
The GNSS-Transceiver: Using vector-tracking
approach to convert a GNSS receiver to a

simulator; implementation and verification for
signal authentication

Daniel S. Maier, Universität der Bundeswehr München
Kathrin Frankl, Universität der Bundeswehr München

Prof. Thomas Pany, Universität der Bundeswehr München

BIOGRAPHIES
Daniel Simon Maier has a professional training as a technical draftsman and received his bachelor in Physics in 2015 and his master
in Applied and Engineering Physics in 2017 from the Technical University of Munich (TUM), Germany. Since 2017 he is a research
associate at the Institute of Space Technology and Space Applications of the Universität der Bundeswehr München. His current
research interests include GNSS signal generation, signal authentication and signal performance analysis.

Kathrin Frankl received her German Diploma in Mathematics from Technical University of Munich. Since 2014, she is working
at the Institute of Space Technology and Space Applications at Universität der Bundeswehr München, Germany. Her research focus
is on integrity and authentication algorithms for terrestrial and space applications.

Prof. Thomas Pany is professor at the Universität der Bundeswehr München at the faculty of aerospace engineering where he
teaches satellite navigation. His research includes all aspects of navigation ranging from deep space navigation over new algorithms
and assembly code optimization. Currently, he focuses on GNSS signal processing for Galileo second generation, GNSS receiver
design and GNSS/INS/LiDAR/camera fusion. To support these activities, he is developing a modular GNSS testbed for advanced
navigation research. Previously, he worked for IFEN GmbH and IGASPIN GmbH and is the architect of the ipexSR and SX3 software
receiver. He has around 200 publications including patents and one monography.

ABSTRACT
Studying and testing new and possible future GNSS signals and navigation messages require a signal generator which is flexible and
fully modifiable. To overcome the need of implementing a signal generator from scratch, we present a way to modify an excising
GNSS software receiver (SR) into a software transceiver (ST). The ST reuses the SR modules and the infrastructure for the signal
generation. The modification approach is based on exploiting the vector tracking feature of the software receiver. Due to the
replacement of the position in the vector tracking loop, it is possible to manipulate the numerical controlled oscillator (NCO) and
thereby force the code and carrier generator to generate a signal replica which fits to the induced position. Multiplying the replica
with the desired symbol value and the desired amplitude yields an entire line of sight signal. The replica signals of all satellites in
tracking match the predefined user trajectory. Saving the added replica signals results in a signal stream of intermediate frequency
(IF). The ST is able to track, generate or re-generate tracked signals. The concept and an implementation approach is presented. The
signal quality is compared to real signals. The possibilities of the ST are shown by generating Galileo OS signals with navigation
message authentication (NMA) and generating a secure code estimation (SCE) attack signal.

INTRODUCTION
Research in the field of GNSS signal performance under spoofing, jamming and multipath comes along with the need of reproducing
this channels, signals, and scenarios as good as possible. The performance of currently used signals can be analyzed quite easily as
it is possible to use the genuine transmitted signals or use state of the art commercial of the shelf (COTS) signal generators for the
recreation of the setup under investigation. This becomes, however, much more difficult if new signals, channel structures or

navigation massages are under test. Some commercial signal generators give the possibility to implement new signals and use its
own navigation message but in a very limited and restricted extent.
To overcome these restrictions, it would be necessary to implement an own signal generator [1] to have all the possibilities in creation
and testing signals in all desired scenarios. However, implementing a sophisticated signal generator from scratch is a huge, difficult
and time consuming task.
To avoid this task, we present a way to convert a software receiver (SR) into a GNSS software transceiver (ST), to track and generate
GNSS signals. With this approach it is possible to reuse the sophisticated and optimized infrastructure of the SR for the signal
generator. We exploit the fact that each SR has to create an estimated replica of code and carrier for the correlation. The key element
in our approach is the usage of the software receiver vector-tracking architecture to create the desired line-of-sight parameters for
updating the numerically controlled oscillator (NCO) and therefore the code and carrier replica generation.
Feeding the Line-of-Sight module with the position, velocity and time (PVT) of a pre-defined receiver trajectory gives an easy
opportunity to manipulate the vector tracking loop to generate replicas as needed to recreate signals which represent the receiver
movements. In addition, the desired symbols and amplitudes have to be provided to the tracking loops. Multiplying the replica signal
with amplitude and symbol gets a new channel IF signal patch. Adding up all channels results in an IF signal stream for a total or
even multiple constellations. If required additional Gaussian white noise can be added before the IF signal patch is written into the
output file. Ionospheric and tropospheric influences are simulated as the line-of-sight parameters are calculated using ionospheric-
and tropospheric-models. The ST is able to track, generate or re-generate tracked signals. A similar approach for re-generating tracked
signals to upgrade existing receivers was presented by Humphreys et al.[2].
First, the SR and the vector tracking architecture is briefly presented and explained. Thereafter, the modifications are described to
convert a software receiver into a software transceiver, using the vector tracking approach. The implementation as well as error
sources are described, using the MuSNAT SR as foundation. At the end, we compare the generated signals with real signals and
show the power of the ST by generating Galileo OS signals with navigation message authentication (NMA) as well as generating
secure code estimation (SCE) attacker signals.

