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Abstract. Unresolved indirect branch instructions are a major obstacle for stat-
ically reconstructing a control flow graph (CFG) from machine code. If static
analysis cannot compute a precise set of possible targets for a branch, the nec-
essary conservative over-approximation introduces a large amount of spurious
edges, leading to even more imprecision and a degenerate CFG.
In this paper, we propose to leverage under-approximation to handle this problem.
We provide an abstract interpretation framework for control flow reconstruction
that alternates between over- and under-approximation. Effectively, the frame-
work imposes additional preconditions on the program on demand, allowing to
avoid conservative over-approximation of indirect branches.
We give an example instantiation of our framework using dynamically observed
execution traces and constant propagation. We report preliminary experimental
results confirming that our alternating analysis yields CFGs closer to the concrete
CFG than pure over- or under-approximation.

1 Introduction

Binary machine code is an attractive analysis target for several reasons: when work-
ing with a fully compiled and linked binary, no interfacing with the build process is
required and all program parts are available. Inline assembly and differences between
programming languages or dialects are all eliminated by the translation to machine
code. Moreover, there is often no source code available for a program of interest, e.g.,
when analyzing proprietary code such as third party device drivers, plugins, or poten-
tially malicious software.

An important first step for applying static analysis to binaries is to recover an ac-
cessible program representation in the form of a control flow graph (CFG). The major
problem in computing a CFG for low-level machine code lies in the treatment of in-
direct branches, i.e., instructions such as jmp eax, whose targets are computed at
runtime. In earlier work [15,14], we showed how abstract interpretation [7] of machine
code coupled with on the fly disassembly can compute an over-approximation of the
concrete CFG: starting with an empty CFG, data flow information is propagated one in-
struction at a time. On encountering an indirect branch instruction, possible targets are
computed from the partial data flow information and added to the CFG as new edges.

In a purely static approach, the over-approximate analysis has to be precise enough
to compute accurate sets of target address values for each indirect branch. Because of



imprecise reasoning or because parts of the runtime environment (libraries, operating
system behavior) have been abstracted away, however, the static analysis may have to
conservatively over-approximate the possible target addresses. In that case, the CFG
has to be extended with edges from the branch instruction to the entire program address
space (including the branch instruction itself). These mostly spurious edges introduce
additional imprecision into the analysis as abstract states propagate across them, in
the end yielding a degenerate CFG that is unusable for analysis. In practice, existing
tools [13] therefore either immediately report an error whenever they cannot resolve an
indirect branch or simply turn the indirect jump into a leaf without any successors.

In the context of dynamic instrumentation, Nanda et al. proposed to resolve indirect
branches at runtime, when the concrete jump target has already been computed [16]. In
this paper, we generalize this idea to combining over-approximate static analysis with
under-approximation and alternating between the two for resolving jump targets. We
provide a formalization of our approach in terms of abstract interpretation, which allows
us to be precise about the nature of the combined analysis and its results. The resulting
framework is parameterized by an over-approximate analysis, an under-approximate
analysis, and a predicate for influencing alternation between the two. We make the
following contributions:

– We give a new formalization of low-level control flow reconstruction as abstract
interpretation of a parameterized semantics (Section 3). In Section 4, we show how
this semantics can be instantiated to obtain (i) the concrete semantics of a low-level
language, (ii) our existing over-approximate control flow reconstruction [15], and
(iii) a purely under-approximate control flow reconstruction.

– Based on these definitions, we present a combined over- and under-approximation
as an instance of our framework (Section 5). We split the rule for branch instruc-
tions to implement alternation between the two approximations. This yields a well-
understood blueprint for using dynamic information in control flow reconstruction,
whereas previous approaches relied on ad-hoc solutions.

– We prove that the algorithm for alternating control flow reconstruction terminates
(i.e, the alternation semantics has a fixpoint) and computes an over-approximation
of the original program restricted by additional preconditions. Subsequent static
analysis on the reconstructed CFG is sound with respect to these preconditions.

– We present preliminary experimental results (Section 6) confirming that alternating
control flow reconstruction yields a clear quality improvement compared to pure
under- or over-approximation (in terms of false positives and negatives) and is es-
sential for obtaining CFGs of realistically-sized programs.

