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mündliche Prüfung fand am 12.07.2019 statt.





Abstract

In this thesis, we study optimal control problems subject to differential-algebraic equations in
Hessenberg form and mixed control-state constraints. Specifically, we derive necessary and suffi-
cient conditions for problems with Hessenberg differential-algebraic equations of arbitrary order,
and then examine convergence properties of an approximated optimal control problem for the
index two case.

The first part of this thesis is dedicated to proving vital lemmas and theorems for later chapters.
Herein, we consider linear operators, bilinear forms, generalized equations, parametric optimiza-
tion problems, and linear differential-algebraic equations.

In the second part, we derive a local minimum principle for optimal control problems with index
one differential-algebraic equations and mixed control-state constraints by writing the problem
as an infinite optimization problem, for which non-trivial Lagrange multipliers exist. Then, an
explicit representation is derived for these multipliers, which yields a local minimum principle.
The results are then applied to an optimal control problem with Hessenberg differential-algebraic
equations of arbitrary order by reducing the index to one.

The third part of this thesis examines second-order sufficient conditions for optimal control prob-
lems subject to index one differential-algebraic equations and mixed control-state constraints.
Herein, a Riccati equation is used to construct a quadratic function, which satisfies a Hamilton
Jacobi inequality. The main task of the verification is to prove second-order sufficient condi-
tions for a parametric optimization problems with the assumptions at hand, which is done in
the first part. Analog to the second part, the results are applied to problems with Hessenberg
differential-algebraic equations of arbitrary order by reducing the index.

In the last part of this thesis, we consider the implicit Euler discretization for an optimal con-
trol problem subject to an index two differential-algebraic equation in semi-explicit form and
mixed control-state constraints. Typically, convergence is proven by comparing the respective
Karush-Kuhn-Tucker conditions. However, there is a discrepancy between the continuous and
discrete necessary conditions of optimal control problems with differential-algebraic equations
of index two or higher. Hence, standard techniques fail. This was overcome by equivalently
reformulating the discrete optimization problem, which has suitable Karush-Kuhn-Tucker con-
ditions. The respective necessary conditions are then rewritten as generalized equations and a
fitting convergence theorem is applied, which results in a linear convergence rate of the solution
and multipliers in the essential supremum norm.





Kurzzusammenfassung

In dieser Dissertation studieren wir Optimalsteuerungsprobleme mit differential-algebraischen
Gleichungen in Hessenberg-Form und gemischten Steuer- und Zustandsbeschränkungen. Wir
leiten notwendige und hinreichende Bedingungen für Probleme mit Hessenberg differential-
algebraischen Gleichungen mit beliebiger Ordnung her. Des weiteren untersuchen wir Konver-
genzeigenschaften von einem approximierten Optimalsteuerungsproblem mit einer Index zwei
differential-algebraischen Gleichung und gemischten Steuer- und Zustandsbeschränkungen.
Der erste Teil der Dissertation ist den Beweisen von grundlegenden Lemmas und Theoremen
gewidmet, welche wir in den darauffolgenden Kapiteln benötigen. Hierbei betrachten wir lineare
Operatoren, Bilinearformen, verallgemeinerte Gleichungen, parametrische Optimierungsprob-
leme und lineare differential-algebraischen Gleichungen.
Im zweiten Teil leiten wir ein lokales Minimumprinzip für Optimalsteuerungsprobleme mit
einer differential-algebraischen Gleichung vom Index eins und gemischten Steuer- und Zus-
tandsbeschränkungen her, indem wir das Problem als Infinites Optimierungsproblem betrachten,
für welches nicht-triviale Lagrange-Multiplikatoren existieren. Danach leiten wir eine explizite
Darstellung für diese Multiplikatoren her, wodurch wir ein lokales Minimumprinzip erhalten.
Diese Resultate wenden wir dann auf ein Optimalsteuerungsprobleme mit einer differential-
algebraischen Gleichung in Hessenberg-Form mit beliebiger Ordnung an, indem wir den Index
der differential-algebraischen Gleichung auf eins reduzieren.
Im dritten Teil der Dissertation untersuchen wir hinreichende Bedingungen zweiter Ordnung für
Optimalsteuerungsprobleme mit einer differential-algebraischen Gleichung vom Index eins und
gemischten Steuer- und Zustandsbeschränkungen. Dabei verwenden wir eine Riccati-Gleichung,
um eine quadratische Funktion zu konstruieren, welche eine Hamilton-Jacobi Ungleichung erfüllt.
Die Hauptaufgabe der Verifikation besteht darin, hinreichende Bedingungen für ein parametrische
Optimierungsproblem mit den verfügbaren Annahmen zu beweisen. Die Resultate werden dann
analog zum zweiten Teil auf Probleme mit differential-algebraischen Gleichungen in Hessenberg-
Form mit beliebiger Ordnung angewandt, indem der Index auf eins reduziert wird.
Im letzten Teil betrachten wir die implizite Eulerdiskretisierung für ein Optimalsteuerungsprob-
lem mit einer Index zwei differential-algebraischen Gleichung und gemischten Steuer- und Zus-
tandsbeschränkungen. Üblicherweise wird Konvergenz durch den Vergleich der Karush-Kuhn-
Tucker Bedingungen des diskretisierten Problems mit denen des Ausgangsproblems bewiesen.
Bei Probleme mit differential-algebraischen Gleichungen mit einem Index größer als eins liegt
jedoch eine strukturelle Diskrepanz zwischen den jeweiligen notwendigen Bedingungen vor.
Aus diesem Grund sind versuchte Konvergenzbeweise mit Standardtechniken aus der Theo-
rie gescheitert. Die Diskrepanz wurde durch eine Umformulierung des diskretisierten Opti-
mierungsproblems überwunden, wodurch wir geeignete Karush-Kuhn-Tucker Bedingungen er-
halten haben. Die jeweiligen notwendigen Bedingungen werden dann als verallgemeinerte Gle-
ichungen betrachtet und ein entsprechendes Konvergenz-Theorem wird angewandt. Das Resultat
ist die Existenz von einer diskreten Lösung und Multiplikatoren, welche linear gegen die Lösung
und Multiplikatoren des Ausgangsproblems in der essentiellen Supremumsnorm konvergieren.
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Notations

Set-related Symbols
V ∪W the union of the sets V and W

V ∩W the intersection of the sets V and W

V \W the set of elements in V , but not in W

V ×W the Cartesian product of the sets V and W

V n the n-fold Cartesian product of the set V
{v} the set consisting of the point v
card (V ) the cardinality of the set V

Sets and Spaces
N set of natural numbers
J ⊂ N finite set of indexes, ordered from smallest to largest
R set of real numbers
R+ set of non-negative real numbers
|a| absolute value of a ∈ R
Rn n-dimensional Euclidean space with norm ‖ · ‖
[a, b] compact time interval in R with fixed a < b

GN grid with N ∈ N subintervals
X,Y, Z Banach spaces
0X zero of a Banach space X
0 generic zero element of some space
‖ · ‖X norm on a Banach space X
〈·, ·〉X inner product on a pre-Hilbert space X
Bρ (x) the closed ball with radius ρ and center x
L(X,Y ) set of all linear, continuous operators from X to Y
‖T‖L(X,Y ) = sup

x∈X\{0X}

‖Tx‖Y
‖x‖X

norm on L(X,Y )

X? = L(X,R) topological dual space of X
K∗ positive dual cone of K
‖x?‖X? = ‖x?‖L(X,R) norm on X? defining the strong topology
Lnp ([a, b]) space of equivalence classes, which consist of measurable

functions f : [a, b]→ Rn that are bounded in the norm ‖·‖p
Wn
q,p ([a, b]) Sobolev space of all absolutely continuous functions

f : [a, b]→ Rn that are bounded in the norm ‖·‖q,p
Cn0 ([a, b]) space of continuous functions f : [a, b]→ Rn

Cn1 ([a, b]) space of continuously differentiable functions f : [a, b]→ Rn

ii



Mappings
T : X → Y a mapping from X to Y
im(T ) := {T (x) | x ∈ X} image of X under the map T : X → Y

ker(T ) := {x ∈ X | T (x) = 0Y } kernel or null space of a linear map T : X → Y

T−1 inverse mapping of T : X → Y

T ? adjoint operator of the linear map T : X → Y

T ′(x) Fréchet derivative of F at x
T ′x(x, y) = ∂T (x,y)

∂x partial Fréchet derivative of T at (x, y)
∇T (x) = T ′(x)> ∈ Rn gradient of T : Rn → R
∇xT (x, y) = T ′x(x, y)> partial gradient of T : Rn × Rm → R
∇2
xyT (x, y) = ∂2T (x,y)

∂x∂y ∈ Rn×m second partial Fréchet derivative of T : Rn × Rm → R
F : X ⇒ Y a set-valued mapping from X to Y
graph (F ) := {(x, y) ∈ X × Y |

y ∈ F (x)} the graph of a set-valued mapping F : X ⇒ Y

H Hamilton function of an optimal control problem
L Lagrange function
exp(x) = ex the real exponential function

Vectors and Matrices
v ∈ Rn a column vector in Rn

v> transpose of a vector v
‖v‖ Euclidean norm of a vector v
A ∈ Rn×m a matrix with n rows and m columns
A> ∈ Rm×n transpose of a matrix A ∈ Rn×m

A−1 inverse of a matrix A ∈ Rn×n

Ah = A>
(
AA>

)−1
right inverse of a matrix A with full row rank

rank (A) rank of a matrix A
In unit matrix in Rn×n

diag [aj ]j∈J diagonal matrix with entries aj ∈ R, ordered from
smallest to largest index

0n×m matrix with only zero entries of dimension n×m
‖A‖ spectral norm of a matrix A ∈ Rn×m





Chapter 1

Introduction

The study of optimal control has its origins in the theory of variational problems. Research
for variational problems started to increase in 1696, when Johann Bernoulli (1667–1748) first
proposed the Brachistochrone problem, and has since then been broadened by several renowned
mathematicians, including Leonhard Euler (1707–1793), Ludovico Lagrange (1736–1813), An-
drien Legendre (1752–1833), Carl Jacobi (1804–1851), and William Hamilton (1805–1865).
By separating state and control variables and permitting control constraints variational problems
were generalized to optimal control problems. Herein, the behavior of the state is described by
dynamic equations, typically as a system of ordinary or partial differential equations (ODEs
or PDEs). Usually, the dynamic behavior is influenced through the choice of control variables,
which in turn are often subject to constraints, such as physical limitations. The objective of
optimal control is to find a control such that all constraints are satisfied, and a particular
optimality criterion is obtained.
Since the 20th century optimal control theory has been applied to numerous fields, for instance,
aerospace, biological engineering, economics, and robotics. An example of an optimal control
problem would be an autonomously driven car, where the dynamic behavior is given by some
equations of motion, which can be controlled by, e.g., steering, accelerating, and braking. Such
a system is typically restricted by the boundaries of the road, as well as the maximum steer-
ing angle and acceleration. The objective could be to minimize the travel time from start to
destination or the fuel consumption.
Many dynamic behaviors in, e.g., electronics, mechanics, and process engineering are described
by differential-algebraic equations (DAEs), which have been investigated more thoroughly since
the 1970’s. DAEs in their most general form are implicit differential equations

0Rnz = F (t, z(t), ż(t)) , t ∈ [t0, tf ] , (1.1)

where z is called state variable. This type of equation consists of differential equations and
algebraic equations, if the partial derivative F ′ż (·) is singular. Otherwise, the implicit function
theorem can be applied to solve for ż, resulting in an explicit ODE. A special class of DAEs are
the so-called semi-explicit DAEs, where the state variable z is decomposed into the differential
variable x and algebraic variable y, and (1.1) into differential and algebraic equations:

ẋ(t) = f (t, x(t), y(t)) , t ∈ [t0, tf ] ,
0Rny = g (t, x(t), y(t)) , t ∈ [t0, tf ] .

(1.2)

The concept of an index was introduced for DAEs in order to measure its degree of regularity.
There are numerous index definitions, such as the differentiation index, the perturbation index,
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2 CHAPTER 1. INTRODUCTION

the strangeness index, and the tractability index (cf. [20,38,42,43,66,74–76]). In (1.2), let f be
uniformly Lipschitz continuous with respect to x and y, and g be continuously differentiable in
sufficiently large convex compact sets. The DAE (1.2) has index one, if the partial derivative
g′y (·) is non-singular, and g′y (·), g′y (·)−1 are bounded. Then, the algebraic equation in (1.2) is
implicitly solvable for y. DAEs are called higher index DAEs, if the index is greater than one.
In that case, the algebraic equation does not depend on all components of the algebraic variable
y. For the DAE

ẋ(t) = f (t, x(t), y(t)) , t ∈ [t0, tf ] ,
0Rny = g (t, x(t)) , t ∈ [t0, tf ] ,

(1.3)

let f be continuously differentiable, and let g be twice continuously differentiable in suffi-
ciently large convex compact sets. Then, (1.3) has index two, if g′x (·) f ′y (·) is non-singular,

and g′x (·) f ′y (·),
(
g′x (·) f ′y (·)

)−1
are bounded. In Chapter 3 and Chapter 4, we consider specially

structured Hessenberg DAEs of order k > 2

ẋ1(t) = f1 (t, x1(t), x2(t), . . . , xk−1(t), y(t)) , t ∈ [t0, tf ] ,
ẋ2(t) = f2 (t, x1(t), x2(t), . . . , xk−1(t)) , t ∈ [t0, tf ] ,
ẋ3(t) = f3 (t, x2(t), x3(t), . . . , xk−1(t)) , t ∈ [t0, tf ] ,

...
ẋk−1(t) = fk−1 (t, xk−2(t), xk−1(t)) , t ∈ [t0, tf ] ,

0Rny = g (t, xk−1(t)) , t ∈ [t0, tf ] .

(1.4)

Herein, (x1, x2, . . . , xk−1) is the differential variable and y is the algebraic variable. Let the func-
tions fi be i-times continuously differentiable for i = 1, . . . , k− 1, and g be k-times continuously
differentiable in sufficiently large convex compact sets. Then, (1.4) has index k, if

E (·) := g′xk−1 (·) f ′k−1,xk−2 (·) f ′k−2,xk−3 (·) · · · f ′2,x1 (·) f ′1,y (·)

is non-singular, and E (·), E (·)−1 are bounded.
In this thesis, we analyze optimal control problems of the following type:
Problem 1.1 (DAE Optimal Control Problem)
Minimize the objective function

ϕ (x(0), x(1))

with respect to
x : [0, 1]→ Rnx , y : [0, 1]→ Rny , u : [0, 1]→ Rnu ,

subject to the semi-explicit DAE

ẋ(t) = f (x(t), y(t), u(t)) ,
0Rny = g (x(t), y(t), u(t)) ,

the boundary condition
0Rnψ = ψ (x(0), x(1)) ,

and the mixed control-state constraint

0Rnc ≥ c (x(t), y(t), u(t)) .
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Herein, the inequality is considered componentwise, i.e., 0 ≥ cj (x(t), y(t), u(t)) for j = 1, . . . , nc.
Since we also consider inequality constraints in Problem 1.1, we will later combine the index
notions above for the algebraic equation 0Rny = g (x(t), y(t), u(t)) with the regularity of the
mixed control-state constraints 0Rnc ≥ c (x(t), y(t), u(t)). Moreover, through several transfor-
mation techniques it is possible to transform more general optimal control problems to the form
of Problem 1.1. For instance, problems with free final time, non-autonomous problems, and
problems with integral objective functional can be transformed. In order to properly define
Problem 1.1, we introduce Lebesgue and Sobolev spaces.
Definition 1.2 (Lebesgue and Sobolev Spaces)
Let a, b ∈ R with a < b.

• For 1 ≤ p <∞ the Lebesgue space Lp ([a, b]) is the Banach space of all equivalence classes,
which consist of measurable functions v : [a, b]→ R (compare Definition A.8) with

b∫
a

|v(t)|p dt <∞,

i.e., the p-th power of the absolute value of v(·) is Lebesgue integrable on [a, b]. The
Lebesgue space L∞ ([a, b]) is the Banach space of all equivalence classes, which consist of
measurable functions v : [a, b]→ R (compare Definition A.8) with

ess sup
t∈[a,b]

|v(t)| <∞,

i.e., v(·) is essentially bounded on [a, b]. Two functions are in the same equivalence class,
if they are equal almost everywhere on [a, b] in terms of the Lebesgue measure.

• For k ∈ N and 1 ≤ p ≤ ∞ the Sobolev space Wk,p ([a, b]) consists of absolutely continuous
functions v : [a, b]→ R with absolutely continuous derivatives up to order k − 1 and

dk

dtk
v ∈ Lp ([a, b]) ,

where dk

dtk
v is the weak derivative of order k.

• For 1 ≤ p ≤ ∞ and k, n ∈ N the spaces Lnp ([a, b]) and Wn
k,p ([a, b]) are the product spaces

Lnp ([a, b]) := Lp ([a, b])× · · · × Lp ([a, b])

Wn
k,p ([a, b]) := Wk,p ([a, b])× · · · ×Wk,p ([a, b])

equipped with the norms

‖v‖p :=

 b∫
a

‖v(t)‖p dt


1
p

, 1 ≤ p <∞, ‖v‖∞ := ess sup
t∈[a,b]

‖v(t)‖ ,

‖v‖k,p := max

‖v‖p ,
∥∥∥∥dvdt

∥∥∥∥
p
, . . . ,

∥∥∥∥∥dkvdtk
∥∥∥∥∥
p

 , 1 ≤ p ≤ ∞.
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For Problem 1.1, we consider the differential state x to be in the Sobolev space Wnx
1,∞ ([0, 1]),

and the algebraic state y and control u to be in the Lebesgue spaces Lny∞ ([0, 1]) and Lnu∞ ([0, 1]),
respectively. Occasionally, we consider matrix valued functions A ∈ Ln×m∞ ([a, b]) bounded in
the norm ‖A‖∞ := ess sup

t∈[a,b]
‖A(t)‖, in which case ‖·‖ is the spectral norm. It will be clear from

the context whether the Euclidean or the spectral norm is used.
In optimal control one can distinguish between weak local minimizer and strong local minimizer :
Definition 1.3 (Weak and Strong Local Minimizer)
Suppose (x̂, ŷ, û) ∈ Wnx

1,∞ ([0, 1]) × Lny∞ ([0, 1]) × Lnu∞ ([0, 1]) is feasible for Problem 1.1. Then,
(x̂, ŷ, û) is called a

• (weak) local minimizer of Problem 1.1, if

ϕ (x(0), x(1)) ≥ ϕ (x̂(0), x̂(1))

for all admissible (x, y, u) with

‖x− x̂‖1,∞ < ρ, ‖y − ŷ‖∞ < ρ, ‖u− û‖∞ < ρ

for some ρ > 0.

• strong local minimizer of Problem 1.1, if

ϕ (x(0), x(1)) ≥ ϕ (x̂(0), x̂(1))

for all admissible (x, y, u) with
‖x− x̂‖∞ < ρ

for some ρ > 0.

Note that a strong local minimizer is also a weak local minimizer, since strong local minimizer
are optimal on a larger set of algebraic states and controls. In this thesis, we only consider
weak local minimizer and aim to derive the following for optimal control problems subject to a
semi-explicit DAE, a boundary condition, and a mixed control-state constraint:

(a) Necessary conditions in form of a local minimum principle for problems with index one
DAEs and Hessenberg DAEs of arbitrary order. (Theorem 3.1.15 / Theorem 3.2.5)

(b) Second-order sufficient conditions for problems with index one DAEs and Hessenberg DAEs
of arbitrary order. (Theorem 4.1.12 / Theorem 4.2.2)

(c) Conditions such that there exist a solution of an approximation of the optimal control
problem with an index two DAE that converges to a solution of the continuous optimal
control problem. (Theorem 5.5.6)
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Necessary conditions, also called maximum principles or minimum principles, for optimal con-
trol problems have been investigated since the 1950’s. Early proofs of the maximum principle
can be found in Pontryagin et al. [104] and Hestenes [57]. In [96, 124], optimal control prob-
lems subject to ordinary differential equations with mixed control-state constraints have been
analyzed. Problems with pure state constraints are discussed in, e.g., [59–61, 63, 86, 87, 89, 90].
In more recent years, the research has been expanded to optimal control problems subject to
DAEs. In [8, 65, 94], linear quadratic DAE optimal control problems are discussed. Herein, [94]
consider descriptor systems with constant coefficient matrices, whereas time-variant systems are
considered in [65]. In [8], nonlinear quasi-linear DAEs are examined. Optimal control problems
with nonlinear index one DAEs in semi-explicit form are inspected in [29, 47, 102], where [102]
consider set constraints on the controls, and [29, 47] consider pure state and mixed control-
state constraints. Necessary conditions for problems with higher index DAEs were derived
in [45, 47, 83, 111]. In [45, 47], Index two DAEs with pure state constraints, mixed control-state
constraints, and set constraints on the controls are considered. Problems with Hessenberg DAEs
up to index three are analyzed in [111], and in [83], problems with Hessenberg DAEs of arbitrary
order are investigated. By reducing the optimal control problem to an equivalent nonsmooth
variational problem, a maximum principle for problems with implicit control systems is derived
in [28]. In [67], general unstructured DAE optimal control problems are studied. [69, 88] estab-
lish necessary conditions for infinite optimization problems, which are closely related to optimal
control problems.

In Chapter 3 we expand the research on necessary conditions for optimal control problems.
Specifically, Theorem 3.1.15 generalizes [47, Theorem 3.4.4], and Theorem 3.2.5 generalizes [47,
Theorem 3.3.8] by weakening the assumptions and considering Hessenberg DAEs of arbitrary or-
der. Moreover, [83, Theorem 3.1] is generalized by including boundary conditions and weakening
the assumptions.

Sufficient conditions can be utilized in order to verify, if a solution of local minimum principle
is a weak local minimizer. Results on sufficient conditions have primarily been established for
optimal control problems subject to explicit ODEs. In [21, 31, 98, 123], problems with control
constraints are analyzed. Mixed control-state constraints are considered in [92, 93]. In [13, 79,
82, 99, 100], optimal control problems subject to mixed control-state constraints and pure state
constraints are investigated, where [13] considers multiple pure state constraints of arbitrary
order. Problems with free final time have been discussed in [21, 58, 93]. In [14, 15], sufficient
conditions for strong local minimizer were derived.
By adding boundary conditions to the optimal control problem we expand the results of [83,
Theorem 4.1] in Theorem 4.1.12/ Theorem 4.2.2. The results in [92] are also generalized, since
DAEs are included in Problem 3.1.1/ Problem 3.2.1.

In general, optimal control problems are not analytically solvable. Therefore, numerically meth-
ods are used in order to obtain an approximated solution. From a theoretical point of view, it is
of interest to find conditions that guarantee convergence of the approximated solution. Herein,
the type and rate of convergence depends on the discretization method and the problem itself.
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The most commonly used approximation method is the (explicit or implicit) Euler discretization.
It was used for optimal control problems with mixed control-state constraints in [48,80]. Linear
convergence in the L∞-norm is obtained in [80], whereas convergence with a rate of 1

p in the
Lp-norm is achieved in [48] for optimal controls of bounded variation. In [16, 32, 34], problems
with pure state constraints of order one are investigated. Herein, [32,34] prove linear convergence
in the L2-norm and convergence of order 2

3 in the L∞-norm, while [16] obtain linear convergence
in the L∞-norm. Problems with DAEs are considered in [84, 85]. A Linear convergence rate
in the L∞-norm for problems with index one DAEs is achieved in [84]. Problems with index
two DAEs and mixed control-state constraints are examined in [85], and linear convergence in
the L∞-norm is proven. In order to obtain a higher rate of convergence Runge-Kutta methods
are utilized. In [33, 53, 117], they are applied to problems with set constraints on the control,
where [33, 117] achieve a quadratic convergence rate for a second order Runge-Kutta approx-
imation, and [53] obtain convergence of arbitrary rate with a suitable Runge-Kutta scheme.
In [73], convergence for the value of the objective function is proven. In [3–7,101,113,118], prob-
lems with discontinuous (bang-bang type) controls are inspected. Linear problems are discussed
in [4,101,118], where [4] obtain linear convergence in the L1-norm, and of rate 1

2 in the L2-norm
for the control. In [3,5,6,113], linear quadratic systems are investigated. Herein, [3] achieve cor-
responding results to [4], whereas [6] obtain a linear convergence rate. In [7], nonlinear optimal
control problems, where the control appears linearly, are considered.
Theorem 5.5.6 generalizes the results in [80] by including index two DAEs. We expand the
research on convergence analysis for optimal control problems, and establish a technique that
deals with the discrepancy between the necessary conditions of the problem and its approxima-
tion. This method could also be used for problems with DAEs of higher index. Additionally, the
techniques in Chapter 5 are also applicable to problems subject to index one DAEs and mixed
control-state constraints.

The thesis is structured as follows:
In Chapter 2, we gather fundamental results and definitions. The aim is to shorten the technical
and repetitive proofs in later chapters by considering more general settings such that the results
can be applied to various problems. The analysis includes properties of linear operators and
bilinear forms, regularity of generalized equations, sufficient conditions and sensitivity for finite-
dimensional parametric optimization problems, and characteristics of linear time-variant DAEs.
In particular, approximation conditions are derived for bilinear forms, generalized equations,
and linear time-variant DAEs.
Necessary conditions for optimal control problems subject to semi-explicit DAEs and mixed
control-state constraints are derived in Chapter 3. Therein, we first consider index one DAEs
and obtain a local minimum principle under regularity and controllability assumptions. Then,
we apply the results to optimal control problems with Hessenberg DAEs of arbitrary order via
index-reduction.



7

In Chapter 4, we provide second-order sufficient conditions using a Hamilton Jacobi inequality.
Similar to Chapter 3, we first discuss the index one case and then DAEs of higher index. With
aid of appropriate Riccati equations, suitable quadratic functions are constructed, which satisfy
the respective Hamilton Jacobi inequalities.
Chapter 5 is dedicated to proving convergence of approximations of optimal control problems
subject to semi-explicit index two DAEs and mixed control-state constraints. The standard
scheme for proving convergence is to compare the continuous and discrete necessary conditions,
and apply a suitable approximation result. However, this method fails for higher index DAEs,
since there is a structural discrepancy between the respective necessary conditions. This was
overcome by finding an equivalent reformulation of the discretized optimal control problem.
Convergence is then proven for states and control, as well as the associated Lagrange multipliers
of the transformed discrete problem. Additionally, a relationship between the multipliers of the
modified discrete problem and the directly discretized problem is established.
In Chapter 6, we summarize the main results, and give a perspective of open questions and
future research topics that arose from this thesis.
In the Appendix, we collect some definitions and auxiliary statements for the other chapters,
which would have disturbed the reading flow.
In the following chapters, we frequently use the abbreviation F [t] for functions of type F (z(t))
in order to simplify notation. Usually, these functions will be evaluated at a minimizer (or
Karush-Kuhn-Tucker point), e.g.,

f [t] := f (x̂(t), ŷ(t), û(t)) , g′x [t] := g′x (x̂(t), ŷ(t), û(t)) .
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Chapter 2

Fundamental Results

The intention of this chapter is to collect fundamental definitions and statements, which are
significant for later chapters, in one place, thus improving the reading flow. In Section 2.1, we
gather some properties of linear operators and bilinear forms on Hilbert spaces. The main result
of this section is Theorem 2.1.10, which states that approximations of bilinear forms inherit a
particular coercivity property under appropriate assumptions. In Section 2.2, we introduce the
concept of generalized equations and prove a convergence result, which is essential for Chapter 5.
Section 2.3 deals with finite-dimensional parametric optimization problems. Herein, we provide,
among other things, second-order sufficient conditions and a sensitivity result, which prove to
be crucial for Chapter 4 and Section 5.5, respectively. Finally, in Section 2.4 we examine linear
time-variant DAEs. In particular, we investigate the connection between time-continuous and
time-discrete systems, using the results of Section 2.1.

2.1 Linear Operators and Bilinear Forms
Definitions and statements on Banach spaces, Hilbert spaces, and linear operators can be found
in, e.g., [1, 51,72,107,120].
Let X be a Hilbert space with the inner product 〈·, ·〉X , and the induced norm ‖·‖X given by
‖x‖X =

√
〈x, x〉X .

Definition 2.1.1 (Dual Space)
For a normed vector space X the dual space X? is the set of all linear, continuous functionals
from X to R, i.e., X? = L (X,R).
Remark 2.1.2
For p, q ∈ R with 1 < p < ∞ and 1

p + 1
q = 1 the dual space of Lp ([a, b]) can be (isomet-

ric isomorphically) identified with Lq ([a, b]), i.e., for every f ∈ (Lp ([a, b]))? exists a unique
equivalence class in Lq ([a, b]) such that for all elements vf of the equivalence class it holds
‖f‖(Lp([a,b]))? = ‖vf‖q and

f(u) =
b∫
a

vf (t)u(t) dt for all u ∈ Lp ([a, b]) .

Moreover, the dual space of L1 ([a, b]) can be identified with L∞ ([a, b]). However, the dual space
of L∞ ([a, b]) cannot be identified with L1 ([a, b]), since it also contains so called finitely additive
measures (cf. [41, Proposition 7.16], [112, Theorem 6.19], [121]).

9
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The following well-known theorem describes the relation between a Hilbert space and its dual:
Theorem 2.1.3 (Fréchet-Riesz Theorem, [120, Theorem V.3.6])
Let X be a Hilbert space. Then, the linear map IX : X → X? defined by IXx := 〈·, x〉X has the
following properties:

(i) IX is bijective.

(ii) IX is a linear isometry, i.e., ‖IXx‖X? = ‖x‖X for all x ∈ X.

The mapping IX : X → X? is called canonical isomorphism between X and X?. It follows
straightforwardly from condition (ii) that ‖IX‖L(X,X?) =

∥∥∥I−1
X

∥∥∥
L(X?,X)

= 1.
In the sequel, we examine linear, continuous operators T : X → Y between Hilbert spaces and
their adjoint operators T ? : Y ? → X?. In particular, we aim to derive conditions for the existence
of a generalized right inverse. To that end, we require the following notion of a strengthened
surjectivity property:
Definition 2.1.4 (Uniform Surjectivity)
Let X,Y be Banach spaces. A mapping T ∈ L (X,Y ) is called uniformly surjective, if the
following holds:
There exists a constant κ > 0 such that for all y ∈ Y there exists x ∈ X with

Tx = y ,

κ ‖x‖X ≤ ‖y‖Y .

Note that in case of finite dimensional spaces this definition is equivalent to standard surjectivity.
We recall that the adjoint operator T ? : Y ? → X? of the linear map T : X → Y is defined by

(T ?y?) (x) := y? (Tx) for y? ∈ Y ?, x ∈ X, (2.1.1)

which allows us to prove the following using Theorem 2.1.3:
Lemma 2.1.5
Let X,Y be Hilbert spaces. Suppose T ∈ L (X,Y ) is uniformly surjective with constant κ. Then,
the adjoint operator T ? is injective and satisfies

‖T ?y?‖X? ≥ κ ‖y?‖Y ? for all y? ∈ Y ? .

Proof. Let y? ∈ Y ? \ {0Y ?} be arbitrary. According to Theorem 2.1.3, for the element
vy := I−1

Y y? ∈ Y \ {0Y } it holds

y? (·) = 〈·, vy〉Y , (2.1.2)

‖y?‖Y ? = ‖vy‖Y . (2.1.3)

Then, the uniform surjectivity of T assures the existence of xv ∈ X \ {0X} with

Txv = vy , (2.1.4)

‖xv‖X ≤ 1
κ
‖vy‖Y . (2.1.5)



2.1. LINEAR OPERATORS AND BILINEAR FORMS 11

It follows

‖T ?y?‖X? = sup
x∈X\{0X}

|(T ?y?) (x)|
‖x‖X

(2.1.1)= sup
x∈X\{0X}

|y? (Tx)|
‖x‖X

(2.1.2)= sup
x∈X\{0X}

∣∣〈Tx, vy〉Y ∣∣
‖x‖X

≥
∣∣〈Txv, vy〉Y ∣∣
‖xv‖X

(2.1.4)=
∣∣〈vy, vy〉Y ∣∣
‖xv‖X

(2.1.5)
≥ κ

∣∣〈vy, vy〉Y ∣∣
‖vy‖Y

= κ ‖vy‖Y
(2.1.3)= κ ‖y?‖Y ? ,

which implies T ?y? 6= 0 for all y? ∈ Y ? \ {0Y ?}. Thus, ker (T ?) = {0Y ?}, which is equivalent to
T ? being injective. �

Consequently, if Y is finite dimensional, the following holds:

Lemma 2.1.6
Let X,Y be Hilbert spaces with dim (Y ) ≤ dim (X), and dim (Y ) < ∞. Suppose T ∈ L (X,Y )
is uniformly surjective with constant κ. Then, the mapping S := T ◦ I−1

X ◦ T ? ∈ L (Y ?, Y ) is
bijective and the inverse is bounded by∥∥∥S−1

∥∥∥
L(Y,Y ?)

≤ 1
κ2 .

Proof. Let y? ∈ Y ? \ {0Y ?} be arbitrary. Then, due to Lemma 2.1.5, it holds

T ?y? 6= 0X? ,

‖T ?y?‖X? ≥ κ ‖y?‖Y ? . (2.1.6)

In addition, Theorem 2.1.3 implies uTy := I−1
X (T ?y?) ∈ X \ {0X} satisfies

(T ?y?) (·) =
〈
·, uTy

〉
X
, (2.1.7)

‖T ?y?‖X? =
∥∥uTy∥∥X , (2.1.8)

and therefore
Sy? =

(
T ◦ I−1

X ◦ T
?
)

(y?) = TuTy . (2.1.9)

Exploiting the inequality y? (y) ≤ ‖y?‖Y ? ‖y‖Y leads to

‖y?‖Y ? ‖Sy
?‖Y ≥ y? (Sy?) (2.1.9)= y?

(
TuTy

) (2.1.1)= (T ?y?)
(
uTy

)
(2.1.7)=

〈
uTy , uTy

〉
X

=
∥∥uTy∥∥2

X

(2.1.8)= ‖T ?y?‖2X?

(2.1.6)
≥ κ2 ‖y?‖2Y ? .

Dividing with respect to ‖y?‖Y ? > 0 yields

‖Sy?‖Y ≥ κ
2 ‖y?‖Y ? > 0 , (2.1.10)
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which implies Sy? 6= 0Y for all y? ∈ Y ? \ {0Y ?}. Hence, ker (S) = {0Y ?}, which proves the
injectivity of S. Utilizing dim (Y ?) = dim (Y ) <∞ and the rank-nullity theorem results in

dim (Y ?) = dim (im (S)) + dim (ker (S)) = dim (im (S)) = dim (Y ) ,

and therefore im (S) = Y . Thus, S is surjective and S−1 exists. Finally, for an arbitrary
y ∈ Y \ {0Y } we conclude

‖y‖Y =
∥∥∥S (S−1y

)∥∥∥
Y

(2.1.10)
≥ κ2

∥∥∥S−1y
∥∥∥
Y ?

.

Dividing by κ2 ‖y‖Y and taking the supremum with respect to y ∈ Y \ {0Y } yields the bound

∥∥∥S−1
∥∥∥
L(Y,Y ?)

≤ 1
κ2 ,

which completes the proof. �

Remark 2.1.7 (Generalized Right Inverse)
In Lemma 2.1.6, we have shown that

(
T ◦ I−1

X ◦ T ?
)−1

exists and is bounded by 1
κ2 , if T is

uniformly surjective and Y is finite dimensional. Therefore, the generalized right inverse

R := I−1
X ◦ T

? ◦
(
T ◦ I−1

X ◦ T
?
)−1
∈ L (Y,X) , (2.1.11)

with (T ◦R) (y) = y for all y ∈ Y

exists and is bounded by ‖T‖L(X,Y )
κ2 , since ‖T‖L(X,Y ) = ‖T ?‖L(Y ?,X?) (cf. [120, Satz III.4.2]) and∥∥∥I−1

X

∥∥∥
L(X?,X)

= 1.

Next, we study bilinear forms P : X × X → R on Hilbert spaces, for which we introduce the
following notions:

Definition 2.1.8 (Continuity, Symmetry, Coercivity)
Let X be a Hilbert space, P : X ×X → R a bilinear form, and U ⊆ X a subset.

