale 

velocity fluctuations are calculated using 𝑢∆′ = �2𝑘𝑠𝑠𝑠/3 where 𝑘𝑠𝑠𝑠is the subgrid turbulent 

kinetic energy. In the RANS context, the turbulent eddy viscosity and turbulent kinetic energy 

are calculated using SST k-𝜔 model.  
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Table 5.1: Summary of the operating conditions 

 
Case fuel Φ p [bar] U 

[m/s] 

𝑢′ 

[m/s] 

𝑙0 

 [mm] 

1 CH4 0.9 1 2.02 0.10 1.80 

2 CH4 0.9 1 2.33 0.20 1.43 

3 CH4 0.9 1 2.42 0.33 1.40 

4 CH4 0.9 1 2.36 0.46 1.25 

5 CH4 0.9 5 2.05 0.09 0.83 

6 CH4 0.9 5 2.53 0.19 0.99 

7 CH4 0.9 5 3.38 0.61 1.15 

8 CH4 0.9 5 2.21 0.40 1.15 

9 CH4 0.9 10 3.40 0.26 1.05 

10 CH4 0.9 10 2.11 0.36 1.10 

11 CH4 0.9 10 3.57 0.85 1.20 

12 CH4 0.9 10 4.64 1.20 1.40 

13 C3H8 0.9 1 1.50 0.06 1.74 

14 C3H8 0.9 1 2.25 0.18 1.50 

15 C3H8 0.9 1 1.50 0.26 1.25 

16 C3H8 0.9 1 1.75 0.35 1.00 

17 C3H8 0.9 1 2.25 0.51 0.90 

18 C3H8 0.9 1 2.50 0.58 0.90 

19 C3H8 0.9 5 1.55 0.04 1.15 

20 C3H8 0.9 5 1.89 0.10 1.02 

21 C3H8 0.9 5 2.76 0.20 0.96 

22 C3H8 0.9 5 2.62 0.42 1.10 

23 C3H8 0.9 5 3.51 0.63 1.20 

24 C3H8 0.9 5 5.28 0.9 1.20 

 

The filtered reaction progress variable 𝑐̅ contours, which are more conical in shape than the 

Favre filtered �̃� ones and correspond to the experimental evaluation procedure, are used to 
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estimate the turbulent flame speeds. These contours are computed using the time and 

circumferentially averaged �̃� contours, following the work of Poinsot and Veynante [55] and 

assuming a BML model-type Flamelet flame density function (FDF): 

𝑐̅ =
(1 + 𝜏)�̃�
1 + 𝜏�̃�

                                                                           (5.1) 

where 𝜏 = 𝜌𝑢/𝜌𝑏 − 1 is the heat release parameter. A least squares fit method is used to obtain 

the slope of the isoline 𝑐̅ = 0.5 (which is the correct quantity for evaluating the simulated flame 

speed for comparison to the Kobayashi database). The slope is calculated, while neglecting the 

curved portions of the flame front at the flame base and tip, evaluating only the linear portion of 

the flame. This slope allows the calculation of flame angle φ. With the mean flow velocity U  

known at the inlet, the flame speed can be calculated using Eq. (5.2). 

5.2 Assessment of resolution quality  

The resolved turbulent kinetic energy was used to assess the resolution quality of the present 

LES in the previous work [53]. Table 5.2 summarizes the mesh characteristics of three 

systematically refined grids used in [53] along with the values of ∆/𝑙𝐹 for different pressure 

values. The estimated amount of resolved kinetic energy was found in the range of 85-95% for 

two sample cases corresponding to low and high-pressures with mesh resolutions A and C, 

where the SGS kinetic energy is obtained from the one equation LES model used in this work. 

According to Pope [131], a well resolved LES should resolve 80% of the turbulent kinetic 

energy. However, as pointed out by Klein [132], the estimate of 𝑘𝑠𝑠𝑠 based on a model is often 

too optimistic because it neglects the effects of numerical dissipation. Therefore, a more 

sophisticated method for the evaluation of LES quality, as proposed by Celik et al. [133], was 

used. This method is based on the Richardson extrapolation concept and measures the percentage 

of the resolved turbulent kinetic energy 𝑘𝑐𝑚𝑠 to the total turbulent kinetic energy 𝑘𝑡𝑚𝑡. The ratio 

of 𝑘𝑐𝑚𝑠 to 𝑘𝑡𝑚𝑡 was found in a range of 65-80% and 87-95% for mesh resolution A and C, 

respectively. Although the LES on the fine mesh is reasonably well resolved in terms of 

turbulent kinetic energy, a large fraction of the flame wrinkling is unresolved at high-pressures, 

i.e. the SGS model needs to do proportionally more work at high-pressures. As an example, only 

15% of the flame surface is resolved at 20 bar on the fine mesh [53]. The comparison of numeri- 
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Table 5.2: Summary of the mesh characteristic 

Mesh 𝛥 

[mm] 

Grid size 𝛥
𝛿𝐿
�
0.1 MPa

 
𝛥
𝛿𝐿
�
0.5 MPa

 
𝛥
𝛿𝐿
�
1 MPa

 

A 0.4 0.6x106 8.8 19 27.8 

B 0.3 2.0x106 6.6 14.2 20.9 

C 0.2 3.7x106 4.4 9.5 13.9 

 

cal predictions of turbulent flame speed using three different mesh sizes with experimental data 

for methane and propane fuels was done in [53] to make sure that the results are grid 

independent. In the present work, meshes A and C are used. 

5.3 Experimental set up 

The numerical results are validated with results from experimental work by Kobayashi et al. 

[47,82,83]. Figure 5.1 shows the schematic of the facility where the experiments were conducted.  

 

 
Figure 5.1: Schematic of the Kobayashi experimental apparatus [83] 
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In the experimental work the effects of ambient pressure on the turbulent burning velocity of 

premixed flames were investigated in a high-pressure environment. A nozzle-type burner 

(diameter 20 mm), with a turbulence generator to adjust a certain combination of turbulence 

level and length scale, was installed in a high-pressure chamber (diameter 498 mm and length 

600 mm). Four different kinds of perforated plates were used as a turbulence generator and 

installed 40 mm upstream of the chamber. The constant temperature hot-wire anemometry 

method was used for the turbulence and flow velocities measurements at the centre of the burner 

exit. The measurements involved lean methane/air mixtures for 1, 5, 10, 20 and 30 bar and 

propane/air for 1 and 5 bar at an equivalence ratio of Φ = 0.9. Ethylene/air mixtures were also 

investigated with varied stoichiometry of Φ = 0.5, 0.7 and 0.9 for 1, 5 and 10 bar. Measured rms-

values and integral length scales range between 0.05 ≤ 𝑢′≤ 0.85 m/s and 0.83 ≤ 𝑙0 ≤ 1.4 mm 

while the mean flow velocity ranges between 1.9 and 4.64 m/s. Flame observations were 

conducted using instantaneous Schlieren photographs and high-speed laser tomography. An 

instantaneous Schlieren image of a typical turbulent flame is shown in Fig. 5.2a. An averaged 

flame front, which is reported to be equivalent to a 𝑐̅ = 0.5 iso-contour, was created using 50 

instantaneous Schlieren photographs of turbulent flame fronts assuming rotational symmetry, 

which was then used to estimate the turbulent flame speed:  

 

 
Figure 5.2: (a) Instantaneous Schlieren image of a typical lean premixed turbulent flame from 
Kobayashi et al. [83] (b) method used in the experiment to determine turbulent flame speed 
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Figure 5.3: Peters diagram of the experimental data for methane and propane. 
 

 

𝑠𝑡 = 𝑈 𝑠𝑚𝑛(𝜑/2)                                                                    (5.2) 

where U denotes the bulk velocity of the unburnt  mixture  and φ is the flame angle. The 

experimental method utilized to calculate the turbulent flame speed is sketched in Fig. 5.2b. The 

identical approach is also used here to calculate the turbulent flame speed from the averaged LES 

𝑐̅-field. Figure 5.3 shows the Peters diagram where the methane and propane flames studied in 

the experiments are indicated. It can be seen that the majority of the cases fall within the 

corrugated and wrinkled flamelet regime while few high-pressure cases fall within the thin 

reaction zone regime.  

In addition to Eq. (5.2), the turbulent flame speed st has been estimated by using the following 

expressions: 
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𝑠𝑡
𝑠𝐿𝑚

=
∫𝛴  𝑑𝑑
𝐴𝑚𝑚𝑎𝑛,𝑐̅

                                                                               (5.3) 

 

𝑠𝑡 =
∫ �̇�� 𝑑𝑑
𝜌𝑢𝐴𝑚𝑚𝑎𝑛,𝑐̅

=
∫⟨𝜌𝑢𝑠𝐿𝛴⟩𝑑𝑑
𝜌𝑢𝐴𝑚𝑚𝑎𝑛,𝑐̅

                                                            (5.4) 

where 𝐴𝑚𝑚𝑎𝑛,𝑐̅ is the area of ⟨𝑐̅⟩ = 0.5 isosurface. The flame speed evaluations using Eqs. (5.2)- 

(5.4) are shown in Figs. 5.4a and 5.4b for 𝜕 =0.1 and 1.0 MPa cases. It can be seen from these 

figures that the turbulent flame speed values obtained using Eq. (5.3) are greatly over-predicted 

irrespective of the choice of the SGSF model. This over-prediction originates due to the absence 

of strain rate effects and the usage of un-stretched laminar flame speed in Eq. (5.3). Use of Eqs. 

(5.2) and (5.4) yields similar results. Thus, the turbulent flame speed 𝑠𝑡 is evaluated using the 

experimental method in the rest of the paper from the averaged LES 𝑐̅-field. 

 

 
 
Figure 5.4:  Variation of 𝑠𝑡/𝑠𝐿0  with 𝑢′/𝑠𝐿0  for (a) 𝜕 = 0.1 MPa and (b) 𝜕 = 1.0 MPa using 
methods given by Eqs. (5.2)-(5.4), which are indicated by M1, M2 and M3 in Figs. 5.4(a) and (b) 
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Chapter 6 

Results and discussion 
In this chapter, the numerical results obtained with the FSD models for the predictions of 

premixed flames are presented and discussed in detail.  