SOFTWARE RECEIVER AND VECTOR TRACKING ARCHITECTURE
Vector tracking is an old topic in the GNSS community and was first proposed in 1980 [3] by Copps et al. Since then, many papers
[4, 5], articles [6] and books [7,8] where published, describing and studying the vector tracking topic in its full complexity and
broadness with its advantages and drawbacks. The given references are by far not complete and can only be a starting point for
interested readers.
To understand the necessary modifications for transforming a vector tracking based SR into a signal generator (software transceiver,
ST), a brief description of conventional independent channel tracking architecture and the used vector tracking architecture follows.
All SRs have two main modules defining the processing workflow betweenthe IF sample stream as receiver input and the receiver
position, velocity and timing (PVT) information as receiver output: (i) the signal processing unit with the tracking loops as core part
and (ii) the navigation processor.. The signal processing unit, specially the tracking loops, process sample batches of the IF sample
stream in sequential order, and extract the pseudorange 𝜌𝜌, pseudorange-rate �̇�𝜌 and possibly the pseudorange-rate-rate �̈�𝜌 for all tracked
satellite signals. This parameters are passed to the navigation processor which then determines the receiver’s PVT.
In a conventional SR, separate and independent tracking loops are used to track each satellite signal standalone. The signal processing
is schematically shown in Figure 1. Each tracking loop consists of a correlator, integrator, discriminator, loop filter, NCO as well as
a code and carrier generator. The code and carrier generator creates a replica of the received satellite signal. The replica generation
parameters are controlled by the NCO. An early (E), prompt (P) and late (L) version of the generated replica signal is then correlated
with IF sample batch. The values for the integrated correlation signals are dumped and handed over to the discriminator. The
discriminator evaluates the E, P and L values for in-phase (I) and quadrature-phase (Q) and estimate the code time delay error 𝛿𝛿𝛿𝛿 as
well as the carrier frequency error 𝛿𝛿𝛿𝛿 and the carrier phase error 𝛿𝛿ϕ of the replica signal. Over the loop filter these estimated error
values are used to update, i.e., speed up or slow down the NCO so that the replica signal follows the satellite signal. A detailed
description of the signal processing is presented in [14]. With the replica values, a good estimation of the satellite signal parameters
(code delay 𝛿𝛿, carrier Doppler 𝛿𝛿𝑑𝑑 and carrier phase 𝜙𝜙) can be determined. The satellite signal parameters are used to calculate the
pseudorange 𝜌𝜌, pseudorange-rate �̇�𝜌 and the pseudorange-rate-rate �̈�𝜌 which are needed for the PVT determination in the navigation
module. The update rate of the tracking loops is in the order of 50 to 1000 Hz, whereas the navigation processor works with a
common update rate in the order of 1 to 10 Hz. The Loop Filter with its bandwidth is used to smooth the high rate values for the
NCO update. Therefore the current smoothed output values of the Loop Filter are used by the Navigation processor at dump time.

Figure 1: Sketch of independent channel tracking.

In a conventional SR all tracking loops work independently as mentioned above. This leads to the drawback that the tracking loop
can easily loose the satellite signal during short periods of signal blockage or signal fading. Even if the signal outage is short, the
receiver has to start with a re-acquisition of the lost signal which is time and processing power consuming. The basic idea of vector
tracking is to support the single tracking loop with redundant information of the other tracking loops, so the single tracking loop is
able to bridge periods of a weak signal or signal blockage. All satellite signal parameters are defined with respect to the position and
velocity of receiver and satellite. Therefore, the PVT solution of the navigation processor represents the compressed information of
the redundant tracking loop outputs. The vector tracking task is to feedback this redundant information to each single tracking loop,
or more precise, to feedback the best estimation of it. This task can be realized in various forms, some are more and some are less
complex. The more sophisticated approaches usually use some kind of extended Kalman filter (EKF) for PVT estimation (if this
filter includes also inertial measurements, it is called a deep GNSS/IMU integration). The implementation used in this work is
sketched in Figure 2. Here, the PVT algorithm is intentionally left unspecified. An additional module to determine the line-of-sight
(LOS) parameters (𝜌𝜌𝑖𝑖, 𝜌𝜌�̇�𝚤 and 𝜌𝜌�̈�𝚤at time 𝑡𝑡𝑖𝑖) for all tracked satellites is needed. As already mentioned, the LOS parameters are specified
with respect to the position and the dynamic of satellite and receiver, and can easily be determined with geometrical considerations.
The satellite position is known from the ephemeris in the navigation message. The navigation module will update the LOS parameter
with a rate of 10 Hz (100ms). The operational update rate of the tracking loop, however, is around 1000Hz (1ms). To overcome this
lack of sampling points, we perform a quadratic extrapolation of the LOS parameters, assuming a constant acceleration until the next
LOS update. The equations for the code extrapolation look like:

 𝜌𝜌𝑖𝑖+1 = 𝜌𝜌𝑖𝑖 + 𝜌𝜌�̇�𝚤Δ𝑡𝑡 + 1
2
𝜌𝜌�̈�𝚤Δ𝑡𝑡2 (1)

 �̇�𝜌𝑖𝑖+1 = 𝜌𝜌�̇�𝚤 + 𝜌𝜌�̈�𝚤Δ𝑡𝑡 (2)
 �̈�𝜌𝑖𝑖+1 = 𝜌𝜌�̈�𝚤 (3)