(i) P is called continuous, if there exists a constant ΓP ≥ 0 such that for all x1, x2 ∈ X it
holds

|P (x1, x2)| ≤ ΓP ‖x1‖X ‖x2‖X .

(ii) P is called symmetric, if for all x1, x2 ∈ X it holds P (x1, x2) = P (x2, x1).

(iii) P is called (uniformly) coercive on U , if there exists a constant γ > 0 such that for all
u ∈ U it holds

P (u, u) ≥ γ ‖u‖2X .

If a bilinear form is continuous, symmetric, and (uniformly) coercive on U , then it was shown
in [88, Lemma 5.5] that the coercivity can be expanded to an even larger set than U :
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Theorem 2.1.9 (Maurer, Zowe)
Let X be a Hilbert space and P : X × X → R be a continuous, symmetric bilinear form.
Furthermore, suppose P is coercive on a subset U ⊆ X with constant γ. Then, there exist
γ0,ΓU > 0 such that

P (u+ x, u+ x) ≥ γ0 ‖u+ x‖2X

is satisfied for all u ∈ U, x ∈ X with ‖x‖X ≤ ΓU ‖u‖X .

For a parameter h ∈ (0,∞) we consider the finite dimensional, closed subspaces Xh ⊆ X and
Yh ⊆ Y , which equipped with the inner products 〈·, ·〉X and 〈·, ·〉Y , respectively, are complete,
and therefore Hilbert spaces. Additionally, let T ∈ L (X,Y ) , Th ∈ L (Xh, Yh) be linear, contin-
uous operators, and P : X ×X → R,Ph : Xh ×Xh → R be bilinear forms. Our aim is to prove
that under certain conditions, the coercivity of the bilinear form P on ker (T ) is inherited (for
sufficiently small h) by the parametric bilinear form Ph on ker (Th) with a constant independent
of h.

Theorem 2.1.10 (Parametric Coercivity)
Let X,Y be Hilbert spaces and Xh ⊆ X, Yh ⊆ Y finite dimensional closed subspaces. Suppose
T ∈ L (X,Y ) , Th ∈ L (Xh, Yh) and P : X × X → R,Ph : Xh × Xh → R are linear, bounded
operators and continuous, symmetric bilinear forms, respectively, where the bounds of Th and
Ph are independent of h. Furthermore, the following properties hold:

(i) T is uniformly surjective with constant κ.

(ii) P is coercive on ker (T ) ⊆ X with constant γ.

(iii) There exist κ̃, h1 > 0 independent of h such that for all 0 < h ≤ h1 the mapping Th is
uniformly surjective with constant κ̃.

(iv) There exists a constant LT ≥ 0 independent of h such that

‖Txh − Thxh‖Y ≤ LTh ‖xh‖X

for all xh ∈ Xh.

(v) There exists a constant LP ≥ 0 independent of h such that

P (xh, xh)− Ph (xh, xh) ≤ LPh ‖xh‖2X

for all xh ∈ Xh ∩ ker (T ).

Then, there exist γ̃, h̃ > 0 independent of h such that for every 0 < h ≤ h̃ the bilinear form Ph
is coercive on ker (Th) with constant γ̃.
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Proof. Define the restriction T̃h := T |Xh with

T̃h ∈ L
(
Xh, Ỹh

)
, Ỹh := T (Xh) ⊆ Y ,

which is uniformly surjective with constant κ, since im
(
T̃h
)

= Ỹh and (i) hold. Moreover,

dim
(
Ỹh
)
≤ dim (Xh), dim

(
Ỹh
)
<∞, and Ỹh is closed, due to the surjectivity of T̃h. Equipped

with the inner product of Y , the subspace Ỹh is complete, and therefore a Hilbert space. This
allows us to apply Lemma 2.1.6 for T̃h, thus the mapping T̃h ◦ I−1

Xh
◦ T̃ ?h ∈ L

(
Ỹ ?
h , Ỹh

)
is bijective

and the inverse operator is bounded by
∥∥∥∥(T̃h ◦ I−1

Xh
◦ T̃ ?h

)−1
∥∥∥∥
L(Ỹh,Ỹ ?h )

≤ 1
κ2 . In addition, accord-

ing to [120, Satz III.4.2], it holds
∥∥∥T̃ ?h∥∥∥L(Ỹ ?h ,X?

h)
=
∥∥∥T̃h∥∥∥

L(Xh,Ỹh)
. Hence, by Remark 2.1.7, the

right inverse R̃h := I−1
Xh
◦ T̃ ?h ◦

(
T̃h ◦ I−1

Xh
◦ T̃ ?h

)−1
satisfies

∥∥∥R̃h∥∥∥
L(Ỹh,Xh)

≤

∥∥∥I−1
Xh

∥∥∥
L(X?

h
,Xh)

∥∥∥T̃h∥∥∥
L(Xh,Ỹh)

κ2 ≤ ΓR, (2.1.12)

where ΓR := ‖T‖L(X,Y )
κ2 is independent of h. For an arbitrary uh ∈ ker

(
T̃h
)

it holds

LPh ‖uh‖2X
(v)
≥ P (uh, uh)− Ph (uh, uh)

(ii)
≥ γ ‖uh‖2X − Ph (uh, uh) .

Reordering and choosing h ≤ γ
2LP yields

Ph (uh, uh) ≥ (γ − LPh) ‖uh‖2X ≥
γ

2 ‖uh‖
2
X .

Then, according to Theorem 2.1.9, there exist γ0,ΓU > 0 independent of h such that

Ph (uh + zh, uh + zh) ≥ γ0 ‖uh + zh‖2X (2.1.13)

for all uh ∈ ker
(
T̃h
)

and zh ∈ Xh with ‖zh‖X ≤ ΓU ‖uh‖X . Set γ̃ := γ0 and

h̃ := min
{
h1,

γ

2LP
,

1
2ΓRLT

,
ΓU

2ΓRLT

}
. (2.1.14)

Let 0 < h ≤ h̃ and xh ∈ ker (Th) be arbitrary. Then, it holds∥∥∥T̃hxh∥∥∥
Y

=
∥∥∥T̃hxh − Thxh∥∥∥

Y

(iv)
≤ LTh ‖xh‖X . (2.1.15)

Define

zh := R̃h
(
T̃hxh

)
, uh := xh − zh ,

which satisfy T̃huh = T̃hxh −
(
T̃h ◦ R̃h

) (
T̃hxh

)
= T̃hxh − T̃hxh = 0Y , hence uh ∈ ker

(
T̃h
)
.

Furthermore, the choice of h̃ implies

‖uh‖X = ‖xh − zh‖X ≥ ‖xh‖X − ‖zh‖X = ‖xh‖X −
∥∥∥R̃h (T̃hxh)∥∥∥

X
(2.1.16)

(2.1.12)
≥ ‖xh‖X − ΓR

∥∥∥T̃hxh∥∥∥
Y

(2.1.15)
≥ (1− ΓRLTh) ‖xh‖X

(2.1.14)
≥ 1

2 ‖xh‖X ,
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and consequently

‖zh‖X
(2.1.12)
≤ ΓR

∥∥∥T̃hxh∥∥∥
Y

(2.1.15)
≤ ΓRLTh ‖xh‖X

(2.1.16)
≤ 2ΓRLTh ‖uh‖X

(2.1.14)
≤ ΓU ‖uh‖X .

Finally, (2.1.13) yields

Ph (xh, xh) = Ph (uh + zh, uh + zh)
(2.1.13)
≥ γ0 ‖uh + zh‖2X = γ̃ ‖xh‖2X ,

which completes the proof. �

2.2 Generalized Equations
In this section, we examine properties of generalized equations, i.e., inclusions of the form

0Y ∈ T (x) + F (x) . (2.2.1)

Herein, X,Y are Banach spaces, T : X → Y is a single-valued function, and F : X ⇒ Y is
a set-valued mapping. Problems of this type have been extensively investigated in [36]. The
inverse of the set-valued mapping F is defined as

F−1 (y) = {x ∈ X | y ∈ F (x)} .

For a subset P ⊆ Y we consider the parametric generalized equation

0Y ∈ T (x) + F (x) + p, p ∈ P. (2.2.2)

First, we derive an implicit function theorem for (2.2.2) similar to [30, 35], that is finding con-
ditions under which (2.2.2) has a solution x depending on p near a reference solution (x̂, p̂).
In case of a single-valued equation 0Y = T (x) + p a sufficient assumption would amount to
T−1 (x̂) being a linear, continuous operator. However, for (2.2.2) we require a different property
introduced by Robinson [109]:
Definition 2.2.1 (Strong Regularity)
Let Ω ⊆ X be open and x̂ ∈ Ω such that x̂ solves (2.2.1) and T is Fréchet differentiable at x̂.
Furthermore, let the set-valued mapping S : X ⇒ Y be defined by

S (x) := T (x̂) + T ′ (x̂) (x− x̂) + F (x) . (2.2.3)

We call (2.2.1) strongly regular at x̂ with associated Lipschitz constant L > 0, if there exist
neighborhoods V of x̂ and U of 0Y such that for every u ∈ U the set

S−1 (u) ∩ V = {v ∈ V | u ∈ S (v)} (2.2.4)

contains a single element v (u), and the mapping GSU,V : U → V defined as

GSU,V (u) := v (u) (2.2.5)

is Lipschitz continuous with constant L.



16 CHAPTER 2. FUNDAMENTAL RESULTS

The property of strong regularity allows us to prove the following implicit function theorem for
(2.2.2):
Theorem 2.2.2 (Implicit Function Theorem)
Let T be Fréchet differentiable on Ω. Suppose for x̂ ∈ Ω and p̂ ∈ P the operators T, T ′ are
continuous at x̂, and

0Y ∈ T (x) + p̂+ F (x) (2.2.6)

is strongly regular at x̂ with Lipschitz constant L. Then, for any ε > 0 there exist neighborhoods
Wε of x̂ and Nε of p̂, and a single-valued mapping x : Nε →Wε such that for each p ∈ Nε, x (p)
is the unique solution of the inclusion (2.2.2) in Wε. Moreover, for every p1, p2 ∈ Nε it holds

‖x (p1)− x (p2)‖X ≤ (L + ε) ‖p1 − p2‖Y .

Proof. Let ε > 0 be arbitrary and let us define

S (x) := T (x̂) + p̂+ T ′ (x̂) (x− x̂) + F (x) .

Then, by strong regularity of (2.2.6) there exist neighborhoods V of x̂ and U of 0Y such that
for every u ∈ U the set

S−1 (u) ∩ V = {v ∈ V | u ∈ S (v)}

contains a single element v (u), and the mapping GSU,V : U → V defined as

GSU,V (u) := v (u)

is Lipschitz continuous with constant L. Choose δ > 0 such that Lδ < ε
L+ε < 1, and define the

parametric mapping r : Ω× P → Y by

r (x, p) := T (x̂) + p̂+ T ′ (x̂) (x− x̂)− T (x)− p.

Since T ′ is continuous in x̂, there exists ρ1 > 0 such that

∥∥T ′ (x)− T ′ (x̂)
∥∥
L(X,Y ) ≤ δ (2.2.7)

for every x ∈ Bρ1 (x̂) ⊆ Ω. Now, choose ρ, % > 0, ρ ≤ ρ1 such that Bδρ+% (0Y ) ⊆ U and

L% ≤ (1− Lδ) ρ. (2.2.8)

Hence, (2.2.7) is also satisfied for every x ∈ Bρ (x̂). In addition, using the mean-value theorem
in [59, p. 40], it follows that for every x ∈ Bρ (x̂) and p ∈ B% (p̂) it holds

‖r (x, p)‖Y ≤
∥∥T (x̂)− T (x) + T ′ (x̂) (x− x̂)

∥∥
Y + ‖p̂− p‖Y

≤ sup
θ∈(0,1)

∥∥T ′ ((1− θ)x+ θx̂)− T ′ (x̂)
∥∥
L(X,Y ) ‖x− x̂‖X + ‖p̂− p‖Y

(2.2.7)
≤ δ ‖x− x̂‖X + ‖p̂− p‖Y ≤ δρ+ %,
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since ‖(1− θ)x+ θx̂− x̂‖X = (1− θ) ‖x− x̂‖X ≤ ρ. Thus, r (x, p) ∈ Bδρ+% (0Y ) ⊆ U . Set
Wε := Bρ (x̂) and Nε := B% (p̂). For arbitrary p ∈ Nε we define the function Πp : Wε → V by

Πp (x) := GSU,V (r (x, p)) ,

which satisfies

Πp (x) = x

⇔ r (x, p) ∈ S (x) (2.2.9)

⇔ T (x̂) + p̂+ T ′ (x̂) (x− x̂)− T (x)− p ∈ T (x̂) + p̂+ T ′ (x̂) (x− x̂) + F (x)

⇔ 0Y ∈ T (x) + p+ F (x)

for every x ∈ Wε. Utilizing the Lipschitz continuity of GSU,V and the mean-value theorem
in [59, p. 40] implies

‖Πp (x1)−Πp (x2)‖X ≤ L ‖r (x1, p)− r (x2, p)‖Y
= L

∥∥T ′ (x̂) (x1 − x2)− (T (x1)− T (x2))
∥∥
Y (2.2.10)

≤ L sup
θ∈(0,1)

∥∥T ′ ((1− θ)x1 + θx2)− T ′ (x̂)
∥∥
L(X,Y ) ‖x1 − x2‖X

(2.2.7)
≤ Lδ ‖x1 − x2‖X

for all x1, x2 ∈ Wε, since ‖(1− θ)x1 + θx2 − x̂‖X ≤ (1− θ) ρ + θρ = ρ. It follows that Πp is a
contraction mapping on Wε, because Lδ < ε

L+ε < 1. Moreover, it holds

0Y ∈ T (x̂) + p̂+ F (x̂) = S (x̂) ,

and therefore GSU,V (0Y ) = x̂. Consequently, since r (x̂, p) = p̂− p, we obtain

‖Πp (x̂)− x̂‖X =
∥∥∥GSU,V (r (x̂, p))−GSU,V (0Y )

∥∥∥
X

≤ L ‖r (x̂, p)‖Y = L ‖p− p̂‖Y (2.2.11)

≤ L%
(2.2.8)
≤ (1− Lδ) ρ.

Then, for every x ∈Wε we have Πp (x) ∈Wε, since by (2.2.10) and (2.2.11) it holds

‖Πp (x)− x̂‖X ≤ ‖Πp (x)−Πp (x̂)‖X + ‖Πp (x̂)− x̂‖X
≤ Lδ ‖x− x̂‖X + (1− Lδ) ρ

≤ Lδρ+ (1− Lδ) ρ = ρ.

According to the Banach contraction principle (cf. [40, Theorem 12.3]), the self-map Πp has a
unique fixed point x (p) with

‖x (p)− x‖X ≤
1

1− Lδ ‖Πp (x)− x‖X for every x ∈Wε. (2.2.12)
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It follows from (2.2.9) that for each p ∈ Nε the relation

Πp (x (p)) = x (p)⇔ 0Y ∈ T (x (p)) + p+ F (x (p))

is satisfied. In addition, by uniqueness of the fixed point, x (p) is the unique solution of the
inclusion (2.2.2). Furthermore, for arbitrary p1, p2 ∈ Nε it holds

‖x (p1)− x (p2)‖X
(2.2.12)
≤ 1

1− Lδ
‖Πp1 (x (p2))− x (p2)‖X

= 1
1− Lδ

‖Πp1 (x (p2))−Πp2 (x (p2))‖X ,

and, since r (x, p1)− r (x, p2) = p2 − p1, we obtain

‖Πp1 (x (p2))−Πp2 (x (p2))‖X =
∥∥∥GSU,V (r (x (p2) , p1))−GSU,V (r (x (p2) , p2))

∥∥∥
X

≤ L ‖r (x (p2) , p1)− r (x (p2) , p2)‖Y
= L ‖p1 − p2‖Y .

Finally, we conclude

‖x (p1)− x (p2)‖X ≤
L

1− Lδ ‖p1 − p2‖Y ≤ (L + ε) ‖p1 − p2‖Y ,

since 1− Lδ > 1− ε
L+ε = L

L+ε , which completes the proof. �

Let H be a Banach space of parameters and H̃ ⊆ H a neighborhood of the origin 0H . For
h ∈ H̃ \ {0H} we denote the subspaces Xh ⊆ X, Yh ⊆ Y supplied with the same respective
norms. For a function Th : Xh → Yh and a set-valued mapping Fh : Xh ⇒ Yh we consider the
generalized equation

0Y ∈ Th (xh) + Fh (xh) . (2.2.13)

Let x̂ denote a solution of (2.2.1). Our goal is to find conditions such that for sufficiently small
‖h‖H the inclusion (2.2.13) has a unique solution x̂h with

‖x̂h − x̂‖X → 0 for ‖h‖H → 0.

To that end, we consider the parametric generalized equation

0Y ∈ Th (xh) + ph + Fh (xh) . (2.2.14)

Remark 2.2.3
Suppose for a parameter p̂h the inclusion (2.2.14) is strongly regular at zh with Lipschitz constant
Lh, and ‖zh − x̂‖X → 0, ‖p̂h‖Y → 0 for ‖h‖H → 0. Then, there are ρh, %h > 0 such that for all
ph ∈ B%h (p̂h) the inclusion (2.2.14) has a unique solution xh (ph) in Bρh (zh), which is Lipschitz
continuous with constant Lh. If the constants Lh = L, ρh = ρ, and %h = % were independent
of h, then we could choose ‖h‖H sufficiently small such that ‖p̂h‖Y < %, thus 0Y ∈ B% (p̂h).
Therefore, (2.2.13) would have a unique solution x̂h in Bρh (zh) with

‖x̂h − x̂‖X ≤ ‖zh − x̂‖X + ‖x̂h − zh‖X ≤ ‖zh − x̂‖X + (L + ε) ‖p̂h‖Y → 0

for ‖h‖H → 0.
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This means we require a reinforced strong regularity condition such that the constants Lh, ρh,
and %h are independent of h.

Definition 2.2.4 (Uniform Strong Regularity)
Let zh ∈ Xh exist such that zh solves (2.2.13) and Th is Fréchet differentiable at zh. We call
(2.2.13) uniformly strongly regular at zh, if there exist ς, %, ρ,L > 0 independent of h such that
for every h ∈ Bς (0H) \ {0H} the inclusion (2.2.13) is strongly regular at zh with neighborhoods
Bρ (zh), B% (0Y ) and Lipschitz constant L.
Remark 2.2.5
In order to verify uniform strong regularity at zh, one has to prove the existence of L, ς, %, ρ > 0
independent of h such that for every h ∈ Bς (0H) \ {0H} and every yh ∈ B% (0Y ) the inclusion

yh ∈ Th (zh) + T ′h (zh) (xh − zh) + Fh (xh)

has a unique solution xh (yh) in Bρ (zh), which is Lipschitz continuous with respect to yh and
Lipschitz constant L.
The notion of uniform strong regularity allows us to prove that the generalized equation (2.2.13)
has a unique solution x̂h that converges to the solution x̂ of inclusion (2.2.1) for ‖h‖H → 0,
which is fundamental for the main result of Chapter 5 (Theorem 5.5.6):

Theorem 2.2.6 (Convergence)
Let x̂ be a solution of (2.2.1) and let Th be Fréchet differentiable. Furthermore, let the following
conditions hold:

(i) Let T ′h (·) be Lipschitz continuous with constant LT > 0.

(ii) Let there exist zh ∈ Xh and p̂h ∈ Yh such that

0Y ∈ Th (zh) + p̂h + Fh (zh) , (2.2.15)

and ‖zh − x̂‖X → 0, ‖p̂h‖Y → 0, for ‖h‖H → 0. (2.2.16)

(iii) Let (2.2.15) be uniformly strongly regular at zh with associated Lipschitz constant L > 0.

Then, there exists l, ς̃ > 0 such that for each h ∈ Bς̃ (0H) \ {0H} the inclusion (2.2.13) has a
locally unique solution x̂h with

‖x̂h − x̂‖X ≤ l (‖zh − x̂‖X + ‖p̂h‖Y )

Proof. According to (iii), there exist L, ς, %, ρ > 0, which satisfy the conditions in Definition
2.2.4. For arbitrary h ∈ Bς (0H) \ {0H} we apply Theorem 2.2.2 to (2.2.15) for some ε > 0. By
condition (i), the inequality (2.2.7) holds for T ′h with a constant independent of h. Additionally,
the neighborhoods Wε and Nε = B% (p̂h) can be chosen independent of h, since uniform strong
regularity holds for neighborhoods independent of h. Select ς̃ > 0 such that ‖p̂h‖Y ≤

%
2 for each

h ∈ Bς̃ (0H) \ {0H}, which is possible according to (2.2.16). Then, 0Y ∈ Nε, hence there exists
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a solution x̂h of (2.2.13) with ‖x̂h − zh‖X ≤ (L + ε) ‖p̂h‖Y . Exploiting the triangle inequality
yields

‖x̂h − x̂‖X ≤ ‖zh − x̂‖X + ‖x̂h − zh‖X ≤ l (‖zh − x̂‖X + ‖p̂h‖Y )

for l := max {1, (L + ε)}, which proves the assertion. �

Remark 2.2.7
Condition (ii) in Theorem 2.2.6 is often referred to as consistency. If (2.2.13) is an approxima-
tion of (2.2.1), then one usually chooses the projection of x̂ into the subspace Xh as the solution
zh of the inclusion (2.2.15), and p̂h is chosen accordingly. Therefore, ‖zh − x̂‖X is called in-
terpolation error, and ‖p̂h‖Y is called consistency error. The rate of convergence depends on
these errors, e.g., if there exist L1,Γ1 ≥ 0 independent of h such that ‖zh − x̂‖X ≤ L1 ‖h‖ and
‖p̂h‖Y ≤ Γ1 ‖h‖, then the solution x̂h of the approximated generalized equation (2.2.13) would
converge linearly to the solution x̂ of (2.2.1).
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2.3 Parametric Nonlinear Optimization Problems
In this section, we aim to derive a sensitivity result and second-order sufficient conditions for
special cases of the following problem:
Problem 2.3.1 (Parametric Nonlinear Optimization Problem)
For a parameter p ∈ P ⊆ Rnp, P closed, and nz, nH , nG ∈ N with nH +nG ≤ nz let the functions
J : Rnz × P → R, G : Rnz × P → RnG, H : Rnz × P → RnH be sufficiently smooth.

Minimize J (z, p)

with respect to z ∈ Rnz

subject to H (z, p) = 0RnH ,

G (z, p) ≤ 0RnG .

Problems of this type have been extensively treated in the literature, e.g., [2,10,44,97]. Let the
Lagrange function of Problem 2.3.1 be denoted by

L (`0, z, λ, η, p) := `0J (z, p) + λ>H (z, p) + η>G (z, p) ,

and the set of feasible vectors by

Σ (p) := {z ∈ Rnz | H (z, p) = 0RnH , G (z, p) ≤ 0RnG} .

According to [10, Theorem 4.3.2], necessary conditions for a fixed parameter can be expressed
as:
Theorem 2.3.2 (Fritz John Necessary Conditions)
For a fixed parameter p̂ ∈ P let ẑ be a local minimum of Problem 2.3.1, and let J (·, p̂), G (·, p̂),
H (·, p̂) be continuously differentiable. Then, there exist multipliers `0 ≥ 0, λ ∈ RnH , and
η ∈ RnG not all zero such that

∇zL (`0, ẑ, λ, η, p̂) = 0Rnz ,

η ≥ 0RnG ,

η>G (ẑ, p̂) = 0.

If so called constraint qualifications hold (cf. [10, Chapter 5]), then there exist multipliers that
satisfy Theorem 2.3.2 with `0 = 1. Among the most commonly used constraint qualifications
are the Mangasarian-Fromovitz constraint qualification and the linear independence constraint
qualification (LICQ). For our purposes we choose the latter:
Definition 2.3.3 (Linear Independence Constraint Qualification)
For a fixed parameter p̂ ∈ P the linear independence constraint qualification is satisfied at ẑ for
Problem 2.3.1, if the vectors

∇zHj (ẑ, p̂) , j = 1, . . . , nH ,

∇zGj (ẑ, p̂) , j = 1, . . . , nG with Gj (ẑ, p̂) = 0

are linear independent.
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Remark 2.3.4 (Uniqueness of Multipliers)
If the assumptions of Theorem 2.3.2 are satisfied and the linear independence constraint quali-
fication hold at ẑ, then the necessary conditions hold for `0 = 1, and the associated multipliers
λ, η are unique, cf. [48, Corollary 2.3.39].
The constraints of Problem 2.3.1 together with the necessary conditions for `0 = 1, i.e.,

∇zL (1, z, λ, η, p) = 0Rnz ,

H (z, p) = 0RnH ,

G (z, p) ≤ 0RnG , (2.3.1)

η ≥ 0RnG ,

η>G (z, p) = 0.

are called Karush-Kuhn-Tucker conditions (KKT conditions). For a non-empty, closed, and
convex set C ⊆ Rn we denote the normal cone operator by

NC : Rn ⇒ Rn

NC (x) :=


{
y ∈ Rn | y> (c− x) ≤ 0 for all c ∈ C

}
, if x ∈ C

∅, if x /∈ C
.

Note that NC satisfies the following conditions

NRn (x) = {0Rn} ,

NRn+ (x) =


{
y ∈ Rn | y>x = 0, y ≤ 0Rn

}
, if x ∈ Rn+

∅, if x /∈ Rn+
,

NC1×C2 (x1, x2) =
{
NC1 (x1)×NC2 (x2) , if (x1, x2) ∈ C1 × C2

∅, if (x1, x2) /∈ C1 × C2
.

This allows us to write the KKT-conditions (2.3.1) as a generalized equation of the form

0Rnz×RnH×RnG ∈ −


∇zL (1, z, λ, η, p)

H (z, p)
G (z, p)

+NRnz×RnH×RnG+


z

λ

η

 . (2.3.2)

For a fixed parameter p ∈ P let
(
ẑ (p) , λ̂ (p) , η̂ (p)

)
be a Karush-Kuhn-Tucker point (KKT-point)

of Problem 2.3.1, i.e.,
(
ẑ (p) , λ̂ (p) , η̂ (p)

)
satisfies the KKT-conditions (2.3.1). Furthermore, for

the KKT-point and p ∈ P, we decompose the index set J := {1, . . . , nG} into the subsets

Ĵ+ (p) := {j ∈ J | Gj (ẑ (p) , p) = 0, η̂j (p) > 0} , ĵ+ (p) := card
(
Ĵ+ (p)

)
,

Ĵ0 (p) := {j ∈ J | Gj (ẑ (p) , p) = 0, η̂j (p) = 0} , ĵ0 (p) := card
(
Ĵ0 (p)

)
,

Ĵ− (p) := {j ∈ J | Gj (ẑ (p) , p) < 0, η̂j (p) = 0} , ĵ− (p) := card
(
Ĵ− (p)

)
,
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and use the abbreviations

ÂH (p) := H ′ (ẑ (p) , p) ,

B̂+
G (p) :=

[
G′j (ẑ (p) , p)

]
j∈Ĵ+(p)

,

B̂0
G (p) :=

[
G′j (ẑ (p) , p)

]
j∈Ĵ0(p)

,

B̂−G (p) :=
[
G′j (ẑ (p) , p)

]
j∈Ĵ−(p)

.

If Ĵ0 (p) = ∅, then the strict complementarity condition η̂j (p) − Gj (ẑ (p) , p) > 0 holds for all
j ∈ J . For a fixed parameter p̂ ∈ P second-order sufficient conditions for Problem 2.3.1 were
proven in, e.g., [10, Theorem 4.4.2], [47, Theorem 6.1.3]:
Theorem 2.3.5 (Second-Order Sufficient Conditions)
For a fixed parameter p̂ ∈ P let

(
ẑ (p̂) , λ̂ (p̂) , η̂ (p̂)

)
be a KKT-point of Problem 2.3.1 and let the

functions J (·, p̂) , H (·, p̂), and G (·, p̂) be twice continuously differentiable. Suppose for every
v ∈ Rnz \ {0Rnz } with

ÂH (p̂) v = 0RnH

B̂+
G (p̂) v = 0RnG (2.3.3)

B̂0
G (p̂) v ≤ 0RnG

the inequality
v>∇2

zzL
(
1, ẑ (p̂) , λ̂ (p̂) , η̂ (p̂) , p̂

)
v > 0

is satisfied. Then, there exist α, ρ > 0 such that for every z ∈ Σ (p̂) ∩ Bρ (ẑ (p̂)) it holds

J (z, p̂) ≥ J (ẑ (p̂) , p̂) + α ‖z − ẑ (p̂)‖2 .

Remark 2.3.6
The set of all vectors v ∈ Rnz that satisfy (2.3.3) is called critical cone. For our purposes
we require a stronger condition than the one in Theorem 2.3.5. Particularly, by removing the
inequality B̂0

G (p̂) v ≤ 0RnG in (2.3.3) we obtain the condition

v>∇2
zzL

(
1, ẑ (p̂) , λ̂ (p̂) , η̂ (p̂) , p̂

)
v > 0 for all v ∈ ker

([
ÂH (p̂)
B̂+
G (p̂)

])
\ {0Rnz } . (2.3.4)

Of course, if Ĵ0 (p) is empty, then B̂0
G (p̂) is vacuous. Thus, the condition in Theorem 2.3.5 and

(2.3.4) would be equivalent. However, in general

ker
([

ÂH (p̂)
B̂+
G (p̂)

])

is a superset of the critical cone.
Condition (2.3.4) together with the linear independence constraint qualification are sufficient
for strong regularity of the generalized equation (2.3.2), as shown in [109, Theorem 4.1]:
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Theorem 2.3.7 (Strongly Regular KKT-Conditions, Robinson)
For a fixed parameter p̂ ∈ P let

(
ẑ (p̂) , λ̂ (p̂) , η̂ (p̂)

)
be a KKT-point of Problem 2.3.1 and let

the functions J (·, p̂) , H (·, p̂), and G (·, p̂) be twice differentiable at ẑ (p̂). Furthermore, let the
following conditions hold:

(i) The matrix 
ÂH (p̂)
B̂+
G (p̂)

B̂0
G (p̂)


has full row rank.

(ii) For all v ∈ ker
([

ÂH (p̂)
B̂+
G (p̂)

])
\ {0Rnz } one has v>∇2

zzL
(
1, ẑ (p̂) , λ̂ (p̂) , η̂ (p̂) , p̂

)
v > 0.

Then, (2.3.2) is strongly regular at
(
ẑ (p̂) , λ̂ (p̂) , η̂ (p̂)

)
.

This statement allows us to derive a crucial sensitivity result for the following special case of
Problem 2.3.1:
Problem 2.3.8
For a parameter p ∈ P ⊆ Rnp, P closed, nz, nH , nG ∈ N with nH + nG ≤ nz, and matrices
R ∈ Rnz×np, C ∈ RnH×np , D ∈ RnG×np let the functions J : Rnz ×P → R, G : Rnz ×P → RnG,
H : Rnz × P → RnH defined by

J (z, p) := J̃ (z) + z>Rp, H (z, p) := H̃ (z) + Cp, G (z, p) := G̃ (z) +Dp

be sufficiently smooth.

Minimize J̃ (z) + z>Rp

with respect to z ∈ Rnz (2.3.5)

subject to H̃ (z) + Cp = 0RnH ,

G̃ (z) +Dp ≤ 0RnG .

Analog to (2.3.2), we write the KKT-conditions of Problem 2.3.8 as the generalized equation

0Rnz×RnH×RnG ∈ −


∇zL (1, z, λ, η, p)
H̃ (z) + Cp

G̃ (z) +Dp

+NRnz×RnH×RnG+


z

λ

η

 (2.3.6)

⇔ 0Rnz×RnH×RnG ∈ −


∇zL (1, z, λ, η,0Rnp )

H̃ (z)
G̃ (z)

−

R

C

D

 p+NRnz×RnH×RnG+


z

λ

η


with the Lagrange function

L (`0, z, λ, η, p) := `0
(
J̃ (z) + z>Rp

)
+ λ>

(
H̃ (z) + Cp

)
+ η>

(
G̃ (z) +Dp

)
.
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For the new parameter q (p) := −


R

C

D

 p ∈ Rm with m = nz + nH + nG we consider the

parametric generalized equation

0Rm ∈ −


∇zL (1, z, λ, η,0Rnp )

H̃ (z)
G̃ (z)

+ q (p) +NRnz×RnH×RnG+


z

λ

η

 , (2.3.7)

and prove the following:
Theorem 2.3.9 (Sensitivity of the KKT-Conditions)
Let the assumptions of Theorem 2.3.7 hold for a fixed parameter p̂ ∈ P and a local minimum
ẑ (p̂) with the associated multipliers λ̂ (p̂) , η̂ (p̂) of Problem 2.3.8. Furthermore, let the functions
J̃ , H̃, and G̃ be twice continuously differentiable. Then, there exist % > 0, a neighborhood W

of
(
ẑ (p̂) , λ̂ (p̂) , η̂ (p̂)

)
, and Lipschitz continuous functions z : B% (p̂) → Rnz , λ : B% (p̂) → RnH ,

η : B% (p̂) → RnG such that for each p ∈ B% (p̂), (z (p) , λ (p) , η (p)) is the unique solution of the
inclusion (2.3.6) in W , and z (p) is a local minimum of Problem 2.3.8.
Proof.

(
ẑ (p̂) , λ̂ (p̂) , η̂ (p̂)

)
satisfies the linear independence constraint qualification in Def-

inition 2.3.3, hence it solves the inclusion (2.3.7). According to Theorem 2.3.7, for q (p̂) the
inclusion (2.3.7) is strongly regular at

(
ẑ (p̂) , λ̂ (p̂) , η̂ (p̂)

)
with some Lipschitz constant L > 0.

Then, by Theorem 2.2.2 for a fixed ε > 0 there exist neighborhoods Wε of
(
ẑ (p̂) , λ̂ (p̂) , η̂ (p̂)

)
and Nε of q (p̂), a single-valued mapping

(
z̃, λ̃, η̃

)
: Nε → Wε, which is Lipschitz continuous

with constant L + ε, and for each q ∈ Nε,
(
z̃, λ̃, η̃

)
(q) is the unique solution of (2.3.7) in Wε.

In addition, for p1, p2 ∈ Rnp with q (p1) , q (p2) ∈ Nε it holds∥∥∥(z̃, λ̃, η̃) (q (p1))−
(
z̃, λ̃, η̃

)
(q (p2))

∥∥∥ ≤ (L + ε) ‖q (p1)− q (p2)‖ ≤ l ‖p1 − p2‖

for l := (L + ε) (‖R‖+ ‖C‖+ ‖D‖). Set α := min
j∈Ĵ+(p̂)

η̂j (p̂) > 0, W := Wε, and select % > 0

such that
q (B% (p̂)) ⊆ Nε and % ≤ α

2l
. (2.3.8)

Then, the functions z : B% (p̂)→ Rnz , λ : B% (p̂)→ RnH , η : B% (p̂)→ RnG defined as

z (p) := z̃ (q (p)) , λ (p) := λ̃ (q (p)) , η (p) := η̃ (q (p))

are Lipschitz continuous with constant l. Additionally, (z (p) , λ (p) , η (p)) is the unique solution
of (2.3.6) in W for each p ∈ B% (p̂), and it holds (z (p̂) , λ (p̂) , η (p̂)) =

(
ẑ (p̂) , λ̂ (p̂) , η̂ (p̂)

)
. We

denote

J+ (p) := {j ∈ J | Gj (z (p) , p) = 0, ηj (p) > 0} ,

AH (p) := H ′ (z (p) , p) ,

B+
G (p) :=

[
G′j (z (p) , p)

]
j∈J+(p)

,
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which satisfy J+ (p̂) = Ĵ+ (p̂), AH (p̂) = ÂH (p̂), and B+
G (p̂) = B̂+

G (p̂). In order to verify the
optimality of z (p) for Problem 2.3.8, we show that for every p ∈ B% (p̂) there exists γ (p) > 0
such that

v>∇2
zzL (1, z (p) , λ (p) , η (p) , p) v ≥ γ (p) ‖v‖2 for every v ∈ ker

([
AH (p)
B+
G (p)

])
,

which is sufficient for the assumption in Theorem 2.3.5. To that end, let j ∈ J+ (p̂) = Ĵ+ (p̂) be
arbitrary. Then, by choice of %

ηj (p̂)− ηj (p) ≤ ‖η (p̂)− η (p)‖ ≤ l ‖p̂− p‖
(2.3.8)
≤ α

2 ,

is satisfied for every p ∈ B% (p̂). This and ηj (p̂) ≥ α imply

0 < α

2 ≤ η̂j (p̂)− α

2 ≤ ηj (p) ,

hence j ∈ J+ (p) for each p ∈ B% (p̂). We conclude J+ (p̂) ⊆ J+ (p) and therefore

ker
([

AH (p)
B+
G (p)

])
⊆ ker

 AH (p)[
G̃′j (z (p))

]
j∈J+(p̂)

 =: K (p) .