6.1 Investigation of Simplified Keppeler model 
The performance of the simplified Keppeler model is compared with the original model using 

methane as a fuel and the results are presented in this section. The turbulent flame speeds are 

calculated and validated with the experimental database of Kobayashi et al. [47,83]. Pressure, 

bulk velocity of fuel at the inlet, integral length scale and rms turbulent velocity vary between 1 

MPa ≤ 𝜕 ≤ 20 bar, 1.5 m/s ≤ 𝑈 ≤ 3.51 m/s, 0.83 mm ≤ 𝑙0 ≤ 1.8 mm and 0.04 ≤ 𝑢′ ≤ 0.73, 

respectively.  

Figure 6.1 shows the comparison of the time-averaged progress variable 〈𝑐̅〉 and the 

instantaneous  Favre-filtered  progress   variable  �̃�  for  case  4  with  the  original and simplified  

 
Figure 6.1:   Comparison of time-averaged 〈𝑐̅〉 and instantaneous progess variable �̃� contours 
with (a) original (b) simplified Keppeler model. 
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Keppeler models. The time-averaged and the instantaneous flame surfaces with the original 

Keppeler model are shown in Fig. 6.1(a), while Fig. 6.1(b) shows the flame surfaces with the 

simplified Keppeler model. Comparing the instantaneous flame fronts in Fig. 6.1a and Fig. 6.1b 

shows that the explicit wrinkling with the simplified model is lower as compared to the original 

model. However, the original and simplified Keppeler models predict similar time-averaged 

flame surfaces.  

Figure 6.2 illustrates the method used to calculate the turbulent flame speed. The contours of 

Reynolds averaged 〈𝑐̅〉 with an isoline corresponding to 𝑐̅ = 0.5 are shown in Fig. 6.2. The time 

and circumferential averaging is applied to improve the calculation of the flame speeds. The 

flame speed is calculated by the slope of the isoline 𝑐̅ = 0.5 after selecting the suitable portion of 

the flame length from the flame front.  

The performance of the two models is compared by evaluating the turbulent flame speed for 

methane fuel at different pressure levels. The predicted flame speeds are plotted versus 𝑢′  in Fig. 

6.3a, Fig. 6.3b and Fig. 6.3c at different pressure levels to check whether the proposed models 

can match the experimental database. The flame speeds are calculated according to the method 

illustrated in Fig. 6.2. The turbulent flame speeds at p = 1 bar are shown in Fig. 6.3a while Fig. 

6.3b and Fig. 6.3c show the comparison of flame speeds at p = 5 bar and 20 bar, respectively. 

The turbulent flame speeds match with the experimental data quite well. Comparing the 

estimated flame speeds using methane fuel at different pressure levels with the original and 

simplified  models  shows  that  both  models  give satisfactory performance. However, the flame  

 
 

Figure 6.2:   Graphical representation of the method used to calculate flame speed 



92 
 

 

 

 
 

Figure 6.3:   Comparison of turbulent flame speed at (a) 1 bar (b) 5 bar (c) 20 bar using methane 
fuel with original and simplified Keppeler models  
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speeds obtained with the simplified model are lower than those obtained with the original model. 

The simplified model provides improved results in the cases where the original model would 

give over-estimated values of the turbulent flame speeds. 

6.2 Investigation of original Keppeler model with 

different SGSF models 
In this section, two more sophisticated SGSF closures (Eqs. (4.21) and (4.22)) are investigated in 

combination with the original Keppeler model presented in section 4.1. The study is focused at 

comparing these two formulations in comparison with the classical gradient hypothesis approach, 

which was used in the earlier work [53]. Section 6.2.1 is based on a-posteriori analysis. Detailed 

explanations for the observed behaviour will be provided in section 6.2.2 based on a-priori 

analysis. 

6.2.1 A-posteriori analysis 

The model performance is first evaluated in terms of the predicted flame surface and the 

predicted turbulent flame speeds. The time-averaged progress variable 〈𝑐̅〉 and the instantaneous 

Favre filtered progress variable �̃� for case 4 and case 12 using mesh A (henceforth denoted as 4A 

and 12A) are shown in Fig. 6.4 and Fig. 6.5 for different SGSF models. The other cases are not 

shown for the sake of conciseness because qualitatively similar results have been obtained for 

other cases too. For case 4A, the time-averaged and the instantaneous flame surfaces with the 

GRAD model are shown in Fig. 6.4a, while Figs. 6.4b and 6.4c show the flame surfaces using 

the CLARK and HUAI models, respectively. A comparison of the flame fronts in Fig. 6.4 shows 

that the flame shape and thickness are slightly modified. The flame front gets thinner with the 

use of HUAI and CLARK models. However, the change is marginal. The instantaneous flame 

contours �̃� = 0.05 and �̃� = 0.95 with GRAD model are superimposed on the flame contours 

obtained using CLARK and HUAI models in Fig. 6.4d. The inner lines represent �̃� = 0.05 while 

outer lines represent �̃� = 0.95. The comparison shows that the flame shape and thickness are 

weakly  modified.  It can also be observed from Fig. 6.4 that the time-averaged flames tend to be 
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Figure 6.4: Comparison of time-averaged 〈𝑐̅〉 and instantaneous flame surface �̃� with (a) GRAD 
(b) CLARK (c) HUAI models for case 4A; (d) an overlay of instantaneous flame contours for 
GRAD, CLARK and HUAI models for case 4A. The inner lines denote �̃� = 0.05 whiles outer 
lines denote �̃� = 0.95. 
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more conical with HUAI and CLARK models having a highly pronounced curved flame tip. This 

makes the estimation of the turbulent flame speeds more accurate and easier, since a linear 

portion of the flame can be obtained by neglecting smaller portions from the flame base and tip. 

Table 6.1 shows that the value of the resolved flame surface (𝑆𝑐𝑚𝑠 = ∫|𝛻𝑐̅| 𝑑𝑑 ) with HUAI and 

CLARK models increases by about 10-15%. This suggests that the flame front gets more 

wrinkled with the use of HUAI and CLARK models. Similar trends can be observed in Fig. 6.5 

for case 12A.  

 
Table 6.1: Values of resolved flame surface with GRAD, HUAI and CLARK models 

Model Sres [ m2] 
GRAD 0.001598 
HUAI 0.001762 
CLARK 0.001803 

 

 
 

Figure 6.5: Comparison of time-averaged 〈𝑐̅〉 and instantaneous flame surface �̃� with (a) GRAD 
(b) CLARK (c) HUAI model for case 12A. 
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The influence of filter width on the time-averaged progress variable 〈𝑐̅〉, the instantaneous Favre 

filtered progress variable �̃�,  FSD Σ and |𝛻�̃�| for cases 4A and 4C with HUAI and CLARK 

models is shown in Fig. 6.6. It is worth noting that qualitatively similar results have been 

obtained for the other cases in Table 5.1 and hence, only case 4 is shown in Fig. 6.6 for the sake 

of conciseness. Comparing case A to case C, it can be seen that |𝛻�̃�|, which is an indicator of the 

resolved flame surface, is smoother for the coarsest mesh and strongly wrinkled for the finest 

mesh. The instantaneous turbulent flame fronts are thinner but the time-averaged turbulent flame 

fronts do not change much when the mesh resolution is increased. This confirms that the 

combustion model gives satisfactory performance, in terms of grid independence, independent of 

the SGSF closure. 

 

 
 

Figure 6.6: Influence of filter width on the time-averaged 〈𝑐̅〉, instantaneous flame surface �̃�, 
FSD Σ and |𝛻�̃�| with HUAI model for (a) case 4A (b) 4C, and with CLARK model for (c) case 
4A (d) 4C. 
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It has to be noted here that the implicit filtering approach has been used in this work where the 

ratio of filter width to grid spacing is kept constant. In addition, the nonlinear numerical 

discretization scheme used for reaction progress variable transport ensures a numerical thickness 

of the resolved flame front of approximately 5 grid cells and hence, the flux limiter can be 

viewed as an additional implicit filter. Explicit filtering of the reaction progress variable equation 

and the related consistency issues between flame and flow filter sizes are discussed in a recent 

paper by Mercier et al. [134]. 

The performance of the combustion model with GRAD, HUAI and CLARK models is evaluated 

by comparing the predicted turbulent flame speed for methane fuel at different pressure levels 

with the experimental data. The predicted turbulent flame speeds are plotted versus 𝑢′/𝑠𝐿0 in Fig. 

6.7 for 0.1 MPa, 0.5 MPa and 1 MPa. The increasing trend of turbulent flame speeds with 

increasing values of 𝑢′/𝑠𝐿0 is captured well at all pressures. The comparison of the estimated 

flame speeds using thermo-chemical properties of methane at different pressure levels with 

CLARK and HUAI formulations with classical gradient closure for SGSF reveals that the change 

of the overall flame speed is within the error tolerance of the evaluation of the turbulent flame 

speed.  

There are several possible reasons for the small influence of the SGSF model on the turbulent 

flame speed results in the present study. One could, for example, assume that contrary to 

Reynolds-averaged Navier Stokes (RANS) simulations, where the turbulent scalar flux is entirely 

modelled [35], the present LES partially resolves the important physical mechanisms responsible 

for the turbulent fluxes [135] and therefore, possibly also partially resolves the physical 

processes responsible for counter-gradient transport (CGT) [136]. However, the statistical 

behaviour of the nature of turbulent scalar flux (i.e. CGT versus GT) depends on the competition 

between transport due to turbulent velocity fluctuations and flame normal acceleration. Table 5.1 

and Fig. 6.7 show that 𝑢′/𝑠𝐿0 values range from very small to rather large values. Therefore, the 

absence of a significant amount of CGT at the unresolved scale is unlikely. Another possible 

explanation is that the momentum transport is still done with an eddy viscosity model. Hence, 

the momentum flux modelling error will also result in a scalar advection error, which may 

preferentially be of a gradient type. Scalar transport in the general purpose CFD code 

OpenFOAM  is  done with  a  flux  limiter  scheme.  The inherent numerical diffusion might also  
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Figure 6.7: Comparison of turbulent flame speed at (a) 0.1 MPa, (b) 0.5 MPa and (c) 1.0 MPa 
using methane fuel 
 

counter and possibly dominate over the CGT effects predicted by the SGSF closures. This will be 

examined in more detail in the next section. In this regard, it is also important to mention that no 

numerical problems, in terms of unrealizable values of the reaction progress variable 𝑐, were 

observed when using Clark’s model (CLARK), despite the fact that this model was reported to 

provide an insufficient amount of SGS dissipation and hence, is unstable in nature [137].  