2 Overview

Let us first informally illustrate our approach using an example. Consider the program
fragment in Figure 1a. It starts at location 0 and contains two indirect branches at lo-
cations 6 and 22. For this example, we will use an over-approximating static analysis
that collects for each location and variable a set of explicit values up to size, say, five.
At the first indirect branch from location 6, control is transferred to the address stored
in a variable x. Assume that x can take the values 10, 15, or 20 at runtime, but that this
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0: x := hash(I)
3: y := choice(4, 6)
6: jmp x

10: . . .
15: . . .
20: x := x+ y
22: jmp x
24: . . .
26: . . .
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Fig. 1. Indirect jump example. (a) IL code, (b) CFG reconstructed by pure over-approximation,
with spurious edges and nodes dotted, (c) CFG reconstructed by alternation using a single trace,
with under-approximate edges in bold, over-approximate edges as regular lines, and missed edges
dashed (assume edges are shown without an explicit “assume” keyword).

cannot be determined by our static analysis because x depends on the output of a hash
function over some input value I . Assume further, that static analysis can determine the
possible values of 4 and 6 for y, which are selected by some function choice. Note that
our intermediate language used in the remainder of the paper does not contain an ex-
plicit function call but instead uses jumps. Here we use two calls for ease of exposition.
Over-approximate control flow reconstruction by abstract interpretation proceeds on the
program as follows. Starting from an empty CFG, the two edges (0, x := hash(I), 3)
and (3, y := choice(4, 6), 6) are created (as simple syntactic fall-through edges) and
interpreted, leading to the abstract state (x = >, y = {4, 6}).

Upon reaching the indirect jump at location 6, the static analysis computes the set of
concrete addresses corresponding to the current abstract value of x. This “downward”
concretization yields a superset of the actual, concrete target addresses. For each possi-
ble concrete value V , an edge (6, assume x = V , V ) is then added to the partial CFG.
In general, this algorithm always produces a correct over-approximation of the concrete
CFG, but its precision depends critically on whether the abstract value for x concretizes
to an accurate set of concrete target addresses.

In our example, however, x is unknown and its concretization ranges over all values
in the set L of program addresses. Thus, the control flow reconstruction algorithm has to
add |L| edges from 6, which renders the resulting CFG useless for all practical purposes.
Taking only the locations within the depicted program fragment into account, the CFG
already degenerates to the form shown in Figure 1b. In this CFG, control flow can even
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reach addresses such as 1 and 2, which lie between existing instructions.1 Moreover,
the imprecision of over-approximating the jump edges propagates: through the spurious
edge (6, assume (x = 22), 22), the second indirect jump can be reached, leading to a
self-loop at location 22.

To avoid such loss of precision, we propose alternating control flow reconstruc-
tion. As soon as a predefined condition χ is met, e.g., that the set of possible targets
is unconstrained, the abstract interpreter switches to an under-approximate semantics.
To this end, an under-approximation is maintained alongside the over-approximation.
Under-approximate states concretize “upward” to a subset of the concrete values.

We can under-approximate the program semantics by simply executing the program
with random input. Assume that, in our execution, we have in location 6 that x = 20 and
y = 6. Then x concretizes upward to the singleton set {20}, and a corresponding edge
(6, assume x = 20, 20) is created. The simultaneously over- and under-approximate
analysis then continues along this edge, which under-approximates the set of concrete
edges going out from location 6. From interpreting the edge, the over-approximation
can deduce that x = 20, leading to the abstract state (x = {20}, y = {4, 6}). The next
fall-through edge updates the state to (x = {24, 26}, y = {4, 6}), which allows the
over-approximation to precisely resolve all edges from the indirect jump at location 22.
The analysis thus explores the CFG by alternation, returning to over-approximation af-
ter passing over the unresolved first indirect jump using under-approximation. It missed
two outgoing edges from location 6, but reconstructed a CFG (Figure 1c) that differs
less from the concrete CFG than the over-approximation. The final CFG represents an
over-approximation of the program restricted to x = 20 at location 2. Subsequent anal-
yses on the CFG are then performed modulo the additional precondition hash(I) = 20.

To obtain a fully over-approximate CFG without additional preconditions, the miss-
ing two indirect branches could be covered using dynamic test generation [9,10,17].
Note that complete control flow reconstruction by dynamic test generation alone re-
quires full branch coverage, therefore it would need to create at least 5 tests. Together
with alternating control flow reconstruction, both branches of the indirect jump at loca-
tion 22 can be covered using just a single trace, requiring only 3 test cases for complete
reconstruction.

3 Parameterized Semantics for Low-Level Control Flow

Computing the control flow graph in the presence of indirect jumps reduces to a reach-
ability problem, since we want to find for each indirect jump all possible values that its
target expression can evaluate to. Defining an analysis that is able to deal with indirect
jumps is non-obvious, though, so in earlier work [15] we proposed a generic framework
for control flow reconstruction that is parameterized by an over-approximate data flow
analysis for a simplified language without indirect jumps. In the following, we pro-
vide a new and more flexible formalization of low-level control flow as a parameterized

1 Such spurious inter-instruction locations cannot be simply ruled out, as “overlapping instruc-
tions” are actually legal. They lead to an alternative decoding of the same code bytes and are a
popular anti-disassembly measure in hand-crafted assembly code.
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semantics that allows to define concrete, under-, and over-approximating semantics in
common terms.