With Δ𝑡𝑡 = 𝑡𝑡𝑖𝑖+1 − 𝑡𝑡𝑖𝑖 . This extrapolation is obviously wrong in the long term but for the short time span of 0.1s the approximation
works quiet well for systems with moderate dynamics. These extrapolated LOS parameters are used to update the NCO in a hard
reset fashion. This means that the replica signal changes during the 0.1s in a smooth fashion, i.e., determined by Equation (1)-(3).
After the update of the LOS parameters, however, a jump occurs in the time domain of the replica signal parameters. The error of
the extrapolation and the jumps of the replica signal are compensated in pseudorange calculation, as the discriminator determines 𝛿𝛿𝛿𝛿,
𝛿𝛿𝛿𝛿 and 𝛿𝛿ϕ. The carrier NCO is updated in a different way. Here, the Doppler values are integrated to determine the carrier phase.
This means that also the Doppler and phase values are error-prone but continues.
Due to the circumstance that no Loop Filter is needed any more to determine the smoothed update values for the NCO, a new
decimation filter is needed to provide smoothed pseudorange estimation values to the navigation processor. This can be a Kalman
filter but we use a polynomial fit method, where a vector of discriminator values is fitted with a polynomial function to determine
the signal parameters at dump time.

Figure 2: Vector Tracking Receiver Architecture.

SOFTWARE TRANSCEIVER
A SR needs to mimic and create the satellite signals as good as possible to be able to track the signal which is hidden under the noise
floor. So, all SR are already signal generators. The only difference is that a SR reproduces an existing signal and is not creating a
new one. To transform the SR vector tracking architecture into an actual signal generator, two main modifications (shown in Figure
3) are needed to be carried out.
First, one needs access to the created replica signal which consists of code 𝐶𝐶(𝑡𝑡) and carrier cos[2𝜋𝜋(𝛿𝛿𝐿𝐿 + 𝛿𝛿𝑑𝑑)𝑡𝑡 + 𝜙𝜙] in the tracking
loop. Multiplying the replica signal �̂�𝑟𝐼𝐼𝐼𝐼 with the estimated amplitude 𝐴𝐴(𝑡𝑡) and the navigation symbol 𝐷𝐷(𝑡𝑡) for this batch, one gets a
renewed version of the received signal:

 �̂�𝑟𝐼𝐼𝐼𝐼(𝑡𝑡, 𝛿𝛿, 𝛿𝛿𝑑𝑑,𝜙𝜙) = 𝐴𝐴(𝑡𝑡 − 𝛿𝛿)𝐷𝐷(𝑡𝑡 − 𝛿𝛿)𝐶𝐶(𝑡𝑡 − 𝛿𝛿) cos[2𝜋𝜋(𝛿𝛿𝐿𝐿 + 𝛿𝛿𝑑𝑑)𝑡𝑡 + 𝜙𝜙], (4)
where 𝛿𝛿 is the code delay and 𝑡𝑡 the receiving time. Summing up all replica signal from each tracking loop gives a renewed version
of the IF signal without noise. Appending and saving the IF signal batches in sequential order in a file, yields a renewed version of
the IF stream file. Before saving the batches one can add additive white Gaussian noise (AWGN) to mimic the true record as good
as possible.
With the second modification, it is possible to influence the replica generation in a way that a desired user trajectory can be
reproduced. To do so, the working principle of the vector tracking is exploited. Not the PVT solution of the navigation processor is
feeded back but a new PVT solution originates of a before defined user trajectory. Due to the replacement of the PVT solution, the
correlation, integration, discrimination, polynomial fit and PVT determination processes are obsolete and can be bridged or turned
off to save computing power. A more detailed discussion of the modifications follows.

Figure 3: Sketch of signal generation architecture, using the vector tracking infrastructure.

IMPLEMENTATION
The following section gives insight in the GNSS software transceiver implementation following the concept described above. The
implementation is based on the ipexSR software receiver [9], the software packet was renamed into Multi Sensor Navigation
Analyzing Tool (MuSNAT) [10]. The section ‘Signal generation’ describes the implementation steps needed to modify the replicas
with amplitude, data bit and noise. Section ‘User PVT trajectory feedback’ shows the modification steps needed to replace the original
PVT solution with a user defined trajectory.

Signal generation
The MuSNAT SR processes IF sample packages of ~30 ms. This IF sample package is divided into IF sample frames with a length
of ~ 0.8ms. The sample frame packages are processed in sequential order. In each processing step, the sample frame is distributed to
all Master Channels. Each Master Channel processes one satellite signal and is composed of one or two tracking channels depending
on whether the satellite signal has one (data) or two (data and pilot) components. All these channels process the sample frames
successively. Due to this sequential workflow, we are able to allocate memory in the receiver with the same size as the IF sample
package and handover memory pointer to the tracking loops. So all tracking loops can add their locally created satellite signal to this
memory segment. When the IF sample package processing is finished, the generated IF sample package is finally processed in total.
In this final processing step, AWGN can be added and output conversions can be performed. In the conversion step, the generated
IF stream output format is set. Internally, the replica signals are stored as double float values, to ensure a minimal quantization errors
in the signal addition process. For the saving process, the double float values can be converted to the desired output format. In this
work, either a real-valued 8bit or an I-Q-8bit conversion is used.
For the signal amplitude, we use predefined 𝐶𝐶/𝑁𝑁0 values for each satellite in tracking. The amplitude parameter 𝐴𝐴𝑠𝑠 for each satellite
𝑠𝑠 is defined as a relative amplitude. The strongest satellite is assigned an amplitude of 1, weaker signals are assigned a corresponding
smaller amplitude. The calculations were done with the equation