Finally, a KPP analysis was done in [141] to determine the effect of the CGT type SGSF model 

on the turbulent flame speed. However, as pointed out by Hakberg and Gosman [138], in this 

kind of analysis the turbulent flame speed is determined by the properties at the leading edge of 

the flame brush, where counter-gradient diffusion is unlikely to prevail. This is consistent with 

recent DNS findings reported in Gao et al. [43,44] and Klein et al. [139]. Despite the fact that 
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some combustion models cannot be analysed directly using the traditional KPP technique 

[100,140], the arguments put forward in [141] suggest that CGT is not likely to affect the 

turbulent flame speed evaluated in the limit of 𝑐 → 0. 

6.2.2 A-priori analysis 

The interaction of SGSF and FSD closures in the original Keppeler model have been investigated 

further using a-priori DNS analysis in order to understand the combined effects of these terms 

[141]. This analysis was done by the coauthors [Prof. Klein and Prof. Chakraborty] of the work 

[141] and the key findings are presented here only for completeness. The interested reader is 

referred to [141] for more details. The DNS database, described in detail in Ref. [142], has been 

explicitly filtered using a Gaussian filter kernel for a range of filter widths from 𝛥 ≈ 0.4 𝛿𝐿0 

where the flame is almost resolved, up to 𝛥 ≈ 2.8 𝛿𝐿0 where the flame becomes fully unresolved 

and 𝛥 is comparable to the integral length scale. The initial values of normalized root mean 

square turbulent velocity fluctuation 𝑢′ 𝑠𝐿0⁄ , the ratio of turbulent integral length scale to flame 

thickness 𝑙0 𝛿𝐿0⁄ , Damköhler number 𝐷𝐷 = 𝑙0𝑠𝐿0 𝛿𝐿0𝑢′⁄ ,𝐾𝐷 = (𝑢′ 𝑠𝐿0⁄ )1.5(𝑙0 𝛿𝐿0⁄ )0.5 and turbulent 

Reynolds number 𝑅𝑅𝑡 = 𝜌𝑢 𝑢′𝑙0/µ𝑢 are provided in Table 4 where 𝛿𝐿0 = (𝑇𝑎𝑚 − 𝑇𝑢) max⁄ |𝛻𝑇�|𝐿 

is the thermal flame thickness with 𝑇�  being the dimensional temperature. Table 6.2 indicates that 

the cases A, C and E (B, C and D) have same values of 𝐷𝐷 (𝐾𝐷) and 𝐾𝐷 (𝐷𝐷) is modified to 

bring about the changes in 𝑅𝑅𝑡. Standard values are chosen for Prandtl number Pr and ratio of 

specific heats γ (i.e. Pr = 0.7 and γ = 1.4). The flame Mach number 𝑀 = 𝑆𝐿/�𝛾𝑅𝑇0, heat 

release parameter 𝜏 = (𝑇𝑎𝑚 − 𝑇𝑢) 𝑇𝑢⁄  and Lewis number 𝐿𝑅 are taken to be 0.014, 4.5 and 1.0 

respectively. 

Table 6.2: List of initial simulation parameters and non-dimensional numbers 
 

Case A B C D E 

𝑢′/𝑠𝐿0 5.0 6.25 7.5 9.0 11.25 

𝑙0/𝛿𝑡ℎ 1.67 1.44 2.5 4.31 3.75 

𝑅𝑅𝑡 22.0 23.5 49.0 100 110 

Da 0.33 0.23 0.33 0.48 0.33 

Ka 8.65 13.0 13.0 13.0 19.5 



100 
 

Before proceeding with the analysis, another model for the turbulent transport term in the �̃� 

transport equation is presented below (see Eq. (6.1a)), which consists of a gradient contribution, 

i.e. the GRAD model and a term that is of counter-gradient type [42,52,124]: 

𝜕𝐹𝑖
𝑠𝑠

𝜕𝑥𝑖
=
𝜕(𝜌𝑢і𝑐������ − �̅�𝑢�𝑖𝑐 �)

𝜕𝑥𝑖
 =

𝜕
𝜕𝑥𝑖

�−
𝜇𝑠𝑠𝑠
𝑆𝑐𝑡

 
𝜕�̃�
𝜕𝑥𝑖

� + 𝜌𝑢𝑠𝐿𝛯(|𝛻𝑐̅| − |𝛻�̃�|)                    (6.1𝐷) 
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𝑆𝑐𝑡
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𝜕𝑥𝑖

� − 𝜌𝑢𝑠𝐿𝛯(|𝛻𝑐̅| − |𝛻�̃�|) =  𝜌𝑢𝑠𝐿𝛯|𝛻�̃�| +
𝜕
𝜕𝑥𝑖

�
𝜇𝑠𝑠𝑠
𝑆𝑐𝑡

 
𝜕�̃�
𝜕𝑥𝑖

�  (6.1𝑏) 

The last contribution on right-hand side of Eq. (6.1a) constitutes an implicit CGT SGSF model, 

because the model appears implicitly in the equations if the resolved flame surface |𝛻𝑐̅| in the 

FSD given by 𝛴 = 𝛯|𝛻𝑐̅| is replaced with |∇c�|. In other words, 𝜌𝑢𝑠𝐿𝛯|𝛻�̃�| can be understood as 

a combination of the divergence of an implicit SGSF model of CGT type, and the filtered flame 

front displacement (FFFD) term = 𝛻 ∙ (𝜌𝛼𝛻𝑐)�������������� + �̇�� (see Eq. (6.1b)). Here, Eq. (6.1a) is denoted 

as the IMPL model if the wrinkling factor Ξ is set to the following expression as governed by Eq. 

(4.17): 

                                     𝛯 = �2.2𝛥 / max�𝛿𝐿𝐾𝐷𝛥
−1/2, 2𝛿𝐿��

𝐷−2
                                                  (6.1𝑐)                  

From Eq. (4.3) one could assume that the expression for the FFFD should be proportional to 

|𝛻𝑐̅|.  However, the model given by Eq. (4.17) is essentially proportional to |𝛻�̃�|. The IMPL 

model arises from the fact that |𝛻�̃�| is used instead of |𝛻𝑐̅|. Note that, since a transport equation 

for  𝑐 �  is solved, the precise value of 𝑐̅ is not available. This model is only introduced to explain 

(by means of a-priori analysis) the effects which might arise if one uses |𝛻�̃�| instead of |𝛻𝑐̅| in 

the model expression for FFFD. Interested readers are referred to Ref. [143] for further 

discussion on this.  

Expressing the FFFD with the help of Eq. (4.3) and using the FSD model given by Eq. (4.17) in 

combination with the gradient flux approximation GRAD results exactly in the expression given 

by Eq. (6.1b). Figure 6.8 shows the well-known Pearson correlation coefficients between the 

divergence of modelled SGSF term and exact turbulent scalar flux from DNS for the GRAD, 
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CLARK and the IMPL models. The calculation is done over the whole computational domain, 

but limited to the flame brush region, i.e. to the range 0.1 ≤ 𝑐̅ ≤ 0.9. The HUAI model performs 

similar to the CLARK model, but with slightly smaller correlation than the CLARK model, and 

thus is not shown here. To reduce the amount of information, the correlation coefficients in Fig. 

8b are averaged over all filter widths for each case and this averaged value is denoted as 𝑐𝛥, 

whereas 𝑐𝑢′,𝛥 represents an averaging of 𝑐𝛥 over cases A-E. It can be seen from Fig. 6.8 that the 

GRAD model is negatively correlated with the exact SGSF term for cases A-C, whereas a small 

positive correlation is observed for cases with very high turbulence intensities (e.g. cases D and 

E). This behaviour shows also that the extent of CGT increases with decreasing turbulence 

intensity. The CLARK model shows a considerably better correlation coefficient than the other 

alternatives. It was reported in [43,44] that the CLARK model exhibited the best a-priori 

performance among several SGSF closures available in the existing literature. The IMPL model 

seems to be particularly successful in representing the CGT transport as the correlation increases 

from case E to case A. Overall the implicit model demonstrates a positive correlation with the 

SGSF term. 

This suggests that using an explicit CGT model, or a model able to represent CGT transport, is  

 
 

Figure 6.8 (a) Correlation coefficients between 𝜕�𝐹𝑖
𝑠𝑠�/𝜕𝑥𝑖  and 𝜕�𝐹𝑖

𝑠𝑠,𝑚𝑚𝑚𝑚𝑚�/𝜕𝑥𝑖  for models 
GRAD, CLARK, IMPL: 𝑐𝑢′,𝛥( ); 𝑐𝛥(𝑢′/𝑆𝐿 = 5.0) ( ); 𝑐𝛥(𝑢′/𝑆𝐿 = 6.25) ( );  𝑐𝛥(𝑢′/𝑆𝐿 =
7.5) ( ); 𝑐𝛥(𝑢′/𝑆𝐿 = 9.0) ( ) and 𝑐𝛥(𝑢′/𝑆𝐿 = 11.25) ( ) 
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No longer required for the FSD model given by Eq. (4.17). In fact, it can be argued that the CGT 

part of the SGSF flux would be taken into account twice by using such a model, in particular in 

situations when CGT is dominant. In order to make the analysis more complete the correlation 

between −𝛻 ⋅ (𝜌𝑢і𝑐������ − �̅�𝑢і� �̃�) + 𝛻 ⋅ (𝜌𝐷𝛻𝑐) + �̇��������������������� and the corresponding model expressions is 

finally considered. The FFFD, 𝛻 ⋅ (𝜌𝐷𝛻𝑐) + �̇���������������������  is modelled using Eqs. (4.3) and (4.17) (denoted 

KP, Keppeler’s model), and the SGSF part is modelled using either the GRAD or the CLARK 

model. The resulting models are referred to as the GRADKP and CLARKKP models, 

respectively. The correlation coefficients averaged over all cases and all filter widths, i.e. 𝑐𝑢′,𝛥, 

are 0.46 and 0.45 for GRADKP and CLARKKP models, respectively, and thus the a-priori 

analysis also corroborates the observation that both model combinations perform similarly. It is 

interesting to observe that the GRAD model even yields a slightly better correlation coefficient 

than the CLARK model when combined with Eq. (4.17). However, this observation is only valid 

for this particular FSD model and other FSD closures may demonstrate a different behaviour. A 

more extensive analysis of this aspect is left for future work. 