3.1 Intermediate Language
To abstract from the details of assembly language while still capturing its nature, in par-
ticular the relevant low-level branching behavior, we define the intermediate language
IL. The set of statements is denoted by Stmt and consists of assignments m[e1] := e2,
conditional indirect jumps if e1 jmp e2, assume statements assume e1, and the halt state-
ment, where e1, e2 ∈ Exp denote expressions from a set Exp containing constants,
memory dereferences m[e], and the usual arithmetic, Boolean, and bitwise operators.
For simplicity, we do not explicitly introduce variables; when we use identifiers such as
x, these refer to fixed memory locations. The only IL data type are integers; Boolean
true and false are represented by 1 and 0, respectively. The finite set of program lo-
cations L ⊆ N denotes all addresses that are part of the program. Note that we could
also use bit-vectors as data type (and indeed do so in our implementation); we choose
to use integers in the exposition for greater generality. An IL program 〈`0, P 〉 consists
of a unique start location `0 and a finite mapping P :: L → (Stmt × L) from pro-
gram locations to statements and successor locations. Successor locations identify the
address of the syntactically next instruction and are used here to reflect variable length
instruction sets. We will use the notation [stmt ]``′ to refer to the statement stmt in P at
location ` with successor location `′.

Furthermore, we define a reduced language IL− and its set of statements Stmt−,
which consists only of assignments and assume statements.

3.2 Parameter Semantics Template
Our approach to control flow reconstruction is a parameterized framework in the form
of an adapter semantics that lifts an existing semantics S for the simpler language IL−.
In a state that is about to execute an indirect jump next, the adapter semantics converts
the jump into a set of assume edges pointing out to the targets that are feasible given the
current state. Therefore S has to be defined only for assignments and assume statements,
and a CFG is automatically created by collecting all the edges created by the adapter
semantics. The parameter semantics S = (A, ι, f, γJ·K,∪A) contains:

– A complete lattice A = (A,t,u,v,⊥,>).
– An initial lattice element ι.
– A transfer function fJCK(S) :: (Stmt−, A) → A for the statements in IL−, i.e.,

for assignments and assume statements.
– A concretizing evaluation function γJe1, . . . , enKS :: Expn × A → P(Zn) that

abstractly evaluates and concretizes vectors of expressions e1, . . . , en to a set of
vectors of concrete values (P denotes the powerset). In principle, the concretizing
evaluation function could be synthesized from a regular concretization function γ
as γJe1, . . . , enKS := {evalJe1K(S\), . . . , evalJenK(S\) | S\ ∈ γ(S)}, where
eval denotes concrete expression evaluation, but is usually implemented directly.

– An operator ∪A :: A × A → A that is used by the adapter semantics to combine
elements of the domainA reaching the same location. ∪A may be identical to t but
does not have to be.
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[m[A] := E]``′ fJm[A] := EK(S) = S′

〈`, S,G〉 −→ 〈`′, S′, G ] (`, `′)〉
ASSIGNMENT

[if B jmp E]``′ (1, V ) ∈ γJB,EKS fJassume (B ∧ E = V )K(S) = S′

〈`, S,G〉 −→ 〈V, S′, G ] (`, V )〉
JUMP-TRUE

[if B jmp E]``′ 0 ∈ γJBKS fJassume (¬B)K(S) = S′

〈`, S,G〉 −→ 〈`′, S′, G ] (`, `′)〉
JUMP-FALSE

[assume E]``′ fJassume EK(S) = S′

〈`, S,G〉 −→ 〈`′, S′, G ] (`, `′)〉
ASSUME

[halt]``′

〈`, S,G〉 −→ 〈`, S,G〉 HALT

Fig. 2. Control flow resolving transition system for an IL program 〈`0, P 〉, parameterized by a
forward transfer function f for IL−.

3.3 Control Flow Semantics

Using these parameters, we can define the full IL transition relation −→ shown in Fig-
ure 2. It relates states from the set L × A × P(L × L) consisting of the value of the
program counter ` ∈ L, the memory state S ∈ A, and the partial CFG G ⊆ L× L.

Depending on the statement pointed to by the current program counter value, the
rules invoke the transfer function f , update the program counter, and add the current
edge to the partial CFG. Assignments and assume statements simply fall through to the
syntactically next statement, and halt statements terminate execution. The rule JUMP-
TRUE fires if the jump condition is possibly true in the current state and determines
the next program counter value from the concretization of the target expression. The
rule invokes the transfer function to assume the evaluations of the condition and target
expressions, updates the program counter to the jump target, and adds the new edge.
The rule JUMP-FALSE fires if the condition of a jump is possibly false, and transfers
control to the fall-through successor, assuming the negative evaluation of the condition.
The reachability semantics for IL then is the least fixpoint of a function F defined as

F (D) := {〈`0, ι,∅〉} ∪
⊔̇{
〈`′, S′, G′〉 | ∃〈`, S,G〉 ∈ D : 〈`, S,G〉 −→ 〈`′, S′, G′〉

}
with

〈`, S,G〉 ∪̇ 〈`′, S′, G′〉 =

{
{〈`, S ∪A S′, G ∪G′〉} if ` = `′

{〈`, S,G〉, 〈`′, S′, G′〉} otherwise

as the pointwise merge function that combines states reaching the same location. The
reconstructed CFG then results from

CFG =
⋃
{G | 〈`, S,G〉 ∈ lfp F}.
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4 Instantiating the Parameterized Semantics

Using the template from Section 3.2, we instantiate our semantics framework with se-
mantics for IL− to obtain concrete, over-approximate, and under-approximate control
flow semantics for IL.