 𝐴𝐴𝑠𝑠 = 10
𝐶𝐶/𝑁𝑁0𝑠𝑠−𝐶𝐶/𝑁𝑁0𝑚𝑚𝑚𝑚𝑚𝑚

20 . (5)
The standard deviation 𝜎𝜎𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 of the AWGN was calculated with

 𝜎𝜎𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 = �𝐴𝐴2
2 ∗ 𝑓𝑓𝑆𝑆

2 ∗ 10−𝐶𝐶/𝑁𝑁0𝑚𝑚𝑚𝑚𝑚𝑚
10 , (6)

where 𝐴𝐴 = 1, as the AWGN is adapted to the strongest signal. The equations above were derived from [12]
 𝐶𝐶/𝑁𝑁0 = 10 log(𝑆𝑆𝑁𝑁𝑆𝑆 ∗ 𝐵𝐵𝐵𝐵) = 10 log �𝑃𝑃

𝐴𝐴
∗ 𝑓𝑓𝑆𝑆

2
�, (7)

where power 𝑃𝑃 = 𝐴𝐴2
2 , 𝑁𝑁 = 𝜎𝜎𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴

2 and 𝛿𝛿𝑆𝑆 equals the sampling rate. SNR and BW denote the signal-to-noise ratio and the bandwidth.
The amplitude value 𝐴𝐴𝑠𝑠(𝑡𝑡 − 𝛿𝛿) can also be used to implement a land mobile satellite (LMS) channel model [11] to simulate realistic
environments.
The last missing part for the signal generation represents the navigation symbol 𝐷𝐷. The navigation message has to be pre-produced
and is stored in a receiver internal data base. 𝐷𝐷(𝑡𝑡 − 𝛿𝛿) is selected for each sample frame accordingly to the satellite transmitting time.

User PVT trajectory feedback
For the user trajectory input we use a text file of the format:
𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑝𝑝𝑥𝑥 𝑝𝑝𝑦𝑦 𝑝𝑝𝑧𝑧 𝑣𝑣𝑥𝑥 𝑣𝑣𝑦𝑦 𝑣𝑣𝑧𝑧
0.0 4115730.103 800016.890 4790936.102 0.000 0.000 0.000
0.5 4115730.082 800016.886 4790936.121 -0.093 -0.018 0.082
0.1 4115730.010 800016.872 4790936.185 -0.196 -0.038 0.173
⋮
Where 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 is the trajectory time, 𝑝𝑝𝑥𝑥, 𝑝𝑝𝑦𝑦 and 𝑝𝑝𝑧𝑧 represent the user positon in the WGS 84 system in meter and 𝑣𝑣𝑥𝑥, 𝑣𝑣𝑦𝑦 and 𝑣𝑣𝑧𝑧 represent
the user velocity in the WGS 84 system in m/s. The trajectory points (2 Hz) need to be interpolated to the PVT update time steps (10
Hz). To do so, a 4th degree spline interpolation approach was chosen. The 4th degree spline interpolation is defined with the following
three equations:

 𝑆𝑆𝑡𝑡(𝑡𝑡) = 𝑎𝑎𝑡𝑡4 �𝑡𝑡 − 𝑡𝑡𝑡𝑡�
4 + 𝑎𝑎𝑡𝑡3 �𝑡𝑡 − 𝑡𝑡𝑡𝑡�

3 + 𝑎𝑎𝑡𝑡2�𝑡𝑡 − 𝑡𝑡𝑡𝑡�
2 + 𝑎𝑎𝑡𝑡1�𝑡𝑡 − 𝑡𝑡𝑡𝑡� + 𝑎𝑎𝑡𝑡0 (8)

 �̇�𝑆𝑡𝑡(𝑡𝑡) = 4𝑎𝑎𝑡𝑡4 �𝑡𝑡 − 𝑡𝑡𝑡𝑡�
3 + 3𝑎𝑎𝑡𝑡3 �𝑡𝑡 − 𝑡𝑡𝑡𝑡�

2 + 2𝑎𝑎𝑡𝑡2�𝑡𝑡 − 𝑡𝑡𝑡𝑡� + 𝑎𝑎𝑡𝑡1 (9)
 �̈�𝑆𝑡𝑡(𝑡𝑡) = 12𝑎𝑎𝑡𝑡3 �𝑡𝑡 − 𝑡𝑡𝑡𝑡�

2 + 6𝑎𝑎𝑡𝑡3(𝑡𝑡 − 𝑡𝑡𝑡𝑡)+ 2𝑎𝑎𝑡𝑡2 (10)
Where 𝑆𝑆𝑡𝑡(𝑡𝑡), �̇�𝑆𝑡𝑡(𝑡𝑡) and �̈�𝑆𝑡𝑡(𝑡𝑡) are the position, velocity and acceleration at time 𝑡𝑡, 𝑗𝑗 indicates the current fix point. The five parameters
𝑎𝑎𝑡𝑡4, 𝑎𝑎𝑡𝑡3, 𝑎𝑎𝑡𝑡2, 𝑎𝑎𝑡𝑡1 and 𝑎𝑎𝑡𝑡0 define the interpolation function between the fix points 𝑗𝑗 and 𝑗𝑗 + 1. There are four static conditions in position
and velocity and one continuity condition in the acceleration:

 𝑆𝑆𝑡𝑡�𝑡𝑡𝑡𝑡� = 𝑎𝑎𝑡𝑡0 = 𝑝𝑝𝑥𝑥𝑗𝑗 (11)
 𝑆𝑆𝑡𝑡�𝑡𝑡𝑡𝑡+1� = 𝑎𝑎𝑡𝑡4 Δ𝑡𝑡4 + 𝑎𝑎𝑡𝑡3 Δ𝑡𝑡3 + 𝑎𝑎𝑡𝑡2Δ𝑡𝑡2 + 𝑎𝑎𝑡𝑡1Δ𝑡𝑡 + 𝑎𝑎𝑡𝑡0 = 𝑝𝑝𝑥𝑥𝑗𝑗+1 (12)
 �̇�𝑆𝑡𝑡�𝑡𝑡𝑡𝑡� = 𝑎𝑎𝑡𝑡1 = 𝑣𝑣𝑥𝑥𝑡𝑡 (13)
 �̇�𝑆𝑡𝑡�𝑡𝑡𝑡𝑡+1� = 4𝑎𝑎𝑡𝑡4 Δ𝑡𝑡3 + 3𝑎𝑎𝑡𝑡3 Δ𝑡𝑡2 + 2𝑎𝑎𝑡𝑡2Δ𝑡𝑡 + 𝑎𝑎𝑡𝑡1 = 𝑣𝑣𝑥𝑥𝑡𝑡+1 (14)
 �̈�𝑆𝑡𝑡�𝑡𝑡𝑡𝑡� = 2𝑎𝑎𝑡𝑡2 = �̈�𝑆𝑡𝑡−1�𝑡𝑡𝑡𝑡� = 12𝑎𝑎𝑡𝑡−14 Δ𝑡𝑡 + 6𝑎𝑎𝑡𝑡−13 Δ𝑡𝑡 + 2𝑎𝑎𝑡𝑡−12 (15)

With Δ𝑡𝑡 = (𝑡𝑡𝑡𝑡+1 − 𝑡𝑡𝑡𝑡). Following equations are used to update the parameters.
 𝑎𝑎𝑡𝑡0 = 𝑝𝑝𝑥𝑥𝑗𝑗 (16)
 𝑎𝑎𝑡𝑡1 = 𝑣𝑣𝑥𝑥𝑗𝑗 (17)

 𝑎𝑎𝑡𝑡2 = 1
2
�̈�𝑆𝑡𝑡−1�𝑡𝑡𝑡𝑡� (18)

 𝑎𝑎𝑡𝑡3 = 4
𝑝𝑝𝑚𝑚𝑗𝑗+1−𝑝𝑝𝑚𝑚𝑗𝑗

Δ𝑡𝑡3
−

𝑣𝑣𝑚𝑚𝑗𝑗+1+3𝑣𝑣𝑚𝑚𝑗𝑗
Δ𝑡𝑡2

− �̈�𝑆𝑗𝑗−1�𝑡𝑡𝑗𝑗�
Δ𝑡𝑡

 (19)

 𝑎𝑎𝑡𝑡4 = −3
𝑝𝑝𝑚𝑚𝑗𝑗+1−𝑝𝑝𝑚𝑚𝑗𝑗

Δ𝑡𝑡4
+

𝑣𝑣𝑚𝑚𝑗𝑗+1+2𝑣𝑣𝑚𝑚𝑗𝑗
Δ𝑡𝑡3

+ �̈�𝑆𝑗𝑗−1�𝑡𝑡𝑗𝑗�
2Δ𝑡𝑡2

 (20)

The interpolations in x, y and z dimension are done independent from each other. The PVT solution also includes values for clock
error and clock drift as well as accuracy estimations (mean radial spherical error, MRSE) for positon and velocity. Clock error and
clock drift are set to zero, position and velocity accuracy is set to 0.001 𝑚𝑚 and 0.001 𝑚𝑚/𝑠𝑠. These parameter can be defined in the
trajectory input file and set like needed. The interpolated PVT solution is handed over to the LOS module.
In this module, the LOS parameters are determined for all satellites in tracking. Therefore, the satellite position at the transmitting
time is determined. Thereafter, the distance between satellite and receiver is calculated. Additionally to earth rotation and relativistic
effects, also ionospheric and tropospheric models are applied. The derivatives of the pseudorange (�̇�𝜌 , �̈�𝜌) are approximated by linear
considerations.
In the next step, the LOS parameter are transferred to the tracking loops. Here a second extrapolation step is needed to adapt the
sampling rate from the 10 Hz of the navigation process to the 1000 Hz of the tracking loops. The quadratic extrapolation is already
described above in the vector tracking section, compare Equation (1)-(3). In the normal vector tracking process, this approximation
is acceptable because the error is compensated by the discriminator value. However, this approximation becomes an issue for the
signal generation. The replica is created, following the extrapolated values, and a replica jump occurs at the edge of the last
extrapolated point of 𝑆𝑆𝑡𝑡(𝑡𝑡𝑡𝑡+1) to the first point of the new extrapolation 𝑆𝑆𝑡𝑡+1(𝑡𝑡𝑡𝑡+1). These jumps could make it more difficult to track
the generated signal, especially for the phase tracking. The interpolation and extrapolation process is visualized in Figure 4. As ‘Real
trajectory’ a sinusoidal movement in x direction is used. The movement amplitude is 10 m with an absolute velocity of 3 m/s. Only
the x position was fitted, not the pseudorange, that means that Figure 4 is just for illustration purposes and shows not the real inter-
and extrapolation processes. The generated signals are, despite the error in the extrapolation, nice and easy to track for, see ‘Result’