6.3 Investigation of pressure and Le number effects 
In this section, the performance of different FSD models is investigated for pressure and Le 

number effects in the predictions of premixed flames.  

6.3.1 Investigation of the original Keppeler model with 

Le number correction  

In this section, the performance of the original Keppeler model is investigated in its substantiated 

form−which we call the tuned Keppeler model− by the explicit inclusion of a term accounting 

for fuel effect. As described in the previous sections, the Keppeler model, in its original form, 

showed excellent performance for methane flames (Le = 1) over a wide range of turbulence and 

pressures between 1 and 20 bar, at situations which are typical for industrial gas turbines and 

spark-ignition engines [53]. The performance of the model was also investigated with propane 

fuel (Le = 1.62) and it was observed that the predicted turbulent flame speed values overestimate 

the experimental findings, especially at high turbulence values [53]. In practice, fuels having 
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higher Le numbers than methane have applications in spark ignition engines and gas turbines, 

thus investigation of the fuel effects on the flame characteristics at high-pressures is of 

considerable importance. A non-unity Le number is expected to influence the flame 

characteristics by modifying the local processes of species diffusion towards the flame front and 

of heat diffusion away from the flame front. Several experimental investigations have shown a 

significant role of Le number in highly turbulent premixed flames [144], especially for high-

pressure conditions [49]. In the RANS study by Muppala et al. [105], an explicit Lewis number 

dependency (1/Le) in an algebraic FSD reaction rate closure was found successful in matching 

the burning rate of a variety of fuels (Le ≥ 1) with the experimental data for pressures up to 10 

bar. The model was further extended for LES approach and checked for its applicability for a 

Bunsen-like burner, a sudden expansion dump combustor and a typical swirl–stabilised gas 

turbine combustor [17]. It showed results in good agreement with the experiments. In recent 

work [145] from the same group, the RANS model is used to simulate lean premixed turbulent 

methane/hydrogen/air flames (Le ≤ 1) with an effective Le number approach. The reaction rate 

closure approach with an explicit Le number dependency term was found to give a very good 

agreement for all the flames with hydrogen content up to 20% and a satisfactory agreement for 

30% and 40% hydrogen. Chakraborty and Cant [146] also reported that the approximation 

(𝜌𝑆𝑚)�������𝑆 ≈ 𝜌𝑢𝑠𝐿 is not valid for non-unity Le number fuels and suggested the following scaling: 

(𝜌𝑆𝑚)�������𝑆 ≈  𝜌𝑢𝑠𝐿/𝐿𝑅                                                                         (6.2) 

In a recent study [143], based on a-priori analysis of DNS data for a range of different Le 

numbers, the performance of several subgrid scalar flux models and algebraic FSD models in the 

context of turbulent premixed combustion is investigated on an individual basis and in terms of 

their combined interactions. It is reported that the Le number correction given by Eq. (6.2) 

significantly improves the magnitude of the surface-weighted filtered values of density-weighted 

displacement speed.   

Following the above discussion, the correction given by Eq. (6.2) is included in the final FSD 

expression of the Keppeler model. The performance of the tuned and original versions of the 

model is investigated and compared to the experimental data. The comparison is done by 

evaluating the predicted turbulent flame speeds for propane fuel at 1 and 5 bars. The flame 

speeds are calculated according to the method explained in section 5.1 and illustrated in Figs. 
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5.2b and 6.2. The normalised flame speeds for propane fuel 𝑠𝑡/𝑠𝐿0 are plotted versus 𝑢′/𝑠𝐿0 in 

Figs. 6.9a and 6.9b for 1 and 5 bar, respectively. The Keppeler model without Le number 

correction shows deviations with increasing turbulence level and the turbulent flame speed is 

increasingly over-predicted. However, the model scales well with the pressure. With the tuned 

Keppeler model, the predicted turbulent flame speed matches the experimental data very well at 

1 and 5 bar. Thus Eq. (6.2) is proven to be a suitable way of incorporating explicit fuel effects in 

the Keppeler model as well. The explicit Le number term is also introduced in the Fureby model 

and the results are presented and discussed in section 6.3.4. 

6.3.2 Analytical investigation of the FSD models with 

respect to pressure dependency 

In the previous section, Eq. (6.2) is shown to be an effective way of incorporating explicit fuel 

effects in the algebraic FSD modelling. In this section, the performance of the Angelberger, 

Fureby and Zimont models is analytically investigated to check their ability to scale correctly 

with pressure. The wrinkling factors, using Eqs. (4.27), (4.29d), (4.30) and (6.1c), are 

analytically calculated for a system that is representative of the current LES setup. The 

calculations  are  done  with  typical  values  of 𝑠𝐿0, 𝛿𝐿 and 𝛼  for methane fuel using ∆= 0.4 mm  

 

 
 
Figure 6.9: Comparison of turbulent flame speed at (a) 1 bar and (b) 5 bar using tuned Keppeler 
model for propane fuel 
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(representing a single mesh block) at 1, 5 and 10 bar. The subgrid turbulent velocity fluctuation 

value is calculated with 𝑢𝛥′ = �2 𝑘𝑠𝑠𝑠/3, where 𝑘𝑠𝑠𝑠 is approximated as 10% of the total 

turbulent kinetic energy as reported in [131], a good LES should resolve about 80-90% of the 

total turbulent kinetic energy. The procedure used and a comparison of the analytical values of 

wrinkling factor with the Keppeler model and the original and tuned Fureby models are shown in 

Table 6.3. Figs. 6.10a, 6.10b and 6.10c show the values of wrinkling factors obtained with the 

original versions of the models for 1, 5 and 10 bar, respectively. The calculated values of 𝛯 are 

compared with the ones obtained with the Keppeler model (Eq. (6.1c)), as it showed an excellent 

quantitative agreement with the experimental data and captured the right pressure scaling [53]. 

The comparison of the calculated values of  𝛯 at 1 bar shows deviations with increasing 

turbulence level and 𝛯 values are increasingly under-predicted (Fig. 6.10a). This suggests the 

tuning of model constants to reach the right quantitative agreement and the increasing trend of 

turbulent flame speed values with increasing values of turbulence as observed in the 

experimental findings. The results in Figs. 6.10b and 6.10c show that all the models failed to 

capture the right pressure scaling. This highlights the requirement for tuning the models to 

achieve the right pressure dependency and claim generality of the conditions, where the models 

can be used successfully.  

6.3.3 Comparison of pressure exponents of 𝑠𝑡 

The analysis presented in the previous section implies that the turbulent flame speed 𝑠𝑡 would 

decrease with increasing pressure, unlike results from theoretical [18] and experimental [17] 

studies, where pressure independence of 𝑠𝑡 for methane is reported. The experimental data used 

for the validation of the present work also reports weak pressure dependence 𝑠𝑡 ∝  𝜕0.07 for 

methane [82]. In this section, the pressure dependence of the reaction rate closure expressions of 

the Angelberger, Fureby and Zimont models, interpreted in 𝑠𝑡, is calculated using a simple 

analysis and compared to the experimental findings for methane and propane. The method is 

used by Muppala et al. [105] to develop a correct pressure dependence of the reaction rate 

closure  in  their  combustion  model.  The  pressure dependency of 𝑠𝑡 for the combustion models  



106 
 

Table 6.3: Comparison of analytical values of wrinkling factor at 1, 5 and 10 bar using the 

Keppeler model, the original and tuned Fureby models for methane fuel 
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Figure 6.10: Analytical comparison of wrinkling factor at (a) 1 bar, (b) 5 bar and (c) 10 bar using 
the original versions of the models for methane fuel 
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Table 6.4: Comparison of pressure exponents of the FSD models. 
 

Original Angelberger model Tuned Angelberger model 

~𝜕𝑥 , 𝑥 = ⋯ 𝐶𝐻4 𝐶3𝐻8 ~𝜕𝑥 , 𝑥 = ⋯ 𝐶𝐻4 𝐶3𝐻8 

𝑠𝐿 -0.50 -0.26 𝑠𝐿 -0.50 -0.26 

𝛯(= 𝑠𝑡/𝑠𝐿) 0.83 0.75 𝛯(𝜕/𝜕0)𝑛(= 𝑠𝑡/𝑠𝐿) 

𝑛 = −0.25 

0.58 0.50 

𝑠𝐿𝛯(= 𝑠𝑡) (Cal.) 0.33 0.49 𝑠𝐿𝛯(𝜕/𝜕0)𝑛(= 𝑠𝑡) (Cal.) 0.08 0.24 

𝑠𝑡 (Experimental) 0.07 0.24 𝑠𝑡 (Experimental) 0.07 0.24 

Original Zimont model Tuned Zimont model 

~𝜕𝑥 , 𝑥 = ⋯ 𝐶𝐻4 𝐶3𝐻8 ~𝜕𝑥 , 𝑥 = ⋯ 𝐶𝐻4 𝐶3𝐻8 

𝑠𝐿 -0.50 -0.26 𝑠𝐿 -0.50 -0.26 

𝛯(= 𝑠𝑡/𝑠𝐿) 0.50 

 

0.38 𝛯(𝜕/𝜕0)𝑛(= 𝑠𝑡/𝑠𝐿) 