4.1 Concrete Semantics

We can now instantiate our framework with a concrete reachability semantics for IL−

to define the concrete semantics of IL. The semantics of IL− is defined in terms of sets
of concrete memory states from P(N → Z), where each memory state maps positive
integers (representing memory addresses) to integers. The parameters required by our
adapter semantics are given by

– the powerset lattice of concrete memory states (P(N→ Z),∪,∩,⊆,∅,N→ Z),
– the initial state set ι = N→ Z,
– the concrete transfer function over sets of memory states

f \Jm[A] := EK(S) = {s′ | ∃s ∈ S : s′ = s[evalJAK(s) 7→ evalJEK(s)]}
f \Jassume EK(S) = {s ∈ S | evalJEK(s) = 1},

– the concrete evaluation function γ\Je1, . . . , enKS := {v1, . . . , vn | ∃s ∈ S : v1 =
evalJeK(s), . . . , vn = evalJenK(s)} (γ\ is the identity function),

– and the merging operator ∪ for taking the union of two sets of memory states.

This fully instantiated concrete semantics for IL is the reference point for the following
over- and under-approximations. Defining the concrete semantics in terms of our frame-
work allows to simplify the correctness proofs for abstract semantics. If the framework
is shared by both semantics, it suffices to only establish a correctness relation between
the concrete and abstract transfer functions for IL−.

We define the concrete control flow graph of a program as the CFG constructed by
the concrete semantics. This definition is equivalent to the one in [15].

4.2 Over-Approximate Semantics

If instantiated with over-approximate IL− semantics, our adapter semantics computes
an over-approximation of the concrete CFG. The over-approximation f ] of the concrete
transfer function f \ has to satisfy γ] ◦ f ](S]) ⊇ f \ ◦ γ](S]) for a concretization func-
tion γ] from abstract states to concrete sets of states. Any over-approximate forward
analysis is suitable here; for useful results in control flow reconstruction, however, the
concretizing evaluation function should be able to produce reasonably precise address
values for jump targets, however.

The fixpoint of the fully instantiated over-approximate semantics can be computed
using chaotic iteration over the locations in the partial CFG, which yields the algo-
rithm for static control flow reconstruction [15]. The resulting CFG over-approximates
the concrete CFG, i.e., is a superset of its edges. In the present formalization of the
framework, the over-approximate domain must not contain infinite ascending chains
to ensure termination. It is straightforward to remove this requirement by including
widening (and possibly narrowing), but we omit this extension for simplicity.
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4.3 Under-Approximate Semantics

An under-approximate semantics is given using exactly the same parameters as an over-
approximate one is, but has dual requirements for correctness. The under-approximation
f [ of the concrete transfer function f \ has to satisfy γ[ ◦ f [(S[) ⊆ f \ ◦ γ[(S[) for the
concretization function γ[ from under-approximate states to sets of concrete states.

We now define an under-approximate semantics (T , ι, f [, γ[J·K,∪T ) that replays a
set of concrete execution traces. It is essentially equivalent to the concrete semantics
but also maintains a total instruction counter for timing out after executing a predefined
number N of instructions. The parameters instantiating our framework are

– the product lattice of (i) the chain of integer counters and (ii) the powerset lattice
of memory states, T = ([0;N ]× P(N→ Z),tT ,uT ,vT , (0,∅), (N,N→ Z)),

– the initial state ι = (0, S), which contains the zero counter and a finite set of mem-
ory configurations (e.g., command line parameters, file contents, . . . ) to initialize
the executions.

– the under-approximate transfer function f [(S[) =

{
(n+ 1, f \(S\)) n < N

(N,∅) otherwise
with S[ = (n, S\), which satisfies γ[ ◦ f [(S[) ⊆ f \ ◦ γ[(S[).

– the concretizing evaluation function γ[Je1, . . . , enK(n, S\) := {v1, . . . , vn | ∃s ∈
S\ : v1 = evalJeK(s), . . . , vn = evalJenK(s)}.

– and the merging operator ∪T with (n1, S
\
1)∪T (n2, S

\
2) = (max(n1, n2), S

\
1 ∪ S

\
2)

for taking the union of two sets of memory states and setting the counter to the
maximum of both individual counters.