We will prove positive definiteness of ∇2
zzL (1, z (p) , λ (p) , η (p) , p) on the larger set K (p) by

assuming the contrary. Thus, for each i ∈ N there exists some pi ∈ B %
i

(p̂), and for every k ∈ N
there exists some vik ∈ K (pi) with

v>ik∇
2
zzL (1, z (pik) , λ (pik) , η (pik) , pik) vik <

1
ik
‖vik‖

2 . (2.3.9)

Note that the parameter p only appears linearly in

L (`0, z, λ, η, p) = `0
(
J̃ (z) + z>Rp

)
+ λ>

(
H̃ (z) + Cp

)
+ η>

(
G̃ (z) +Dp

)
,

hence ∇2
zzL (1, ·, ·, ·, p) = ∇2

zzL (1, ·, ·, ·, p̂). Since the balls B1 (0Rnz ) and B% (p̂) are compact with
respect to Euclidean norm ‖·‖, there exist convergent subsequences of (pik)ik∈N ⊆ B% (p̂) and(

vik
‖vik‖

)
ik∈N

⊆ B1 (0Rnz ) with limits p̂ and v̂ ∈ K (p̂), respectively. In order to minimize the use

of indexes, we assume without loss of generality that (pik)ik∈N and
(

vik
‖vik‖

)
ik∈N

are convergent

with limits

lim
k→∞

pik = p̂, lim
k→∞

vik
‖vik‖

= v̂ ∈ K (p̂) = ker
([

AH (p̂)
B+
G (p̂)

])
= ker

([
ÂH (p̂)
B̂+
G (p̂)

])
, ‖v̂‖ = 1.

Then, dividing (2.3.9) by ‖vik‖
2 and taking the limit yields v̂>∇2

zzL
(
1, ẑ, λ̂, η̂, p̂

)
v̂ ≤ 0Rnz , which

contradicts assumption (ii) in Theorem 2.3.7. Thus, ∇2
zzL (1, z (p) , λ (p) , η (p) , p) is positive

definite on K (p), which is a superset of ker
([

AH (p)
B+
G (p)

])
. �
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Linear Quadratic Case:
Let us consider a special case of Problem 2.3.8, where

J̃ (z) := 1
2z
>Qz, H̃ (z) := Az, G̃ (z) := Bz.

with a symmetric matrix Q ∈ Rnz×nz , A ∈ RnH×nz , and B ∈ RnG×nz . Thus, Problem 2.3.8
becomes a linear quadratic optimization problem:

Minimize 1
2z
>Qz + z>Rp

with respect to z ∈ Rnz (2.3.10)

subject to Az + Cp = 0RnH ,

Bz +Dp ≤ 0RnG .

If the matrix
[
A

B

]
has full row rank, then the set of admissible vectors is not empty, and

the linear independence constraint qualification in Definition 2.3.3 is satisfied for every p ∈ P.
Furthermore, if v>Qv > 0 for all v ∈ ker (A) \ {0Rnz }, then the sufficient conditions in Theorem
2.3.5 hold for any KKT-point. Hence, the KKT-conditions of (2.3.10), expressed as the linear
generalized equation

0Rm ∈ −


Q A> B>

A 0nH×nH 0nH×nG
B 0nG×nH 0nG×nG



z

λ

η

−

R

C

D

 p̂+NRnz×RnH×RnG+


z

λ

η

 , (2.3.11)

have a unique (global) solution
(
ẑ (p̂) , λ̂ (p̂) , η̂ (p̂)

)
for every p̂ ∈ Rnp . Moreover, for every

q ∈ Rm the perturbed inclusion

q ∈ −


Q A> B>

A 0nH×nH 0nH×nG
B 0nG×nH 0nG×nG



z

λ

η

−

R

C

D

 p̂+NRnz×RnH×RnG+


z

λ

η

 ,
also has a unique solution. Since (2.3.11) is already linear, it follows from Theorem 2.3.7 and
Definition 2.2.1, that (2.3.11) is strongly regular at the unique KKT-point

(
ẑ (p̂) , λ̂ (p̂) , η̂ (p̂)

)
for every p̂ ∈ Rnp . According to Theorem 2.3.9, for every p̂ ∈ Rnp there exist % (p̂) , l (p̂) > 0, a
neighborhood W (p̂) of

(
ẑ (p̂) , λ̂ (p̂) , η̂ (p̂)

)
, and Lipschitz continuous functions

z̃p̂ : B%(p̂) (p̂)→ Rnz , λ̃p̂ : B%(p̂) (p̂)→ RnH , η̃p̂ : B%(p̂) (p̂)→ RnG

with constant l (p̂) such that for each p ∈ B%(p̂) (p̂),
(
z̃p̂ (p) , λ̃p̂ (p) , η̃p̂ (p)

)
is the unique solution

of

0Rm ∈ −


Q A> B>

A 0nH×nH 0nH×nG
B 0nG×nH 0nG×nG



z

λ

η

−

R

C

D

 (p̂+ p) +NRnz×RnH×RnG+


z

λ

η

 .
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Let %̂ > 0 be arbitrary and let U%(p̂) (p̂) denote the open ball around p̂ with radius % (p̂). Then,⋃
p̂∈B%̂(0Rnp )

U%(p̂) (p̂) (2.3.12)

is an open cover of B%̂ (0Rnp ), since the union of an arbitrary number of open sets is open, and
% (p̂) > 0 for every p̂ ∈ B%̂ (0Rnp ). In addition, by compactness of B%̂ (0Rnp ), there exists a finite
subcover of (2.3.12). Hence, there exist i ∈ N and p̂1, . . . , p̂i such that

i⋃
k=1
U%(p̂k) (p̂k) ⊇ B%̂ (0Rnp ) .

With the functions z̃p̂k , λ̃p̂k , η̃p̂k for k = 1, . . . , i we are able to construct Lipschitz continuous
functions z : B%̂ (0Rnp ) → Rnz , λ : B%̂ (0Rnp ) → RnH , η : B%̂ (0Rnp ) → RnG such that for
every p̂ ∈ B%̂ (0Rnp ), (z (p̂) , λ (p̂) , η (p̂)) is the unique solution of the inclusion (2.3.11). Since(
ẑ (p̂) , λ̂ (p̂) , η̂ (p̂)

)
is the unique solution of (2.3.11) for every p̂ ∈ Rnp , it holds

(
ẑ (p̂) , λ̂ (p̂) , η̂ (p̂)

)
= (z (p̂) , λ (p̂) , η (p̂)) ,

for each p̂ ∈ B%̂ (0Rnp ), and
(
ẑ (p̂) , λ̂ (p̂) , η̂ (p̂)

)
is Lipschitz continuous with respect to p̂ and

constant l := max
k=1,...,i

l (p̂k).

Let us summarize these statements for the special case (2.3.10) of Problem 2.3.8 in the fol-
lowing corollary:
Corollary 2.3.10
Let Q ∈ Rnz×nz be symmetric, A ∈ RnH×nz , B ∈ RnG×nz , R ∈ Rnz×np, C ∈ RnH×np, and
D ∈ RnG×np. Furthermore, let the following conditions hold:

(i) The matrix
[
A

B

]
has full row rank.

(ii) For all v ∈ ker (A) \ {0Rnz } one has v>Qv > 0.

Then, for an arbitrary % > 0 and each p ∈ B% (0Rnp ) the linear quadratic optimization problem

Minimize 1
2z
>Qz + z>Rp

with respect to z ∈ Rnz

subject to Az + Cp = 0RnH ,

Bz +Dp ≤ 0RnG ,

has a unique solution ẑ (p) together with unique Lagrange multipliers λ̂ (p), η̂ (p). Moreover,(
ẑ (p) , λ̂ (p) , η̂ (p)

)
is Lipschitz continuous with respect to p ∈ B% (0Rnp ).

This result is crucial for the proof of Lemma 5.5.4, where a parametric optimization problem of
type (2.3.10) occurs.
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Our next goal is to derive (uniform) second-order sufficient conditions for the following opti-
mization problem with parametric objective function:
Problem 2.3.11
Let p ∈ P ⊂ R be a given parameter, P compact, and for nz, nH , nG ∈ N with nH + nG ≤ nz let
the functions J : Rnz × P → R, G : Rnz → RnG, H : Rnz → RnH be sufficiently smooth.

Minimize J (z, p)

with respect to z ∈ Rnz

subject to H (z) = 0RnH ,

G (z) ≤ 0RnG .

With the Lagrange function

L (`0, z, λ, η, p) := `0J (z, p) + λ>H (z) + η>G (z) ,

the KKT conditions of Problem 2.3.11 can be expressed as

∇zL (1, z, λ, η, p) = 0Rnz ,

H (z) = 0RnH ,

G (z) ≤ 0RnG , (2.3.13)

η ≥ 0RnG ,

η>G (z) = 0.

For every p ∈ P let
(
ẑ (p) , λ̂ (p) , η̂ (p)

)
be a KKT-point of Problem 2.3.11. Furthermore, we

define the linearizing cone K (p) and the cone K+ (p) by

K (p) :=
{
d ∈ ker

(
H ′ (ẑ (p))

)
| G′j (ẑ (p)) d ≤ 0, j ∈ Ĵ0 (p) ∪ Ĵ+ (p)

}
,

K+ (p) :=
{
d ∈ ker

(
H ′ (ẑ (p))

)
| G′j (ẑ (p)) d = 0, j ∈ Ĵ+ (p)

}
.

Clearly, K+ (p) ⊆ K (p) is satisfied, if the strict complementarity condition Ĵ0 (p) = ∅ holds.
According to the KKT-conditions (2.3.13), for an arbitrary d ∈ ker (H ′ (ẑ (p))) it holds

0 = ∇zJ (ẑ (p) , p)> d+ λ̂ (p)>H ′ (ẑ (p)) d+ η̂ (p)>G′ (ẑ (p)) d

= ∇zJ (ẑ (p) , p)> d+
∑

j∈Ĵ+(p)

η̂j (p)G′j (ẑ (p)) d,

which implies the relation

d ∈ K+ (p) ⇔ ∇zJ (ẑ (p) , p)> d = 0 and d ∈ ker
(
H ′ (ẑ (p))

)
. (2.3.14)

Moreover, if Ĵ0 (p) = ∅, then it holds

d ∈ K (p) ⇔ ∇zJ (ẑ (p) , p)> d ≥ 0 and d ∈ ker
(
H ′ (ẑ (p))

)
. (2.3.15)
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For a constant ν ≥ 0 we define the cone

K̃ν (p) :=
{
d ∈ ker

(
H ′ (ẑ (p))

)
| 0 ≤ ∇zJ (ẑ (p) , p)> d ≤ ν ‖d‖

}
,

which satisfiesK+ (p) ⊂ K̃ν (p) andK+ (p) = K̃0 (p). Additionally, if the strict complementarity
condition Ĵ0 (p) = ∅ holds, then the relation (2.3.15) implies K̃ν (p) ⊆ K (p). Similar to [88,
Lemma 5.7] we prove that, if the matrix ∇2

zzL
(
1, ẑ (p) , λ̂ (p) , η̂ (p) , p

)
is uniformly positive

definite on the cone K+ (p), then it is also uniformly positive definite on K̃ν (p) for sufficiently
small ν > 0.
Lemma 2.3.12
Let the functions H and G be twice continuously differentiable, let J (·, p) be twice continuously
differentiable for every p ∈ P, and let J (z, ·), ∇zJ (z, ·), and ∇2

zzJ (z, ·) be continuous for every
z ∈ Rnz . Let there exist continuous functions ẑ (·) : P → Rnz , λ̂ (·) : P → RnH , η̂ (·) : P → RnG

such that
(
ẑ (p) , λ̂ (p) , η̂ (p)

)
is a KKT-point of Problem 2.3.11 for every p ∈ P. Moreover, let

the following be satisfied:

(i) There exists a constant β > 0 such that for all p ∈ P and every d ∈ RnH ×Rĵ+(p) ×Rĵ0(p)

it holds ∥∥∥∥∥∥∥∥∥

ÂH (p)
B̂+
G (p)

B̂0
G (p)


>

d

∥∥∥∥∥∥∥∥∥ ≥ β ‖d‖ .
(ii) There exists a constant γ > 0 such that for all p ∈ P and every v ∈ K+ (p) it holds

v>∇2
zzL

(
1, ẑ (p) , λ̂ (p) , η̂ (p) , p

)
v ≥ γ ‖v‖2 .

Then, there exist γ̃, ν > 0 such that for all p ∈ P and every v ∈ K̃ν (p) it holds

v>∇2
zzL

(
1, ẑ (p) , λ̂ (p) , η̂ (p) , p

)
v ≥ γ̃ ‖v‖2 .

Proof. Assume the opposite is true. Thus, for every i ∈ N there exist pi ∈ P and a vector
vi ∈ ker (H ′ (ẑ (pi))) such that

0 ≤ ∇zJ (ẑ (pi) , pi)> vi ≤
1
i
‖vi‖ ,

v>i ∇2
zzL

(
1, ẑ (pi) , λ̂ (pi) , η̂ (pi) , pi

)
vi <

1
i
‖vi‖2 .

The second inequality implies vi 6= 0Rnz . Define the set-valued function M : P ⇒ Rnz as
M (p) := ker (H ′ (ẑ (p))) ∩ B1 (0Rnz ). According to Lemma A.6, graph (M) is compact and
furthermore it holds

(
pi,

vi
‖vi‖

)
∈ graph (M). The compactness implies that there exists a con-

vergent sub-sequence
((

pik ,
vik
‖vik‖

))
ik∈N

⊆ graph (M) with some limit (p̃, ṽ) in graph (M),

hence ṽ ∈ ker (H ′ (ẑ (p̃))) and ‖ṽ‖ = 1. Additionally, it holds

0 ≤ ∇zJ (ẑ (pik) , pik)> vik
‖vik‖

≤ 1
ik
,

vik
‖vik‖

>
∇2
zzL

(
1, ẑ (pik) , λ̂ (pik) , η̂ (pik) , pik

) vik
‖vik‖

<
1
ik
.
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Taking the limit yields

∇zJ (ẑ (p̃) , p̃)> ṽ = 0,

ṽ>∇2
zzL

(
1, ẑ (p̃) , λ̂ (p̃) , η̂ (p̃) , p̃

)
ṽ ≤ 0,

which by (2.3.14) implies ṽ ∈ K+ (p̃), and ṽ>∇2
zzL

(
1, ẑ (p̃) , λ̂ (p̃) , η̂ (p̃) , p̃

)
ṽ ≤ 0. This contra-

dicts condition (ii), which proves the assertion. �

Remark 2.3.13
If the strict complementarity condition Ĵ0 (p) = ∅ holds, then the relation K̃ν (p) ⊆ K (p) is
satisfied, which allows us to distinguish between two cases:

v ∈ K̃ν (p) and v ∈ K (p) \ K̃ν (p) .

This is essential for the proof of Theorem 2.3.14, since we obtain the coercivity condition
v>∇2

zzL
(
1, ẑ (p) , λ̂ (p) , η̂ (p) , p

)
v ≥ γ̃ ‖v‖2, if v ∈ K̃ν (p), and for the other case we get the

lower bound ∇zJ (ẑ (p) , p)> v > ν ‖v‖, which holds by definition. These properties are exploited
in Taylor expansions of the functions L and J , respectively, which permits us to prove optimality
of ẑ (p).
Since the constraints in Problem 2.3.11 are independent of the parameter we denote the set
of admissible vectors by Σ, and prove the following uniform second-order sufficient conditions,
which are fundamental for Chapter 4:
Theorem 2.3.14 (Uniform Second-Order Sufficient Conditions)
Let the functions H and G be twice continuously differentiable, let J (·, p) be twice continuously
differentiable for every p ∈ P, and let J (z, ·), ∇zJ (z, ·), and ∇2

zzJ (z, ·) be continuous for every
z ∈ Rnz . Let there exist continuous functions ẑ (·) : P → Rnz , λ̂ (·) : P → RnH , η̂ (·) : P → RnG

such that
(
ẑ (p) , λ̂ (p) , η̂ (p)

)
is a KKT-point of Problem 2.3.11 for every p ∈ P. Moreover, let

the following be satisfied:

(i) There exists a constant β > 0 such that for all p ∈ P and every d ∈ RnH ×Rĵ+(p) ×Rĵ0(p)

it holds ∥∥∥∥∥∥∥∥∥

ÂH (p)
B̂+
G (p)

B̂0
G (p)


>

d

∥∥∥∥∥∥∥∥∥ ≥ β ‖d‖ .
(ii) There exists a constant γ > 0 such that for all p ∈ P and every v ∈ K+ (p) it holds

v>∇2
zzL

(
1, ẑ (p) , λ̂ (p) , η̂ (p) , p

)
v ≥ γ ‖v‖2 .

(iii) The strict complementarity condition Ĵ0 (p) = ∅ is only violated by finitely many p ∈ P.

Then, there exist α, ρ > 0 such that for all p ∈ P and every z ∈ Σ ∩ Bρ (ẑ (p)) it holds

J (z, p) ≥ J (ẑ (p) , p) + α ‖z − ẑ (p)‖2 .
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Proof. According to the assumptions, the function ∇2
zzL

(
1, ẑ (p) , λ̂ (p) , η̂ (p) , p

)
is continuous

with respect to p ∈ P and P is compact. Thus, there exists a constant ΓL > 0 such that

max
p∈P

∥∥∥∇2
zzL

(
1, ẑ (p) , λ̂ (p) , η̂ (p) , p

)∥∥∥ ≤ ΓL.

By Lemma 2.3.12, there exist γ̃, ν > 0 such that for all p ∈ P and every v ∈ K̃ν (p) it holds

v>∇2
zzL

(
1, ẑ (p) , λ̂ (p) , η̂ (p) , p

)
v ≥ γ̃ ‖v‖2 .

It follows from Theorem 2.1.9 that there exist γ0,Γr > 0 depending only on γ̃,ΓL such that for
all p ∈ P, every v ∈ K̃ν (p), and every w ∈ Rnz with ‖w‖ ≤ Γr ‖v‖ it holds

(v + w)>∇2
zzL

(
1, ẑ (p) , λ̂ (p) , η̂ (p) , p

)
(v + w) ≥ γ0 ‖v + w‖2 . (2.3.16)

According to [88, Theorem 4.2], for every p ∈ P the set Σ is approximated at ẑ (p) by the
linearizing cone K (p), i.e., there exists mappings s : Σ× P → Rnz , r : Σ× P → Rnz such that
for every (z, p) ∈ Σ× P it holds

z − ẑ (p) = s (z, p) + r (z, p) , s (z, p) ∈ K (p) , lim
z→ẑ(p)

r (z, p)
‖z − ẑ (p)‖ = 0.

Let p ∈ P be arbitrary such that the strict complementarity condition Ĵ0 (p) = ∅ holds, hence
K̃ν (p) ⊆ K (p) is satisfied. As described in Remark 2.3.13 we distinguish between two cases:

s (z, p) ∈ K̃ν (p) and s (z, p) ∈ K (p) \ K̃ν (p) .

Firstly, we assume s (z, p) ∈ K̃ν (p). Then, by [88, Lemma 4.2], we can choose ρ̃ > 0 such that
we obtain

‖r (z, p)‖ = ‖s (z, p)− (z − ẑ (p))‖ ≤ Γr ‖s (z, p)‖ for all z ∈ Bρ̃ (ẑ (p)) .

Consequently, by (2.3.16), it holds

(s (z, p) + r (z, p))>∇2
zzL

(
1, ẑ (p) , λ̂ (p) , η̂ (p) , p

)
(s (z, p) + r (z, p))

≥ γ0 ‖s (z, p) + r (z, p)‖2 . (2.3.17)

Since ∇2
zzL

(
1, z, λ̂ (p) , η̂ (p) , p

)
is continuous with respect to z ∈ Rnz and p ∈ P, there exists a

0 < ρ ≤ ρ̃ such that for p ∈ P and every z ∈ Bρ (ẑ (p)) it holds∥∥∥∇2
zzL

(
1, z, λ̂ (p) , η̂ (p) , p

)
−∇2

zzL
(
1, ẑ (p) , λ̂ (p) , η̂ (p) , p

)∥∥∥ ≤ γ0
2 . (2.3.18)

Exploiting the Taylor expansion for L
(
1, z, λ̂ (p) , η̂ (p) , p

)
at ẑ (p) yields

L
(
1, z, λ̂ (p) , η̂ (p) , p

)
= L

(
1, ẑ (p) , λ̂ (p) , η̂ (p) , p

)
+∇zL

(
1, ẑ (p) , λ̂ (p) , η̂ (p) , p

)
(z − ẑ (p)) (2.3.19)

+1
2 (z − ẑ (p))>∇2

zzL
(
1, ξ (z) , λ̂ (p) , η̂ (p) , p

)
(z − ẑ (p))

(2.3.13)= J (ẑ (p) , p)

+1
2 (z − ẑ (p))>∇2

zzL
(
1, ξ (z) , λ̂ (p) , η̂ (p) , p

)
(z − ẑ (p)) ,
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for every z ∈ Σ ∩ Bρ (ẑ (p)) and a certain ξ (z) ∈ Bρ (ẑ (p)). Inspecting the quadratic term and
utilizing (2.3.17) and (2.3.18) results in

(z − ẑ (p))>∇2
zzL

(
1, ξ (z) , λ̂ (p) , η̂ (p) , p

)
(z − ẑ (p))

= (s (z, p) + r (z, p))>∇2
zzL

(
1, ξ (z) , λ̂ (p) , η̂ (p) , p

)
(s (z, p) + r (z, p))

= (s (z, p) + r (z, p))>∇2
zzL

(
1, ẑ (p) , λ̂ (p) , η̂ (p) , p

)
(s (z, p) + r (z, p))

− (s (z, p) + r (z, p))>
[
∇2
zzL

(
1, ẑ (p) , λ̂ (p) , η̂ (p) , p

)
(2.3.20)

− ∇2
zzL

(
1, ξ (z) , λ̂ (p) , η̂ (p) , p

)]
(s (z, p) + r (z, p))

≥ γ0 ‖s (z, p) + r (z, p)‖2 − γ0
2 ‖s (z, p) + r (z, p)‖2 = γ0

2 ‖z − ẑ (p)‖2 .

Furthermore, for every z ∈ Σ ∩ Bρ (ẑ (p)) it holds

J (z, p) ≥ L
(
1, z, λ̂ (p) , η̂ (p) , p

)
,

since H (z) = 0RnH and η̂ (p)>G (z) ≤ 0. Consequently, using (2.3.19) and (2.3.20) yields

J (z, p) ≥ J (ẑ (p) , p) + γ0
4 ‖z − ẑ (p)‖2 ,

for every z ∈ Σ ∩ Bρ (ẑ (p)).
Now, suppose s (z, p) ∈ K (p) \ K̃ν (p), thus ∇zJ (ẑ (p) , p)> s (z, p) > ν ‖s (z, p)‖. Since the
function ∇zJ (ẑ (·) , ·) is continuous with respect to p, there exists a constant ΓJ > 0 such that
ΓJ = sup

p∈P
‖∇zJ (ẑ (p) , p)‖. Select 0 < ρ < 1 satisfying

∥∥∥∇zJ (z, p)> −∇zJ (ẑ (p) , p)>
∥∥∥ ≤ ν

2 and ‖r (z, p)‖ ≤ ν

4 (ΓJ + ν) ‖z − ẑ (p)‖

for every z ∈ Σ ∩ Bρ (ẑ (p)). Exploiting ‖s (z, p)‖ ≥ ‖z − ẑ (p)‖ − ‖r (z, p)‖ and the mean-value
theorem for a certain ξ (z) ∈ Bρ (ẑ (p)) yields

J (z, p)− J (ẑ (p) , p) = ∇zJ (ξ (z) , p)> (z − ẑ (p))

= ∇zJ (ẑ (p) , p)> s (z, p) +∇zJ (ẑ (p) , p)> r (z, p)

−
(
∇zJ (ẑ (p) , p)> −∇zJ (ξ (z) , p)>

)
(z − ẑ (p))

≥ ν ‖s (z, p)‖ − ΓJ ‖r (z, p)‖ − ν

2 ‖z − ẑ (p)‖

≥ ν

2 ‖z − ẑ (p)‖ − (ΓJ + ν) ‖r (z, p)‖

≥ ν

2 ‖z − ẑ (p)‖ − ν (ΓJ + ν)
4 (ΓJ + ν) ‖z − ẑ (p)‖

= ν

4 ‖z − ẑ (p)‖ ≥ ν

4 ‖z − ẑ (p)‖2 .

We take the minimum radius ρ of both cases and set α := min
{γ0

4 ,
ν
4
}
, which yields

J (z, p) ≥ J (ẑ (p) , p) + α ‖z − ẑ (p)‖2 for every z ∈ Σ ∩ Bρ (ẑ (p)) .
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According to (iii), this relation is only violated by finitely many (isolated) points p ∈ P. Suppose
there exists p̃ ∈ P such that there exists a z̃ ∈ Σ ∩ Bρ (ẑ (p̃)) with

J (z̃, p̃)− J (ẑ (p̃) , p̃)− α ‖z̃ − ẑ (p̃)‖2 < 0. (2.3.21)

Then, there exists a convergent sequence ((pi, zi))i∈N ⊆ graph (Σ ∩ Bρ (ẑ (·))) with limit (p̃, z̃),
and

J (zi, pi)− J (ẑ (pi) , pi)− α ‖zi − ẑ (pi)‖2 ≥ 0.

Since left-hand side is continuous with respect to (p, z), taking the limits yields

J (z̃, p̃)− J (ẑ (p̃) , p̃)− α ‖z̃ − ẑ (p̃)‖2 ≥ 0,

which contradicts (2.3.21). This completes the proof. �

2.4 Linear Time-Variant Differential-Algebraic Equations
An in-depth analysis of linear, nonlinear, and other types of DAEs was covered in the textbooks
[66, 71] and the references therein. We limit our investigations to linear, time-variant DAEs in
semi-explicit form

ż (t) = A (t) z (t) +B (t) v (t) , a.e. in [0, 1] ,

0Rm = C (t) z (t) +D (t) v (t) , a.e. in [0, 1] , (2.4.1)

0RnE = E0z (0) + E1z (1) ,

where z ∈Wnz
1,p ([0, 1]) is the differential state and v ∈ Lnvp ([0, 1]) is the control (p = 2,∞), which

is partly determined by the algebraic equation. For nz, nv,m, nE ∈ N with m ≤ nv, nE ≤ 2nz
the matrix functions have the dimensions

A ∈ Lnz×nz∞ ([0, 1]) , B ∈ Lnz×nv∞ ([0, 1]) ,

C ∈ Lm×nz∞ ([0, 1]) , D ∈ Lm×nv∞ ([0, 1]) ,

E0, E1 ∈ RnE×nz .

We introduce the following terminology for system (2.4.1):
Definition 2.4.1 (Uniform Linear Independence, Controllability)

(i) The matrix function D (·) in system (2.4.1) is uniformly linear independent, if there exists
a constant β > 0 such that for almost every t ∈ [0, 1] and for all $ ∈ Rm it holds∥∥∥D (t)>$

∥∥∥ ≥ β ‖$‖ .
(ii) System (2.4.1) is completely controllable, if for every e ∈ RnE there exist

(z, v) ∈Wnz
1,p ([0, 1])× Lnvp ([0, 1]) satisfying

ż (t) = A (t) z (t) +B (t) v (t) , a.e. in [0, 1] ,

0Rm = C (t) z (t) +D (t) v (t) , a.e. in [0, 1] ,

e = E0z (0) + E1z (1) .
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Remark 2.4.2 (Reduced System)
If the matrix function D (·) in system (2.4.1) is uniformly linear independent, then for almost
every t ∈ [0, 1] and all $ ∈ Rm it holds

$>D (t)D (t)>$ =
∥∥∥D (t)>$

∥∥∥2
≥ β2 ‖$‖2 .

Consequently, for almost every t ∈ [0, 1] the matrix D (t)D (t)> ∈ Rm×m is uniformly positive
definite, hence the inverse exists and is uniformly bounded by 1

β2 (see Lemma 2.1.6). Therefore,

the right inverse D (·)h := D (·)>
(
D (·)D (·)>

)−1
is essentially bounded. For almost every

t ∈ [0, 1] consider the inhomogeneous linear equation

D (t) v = b, v ∈ Rnv , b ∈ Rm, (2.4.2)

where D (t) has full row rank. The general solution of this system is the sum of a particular
solution and the general solution of the homogeneous system. For almost every t ∈ [0, 1] the
linear mapping (

Inv −D (t)hD (t)
)

: Rnv → ker (D (t))

is surjective, since for every b ∈ ker (D (t)) it holds(
Inv −D (t)hD (t)

)
b = b−D (t)hD (t) b = b.

Thus, for almost every t ∈ [0, 1] the general solution of the homogeneous system can be expressed
by
(
Inv −D (t)hD (t)

)
w for w ∈ Rnv . Moreover, D (t)h b is a particular solution of the inho-

mogeneous system for almost every t ∈ [0, 1]. We conclude that the general solution of (2.4.2)
is determined by

v = D (t)h b+
(
Inv −D (t)hD (t)

)
w

for w ∈ Rnv and almost every t ∈ [0, 1]. Hence, if D (·) is uniformly linear independent, then
we are able to write the control v (·) as

v (·) = −D (·)hC (·) z (·) +
(
Inv −D (·)hD (·)

)
w (·)

for an arbitrary w ∈ Lnvp ([0, 1]). Inserting this expression into (2.4.1) yields the reduced system

ż (t) = Ã (t) z (t) + B̃ (t)w (t) , a.e. in [0, 1] , (2.4.3)

0RnE = E0z (0) + E1z (1) ,

with the notation

Ã (·) := A (·)−B (·)D (·)hC (·) ∈ Lnz×nz∞ ([0, 1]) , (2.4.4)

B̃ (·) := B (·)
(
Inv −D (·)hD (·)

)
∈ Lnz×nv∞ ([0, 1]) .

We denote the solution of the matrix differential equation

Φ̇ (t) = A (t) Φ (t) , a.e. in [0, 1] , Φ (0) = Inz ,



36 CHAPTER 2. FUNDAMENTAL RESULTS

by ΦA ∈Wnz×nz
1,∞ ([0, 1]), and use the abbreviations

R := E0 + E1ΦÃ (1) ∈ RnE×nz ,

S (·) := E1ΦÃ (1) ΦÃ (·)−1 B̃ (·) ∈ LnE×nv∞ ([0, 1]) , (2.4.5)

G := RR> +
1∫

0

S (t)S (t)> dt ∈ RnE×nE ,

to prove the following relation between controllability and the Gramian matrix G:
Lemma 2.4.3 (Controllability, Gramian Matrix)
If the matrix function D (·) in system (2.4.1) is uniformly linear independent, then the following
holds: System (2.4.1) is completely controllable, if and only if rank (G) = nE.
Proof. For e ∈ RnE we consider the inhomogeneous system

ż (t) = A (t) z (t) +B (t) v (t) , a.e. in [0, 1] ,

0Rm = C (t) z (t) +D (t) v (t) , a.e. in [0, 1] ,

e = E0z (0) + E1z (1) .

Analog to Remark 2.4.2, we obtain the reduced system

ż (t) = Ã (t) z (t) + B̃ (t)w (t) , a.e. in [0, 1] ,

e = E0z (0) + E1z (1) ,

for a w ∈ Lnvp ([0, 1]) with

v (·) = −D (·)hC (·) z (·) +
(
Inv −D (·)hD (·)

)
w (·) .

This differential equation has the solution

z (·) = ΦÃ (·) z (0) + ΦÃ (·)
·∫

0

ΦÃ (τ)−1 B̃ (τ)w (τ) dτ,

which allows us to write the boundary conditions as

e =
(
E0 + E1ΦÃ (1)

)
z (0) + E1ΦÃ (1)

1∫
0

ΦÃ (τ)−1 B̃ (τ)w (τ) dτ

= Rz (0) +
1∫

0

S (τ)w (τ) dτ. (2.4.6)

First, suppose (2.4.1) is completely controllable and rank (G) < nE . Then, there exists a
e ∈ RnE \ {0RnE } with Ge = 0RnE . Additionally, it holds

0 = e>Ge = e>RR>e+
1∫

0

e>S (t)S (t)> e dt =
∥∥∥R>e∥∥∥2

+
∥∥∥S (·)> e

∥∥∥2

2
,
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which implies 0 =
∥∥∥R>e∥∥∥ =

∥∥∥S (·)> e
∥∥∥

2
. Using Hölder’s inequality and the rewritten boundary

conditions in (2.4.6) yields

0 ≤ ‖e‖2 = e>e
(2.4.6)= e>Rz (0) +

1∫
0

e>S (τ)w (τ) dτ

Hölder
≤

∥∥∥R>e∥∥∥ ‖z (0)‖+
∥∥∥S (·)> e

∥∥∥
2
‖w‖2 = 0.

Thus, ‖e‖ = 0, which contradicts e ∈ RnE \ {0RnE }.
Now, we assume rank (G) = nE , hence the inverse exists. For an arbitrary e ∈ RnE set

z (0) = R>G−1e,

w (·) = S (·)>G−1e ∈ Lnvp ([0, 1]) .

These satisfy the boundary conditions in (2.4.6), since

Rz (0) +
1∫

0

S (τ)w (τ) dτ =

RR> +
1∫

0

S (τ)S (τ)> dτ

G−1e = GG−1e = e.

Then, (z, v) ∈Wnz
1,p ([0, 1])× Lnvp ([0, 1]) with

z (·) = ΦÃ (·) z (0) + ΦÃ (·)
·∫

0

ΦÃ (τ)−1 B̃ (τ)w (τ) dτ,

v (·) = −D (·)hC (·) z (·) +
(
Inv −D (·)hD (·)

)
w (·) ,

satisfy

ż (t) = A (t) z (t) +B (t) v (t) , a.e. in [0, 1] ,

0Rm = C (t) z (t) +D (t) v (t) , a.e. in [0, 1] ,

e = E0z (0) + E1z (1) ,

which completes the proof. �

In the sequel, we consider an approximation of the linear system (2.4.1). To that end, let
GN := {0 = t0 < t1 < t2 < . . . < tN−1 < tN = 1} be a grid of [0, 1] with ti := ih, i = 0, 1, . . . , N ,
N ∈ N, and the mesh size h := 1

N . For i = 1, . . . , N let us denote the discrete derivative
(backwards difference approximation) at ti by u′ (ti) := u(ti)−u(ti−1)

h . Furthermore, for p = 2,∞
we define the finite dimensional subspaces

Lnp,h ([0, 1]) :=
{
u ∈ Lnp ([0, 1]) | u (t) = u (ti) , t ∈ (ti−1, ti] , i = 1, . . . , N

}
,

Wn
1,p,h ([0, 1]) :=

{
u ∈Wn

1,p ([0, 1]) | u (t) = u′ (ti) (t− ti−1) + u (ti−1) ,

t ∈ (ti−1, ti] , i = 1, . . . , N} ,

where Lnp,h ([0, 1]) consist of piece-wise constant functions, and Wn
1,p,h ([0, 1]) consists of piece-

wise linear, continuous functions (compare Figure 2.1).
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Figure 2.1: Illustration of elements in Ln∞,h ([0, 1]) and Wn
1,∞,h ([0, 1]).