𝑛 = 0.15 

0.65 0.53 

𝑠𝐿𝛯(= 𝑠𝑡) (Cal.) 0 0.12 𝑠𝐿𝛯(𝜕/𝜕0)𝑛(= 𝑠𝑡) (Cal.) 0.08 0.27 

𝑠𝑡 (Experimental) 0.07 0.24 𝑠𝑡 (Experimental) 0.07 0.24 

Original Fureby model Tuned Fureby model 

~𝜕𝑥 , 𝑥 = ⋯ 𝐶𝐻4 𝐶3𝐻8 ~𝜕𝑥 , 𝑥 = ⋯ 𝐶𝐻4 𝐶3𝐻8 

𝑠𝐿 -0.50 -0.26 𝑠𝐿 -0.50 -0.26 

𝛯(= 𝑠𝑡/𝑠𝐿) 

with 𝐷𝑚𝑎𝑥 = 2.35 

0.29 0.26 𝛯(= 𝑠𝑡/𝑠𝐿) 

with 𝐷𝑚𝑎𝑥 = 8/3 

0.55 0.50 

𝑠𝐿𝛯(= 𝑠𝑡) (Cal.) -0.21 0 𝑠𝐿𝛯(= 𝑠𝑡) (Cal.) 0.05 0.24 

𝑠𝑡 (Experimental) 0.07 0.24 𝑠𝑡 (Experimental) 0.07 0.24 

 

being in focus of the current work is calculated and the key findings are summarised in Table 

6.4. The pressure dependence of the wrinkling factor expressions (Eqs. (4.27), (4.29d) and 

(4.30)) are calculated using the typical pressure scalings of 𝑠𝐿0, 𝛿𝐿 and 𝛼 for methane and 

propane fuels. It can be seen that none of the models possesses the correct pressure dependency 

of 𝑠𝑡 compared to the experimentally observed 𝑠𝑡 ∝ 𝜕0.07(methane) and  𝑠𝑡 ∝ 𝜕0.24 (propane) 

[82]. This is in agreement with the analytical results shown in Fig. 6.10, where a large gap is 

observed between the calculated and reference values and the difference becomes larger with 



109 
 

pressure rise. Thus, both theoretical and analytical investigations argue an additional pressure 

influence to be included in the models. This is achieved by introducing an explicit pressure term 

(𝜕/𝜕0)𝑛 in the Angelberger and Zimont models where 𝜕0 = 1 bar, 𝜕 is the operating pressure 

and exponent 𝑛 is determined from the aforementioned analysis to get the right dependency of 

 𝑠𝑡, while in the Fureby model a better agreement is  achieved using a modified estimation of 𝐷 

and 𝜀𝑖. The tuning of the Fureby model will be explained in detail in the next section. The tuned 

versions of the models shows the corrected pressure dependence of  𝑠𝑡, which are now quite 

close to the experimental value The wrinkling factors obtained with the Eqs. (4.27), (4.29d) and 

(4.30) are recalculated incorporating the suitable tuning of model constants and the corrections 

for pressure dependency, and are plotted in Figs. 6.11a, 6.11b and 6.11c for 1, 5 and 10  bar, 

respectively. The new values of 𝛯 show the correct scaling with pressure and exhibit fairly good 

agreement with the ones obtained using the Keppeler model. The changes made to the model, to 

get their tuned versions, are summarised in Table 4.1. 

6.3.4 Investigation of the Fureby model with the 

pressure and Le number corrections 

In this section, the observations made in sections 6.3.2 and 6.3.3 are verified by randomly 

choosing the Fureby model and doing LES simulations with its original and tuned versions. 

Various studies [51,52,148-150] have reported that the Fureby model gives a satisfactory 

performance and seems to be a promising representative of an algebraic FSD closure method. 

But it is worth noting that most of these studies are done for high Karlovitz number (Ka) cases 

and are mainly limited to atmospheric methane flames. This motivates an investigation assessing 

the performance of the Fureby model in terms of turbulent flame propagation for situations 

corresponding to wrinkled flamelets and thin reaction zone regimes (having low Ka number) 

with a variety of fuels under high-pressures. The analytical calculations, as described in previous 

sections, have shown that the turbulent flame propagation predicted by the original version of the 

model would decrease with pressure, unlike theoretical and experimental findings for the 

validation data, which corresponds to low Ka number combustion regimes used in the present 

study. In the work of Chakraborty and Klein [51], a novel power law based FSD model was 

proposed, its performance was investigated in terms of the predicted FSD and compared with the  
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Figure 6.11: Analytical comparison of wrinkling factor at (a) 1 bar, (b) 5 bar and (c) 10 bar using 
the tuned versions of the models for methane fuel 
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corresponding values obtained from the DNS data alongside thirteen other existing algebraic 

FSD  models,  including  the  Fureby  model.  It  is  reported  that  for a high Ka number case, the 

Fureby model gives a satisfactory performance but for a low Ka number case the model greatly 

under-predicts the FSD values as compared to the DNS data [51, pp. 8-11]. The authors 

explained that the disagreement might be due to inaccurate estimation of efficiency function 𝛤, 

fractal dimension 𝐷 and inner cut-off scale 𝜀𝑖 values at these conditions. It is also concluded that 

the model performance would be enhanced using an accurate and efficient parameterization of 

𝛤,𝐷 and 𝜀𝑖. In the original paper presenting the Fureby model [104], the author himself reported 

that Eq. (13c) was the only available empirical expression for 𝐷 at that time. Moreover, a 

parameterization constant “A” is used to calculate 𝜀𝑖. It is reported that the adopted 

parameterization is probably not optimal and is likely to be improved and optimized when the 

performance of the model is evaluated with suitable DNS and experimental data. It is also worth 

noting that unity is omitted in the 𝛯 expression. Thus, the resolved contribution to overall 

wrinkling is neglected and in the presence of zero/weak turbulence the wrinkling factor 

approaches to zero. This assumption works fine for high turbulence cases, i.e. for 𝛯 ≫ 1,𝛯 =

(1 + 𝜀𝑚/𝜀𝑖)𝐷−2 ≅ (𝜀𝑚/𝜀𝑖)𝐷−2. Hence, the original Fureby model may be intended for high 

Reynolds number cases only. Ma et al. [52] compared the performance of various algebraic FSD 

models alongside the Fureby model by performing LES of the ORACLES burner and Volvo Rig. 

It is reported that the Fureby model provides predictions that follows very closely 𝛴 → |𝛻𝑐̅| (𝛯 

=1). Similar findings have been reported in [148-150]. The analytical study presented in section 

6.3 also shows that at ambient pressure, the Fureby model predicts 𝛯 close to one for low Ka 

number cases. In the current study, the model also under-predicts 𝛯 values even for high Ka 

number cases, but most other researchers have used the un-stretched laminar flame speed 𝑠𝐿0 

instead of stretched laminar flame speed 𝑠𝐿 , increasing turbulent flame speed [148] and making 

the overall performance of the model satisfactory. The analysis, as shown in section 6.3.3, of the 

Fureby model with Eq. (4.29c) where 𝐷 reaches to a constant upper value of 2.35, predicts a very 

low overall pressure influence on 𝑠𝑡 for methane and propane fuels, which contradicts the 

experimental findings. But if 𝐷 reaches to a constant upper value of 8/3 as used in Keppeler 

model, the KPP analysis predicts the correct pressure scaling of 𝑠𝑡. Thus, 𝐷 has to reach a 

constant upper value of about 8/3 in the limit of high Reynolds number to predict the correct 

scaling of the model with pressure. The parameterization constant “A” in Eq. (4.28) is also tuned 
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from 0.75 to 9.5 to get an accurate estimation of 𝜀𝑖 and a good agreement of numerical 

predictions with the experimental data. The inner cut-off scale can get smaller than the laminar 

flame thickness in the original Fureby model, which is contrary to the findings of Driscoll [151] 

that the smallest wrinkling scale is always larger than 𝐶𝛿𝐿,where 𝐶 is a constant of the order of 

unity. It is also reported in the experimental work of Kobayashi et al. [111] that  𝜀𝑖/𝛿𝐿 reaches to 

a constant value, at least for high-pressure turbulent flames. Therefore, 𝜀𝑖 is limited to a value 

proportional to 𝛿𝐿. The changes made to the Fureby model are summarized in Table 4.1.  The 

LES simulations are done with the original and tuned versions of the Fureby model for methane 

and propane fuels and the results are compared with the experimental data and the Keppeler 

model. The performance of the tuned Fureby model is investigated with two different 

expressions of 𝐷, i.e. using Eq. (4.10) and Eq. (4.29c) but changing  𝐷max from 2.35 to 2.667.  

𝐷 =
2.05𝑠𝐿
𝑢∆′ + 𝑠𝐿

+
2.667𝑢∆′

𝑢∆′ + 𝑠𝐿
                                                                        (6.3) 

The normalized turbulent flame speed values for cases 2, 4, 9 and 12 are shown and compared 

with the experimental data in Table 6.5. It can be seen that the tuned Fureby model with Eq. (6.3) 

for 𝐷 greatly under-predicts 𝑠𝑡, while the model with Eq. (4.10) for 𝐷 gives turbulent flame 

speed values and pressure scaling in good agreement with the experimental data. Thus Eq. (4.10) 

which also gives good results in the Keppeler model, is used in the tuned Fureby model in the 

rest of the calculations. The effect of filter width on the time-averaged progress variable 〈𝑐̅〉, the 

instantaneous Favre filtered progress variable �̃�,  FSD Σ and |𝛻�̃�| for case 4 and case 12 using 

mesh A and C (henceforth denoted as 4A, 4C,12A and 12C) are shown in Fig. 6.12 for the tuned  

Table 6.5: The normalised turbulent flame speed values obtained with the tuned Fureby model 
using Eqs. (6.5) and (4.10) 
 
 

Pressure 
[bar] 

Case Experimental Tuned Fureby model  with 
Eq. (6.3) used for D 

Tuned Fureby model  with 
Eq. (4.10) used for D 

𝑠𝑡/𝑠𝐿0 𝑠𝑡/𝑠𝐿0 𝑠𝑡/𝑠𝐿0 
1 2 2.32 1.99 2.74 

4 3.55 2.74 4.02 
10 9 10.83 3.32 9.71 

12 17.13 12.22 17.59 
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Fureby model. For the sake of conciseness, the other cases are not presented here because 

qualitatively  similar  results  have  been observed for other cases in Table 5.1. Figures 6.12a and 

6.12c show the results with mesh A for 1 and 10 bar respectively while the results with mesh C 

are shown in Figs. 6.12b and 6.12d for 1 and 10 bar. Comparing the results for case A to case C, 

it can be observed that |∇c�| contours (an indicator of the resolved flame surface) are strongly 

wrinkled for the finest mesh and smoother for the coarsest mesh. The instantaneous turbulent 

flame fronts get thinner but the time-averaged turbulent flame fronts are not affected much when  

 
 

Figure 6.12: Influence of filter width on the time-averaged 〈𝑐̅〉, instantaneous flame surface �̃�, 
FSD Σ and |𝛻�̃�| with tuned Fureby model for (a) case 4A, (b) 4C,(c) case 12A (d)12C. 
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the mesh resolution is increased. This shows that the tuned Fureby model gives satisfactory 

performance  in terms  of grid independence. For methane, Figs. 6.13a, 6.13b and 6.13c show the 

normalized flame speeds st/sL0 plotted versus u′/sL0 for 1, 5 and 10 bar respectively. For the 

original version of the Fureby model, a large gap can be observed between experimental and the 

predicted values, with the difference growing larger with pressure increment. The tuned version 

of the model gives very good quantitative agreement with the experimental data and captures the 

correct scaling with pressure. Figs. 6.14a and 6.14b show similar plots for propane fuel using the 

tuned version of the model with and without the Le number correction given by Eq. (6.2). The 

tuned Fureby model with the Le number correction, shows excellent agreement with 

experimental   data   over  a  wide   range   of  turbulence  and  pressures  between  1  and  5  bar. 