Fixpoint computation for the under-approximate semantics is an algorithm for purely
dynamic control flow reconstruction. The resulting CFG under-approximates the con-
crete CFG, i.e., is a subset of its edges. Termination of the fixpoint computation is
ensured by the instruction counter.

5 Alternation in Control Flow Reconstruction

To leverage alternation in control flow reconstruction, we perform a simultaneous over-
and under-approximation that can be plugged into our parameterized framework in the
same way as the concrete and over-approximate semantics before.

5.1 Combined Semantics

We now define an intermediate semantics that allows to plug an over- and an under-
approximation into our framework simultaneously. It is itself parameterized by an over-
approximation (A, ι], f ], γ]J·K,∪]) and an under-approximation (U , ι[, f [, γ[J·K,∪[),
with A = (A,t],u],v],⊥],>]) and U = (U,t[,u[,v[,⊥[,>[). The combined
intermediate semantics is defined as (C, ι�, f�, γ�J·K,∪�) with:

– The complete lattice C = (A × U,t�,u�,v�, (⊥],⊥[), (>],>[)) with pairwise
definitions of t�, u�, and v�, e.g., (a, u) v� (a′, u′)⇔ a v] a′ ∧ u v[ u′.
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[if B jmp E]``′ χ(S,E) (1, V ) ∈ γ]JB,EKS] f�Jassume B ∧ E = V K(S) = S′

〈`, S,G〉 −→ 〈V, S′, G ] (`, V )〉 JT]

[if B jmp E]``′ ¬χ(S,E) (1, V ) ∈ γ[JB,EKS[ f�Jassume B ∧ E = V K(S) = S′

〈`, S,G〉 −→ 〈V, S′, G ] (`, V )〉 JT[

Fig. 3. Split rules for alternating jump target resolution. χ(S,E) controls which rule is enabled,
with S = (S], S[).

– The initial lattice element ι� = (ι], ι[).
– A combined transfer function f�JCK(S], S[) := (f ]JCK(S]), f [JCK(S[)). The

combined transfer function maps over- and under-approximate states to their re-
spective successors. If the under-approximate state has no successor for a particu-
lar state (i.e., the condition of an assume statement is false), the under-approximate
component is set to ⊥[.

– The concretizing evaluation function γ�J·K(S], S[) := γ]J·K(S]), which ignores
the under-approximate part of the state.

– The merging operator ∪� such that (S]
1, S

[
1) ∪� (S

]
2, S

[
2) := (S]

1 ∪] S
]
2, S

[
1 ∪[ S[

2).

This combined semantics can instantiate our control flow reconstruction framework,
but will yield the same CFG as the over-approximation alone, as the concretizing eval-
uation function will yield the same over-approximate branch targets when applying the
JUMP-TRUE rule. We need to adapt our framework to make use of the additional under-
approximate information.

5.2 Alternation Framework

To allow switching between over- and under-approximate information when resolving
indirect jumps, we split the JMP-TRUE rule of our framework into the two rules shown
in Figure 3. A definable predicate χ(S,E) for a state S and an expression E controls
which of the two rules is enabled. When χ(S,E) is true, the rule JT] resolves jumps
exactly as the original JMP-TRUE rule before. Otherwise, JT[ is enabled and uses the
under-approximate portion of the state to evaluate the jump condition and the target
expression.

The definition of χ allows to fine-tune the alternation. For instance, it can be defined
as χ((S], S[), E) := γ]JEKS] ⊂ N, such that the over-approximation is used as long
as the concretizing evaluation function returns a finite set. We will use this definition
of χ for the experiments in Section 6. Another possibility is to use χ′((S], S[), E) :=
S[ A[ ⊥[ ∨ γ]JEKS] ⊂ N, which only falls back to under-approximation if the under-
approximation contains information at the location of the jump. By setting χ to always
true or false, the alternation framework falls back to pure over- or under-approximation,
respectively.

Note that the under-approximation can often default to the bottom element ⊥[. In
the trace replay semantics defined in Section 4.3, this happens when the executions do
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not cover a statically feasible control flow edge (e.g., the second branch of a conditional
jump). Then f [ yields the empty set (the ⊥[ element for the trace replay semantics),
which is paired with the over-approximate state for that location. During fixpoint com-
putation, this empty set propagates until it merges with under-approximate states from
a covered path.

5.3 Algorithm

As for the other semantics, the combined analysis is performed by computing the least
fixpoint by chaotic iteration. Even though our alternating semantics is a considerable
detour from regular abstract interpretation, the transfer relation is monotonic, and a
fixpoint exists for the full framework instance.

Theorem 1 (Termination). The alternating control flow reconstruction algorithm ter-
minates in finite time if the over- and under-approximate domains do not contain infinite
ascending chains.