Consider the following time-discrete system

z′h (ti) = Ah (ti) zh (ti) +Bh (ti) vh (ti) , i = 1, . . . , N,

0Rm = Ch (ti) zh (ti) +Dh (ti) vh (ti) , i = 1, . . . , N, (2.4.7)

0RnE = E0,hzh (t0) + E1,hzh (tN ) ,

where

zh ∈Wnz
1,p,h ([0, 1]) , vh ∈ Lnvp,h ([0, 1]) ,

Ah ∈ Lnz×nz∞,h ([0, 1]) , Bh ∈ Lnz×nv∞,h ([0, 1]) ,

Ch ∈ Lm×nz∞,h ([0, 1]) , Dh ∈ Lm×nv∞,h ([0, 1]) ,

E0,h, E1,h ∈ RnE×nz .

We will refer to (2.4.1) and (2.4.7) as the continuous system and the discrete system, respectively.
Approximations like (2.4.7) occur in Chapter 5, where we apply the implicit Euler discretization
to an optimal control problem subject to a DAE. Our aim is to show that, under appropriate
assumptions, the properties in Definition 2.4.1 and Lemma 2.4.3 for the continuous system are
inherited by the discrete system for sufficiently small mesh size h. To that end, we assume the
following:
Assumption 2.4.4 (Data Approximation)
There exists a constant L > 0 such that for all h > 0 is holds

‖A (·)−Ah (·)‖∞ ≤ Lh, ‖B (·)−Bh (·)‖∞ ≤ Lh,

‖C (·)− Ch (·)‖∞ ≤ Lh, ‖D (·)−Dh (·)‖∞ ≤ Lh,

‖E0 − E0,h‖ ≤ Lh, ‖E1 − E1,h‖ ≤ Lh.

This condition allows us to prove, that Dh (·) is uniformly linear independent for sufficiently
small h.
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Lemma 2.4.5 (Discrete Linear Independence)
Let D (·) be uniformly linear independent with constant β > 0 and let Assumption 2.4.4 hold.
Then there exists h1 > 0 such that:

(i) For all 0 < h ≤ h1: Dh (·) is uniformly linear independent with constant β
2 .

(ii) There exists a constant LD > 0 such that for all 0 < h ≤ h1 it holds

∥∥∥D (·)h −Dh (·)h
∥∥∥
∞
≤ LDh

Proof.

Set h1 := β
2L and let 0 < h ≤ h1 be arbitrary.

(i) For almost every t ∈ [0, 1] and for all $ ∈ Rm it holds

∥∥∥Dh (t)>$
∥∥∥ =

∥∥∥D (t)>$ −
(
D (t)> −Dh (t)>

)
$
∥∥∥

≥
∥∥∥D (t)>$

∥∥∥− ∥∥∥D (t)> −Dh (t)>
∥∥∥ ‖$‖

≥ β ‖$‖ − Lh ‖$‖ ≥ β

2 ‖$‖ ,

which proves the assertion.

(ii) Analog to Remark 2.4.2, we show that for almost every t ∈ [0, 1] the matrix Dh (t)Dh (t)>

is non-singular and the inverse is essentially bounded by 4
β2 . Then, for almost every

t ∈ [0, 1] we obtain

∥∥∥D (t)D (t)> −Dh (t)Dh (t)>
∥∥∥

≤ ‖D (t)−Dh (t)‖
∥∥∥D (t)>

∥∥∥+ ‖Dh (t)‖
∥∥∥D (t)> −Dh (t)>

∥∥∥
≤ (‖D‖∞ + ‖Dh‖∞) Lh.

Using Lemma A.2 we conclude

∥∥∥∥(D (t)D (t)>
)−1
−
(
Dh (t)Dh (t)>

)−1
∥∥∥∥

≤
∥∥∥∥(D (t)D (t)>

)−1
∥∥∥∥ ∥∥∥∥(Dh (t)Dh (t)>

)−1
∥∥∥∥ ∥∥∥D (t)D (t)> −Dh (t)Dh (t)>

∥∥∥
≤ 1
β2

4
β2 (‖D‖∞ + ‖Dh‖∞) Lh
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for almost every t ∈ [0, 1]. Therefore, it holds

∥∥∥D (t)h −Dh (t)h
∥∥∥

=
∥∥∥∥D (t)>

(
D (t)D (t)>

)−1
−Dh (t)>

(
Dh (t)Dh (t)>

)−1
∥∥∥∥

≤
∥∥∥D (t)> −Dh (t)>

∥∥∥ ∥∥∥∥(D (t)D (t)>
)−1

∥∥∥∥
+
∥∥∥Dh (t)>

∥∥∥ ∥∥∥∥(D (t)D (t)>
)−1
−
(
Dh (t)Dh (t)>

)−1
∥∥∥∥

≤ Lh 1
β2 + ‖Dh‖∞

4
β4 (‖D‖∞ + ‖Dh‖∞) Lh

for almost every t ∈ [0, 1], hence (ii) is satisfied for

LD := L
β4

[
β2 + 4 ‖Dh‖∞ (‖D‖∞ + ‖Dh‖∞)

]
.

�

In order to prove controllability for the discrete system (2.4.7), we show that the associated
Gramian matrix has full rank. To that end, we prove that the matrices contained in the definition
of the Gramian matrix satisfy a condition as in Assumption 2.4.4 with respect to their continuous
counterparts in (2.4.4) and (2.4.5).

If the conditions of Lemma 2.4.5 hold, then we are able to reduce the discrete system (2.4.7)
analog to the continuous case in Remark 2.4.2 to

z′h (ti) = Ãh (ti) zh (ti) + B̃h (ti)wh (ti) , i = 1, . . . , N, (2.4.8)

0RnE = E0,hzh (t0) + E1,hzh (tN ) ,

where wh ∈ Lnvp,h ([0, 1]) and

Ãh (·) := Ah (·)−Bh (·)Dh (·)hCh (·) ∈ Lnz×nz∞,h ([0, 1]) ,

B̃h (·) := Bh (·)
(
Inv −Dh (·)hDh (·)

)
∈ Lnz×nv∞,h ([0, 1]) ,

which retain the property of Assumption 2.4.4.

Lemma 2.4.6 (Reduced Data Approximation)
Let D (·) be uniformly linear independent with constant β > 0 and let Assumption 2.4.4 hold.
Then, there exists h1 > 0 and L̃ ≥ 0 such that for all 0 < h ≤ h1 it holds

∥∥∥Ã (·)− Ãh (·)
∥∥∥
∞
≤ L̃h,

∥∥∥B̃ (·)− B̃h (·)
∥∥∥
∞
≤ L̃h.
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Proof. Set h1 := β
2L and let 0 < h ≤ h1 be arbitrary. Then, for almost every t ∈ [0, 1]∥∥∥Ã (t)− Ãh (t)
∥∥∥ =

∥∥∥A (t)−B (t)D (t)hC (t)−Ah (t) +Bh (t)Dh (t)hCh (t)
∥∥∥

≤ ‖A (t)−Ah (t)‖+
∥∥∥B (t)D (t)hC (t)−Bh (t)Dh (t)hCh (t)

∥∥∥
Lemma
≤
A.1

Lh+ ‖B (t)−Bh (t)‖
∥∥∥D (t)h

∥∥∥ ‖C (t)‖

+
∥∥∥D (t)h −Dh (t)h

∥∥∥ ‖Bh (t)‖ ‖C (t)‖

+ ‖C (t)− Ch (t)‖ ‖Bh (t)‖
∥∥∥Dh (t)h

∥∥∥
Lemma
≤

2.4.5
Lh+ Lh

∥∥∥D (·)h
∥∥∥
∞
‖C (·)‖∞ + LDh ‖Bh (·)‖∞ ‖C (·)‖∞

+Lh ‖Bh (·)‖∞
∥∥∥Dh (·)h

∥∥∥
∞
,

is satisfied, and furthermore for almost every t ∈ [0, 1]∥∥∥B̃ (t)− B̃h (t)
∥∥∥ =

∥∥∥B (t)−B (t)D (t)hD (t)−Bh (t) +Bh (t)Dh (t)hDh (t)
∥∥∥

≤ ‖B (t)−Bh (t)‖+
∥∥∥B (t)D (t)hD (t)−Bh (t)Dh (t)hDh (t)

∥∥∥
Lemma
≤
A.1

Lh+ ‖B (t)−Bh (t)‖
∥∥∥D (t)h

∥∥∥ ‖D (t)‖

+
∥∥∥D (t)h −Dh (t)h

∥∥∥ ‖Bh (t)‖ ‖D (t)‖

+ ‖D (t)−Dh (t)‖ ‖Bh (t)‖
∥∥∥Dh (t)h

∥∥∥
Lemma
≤

2.4.5
Lh+ Lh

∥∥∥D (·)h
∥∥∥
∞
‖D (·)‖∞ + LDh ‖Bh (·)‖∞ ‖D (·)‖∞

+Lh ‖Bh (·)‖∞
∥∥∥Dh (·)h

∥∥∥
∞
.

Thus, the assertion holds for

L̃ := max
{
L + L

∥∥∥D (·)h
∥∥∥
∞
‖C (·)‖∞ + LD ‖Bh (·)‖∞ ‖C (·)‖∞ + L ‖Bh (·)‖∞

∥∥∥Dh (·)h
∥∥∥
∞
,

L + L
∥∥∥D (·)h

∥∥∥
∞
‖D (·)‖∞ + LD ‖Bh (·)‖∞ ‖D (·)‖∞ + L ‖Bh (·)‖∞

∥∥∥Dh (·)h
∥∥∥
∞

}
.

�

We denote the function Φ : [0, 1]→ Rnz×nz with

Φ (t) = Φ′ (ti) (t− ti−1) + Φ (ti−1) for t ∈ (ti−1, ti] , i = 1, . . . , N,

which satisfies the matrix difference equation

Φ′ (ti) = Ãh (ti)Φ (ti) , i = 1, . . . , N,

Φ (t0) = Inz ,

by ΦÃh (·). Then, for t ∈ (ti−1, ti] , i = 1, . . . , N it holds

ΦÃh (t) = Φ′
Ãh

(ti) (t− ti−1) + ΦÃh (ti−1)

= Ãh (ti)ΦÃh (ti) (t− ti−1) +
(
Inz − hÃh (ti)

)
ΦÃh (ti) (2.4.9)

=
(
Inz − (ti − t) Ãh (ti)

)
ΦÃh (ti) .
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Applying Lemma A.5 for h ≤ 1
2‖Ãh‖∞

yields∥∥∥ΦÃh (t)
∥∥∥ ≤ ∥∥∥(Inz − (ti − t) Ãh (ti)

)∥∥∥ ∥∥∥ΦÃh (ti)
∥∥∥

≤
(
1 + h

∥∥∥Ãh∥∥∥∞) exp
(
2
∥∥∥Ãh∥∥∥∞) ≤ 3

2 exp
(
2
∥∥∥Ãh∥∥∥∞) ,∥∥∥ΦÃh (t)−1

∥∥∥ ≤ ∥∥∥∥(Inz − (ti − t) Ãh (ti)
)−1

∥∥∥∥ ∥∥∥ΦÃh (ti)−1
∥∥∥ (2.4.10)

≤ 1
1− h

∥∥∥Ãh∥∥∥∞ exp
(∥∥∥Ãh∥∥∥∞) ≤ 2 exp

(∥∥∥Ãh∥∥∥∞) ,∥∥∥Φ̇Ãh (t)
∥∥∥ ≤ ∥∥∥Ãh (ti)

∥∥∥ ∥∥∥ΦÃh (ti)
∥∥∥ ≤ ∥∥∥Ãh∥∥∥∞ exp

(
2
∥∥∥Ãh∥∥∥∞)

for t ∈ (ti−1, ti] , i = 1, . . . , N , hence ΦÃh (·) ∈Wnz×nz
1,∞,h ([0, 1]).

Lemma 2.4.7 (Solution Matrix Difference)
Let D (·) be uniformly linear independent with constant β > 0 and let Assumption 2.4.4 hold.
Then, there exists h1 > 0 and LΦ ≥ 0 such that for all 0 < h ≤ h1 it holds∥∥∥ΦÃ (·)− ΦÃh (·)

∥∥∥
∞
≤ LΦh,

∥∥∥ΦÃ (·)−1 − ΦÃh (·)−1
∥∥∥
∞
≤ LΦh.

Proof. Set h1 := min
{

β
2L ,

1
2‖Ãh‖∞

}
and let 0 < h ≤ h1 be arbitrary. Then, for all i = 1, . . . , N

and t ∈ (ti−1, ti] we obtain

ΦÃ (t)− ΦÃh (t) = ΦÃ (t0)− ΦÃh (t0) +
t∫

t0

d

dτ

(
ΦÃ (τ)− ΦÃh (τ)

)
dτ

=
i−1∑
k=1

tk∫
tk−1

d

dτ

(
ΦÃ (τ)− ΦÃh (τ)

)
dτ +

t∫
ti−1

d

dτ

(
ΦÃ (τ)− ΦÃh (τ)

)
dτ

=
i−1∑
k=1

tk∫
tk−1

Ã (τ) ΦÃ (τ)− Ãh (tk)ΦÃh (tk) dτ

+
t∫

ti−1

Ã (τ) ΦÃ (τ)− Ãh (ti)ΦÃh (ti) dτ

=
i−1∑
k=1

tk∫
tk−1

Ã (τ) ΦÃ (τ)− Ãh (tk)ΦÃh (τ) dτ

+
t∫

ti−1

Ã (τ) ΦÃ (τ)− Ãh (ti)ΦÃh (τ) dτ

−
i−1∑
k=1

tk∫
tk−1

Ãh (tk)
(
ΦÃh (tk)− ΦÃh (τ)

)
dτ

−
t∫

ti−1

Ãh (ti)
(
ΦÃh (ti)− ΦÃh (τ)

)
dτ.
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Furthermore, (2.4.9) yields

ΦÃh (ti)− ΦÃh (t) = (ti − t) Ãh (ti)ΦÃh (ti) (2.4.11)

for every i = 1, . . . , N and t ∈ (ti−1, ti]. Recall, Ãh (t) = Ãh (ti) for every i = 1, . . . , N and
t ∈ (ti−1, ti]. Consequently, it holds

∥∥∥ΦÃ (t)− ΦÃh (t)
∥∥∥ ≤

i−1∑
k=1

tk∫
tk−1

∥∥∥Ã (τ) ΦÃ (τ)− Ãh (tk)ΦÃh (τ)
∥∥∥ dτ

+
t∫

ti−1

∥∥∥Ã (τ) ΦÃ (τ)− Ãh (ti)ΦÃh (τ)
∥∥∥ dτ

+
i−1∑
k=1

tk∫
tk−1

∥∥∥Ãh (tk)
(
ΦÃh (tk)− ΦÃh (τ)

)∥∥∥ dτ
+

t∫
ti−1

∥∥∥Ãh (ti)
(
ΦÃh (ti)− ΦÃh (τ)

)∥∥∥ dτ
(2.4.11)
≤

i−1∑
k=1

tk∫
tk−1

∥∥∥Ã (τ)− Ãh (tk)
∥∥∥ ∥∥∥ΦÃh (τ)

∥∥∥+
∥∥∥Ã (τ)

∥∥∥ ∥∥∥ΦÃ (τ)− ΦÃh (τ)
∥∥∥ dτ

+
t∫

ti−1

∥∥∥Ã (τ)− Ãh (ti)
∥∥∥ ∥∥∥ΦÃh (τ)

∥∥∥+
∥∥∥Ã (τ)

∥∥∥ ∥∥∥ΦÃ (τ)− ΦÃh (τ)
∥∥∥ dτ

+
i−1∑
k=1

tk∫
tk−1

∥∥∥Ãh (tk)2 ΦÃh (tk) (tk − τ)
∥∥∥ dτ

+
t∫

ti−1

∥∥∥Ãh (ti)2 ΦÃh (ti) (ti − τ)
∥∥∥ dτ

Lemma
≤

2.4.6

i−1∑
k=1

tk∫
tk−1

L̃h
∥∥∥ΦÃh∥∥∥∞ +

∥∥∥Ã∥∥∥
∞

∥∥∥ΦÃ (τ)− ΦÃh (τ)
∥∥∥ dτ

+
t∫

ti−1

L̃h
∥∥∥ΦÃh∥∥∥∞ +

∥∥∥Ã∥∥∥
∞

∥∥∥ΦÃ (τ)− ΦÃh (τ)
∥∥∥ dτ

+
i−1∑
k=1

tk∫
tk−1

∥∥∥Ãh∥∥∥2

∞

∥∥∥ΦÃh∥∥∥∞ h dτ +
t∫

ti−1

∥∥∥Ãh∥∥∥2

∞

∥∥∥ΦÃh∥∥∥∞ h dτ
=

t∫
t0

L̃h
∥∥∥ΦÃh∥∥∥∞ +

∥∥∥Ã∥∥∥
∞

∥∥∥ΦÃ (τ)− ΦÃh (τ)
∥∥∥+

∥∥∥Ãh∥∥∥2

∞

∥∥∥ΦÃh∥∥∥∞ h dτ
≤

(
L̃ +

∥∥∥Ãh∥∥∥2

∞

)∥∥∥ΦÃh∥∥∥∞ h+
∥∥∥Ã∥∥∥

∞

t∫
t0

∥∥∥ΦÃ (τ)− ΦÃh (τ)
∥∥∥ dτ,
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for every i = 1, . . . , N and t ∈ (ti−1, ti]. Applying Lemma A.9 (Gronwall) for
∥∥∥ΦÃ (t)− ΦÃh (t)

∥∥∥
yields ∥∥∥ΦÃ (t)− ΦÃh (t)

∥∥∥ ≤
(

L̃ +
∥∥∥Ãh∥∥∥2

∞

)∥∥∥ΦÃh∥∥∥∞ h exp
(∥∥∥Ã∥∥∥

∞
t
)

(2.4.10)
≤ 3

2

(
L̃ +

∥∥∥Ãh∥∥∥2

∞

)
exp

(
2
∥∥∥Ãh∥∥∥∞) exp

(∥∥∥Ã∥∥∥
∞

)
h

for all t ∈ [0, 1]. In addition, by Lemma A.2, it holds∥∥∥ΦÃ (t)−1 − ΦÃh (t)−1
∥∥∥ ≤

∥∥∥ΦÃ (·)−1
∥∥∥
∞

∥∥∥ΦÃh (·)−1
∥∥∥
∞

∥∥∥ΦÃ (t)− ΦÃh (t)
∥∥∥

(2.4.10)
≤ 2 exp

(∥∥∥Ã∥∥∥
∞

)
exp

(∥∥∥Ãh∥∥∥∞) ∥∥∥ΦÃ (t)− ΦÃh (t)
∥∥∥

for every t ∈ [0, 1], where we exploited
∥∥∥ΦÃ (·)−1

∥∥∥
∞
≤ exp

(∥∥∥Ã∥∥∥
∞

)
. Hence, the assertion is

satisfied for LΦ := 3 exp
(
2
∥∥∥Ã∥∥∥

∞
+ 3

∥∥∥Ãh∥∥∥∞)
(

L̃ +
∥∥∥Ãh∥∥∥2

∞

)
. �

We define the abbreviations Rh ∈ RnE×nz , Sh ∈ LnE×nv∞,h ([0, 1]) by

Rh := E0,h + E1,hΦÃh (tN ) ,

Sh (ti) := E1,hΦÃh (tN )ΦÃh (ti−1)−1 B̃h (ti) , i = 1, . . . , N,

which satisfy the following:
Lemma 2.4.8
Let D (·) be uniformly linear independent with constant β > 0 and let Assumption 2.4.4 hold.
Then, there exists h1 > 0 and LR,LS ≥ 0 such that for all 0 < h ≤ h1 it holds

‖R−Rh‖ ≤ LRh, ‖S (·)− Sh (·)‖∞ ≤ LSh.

Proof. Set h1 := min
{

β
2L ,

1
2‖Ãh‖∞

}
, LR :=

(
L + L exp

(∥∥∥Ã∥∥∥
∞

)
+ ‖E1,h‖LΦ

)
, and let

0 < h ≤ h1 be arbitrary. Then, it holds

‖R−Rh‖ ≤ ‖E0 − E0,h‖+ ‖E1 − E1,h‖
∥∥ΦÃ (1)

∥∥+ ‖E1,h‖
∥∥∥ΦÃ (1)− ΦÃh (1)

∥∥∥
Lemma
≤

2.4.7
Lh+ Lh exp

(∥∥∥Ã∥∥∥
∞

)
+ ‖E1,h‖LΦh

= LRh.

Moreover, utilizing Lemma A.2, Lemma 2.4.7, (2.4.10), and (2.4.11) yields∥∥∥ΦÃ (t)−1 − ΦÃh (ti−1)−1
∥∥∥ ≤ ∥∥∥ΦÃ (t)−1 − ΦÃh (t)−1

∥∥∥+
∥∥∥ΦÃh (t)−1 − ΦÃh (ti−1)−1

∥∥∥
≤ LΦh+

∥∥∥ΦÃh (t)−1
∥∥∥ ∥∥∥ΦÃh (ti−1)−1

∥∥∥ ∥∥∥ΦÃh (t)− ΦÃh (ti−1)
∥∥∥

≤ LΦh+
(
2 exp

(∥∥∥Ãh∥∥∥∞))2 ∥∥∥Φ′Ãh (ti) (t− ti−1)
∥∥∥

≤
(
LΦ + 4

∥∥∥Ãh∥∥∥∞ exp
(
4
∥∥∥Ãh∥∥∥∞))h (2.4.12)



2.4. LINEAR TIME-VARIANT DIFFERENTIAL-ALGEBRAIC EQUATIONS 45

for i = 1, . . . , N and t ∈ (ti−1, ti]. By using (2.4.12) and applying Lemma A.1, Lemma A.5,
Lemma 2.4.6, and Lemma 2.4.7 we conclude

‖S (t)− Sh (t)‖ =
∥∥∥E1ΦÃ (1) ΦÃ (t)−1 B̃ (t)− E1,hΦÃh (tN )ΦÃh (ti−1)−1 B̃h (ti)

∥∥∥
≤ ‖E1 − E1,h‖

∥∥ΦÃ (1)
∥∥ ∥∥∥ΦÃ (t)−1

∥∥∥ ∥∥∥B̃ (t)
∥∥∥

+ ‖E1,h‖
∥∥∥ΦÃ (1)− ΦÃh (tN )

∥∥∥ ∥∥∥ΦÃ (t)−1
∥∥∥ ∥∥∥B̃ (t)

∥∥∥
+ ‖E1,h‖

∥∥∥ΦÃh (tN )
∥∥∥ ∥∥∥ΦÃ (t)−1 − ΦÃh (ti−1)−1

∥∥∥ ∥∥∥B̃ (t)
∥∥∥

+ ‖E1,h‖
∥∥∥ΦÃh (tN )

∥∥∥ ∥∥∥ΦÃh (ti−1)−1
∥∥∥ ∥∥∥B̃ (t)− B̃h (ti)

∥∥∥
≤ Lh exp

(∥∥∥Ã∥∥∥
∞

)2 ∥∥∥B̃∥∥∥
∞

+ ‖E1,h‖LΦh exp
(∥∥∥Ã∥∥∥

∞

) ∥∥∥B̃∥∥∥
∞

+ ‖E1,h‖ exp
(
2
∥∥∥Ãh∥∥∥∞) (LΦ + 4

∥∥∥Ãh∥∥∥∞ exp
(
4
∥∥∥Ãh∥∥∥∞))h ∥∥∥B̃∥∥∥∞

+ ‖E1,h‖ exp
(
2
∥∥∥Ãh∥∥∥∞) exp

(∥∥∥Ãh∥∥∥∞) L̃h

for i = 1, . . . , N and almost every t ∈ (ti−1, ti]. Hence, the assertion holds for

LS := L exp
(∥∥∥Ã∥∥∥

∞

)2 ∥∥∥B̃∥∥∥
∞

+ ‖E1,h‖LΦ exp
(∥∥∥Ã∥∥∥

∞

) ∥∥∥B̃∥∥∥
∞

+ ‖E1,h‖ exp
(
2
∥∥∥Ãh∥∥∥∞) (LΦ + 4

∥∥∥Ãh∥∥∥∞ exp
(
4
∥∥∥Ãh∥∥∥∞)) ∥∥∥B̃∥∥∥∞

+ ‖E1,h‖ exp
(
3
∥∥∥Ãh∥∥∥∞) L̃

�

Finally, for the discrete Gramian Gh := RhR
>
h +

N∑
k=1

tk∫
tk−1

Sh (tk)Sh (tk)> dτ we can prove the

following:

Lemma 2.4.9 (Discrete Gramian Matrix)
Let D (·) be uniformly linear independent with constant β > 0 and let Assumption 2.4.4 hold.
Suppose (2.4.1) is completely controllable. Then, there exists h1 > 0 such that for all 0 < h ≤ h1

the discrete Gramian Gh is non-singular.

Proof. According to Lemma 2.4.3, the continuous Gramian G is non-singular. In addition, G
is symmetric and positive definite, since for arbitrary $ ∈ RnE \ {0RnE } it holds

0 6= $>G$ =
∥∥∥R>$∥∥∥2

+
∥∥∥S (·)>$

∥∥∥2

2
≥ 0,

thus $>G$ > 0. Furthermore, since the eigenvalues of a symmetric positive definite matrix are
positive, for γG := min {λ | λ is an eigenvalue of G} > 0 we obtain $>G$ ≥ γG ‖$‖2 for every
$ ∈ RnE . Set

LG := LR (‖R‖+ ‖Rh‖) + LS (‖S‖∞ + ‖Sh‖∞) and h1 := min

 β

2L ,
1

2
∥∥∥Ãh∥∥∥∞ ,

γG
2LG

 .
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Then, by Lemma 2.4.8, for arbitrary 0 < h ≤ h1 and $ ∈ RnE it holds

$>G$ −$>Gh$ =
∥∥∥R>$∥∥∥2

+
∥∥∥S (·)>$

∥∥∥2

2
−
∥∥∥R>h$∥∥∥2

−
∥∥∥Sh (·)>$

∥∥∥2

2

=
(∥∥∥R>$∥∥∥− ∥∥∥R>h$∥∥∥) (∥∥∥R>$∥∥∥+

∥∥∥R>h$∥∥∥)
+
(∥∥∥S (·)>$

∥∥∥
2
−
∥∥∥Sh (·)>$

∥∥∥
2

) (∥∥∥S (·)>$
∥∥∥

2
+
∥∥∥Sh (·)>$

∥∥∥
2

)
≤
∥∥∥R>$ −R>h$∥∥∥ (∥∥∥R>∥∥∥+

∥∥∥R>h ∥∥∥) ‖$‖
+
∥∥∥S (·)>$ − Sh (·)>$

∥∥∥
2

(∥∥∥S (·)>
∥∥∥
∞

+
∥∥∥Sh (·)>

∥∥∥
∞

)
‖$‖

≤ LRh (‖R‖+ ‖Rh‖) ‖$‖2 + LSh (‖S‖∞ + ‖Sh‖∞) ‖$‖2

= LGh ‖$‖2 .

Consequently,

0 < γG ‖$‖2 ≤ $>G$ ≤ LGh ‖$‖2 +$>Gh$ ≤
γG
2 ‖$‖

2 +$>Gh$,

hence Gh is positive definite, and therefore non-singular. �

In the same way as in the second part of the proof of Lemma 2.4.3, it follows straightfor-
wardly from Lemma 2.4.9 that the discrete system 2.4.7 is completely controllable, if the discrete
Gramian is non-singular. Summarizing, we showed that, if the continuous system 2.4.1 satisfies
the linear independence conditions, is completely controllable, and Assumption 2.4.4 holds, then
the linear independence and complete controllability are retained by the discrete system 2.4.7.

Occasionally, it is more convenient to view DAEs of type (2.4.1) as an operator equation
F (z, v) = 0 for a linear operator F . To that end, for p = 2,∞ and spaces

Zp := Wnz
1,p ([0, 1])× Lnvp ([0, 1]) , Yp := Lnzp ([0, 1])× Lmp ([0, 1])× RnE ,

Zp,h := Wnz
1,p,h ([0, 1])× Lnvp,h ([0, 1]) , Yp,h := Lnzp,h ([0, 1])× Lmp,h ([0, 1])× RnE ,

with the norms ‖(z, v)‖Zp := max
{
‖z‖1,p , ‖v‖p

}
, ‖(a, b, e)‖Yp := max

{
‖a‖p , ‖b‖p , ‖e‖

}
we

define the linear operators F : Zp → Yp, Fh : Zp,h → Yp,h as

F (z, v) :=


ż (·)−A (·) z (·)−B (·) v (·)

C (·) z (·) +D (·) v (·)
E0z (0) + E1z (1)

 ,

Fh (zh, vh) (t) :=


z′h (ti)−Ah (ti) zh (ti)−Bh (ti) vh (ti)

Ch (ti) zh (ti) +Dh (ti) vh (ti)
E0,hzh (t0) + E1,hzh (tN )

 , t ∈ (ti−1, ti] , i = 1, . . . , N.

Since all the matrix functions are essentially bounded, the linear operators are also bounded.
The following lemma gives conditions under which F and Fh are uniformly surjective in virtue
of Definition 2.1.4:
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Lemma 2.4.10 (Uniform Surjective Operators)
Let system (2.4.1) and (2.4.7) satisfy the conditions in Definition 2.4.1 and Assumption 2.4.4,
respectively. Then, it holds:

(i) The operator F is uniformly surjective.

(ii) There exists h1 > 0 such that for every 0 < h ≤ h1 the operator Fh is uniformly surjective
with a constant independent of h.

Proof.

(i) For arbitrary (a (·) , b (·) , e) ∈ Yp we show that the inhomogeneous linear system

ż (t) = A (t) z (t) +B (t) v (t)− a (t) , a.e. in [0, 1] ,

0Rm = C (t) z (t) +D (t) v (t)− b (t) , a.e. in [0, 1] , (2.4.13)

e = E0z (0) + E1z (1) .

has a solution (z, v) ∈ Zp satisfying κ ‖(z, v)‖Zp ≤ ‖(a, b, e)‖Yp for some constant κ > 0.
Analog to Remark 2.4.2, we reduce the system to

ż (t) = Ã (t) z (t) + B̃ (t)w (t) + ã (t) , a.e. in [0, 1] ,

e = E0z (0) + E1z (1) ,

where w ∈ Lnvp ([0, 1]) and ã (·) := −a (·) +B (·)D (·)h b (·), which has the solution

z (·) = ΦÃ (·) z (0) + ΦÃ (·)
·∫

0

ΦÃ (τ)−1
(
B̃ (τ)w (τ) + ã (τ)

)
dτ.

Inserting this into the boundary conditions yields

e =
(
E0 + E1ΦÃ (1)

)
z (0) + E1ΦÃ (1)

1∫
0

ΦÃ (τ)−1 B̃ (τ)w (τ) dτ

+ E1ΦÃ (1)
1∫

0

ΦÃ (τ)−1 ã (τ) dτ (2.4.14)

= Rz (0) +
1∫

0

S (τ)w (τ) dτ + E1ΦÃ (1)
1∫

0

ΦÃ (τ)−1 ã (τ) dτ.

For ẽ := e− E1ΦÃ (1)
1∫
0

ΦÃ (τ)−1 ã (τ) dτ we choose

z (0) = R>G−1ẽ, w (·) = S (·)>G−1ẽ,

which satisfy the boundary conditions (2.4.14). We conclude that (2.4.13) holds for

z (·) = ΦÃ (·)R>G−1ẽ+ ΦÃ (·)
·∫

0

ΦÃ (τ)−1
(
B̃ (τ)S (τ)>G−1ẽ+ ã (τ)

)
dτ, (2.4.15)

v (·) = −D (·)hC (·) z (·) +
(
Inv −D (·)hD (·)

)
S (·)>G−1ẽ+D (·)h b (·) ,
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hence F : Zp → Yp is surjective. Additionally, we obtain the bounds

‖ã‖p ≤ ‖a‖p + ‖B‖∞
∥∥∥Dh∥∥∥

∞
‖b‖p

≤
(
1 + ‖B‖∞

∥∥∥Dh∥∥∥
∞

)
‖(a, b, e)‖Yp ,

‖ẽ‖ ≤ ‖e‖+ ‖E1‖ exp
(∥∥∥Ã∥∥∥

∞

)
‖ã‖p

≤
[
1 + ‖E1‖ exp

(∥∥∥Ã∥∥∥
∞

) (
1 + ‖B‖∞

∥∥∥Dh∥∥∥
∞

)]
‖(a, b, e)‖Yp .

Set κ1 :=
[
1 + ‖E1‖ exp

(∥∥∥Ã∥∥∥
∞

) (
1 + ‖B‖∞

∥∥∥Dh∥∥∥
∞

)]
. Using (2.4.15) and the differential

equation in (2.4.13) we find a constant κ2 > 0 such that

‖z‖p ≤ κ2 ‖(a, b, e)‖Yp , ‖ż‖p ≤ κ2 ‖(a, b, e)‖Yp , ‖v‖p ≤ κ2 ‖(a, b, e)‖Yp ,

and therefore κ ‖(z, v)‖Zp ≤ ‖(a, b, e)‖Yp for κ = 1
κ2

.

(ii) Set h1 := min
{

β
2L ,

1
2‖Ãh‖∞

, γG
2LG

}
and let 0 < h ≤ h1 be arbitrary. Then, by Lemma

2.4.9, the discrete Gramian Gh is non-singular. In the same way as in (i), we consider the
inhomogeneous linear system

z′h (ti) = Ah (ti) zh (ti) +Bh (ti) vh (ti)− ah (ti) , i = 1, . . . , N,

0Rm = Ch (ti) zh (ti) +Dh (ti) vh (ti)− bh (ti) , i = 1, . . . , N, (2.4.16)

eh = E0,hzh (t0) + E1,hzh (tN ) .

for arbitrary (ah (·) , bh (·) , eh) ∈ Yp,h. Analog to the continuous case, we reduce the system
to

z′h (ti) = Ãh (ti) zh (ti) + B̃h (ti)wh (ti) + ãh (ti) , i = 1, . . . , N,

eh = E0,hz (t0) + E1,hz (tN ) ,

where wh ∈ Lnvp,h ([0, 1]) and ãh (·) := −ah (·) + Bh (·)Dh (·)h bh (·). This system has the
solution

zh (ti) = ΦÃh (ti) zh (t0) + ΦÃh (ti)h
i∑

k=1
ΦÃh (tk−1)−1

(
B̃h (tk)wh (tk) + ãh (tk)

)
,

which inserted into boundary conditions yields

eh = Rhzh (t0) + h
N∑
k=1

Sh (tk)wh (tk) + E1,hΦÃh (tN )h
N∑
k=1

ΦÃh (tk−1)−1 ãh (tk) .

Choose

zh (t0) = R>hG
−1
h ẽh, wh (·) = Sh (·)>G−1

h ẽh,
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where ẽh = eh − E1,hΦÃh (tN )h
N∑
k=1

ΦÃh (tk−1)−1 ãh (tk), which results in the solution

zh (ti) = ΦÃh (ti)R>hG−1
h ẽh

+ ΦÃh (ti)h
i∑

k=1
ΦÃh (tk−1)−1

(
B̃h (tk)Sh (tk)>G−1

h ẽh + ãh (tk)
)
,

vh (ti) = −Dh (ti)hCh (ti) zh (ti)

+
(
Inv −Dh (ti)hDh (ti)

)
Sh (ti)>G−1

h ẽh +Dh (ti)h bh (ti) ,

for i = 1, . . . , N , thus Fh is surjective. Analog to the continuous case, we find a constant
κ̃ > 0 independent of h such that κ̃ ‖(zh, vh)‖Zp ≤ ‖(ah, bh, eh)‖Yp , which completes the
proof.