 
Figure 6.13: Comparison of turbulent flame speed at (a) 1 bar, (b) 5 bar and (c) 10 bar using the 
tuned and original Fureby models for methane fuel 
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Figure 6.14: Comparison of turbulent flame speed at (a) 1 bar and (b) 5 bar using the tuned 
Fureby model with and without Le number correction for propane fuel 

 
6.4 Investigation of RANS version of Keppeler model 
 

In this section, the performance of the RANS Keppeler model is investigated using methane and 

propane as fuel and compared with the LES Keppeler model. The development of RANS 

Keppeler model is presented in section 4.5. Three systematically refined computational grids are 

used to evaluate the performance of the model in terms of predicted turbulent flame speed and 

the predicted flame surface. In Fig. 6.15, the mean Reynolds-averaged progress variable contours 

〈𝑐̅〉 obtained with the RANS Keppeler model (Eq. (4.35)) are shown and compared with the 

corresponding predicted results from the LES Keppeler model (Eq. (4.18)) for case 7 using mesh 

A. For the sake of conciseness, the comparison of the results for other cases is not shown here 

because qualitatively similar results have been obtained for other cases. A comparison of the 

flame fronts in Fig. 6.15 shows that the Reynolds-averaged flames predicted by the RANS 

Keppeler model are more conical in shape with a highly pronounced curved flame tip as 

compared to the LES version of the model. The normalized turbulent flame speeds predicted by 

the RANS and LES Keppeler model are 10.21 and 10.37, respectively. It shows that the RANS 

Keppeler model gives a satisfactory performance, however, it predicts slightly less wrinkling of 

the flame for case 7 as compared to the LES Keppeler model.  
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Figure 6.15:   Comparison of time-averaged 〈𝑐̅〉 progress variable contours with original:  (a) 
RANS Keppeler (b) LES Keppeler models. The inner lines denote 𝑐̅ = 0.5. 

 

The performance of the simplified RANS Keppeler model (Eq. (4.37)) is compared with the 

original RANS Keppeler  model (Eq. (4.35)) using case 7 with mesh A and the results are shown 

in Fig. 6.16. Similar  Reynolds-averaged  flame  contours  are  predicted  by  the  simplified   and 

 
 

Figure 6.16:   Comparison of time-averaged 〈𝑐̅〉 progress variable contours with: (a) simplified 
(b) original RANS Keppeler models. The inner lines denote 𝑐̅ = 0.5. 
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original RANS  Keppeler  models.  However, the flame   obtained with   the simplified RANS 

Keppeler model is slightly longer and hence, the predicted turbulent flame speed is lower as 

compared to the original RANS Keppeler mode. The normalized turbulent flame speeds 

predicted by the simplified and original RANS models for case 7 are 9.98 and 10.21, 

respectively. These results support the results obtained and discussed in section 6.1. Since, the 

simplified and original RANS Keppeler models yield similar results, the former model is used in 

the rest of the evaluations made with the RANS Keppeler model.  

Figure 6.17 shows the influence of grid resolution on the mean progress variable contours 〈𝑐̅〉 for 

case 7 with the simplified RANS Keppeler model at three systematically refined computational 

grids. The Reynolds-averaged flame contours do not change much as the grid resolution is 

increased, which is a sign of grid convergence for the RANS model. This shows that the RANS 

version of the Keppeler model gives satisfactory performance in terms of grid independence of 

predicted flame contours and turbulent flame speeds. Qualitatively similar results were obtained 

for other cases in Table 5.1.  

The performance of the RANS Keppeler model is also compared with the experimental data. The 

comparison is made by evaluating the predicted turbulent flame speeds for methane fuel at 1, 5, 

10 bar and for propane fuel at 1 and 5 bar. The Le number correction, as shown in Eq. (6.2), is 

used to include the fuel effects in the evaluations. Figure 6.18 shows the normalized flame 

speeds  𝑠𝑡/𝑠𝐿0  plotted  versus  𝑢′/𝑠𝐿0  for  methane  fuel  while  Fig. 6.19  shows a similar plot for  

 
 

Figure 6.17:   Comparison of time-averaged 〈𝑐̅〉 progress variable contours with: (a) coarse (b) 
medium fine grids using simplified Keppeler model. The inner lines denote 𝑐̅ = 0.5. 
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Figure 6.18: Comparison of turbulent flame speed at 1, 5 and 10 bar using the simplified RANS 
Keppeler model for methane fuel 
 
 

 
 

Figure 6.19: Comparison of turbulent flame speed at 1 and 5 bar using the simplified RANS 
Keppeler model for propane fuel 
 

propane fuel. The model captures the correct scaling of 𝑠𝑡/𝑠𝐿0 with pressure for both methane and 

propane fuels. For a given pressure, in spite of under-prediction and over prediction of the 

turbulent flame speed, increasing trend of 𝑠𝑡/𝑠𝐿0 with increasing 𝑢′/𝑠𝐿0 is satisfactorily predicted 

by the RANS Keppeler model. 
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6.5 Investigation of |𝜵𝒄�| versus |𝜵𝒄�| in FSD expression 
It has been described in chapter 4, that the sum of the LES filtered reaction rate and molecular 

diffusion of the progress variable can be written in terms of a generalized flame surface density 

𝛴𝑠𝑚𝑛. Boger et al. [8] defined 𝛴𝑠𝑚𝑛as: 

𝛴𝑠𝑚𝑛 = |𝛻𝑐|�����                                                                            (6.4) 

The 𝛴𝑠𝑚𝑛can be expressed in terms of subgrid scale wrinkling factor 𝛯 as: 

𝛴𝑠𝑚𝑛 =  𝛯|𝛻𝑐̅|                                                                              (6.5) 

where the wrinkling factor 𝛯 is defined as 𝛯 = |𝛻𝑐|����� / |𝛻𝑐̅|, or essentially the ratio of turbulent to 

laminar flame speed. When Eq. (6.5) is used in conjunction with Eq. (4.2), the issue of flame 

thickness control needs to be resolved. Ma et al. [52] reported that when the gradient-type |𝛻𝑐̅| 

models are used without suitable CGT models, the predicted flame thickness grows in the 

simulation at a physically unrealistic rate. In practical cases, this issue is of secondary 

importance because: (a) the excessive growth of the predicted flame thickness is limited by the 

short residence time of the flame in the burner regions (b) in most of the cases, the flame location 

is a more significant quantity to know than the predicted flame thickness (c) the overall burning 

rate depends on the flame propagation. With the gradient-type |∇c�| models, the turbulent flame 

speed is not affected by the flame brush thickness (𝑠𝑡 ∝ ∫𝛴𝑠𝑚𝑛 𝑑𝑥 ∝ ∫𝛯|𝛻𝑐̅|𝑑𝑥). It is shown in 

section 6.2.2 that when |𝛻�̃�| is used in Eq. (6.5) instead of |𝛻𝑐̅|, it acts like an implicit CGT 

SGSF model and controls the unrealistic thickening of the flame. In this section, the thickening 

of the flame with the gradient-type |𝛻𝑐̅| models is investigated in conjunction with different 

CGT SGSF models as presented in section 4.3 using a simple 1D flame, where the turbulent 

wrinkling is entirely at the subgrid level.  

6.5.1 Initial flame profile 

For a stationary 1D flame at 𝑡 = 0, the progress variable �̃�, its first derivative 𝜕�̃�/𝜕𝑥 and second 

derivative 𝜕2�̃�/𝜕𝑥2 can be represented in terms of error function: 

�̃� =
[1 + 𝑅𝑟𝑓(𝑥)]

2
;        𝑅𝑟𝑓(𝑥) =

2
√𝜋

� 𝑅−𝑥2
𝑥

0
𝑑𝑥                                          (6.6) 
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𝜕�̃�
𝜕𝑥

=
1
√𝜋

𝑅−𝑥2                                                                            (6.7) 

𝜕2�̃�
𝜕𝑥2

=
−2
√𝜋

𝑅−𝑥2𝑥                                                                       (6.8) 

6.5.2 Flame density and speed in terms of �̃�  

Progress variable is a normalized quantity, which can be written as: 

𝑐 =
𝑇 − 𝑇𝑢
𝑇𝑏 − 𝑇𝑢

                                                                    (6.9) 

Using the equation of state, temperature can be expressed in terms of pressure and density as 

𝑇 = 𝜕/𝜌𝑅. At constant pressure, Eq. (6.9) can be simplified as: 

�̅� =
𝜌𝑢

1 + 𝜏�̃�
                                                                    (6.10) 

where 𝜏 = 𝜌𝑢/𝜌𝑏 − 1. The turbulent burning rate per unit area �̇� can be written in terms of 

flame density and speed as:  

�̇� = constant;  𝜌𝑢𝑥 = 𝜌𝑢𝑢𝑢 =  𝜌𝑢𝑠𝑡   (for  𝑢𝑢 = 𝑠𝑡)                  (6.11) 

Substituting Eq. (6.10) into Eq. (6.11), the expression for flame speed in terms of progress 

variable can be written as: 

𝑢𝑥� = (1 + 𝜏�̃�)𝑠𝑡                                                                  (6.12) 