Proof. As f [ and f ] are required to be monotonic, f� is monotonic, i.e., S1 v� S2 ⇔
f�(S1) v� f�(S2). The transfer relation −→ of the parameterized semantics is mono-
tonic in its original form [15], i.e., ∀S1, S

′
1, S2, S

′
2 : S1 v S2 ∧ S1 −→ S′1 ∧ S2 −→

S′2 ⇒ S′1 v S′2. It remains to prove that it stays monotonic when JUMP-TRUE is
replaced by the two new rules. The critical part is the situation when χ(S1, E) ∧
¬χ(S2, E) or ¬χ(S1, E) ∧ χ(S2, E) holds and −→ switches between the two rules.

The only difference between the rules, however, is the more restricted concretization
of jump targets in JT[, since |γ[JB,EKS[| ≤ |γ]JB,EKS]|. Therefore, JT[ may fire
fewer times than JT], but the individual applications remain monotonic. Obviously,
firing strictly more times does not affect the monotonicity of the semantic function F
(see Section 3.3). Neither does firing fewer times, because (i) all remaining state updates
are still guaranteed to be monotonic by virtue of f�’s monotonicity and (ii) no edges
already created are removed from the partial control flow graph G. ut

Again, the restriction to finite ascending chains in the over-approximate lattice can be
lifted by introducing widening. In under-approximations, infinite ascending chains are
easily avoided using counters (see Section 4.3).

5.4 Characterizing the Reconstructed CFG

Soundness. The transfer function of our alternating semantics neither over- nor under-
approximates the concrete semantics, i.e., it is not a sound abstraction. After chaotic
iteration reaches a fixpoint, the “over-approximate” part S] of the combined state S� =
(S], S[) may not fully over-approximate the concrete reachability semantics. Conse-
quently, the final CFG is neither an over- nor an under-approximation of the concrete
CFG for the full program.

However, we can still characterize the kind of approximation that is performed:
Alternating control flow reconstruction computes an over-approximation of the concrete
CFG of a restricted version of its input program. The restriction asserts that at each
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indirect jump where the under-approximation was used, control flow follows only the
under-approximate set of branches. We define the restricted program as 〈`′0, P ′〉 with
P ′ = P [`′0 7→ [assume φ]`

′
0

`0
] enforcing a precondition φ. Here, φ is the condition under

which ¬χ((S], S[), E) =⇒ γ[JB,EKS[ = γ\JB,EKS\ at each state 〈`, (S], S[), G〉
with [if B jmp E]``′ . Then, we can state the following theorem:

Theorem 2 (Relative Soundness). The CFG computed from the alternating semantics
for a program 〈`0, P 〉 soundly over-approximates the concrete CFG of the restricted
program version 〈`′0, P ′〉.

Proof. All rules except JT[ over-approximateG. For all applications of JT[, φ enforces
that γ[JB,EKS[ = γ\JB,EKS\, which is a (trivial) over-approximation. ut

If needed, the precondition φ could in principle be determined by backward symbolic
execution along the paths leading to the jumps. When using directed test generation,
φ is the disjunction of the input assignments of the test cases leading to each indirect
jump. Note that when an indirect jump is not covered by a test case, φ asserts that the
jump cannot be reached. A static analysis performed using the reconstructed CFG as
program representation will in fact be performed on 〈`′0, P ′〉, thus proofs obtained this
way hold for 〈`, P 〉 only under the assumption φ.

Precision. Note that the fixpoint of the alternating semantics computed by chaotic
iteration can depend on the iteration order. Even though the transfer relation “−→”
is monotonic, it does not distribute over the merge operator. That is, merging two
states 〈`, S1, G1〉 ∪̇ 〈`, S2, G2〉 = 〈`, S1,2, G1,2〉 and computing the set of successors
T′1,2 = {〈`′, S′1,2, G′1,2〉 | 〈`, S1,2, G1,2〉 −→ 〈`′, S′1,2, G′1,2〉} can lead to a different
result than first computing only, say, the successors T′1 of 〈`1, S1, G1〉 and then merg-
ing them with T′1,2. This happens if χ(S1, E) but ¬χ(S1,2, E) holds for a jump at `,
i.e., rule JT] is applied for S1 but rule JT[ for S1,2.

The least fixpoint of the alternating semantics can yield a CFG containing more
edges than the one obtainable by applying the JT[ rule from the beginning wherever
it eventually becomes enabled, because this could avoid some over-approximate edges
that are added while still using JT]. In principle, this “optimal” CFG could be computed
by maintaining a list of locations at which to apply JT[ and, each time a location is
added to the list, resetting the analysis to the point where that location was reached first.
In practice, however, precise target addresses initially resolved using JT] are likely to
be concrete. For instance, these addresses can be constants that were propagated along
a particular path before a> element from another path overwrote them. Such addresses
add concrete edges that could be missed by the under-approximation and can therefore
improve the precision with respect to the original program.