section. In future it is foreseen that the quadratic extrapolation step is replaced with an interpolation, very similar to the trajectory
interpolation. Therefore, not only the current LOS parameters (𝜌𝜌𝑖𝑖 , �̇�𝜌𝑖𝑖 , �̈�𝜌𝑖𝑖) but also the future LOS parameters (𝜌𝜌𝑖𝑖+1, �̇�𝜌𝑖𝑖+1, �̈�𝜌𝑖𝑖+1) need
to be passed to the tracking loop. That is possible, as the entire trajectory is predefined. This interpolation allows us then to create a
continuous satellite signals.

Figure 4: Visualization of the interpolation and extrapolation process. The real trajectory is a sinusoidal movement with an amplitude of 10 m
and absolute velocity of 3 m/s. Only the x position was fitted, not the pseudorange.

RESULTS
Pseudorange verification
To verify the correct implementation and to check the influences of interpolation and extrapolation process to the LOS parameter
creation, the values for pseudorange ρ, pseudorange -rate �̇�𝜌, pseudorange-rate-rate �̈�𝜌 and the carrier phase were plotted and
evaluated. The extrapolated LOS parameter for a circular user trajectory is plotted in Figure 5. In the pseudorange plot (top) only
the satellite movement is visible as the pseudorange is governed by that. In pseudorange-rate and the pseudorange-rate-rate,
however, the velocity and acceleration changes caused by the user movements are clearly visible. Figure 6 shows a zoom in of
Figure 5. In the zoomed plot a constant behavior of �̈�𝜌 and a linear behavior of �̇�𝜌 is observed as expected between the quadratic
extrapolation jumps. For the pseudorange, however, there is no clear jump visible. That is encouraging, as it means that the
extrapolation process does not induce a large error in the pseudorange creation. But it has to be mentioned, that this lack of jump
may also be explained by the small �̈�𝜌 values in this scenario. The validation for bigger �̈�𝜌 values is in progress. If bigger �̈�𝜌 values
lead to a non-negligible jump in the pseudorange creation, the substitution of the extrapolation process with an interpolation
process is consider. As the carrier phase is calculated via an interpolation of the Doppler value, no jump is expected and is also not
observed.

Figure 5: Generated LOS parameter after the quadratic extrapolation step. User trajectory is a circular movement. From top to bottom:

pseudorange 𝜌𝜌, pseudorange -rate �̇�𝜌, pseudorange-rate-rate �̈�𝜌 and the carrier phase.

Figure 6: Generated LOS parameter after the quadratic extrapolation step, zoom of Figure 5. User trajectory is a circular movement. From top

to bottom: pseudorange 𝜌𝜌, pseudorange -rate �̇�𝜌, pseudorange-rate-rate �̈�𝜌 and the carrier phase.

Tracking performance: genuine vs. generated Galileo OS signal
To check the quality of the generated signal, we compare the tracking results of a genuine recorded signal with a generated signal.
The Galileo OS E1 signal was recorded with static receiver positon and open sky conditions. For the generated signal, we used a

static trajectory with the same position as the recording antenna. Also, we generated the signal for the same day and time. The 𝐶𝐶/𝑁𝑁0
ratio for the signal generation was set to 52 dB-Hz, to match the genuine signal strength. The strong signal power ensure that errors
in the signal generation are easily visible. Both IF sample files were processed with the same configurations. The only difference
was that the genuine IF file has a sampling rate of 20 MHz and the generated IF file has a sampling rate of 10 MHz. For processing,
the MuSNAT software receiver was used. In Figure 7 the tracking performances are compared, on the left side the genuine signal
and on the right side the generated signal. Figure 7 shows the plots (from top to bottom) for the signal power (C/N0), code
discriminator (eDLL), phase discriminator (ePLL), frequency discriminator (eFLL) and code minus carrier (CMC). The signal power of
the generated signal is slightly higher than it was defined in the generation process, a mean signal strength of 52.4 dB-Hz was
measured. The tracking performance of eDLL, ePLL 𝑎𝑎𝑎𝑎𝑎𝑎 eFLL are in the same order for genuine and generated signal. The tracking
performance of the generated signal is slightly better, this may result from the stronger signal strength and the fact that the genuine
signal faced more disturbances. This can also be observed when comparing the CMC plots.
Anyway, it is visible that the generated signal matches the original signal well in terms of tracking performance and that the replica
jumps due to the extrapolation process are negligible.

Genuine Galileo OS Signal Tracking Generator Galileo OS Signal Tracking

Figure 7: Comparison of the tracking performance of a genuine Galileo OS signal (left) and a ST generated Galileo OS signal (right). From top
to bottom the plots show signal power (𝐶𝐶/𝑁𝑁0), code discriminator (𝑒𝑒𝐷𝐷𝐿𝐿𝐿𝐿), phase discriminator (𝑒𝑒𝑃𝑃𝐿𝐿𝐿𝐿), frequency discriminator (𝑒𝑒𝐼𝐼𝐿𝐿𝐿𝐿) and code
minus carrier (CMC).