�

Consider the following bilinear forms

P : Z2 × Z2 → R, Ph : Z2,h × Z2,h → R,

defined by

P
((
z1, v1

)
,
(
z2, v2

))
:=
(
z1 (0)
z1 (1)

)>
Λ
(
z2 (0)
z2 (1)

)

+
1∫

0

(
z1 (t)
v1 (t)

)>
Q (t)

(
z2 (t)
v2 (t)

)
dt,

Ph
((
z1
h, v

1
h

)
,
(
z2
h, v

2
h

))
:=
(

z1
h (t0)
z1
h (tN )

)>
Λh

(
z2
h (t0)
z2
h (tN )

)

+
N∑
k=1

tk∫
tk−1

(
z1
h (tk)
v1
h (tk)

)>
Qh (tk)

(
z2
h (tk)
v2
h (tk)

)
dt,

where Λ,Λh ∈ R2nz×2nz , and Q ∈ L
(nz+nv)×(nz+nv)
∞ ([0, 1]), Qh ∈ L

(nz+nv)×(nz+nv)
∞,h ([0, 1]) are

symmetric matrices and symmetric matrix functions, respectively. These bilinear forms are
symmetric and also continuous, since for every

(
z1, v1) , (z2, v2) ∈ Z2 it holds∣∣∣P ((z1, v1

)
,
(
z2, v2

))∣∣∣ ≤ ∥∥∥(z1 (0) , z1 (1)
)∥∥∥ ‖Λ‖ ∥∥∥(z2 (0) , z2 (1)

)∥∥∥
+

1∫
0

∥∥∥(z1 (t) , v1 (t)
)∥∥∥ ‖Q‖∞ ∥∥∥(z2 (t) , v2 (t)

)∥∥∥ dt
≤
(∥∥∥z1 (0)

∥∥∥+
∥∥∥z1 (1)

∥∥∥) ‖Λ‖ (∥∥∥z2 (0)
∥∥∥+

∥∥∥z2 (1)
∥∥∥)

+ ‖Q‖∞
∥∥∥(z1, v1

)∥∥∥
2

∥∥∥(z2, v2
)∥∥∥

2

≤ 4
∥∥∥z1

∥∥∥
1,2
‖Λ‖ 4

∥∥∥z2
∥∥∥

1,2
+ ‖Q‖∞

(∥∥∥z1
∥∥∥

2
+
∥∥∥v1

∥∥∥
2

) (∥∥∥z2
∥∥∥

2
+
∥∥∥v2

∥∥∥
2

)
≤ (16 ‖Λ‖+ 4 ‖Q‖∞)

∥∥∥(z1, v1
)∥∥∥

Z2

∥∥∥(z2, v2
)∥∥∥

Z2
.
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Herein, we exploited the Cauchy-Schwartz and the Sobolev (Lemma A.7) inequalities. By the
same token, we can prove continuity for Ph. Using Theorem 2.1.10 we want to show that
coercivity of the bilinear form P on ker (F ) is inherited by the discrete bilinear form Ph on
ker (Fh) for sufficiently small h. To that end, we assume the following:
Assumption 2.4.11 (Bilinear Form Approximation)
There exist constants LΛ,LQ ≥ 0 such that for all h > 0 it holds

‖Λ− Λh‖ ≤ LΛh, ‖Q (·)−Qh (·)‖∞ ≤ LQh.

This assumption allows us to prove coercivity for the discrete bilinear form. Additionally, if
we decompose Q, Qh in a certain way, we are able to show that coercivity also implies that
Legendre-Clebsch conditions are satisfied (compare Figure 2.2). Using the same techniques

Coercivity Legendre-Clebsch

Discrete
Legendre-Clebsch

Discrete
Coercivity

Lemma 2.4.14

Lemma 2.4.15Lemma 2.4.12

Figure 2.2: Relation between coercivity and Legendre-Clebsch conditions.

as in [85, Lemma 9], one can show that the discrete Legendre-Clebsch condition follows from
discrete coercivity directly.
Lemma 2.4.12 (Discrete Coercivity)
Let system (2.4.1) and (2.4.7) satisfy the conditions in Definition 2.4.1 and Assumption 2.4.4,
respectively. Furthermore, suppose Assumption 2.4.11 holds and P is coercive on ker (F ) with
constant γ > 0. Then, there exist γ̃, h̃ > 0 such that for every 0 < h ≤ h̃ the bilinear form Ph
is coercive on ker (Fh) with constant γ̃.
Proof. Our goal is to apply Theorem 2.1.10, i.e., we have to verify conditions (i) - (v).

(i) F is uniformly surjective by Lemma 2.4.10.

(ii) The coercivity of P on ker (F ) is explicitly assumed.

(iii) By Lemma 2.4.10, there exists a h1 > 0 such that Fh is uniformly surjective for every
0 < h ≤ h1.

(iv) We need to show that there exists a constant LF ≥ 0 independent of h such that

‖F (zh, vh)− Fh (zh, vh)‖Y2
≤ LFh ‖(zh, vh)‖Z2

for all (zh, vh) ∈ Z2,h.



2.4. LINEAR TIME-VARIANT DIFFERENTIAL-ALGEBRAIC EQUATIONS 51

To that end, let (zh, vh) ∈ Z2,h be arbitrary. Then, for i = 1, . . . , N and almost every
t ∈ (ti−1, ti] we obtain

F (zh, vh) (t)− Fh (zh, vh) (t)

=


żh (t)−A (t) zh (t)−B (t) vh (t)

C (t) zh (t) +D (t) vh (t)
E0zh (t0) + E1zh (tN )

−

z′h (ti)−Ah (ti) zh (ti)−Bh (ti) vh (ti)

Ch (ti) zh (ti) +Dh (ti) vh (ti)
E0,hzh (t0) + E1,hzh (tN )



=


−A (t) zh (t) +Ah (ti) zh (ti)− (B (t)−Bh (ti)) vh (ti)
C (t) zh (t)− Ch (ti) zh (ti) + (D (t)−Dh (ti)) vh (ti)

(E0 − E0,h) zh (t0) + (E1 − E1,h) zh (tN )

 =:


ah (t)
bh (t)
eh

 .
Since

zh (ti)− zh (t) = z′h (ti) (ti − t) (2.4.17)

for every t ∈ (ti−1, ti] and i = 1, . . . , N , it holds

‖ah (t)‖ ≤ ‖A (t)−Ah (ti)‖ ‖zh (ti)‖+ ‖A (t)‖ ‖zh (t)− zh (ti)‖

+ ‖B (t)−Bh (ti)‖ ‖vh (ti)‖

≤ Lh ‖zh (ti)‖+ ‖A‖∞ h
∥∥z′h (ti)

∥∥+ Lh ‖vh (ti)‖

≤ (L + ‖A‖∞)h
(
‖zh (ti)‖+

∥∥z′h (ti)
∥∥+ ‖vh (ti)‖

)
for i = 1, . . . , N and almost every t ∈ (ti−1, ti]. Thus, using the Sobolev inequality in
Lemma A.7 yields

‖ah‖22 =
1∫

0

‖ah (t)‖2 dt =
N∑
k=1

tk∫
tk−1

‖ah (t)‖2 dt

≤ (L + ‖A‖∞)2 h2
N∑
k=1

tk∫
tk−1

(
‖zh (tk)‖+

∥∥z′h (tk)
∥∥+ ‖vh (tk)‖

)2
dt

Sobolev
≤ (L + ‖A‖∞)2 h2

N∑
k=1

tk∫
tk−1

(
2 ‖zh‖1,2 +

∥∥z′h (tk)
∥∥+ ‖vh (tk)‖

)2
dt

≤ (L + ‖A‖∞)2 h2
N∑
k=1

tk∫
tk−1

2
((

2 ‖zh‖1,2
)2

+
(∥∥z′h (tk)

∥∥+ ‖vh (tk)‖
)2)

dt

≤ (L + ‖A‖∞)2 h2
N∑
k=1

tk∫
tk−1

2
(
4 ‖zh‖21,2 + 2

(∥∥z′h (tk)
∥∥2 + ‖vh (tk)‖2

))
dt

≤ (L + ‖A‖∞)2 h2
N∑
k=1

tk∫
tk−1

4
(
2 ‖zh‖21,2 +

∥∥z′h (tk)
∥∥2 + ‖vh (tk)‖2

)
dt

= 4 (L + ‖A‖∞)2 h2
(
2 ‖zh‖21,2 +

∥∥z′h∥∥2
2 + ‖vh‖22

)
≤ 4 (L + ‖A‖∞)2 h2

(
2 ‖(zh, vh)‖2Z2

+ ‖(zh, vh)‖2Z2
+ ‖(zh, vh)‖2Z2

)
= 16 (L + ‖A‖∞)2 h2 ‖(zh, vh)‖2Z2

.
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Analog, we obtain ‖bh‖2 ≤ 4 (L + ‖C‖∞)h ‖(zh, vh)‖Z2
and additionally

‖eh‖ ≤ ‖E0 − E0,h‖ ‖zh (t0)‖+ ‖E1 − E1,h‖ ‖zh (tN )‖ ≤ Lh (‖zh (t0)‖+ ‖zh (tN )‖)
Sobolev
≤ 4Lh ‖zh‖1,2 ≤ 4Lh ‖(zh, vh)‖Z2

.

Hence, ‖F (zh, vh)− Fh (zh, vh)‖Y2
≤ LFh ‖(zh, vh)‖Z2

for LF := 4 (L + ‖A‖∞ + ‖C‖∞).

(v) It remains to show that there exists a constant LP ≥ 0 independent of h such that

P ((zh, vh) , (zh, vh))− Ph ((zh, vh) , (zh, vh)) ≤ LPh ‖(zh, vh)‖2Z2
for all (zh, vh) ∈ Z2,h.

For arbitrary (zh, vh) ∈ Z2,h it holds(
zh (t0)
zh (tN )

)>
(Λ− Λh)

(
zh (t0)
zh (tN )

)
Assumption
≤

2.4.11
LΛh

(
‖zh (t0)‖2 + ‖zh (tN )‖2

)
Sobolev
≤ 8LΛh ‖zh‖21,2 ,

and utilizing (2.4.17) yields

1∫
0

(
zh (t)
vh (t)

)>
Q (t)

(
zh (t)
vh (t)

)
dt−

N∑
k=1

tk∫
tk−1

(
zh (tk)
vh (tk)

)>
Qh (tk)

(
zh (tk)
vh (tk)

)
dt

=
N∑
k=1

tk∫
tk−1

(
zh (tk)
vh (tk)

)>
(Q (t)−Qh (tk))

(
zh (tk)
vh (tk)

)
dt

+
N∑
k=1

tk∫
tk−1

(
zh (t)− zh (tk)

0Rnv

)>
Q (t)

(
zh (t)− zh (tk)

0Rnv

)
dt

+2
N∑
k=1

tk∫
tk−1

(
zh (t)− zh (tk)

0Rnv

)>
Q (t)

(
zh (tk)
vh (tk)

)
dt

Assumption
≤

2.4.11

N∑
k=1

tk∫
tk−1

LQh
(
‖zh (tk)‖2 + ‖vh (tk)‖2

)
dt

+
N∑
k=1

tk∫
tk−1

‖Q‖∞
(
h2 ‖z′h (tk)‖2 + 2h ‖z′h (tk)‖ ‖(zh (tk) , vh (tk))‖

)
dt

Sobolev
≤

N∑
k=1

tk∫
tk−1

LQh
((

2 ‖zh‖1,2
)2

+ ‖vh (tk)‖2
)
dt

+ ‖Q‖∞

(
h2 ‖z′h‖

2
2 +

N∑
k=1

tk∫
tk−1

2h ‖z′h (tk)‖ ‖(zh (tk) , vh (tk))‖ dt
)

Cauchy
≤

Schwarz
LQh

(
4 ‖zh‖21,2 + ‖vh‖22

)
+ ‖Q‖∞

(
h2 ‖z′h‖

2
2 + 2h ‖z′h‖2 ‖(zh, vh)‖2

)
≤ 5LQh ‖(zh, vh)‖2Z2

+ ‖Q‖∞
(
h2 + 4h

)
‖(zh, vh)‖2Z2

.

Thus, since h+ 4 ≤ 5, for LP := 8LΛ + 5LQ + 5 ‖Q‖∞ it holds

P ((zh, vh) , (zh, vh))− Ph ((zh, vh) , (zh, vh)) ≤ LPh ‖(zh, vh)‖2Z2
.

All conditions in Theorem 2.1.10 are satisfied, which completes the proof. �



2.4. LINEAR TIME-VARIANT DIFFERENTIAL-ALGEBRAIC EQUATIONS 53

Let us decompose the matrix function Q (·) into
[
M (·) K (·)>

K (·) Π (·)

]
∈ L(nz+nv)×(nz+nv)

∞ ([0, 1]).

If P is coercive, then Π (·) satisfies a Legendre-Clebsch condition. To prove this we require the
following notion, cf. [50, 2.18 Definition]:
Definition 2.4.13 (Lebesgue Point)
For a locally Lebesgue integrable function f : [0, 1] → Rn a point s ∈ (0, 1) is a Lebesgue point,
if it holds

lim
ε→0+

1
2ε

s+ε∫
s−ε

‖f (t)− f (s)‖ dt = 0.

According to [50, 2.19 Theorem], for a function f ∈ Ln1 ([0, 1]) almost every point s ∈ [0, 1] is a
Lebesgue point, which allows us to show the following:
Lemma 2.4.14 (Legendre-Clebsch Condition)
Let system (2.4.1) satisfy the conditions in Definition 2.4.1. Furthermore, suppose the bilinear
form P with

Q (·) =
[
M (·) K (·)>

K (·) Π (·)

]
∈ L(nz+nv)×(nz+nv)

∞ ([0, 1])

is coercive on ker (F ) with constant γ > 0. Then, for almost every t ∈ [0, 1] and $ ∈ ker (D (t))
the Legendre-Clebsch condition

$>Π (t)$ ≥ γ ‖$‖2

is satisfied.
Proof. Let s ∈ (0, 1) be an arbitrary Lebesgue point of D and Π, i.e.,

lim
ε→0+

1
2ε

s+ε∫
s−ε

‖D (t)−D (s)‖ dt = 0, (2.4.18)

lim
ε→0+

1
2ε

s+ε∫
s−ε

‖Π (t)−Π (s)‖ dt = 0. (2.4.19)

Additionally, from 0 ≤ ‖D (t)−D (s)‖2 ≤ 2 ‖D‖∞ ‖D (t)−D (s)‖ for almost every t ∈ [0, 1], it
follows

lim
ε→0+

1
2ε

s+ε∫
s−ε

‖D (t)−D (s)‖2 dt = 0. (2.4.20)

Let $ ∈ ker (D (s)) be arbitrary. Then, it holds∥∥∥D (t)hD (t)$
∥∥∥ ≤ ∥∥∥D (·)h

∥∥∥
∞
‖D (t)$‖ =

∥∥∥D (·)h
∥∥∥
∞
‖D (t)$ −D (s)$‖

≤
∥∥∥D (·)h

∥∥∥
∞
‖D (t)−D (s)‖ ‖$‖

for almost every t ∈ [0, 1]. Thus, (2.4.18) and (2.4.20) yield

lim
ε→0+

1
2ε

s+ε∫
s−ε

∥∥∥D (t)hD (t)$
∥∥∥ dt = 0, lim

ε→0+

1
2ε

s+ε∫
s−ε

∥∥∥D (t)hD (t)$
∥∥∥2
dt = 0. (2.4.21)
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The control and state

wε (·) :=
{

$ , t ∈ [s− ε, s+ ε]
0Rnv , otherwise

, zε (·) := ΦÃ (·)
·∫

0

ΦÃ (τ)−1 B̃ (τ)wε (τ) dτ,

satisfy the reduced differential equation

ż (t) = Ã (t) z (t) + B̃ (t)w (t) , a.e. in [0, 1] ,

z (0) = 0Rnz ,

and in addition for t ∈ [0, 1] we obtain

‖zε (t)‖ ≤ exp
(∥∥∥Ã∥∥∥

∞

) ∥∥∥B̃∥∥∥
∞

s+ε∫
s−ε

‖wε (τ)‖ dt ≤ 2ε exp
(∥∥∥Ã∥∥∥

∞

) ∥∥∥B̃∥∥∥
∞
‖$‖ . (2.4.22)

Then, for the control vε (·) := −D (·)hC (·) zε (·) +
(
Inv −D (·)hD (·)

)
wε (·) it holds

F (zε, vε) =


0Lnz∞ ([0,1])
0Lm∞([0,1])

E1zε (1)

 .
According to Lemma 2.4.10, there exist κ > 0 and (z̃ε, ṽε) ∈ Z∞ such that

F (z̃ε, ṽε) =


0Lnz∞ ([0,1])
0Lm∞([0,1])

−E1zε (1)


and

κ ‖(z̃ε, ṽε)‖Z∞ ≤ ‖E1zε (1)‖
(2.4.22)
≤ 2ε ‖E1‖ exp

(∥∥∥Ã∥∥∥
∞

) ∥∥∥B̃∥∥∥
∞
‖$‖ . (2.4.23)

Introduce the new state and control

x := zε + z̃ε, u := vε + ṽε,

which due to the linearity of F satisfy F (x, u) = 0Y∞ . Moreover, we denote

ũε (·) := −D (·)hC (·) zε (·) + ṽε (·) ,

hence u (·) = ũε (·) +
(
Inv −D (·)hD (·)

)
wε (·).
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Then, (2.4.22), (2.4.23), and

Γ := 2 exp
(∥∥∥Ã∥∥∥

∞

) ∥∥∥B̃∥∥∥
∞

(
1 + ‖E1‖

κ
+
∥∥∥D (·)h

∥∥∥
∞
‖C‖∞

)

yield

‖x‖∞ ≤ Γ ‖$‖ ε, ‖ũε‖∞ ≤ Γ ‖$‖ ε.

Furthermore, it holds

‖u‖22 =
1∫

0

∥∥∥ũε (t)−D (t)hD (t)wε (t) + wε (t)
∥∥∥2
dt

≥
1∫

0

(∥∥∥ũε (t)−D (t)hD (t)wε (t)
∥∥∥− ‖wε (t)‖

)2
dt

≥
1∫

0

−2
∥∥∥ũε (t)−D (t)hD (t)wε (t)

∥∥∥ ‖wε (t)‖+ ‖wε (t)‖2 dt

≥
1∫

0

−2 ‖ũε (t)‖ ‖wε (t)‖ − 2
∥∥∥D (t)hD (t)wε (t)

∥∥∥ ‖wε (t)‖+ ‖wε (t)‖2 dt

≥
s+ε∫
s−ε

−2Γ ‖$‖ ε ‖$‖ − 2
∥∥∥D (t)hD (t)$

∥∥∥ ‖$‖+ ‖$‖2 dt

= −4Γ ‖$‖2 ε2 − 2
s+ε∫
s−ε

∥∥∥D (t)hD (t)$
∥∥∥ ‖$‖ dt+ 2 ‖$‖2 ε,

which exploiting

P ((x, u) , (x, u)) ≥ γ ‖(x, u)‖Z2
≥ γ ‖u‖22

implies

P ((x, u) , (x, u)) ≥ γ

−4Γ ‖$‖2 ε2 − 2
s+ε∫
s−ε

∥∥∥D (t)hD (t)$
∥∥∥ ‖$‖ dt+ 2 ‖$‖2 ε

 . (2.4.24)
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For an upper bound we examine

P ((x, u) , (x, u)) =
(
x (0)
x (1)

)>
Λ
(
x (0)
x (1)

)
+

1∫
0

(
x (t)
u (t)

)>(
M (t) K (t)>

K (t) Π (t)

)(
x (t)
u (t)

)
dt

≤ 2 ‖Λ‖Γ2 ‖$‖2 ε2 + ‖M‖∞ Γ2 ‖$‖2 ε2 + 2
1∫

0

x (t)>K (t)> ũε (t) dt

+ 2
1∫

0

x (t)>K (t)>
(
Inv −D (t)hD (t)

)
wε (t) dt+

1∫
0

ũε (t)>Π (t) ũε (t) dt

+ 2
1∫

0

ũε (t)>Π (t)
(
Inv −D (t)hD (t)

)
wε (t) dt

+
1∫

0

wε (t)>
(
Inv −D (t)hD (t)

)
Π (t)

(
Inv −D (t)hD (t)

)
wε (t) dt

≤
[
(2 ‖Λ‖+ ‖M‖∞ + 2 ‖K‖∞) Γ2 + 4 ‖K‖∞ Γ

(
1 +

∥∥∥D (·)hD (·)
∥∥∥
∞

)]
‖$‖2 ε2

+ ‖Π‖∞ Γ2 ‖$‖2 ε2 + 4 ‖Π‖∞ Γ ‖$‖2
(
1 +

∥∥∥D (·)hD (·)
∥∥∥
∞

)
ε2

+ ‖Π‖∞

s+ε∫
s−ε

2 ‖$‖
∥∥∥D (t)hD (t)$

∥∥∥+
∥∥∥D (t)hD (t)$

∥∥∥2
dt

+
s+ε∫
s−ε

‖Π (t)−Π (s)‖ ‖$‖2 dt+ 2ε$>Π (s)$.

Dividing the upper bound and lower bound (2.4.24) by 2ε, taking the limit ε → 0+, and
exploiting (2.4.19), (2.4.21) yields

$>Π (s)$ ≥ γ ‖$‖2 , a.e. in (0, 1) ,

which proves the assertion. �

Similar to Lemma 2.4.12, we can prove that the Legendre-Clebsch condition holds for the discrete

case, if Qh (·) is decomposed into
[
Mh (·) Kh (·)>

Kh (·) Πh (·)

]
∈ L(nz+nv)×(nz+nv)

∞,h ([0, 1]).

Lemma 2.4.15 (Discrete Legendre-Clebsch Condition)
Let system (2.4.1) and (2.4.7) satisfy the conditions in Definition 2.4.1 and Assumption 2.4.4,
respectively. Furthermore, suppose there exists LΠ ≥ 0 with ‖Π (·)−Πh (·)‖∞ ≤ LΠh, and the

bilinear form P with Q (·) =
[
M (·) K (·)>

K (·) Π (·)

]
∈ L(nz+nv)×(nz+nv)

∞ ([0, 1]) is coercive on ker (F )

with constant γ > 0. Then, there exist γ̃, h̃ > 0 such that for every 0 < h ≤ h̃, i = 1, . . . , N , and
$ ∈ ker (Dh (ti)) the discrete Legendre-Clebsch condition

$>Πh (ti)$ ≥ γ̃ ‖$‖2

is satisfied.
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Proof. Let i ∈ {1, . . . , N} be arbitrary. Then, by Lemma 2.4.14, for almost every t ∈ (ti−1, ti]
the symmetric and continuous bilinear form $>Π (t)$ is coercive on ker (D (t)) with constant
γ > 0. Consequently, the conditions (i) - (v) of Theorem 2.1.10 hold for the symmetric and
continuous bilinear form $>Πh (ti)$, because:

(i) For almost every t ∈ (ti−1, ti] let us consider the linear equation

D (t) v = b, v ∈ Rnv , b ∈ Rm,

which has the solution v (t) := D (t)h b. By Definition 2.4.1 and Remark 2.4.2, the right
inverse D (·)h is uniformly bounded. Therefore, for almost every t ∈ (ti−1, ti] the linear
operator D (t) is uniformly surjective with constant 1

‖D(·)h‖∞
.

(ii) The bilinear form $>Π (t)$ is coercive on ker (D (t)) for almost every t ∈ (ti−1, ti].

(iii) According to Lemma 2.4.5 there exists a h1 > 0 such that for all 0 < h ≤ h1 the matrix
function Dh (·) is uniformly linear independent. Using the same arguments as in (i) yields
the uniform surjectivity of Dh (ti).

(iv) By Assumption 2.4.4, for every v ∈ Rnv and almost every t ∈ (ti−1, ti] it holds

‖D (t) v −Dh (ti) v‖ ≤ Lh ‖v‖ .

(v) Since Πh (t) = Πh (ti) for t ∈ (ti−1, ti], it holds ‖Π (t)−Πh (ti)‖∞ ≤ LΠh for almost every
t ∈ (ti−1, ti], due to the assumptions. Thus,

$>Π (t)$ −$>Πh (ti)$ = $> (Π (t)−Πh (ti))$ ≤ LΠ ‖$‖2

for all $ ∈ Rnv and almost every t ∈ (ti−1, ti].

All conditions in Theorem 2.1.10 are satisfied, which completes the proof. �
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Chapter 3

Necessary Conditions

Since the 1950’s necessary conditions, also called maximum principles or minimum principles,
for optimal control problems have been studied. Pontryagin et al. [104] and Hestenes [57]
contributed early proofs of the maximum principle. Optimal control problems subject to ordi-
nary differential equations with mixed control-state constraints have been studied in [96, 124],
where [124] also provides second-order necessary (and sufficient) conditions. Problems with pure
state constraints are investigated in, e.g., [59–61,63,87].
The order of an inequality constraint is given by the number of time-derivatives it takes for the
control to appear in the constraint. Mixed control-state constraints can be considered as the
order zero case. In order to derive necessary conditions, it is usually assumed that the constraints
satisfy some regularity condition. For mixed control-state constraints one could assume that the
derivative of the active constraints with respect to the control are linear independent. In case of
a pure state constraint of order k, a regularity condition would be that the derivative of the k-th
time-derivative with respect to the control is unequal to zero on boundary intervals. For multiple
constraints it is assumed that the respective derivatives are linear independent. Additionally, if
boundary conditions are present, usually some rank or controllability condition is imposed.
There are two main approaches for deriving maximum/minimum principles for optimal control
problems with pure state constraints of order k: The direct adjoining and the indirect adjoining
approach. In the former case, the inequality constraints are directly adjoined to the Hamilton
function, whereas in the latter case, the k-th time-derivative is adjoined to the Hamilton function.
The direct approach is used in, e.g., [59, 60, 89, 90]. For pure state constraints of order one the
indirect approach was used in [104], and for constraints of higher order it was used in [86]. More
references can be found in the survey paper on maximum principles [56].
The maximum/minimum principles are generally expressed in form of adjoint differential equa-
tions, transversality conditions, complementarity conditions, and jump conditions. The latter
conditions appear, if pure state constraints are imposed. In that case, the adjoint multiplier
may have discontinuities at junction or contact points. For higher order inequality constraints
the multipliers are usually only piecewise absolutely continuous, piecewise continuous, or of
bounded variation, as opposed to the case with mixed control-state constraints, where the ad-
joint multiplier is absolutely continuous.
Linear quadratic DAE optimal control problems are discussed in, e.g., [8, 65, 94]. Descriptor
systems with constant coefficient matrices are considered in [94], whereas time-variant systems
are considered in [65]. In [8], nonlinear quasi-linear DAEs are considered as well. Optimal control
problems with index one DAEs in semi-explicit form with set constraints on the controls and with
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pure state and mixed control-state constraints are investigated in [102] and [29,47], respectively.
In the index one case, the algebraic constraint can be directly adjoined to the Hamilton function.
Thus, the results coincide with results for problems with explicit ODEs. This changes for higher
index DAEs. In [8, Example 3.16], it was shown that the usual necessary conditions do not hold
for the Hamilton function, where the algebraic constraint was directly adjoined. Instead, the
time-derivative of the algebraic constraint, where the algebraic variable first appears, is adjoined,
similar to indirect adjoining approach for pure state constraints. In the index k case, one would
adjoin the (k − 1)-st derivative to the Hamilton function. Necessary conditions for problems
with higher index DAEs were derived in [45, 47, 83, 111]. Index two DAEs with pure state
constraints, mixed control-state constraints, and set constraints on the controls are considered
in [45,47]. In [111], problems with Hessenberg DAEs up to index three are examined, and in [83]
problems with Hessenberg DAEs of arbitrary order are analyzed. In [28], a maximum principle
for problems with implicit control systems is derived, by reducing the optimal control problem
to an equivalent nonsmooth variational problem. General unstructured DAE optimal control
problems are investigated in [67]. [69, 88] provide necessary conditions for infinite optimization
problems, which are closely related to optimal control problems.
We aim to derive a local minimum principle for optimal control problems subject to Hessen-
berg DAEs of arbitrary order and mixed control-state constraints, similar to [83]. By including
boundary conditions and weakening the regularity assumptions on the mixed control-state con-
straints we expand the results of [83, Theorem 3.1]. Furthermore, Theorem 3.2.5 generalizes the
results of [47, Theorem 3.3.8]. In order to derive necessary conditions for problems with higher
index DAEs, we first consider DAEs with index one, for which we derive necessary conditions
using the techniques developed in [81]. By reducing the index of a Hessenberg DAEs with higher
index to an equivalent system with index one we obtain a local minimum principle for optimal
control problems subject to Hessenberg DAEs with arbitrary index.
For the derivation we use the following scheme (see Figure 3.1):

(a) Modify the optimal control problem by introducing a slack variable to the mixed control-
state constraints such that a weak local minimizer of the initial problem is also a solution
of the modified problem, if the slack variable is set to zero.

(b) Interpret the modified problem as an infinite optimization problem and use the results
in [69], which yields non trivial Lagrange multipliers.

(c) Deduce an explicit representation of these Lagrange multipliers and apply variation lemmas
to derive a local minimum principle for the modified problem.

(d) Show that the Lagrange multipliers for the initial problem associated with the weak local
minimizer are equal to the Lagrange multipliers for the modified problem associated with
the same weak local minimizer and the slack variable equal to zero.
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Optimal
Control

Problem 3.1.1

Modified Optimal
Control

Problem 3.1.9

Infinite
Optimization

Problem (3.1.5)

Non-trivial
Lagrange

Multipliers

Local Minimum
Principle for

Problem 3.1.9

Local Minimum
Principle for

Problem 3.1.1

Slack
variable

Theorem
3.1.12

(Kurcyusz)

Representation
of Multipliers

Theorem
3.1.15

Figure 3.1: Scheme to derive necessary conditions for Problem 3.1.1.

3.1 Necessary Conditions for Index One Problems
Consider the following optimal control problem:
Problem 3.1.1 (Optimal Control Problem with Index One DAE)
Let nx, ny, nu, nψ, nc ∈ N with nψ ≤ 2nx, nc ≤ nu. Let

ϕ : Rnx × Rnx → R, ψ : Rnx × Rnx → Rnψ ,
f : Rnx × Rny × Rnu → Rnx , g : Rnx × Rny × Rnu → Rny , c : Rnx × Rny × Rnu → Rnc ,

be functions.

Minimize ϕ (x (0) , x (1)) ,

with respect to x ∈Wnx
1,∞ ([0, 1]) , y ∈ Lny∞ ([0, 1]) , u ∈ Lnu∞ ([0, 1]) ,

subject to ẋ (t) = f (x (t) , y (t) , u (t)) , a.e. in [0, 1] ,
0Rny = g (x (t) , y (t) , u (t)) , a.e. in [0, 1] ,
0Rnψ = ψ (x (0) , x (1)) ,
0Rnc ≥ c (x (t) , y (t) , u (t)) , a.e. in [0, 1] .

In order to derive necessary conditions, we assume Problem 3.1.1 has a weak local minimizer
and the functions are sufficiently smooth.
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Assumption 3.1.2

(3.1.A1) (Existence of a Minimizer)
Let (x̂, ŷ, û) ∈Wnx

1,∞ ([0, 1])×Lny∞ ([0, 1])×Lnu∞ ([0, 1]) be a weak local minimizer of Problem
3.1.1.

(3.1.A2) (Smoothness of the System)

(a) ϕ and ψ are continuously differentiable with respect to all arguments.
(b) For a sufficiently large convex compact neighborhood M of

{(x̂ (t) , ŷ (t) , û (t)) ∈ Rnx × Rny × Rnu | t ∈ [0, 1]} ,

let the mappings

(x, y, u) 7→ f (x, y, u) , (x, y, u) 7→ g (x, y, u) , (x, y, u) 7→ c (x, y, u) ,

be continuously differentiable, and the derivatives

f ′(x,y,u), g′(x,y,u), c′(x,y,u),

be bounded in M. Set

Γ := sup
(x,y,u)∈M

max
{∥∥∥f ′(x,y,u) (x, y, u)

∥∥∥ , ∥∥∥g′(x,y,u) (x, y, u)
∥∥∥ , ∥∥∥c′(x,y,u) (x, y, u)

∥∥∥ ,
‖f (x, y, u)‖ , ‖g (x, y, u)‖ , ‖c (x, y, u)‖}

We abbreviate the derivatives at the minimizer by

Af (·) := f ′x [·] , Bf (·) := f ′y [·] , Cf (·) := f ′u [·] ,
Ag (·) := g′x [·] , Bg (·) := g′y [·] , Cg (·) := g′u [·] ,
Ψ0 := ψ′x0 (x̂ (0) , x̂ (1)) , Ψ1 := ψ′x1 (x̂ (0) , x̂ (1)) ,
Ac (·) := c′x [·] , Bc (·) := c′y [·] , Cc (·) := c′u [·] .

In [83], a rank condition was introduced that included full row rank of [Bc (·) , Cc (·)]. This
assumption is often too strong, since it does not even hold for simple box constraints. To
weaken that assumption we define

cαj (·) := min {cj [·] + α, 0} , j ∈ J := {1, . . . , nc} ,

Dα (·) := diag
[
cαj (·)

]
j∈J

,

Eα (·) :=
[
Bg (·) Cg (·) 0ny×nc
Bc (·) Cc (·) Dα (·)

]
.

for a constant α ≥ 0, and assume the following linear independence and controllability condi-
tions:



3.1. NECESSARY CONDITIONS FOR INDEX ONE PROBLEMS 63

Assumption 3.1.3 (Linear Independence, Controllability)

(3.1.A3) (Index One / Regularity Condition)
There exist constants α > 0 and β > 0 such that for all $ ∈ Rny+nc it holds∥∥∥Eα (t)>$

∥∥∥ ≥ β ‖$‖ , a.e. in [0, 1] .

(3.1.A4) (Controllability)
For any e ∈ Rnψ there exist (x, y, u, v) ∈Wnx

1,∞ ([0, 1])×Lny∞ ([0, 1])×Lnu∞ ([0, 1])×Lnc∞ ([0, 1])
such that the DAE

ẋ (t) = Af (t)x (t) +Bf (t) y (t) + Cf (t)u (t) , a.e. in [0, 1] ,

0Rny = Ag (t)x (t) +Bg (t) y (t) + Cg (t)u (t) , a.e. in [0, 1] ,

e = Ψ0x (0) + Ψ1x (1) ,

0Rnc = Ac (t)x (t) +Bc (t) y (t) + Cc (t)u (t) +Dα (t) v (t) , a.e. in [0, 1] ,

is satisfied.

Remark 3.1.4
Note that (3.1.A3) combines the index one property of the DAE and the regularity of the in-
equality constraint. We require this condition in order to reduce the linearized system as in
Remark 2.4.2. One could also assume that it is possible to first solve the algebraic equation
0Rny = Ag (·)x (·) + Bg (·) y (·) + Cg (·)u (·) for y (·), and then solve the remaining equation
0Rnc = Ac (·)x (·) + Bc (·) y (·) + Cc (·)u (·) + Dα (·) v (·) with inserted y (·) for u (·) and v (·).
However, condition (3.1.A3) is more general. Furthermore, assumption (3.1.A3) excludes active
pure state constraints. To see this, let there exist ĵ ∈ J with cĵ (x, y, u) := s (x), where s(·) is
continuously differentiable. Then, we can choose $ ∈ Rny+nc with

$j :=
{

1, if j = ny + ĵ

0, otherwise

in (3.1.A3), which implies∥∥∥Eα (t)>$
∥∥∥ = |min {s (x̂(t)) + α, 0}| ≥ β ‖$‖ = β, a.e. in [0, 1] .

Since s (x̂(·)) is continuous and non-positive on [0, 1] we obtain

s (x̂(t)) ≤ −α− β < 0, in [0, 1] .