6 Evaluation

We now report some preliminary results for reconstructing the control flow graphs of
microbenchmarks and medium-sized compiled applications.
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6.1 Implementation and Setup

We evaluated the proposed approach on our static analysis platform for x86 binaries,
JAKSTAB [13].2 We extended JAKSTAB with a combined adapter analysis modeled after
the semantics described in Section 5.1 and implemented a new analysis module that
replays pre-recorded execution traces. With the combined analysis, JAKSTAB resorts to
under-approximation whenever the static analysis cannot produce a finite concretization
for the set of target addresses of an indirect jump.

As analysis targets we used our own microbenchmarks and several C and C++ pro-
grams from the SPEC CPU 2006 benchmark, compiled using Visual C++. The bench-
marks are single-threaded, so we only had to record and replay the main thread. Our
microbenchmarks are hand-written assembly language programs, so we were able to
manually construct the concrete CFG as the ground truth. For establishing a ground
truth for the C/C++ programs, we enabled debug symbols and disassembled them using
IDA PRO [11]. IDA PRO uses the debug symbols and several compiler-specific heuris-
tics to create an accurate assembly language representation. Note that this does not
necessarily reflect the concrete CFG, however. Due to its heuristic approach, IDA PRO
disassembles all identifiable code in an executable and not only that which is actually
reachable. This includes a large amount of library and error handling code. Therefore,
the number of instructions explored by a non-heuristic approach is expected to be sig-
nificantly lower.

We recorded concrete execution traces on a single-processor 32-bit Windows XP
guest system running in the BitBlaze [17] version of QEMU. As soon as the target
process is started, all user-mode instructions (including libraries) are recorded to a file.
The SPEC benchmark is designed for long running CPU time evaluations and can yield
instruction traces of hundreds of gigabytes. To obtain traces of tractable length while
still exercising the same code, we had to remove redundancy from the benchmarking
setup. We decreased the size of explicit input data, and if necessary, also reduced bounds
of loops that repeatedly invoke the same program functionality. We recorded a single
trace per executable.

6.2 Experimental Results

For determining the effectiveness of our approach, we measured the instruction cov-
erage achieved by JAKSTAB using under-approximate, over-approximate, and alternat-
ing control flow reconstruction. In this setting, false positives refer to unreachable in-
structions that are wrongly classified as reachable, and false negatives refer to reach-
able instructions that have not been covered. We replayed a single trace for the under-
approximation and used simple constant propagation for the over-approximation, as it
scales to large binaries. The preliminary results of our experiments are shown in Table 1.
For each program, we list its implementation language, the number of instructions we
accepted as ground truth, and the length of the trace we recorded.

The [ column contains the results from enabling only trace replay, i.e., the reached
instructions as an absolute number and as percentage of the ground truth, and the re-
quired execution time of the analysis. Since the analysis is under-approximate, there

2 Source code available at http://www.jakstab.org.
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[ only ] only �
Program Src Inst Trace Inst Cvrg Time Inst FP Time Inst Cvrg FP Time
demo1 asm 9 49K 7 78% <1s 512 98% 1.5s 9 100% 0% <1s
demo2 asm 38 87K 29 76% <1s 512 93% 1.4s 35 92% 0% <1s
demo3 asm 35 87K 17 49% <1s 512 93% 2.2s 35 100% 0% <1s
astar C++ 29645 1.0M 10738 36% 7.2s * * 15377 52% 0% 18.3s
bzip C 29257 531K 9660 33% 5.3s * * 20453 70% 0.4% 33.2s
lbm C 5057 840K 2943 58% 2.2s * * 4603 91% 0% 3.5s
omnetpp C++ 171592 4.6M 30627 18% 27.1s * * 61461 36% 0.05% 153.9s
milc C 47382 12.0M 14085 30% 13.4s * * 24546 52% 0.3% 54.2s
specrand C 16937 413K 4720 28% 2.9s * * 9166 54% 0% 8.1s

Table 1. Experimental results for control flow reconstruction. [ denotes under-approximation, ]
over-approximation, and � alternating control flow reconstruction. * denotes an out of memory
error. Under-approximations follow a single trace.

are no false positives, only false negatives (i.e., uncovered instructions). The ] column
contains the number of instructions reported by constant propagation when unresolved
indirect jumps are truly over-approximated. For all programs but the microbenchmarks,
the large number of spurious edges caused the analysis to run out of memory after
using 2 GB of heap space. In the microbenchmarks, the number of 512 instructions
results from padding in the code section. Since the analysis is over-approximate, there
are no false negatives. The “FP” column shows the fraction of false positives in the
total instructions discovered (i.e., unreachable instructions included in the CFG). The
� column shows the number of instructions reported by alternating trace replay and
constant propagation. It is susceptible to both false positives and negatives. The “Cvrg”
column shows the coverage in percent, and the “FP” column shows the percentage of
false positives in the total instructions reported.