Galileo OS signal with navigation message authentication (NMA)
The MuSNAT signal generator was used to implement and verify Navigation Message Authentication (NMA) [15, 16, 17] based on
Galileo OS signals. Therefore, real Galileo satellite signals were recorded and processed by the MuSNAT to extract the symbol-
stream (navigation massage) and satellite ephemeris for each satellite with in sight. In the second step, the spare bits in the Galileo
E1B INAV navigation massage are replaced by the authentication bits. Thereafter, the symbol stream, the satellite ephemeris and the
desired C/N0 values for the tracked satellites were read into the GNSS-Transceiver to generate the IF sample-stream file. For analysis,
the IF sample file was again processed by the MuSNAT-Transceiver to extract the bits and verify the authentication. The detailed
analysis of the NMA is presented by Maier et al. [18]. The signal for the authentication testing is composed of four satellites. The
C/N0 values were set to 48, 50, 52 and 54 dB-Hz, so the authentication could be studied over a broader power range. In Figure 8 the
signal power and the Doppler of the generated signals are plotted. As before, all signals show a higher C/N0 value as defined. Besides

that, the signals were tracked fine, the navigation data could be extract and the PVT solution could be determine right. An In- and
Quadrature-Phase analysis for the generated satellite signal is plotted in Figure 9. Additionally to the OSNMA test on data level, the
MuSNAT transceiver was used to create the pure satellite signals without noise. This IF stream file was used to feed a software
define radio (SDR). The signals were transmitted by the SDR. The received signal was analyzed for symbol errors in the navigation
message and the authentication behavior, plotted in Figure 10. A detailed evaluation was done by Maier et al. [18].

Figure 8: Generated and processed Galileo OSNMA signal. Power (top) and Doppler (bottom) plots of Galileo E1 signals of PRN 2, 7, 8 and
30.[18]

Figure 9: In- and Quadrature-Phase analysis for generated signal with authenticated bits. Generation and processing was done with MuSNAT.
.[18]

Figure 10: Power (first) and Doppler (second) plots of Galileo E1 signals of PRN 2, 7, 8 and 30 for generated and ‘Over-The-Air’ transmitted
signals. The third plot shows the occurrence of errors in the received symbols for PRN 2. The bottom plot shows the authentication of MAC and
key in the navigation massage for PRN 2. Each dot represents one subframe, where green stands for a successful authentication and red
identifies not authentic subframes.[18]

Secure code estimation SCE spoofing attack
The MuSNAT signal generator was also used to study the influence of secure code estimation and replay (SCER) attacks [13,14] on
software receiver. In contrast to the NMA test, these test wouldn’t be able with a COTS signal generator system, because here we
need to modify the generated signal on a deeper level.
In an SCER attack, the villain aims, in the first phase, to mimic the genuine signal and transmit it to the victim synchronously. For
this attack, however, the villain needs to know the symbol before it is received by him or the victim to generate and transmit the
spoofing signal. Therefore, the villain needs to estimates the symbol by correlating over a fraction of the beginning of the genuine
symbol. In the estimation time 𝛿𝛿𝑡𝑡𝑒𝑒𝑠𝑠𝑡𝑡, the villain transmits only noise for the symbol (symbol value equals 0). After the estimation
time, it is assumed, that the villain knows the genuine symbol and transmits a correct mimicked signal. To imitate this attack, a
symbol estimation time is defined, e.g. 10% of the symbol time, 𝛿𝛿𝑡𝑡𝑒𝑒𝑠𝑠𝑡𝑡 = 0.10 ∗ 𝑡𝑡𝑠𝑠𝑦𝑦𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 . During the signal generation the symbol
value is set to 0 for the time 𝛿𝛿𝑡𝑡𝑒𝑒𝑠𝑠𝑡𝑡 and thereafter, the true symbol value is set.
Three different generation approaches were tested. First, only the E1-B data symbol is set to zero, compare Figure 11. In this case,
the correlation values in the data channel are smaller than in the pilot channel this can easily be detected by a receiver. Therefore, in
the second case, the pilot channel was also set to zero during the symbol estimation time (Figure 12). In the third case, plotted in
Figure 13, only the data channel was set to zero but the second part of the symbol was generated with an increased power to
compensate the correlation value reduction due to the first zero (noise) part.[18] For the last case, no difference can be observed
between the unmodified signal in Figure 9 and the SCER attack in Figure 13 (symbol estimation time of 40%).
The C/N0 behavior for the three cases and the different estimation times is shown in Figure 14. The C/N0 drops significantly if data-
and pilot-channel is set to zero. Also, for the case of no correlation compensation, a reduced C/N0 is visible, compared to the case
with power compensation.[18] For a symbol estimation time of 50% and higher, no continues tracking was possible.