Thus, in our case the pure state constraint does not have active boundary arcs, contact points,
or touch points. Therefore, without loss of generality we can assume that for all j ∈ J and
(x, y, u) ∈ Rnx × Rny × Rnu it holds ∇(y,u)cj (x, y, u) 6= 0Rny+nu , i.e., pure state constraints do
not occur.
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For a constant α̃ ≥ 0 we denote by J α̃ (·) := {j ∈ J | cj [·] ≥ −α̃} the set of indexes for α̃−active
constraints, and by jα̃ (·) := card

(
J α̃ (·)

)
the number of α̃−active constraints. Moreover, we

define the matrix functions

Aα̃c (·) :=
[
c′j,x [·]

]
j∈J α̃(·)

, Bα̃
c (·) :=

[
c′j,y [·]

]
j∈J α̃(·)

, Cα̃c (·) :=
[
c′j,u [·]

]
j∈J α̃(·)

,

which we consider to be vacuous, if J α̃ (t) is empty.
Lemma 3.1.5
Suppose (3.1.A1) and (3.1.A2) hold. Then, (3.1.A3) is satisfied, if and only if there exist α̃ > 0
and β̃ > 0 such that for almost every t ∈ [0, 1] and every bα̃ ∈ Rny+jα̃(t) it holds∥∥∥∥∥∥

[
Bg (t) Cg (t)
Bα̃
c (t) Cα̃c (t)

]>
bα̃

∥∥∥∥∥∥ ≥ β̃
∥∥∥bα̃∥∥∥ . (3.1.1)

Proof. First, let (3.1.A3) hold for α, β > 0 and set α̃ = α, β̃ = β. For almost every t ∈ [0, 1]

and an arbitrary bα̃ =
(
bg

bα̃c

)
∈ Rny × Rjα̃(t) we define $c ∈ Rnc as

$c,j =
{
bα̃c ,j , if j ∈ J α̃ (t)

0, otherwise
j ∈ {1, . . . , nc} ,

and set $ :=
(

bg

$c

)
. Then, it holds for almost every t ∈ [0, 1]

∥∥∥∥∥
[
Bg (t)> Bα̃

c (t)>

Cg (t)> Cα̃c (t)>

]
bα̃
∥∥∥∥∥ =

∥∥∥∥∥∥∥∥

Bg (t)> Bα̃

c (t)>

Cg (t)> Cα̃c (t)>

0nc×ny 0nc×jα̃(t)

 bα̃
∥∥∥∥∥∥∥∥ =

∥∥∥∥∥∥∥∥

Bg (t)> Bc (t)>

Cg (t)> Cc (t)>

0nc×ny Dα (t)>

$
∥∥∥∥∥∥∥∥

=
∥∥∥Eα (t)>$

∥∥∥ (3.1.A3)
≥ β ‖$‖ = β̃

∥∥∥bα̃∥∥∥ ,
which proves the assertion.
Now, suppose (3.1.1) holds for α̃, β̃ > 0 and set α := α̃

2 , β := α̃β̃

α̃+2β̃+2‖Bc‖∞+2‖Cc‖∞
. For almost

every t ∈ [0, 1] and an arbitrary $ :=
(
$g

$c

)
∈ Rny × Rnc we define


aB

aC

aDα

 :=


Bg (t)> Bc (t)>

Cg (t)> Cc (t)>

0nc×ny Dα (t)>

$,

and set bα̃ :=
(
$g

bα̃c

)
∈ Rny × Rjα̃(t) with bα̃c ,j = $c,j for j ∈ J α̃ (t). For all j ∈ J \ J α̃ (t) it

holds cαj (t) = min {cj [t] + α, 0} < min {−α̃+ α, 0} = −α < 0 for almost every t ∈ [0, 1]. We
denote the diagonal matrices

Dα
α̃,+ (·) := diag

[
cαj (·)

]
j∈J α̃(·)

, Dα
α̃,− (·) := diag

[
cαj (·)

]
j∈J\J α̃(·)

,
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where Dα
α̃,− (t) is non-singular and satisfies

∥∥∥Dα
α̃,− (t)−1

∥∥∥ ≤ max
j∈J\J α̃(t)

1
|cαj (t)| ≤

1
α for almost every

t ∈ [0, 1]. Additionally, we denote $α̃,−
c :=

(
$c,j

)
j∈J\J α̃(t) and decompose aDα = Dα (t)>$c

into

aα̃,+Dα := Dα
α̃,+ (t) bα̃c , aα̃,−Dα := Dα

α̃,− (t)$α̃,−
c ,

which yields

∥∥∥$α̃,−
c

∥∥∥ =
∥∥∥Dα

α̃,− (t)−1 aα̃,−Dα
∥∥∥ ≤ 1

α

∥∥∥aα̃,−Dα ∥∥∥ ≤ 1
α

∥∥∥∥∥∥∥∥


aB

aC

aDα


∥∥∥∥∥∥∥∥

for almost every t ∈ [0, 1]. With Bα̃
c
,− (·) :=

[
c′j,y [·]

]
j∈J\J α̃(·)

, Cα̃c
,− (·) :=

[
c′j,u [·]

]
j∈J\J α̃(·)

we
get [

Bg (t)> Bα̃
c (t)> Bα̃

c
,− (t)

Cg (t)> Cα̃c (t)> Cα̃c
,− (t)

]
$g

bα̃c
$α̃,−
c

 =
(
aB

aC

)

for almost every t ∈ [0, 1]. By reordering this equation we obtain[
Bg (t)> Bα̃

c (t)>

Cg (t)> Cα̃c (t)>

](
$g

bα̃c

)
=
(
aB

aC

)
−
[
Bα̃
c
,− (t)

Cα̃c
,− (t)

]
$α̃,−
c

for almost every t ∈ [0, 1]. Exploiting (3.1.1) yields

β̃
∥∥∥bα̃∥∥∥ ≤ ∥∥∥∥∥

[
Bg (t)> Bα̃

c (t)>

Cg (t)> Cα̃c (t)>

]
bα̃
∥∥∥∥∥ =

∥∥∥∥∥
[
Bg (t)> Bα̃

c (t)>

Cg (t)> Cα̃c (t)>

](
$g

bα̃c

)∥∥∥∥∥
≤
∥∥∥∥∥
(
aB

aC

)∥∥∥∥∥+
∥∥∥∥∥
[
Bα̃
c
,− (t)

Cα̃c
,− (t)

]
$α̃,−
c

∥∥∥∥∥ ≤
(

1 + ‖Bc‖∞ + ‖Cc‖∞
α

)∥∥∥∥∥∥∥∥


aB

aC

aDα


∥∥∥∥∥∥∥∥

for almost every t ∈ [0, 1]. Finally, using α = α̃
2 we conclude

‖$‖ ≤
∥∥∥bα̃∥∥∥+

∥∥∥$α̃,−
c

∥∥∥ ≤ ( 1
β̃

+ ‖Bc‖∞ + ‖Cc‖∞
αβ̃

+ 1
α

)∥∥∥∥∥∥∥∥


aB

aC

aDα


∥∥∥∥∥∥∥∥

≤
(
α̃+ 2β̃ + 2 ‖Bc‖∞ + 2 ‖Cc‖∞

α̃β̃

)∥∥∥∥∥∥∥∥


aB

aC

aDα


∥∥∥∥∥∥∥∥

= 1
β

∥∥∥∥∥∥∥∥

Bg (t)> Bc (t)>

Cg (t)> Cc (t)>

0nc×ny Dα (t)>

$
∥∥∥∥∥∥∥∥

for almost every t ∈ [0, 1], which completes the proof. �
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Remark 3.1.6
Lemma 3.1.5 allows us to substitute assumption (3.1.A3) for condition (3.1.1) in the local min-
imum principle in Theorem 3.1.15. In the same way, the requirements of Theorem 3.2.5 can be
adjusted. For convenience, we use a condition similar to (3.1.1) instead of assumption (3.2.A3)
in Chapter 5 for the index two case.
Let us consider the linearized DAE

ẋ (t) = Af (t)x (t) +Bf (t) y (t) + Cf (t)u (t) , a.e. in [0, 1] ,

0Rny = Ag (t)x (t) +Bg (t) y (t) + Cg (t)u (t) , a.e. in [0, 1] , (3.1.2)

0Rnψ = Ψ0x (0) + Ψ1x (1) ,

0Rnc = Ac (t)x (t) +Bc (t) y (t) + Cc (t)u (t) +Dα (t) v (t) , a.e. in [0, 1] ,

which we studied in Section 2.4. If (3.1.A1) - (3.1.A3) hold, then we are able to reduce this
system analog to Remark 2.4.2, i.e., for w ∈ Lny+nu+nc

∞ ([0, 1]) we get the system

ẋ (t) = Ãα (t)x (t) + B̃α (t)w (t) , a.e. in [0, 1] ,

0Rnψ = Ψ0x (0) + Ψ1x (1) ,

where

Ãα (·) := Af (·)− (Bf (·) , Cf (·) ,0nx×nc)Eα (·)h
(
Ag (·)
Ac (·)

)
,

B̃α (·) := (Bf (·) , Cf (·) ,0nx×nc)
(
Iny+nu+nc − Eα (·)hEα (·)

)
.

Moreover, we define the Gramian matrix G as

R := Ψ0 + Ψ1ΦÃα (1) ,

S (·) := Ψ1ΦÃα (1) ΦÃα (·)−1 B̃α (·) ,

G := RR> +
1∫

0

S (t)S (t)> dt.

Then, according to Lemma 2.4.3, the following holds:

Lemma 3.1.7
Let (3.1.A1) - (3.1.A3) be satisfied. Then, (3.1.A4) holds, if and only if rank (G) = nψ.
Remark 3.1.8
Similar to Lemma 3.1.5 we can replace

0Rnc = Ac (t)x (t) +Bc (t) y (t) + Cc (t)u (t) +Dα (t) v (t) , a.e. in [0, 1] (3.1.3)

in condition (3.1.A4) with

0Rjα̃(t) = Aα̃c (t)x (t) +Bα̃
c (t) y (t) + Cα̃c (t)u (t) , a.e. in [0, 1] , (3.1.4)
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which yields reduced matrices different from Ãα (·), B̃α (·), and therefore a different Gramian
matrix Ḡ. Since (3.1.1) and (3.1.A3) are equivalent, the Gramian matrix Ḡ exists, if and only if
G exists, which follows from the reduction of the respective linear DAEs (compare Remark 2.4.2).
Using Lemma 2.4.3 and the structure of the Gramian matrices we conclude that the linear DAE
(3.1.2) with (3.1.4) instead of (3.1.3) is completely controllable, if and only if (3.1.A4) holds.
Thus, the result in Theorem 3.1.15 remains valid, if we use this new controllability condition
and (3.1.1) instead of (3.1.A4) and (3.1.A3), respectively. Furthermore, the requirements of
Theorem 3.2.5 can be adjusted in the same way.

In order to derive a local minimum principle for Problem 3.1.1, we consider the following mod-
ification of Problem 3.1.1:

Problem 3.1.9 (Modified Optimal Control Problem)
Let (3.1.A1) - (3.1.A3) hold for constants α, β > 0.

Minimize ϕ (x (0) , x (1)) + 1
2

1∫
0
‖v (t)‖2 dt,

with respect to x ∈Wnx
1,∞ ([0, 1]) , y ∈ Lny∞ ([0, 1]) , u ∈ Lnu∞ ([0, 1]) , v ∈ Lnc∞ ([0, 1]) ,

subject to ẋ (t) = f (x (t) , y (t) , u (t)) , a.e. in [0, 1] ,
0Rny = g (x (t) , y (t) , u (t)) , a.e. in [0, 1] ,
0Rnψ = ψ (x (0) , x (1)) ,
0Rnc ≥ c (x (t) , y (t) , u (t)) +Dα (t) v (t) , a.e. in [0, 1] .

The obvious choice for a weak local minimizer of Problem 3.1.9 would be
(
x̂, ŷ, û,0Lnc∞ ([0,1])

)
,

which we show in the following lemma:

Lemma 3.1.10
Let (3.1.A1) - (3.1.A3) hold for constants α, β > 0. Then,

(
x̂, ŷ, û,0Lnc∞ ([0,1])

)
is a weak local

minimizer of Problem 3.1.9.

Proof. Since
(
x̂, ŷ, û,0Lnc∞ ([0,1])

)
is feasible for Problem 3.1.9, it remains to show (local) opti-

mality. Set ρ := α
2Γ with Γ defined in (3.1.A2), and choose an arbitrary

(x, y, u, v) ∈ Bρ
((
x̂, ŷ, û,0Lnc∞ ([0,1])

))
,

which is admissible for Problem 3.1.9. Note that (x, y, u) satisfies the constraints of Problem
3.1.1, except for the inequality constraints. For almost every t ∈ [0, 1] and each j ∈ Jα (t) it
holds cαj (t) = 0, hence

cj (x (t) , y (t) , u (t)) = cj (x (t) , y (t) , u (t)) + cαj (t) vj (t) ≤ 0.
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In addition, using the mean-value theorem in [59, p. 40] yields

|cj (x (t) , y (t) , u (t)) − cj (x̂ (t) , ŷ (t) , û (t))|

≤ sup
θ∈(0,1)

∣∣∣cj,(x,y,u) ((1− θ) (x (t) , y (t) , u (t)) + θ (x̂ (t) , ŷ (t) , û (t)))
∣∣∣

‖(x (t) , y (t) , u (t))− (x̂ (t) , ŷ (t) , û (t))‖

≤ Γ ‖(x (t) , y (t) , u (t))− (x̂ (t) , ŷ (t) , û (t))‖

≤ Γρ ≤ α

2
for all j ∈ J \ Jα (t), thus cj (x (t) , y (t) , u (t)) ≤ α

2 + cj (x̂ (t) , ŷ (t) , û (t)) < −α
2 < 0 is satisfied

for almost every t ∈ [0, 1]. Consequently, it holds c (x (t) , y (t) , u (t)) ≤ 0Rnc for almost every
t ∈ [0, 1], and therefore (x, y, u) is feasible for Problem 3.1.1.
Now, assume that

(
x̂, ŷ, û,0Lnc∞ ([0,1])

)
is not a weak local minimizer of Problem 3.1.9. Then, for

any ρ̃ ≤ ρ there exists (x̃, ỹ, ũ, ṽ) ∈ Bρ̃
((
x̂, ŷ, û,0Lnc∞ ([0,1])

))
, which is admissible for Problem

3.1.9 and satisfies

ϕ (x̃ (0) , x̃ (1)) + 1
2

1∫
0

‖ṽ (t)‖2 dt < ϕ (x̂ (0) , x̂ (1)) .

It follows that (x̃, ỹ, ũ) is feasible for Problem 3.1.1 and ϕ (x̃ (0) , x̃ (1)) < ϕ (x̂ (0) , x̂ (1)), which
contradicts the (local) optimality of (x̂, ŷ, û). �

Next, we rewrite Problem 3.1.9 as an infinite optimization problem of the form
Problem 3.1.11 (Infinite Optimization Problem)
Let Z, V be spaces, K ⊆ V a cone, and J : Z → R, F : Z → V a functional and operator,
respectively.

Minimize J (z) ,
with respect to z ∈ Z,
subject to F (z) ∈ K,

by defining the following:

Z := Wnx
1,∞ ([0, 1])× Lny∞ ([0, 1])× Lnu∞ ([0, 1])× Lnc∞ ([0, 1]) ,

V := Lnx∞ ([0, 1])× Lny∞ ([0, 1])× Rnψ × Lnc∞ ([0, 1]) ,

K :=
{
0Lnx∞ ([0,1])

}
×
{
0Lny∞

}
× {0Rnψ } ×Kc,

Kc := {kc ∈ Lnc∞ ([0, 1]) | kc (t) ≥ 0Rnc a.e. in [0, 1]} ,

z := (x, y, u, v) , (3.1.5)

J (z) := ϕ (x (0) , x (1)) + 1
2

1∫
0

‖v (t)‖2 dt,

Fα (z) :=


f (x (·) , y (·) , u (·))− ẋ (·)

g (x (·) , y (·) , u (·))
ψ (x (0) , x (1))

−c (x (·) , y (·) , u (·))−Dα (·) v (·)

 .
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Kurcyusz [69] derived necessary conditions for Problem 3.1.11, specifically, the existence of
nontrivial Lagrange multipliers.

Theorem 3.1.12 (Kurcyusz)
Suppose for Problem 3.1.11 the following is satisfied: Z, V are Banach spaces, K ⊆ V is a
closed convex cone with vertex at zero, J : Z → R is Fréchet differentiable, and F : Z → V

is continuously Fréchet differentiable. Furthermore, there exists a local minimizer ẑ ∈ Z and
im (F ′ (ẑ)) = V . Then, there exist nontrivial Lagrange multipliers (`0, `?) ∈ R× V ? satisfying

(`0, `?) 6= (0,0V ?) , `0 ≥ 0, `? ∈ K∗,

`? (F (ẑ)) = 0,

`0J ′ (ẑ) (z)− `?
(
F ′ (ẑ) (z)

)
= 0 for all z ∈ Z.

In order to apply Theorem 3.1.12 for the spaces and functions defined in (3.1.5), and the weak
local minimizer

(
x̂, ŷ, û,0Lnc∞ ([0,1])

)
, it remains to show the surjectivity of the linear operator

Fα′
(
x̂, ŷ, û,0Lnc∞ ([0,1])

)
: Z → V . To that end, we verify that the requirements of Lemma 2.4.10

are satisfied for the linear operator Fα′
(
x̂, ŷ, û,0Lnc∞ ([0,1])

)
:

Lemma 3.1.13
Let (3.1.A1) - (3.1.A4) hold for constants α, β > 0. Then, Fα′

(
x̂, ŷ, û,0Lnc∞ ([0,1])

)
: Z → V is

surjective.

Proof. For an arbitrary z = (x, y, u, v) ∈ Z it holds

Fα′
(
x̂, ŷ, û,0Lnc∞ ([0,1])

)
(z) =


Af (·)x (·) +Bf (·) y (·) + Cf (·)u (·)− ẋ (·)

Ag (·)x (·) +Bg (·) y (·) + Cg (·)u (·)
Ψ0x (0) + Ψ1x (1)

−Ac (·)x (·)−Bc (·) y (·)− Cc (·)u (·)−Dα (·) v (·)

 .

Then, the assumptions (3.1.A3), (3.1.A4) for Eα (·) =
[
Bg (·) Cg (·) 0ny×nc
Bc (·) Cc (·) Dα (·)

]
and this

linearized system correspond to the uniform linear independence condition (i) and the con-
trollability condition (ii) in Definition 2.4.1. Thus, by Lemma 2.4.10 the linear operator
Fα′

(
x̂, ŷ, û,0Lnc∞ ([0,1])

)
is surjective. �

This allows us to apply Theorem 3.1.12. Hence, assumptions (3.1.A1) - (3.1.A4) are sufficient
for the existence of nontrivial Lagrange multipliers (`0, `?) ∈ R×V ? for Problem 3.1.11 with the
functions defined in (3.1.5), and the weak local minimizer

(
x̂, ŷ, û,0Lnc∞ ([0,1])

)
. Unfortunately,

these necessary conditions are impractical, since they involve the functional `? ∈ K∗ ⊂ V ?. Our
objective is to find an explicit representation of this multiplier. To that end, we decompose the
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functional `? into
(
λ?f , λ

?
g,−σ>, η?

)
and consider the variational equation

0 = `0J ′
(
x̂, ŷ, û,0Lnc∞ ([0,1])

)
(z)− `?

(
Fα′

(
x̂, ŷ, û,0Lnc∞ ([0,1])

)
(z)
)

= `0
(
ϕ′x0 (x̂ (0) , x̂ (1))x (0) + ϕ′x1 (x̂ (0) , x̂ (1))x (1)

)
(3.1.6)

− λ?f (Af (·)x (·) +Bf (·) y (·) + Cf (·)u (·)− ẋ (·))

− λ?g (Ag (·)x (·) +Bg (·) y (·) + Cg (·)u (·))

+ σ> (Ψ0x (0) + Ψ1x (1))

+ η? (Ac (·)x (·) +Bc (·) y (·) + Cc (·)u (·) +Dα (·) v (·))

for all z = (x, y, u, v) ∈ Z. Consequently, the following variational equations hold for every
x ∈Wnx

1,∞ ([0, 1]) , y ∈ Lny∞ ([0, 1]) , u ∈ Lnu∞ ([0, 1]) , and v ∈ Lnc∞ ([0, 1]), respectively:

0 = ϑ′x0 (x̂ (0) , x̂ (1) , `0, σ)x (0) + ϑ′x1 (x̂ (0) , x̂ (1) , `0, σ)x (1)

+λ?f (ẋ (·)−Af (·)x (·))− λ?g (Ag (·)x (·)) + η? (Ac (·)x (·)) , (3.1.7)

0 = −λ?f (Bf (·) y (·))− λ?g (Bg (·) y (·)) + η? (Bc (·) y (·)) , (3.1.8)

0 = −λ?f (Cf (·)u (·))− λ?g (Cg (·)u (·)) + η? (Cc (·)u (·)) , (3.1.9)

0 = η? (Dα (·) v (·)) , (3.1.10)

where ϑ (x0, x1, `0, σ) := `0ϕ (x0, x1) + σ>ψ (x0, x1). For arbitrary

af ∈ Lnx∞ ([0, 1]) , ag ∈ Lny∞ ([0, 1]) , ac ∈ Lnc∞ ([0, 1])

we consider the inhomogeneous, linear initial value problem

ẋ (t) = Af (t)x (t) +Bf (t) y (t) + Cf (t)u (t) + af (t) , a.e. in [0, 1] , (3.1.11)

0Rny = Ag (t)x (t) +Bg (t) y (t) + Cg (t)u (t) + ag (t) , a.e. in [0, 1] ,

0Rnx = x (0) ,

ac (t) = Ac (t)x (t) +Bc (t) y (t) + Cc (t)u (t) +Dα (t) v (t) , a.e. in [0, 1] .

This system has the solution

x (·) = ΦÃα (·)
·∫

0

ΦÃα (τ)−1 ãα (τ) dτ,


y (·)
u (·)
v (·)

 = −Eα (·)h
( Ag (·)

Ac (·)

)
ΦÃα (·)

·∫
0

ΦÃα (τ)−1 ãα (τ) dτ −
(

ag (·)
−ac (·)

) ,
where

Ãα (·) = Af (·)− (Bf (·) , Cf (·) ,0nx×nc)Eα (·)h
(
Ag (·)
Ac (·)

)
,

ãα (·) = af (·)− (Bf (·) , Cf (·) ,0nx×nc)Eα (·)h
(

ag (·)
−ac (·)

)
.



3.1. NECESSARY CONDITIONS FOR INDEX ONE PROBLEMS 71

Inserting the relations (3.1.11) for (x, y, u, v) into the variational equation (3.1.6) yields

0 =
(
ϑ′x0 (x̂ (0) , x̂ (1) , `0, σ)x (0) + ϑ′x1 (x̂ (0) , x̂ (1) , `0, σ)x (1)

)
+ λ?f (af (·)) + λ?g (ag (·)) + η? (ac (·))

= ϑ′x1 (x̂ (0) , x̂ (1) , `0, σ) ΦÃα (1)
1∫

0

ΦÃα (t)−1 ãα (t) dt

+ λ?f (af (·)) + λ?g (ag (·)) + η? (ac (·))

= ϑ′x1 (x̂ (0) , x̂ (1) , `0, σ) ΦÃα (1)
1∫

0

ΦÃα (t)−1 af (t) dt

− ϑ′x1 (x̂ (0) , x̂ (1) , `0, σ) ΦÃα (1)
1∫

0

ΦÃα (t)−1 (Bf (t) , Cf (t) ,0nx×nc)Eα (t)h
(

ag (t)
−ac (t)

)
dt

+ λ?f (af (·)) + λ?g (ag (·)) + η? (ac (·)) .

Defining the multipliers

λf (·)> := ϑ′x1 (x̂ (0) , x̂ (1) , `0, σ) ΦÃα (1) ΦÃα (·)−1 ,

λg (·)> := −λf (·)> (Bf (t) , Cf (·) ,0nx×nc)Eα (·)h
(

Iny
0nc×ny

)
,

η (·)> := −λf (·)> (Bf (t) , Cf (·) ,0nx×nc)Eα (·)h
(

0ny×nc
Inc

)
,

results in

λ?f (af (·)) + λ?g (ag (·)) + η? (ac (·)) =

−
1∫

0

λf (t)> af (t) dt−
1∫

0

λg (t)> ag (t) dt+
1∫

0

η (t)> ac (t) dt.

Hence, we obtain the explicit representations

λ?f (af (·)) = −
1∫

0

λf (t)> af (t) dt,

λ?g (ag (·)) = −
1∫

0

λg (t)> ag (t) dt,

η? (ac (·)) =
1∫

0

η (t)> ac (t) dt,

with λf ∈ Wnx
1,∞ ([0, 1]) , λg ∈ L

ny
∞ ([0, 1]) , and η ∈ Lnc∞ ([0, 1]). Let us denote the (augmented)

Hamilton function by

H : Rnx × Rny × Rnu × Rnx × Rny × Rnc → R,

H (x, y, u, λf , λg, η) := λ>f f (x, y, u) + λ>g g (x, y, u) + η>c (x, y, u) . (3.1.12)
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Investigating (3.1.7) for an arbitrary x ∈Wnx
1,∞ ([0, 1]) yields

0 = ϑ′x0 (x̂ (0) , x̂ (1) , `0, σ)x (0) + ϑ′x1 (x̂ (0) , x̂ (1) , `0, σ)x (1)

+ λ?f (ẋ (·)−Af (·)x (·))− λ?g (Ag (·)x (·)) + η? (Ac (·)x (·))

= ϑ′x0 (x̂ (0) , x̂ (1) , `0, σ)x (0) + ϑ′x1 (x̂ (0) , x̂ (1) , `0, σ)x (1)

−
1∫

0

λf (t)> ẋ (t) dt+
1∫

0

∇xH [t]> x (t) dt

= ϑ′x0 (x̂ (0) , x̂ (1) , `0, σ)x (0) + ϑ′x1 (x̂ (0) , x̂ (1) , `0, σ)x (1)

−
[
λf (t)> x (t)

]1
0

+
1∫

0

(
λ̇f (t) +∇xH [t]

)>
x (t) dt

=
(
λf (0)> + ϑ′x0 (x̂ (0) , x̂ (1) , `0, σ)

)
x (0) (3.1.13)

+
(
−λf (1)> + ϑ′x1 (x̂ (0) , x̂ (1) , `0, σ)

)
x (1)

+
1∫

0

(
λ̇f (t) +∇xH [t]

)>
x (t) dt,

where H [·] = H (x̂ (·) , ŷ (·) , û (·) , λf (·) , λg (·) , η (·)). By the same token, using (3.1.8), (3.1.9),
and (3.1.10) leads to

0 =
1∫

0

∇yH [t]> y (t) dt, 0 =
1∫

0

∇uH [t]> u (t) dt, 0 =
1∫

0

η (t)>Dα (t) v (t) dt, (3.1.14)

for all y ∈ Lny∞ ([0, 1]) , u ∈ Lnu∞ ([0, 1]) , and v ∈ Lnc∞ ([0, 1]), respectively. Applying Lemma A.11
for x ∈Wnx

1,∞ ([0, 1]) with x (0) = x (1) = 0Rnx to (3.1.13) yields

0Rnx = λ̇f (t) +∇xH [t] , a.e. in [0, 1] .

Then, choosing variations of (3.1.13) with x (0) = 0Rnx , x (1) 6= 0Rnx and vice versa results in

0Rnx = λf (0) +∇x0ϑ (x̂ (0) , x̂ (1) , `0, σ) ,

0Rnx = −λf (1) +∇x1ϑ (x̂ (0) , x̂ (1) , `0, σ) .

Since Wn
1,∞ ([0, 1]) ⊂ Ln∞ ([0, 1]), we can apply Lemma A.11 to (3.1.14) and obtain

0Rny = ∇yH [t] , 0Rnu = ∇uH [t] , 0Rnc = Dα (t) η (t) , a.e. in [0, 1] .

Finally, we investigate the complementarity condition

`?
(
Fα

((
x̂, ŷ, û,0Lnc∞ ([0,1])

)))
= 0, `? ∈ K∗,
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which according to the explicit representation of the multipliers satisfies

0 = `?
(
Fα

((
x̂, ŷ, û,0Lnc∞ ([0,1])

)))
= −η? (c (x̂ (·) , ŷ (·) , û (·)))

= −
1∫

0

η (t)> c [t] dt, (3.1.15)

0 ≤ η? (kc) =
1∫

0

η (t)> kc (t) dt

for all kc ∈ Kc, i.e., kc ∈ Lnc∞ ([0, 1]) with kc (t) ≥ 0Rnc almost everywhere in [0, 1]. Applying
Lemma A.12 yields η (t) ≥ 0Rnc for almost every t ∈ [0, 1], and therefore −η (t)> c [t] ≥ 0Rnc

almost everywhere in [0, 1]. Thus, (3.1.15) implies η (t)> c [t] = 0Rnc for almost every t ∈ [0, 1].
We summarize the results in the following theorem:
Theorem 3.1.14
Let (3.1.A1) - (3.1.A4) hold for constants α, β > 0. Then, there exist multipliers

`0 ∈ R, λf ∈Wnx
1,∞ ([0, 1]) , λg ∈ Lny∞ ([0, 1]) , σ ∈ Rnψ , η ∈ Lnc∞ ([0, 1])

associated with the weak local minimizer
(
x̂, ŷ, û,0Lnc∞ ([0,1])

)
of Problem 3.1.9 such that the fol-

lowing holds with the Hamilton function defined in (3.1.12):

(i) `0 ≥ 0, (`0, λf , λg, σ, η) 6= 0.

(ii) Adjoint DAE: Almost everywhere in [0, 1] it holds

λ̇f (t) = −∇xH (x̂ (t) , ŷ (t) , û (t) , λf (t) , λg (t) , η (t)) ,

0Rny = ∇yH (x̂ (t) , ŷ (t) , û (t) , λf (t) , λg (t) , η (t)) .

(iii) Transversality conditions:

λf (0) = −`0∇x0ϕ (x̂ (0) , x̂ (1))− ψ′x0 (x̂ (0) , x̂ (1))> σ,

λf (1) = `0∇x1ϕ (x̂ (0) , x̂ (1)) + ψ′x1 (x̂ (0) , x̂ (1))> σ.

(iv) Stationarity of Hamilton function: Almost everywhere in [0, 1] it holds

0Rnu = ∇uH (x̂ (t) , ŷ (t) , û (t) , λf (t) , λg (t) , η (t)) .

(v) Complementarity condition: Almost everywhere in [0, 1] it holds

η (t) ≥ 0Rnc , 0 = η (t)> c (x̂ (t) , ŷ (t) , û (t)) , 0Rnc = Dα (t) η (t) .

Now, it remains to show that the multipliers for the modified problem in Theorem 3.1.14 asso-
ciated with the weak local minimizer

(
x̂, ŷ, û,0Lnc∞ ([0,1])

)
coincide with Lagrange multipliers for

Problem 3.1.1 associated with (x̂, ŷ, û), which yields the main result of this section:
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Theorem 3.1.15 (Local Minimum Principle for Problem 3.1.1)
Let (3.1.A1) - (3.1.A4) hold for constants α, β > 0. Then, there exist multipliers

ˆ̀0 ∈ R, λ̂f ∈Wnx
1,∞ ([0, 1]) , λ̂g ∈ Lny∞ ([0, 1]) , σ̂ ∈ Rnψ , η̂ ∈ Lnc∞ ([0, 1])

associated with the weak local minimizer (x̂, ŷ, û) of Problem 3.1.1 such that the following holds
with the Hamilton function defined in (3.1.12):

(i) ˆ̀0 ≥ 0,
(

ˆ̀0, λ̂f , λ̂g, σ̂, η̂
)
6= 0.

(ii) Adjoint DAE: Almost everywhere in [0, 1] it holds

˙̂
λf (t) = −∇xH

(
x̂ (t) , ŷ (t) , û (t) , λ̂f (t) , λ̂g (t) , η̂ (t)

)
,

0Rny = ∇yH
(
x̂ (t) , ŷ (t) , û (t) , λ̂f (t) , λ̂g (t) , η̂ (t)

)
.

(iii) Transversality conditions:

λ̂f (0) = −`0∇x0ϕ (x̂ (0) , x̂ (1))− ψ′x0 (x̂ (0) , x̂ (1))> σ̂,

λ̂f (1) = `0∇x1ϕ (x̂ (0) , x̂ (1)) + ψ′x1 (x̂ (0) , x̂ (1))> σ̂.

(iv) Stationarity of Hamilton function: Almost everywhere in [0, 1] it holds

0Rnu = ∇uH
(
x̂ (t) , ŷ (t) , û (t) , λ̂f (t) , λ̂g (t) , η̂ (t)

)
.

(v) Complementarity condition: Almost everywhere in [0, 1] it holds

η̂ (t) ≥ 0Rnc , 0 = η̂ (t)> c (x̂ (t) , ŷ (t) , û (t)) .

Proof. We show that (`0, λf , λg, σ, η) is a Lagrange multiplier associated with the weak local
minimizer

(
x̂, ŷ, û,0Lnc∞ ([0,1])

)
of Problem 3.1.9, if and only if it is a Lagrange multiplier associated

with the weak local minimizer (x̂, ŷ, û) of Problem 3.1.1.
Clearly, if (`0, λf , λg, σ, η) satisfies (i)−(v) in Theorem 3.1.14, it also satisfies (i)−(v) in Theorem
3.1.15. For the opposite direction we only need to verify that, if (`0, λf , λg, σ, η) is a Lagrange
multiplier associated with (x̂, ŷ, û), then it holds

0Rnc = Dα (t) η (t) , a.e. in [0, 1] .

We recall Dα (·) = diag
[
cαj (·)

]
j∈J

, cαj (·) = min {cj [·] + α, 0}. Then, for almost every t ∈ [0, 1]
and each j ∈ Jα (t) it holds cαj (t) = 0, hence cαj (t) ηj (t) = 0. On the other hand, for each
j ∈ J \ Jα (t) we have cj [t] < −α, and therefore, by (v), we obtain 0 = ηj (t) = cαj (t) ηj (t) for
almost every t ∈ [0, 1], which proves the assertion. �

As described in Remark 3.1.6 and Remark 3.1.8 one could substitute assumptions (3.1.A3) and
(3.1.A4) in Theorem 3.1.15 for (3.1.1) in Lemma 3.1.5 and the controllability condition depicted
in Remark 3.1.8, respectively.
The assumptions in Theorem 3.1.15 are actually sufficient for a stronger result, in particular,
the existence of Lagrange multipliers with ˆ̀0 > 0.
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Corollary 3.1.16 (Constraint Qualification)
Let (3.1.A1) - (3.1.A4) hold for constants α, β > 0. Then, the conditions in Theorem 3.1.15
(and Theorem 3.1.14, respectively) hold for ˆ̀0 > 0.
Proof. Suppose the contrary is true, i.e., (i) − (v) hold for ˆ̀0 = 0. Then, (ii), (iv), and
0Rnc = Dα (t) η (t) for almost every t ∈ [0, 1] imply

0Rny+nu+nc =


Bf (t)>

Cf (t)>

0nc×nx

 λ̂f (t) + Eα (t)>
(
λ̂g (t)
η̂ (t)

)
, a.e. in [0, 1] .

Consequently, it holds

(
λ̂g (t)
η̂ (t)

)
= −

(
Eα (t)h

)> 
Bf (t)>

Cf (t)>

0nc×nx

 λ̂f (t) , (3.1.16)

0Rny+nu+nc =
(
Iny+nu+nc − Eα (t)hEα (t)

)> 
Bf (t)>

Cf (t)>

0nc×nx

 λ̂f (t)

= B̃α (t)> λ̂f (t) (3.1.17)

for almost every t ∈ [0, 1]. Inserting
(
λ̂g (·)
η̂ (·)

)
into (ii) yields the differential equation

˙̂
λf (t) = −Ãα (t)> λ̂f (t) , a.e. in [0, 1]

with the solution
λ̂f (·) =

(
ΦÃα (·)>

)−1
λ̂f (0) . (3.1.18)

Since ˆ̀0 = 0 the transversality conditions

λ̂f (0) = −Ψ>0 σ̂, (3.1.19)

λ̂f (1) = Ψ>1 σ̂,

are satisfied. Together with (3.1.18) this result in

Ψ>1 σ̂ =
(
ΦÃα (1)>

)−1
λ̂f (0) = −

(
ΦÃα (1)>

)−1
Ψ>0 σ̂,

and therefore 0Rnψ =
(
Ψ>0 σ̂ + ΦÃα (1)>Ψ>1 σ̂

)
= R>σ̂. Moreover, for almost every t ∈ [0, 1] it

holds

S (t)> σ̂ = B̃α (t)>
(
ΦÃα (t)−1

)>
ΦÃα (1)>Ψ>1 σ̂

= B̃α (t)>
(
ΦÃα (t)−1

)>
ΦÃα (1)> λ̂f (1)

= B̃α (t)>
(
ΦÃα (t)−1

)>
λ̂f (0)

= B̃α (t)> λ̂f (t) = 0Rny+nu+nc .
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We conclude Gσ̂ = RR>σ̂ +
1∫
0
S (t)S (t)> σ̂dt = 0Rnψ . According to Lemma 3.1.7, the matrix

G is non-singular, thus σ̂ = 0Rnψ . Then, (3.1.18), (3.1.19) imply λ̂f (t) = 0Rnx for all t ∈ [0, 1],

and therefore, by (3.1.16), we also have
(
λ̂g (t)
η̂ (t)

)
= 0Rny+nc for almost every t ∈ [0, 1]. This

contradicts
(

ˆ̀0, λ̂f , λ̂g, σ̂, η̂
)
6= 0, which proves the assertion. �

3.2 Necessary Conditions for Higher Index Problems
Consider the following optimal control problem:
Problem 3.2.1 (Optimal Control Problem with Higher Index Hessenberg DAE)

Let k ∈ N, k ≥ 2, nx1 , . . . , nxk−1 , ny, nu, nψ, nc ∈ N, and nx :=
k−1∑
i=1

nxi with (k − 1)ny ≤ nx,

nψ + (k − 1)ny ≤ 2nx, nc ≤ nu. Let

ϕ : Rnx × Rnx → R, ψ : Rnx × Rnx → Rnψ ,

f1 :
k−1
×
l=1

Rnxl × Rny × Rnu → Rnx , fi :
k−1
×
l=i−1

Rnxl → Rxi , i = 2, . . . , k − 1,

g : Rnxk−1 → Rny , c :
k−1
×
l=1

Rnxl × Rny × Rnu → Rnc ,

be functions.