From Eq. (6.10) and (6.12), 𝜕�̅�/𝜕𝑥 and 𝜕𝑢𝑥�/𝜕𝑥 can be written as: 

 
𝜕�̅�
𝜕𝑥

= −
𝜌𝑢𝜏

(1 + 𝜏�̃�)2  
𝜕�̃�
𝜕𝑥

                                                                   (6.13) 

𝜕𝑢𝑥�
𝜕𝑥

= 𝑠𝑡𝜏 
𝜕�̃�
𝜕𝑥

                                                                         (6.14) 

6.5.3 Expression for 𝜕𝑐̅/𝜕𝑥 

The expression for 𝜕𝑐̅/𝜕𝑥 can be obtained using Eq. (5.1). For conciseness, only the final 

simplified expression is presented here: 
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𝑐̅ =
(1 + 𝜏)�̃�
1 + 𝜏�̃�

;       
𝜕𝑐̅
𝜕𝑥

=
(1 + 𝜏)

(1 + 𝜏�̃�)2  
𝜕�̃�
𝜕𝑥

                                                 (6.15) 

6.5.4 1D progress variable transport equation with |𝛻�̃�| 

in FSD expression 

For a 1D case, the Favre-filtered progress variable transport equation (Eq. (4.1)) can be written 

as: 

𝜕�̅��̃�
𝜕𝑡

+
𝜕�̅��̃�𝑢𝑥�
𝜕𝑥

+
𝜕
𝜕𝑥

(�̅�𝑢𝑥𝑐� − �̅�𝑢𝑥��̃�) =
𝜕
𝜕𝑥𝑥

�𝜌𝛼
𝜕𝑐
𝜕𝑥𝑥

���������
� + �̇�� = 𝜌𝑢𝑠𝐿𝛯 �

𝜕�̃�
𝜕𝑥
� =  𝜌𝑢𝑠𝑡 �

𝜕�̃�
𝜕𝑥
�     (6.16) 

Using continuity equation (Eq. (2.1)), the above equation can be simplified as: 

�̅�
𝜕�̃�
𝜕𝑡

=  𝜌𝑢𝑠𝑡 �
𝜕�̃�
𝜕𝑥
� − �̅�𝑢𝑥�

𝜕�̃�
𝜕𝑥

−
𝜕
𝜕𝑥

(�̅�𝑢𝑥𝑐� − �̅�𝑢𝑥��̃�)                            (6.17) 

For a flame with 𝑢𝑢 = 𝑠𝑡, the first and second terms on RHS of Eq. (6.16) will become zero 

(using Eq. (6.11)) and we are left with: 

�̅�
𝜕�̃�
𝜕𝑡

= −
𝜕
𝜕𝑥

(�̅�𝑢𝑥𝑐� − �̅�𝑢𝑥��̃�)                                                     (6.18) 

The above equation shows that the thickness of the flame depends on the gradient or counter-

gradient nature of the used SGSF model. If SGSF model is of gradient-type, the flame thickness 

will be increased and vice versa.  

6.5.5 1D progress variable transport equation with |𝛻𝑐̅| 

in FSD expression 

Equation (6.17) is developed using |𝛻�̃�| in the FSD expression. A similar expression can be 

developed using Eq. (6.18) together with Eqs. (2.1) and (6.15): 

�̅�
𝜕�̃�
𝜕𝑡

= 𝜌𝑢𝑠𝑡 �
𝜕𝑐̅
𝜕𝑥
� − �̅�𝑢𝑥�

𝜕�̃�
𝜕𝑥

−
𝜕
𝜕𝑥

(�̅�𝑢𝑥𝑐� − �̅�𝑢𝑥��̃�)                                    (6.19𝐷) 

Using Eq. (6.11), the above equation can be written as: 
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�̅�
𝜕�̃�
𝜕𝑡

= �
(1 + 𝜏)

(1 + 𝜏�̃�)2 − 1� 𝜌𝑢𝑠𝑡
𝜕�̃�
𝜕𝑥

−
𝜕
𝜕𝑥

�𝐹𝑥
𝑠𝑠�                                        (6.19𝑏) 

The first term on RHS of Eq. (6.19b) is denoted in the rest of the work with term X. Since 

[(1 + 𝜏)/(1 + 𝜏�̃�)2] > 1, the term X is of gradient-type. Figure 6.20a shows the plot of term X 

and it can be seen that it would induce strong flame thickening, which is not uniform at the 

unburnt and burnt flame sides. The second term on RHS side of Eq. (6.19b) represents the 

subgrid scalar flux (SFSF), which should be of counter-gradient type in order to counter balance 

the physically unrealistic thickening of the flame.  

6.5.6 Gradient hypothesis based model 

The most conventional way to model SGSF term is to use the gradient hypothesis based model:  

−
𝜕
𝜕𝑥

�𝐹𝑥
𝑠𝑠� =

𝜕
𝜕𝑥

��̅�
𝜈𝑠𝑠𝑠
𝑆𝑐𝑡

 
𝜕�̃�
𝜕𝑥
�                                                               (6.20) 

In Eq. (6.20), 𝜈𝑠𝑠𝑠 is the subgrid turbulent eddy viscosity and it is calculated using the 

Smagorinsky model [69]:  

𝜈𝑠𝑠𝑠 = (𝐶𝑠𝛥)2�2𝑆іϳ𝑆іϳ;    𝑆іϳ = 0.5�
𝜕𝑢і�
𝜕𝑥ϳ

+
𝜕𝑢ϳ�
𝜕𝑥і

�                                               (6.21) 

For the 1D case, Eq. (6.21) can be simplified as: 

𝜈𝑠𝑠𝑠 = (𝐶𝑠𝛥)2√2 
𝜕𝑢𝑥�
𝜕𝑥

;    𝑆𝑥𝑥 =
𝜕𝑢𝑥�
𝜕𝑥

                                           (6.22) 

𝐶𝑠 is the Smagorinsky constant and a theoretical value of 0.18 for isotropic turbulence is used in 

this analysis. Using  Eqs. (6.22) and (6.14), Eq. (6.20) can be simplified as: 

−
𝜕
𝜕𝑥

(𝐹𝑥
𝑠𝑎) = 𝑆𝑐𝑡−1(𝐶𝑠∆)2√2 

𝜕
𝜕𝑥

�𝜌�
𝜕𝑢𝑥�
𝜕𝑥

 
𝜕𝑐�
𝜕𝑥
� = 𝑆𝑐𝑡−1(𝐶𝑠∆)2√2 𝑠𝑡𝜏

𝜕
𝜕𝑥

�𝜌�
𝜕�̃�
𝜕𝑥

 
𝜕𝑐�
𝜕𝑥
� = 𝐴

𝜕
𝜕𝑥

�𝜌� �
𝜕�̃�
𝜕𝑥
�

2

�  

−
𝜕
𝜕𝑥

�𝐹𝑥
𝑠𝑠� = 𝐴 �2�̅�

𝜕�̃�
𝜕𝑥

𝜕2�̃�
𝜕𝑥2

+
𝜕�̅�
𝜕𝑥

�
𝜕�̃�
𝜕𝑥
�
2

� = 𝐴 �2�̅�
𝜕�̃�
𝜕𝑥

𝜕2�̃�
𝜕𝑥2

−
𝜌𝑢𝜏

(1 + 𝜏�̃�)2 �
𝜕�̃�
𝜕𝑥
�
3

�                 (6.23) 

where 𝐴 = 𝑆𝑐𝑡−1(𝐶𝑠∆)2√2 𝑠𝑡𝜏. For the present analysis, 𝑆𝑐𝑡 is taken to be 0.75 as it assumes a 

value of order of unity for gaseous flow. Figure 6.20b shows the plot of Eq. (6.23) and it can be 



123 
 

seen that it is of gradient-type and would induce additional flame thickening rather than counter 

balancing the strong flame thickening induced by term X.  

6.5.7 CLARK model 

The second term on RHS of Eq. (6.19b) can also be calculated using the CLARK model (Eq. 
(4.22)): 

−
𝜕
𝜕𝑥

�𝐹𝑥
𝑠𝑠� = −

𝜕
𝜕𝑥

��̅�
 𝛥2

12
𝜕𝑢𝑥�
𝜕𝑥

𝜕�̃�
𝜕𝑥
� = −

 𝛥2

12
𝑠𝑡𝜏

𝜕
𝜕𝑥

��̅�
𝜕�̃�
𝜕𝑥

𝜕�̃�
𝜕𝑥
� = 𝐵

𝜕
𝜕𝑥

��̅� �
𝜕�̃�
𝜕𝑥
�
2

�                   

−
𝜕
𝜕𝑥

�𝐹𝑥
𝑠𝑠� = −𝐵 �2�̅�

𝜕�̃�
𝜕𝑥

𝜕2�̃�
𝜕𝑥2

−
𝜌𝑢𝜏

(1 + 𝜏�̃�)2 �
𝜕�̃�
𝜕𝑥
�
3

�                             (6.24) 

where 𝐵 = (𝛥2/12) 𝑠𝑡𝜏. Figure 6.20c shows the plot of Eq. (6.24) and it can be seen that it is of 

weak counter gradient-type and has the potential to counter balance the strong flame thickening 

induced by term X, provided that the model constant 𝐵 is increased to capture the right 

quantitative trend.  