We can see that using alternation improves coverage over purely under-approximate
reconstruction in all cases, and that it drastically reduces the number of false posi-
tives compared to over-approximation. In fact, the number of false positives in over-
approximation is prohibitive for realistic programs, therefore alternation is essential
for applying control flow reconstruction in practice. We expect that these results can
be significantly improved by either using more precise static analyses or directed test
generation to generate additional traces.

6.3 Current Limitations and Future Work

Automated Trace Generation. Alternating control flow reconstruction could be effec-
tively interleaved with automated test case generation directed at the locations of stati-
cally unresolved indirect jumps that have not yet been covered by a trace. The method
for obtaining suitable test cases and thus traces is orthogonal to our approach. Indeed,
the framework presented here could be combined with random testing, whitebox fuzz
testing [10,17], or binary symbolic execution [6].
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Divergences. If the over-approximate semantics is a sound abstraction of the con-
crete semantics, under-approximate states will always concretize to a subset of the
concretization of the corresponding over-approximate states. In practice, however, un-
soundness can be introduced by abstracting library calls or not handling parts of the
instruction set. This can cause the over-approximation to diverge and not include the
under-approximation. In our implementation, we give precedence to the concretization
of the over-approximation in such cases to keep it consistent.

Concurrency. Our approach in its current form is limited to sequential programs. A
simple way to apply it to multithreaded programs is to treat each thread separately,
which can lead to unsoundness and possibly divergences from ignoring the actions of
the other threads. A better solution would be to allow context switches in the under-
approximation, e.g., by replaying one or more traces containing multiple threads ar-
ranged in a total order. To avoid state explosion, the over-approximation then only con-
siders the schedules present in the under-approximation. We leave the implementation
of such a strategy for future work.

7 Related Work

Several approaches use runtime control flow information to improve the results of an-
alyzing binaries. Nanda et al. introduced hybrid disassembly in their tool BIRD [16].
They first use a heuristic disassembly algorithm to identify likely code regions in an
executable. The code is then instrumented to check whether control transfers to a pre-
viously unexplored region, in which case the disassembler is invoked again. They rely
on several heuristics for avoiding excessive instrumentation, and do not give a formal
justification for their approach. In general, the exploration of code areas not covered at
runtime suffers from the same limitations as regular heuristic disassembly strategies.

In recent work, Babic et al. [1] construct a CFG by folding a set of concrete traces
and exploring the unexecuted branches of conditional jumps. In our own framework,
this corresponds to using trace replay with a trivial static analysis that only knows a
single > state and thus always enables both branches of conditional jumps. They do
not provide a formal treatment of the reconstruction, only stating that the CFG “is,
necessarily, an under-approximation of the complete interprocedural CFG”. In fact, this
statement is incorrect with respect to our definition of the concrete CFG, since there can
be conditional jumps with only a single feasible branch.

Directed proof generation [4] combines over- and under-approximation in the form
of predicate abstraction and directed test generation. Thakur et al. [18] lift this approach
to binaries in their McVeto tool. As part of the analysis, the CFG is built through folding
traces and connecting not yet fully explored branching points to the target surrogate,
a special unknown node. The over-approximate data flow analysis is only performed
on the folded trace. Therefore, the CFG can only be expanded by generating new test
cases, which requires exhaustive exploration to achieve a complete CFG. In contrast,
our method is able to perform over-approximation reconstruction of CFG parts not cov-
ered by traces. Their method would lend itself to generating traces towards statically
unresolvable jumps in our framework, however.
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Most work addressing disassembly relies on the use of heuristics to identify likely
code regions [12,2,19]. Vigna [19] describes how to defeat anti-disassembly obfusca-
tions by starting disassembly from every possible program location. In our framework,
this amounts to performing purely over-approximate control flow reconstruction with
again a trivial analysis that knows only one single > state.

Systematic, purely static approaches to control flow reconstruction from binaries
have been scarce. De Sutter et al [8] described how to use data flow analysis in building
a CFG, using unknown nodes for indirect jumps. Chang et al. [5] connect abstract inter-
preters at different language levels to achieve a form of decompilation. Bardin et al. [3]
build on our own framework [15] to introduce iterative abstraction refinement.

8 Conclusion

This paper addresses a major weakness in static control flow reconstruction that arises
when the possible targets of an indirect jump cannot be resolved precisely. The new
reconstruction framework alternates between over- and under-approximation and skips
over unresolvable jumps by substituting targets detected by an under-approximation.

Our framework is formalized as an abstract interpretation of a parameterized adapter
semantics. It establishes a formal common ground for several approaches in control flow
reconstruction from binaries, an area which has traditionally been dominated by ad-hoc
solutions. By proving termination and relative soundness for the framework, we hope
that this paper contributes to better understanding of static and dynamic approaches to
the analysis of machine code.
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