Minimize ϕ (x (0) ,x (1)) ,

with respect to x = (x1, . . . , xk−1) ∈
k−1
×
i=1

W
nxi
i,∞ ([0, 1]) , y ∈ Lny∞ ([0, 1]) , u ∈ Lnu∞ ([0, 1]) ,

subject to ẋ1 (t) = f1 (x1 (t) , . . . , xk−1 (t) , y (t) , u (t)) , a.e. in [0, 1] ,
ẋ2 (t) = f2 (x1 (t) , . . . , xk−1 (t)) , in [0, 1] ,
ẋ3 (t) = f3 (x2 (t) , . . . , xk−1 (t)) , in [0, 1] ,

...
ẋk−1 (t) = fk−1 (xk−2 (t) , xk−1 (t)) , in [0, 1] ,

0Rny = g (xk−1 (t)) , in [0, 1] ,
0Rnψ = ψ (x (0) ,x (1)) ,
0Rnc ≥ c (x1 (t) , . . . , xk−1 (t) , y (t) , u (t)) , a.e. in [0, 1] .

Note that the smoothness assumption xi ∈ W
nxi
i,∞ ([0, 1]) for i = 2, . . . , k − 1 is not restric-

tive, since the smoothness follows automatically from the structure of the Hessenberg DAE and
x1 ∈W

nx1
1,∞ ([0, 1]). Usually, the semi-explicit DAE in Problem 3.2.1 is called Hessenberg DAE of

order k, if the (k − 1)-st derivative of the algebraic equation 0Rny = g (xk−1 (t)) with respect to
t is implicitly solvable for the algebraic variable y. To that end, the functions in Problem 3.2.1
need to be sufficiently smooth, therefore we assume the following:
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Assumption 3.2.2

(3.2.A1) (Existence of a Minimizer)

Let (x̂, ŷ, û) ∈
k−1
×
i=1

W
nxi
i,∞ ([0, 1]) × L

ny
∞ ([0, 1]) × Lnu∞ ([0, 1]) be a weak local minimizer of

Problem 3.2.1.

(3.2.A2) (Smoothness of the System)

(a) ϕ and ψ are continuously differentiable with respect to all arguments.
(b) For a sufficiently large convex compact neighborhood M1 of{

(x̂1 (t) , . . . , x̂k−1 (t) , ŷ (t) , û (t)) ∈
k−1×
i=1

Rnxi × Rny × Rnu | t ∈ [0, 1]
}
,

let the mappings

(x1, . . . , xk−1, y, u) 7→ f1 (x1, . . . , xk−1, y, u) ,

(x1, . . . , xk−1, y, u) 7→ c (x1, . . . , xk−1, y, u) ,

be continuously differentiable, and the derivatives

f ′1,(x1,...,xk−1,y,u), c′(x1,...,xk−1,y,u),

be bounded in M1. Furthermore, for i = 2, . . . , k − 1 and sufficiently large convex
compact neighborhoods Mi of{

(x̂i−1 (t) , . . . , x̂k−1 (t)) ∈
k−1×
l=i−1

Rnxl | t ∈ [0, 1]
}
,

let the mappings

(xi−1, . . . , xk−1) 7→ fi (xi−1, . . . , xk−1) ,

be i-times continuously differentiable, and the derivatives

∂fi (xi−1, . . . , xk−1)
∂ (xi−1, . . . , xk−1) ,

∂2fi (xi−1, . . . , xk−1)
(∂ (xi−1, . . . , xk−1))2 , . . . ,

∂ifi (xi−1, . . . , xk−1)
(∂ (xi−1, . . . , xk−1))i

,

be bounded in Mi. For a sufficiently large convex compact neighborhood Mk of

{x̂k−1 (t) ∈ Rnk−1 | t ∈ [0, 1]} ,

let the mapping

xk−1 7→ g (xk−1) ,

be k-times continuously differentiable, and the derivatives

∂gi (xk−1)
∂xk−1

,
∂2gi (xk−1)
(∂xk−1)2 , . . . ,

∂kgi (xk−1)
(∂xk−1)k

,

be bounded in Mk.
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Something that occurs in higher index DAEs are the so called hidden constraints, i.e., not only
does the algebraic constraint 0Rny = g (xk−1 (t)) for t ∈ [0, 1] hold, but also derivatives of
g (xk−1 (t)) with respect to t up to the (k − 1)-st derivative vanish. For t ∈ [0, 1] we denote

gk−1 (xk−1 (t)) := g (xk−1 (t)) ,

gk−2 (xk−2 (t) , xk−1 (t)) := d

dt
g (xk−1 (t)) = g′ (xk−1 (t)) fk−1 (xk−2 (t) , xk−1 (t)) ,

gk−3 (xk−3 (t) , xk−2 (t) , xk−1 (t)) := d

dt
gk−2 (xk−2 (t) , xk−1 (t))

= g′k−2,xk−2 (xk−2 (t) , xk−1 (t))

fk−2 (xk−3 (t) , xk−2 (t) , xk−1 (t))

+ g′k−2,xk−1 (xk−2 (t) , xk−1 (t)) fk−1 (xk−2 (t) , xk−1 (t)) ,
...

g1 (x1 (t) , x2 (t) , . . . , xk−1 (t)) := d

dt
g2 (x2 (t) , x3 (t) , . . . , xk−1 (t))

=
k−1∑
i=2

g′2,xi (x2 (t) , x3 (t) , . . . , xk−1 (t))

fi (xi−1 (t) , xi (t) , . . . , xk−1 (t)) ,

and for almost every t ∈ [0, 1] we define

g0 (x1 (t) , . . . , xk−1 (t) , y (t) , u (t)) := d

dt
g1 (x1 (t) , x2 (t) , . . . , xk−1 (t))

=
k−1∑
i=2

g′1,xi (x1 (t) , x2 (t) , . . . , xk−1 (t))

fi (xi−1 (t) , xi (t) , . . . , xk−1 (t))

+ g′1,x1 (x1 (t) , x2 (t) , . . . , xk−1 (t))

f1 (x1 (t) , . . . , xk−1 (t) , y (t) , u (t)) .

Then, the Hessenberg DAE has index k, if the matrix function

g′0,y (·) = gk−1,xk−1 (·) fk−1,xk−2 (·) fk−2,xk−3 (·) · · · f2,x1 (·) f1,y (·)

is non-singular and the inverse is essentially bounded along a trajectory. Analog to the index one
case in Section 3.1, we will later combine the index condition of the algebraic equation with the
regularity of the mixed control-state constraints. Instead of considering the Hessenberg DAE of
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order k, it is possible to reduce the index of the DAE to one. To that end, we denote

x[i] :=


xi

xi+1
...

xk−1

 , i = 1, . . . , k − 1,

f (x, y, u) :=



f1
(
x[1], y, u

)
f2
(
x[1]

)
f3
(
x[2]

)
...

fk−1
(
x[k−2]

)


, g (x) :=



g1
(
x[1]

)
g2
(
x[2]

)
g3
(
x[3]

)
...

gk−1
(
x[k−1]

)


,

which yields the index reduced system defined by

ẋ (t) = f (x (t) , y (t) , u (t)) , a.e. in [0, 1] ,
0Rny = g0 (x (t) , y (t) , u (t)) , a.e. in [0, 1] ,

0R(k−1)ny = g (x (0)) ,
0Rnψ = ψ (x (0) ,x (1)) ,
0Rnc ≥ c (x (t) , y (t) , u (t)) , a.e. in [0, 1] .

(3.2.1)

In the following, we will prove that (3.2.1) is indeed equivalent to the system in Problem 3.2.1:

Lemma 3.2.3
(x, y, u) ∈

k−1
×
i=1

W
nxi
i,∞ ([0, 1]) × L

ny
∞ ([0, 1]) × Lnu∞ ([0, 1]) is a solution of the system in Problem

3.2.1, if and only if it is a solution of the reduced system (3.2.1).

Proof. It remains to show that, if (x, y, u) satisfies

0Rny = g0 (x (t) , y (t) , u (t)) , a.e. in [0, 1] ,
0R(k−1)ny = g (x (0)) ,

then 0Rny = g (xk−1 (t)) holds in [0, 1]. Defining the function g̃ (·) := g (xk−1 (·)) ∈Wny
k−1,∞ ([0, 1])

and exploiting the Taylor expansion at t = 0 yields

g̃ (t) = g̃ (0) + g̃′ (0) t+ 1
2 g̃
′′ (0) t2 + . . .+ 1

(k − 2)! g̃
(k−2) (0) tk−2

+
t∫

0

(t− τ)k−2

(k − 2)! g̃(k−1) (τ) dτ
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for all t ∈ [0, 1]. Moreover, since g̃(i) (·) = gk−1−i
(
x[k−1−i]

)
holds for i = 0, 1, . . . , k − 2 and

g̃(k−1) (·) = g0 (x (·) , y (·) , u (·)), we obtain

0Rny = g0 (x (t) , y (t) , u (t)) = g̃(k−1) (t) , a.e. in [0, 1] ,

0R(k−1)ny = g (x (0)) =



g̃(k−2) (0)
g̃(k−3) (0)

...
g̃′ (0)
g̃ (0)


,

and therefore 0Rny = g̃ (t) = g (xk−1 (t)) in [0, 1], which proves the assertion. �

This allows us to consider Problem 3.2.1 subject to the index reduced system (3.2.1). Thus,
we can deduce a local minimum principle for Problem 3.2.1 by applying the results in Theorem
3.1.15. Therefore, the same way as in Section 3.1, we abbreviate the derivatives at the minimizer
by

Af (·) := f ′x [·] , Bf (·) := f ′y [·] , Cf (·) := f ′u [·] ,
Ag0 (·) := g′0,x [·] , Bg0 (·) := g′0,y [·] , Cg0 (·) := g′0,u [·] ,

Ψg
0 :=

[
g′ [0]

ψ′x0 (x̂ (0) , x̂ (1))

]
, Ψg

1 :=
[

0(k−1)ny×nx

ψ′x1 (x̂ (0) , x̂ (1))

]
,

Ac (·) := c′x [·] , Bc (·) := c′y [·] , Cc (·) := c′u [·] ,

and define

cαj (·) := min {cj [·] + α, 0} , j ∈ J,

Dα (·) := diag
[
cαj (·)

]
j∈J

,

Eα0 (·) :=
[
Bg0 (·) Cg0 (·) 0ny×nc
Bc (·) Cc (·) Dα (·)

]

for a constant α ≥ 0. Note that in application it might be necessary to eliminate redundant
boundary conditions in (3.2.1). Otherwise, the associated Gramian matrix is singular, and
therefore, by Lemma 2.4.3, the following controllability assumption will not hold:
Assumption 3.2.4 (Linear Independence, Controllability)

(3.2.A3) (Index k / Regularity Condition)
There exist constants α > 0 and β > 0 such that for all $ ∈ Rny+nc it holds∥∥∥Eα0 (t)>$

∥∥∥ ≥ β ‖$‖ , a.e. in [0, 1] .
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(3.2.A4) (Controllability)
For any e ∈ R(k−1)ny+nψ there exists

(x, y, u, v) ∈
k−1×
i=1

W
nxi
i,∞ ([0, 1])× Lny∞ ([0, 1])× Lnu∞ ([0, 1])× Lnc∞ ([0, 1])

such that the DAE

ẋ (t) = Af (t)x (t) +Bf (t) y (t) + Cf (t)u (t) , a.e. in [0, 1] ,

0Rny = Ag0 (t)x (t) +Bg0 (t) y (t) + Cg0 (t)u (t) , a.e. in [0, 1] ,

e = Ψg
0x (0) + Ψg

1x (1) ,

0Rnc = Ac (t)x (t) +Bc (t) y (t) + Cc (t)u (t) +Dα (t) v (t) , a.e. in [0, 1] ,

is satisfied.

For the same reasons described in Remark 3.1.4 we combined the index property of the DAE
with the regularity of the inequality constraint in (3.2.A3). With the (augmented) Hamilton
function defined by

H :
k−1×
l=1

Rnxl × Rny × Rnu ×
k−1×
l=1

Rnxl × Rny × Rnc → R,

H (x, y, u,λf , λg0 , η) := λ>f f (x, y, u) + λ>g0g0 (x, y, u) + η>c (x, y, u) ,

where λf =
(
λf1 , . . . , λfk−1

)
, we apply Theorem 3.1.15 and Lemma 3.1.16 to Problem 3.2.1

subject to the reduced system (3.2.1), which yields the main result of this section:
Theorem 3.2.5 (Local Minimum Principle for Problem 3.2.1)
Let (3.2.A1) - (3.2.A4) hold for constants α, β > 0. Then, there exist multipliers

ˆ̀0 ∈ R, λ̂f =
(
λ̂f1 , . . . , λ̂fk−1

)
∈
k−1×
l=1

W
nxl
1,∞ ([0, 1]) , λ̂g0 ∈ Lny∞ ([0, 1]) ,

σ̂ψ ∈ Rnψ , σ̂g ∈ R(k−1)ny , η̂ ∈ Lnc∞ ([0, 1])

associated with the weak local minimizer (x̂, ŷ, û) of Problem 3.2.1 such that:

(i) ˆ̀0 = 1.

(ii) Adjoint DAE: Almost everywhere in [0, 1] it holds

˙̂
λf1 (t) = −∇x1H

(
x̂ (t) , ŷ (t) , û (t) , λ̂f (t) , λ̂g0 (t) , η̂ (t)

)
,

˙̂
λf2 (t) = −∇x2H

(
x̂ (t) , ŷ (t) , û (t) , λ̂f (t) , λ̂g0 (t) , η̂ (t)

)
,

...
˙̂
λfk−1 (t) = −∇xk−1H

(
x̂ (t) , ŷ (t) , û (t) , λ̂f (t) , λ̂g0 (t) , η̂ (t)

)
,

0Rny = ∇yH
(
x̂ (t) , ŷ (t) , û (t) , λ̂f (t) , λ̂g0 (t) , η̂ (t)

)
.
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(iii) Transversality conditions:

λ̂f (0) = −∇x0ϕ (x̂ (0) , x̂ (1))− ψ′x0 (x̂ (0) , x̂ (1))> σ̂ψ − g′ (x̂ (0))> σ̂g,

λ̂f (1) = ∇x1ϕ (x̂ (0) , x̂ (1)) + ψ′x1 (x̂ (0) , x̂ (1))> σ̂ψ.

(iv) Stationarity of Hamilton function: Almost everywhere in [0, 1] it holds

0Rnu = ∇uH
(
x̂ (t) , ŷ (t) , û (t) , λ̂f (t) , λ̂g0 (t) , η̂ (t)

)
.

(v) Complementarity condition: Almost everywhere in [0, 1] it holds

η̂ (t) ≥ 0Rnc , 0 = η̂ (t)> c (x̂ (t) , ŷ (t) , û (t)) .

Note that λ̂f is only Lipschitz continuous and not as smooth as the differential state x̂. Moreover,
the assumptions (3.2.A3) and (3.2.A4) in Theorem 3.2.5 could be substituted for conditions
analog to the ones described in Lemma 3.1.5 / Remark 3.1.6 and Remark 3.1.8, respectively.

3.3 Example
In order to illustrate that a potential solution of an optimal control problem can be obtained
from the local minimum principles in Theorem 3.1.15 / Theorem 3.2.5, we consider the following
variation of the minimum energy problem:
Example 3.3.1

Minimize x4 (1) ,
subject to ẋ1 (t) = u (t)− y (t) , 0 = x1 (0) , 0 = x1 (1) ,

ẋ2 (t) = u (t) , 0 = x2 (0)− 1, 0 = x2 (1) + 1,
ẋ3 (t) = −x2 (t) ,
ẋ4 (t) = 1

2u (t)2 , 0 = x4 (0) ,
0 = x1 (t) + x3 (t) .

Herein, the DAE has index two, since we can (explicitly) solve the hidden constraint

0 = ẋ1 (t) + ẋ3 (t) = u (t)− y (t)− x2 (t)

for the algebraic variable y. Replacing the algebraic constraint with the hidden constraint and
adding the initial condition 0 = x1 (0) + x3 (0) yields the reduced system

Minimize x4 (1) ,
subject to ẋ1 (t) = u (t)− y (t) , 0 = x1 (0) , 0 = x1 (1) ,

ẋ2 (t) = u (t) , 0 = x2 (0)− 1, 0 = x2 (1) + 1,
ẋ3 (t) = −x2 (t) ,
ẋ4 (t) = 1

2u (t)2 , 0 = x4 (0) ,
0 = u (t)− y (t)− x2 (t) ,
0 = x1 (0) + x3 (0) .
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Then, by Theorem 3.2.5, the necessary conditions (for `0 = 1) can be expressed as

λ̇f1 (t) = 0, λf1 (0) = −σ1,

λ̇f2 (t) = λf3 (t) + λg (t) , λf2 (0) = −σ2,

λ̇f3 (t) = 0, λf3 (1) = 0,
λ̇f4 (t) = 0, λf4 (1) = 1,

0 = −λf1 (t)− λg (t) ,
0 = λf1 (t) + λf2 (t) + λf4 (t)u (t) + λg (t) ,

where we neglected some of the redundant transversality conditions. These KKT-conditions
have the solution

x1 (t) = −t2 + t, λf1 (t) = 0,
x2 (t) = −2t+ 1, λf2 (t) = 2,
x3 (t) = t2 − t, λf3 (t) = 0,
x4 (t) = 2t, λf4 (t) = 1,
y (t) = 2t− 3, λg (t) = 0,
u (t) = −2.

Furthermore, we check, if the conditions (3.2.A3), (3.2.A4) hold. To that end, we compute the
(constant) matrices

Af =


0 0 0 0
0 0 0 0
0 −1 0 0
0 0 0 0

 , Bf =


−1
0
0
0

 , Cf =


1
1
0
−2

 ,

Ag0 = (0,−1, 0, 0) , Bg0 = −1, Cg0 = 1,

Ψg
0 =



1 0 1 0
1 0 0 0
0 1 0 0
0 0 0 1
0 0 0 0
0 0 0 0


, Ψg

1 =



0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
1 0 0 0
0 1 0 0


.

(3.2.A3) is satisfied, since

∥∥∥[Bg0 , Cg0 ]>$
∥∥∥ =

∥∥∥∥∥
(
−1
1

)
$

∥∥∥∥∥ =
√

2 |$| for all $ ∈ R.
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The linear system in (3.2.A4) has the associated Gramian matrix

G =



2 1 0 0 1 0
1 1 0 0 1 0
0 0 1 0 2 exp

(
1
2

)
− 2 exp

(
1
2

)
0 0 0 1 0 0
1 1 2 exp

(
1
2

)
− 2 0 6 exp (1)− 16 exp

(
1
2

)
+ 13 3 exp (1)− 4 exp

(
1
2

)
+ 1

0 0 exp
(

1
2

)
0 3 exp (1)− 4 exp

(
1
2

)
+ 1 3 exp(1)−1

2


,

which is non-singular, and therefore, by Lemma 2.4.3, condition (3.2.A4) holds.

In this chapter, we derived necessary conditions for optimal control problems subject to Hes-
senberg DAEs of arbitrary order and mixed control-state constraints. The results of [83] were
extended by including boundary conditions and weakening the assumptions, which also hold
for, e.g., box-constraints. We first derived a local minimum principle for the index one case by
modifying the problem, and then showed that higher index DAEs can be reduced to index one,
thus obtaining a local minimum principle for Hessenberg DAEs of arbitrary order.



Chapter 4

Sufficient Conditions

In contrast to nonlinear problems subject to DAEs, sufficient conditions for problems with
explicit ODEs have been well studied. Problems with control constraints are investigated in
[21, 31, 98, 123]. In [92, 93], mixed control-state constraints are considered. Optimal control
problems subject to mixed control-state constraints and pure state constraints are analyzed
in [13, 79, 82, 99, 100], where [13] considers multiple pure state constraints of arbitrary order.
Problems with free final time have been examined in [21,58,93]. Sufficient conditions for strong
local minimizer were discussed in [14, 15]. Second-order sufficient conditions usually include
a continuous control assumption, linear independence of active constraints, and some type of
Legendre-Clebsch condition. Herein, the Legendre-Clebsch condition might include the active
part of the constraints (compare assumption (4.1.A6)), or a strengthened Legendre-Clebsch
condition is used as in [13,91]. If boundary conditions are present, then it is generally assumed
that a rank or controllability condition holds. Furthermore, junction point and complementarity
conditions can occur.

One approach to derive sufficient conditions is to view the optimal control problem as an infinite
optimization problem as in Section 3.1, and apply corresponding results. In the finite dimensional
case (compare Problem 2.3.1), a second-order sufficient condition is the positive definiteness of
the Hessian of the Lagrange function at a KKT-point on a certain cone as in Theorem 2.3.5.
The standard proof techniques rely in a decisive way on the compactness of the unit sphere in
Rn. Unfortunately, this property does not carry over to infinite dimensional spaces. Thus, one
requires stronger conditions for infinite optimization problems, for instance, (uniform) coercivity
of the Hessian of the Lagrange function as in Definition 2.1.8 (cf. [88]). However, something that
occurs in sufficient conditions for optimal control problems is the so called two-norm discrepancy.
In particular, the optimal control problem viewed as an infinite optimization problem is well
defined and differentiable in the L∞-norm, but the (uniform) coercivity condition only holds in
a weaker L2-norm, in which the Lagrange function is not differentiable. In [91], the two-norm
discrepancy is overcome by introducing approximation conditions for the functions, which are
satisfied in the weaker L2-norm.

A different approach to derive second-order sufficient conditions is to use a Hamilton-Jacobi
inequality (cf. [82, 92, 98–100, 123]). Herein, the task is to construct a quadratic function cor-
responding to the optimal control problem, which satisfies the mentioned inequality. One key
assumption in deriving such a function is the existence of a (bounded) solution of a Riccati
equation.

85
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Using the techniques in [92] we aim to construct a quadratic function, which satisfies a Hamilton-
Jacobi inequality. With this approach, we aim to derive second-order sufficient optimality con-
ditions for Problem 3.1.1 and Problem 3.2.1. Thus, we extend the results in [83] by including
boundary conditions, and we generalize the results in [92] by considering problems with DAEs.

4.1 Sufficient Conditions for Index One Problems
Our goal in this section is to construct a quadratic function for Problem 3.1.1

Minimize ϕ (x (0) , x (1)) ,

with respect to x ∈Wnx
1,∞ ([0, 1]) , y ∈ Lny∞ ([0, 1]) , u ∈ Lnu∞ ([0, 1]) ,

subject to ẋ (t) = f (x (t) , y (t) , u (t)) , a.e. in [0, 1] ,
0Rny = g (x (t) , y (t) , u (t)) , a.e. in [0, 1] ,
0Rnψ = ψ (x (0) , x (1)) ,
0Rnc ≥ c (x (t) , y (t) , u (t)) , a.e. in [0, 1] ,

which satisfies a Hamilton-Jacobi inequality. To that end, we define the following sets for an
element (x, y, u) ∈Wnx

1,∞ ([0, 1])× Lny∞ ([0, 1])× Lnu∞ ([0, 1]) and ρ > 0:

B∞ρ (x, y, u) := {(z, w, v) ∈ Lnx∞ ([0, 1])× Lny∞ ([0, 1])× Lnu∞ ([0, 1])

| ‖(z, w, v)− (x, y, u)‖∞ ≤ ρ} ,

Σρ (x (t) , y (t) , u (t)) := Bρ (x (t) , y (t) , u (t))

∩
{

(z, w, v) ∈ Rnx × Rny × Rnu
∣∣∣∣ g (z, w, v) = 0Rny

c (z, w, v) ≤ 0Rnc

}
,

graph (Σρ (x, y, u)) := {(t, z, w, v) ∈ [0, 1]× Rnx × Rny × Rnu

| (z, w, v) ∈ Σρ (x (t) , y (t) , u (t))} ,

Υρ (x0, x1) := Bρ (x0, x1) ∩ {(z0, z1) ∈ Rnx × Rnx | ψ (z0, z1) = 0Rnψ } .

For problems without inequality constraints 0Rnc ≥ c (x (t) , y (t) , u (t)) the Hamilton-Jacobi
equation (cf. [25, 27]) is applicable, i.e., one has to verify the existence of a function V (t, x)
satisfying the partial differential equation

V ′t (t, x) + V ′x (t, x) f (x, y, u) = 0, (4.1.1)

and suitable boundary conditions in order to obtain optimality. In the same way as in [92,
Theorem 3.1], we consider a generalized version of this approach, specifically, a Hamilton-Jacobi
inequality with a quadratic deviation term, where V (t, x) satisfies the equality (4.1.1) along the
(potential) optimal solution (x̂ (t) , ŷ (t) , û (t)). The deviation term yields a quadratic growth
condition for the objective function in the L2-norm.
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Theorem 4.1.1 (Hamilton-Jacobi Inequality)
Let (x̂, ŷ, û) be admissible for Problem 3.1.1 and ŷ, û be continuous on [0, 1]. Suppose there exists
a function V : [0, 1]× Rnx → R, which is piece-wise continuously differentiable with respect to t
and continuously differentiable with respect to x, and there exist constants ρ, γ > 0 such that:

(i) For every (t, x, y, u) ∈ graph (Σρ (x̂, ŷ, û)) it holds

V ′t (t, x) + V ′x (t, x) f (x, y, u) ≥ γ
(
‖x− x̂ (t)‖2 + ‖y − ŷ (t)‖2 + ‖u− û (t)‖2

)
,

and for all t ∈ [0, 1] it holds

V ′t (t, x̂ (t)) + V ′x (t, x̂ (t)) f (x̂ (t) , ŷ (t) , û (t)) = 0.

(ii) For all (x0, x1) ∈ Υρ (x̂ (0) , x̂ (1)) it holds

V (1, x̂ (1))− V (0, x̂ (0))− [V (1, x1)− V (0, x0)] + ϕ (x0, x1)− ϕ (x̂ (0) , x̂ (1))

≥ γ
(
‖x0 − x̂ (0)‖2 + ‖x1 − x̂ (1)‖2

)
.

Then, the optimality condition

ϕ (x (0) , x (1)) ≥ ϕ (x̂ (0) , x̂ (1)) + γ
[
‖(x, y, u)− (x̂, ŷ, û)‖22 + ‖(x (0) , x (1))− (x̂ (0) , x̂ (1))‖2

]
is satisfied for all admissible (x, y, u) ∈ B∞ρ (x̂, ŷ, û).
Proof. Let (x, y, u) ∈ B∞ρ (x̂, ŷ, û) be feasible for Problem 3.1.1. Then, it holds

0 =
1∫

0

d

dt
[V (t, x (t))− V (t, x̂ (t))]− d

dt
[V (t, x (t))− V (t, x̂ (t))] dt

=
1∫

0

V ′t (t, x (t)) + V ′x (t, x (t)) f (x (t) , y (t) , u (t))

−V ′t (t, x̂ (t))− V ′x (t, x̂ (t)) f (x̂ (t) , ŷ (t) , û (t)) dt

− [V (t, x (t))− V (t, x̂ (t))]t=1
t=0

(i)
≥ γ ‖(x, y, u)− (x̂, ŷ, û)‖22 + V (1, x̂ (1))− V (0, x̂ (0))− [V (1, x (1))− V (0, x (0))]
(ii)
≥ −ϕ (x (0) , x (1)) + ϕ (x̂ (0) , x̂ (1))

+γ
[
‖(x, y, u)− (x̂, ŷ, û)‖22 + ‖(x (0) , x (1))− (x̂ (0) , x̂ (1))‖2

]
,

which proves the assertion. �

In order to derive second-order sufficient conditions for Problem 3.1.1, we use the following
scheme (see Figure 4.1):
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Problem 4.1.7 Problem 4.1.10

(ii)(i)

Sufficient
conditions for
Problem 3.1.1

(Theorem 4.1.12)

Quadratic
function
(4.1.3)

Theorem 4.1.1

Lemma 4.1.9 Lemma 4.1.11

Figure 4.1: Scheme to derive second-order sufficient conditions for Problem 3.1.1.

(a) Construct a quadratic function using the solution of a Riccati equation.

(b) Verify conditions (i) and (ii) of Theorem 4.1.1 for the quadratic function:

(i) Consider a parametric optimization problem depending on t ∈ [0, 1], which is in the
class of Problem 2.3.11. Show that the problem satisfies the sufficient conditions in
Theorem 2.3.14 at a KKT-point.

(ii) Verify the sufficient conditions in Theorem 2.3.5 for a finite dimensional optimization
problem at a KKT-point.

(c) Apply Theorem 4.1.1.

Since we want to derive second-order sufficient conditions, we consider second derivatives of the
functions in Problem 3.1.1. Hence, we need stronger smoothness assumptions than in Section
3.1. Furthermore, we require ŷ and û to be continuous.
Assumption 4.1.2

(4.1.A1) (Existence / Smoothness of a KKT-Point)
Let (

x̂, ŷ, û, λ̂f , λ̂g, σ̂, η̂
)
∈Wnx

1,∞ ([0, 1])× Cny0 ([0, 1])× Cnu0 ([0, 1])

×Wnx
1,∞ ([0, 1])× Lny∞ ([0, 1])× Rnψ × Lnc∞ ([0, 1])

be a KKT-point of Problem 3.1.1.
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(4.1.A2) (Smoothness of the System)

(a) ϕ and ψ are twice continuously differentiable and all the derivatives are Lipschitz
continuous with respect to all arguments.

(b) For a sufficiently large convex compact neighborhood M of

{(x̂ (t) , ŷ (t) , û (t)) ∈ Rnx × Rny × Rnu | t ∈ [0, 1]} ,

let the mappings

(x, y, u) 7→ f (x, y, u) , (x, y, u) 7→ g (x, y, u) , (x, y, u) 7→ c (x, y, u) ,

be twice continuously differentiable, and let all the derivatives be Lipschitz continuous
in M with respect to all arguments.

Let L denote maximum over all Lipschitz constants of

f, g, c, f ′(x,y,u), g
′
(x,y,u), c

′
(x,y,u), f

′′
(x,y,u)(x,y,u), g

′′
(x,y,u)(x,y,u), c

′′
(x,y,u)(x,y,u).

We call
(
x̂, ŷ, û, λ̂f , λ̂g, σ̂, η̂

)
a KKT-point of Problem 3.1.1, if it solves the local minimum

principle in Theorem 3.1.15 with `0 = 1. Similar to Assumption 3.1.3, we require that the
functions in Problem 3.1.1 satisfy certain regularity conditions at the KKT-point. Thus, for
t ∈ [0, 1] we decompose the index set J := {1, . . . , nc} into the index set of active constraints
and the index set, where strict complementarity holds

J0 (t) := {j ∈ J | cj [t] = 0} , j0 (t) := card
(
J0 (t)

)
,

J+ (t) :=
{
j ∈ J0 (t) | η̂j (t) > 0

}
, j+ (t) := card

(
J+ (t)

)
.

In Lemma 4.1.4 we show that η̂ (·) is continuous on [0, 1], if certain conditions are satisfied.
Thus, J+ (t) is defined for all t ∈ [0, 1]. Moreover, we use the abbreviations

Af (·) := f ′x [·] , Bf (·) := f ′y [·] , Cf (·) := f ′u [·] ,
Ag (·) := g′x [·] , Bg (·) := g′y [·] , Cg (·) := g′u [·] ,
Ψ0 := ψ′x0 (x̂ (0) , x̂ (1)) , Ψ1 := ψ′x1 (x̂ (0) , x̂ (1)) ,

and define the functions

A0
c (·) :=

[
c′j,x [·]

]
j∈J0(·)

, B0
c (·) :=

[
c′j,y [·]

]
j∈J0(·)

, C0
c (·) :=

[
c′j,u [·]

]
j∈J0(·)

,

A+
c (·) :=

[
c′j,x [·]

]
j∈J+(·)

, B+
c (·) :=

[
c′j,y [·]

]
j∈J+(·)

, C+
c (·) :=

[
c′j,u [·]

]
j∈J+(·)

,

η̂0 (·) := [η̂j (·)]j∈J0(·) , η̂+ (·) := [η̂j (·)]j∈J+(·) ,

which we consider to be vacuous, if J0 (t) or J+ (t) are empty, respectively. With these notations
we assume the following:



90 CHAPTER 4. SUFFICIENT CONDITIONS

Assumption 4.1.3 (Linear Independence, Controllability, Complementarity)

(4.1.A3) (Index one / Regularity Condition)
There exists a constant β > 0 such that for all t ∈ [0, 1] and $ ∈ Rny × Rj0(t) it holds∥∥∥∥∥∥

[
Bg (t) Cg (t)
B0
c (t) C0

c (t)

]>
$

∥∥∥∥∥∥ ≥ β ‖$‖ .
(4.1.A4) (Controllability)

For any e ∈ Rnψ there exists (x, y, u) ∈ Wnx
1,∞ ([0, 1]) × Lny∞ ([0, 1]) × Lnu∞ ([0, 1]) such that

the DAE

ẋ (t) = Af (t)x (t) +Bf (t) y (t) + Cf (t)u (t) , a.e. in [0, 1] ,

0Rny = Ag (t)x (t) +Bg (t) y (t) + Cg (t)u (t) , a.e. in [0, 1] ,

e = Ψ0x (0) + Ψ1x (1) ,

0Rj0(t) = A0
c (t)x (t) +B0

c (t) y (t) + C0
c (t)u (t) , a.e. in [0, 1] ,

is satisfied.

(4.1.A5) (Strict Complementarity)
The set

{
t ∈ [0, 1] | J0 (t) 6= J+ (t)

}
consists of finitely many junction points.

Note that (4.1.A3) combines the index property of the DAE and the regularity of the active in-
equality constraints (compare Remark 3.1.4). Condition (4.1.A5) implies that the strict comple-
mentarity condition is only violated by finitely many junction points in [0, 1], which corresponds
to condition (iii) in Theorem 2.3.14. We recall the abbreviation (compare Chapter 1)

H [·] := H
(
x̂ (·) , ŷ (·) , û (·) , λ̂f (·) , λ̂g (·) , η̂ (·)

)
.

for the Hamilton function and its derivatives at the KKT-point. Condition (4.1.A3) assures that
the multipliers are actually smoother than assumed, as the following lemma shows:
Lemma 4.1.4
If (4.1.A1) - (4.1.A3) hold, then we have(

λ̂g, η̂
)
∈ Cny0 ([0, 1])× Cnc0 ([0, 1]) and

(
x̂, λ̂f

)
∈ Cnx1 ([0, 1])× Cnx1 ([0, 1]) .

Proof. According to Theorem 3.1.15, for almost every t ∈ [0, 1] the KKT-point satisfies

0Rny = ∇yH [t] = Bf (t)> λ̂f (t) +Bg (t)> λ̂g (t) +Bc (t)> η̂ (t)

= Bf (t)> λ̂f (t) +Bg (t)> λ̂g (t) +B0
c (t)> η̂0 (t) ,

0Rnu = ∇uH [t] = Cf (t)> λ̂f (t) + Cg (t)> λ̂g (t) + Cc (t)> η̂ (t)

= Cf (t)> λ̂f (t) + Cg (t)> λ̂g (t) + C0
c (t)> η̂0 (t) .
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By (4.1.A3), the right inverse
[
Bg (·) Cg (·)
B0
c (·) C0

c (·)

]h
exists, thus we obtain

(
λ̂g (·)
η̂0 (·)

)
= −

[ Bg (·) Cg (·)
B0
c (·) C0

c (·)

]h> [ Bf (·)>

Cf (·)>

]
λ̂f (·) .