6.5.8 HUAI model 

The SGSF term in Eq. (6.19b) can also be modelled using the HUAI model: 

−
𝜕
𝜕𝑥

�𝐹𝑥
𝑠𝑠� = −

𝜕
𝜕𝑥

�−�̅�
𝜈𝑠𝑠𝑠
𝑆𝑐𝑡

 
𝜕�̃�
𝜕𝑥

+ �̅� 𝐷𝑎𝑛∆2𝑆𝑥𝑥�
𝜕�̃�
𝜕𝑥

 �                                             (6.25)  

The first and second terms on RHS of Eq. (6.25) account for the gradient and counter-gradient 

contributions to 𝐹𝑥
𝑠𝑠, respectively. The former term is already simplified to Eq. (6.23) and the 

latter term can be simplified as: 

−
𝜕
𝜕𝑥

�𝐹𝑥
𝑠𝑠�

𝐶𝐶𝑇
= −𝐷𝑎𝑛𝛥2

𝜕
𝜕𝑥

��̅�  
𝜕𝑢𝑥�
𝜕𝑥

  
𝜕�̃�
𝜕𝑥

 � = −𝐷𝑎𝑛𝛥2𝑠𝑡𝜏
𝜕
𝜕𝑥

��̅� �
𝜕�̃�
𝜕𝑥
�
2

�                              

−
𝜕
𝜕𝑥

�𝐹𝑥
𝑠𝑠�

𝐶𝐶𝑇
= −𝐶 �2�̅�

𝜕�̃�
𝜕𝑥

𝜕2�̃�
𝜕𝑥2

−
𝜌𝑢𝜏

(1 + 𝜏�̃�)2 �
𝜕�̃�
𝜕𝑥
�
3

�                             (6.26) 

Substituting Eqs. (6.26) and (6.23) into Eq. (6.25): 
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−
𝜕
𝜕𝑥

�𝐹𝑥
𝑠𝑠� = (𝐴 − 𝐶) �2�̅�

𝜕�̃�
𝜕𝑥

𝜕2�̃�
𝜕𝑥2

−
𝜌𝑢𝜏

(1 + 𝜏�̃�)2 �
𝜕�̃�
𝜕𝑥
�
3

�                          (6.27) 

where 𝐶 = 𝐷𝑎𝑛𝛥2𝑠𝑡𝜏. Figure 6.20d shows the plot of Eq. (6.27) and it can be seen that the HUAI 

model performs similar to the CLARK model. The strong flame thickening induced by term X 

can be counter balanced by using the HUAI model, provided that the model constant 𝐶 is 

increased to capture the right quantitative trend.  

6.5.9 WELLER model 

In this section, the WELLER model (Eq. (4.24)) is used to calculate the SGSF term: 

−
𝜕
𝜕𝑥

�𝐹𝑥
𝑠𝑠� = −

𝜕
𝜕𝑥

�−�̅�
𝜈𝑠𝑠𝑠
𝑆𝑐𝑡

 
𝜕�̃�
𝜕𝑥

− 𝜌𝑢𝑠𝐿 𝛯 𝑁𝑥 (𝑐̅ − �̃�)   �                                      (6.28) 

The second term, which accounts for the counter-gradient contribution to 𝐹𝑥
𝑠𝑠can be simplified 

as: 

−
𝜕
𝜕𝑥

�𝐹𝑥
𝑠𝑠�

𝐶𝐶𝑇
= 𝜌𝑢𝑠𝐿 𝛯

𝜕
𝜕𝑥

[𝑁𝑥 (𝑐̅ − �̃�)] = 𝜌𝑢𝑠𝐿
𝑠𝑡
𝑠𝐿
�(𝑐̅ − �̃�)

𝜕𝑁𝑥 
𝜕𝑥

+ 𝑁𝑥
𝜕𝑐̅
𝜕𝑥

− 𝑁𝑥
𝜕�̃�
𝜕𝑥

 �        (6.29) 

The first term on RHS of Eq. (6.29) will be cancelled out since for the 1D case 𝑁𝑥 = −1, Eq. 

(6.29) becomes: 

−
𝜕
𝜕𝑥

�𝐹𝑥
𝑠𝑠�

𝐶𝐶𝑇
= 𝜌𝑢𝑠𝑡 �𝑁𝑥

𝜕𝑐̅
𝜕𝑥

− 𝑁𝑥
𝜕�̃�
𝜕𝑥

 � = 𝜌𝑢𝑠𝑡 ��
𝜕�̃�
𝜕𝑥
� − �

𝜕𝑐̅
𝜕𝑥
� �                (6.30) 

Figure 6.20e shows the plot of Eq. (6.30) and it can be seen that it is quantitatively exactly equal 

to the term X in Eq. (6.21) but with opposite sign. Substituting Eq. (6.30) into Eq. (6.19b) with 

the gradient transport term, the term X will be canceled out and an equation similar to Eq. (6.18) 

is obtained. This shows that with using the WELLER model for the 1D case, |𝛻𝑐̅| in the FSD 

expression is changed to |𝛻�̃�| and implicitly account for the CGT effects in the FSD source term.  

6.5.10 RICHARD model 

It can be observed by comparing the expressions of RICHARD and WELLER models (Eqs. 

(4.23) and (4.24)) that the RICHARD CGT model is developed by setting 𝛯 = 1, so the 
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simplified expression for the RICHARD CGT model can be developed in a similar way used to 

obtain Eq. (6.30): 

−
𝜕
𝜕𝑥 �𝐹𝑥

𝑠𝑠�
𝐶𝐶𝑇

=
𝜕
𝜕𝑥

[𝜌𝑢𝑠𝐿𝑁𝑥(𝑐̅ − �̃�)] = 𝜌𝑢𝑠𝐿 ��
𝜕�̃�
𝜕𝑥� − �

𝜕𝑐̅
𝜕𝑥�� = −𝜌𝑢𝑠𝐿 �

(1 + 𝜏)
(1 + 𝜏�̃�)2 − 1� �

𝜕�̃�
𝜕𝑥� (6.31) 

Figure 6.20f shows the plot of Eq. (6.31). Substituting Eq. (6.31) into Eq. (6.19) with the 

gradient transport term, Eq. (6.19) becomes: 

0 = 𝜌𝑢𝑠𝐿(𝛯 − 1) �
(1 + 𝜏)

(1 + 𝜏�̃�)2 − 1� �
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𝜕𝑥� +

𝜕
𝜕𝑥 ��̅�

𝜈𝑠𝑠𝑠
𝑆𝑐𝑡

 
𝜕�̃�
𝜕𝑥 �                                (6.32) 

For  𝛯 = 1, i.e. for a laminar flame the RICHARD model performs similar to the WELLER 

model and the first term on RHS side of Eq. (6.32) is cancelled out. However, for 𝛯 > 1, the 

flame thickening effect from |∇𝑐̅|  is largely retained.  

6.5.11 TULLIS model 

In this section, the TULLIS model (Eq. (4.25)) is used to calculate the SGSF term: 

𝜕
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The second term which accounts for the counter-gradient contribution to 𝐹𝑥
𝑠𝑠can be simplified 

as: 
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Figure 6.20: Plot of (a) term X and SGSF term using: (b) GRAD model (c) CLARK model (d) 
HUAI model (e) WELLER model (f) RICHARD model (g) TULLIS model 
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where 𝐷 = 𝑠𝑡 𝜏. Figure 6.20g shows the plot of Eq. (6.34) and it can be seen that the TULLIS 

model performs similar to the WELLER model, as explained in section 4.3. The trends viewed 

with the WELLER model in section 6.5.9 are also observed with the TULLIS model.  
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Chapter 7 

Conclusions 

In the present study, different modifications have been made to an already established subgrid 

scale FSD model to investigate various features of turbulent premixed combustion of 

considerable importance. The main findings of the present study are concluded as following: 

• The performance of a simplified version of the original Keppeler model is investigated.  

The simplifications to the original Keppeler model are discussed and its performance is 

compared to the original model and validated with the experimental data. The simplified 

Keppeler model showed a satisfactory performance. The numerical predictions of 

turbulent flame speeds with both models, at conditions typical for spark-ignition engines 

and industrial gas turbines, match with the experimental data satisfactorily well. 

However, the flame speeds obtained with the simplified model are slightly lower than the 

values obtained with the original model.  

• The performance of the original Keppeler model is investigated in conjunction with three 

different closures of SGSF: classical gradient hypothesis closure, Clark’s tensor 

diffusivity model and Huai’s model. Originally it was used together with a gradient 

hypothesis closure for SGSF [53]. The results show that the turbulent flame speed is not 

significantly affected by SGSF closure and the numerical predictions of turbulent flame 

speed match the experimental data reasonably well, independent of the SGSF closure. 

However, the flame shape and thickness are modified by the more advanced SGSF 

closure to some extent. A-priori analysis based on an existing DNS database yielded a 

qualitatively similar model behavior as obtained from a-posteriori model assessments 

using LES simulations, in the sense that no clear advantage could be seen when using 

more sophisticated SGSF models in combination with the FSD closure applied in the 

Keppeler model. Detailed physical explanations have been provided for the observed 

influences of SGSF closure on the overall performance of the Keppeler model. It has 

been identified that replacing the filtered reaction progress variable with its Favre filtered 

counterpart in the expression of the resolved FSD was shown to act as an implicit CGT 
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model and consequently, explicit treatment of the CGT part of SGSF becomes less 

important, if not redundant. Hence, it leads the comparatively good performance of the 

gradient flux approximation in combination with the particular closure of FFFD term 

used in the Keppeler model.  

• An extensive numerical study, supported with the analytical work, is performed to 

investigate the effects of pressure and fuel type in the reaction rate closure using some of 

the popular algebraic flame surface density reaction rate closure models available in open 

literature. The numerical predictions are compared with the well documented 

experimental data for lean methane and propane fuels for different flow and turbulence 

inlet conditions at operating pressures between 1 and 10 bar. With the original versions of 

the selected models, turbulent flame speed is under-predicted with difference growing 

larger for larger pressure. The model constants were tuned and the pressure corrections 

obtained with the KPP analysis were incorporated to achieve correct pressure dependency 

of the turbulent flame speed. Following the work available in the open literature, a new 

term was incorporated (1/Le) introducing the fuel effects in the reaction rate closure of 

the Keppeler and Fureby models. With these changes, the models predict the turbulent 

flame speed values in a very good agreement with the experimental data. The tuned 

models now include two important aspects of technical relevance, i.e. the influence of the 

Lewis number for different fuels and high-pressure effects on the reaction rate.  

• A RANS version of the Keppeler model [53], which is originally derived for the LES of 

premixed flames, is developed and its performance is investigated. The results from the 

new RANS model showed a satisfactory performance in comparison with its LES 

counterpart and experimental data. 

• Lastly, the effects of replacing Reynolds-averaged progress variable 𝑐̅ with its Favre 

filtered counterpart �̃� in the expression of FSD is investigated in combination with 

different SGSF models in a 1D formulation. The presence of |∇c�| in the FSD expression 

results in a physically unrealistic thickening of the flame which can be counter-balanced 

by using suitable SGSF models (e.g. WELLER or TULLIS models) that account for the 

flux of CGT type.  
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