Figure 11: Power of I-component, Q-component and the absolute value of the sample file with a symbol estimation time of 40% of the total
symbol time. No compensation of correlation degradation was applied.[18]

Figure 12: Power of I-component, Q-component and the absolute value of the sample file with a symbol estimation time of 40% of the total
symbol time. The symbol estimation was applied to Data- and Pilot-Channel.[18]

Figure 13: Power of I-component, Q-component and the absolute value of the sample file with a symbol estimation time of 40% of the total
symbol time. The power of the second part of the symbol was increased to compensate the correlation degradation.[18]

Figure 14: C/N0 behavior for Data-channel estimation without compensation, data-channel estimation with power compensation and data-
and Pilot-channel estimation over the estimation time in percent of the total symbol time.[18]

CONCLUSION
In this work, it was shown that the conversion of a software receiver into a software transceiver using the vector tracking approach
is feasible and easy to realize. The basic concept was presented and error sources were described. The implementation of the concept
using the MuSNAT software receiver was explained. The quality of the generated signals was compared to real signals in terms of
tracking performance. Also, it was shown how the ST was used to test NMA in the Galileo OS. At the end, we showed the power of
the implemented ST with the creation of SCE attacker signals.

ACKNOWLEDGMENTS
This work is funded by the German Federal Ministry for Economic Affairs and Energy on the basis of a decision by the German
Bundestag. It is administrated by the German Aerospace Center in Bonn, Germany, (FKZ: 50 NA 1703).

REFERENCES

1. Teunissen, P., Montenbruck O., "18. Simulators and Test Equipment," eds. Springer handbook of global navigation satellite

systems. Springer, 2017.
2. Humphreys, T., Jahshan, B., and Brent, L., "The GPS Assimilator: a method for upgrading existing GPS user equipment to

improve accuracy, robustness, and resistance to spoofing," ION Conference 2010, Portland, 2010.
3. Copps, E. M., Geier, G. J., Fidler, W. C., Grundy, P. A. "Optimal processing of GPS signals," Navigation 27.3: 171-182, 1980.
4. Pany, T., Bernd E., "Use of a vector delay lock loop receiver for GNSS signal power analysis in bad signal conditions,"

Position, Location, And Navigation Symposium, 2006 IEEE/ION. IEEE, 2006.
5. WON, J.-H., Dominik D., Bernd E., "Performance Comparison of Different Forms of Kalman Filter Approaches for a Vector‐

Based GNSS Signal Tracking Loop," Navigation 57.3 2010: 185-199.
6. Petevello, M., Lashley, M., Bevly, D.M., "What are vector tracking loops, and what are their benefits and drawbacks?,"

InsideGNSS, May/June, 2009.
7. Teunissen, P., Montenbruck O., "14 Signal Processing," eds. Springer handbook of global navigation satellite systems.

Springer, 2017.
8. Parkinson, B. W., Enge, P., Axelrad, P., & Spilker Jr, J. J. (Eds.), Global positioning system: Theory and applications, Volume

II. American Institute of Aeronautics and Astronautics, 1996.
9. Stöber C., Anghileri M., Sicramaz Ayaz A., Dötterböck D., Krämer I., Kropp V., Sanromà Güixens D., Won J.-H., Eissfeller

B., and Pany T., "ipexSR: a real-time multi-frequency software GNSS receiver, " 52nd International Symposium ELMAR,
IEEE Proceedings, 2010.

10. Institute of Space Technology and Space Applications (ISTA), "MuSNAT," URL: https://www.unibw.de/lrt9/lrt-9.2/software-
packages/musnat/view, September 2018.

11. Lehner, A., and Steingass, A., "A novel channel model for land mobile satellite navigation." Institute of Navigation
Conference ION GNSS. 2005.

12. Petovello, M., Joseph, A., "Measuring GNSS Signal Strenght," InsideGNSS, November/December, 2010.
13. Humphreys, T. E., "Detection strategy for cryptographic GNSS anti-spoofing," IEEE Transactions on Aerospace and

Electronic Systems, 49(2), 1073-1090, 2013.
14. Psiaki, M. L., Humphreys, T. E. "GNSS Spoofing and Detection," Proceedings of the IEEE, 104(6), 1258-1270, 2016.
15. Wesson, K. D., Rothlisberger, M. P., Humphreys, T. E., "A proposed navigation message authentication implementation for

civil GPS anti-spoofing," In Radionavigation Laboratory Conference Proceedings, 2011.
16. Kerns, A. J., Wesson, K. D., Humphreys, T. E., "A blueprint for civil GPS navigation message authentication," In Position,

Location and Navigation Symposium-PLANS 2014, 2014 IEEE/ION (pp. 262-269). IEEE, 2014.
17. Fernández‐Hernández, I., Rijmen, V., Seco‐Granados, G., Simon, J., Rodríguez, I.,Calle, J. D., "A navigation message

authentication proposal for the Galileo open service, " Navigation: Journal of the Institute of Navigation, 63(1), 85-102, 2016.
18. Maier, D., Frankl, K., Blum, R., Eissfeller, B., Pany, T., "Preliminary Assessment on the Vulnerability of NMA-based Galileo

Signals for a Special Class of Record & Replay Spoofing Attacks," Proceedings of IEEE/ION PLANS 2018, Monterey, CA,
April 2018, pp. 63-71.

https://www.unibw.de/lrt9/lrt-9.2/software-packages/musnat/view
https://www.unibw.de/lrt9/lrt-9.2/software-packages/musnat/view

	BiographIES
	Abstract
	Introduction
	Software receiver and Vector tracking architecture
	Software TRANSCEIVER
	implementation
	Signal generation
	User PVT trajectory feedback

	RESULTS
	Pseudorange verification
	Tracking performance: genuine vs. generated Galileo OS signal
	Galileo OS signal with navigation message authentication (NMA)
	Secure code estimation SCE spoofing attack

	Conclusion
	ACKNOWLEDGMENTS
	REFERENCES