Therefore, it holds
(
λ̂g, η̂

)
∈ Cny0 ([0, 1])×Cnc0 ([0, 1]), since the right-hand side is continuous with

respect to t ∈ [0, 1]. Consequently, ∇xH [·] is continuous and, by (4.1.A1), f [·] is continuous as
well. Exploiting the differential equations

ẋ (t) = f [t] , in [0, 1] ,
˙̂
λf (t) = −∇xH [t] , in [0, 1] ,

yields
(
x̂, λ̂f

)
∈ Cnx1 ([0, 1])× Cnx1 ([0, 1]). �

For the construction of the function in Theorem 4.1.1 we require the existence of a bounded
solution of a Riccati equation. To that end, for ϑ (x0, x1, `0, σ) := `0ϕ (x0, x1) + σ>ψ (x0, x1) we
define

Λ00 := ∇2
x0x0ϑ (x̂ (0) , x̂ (1) , 1, σ̂) , Λ01 := ∇2

x0x1ϑ (x̂ (0) , x̂ (1) , 1, σ̂) ,
Λ11 := ∇2

x1x1ϑ (x̂ (0) , x̂ (1) , 1, σ̂) ,

and assume the following:
Assumption 4.1.5 (Legendre-Clebsch, Riccati)

(4.1.A6) (Legendre-Clebsch Condition)

There exists a constant δ > 0 such that for all t ∈ [0, 1] and $ ∈ ker
([

Bg (t) Cg (t)
B+
c (t) C+

c (t)

])
the uniform Legendre-Clebsch condition

$>∇2
(y,u)(y,u)H [t]$ ≥ δ ‖$‖2

is satisfied.

(4.1.A7) (Riccati Condition)
For the matrix functions

Q (·) := ∇2
xxH [·] , R+ (·) :=


∇2
yyH [·] ∇2

yuH [·] Bg (·)> B+
c (·)>

∇2
uyH [·] ∇2

uuH [·] Cg (·)> C+
c (·)>

Bg (·) Cg (·) 0ny×ny 0ny×j+(·)

B+
c (·) C+

c (·) 0j+(·)×ny 0j+(·)×j+(·)

 ,

S+ (·) :=


∇2
yxH [·]
∇2
uxH [·]
Ag (·)
A+
c (·)

 , K+ (·) :=


Bf (·)>

Cf (·)>

0ny×nx
0j+(·)×nx

 ,
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the Riccati equation

Ṗ (t) = −P (t)Af (t)−Af (t)> P (t)−Q (t)

+
(
K+ (t)P (t) + S+ (t)

)>
R+ (t)−1

(
K+ (t)P (t) + S+ (t)

)
in [0, 1]

subject to the boundary condition

$>
[
P (0) + Λ00 Λ01

Λ>01 Λ11 − P (1)

]
$ > 0 for all $ ∈ ker ([Ψ0,Ψ1]) \ {0R2nx}

has a bounded solution.

(4.1.A6) implies that R+ (·) is non-singular on [0, 1] and the inverse is uniformly bounded,
which assures that assumption (4.1.A7) is sensible. Furthermore, since we assumed that the
Riccati equation possesses a bounded solution, it follows from a stability result for differential
equations that this property is preserved, if we add the perturbation εInx to the right hand
side for sufficiently small ε > 0. Additionally, the perturbed solution also satisfies the boundary
conditions in (4.1.A7) for sufficiently small ε > 0.

Lemma 4.1.6
If (4.1.A1) - (4.1.A7) hold, then there exists a constant ε̃ > 0 such that for all 0 ≤ ε ≤ ε̃ the
perturbed Riccati equation

Ṗ (t) = −P (t)Af (t)−Af (t)> P (t)−Q (t) + εInx (4.1.2)

+
(
K+ (t)P (t) + S+ (t)

)>
R+ (t)−1

(
K+ (t)P (t) + S+ (t)

)
in [0, 1]

subject to the boundary condition

$>
[
P (0) + Λ00 Λ01

Λ>01 Λ11 − P (1)

]
$ > 0 for all $ ∈ ker ([Ψ0,Ψ1]) \ {0R2nx}

has a bounded solution Pε.

Proof. According to [119, p. 103], there exists ε1 > 0 such that for all 0 ≤ ε ≤ ε1 the perturbed
Riccati equation has a bounded solution Pε with lim

ε→0
‖P0 − Pε‖∞ = 0, where P0 is the reference

solution, which satisfies the boundary conditions. Since

[
P0 (0) + Λ00 Λ01

Λ>01 Λ11 − P0 (1)

]

is positive definite on ker ([Ψ0,Ψ1]), there exists ν > 0 such that

$>
[
P0 (0) + Λ00 Λ01

Λ>01 Λ11 − P0 (1)

]
$ ≥ ν ‖$‖2 for all $ ∈ ker ([Ψ0,Ψ1]) .



4.1. SUFFICIENT CONDITIONS FOR INDEX ONE PROBLEMS 93

Choose ε̃ > 0 such that for all 0 ≤ ε ≤ ε̃ it holds ‖P0 − Pε‖∞ ≤
ν
4 . Then, we obtain

$>
[
Pε (0) + Λ00 Λ01

Λ>01 Λ11 − Pε (1)

]
$ = $>

[
P0 (0) + Λ00 Λ01

Λ>01 Λ11 − P0 (1)

]
$

−$>
[
P0 (0)− Pε (0) 0nx×nx

0nx×nx Pε (1)− P0 (1)

]
$

≥ ν ‖$‖2 − ν

2 ‖$‖
2 = ν

2 ‖$‖
2

for every $ ∈ ker ([Ψ0,Ψ1]), which proves the assertion. �

For a fixed ε̂ > 0 such that Pε̂ (·) is a bounded solution of the perturbed Riccati equation (4.1.2)
subject to the boundary condition we define the quadratic function by

V (·, ·) : [0, 1]× Rnx → R,

V (t, x) := λ̂f (t)> (x− x̂ (t)) + 1
2 (x− x̂ (t))> Pε̂ (t) (x− x̂ (t)) . (4.1.3)

For this quadratic function we will first verify condition (i) in Theorem 4.1.1. To that end, for
(t, x) ∈ [0, 1]× Rnx we consider the derivatives

V ′t (t, x) = ˙̂
λf (t)> (x− x̂ (t))− λ̂f (t)> ˙̂x (t)− ˙̂x (t)> Pε̂ (t) (x− x̂ (t))

+ 1
2 (x− x̂ (t))> Ṗε̂ (t) (x− x̂ (t)) ,

V ′x (t, x) f (x, y, u) = λ̂f (t)> f (x, y, u) + (x− x̂ (t))> Pε̂ (t) f (x, y, u) .

Adding these equations and evaluating at (x̂ (t) , ŷ (t) , û (t)) yields

V ′t (t, x̂ (t)) + V ′x (t, x̂ (t)) f (x̂ (t) , ŷ (t) , û (t)) = 0 (4.1.4)

for all t ∈ [0, 1]. Consider the parametric optimization problem depending on t ∈ [0, 1]
Problem 4.1.7 (Parametric Optimization Problem)

Minimize V ′t (t, x) + V ′x (t, x) f (x, y, u)

with respect to (x, y, u) ∈ Rnx × Rny × Rnu

subject to g (x, y, u) = 0Rny ,

c (x, y, u) ≤ 0Rnc .

For fixed t ∈ [0, 1] the inequality of (i) represents an optimality condition of this problem, in
particular, the quadratic growth condition

V ′t (t, x) + V ′x (t, x) f (x, y, u)− V ′t (t, x̂ (t)) + V ′x (t, x̂ (t)) f (x̂ (t) , ŷ (t) , û (t))

≥ γ
(
‖x− x̂ (t)‖2 + ‖y − ŷ (t)‖2 + ‖u− û (t)‖2

)
,

for all admissible (x, y, u) in a neighborhood of (x̂ (t) , ŷ (t) , û (t)). In order to obtain this opti-
mality condition, we aim to apply the sufficient conditions for problems with parametric objective
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function in Theorem 2.3.14. First, we show that
(
x̂ (t) , ŷ (t) , û (t) , λ̂g (t) , η̂ (t)

)
is a KKT-point

of Problem 4.1.7 for all t ∈ [0, 1]. To that end, we denote the associated Lagrange function by

L (`0, x, y, u, λg, η, t) := `0
(
V ′t (t, x) + V ′x (t, x) f (x, y, u)

)
+ λ>g g (x, y, u) + η>c (x, y, u) (4.1.5)

for t ∈ [0, 1], which allows us to express the first order necessary conditions of Problem 4.1.7 as

0Rnx = ∇xL (`0, x, y, u, λg, η, t)

= `0
[ ˙̂
λf (t)− Pε̂ (t) ˙̂x (t) + Ṗε̂ (t) (x− x̂ (t))

+f ′x (x, y, u)> λ̂f (t) + Pε̂ (t) f (x, y, u) + f ′x (x, y, u)> Pε̂ (t) (x− x̂ (t))
]

+g′x (x, y, u)> λg + c′x (x, y, u)> η,

0Rny = ∇yL (`0, x, y, u, λg, η, t)

= `0
[
f ′y (x, y, u)> λ̂f (t) + f ′y (x, y, u)> Pε̂ (t) (x− x̂ (t))

]
+g′y (x, y, u)> λg + c′y (x, y, u)> η,

0Rnu = ∇uL (`0, x, u, u, λg, η, t)

= `0
[
f ′u (x, u, u)> λ̂f (t) + f ′u (x, u, u)> Pε̂ (t) (x− x̂ (t))

]
+g′u (x, u, u)> λg + c′u (x, u, u)> η,

0 = η>c (x, y, u) , η ≥ 0Rnc

according to Theorem 2.3.2. If (4.1.A1) - (4.1.A3) hold, then for all t ∈ [0, 1] these conditions
are satisfied by

(
1, x̂ (t) , ŷ (t) , û (t) , λ̂g (t) , η̂ (t)

)
, since

∇xL
(
1, x̂ (t) , ŷ (t) , û (t) , λ̂g (t) , η̂ (t) , t

)
= ˙̂

λf (t) +∇xH [t] = 0Rnx ,

∇yL
(
1, x̂ (t) , ŷ (t) , û (t) , λ̂g (t) , η̂ (t) , t

)
= ∇yH [t] = 0Rny ,

∇uL
(
1, x̂ (t) , ŷ (t) , û (t) , λ̂g (t) , η̂ (t) , t

)
= ∇uH [t] = 0Rnu ,

0 = η̂ (t)> c (x̂ (t) , ŷ (t) , û (t)) , η̂ (t) ≥ 0Rnc ,

correspond to the necessary conditions in Theorem 3.1.15. In order to apply Theorem 2.3.14,
we have to verify the following:

(a) There exists a constant β > 0 such that for all t ∈ [0, 1] and $ ∈ Rny × Rj0(t) it holds∥∥∥∥∥∥
[
Bg (t) Cg (t)
B0
c (t) C0

c (t)

]>
$

∥∥∥∥∥∥ ≥ β ‖$‖ .
(b) There exists a constant κ > 0 such that for all t ∈ [0, 1] and for every

d ∈ ker
([

Ag (t) Bg (t) Cg (t)
A+
c (t) B+

c (t) C+
c (t)

])

it holds

d>∇2
(x,y,u)(x,y,u)L

(
1, x̂ (t) , ŷ (t) , û (t) , λ̂g (t) , η̂ (t) , t

)
d ≥ κ ‖d‖2 .
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(c) The strict complementarity condition J0 (t) = J+ (t) is only violated by finitely many
t ∈ [0, 1].

The conditions (a) and (c) hold due to assumptions (4.1.A3) and (4.1.A5), respectively. Thus,
it remains to show, that the matrix

∇2
(x,y,u)(x,y,u)L

(
1, x̂ (t) , ŷ (t) , û (t) , λ̂g (t) , η̂ (t) , t

)
=

 Ṗε̂ (t) + Pε̂ (t)Af (t) +Af (t)> Pε̂ (t) +Q (t)
(
[Bf (t) , Cf (t)]> Pε̂ (t) +∇2

(y,u)(x)H [t]
)>

[Bf (t) , Cf (t)]> Pε̂ (t) +∇2
(y,u)(x)H [t] ∇2

(y,u)(y,u)H [t]



is uniformly positive definite on ker
([

Ag (t) Bg (t) Cg (t)
A+
c (t) B+

c (t) C+
c (t)

])
for all t ∈ [0, 1]. Therefore,

we define the matrix functions

M+
ε̂ (·) :=

[
Ṗε̂ (·) + Pε̂ (·)Af (·) +Af (·)> Pε̂ (·) +Q (·)

(
K+ (·)Pε̂ (·) + S+ (·)

)>
K+ (·)Pε̂ (·) + S+ (·) R+ (·)

]
,

N+ (·) :=
[
Ag (·) Bg (·) Cg (·)
A+
c (·) B+

c (·) C+
c (·)

]
,

which satisfy the following:
Lemma 4.1.8
If (4.1.A1) - (4.1.A7) hold, then there exists a constant κ > 0 such that for all t ∈ [0, 1] and for
every d ∈ ker

(
N+ (t)

)
it holds

d>∇2
(x,y,u)(x,y,u)L

(
1, x̂ (t) , ŷ (t) , û (t) , λ̂g (t) , η̂ (t) , t

)
d

=
(

d

0Rny+j+(t)

)>
M+
ε̂ (t)

(
d

0Rny+j+(t)

)
≥ κ ‖d‖2 .

Proof. We recall

R+ (·) =


∇2
yyH [·] ∇2

yuH [·] Bg (·)> B+
c (·)>

∇2
uyH [·] ∇2

uuH [·] Cg (·)> C+
c (·)>

Bg (·) Cg (·) 0ny×ny 0ny×j+(·)

B+
c (·) C+

c (·) 0j+(·)×ny 0j+(·)×j+(·)

 ,

where
[
Bg (t) Cg (t)
B+
c (t) C+

c (t)

]
has full rank for all t ∈ [0, 1] by (4.1.A3), and

[
∇2
yyH [t] ∇2

yuH [t]
∇2
uyH [t] ∇2

uuH [t]

]

is uniformly positive definite on ker
([

Bg (t) Cg (t)
B+
c (t) C+

c (t)

])
with constant δ > 0 for all t ∈ [0, 1]

according to (4.1.A6) . Additionally, it holds

Ṗε̂ (t) + Pε̂ (t)Af (t) +Af (t)> Pε̂ (t) +Q (t)

= ε̂Inx +
(
K+ (t)Pε̂ (t) + S+ (t)

)>
R+ (t)−1

(
K+ (t)Pε̂ (t) + S+ (t)

)
in [0, 1] .
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Thus, for all t ∈ [0, 1] we have

M+
ε̂ (t) =

[
ε̂Inx +

(
K+ (t)Pε̂ (t) + S+ (t)

)>
R+ (t)−1 (K+ (t)Pε̂ (t) + S+ (t)

)
K+ (t)Pε̂ (t) + S+ (t)(

K+ (t)Pε̂ (t) + S+ (t)
)>

R+ (t)

]
,

K+ (t)Pε̂ (t) + S+ (t) =


[Bf (t) , Cf (t)]> Pε̂ (t) +∇2

(y,u)(x)H [t][
Ag (·)
A+
c (·)

]  ,
and therefore all conditions of Lemma A.4 are satisfied. Since all the matrix functions are
continuous on [0, 1] and δ, ε̂ are independent of t, we find a uniform constant κ > 0 such that
the assertion holds. �

Consequently, we are able to prove that the inequality of (i) in Theorem 4.1.1 holds by applying
Theorem 2.3.14:
Lemma 4.1.9
If (4.1.A1) - (4.1.A7) hold, then there exist constants ρ̃, γ̃ > 0 such that for all t ∈ [0, 1] and
every (x, y, u) ∈ Bρ̃ ((x̂ (t) , ŷ (t) , û (t))), which is feasible for Problem 4.1.7, it holds

V ′t (t, x) + V ′x (t, x) f (x, y, u)

≥ V ′t (t, x̂ (t)) + V ′x (t, x̂ (t)) f (x̂ (t) , ŷ (t) , û (t)) + γ̃ ‖(x, y, u)− (x̂ (t) , ŷ (t) , û (t))‖2 .

Proof. According to (4.1.A3), (4.1.A5), and Lemma 4.1.8, all the requirements of Theorem
2.3.14 are satisfied for Problem 4.1.7, which proves the assertion. �

In (4.1.4) and Lemma 4.1.9 we have shown that condition (i) in Theorem 4.1.1 holds for the
quadratic function defined in (4.1.3). In order to verify condition (ii), we define the objective
function

J (x0, x1) := ϕ (x0, x1)− ϕ (x̂ (0) , x̂ (1))− (V (1, x1)− V (0, x0))

and consider the following optimization problem:
Problem 4.1.10

Minimize J (x0, x1)

with respect to (x0, x1) ∈ Rnx × Rnx

subject to ψ (x0, x1) = 0Rnψ .

According to Theorem 2.3.2, the associated necessary conditions can be expressed as

0Rnx = ∇x0L0,1 (`0, x0, x1, σ)

= `0∇x0ϕ (x0, x1) + ψ′x0 (x0, x1)> σ + `0
(
λ̂f (0) + Pε̂ (0) (x0 − x̂ (0))

)
,

0Rnx = ∇x1L0,1 (`0, x0, x1, σ)

= `0∇x1ϕ (x0, x1) + ψ′x1 (x0, x1)> σ − `0
(
λ̂f (1) + Pε̂ (1) (x1 − x̂ (1))

)
,
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where the Lagrange function is defined by

L0,1 (`0, x0, x1, σ) := `0J (x0, x1) + σ>ψ (x0, x1) .

These conditions hold for the KKT-point (`0, x0, x1, σ) = (1, x̂ (0) , x̂ (1) , σ̂) according to the
transversality conditions in Theorem 3.1.15. Using the same techniques as in Lemma 3.1.7 we
can show that the Gramian matrix associated with the linear system in (4.1.A4) has full rank,
if and only if (4.1.A4) holds. The Gramian matrix is of the form

G = [Ψ0,Ψ1] G̃
[

Ψ>0
Ψ>1

]
,

which implies that [Ψ0,Ψ1] = ψ′(x0,x1) (x̂ (0) , x̂ (1)) must have full rank. Furthermore, the matrix

∇2
(x0,x1)(x0,x1)L0,1 (1, x̂ (0) , x̂ (1) , σ̂) =

[
Pε̂ (0) + Λ00 Λ01

Λ>01 Λ11 − Pε̂ (1)

]

is positive definite on ker ([Ψ0,Ψ1]) by Lemma 4.1.6, which allows us to prove the following:

Lemma 4.1.11
If (4.1.A1) - (4.1.A7) hold, then there exist ρ̃, γ̃ > 0 such that for every (x0, x1) ∈ Bρ̃ (x̂ (0) , x̂ (1))
with ψ (x0, x1) = 0Rnψ it holds

ϕ (x0, x1)− ϕ (x̂ (0) , x̂ (1))− (V (1, x1)− V (0, x0))

≥ − (V (1, x̂ (1))− V (0, x̂ (0))) + γ̃ ‖(x0, x1)− (x̂ (0) , x̂ (1))‖2 .

Proof. All the requirements of Theorem 2.3.5 are satisfied for Problem 4.1.10 at (x̂ (0) , x̂ (1) , σ̂),
which proves the assertion. �

We summarize the main result of this section in the following theorem:

Theorem 4.1.12 (Second-Order Sufficient Conditions for Problem 3.1.1)
If (4.1.A1) - (4.1.A7) hold, then there exist constants ρ, γ > 0 such that the optimality condition

ϕ (x (0) , x (1)) ≥ ϕ (x̂ (0) , x̂ (1)) + γ
[
‖(x, y, u)− (x̂, ŷ, û)‖22 + ‖(x (0) , x (1))− (x̂ (0) , x̂ (1))‖2

]

is satisfied for all admissible (x, y, u) ∈ B∞ρ (x̂, ŷ, û) of Problem 3.1.1.
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4.2 Sufficient Conditions for Higher Index Problems
Similar to Section 3.2, we also derive sufficient conditions for Problem 3.2.1

Minimize ϕ (x (0) ,x (1)) ,

with respect to x = (x1, . . . , xk−1) ∈
k−1
×
i=1

W
nxi
i,∞ ([0, 1]) , y ∈ Lny∞ ([0, 1]) , u ∈ Lnu∞ ([0, 1]) ,

subject to ẋ1 (t) = f1 (x1 (t) , . . . , xk−1 (t) , y (t) , u (t)) , a.e. in [0, 1] ,
ẋ2 (t) = f2 (x1 (t) , . . . , xk−1 (t)) , in [0, 1] ,
ẋ3 (t) = f3 (x2 (t) , . . . , xk−1 (t)) , in [0, 1] ,

...
ẋk−1 (t) = fk−1 (xk−2 (t) , xk−1 (t)) , in [0, 1] ,

0Rny = g (xk−1 (t)) , in [0, 1] ,
0Rnψ = ψ (x (0) ,x (1)) ,
0Rnc ≥ c (x1 (t) , . . . , xk−1 (t) , y (t) , u (t)) , a.e. in [0, 1] .

For the index reduced system (3.2.1) we use the abbreviations at the KKT-point

Af (·) := f ′x [·] , Bf (·) := f ′y [·] , Cf (·) := f ′u [·] ,
Ag0 (·) := g′0,x [·] , Bg0 (·) := g′0,y [·] , Cg0 (·) := g′0,u [·] ,

Ψg
0 :=

[
g′ [0]

ψ′x0 (x̂ (0) , x̂ (1))

]
, Ψg

1 :=
[

0(k−1)ny×nx

ψ′x1 (x̂ (0) , x̂ (1))

]
,

A0
c (·) :=

[
c′j,x [·]

]
j∈J0(·)

, B0
c (·) :=

[
c′j,y [·]

]
j∈J0(·)

, C0
c (·) :=

[
c′j,u [·]

]
j∈J0(·)

,

A+
c (·) :=

[
c′j,x [·]

]
j∈J+(·)

, B+
c (·) :=

[
c′j,y [·]

]
j∈J+(·)

, C+
c (·) :=

[
c′j,u [·]

]
j∈J+(·)

,

and define

ϑ (x0,x1, `0, σψ, σg) := `0ϕ (x0,x1) + σ>ψψ (x0,x1) + σ>g g (x0) ,

Λ00 := ∇2
x0x0ϑ (x̂ (0) , x̂ (1) , 1, σ̂ψ, σ̂g) , Λ01 := ∇2

x0x1ϑ (x̂ (0) , x̂ (1) , 1, σ̂ψ, σ̂g) ,
Λ11 := ∇2

x1x1ϑ (x̂ (0) , x̂ (1) , 1, σ̂ψ, σ̂g) .

Then, with the (augmented) Hamilton function

H (x, y, u,λf , λg0 , η) := λ>f f (x, y, u) + λ>g0g0 (x, y, u) + η>c (x, y, u)

we assume the following:
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Assumption 4.2.1

(4.2.A1) (Existence / Smoothness of a KKT-Point)
Let(
x̂, ŷ, û, λ̂f , λ̂g0 , σ̂ψ, σ̂g, η̂

)
∈
k−1×
i=1

W
nxi
i,∞ ([0, 1])× Cny0 ([0, 1])× Cnu0 ([0, 1])×

k−1×
i=1

W
nxi
1,∞ ([0, 1])

× Lny∞ ([0, 1])× Rnψ × R(k−1)ny × Lnc∞ ([0, 1])

be a KKT-point of of Problem 3.2.1.

(4.2.A2) (Smoothness of the System)

(a) ϕ and ψ are twice continuously differentiable and all the derivatives are Lipschitz
continuous with respect to all arguments.

(b) For a sufficiently large convex compact neighborhood M1 of{
(x̂1 (t) , . . . , x̂k−1 (t) , ŷ (t) , û (t)) ∈

k−1×
i=1

Rnxi × Rny × Rnu | t ∈ [0, 1]
}
,

let the mappings

(x1, . . . , xk−1, y, u) 7→ f1 (x1, . . . , xk−1, y, u) ,

(x1, . . . , xk−1, y, u) 7→ c (x1, . . . , xk−1, y, u) ,

be twice continuously differentiable, and all the derivatives be Lipschitz continuous in
M1 with respect to all arguments. Furthermore, for i = 2, . . . , k − 1 and sufficiently
large convex compact neighborhoods Mi of{

(x̂i−1 (t) , . . . , x̂k−1 (t)) ∈
k−1×
l=i−1

Rnxl | t ∈ [0, 1]
}
,

let the mappings

(xi−1, . . . , xk−1) 7→ fi (xi−1, . . . , xk−1) ,

be i+ 1-times continuously differentiable, and all the derivatives be Lipschitz contin-
uous in Mi with respect to all arguments. For a sufficiently large convex compact
neighborhood Mk of

{x̂k−1 (t) ∈ Rnk−1 | t ∈ [0, 1]} ,

let the mapping

xk−1 7→ g (xk−1) ,

be k+ 1-times continuously differentiable, and all the derivatives be Lipschitz contin-
uous in Mk with respect to all arguments.
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(4.2.A3) (Index k / Regularity Condition)
There exists a constant β > 0 such that for all t ∈ [0, 1] and $ ∈ Rny+j0(t) it holds∥∥∥∥∥∥

[
Bg0 (t) Cg0 (t)
B0
c (t) C0

c (t)

]>
$

∥∥∥∥∥∥ ≥ β ‖$‖ .
(4.2.A4) (Controllability)

For any e ∈ R(k−1)ny+nψ there exists (x, y, u) ∈
k−1
×
i=1

W
nxi
i,∞ ([0, 1])×Lny∞ ([0, 1])×Lnu∞ ([0, 1])

such that the DAE

ẋ (t) = Af (t)x (t) +Bf (t) y (t) + Cf (t)u (t) , a.e. in [0, 1] ,

0Rny = Ag0 (t)x (t) +Bg0 (t) y (t) + Cg0 (t)u (t) , a.e. in [0, 1] ,

e = Ψg
0x (0) + Ψg

1x (1) ,

0Rj0(t) = A0
c (t)x (t) +B0

c (t) y (t) + C0
c (t)u (t) , a.e. in [0, 1] ,

is satisfied.

(4.2.A5) (Strict Complementarity)
The set

{
t ∈ [0, 1] | J0 (t) 6= J+ (t)

}
consists of finitely many junction points.

(4.2.A6) (Legendre-Clebsch Condition)

There exists a constant δ > 0 such that for all t ∈ [0, 1] and $ ∈ ker
([

Bg0 (t) Cg0 (t)
B+
c (t) C+

c (t)

])
the uniform Legendre-Clebsch condition

$>∇2
(y,u)(y,u)H [t]$ ≥ δ ‖$‖2

is satisfied.

(4.2.A7) (Riccati Condition)
For the matrix functions

Q (·) := ∇2
xxH [·] , R+ (·) :=


∇2
yyH [·] ∇2

yuH [·] Bg0 (·)> B+
c (·)>

∇2
uyH [·] ∇2

uuH [·] Cg0 (·)> C+
c (·)>

Bg0 (·) Cg0 (·) 0ny×ny 0ny×j+(·)

B+
c (·) C+

c (·) 0j+(·)×ny 0j+(·)×j+(·)

 ,

S+ (·) :=


∇2
yxH [·]
∇2
uxH [·]
Ag0 (·)
A+
c (·)

 , K+ (·) :=


Bf (·)>

Cf (·)>

0ny×nx

0j+(·)×nx

 ,
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the Riccati equation

Ṗ (t) = −P (t)Af (t)−Af (t)> P (t)−Q (t)

+
(
K+ (t)P (t) + S+ (t)

)>
R+ (t)−1

(
K+ (t)P (t) + S+ (t)

)
in [0, 1]

subject to the boundary condition

$>
[
P (0) + Λ00 Λ01

Λ>01 Λ11 − P (1)

]
$ > 0 for all $ ∈ ker

([
Ψg

0,Ψ
g
1
])
\ {0R2nx}

has a bounded solution.

Analog to Lemma 4.1.4, we can show that λ̂g, η̂ are continuous and x̂1, λ̂f1 are continuously
differentiable in [0, 1]. For a sufficiently small ε̂ > 0 we denote the bounded solution of the
perturbed Riccati equation

Ṗ (t) = −P (t)Af (t)−Af (t)> P (t)−Q (t) + ε̂Inx

+
(
K+ (t)P (t) + S+ (t)

)>
R+ (t)−1

(
K+ (t)P (t) + S+ (t)

)
in [0, 1]

subject to the boundary condition in (4.2.A7) by Pε̂ (·). We define the quadratic function

V (·, ·) : [0, 1]× Rnx → R,

V (t,x) := λ̂f (t)> (x− x̂ (t)) + 1
2 (x− x̂ (t))> Pε̂ (t) (x− x̂ (t)) ,

which satisfies the condition of Theorem 4.1.1 for Problem 3.2.1 subject to the equivalent reduced
(index one) system (3.2.1). Thus, we obtain the main result of this section:
Theorem 4.2.2 (Second-Order Sufficient Conditions for Problem 3.2.1)
If (4.2.A1) - (4.2.A7) hold, then there exist constants ρ, γ > 0 such that the optimality condition

ϕ (x (0) ,x (1)) ≥ ϕ (x̂ (0) , x̂ (1)) + γ
[
‖(x, y, u)− (x̂, ŷ, û)‖22 + ‖(x (0) ,x (1))− (x̂ (0) , x̂ (1))‖2

]
is satisfied for all admissible (x, y, u) ∈ B∞ρ (x̂, ŷ, û) of Problem 3.2.1.

4.3 Example
For Example 3.3.1 we want to verify, if the calculated solution is actually a weak local minimizer
by applying Theorem 4.2.2. To that end, it remains to show that the conditions (4.2.A6) and
(4.2.A7) hold. The associated Hamilton function is defined by

H (x1, x2, x3, x4, y, u, λf1 , λf2 , λf3 , λf4 , λg)

:= λf1 (u− y) + λf2u− λf3x2 + 1
2λf4u

2 + λg (u− y − x2) .

Then, (4.2.A6) is satisfied, since ker ([Bg0 (t)Cg0 (t)]) = ker ((−1, 1)), and therefore the Legendre-
Clebsch condition(

$

$

)>
∇2

(y,u)(y,u)H [t]
(
$

$

)
=
(
$

$

)>(
0 0
0 1

)(
$

$

)
= $2 = 1

2

∥∥∥∥∥
(
$

$

)∥∥∥∥∥
2
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holds for all
(
$

$

)
∈ ker ((−1, 1)). For (4.2.A6) we compute the (constant) matrices

R+ =


0 0 −1
0 1 1
−1 1 0

 , (
R+
)−1

=


1 1 −1
1 1 0
−1 0 0

 ,

S+ =


0 0 0 0
0 0 0 0
0 −1 0 0

 , K+ =


−1 0 0 0
1 1 0 −2
0 0 0 0

 ,
Q = 04×4, Λ00 = 04×4, Λ01 = 04×4, Λ11 = 04×4,

[
Ψg

0,Ψ
g
1
]

=



1 0 1 0 0 0 0 0
1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0


,

which yields the Riccati equation

ṗ11 (t) = (p12 (t)− 2p14 (t))2

ṗ12 (t) = (p12 (t)− 2p14 (t)) (p22 (t)− 2p24 (t)) + (p13 (t)− p11 (t))
ṗ13 (t) = (p12 (t)− 2p14 (t)) (p23 (t)− 2p34 (t))
ṗ14 (t) = (p12 (t)− 2p14 (t)) (p24 (t)− 2p44 (t))
ṗ22 (t) = (p22 (t)− 2p24 (t))2 + 2 (p23 (t)− p12 (t))
ṗ23 (t) = (p22 (t)− 2p24 (t)) (p23 (t)− 2p34 (t)) + (p33 (t)− p13 (t))
ṗ24 (t) = (p22 (t)− 2p24 (t)) (p24 (t)− 2p44 (t)) + (p34 (t)− p14 (t))
ṗ33 (t) = (p23 (t)− 2p34 (t))2

ṗ34 (t) = (p23 (t)− 2p34 (t)) (p24 (t)− 2p44 (t))
ṗ44 (t) = (p24 (t)− 2p44 (t))2

for the symmetric matrix function

P (·) :=


p11 (·) p12 (·) p13 (·) p14 (·)
p12 (·) p22 (·) p23 (·) p24 (·)
p13 (·) p23 (·) p33 (·) p34 (·)
p14 (·) p24 (·) p34 (·) p44 (·)

 .

This Riccati equation has the bounded (constant) solution

P (·) =


−1 0 −1 0
0 −4 0 −2
−1 0 −1 0
0 −2 0 −1

 .
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Since ker
([

Ψg
0,Ψ

g
1
])

= {(0, 0, 0, 0, 0, 0, $1, $2) | $1, $2 ∈ R} , only the definiteness of(
p33 (1) p34 (1)
p34 (1) p44 (1)

)
=
(
−1 0
0 −1

)

is relevant for the boundary conditions to be satisfied. We obtain

$>
[
P (0) + Λ00 Λ01

Λ>01 Λ11 − P (1)

]
$ = $2

1 +$2
2 > 0

for all $ ∈ ker
([

Ψg
0,Ψ

g
1
])
\ {0R8}, and therefore the boundary conditions are satisfied. For

illustration purposes, we show that for ε = 1
16 the perturbed Riccati has a bounded solution,

which satisfies the boundary conditions (see Figure 4.2), since the matrix(
p33,ε (1) p34,ε (1)
p34,ε (1) p44,ε (1)

)
≈
(
−0.937278 −0.001125
−0.001125 −0.931479

)

is negative definite. Moreover, the error with respect to the reference solution p33 (1) = −1,
p34 (1) = 0, p44 (1) = −1 is declining with decreasing perturbation (see Table 4.1).

ε p33,ε (1) p34,ε (1) p44,ε (1)
0.25 −0.7435632620790397 −0.3365590016931926 −0.5681414623634595
0.125 −0.8739585476272056 −0.0053191628693259 −0.8464515869344885
0.0625 −0.9372772356430186 −0.0011254386360057 −0.9314790146543683
0.02 −0.9799791865196865 −0.0001044079420916 −0.9794426109138125
0.01 −0.9899949005508796 −0.0000255387721687 −0.9898637265415218
0.005 −0.9949987377039996 −0.0000063166079344 −0.9949663031908956
0.002 −0.9979997992181540 −0.0000010042350419 −0.9979946435566353
0.001 −0.9989999499024794 −0.0000002505282293 −0.9989986637842081

Table 4.1: Illustration of decreasing error with respect to the reference solution.

In this chapter, we derived second-order sufficient conditions for optimal control problems subject
to Hessenberg DAEs of arbitrary order and mixed control-state constraints by using a Hamilton
Jacobi inequality. In contrast to [83] and [92], we also included boundary conditions and algebraic
equations, respectively. The main task was to prove Theorem 2.3.14 with the assumptions at
hand, which was essential in order to show that second-order sufficient conditions hold for
Problem 4.1.7.
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Figure 4.2: Solution of the perturbed Riccati equation for ε = 1
16 .



Chapter 5

Convergence Analysis

There are numerous methods for numerically solving optimal control problems that split into
three classes: direct methods, indirect methods, and function space methods. In this chapter, we
focus on the direct approach, which is often used for solving problems in practical applications,
since direct discretization methods are robust, user friendly, and are able to deal with difficult
problems with control and state constraints (cf. [11]).
In [48,80], Euler discretizations for problems with mixed control-state constraints are discussed.
Herein, [80] achieve convergence of order one in the L∞-norm with assumptions sufficient for
a Lipschitz continuous optimal control, whereas [48] consider controls of bounded variation to
obtain a convergence rate of 1

p in the Lp-norm. Optimal control problems with pure state
constraints of order one are analyzed in [16,32,34]. In [32,34], linear convergence is achieved in
the L2-norm and convergence of order 2

3 in the L∞-norm. Via a strengthened Legendre-Clebsch
condition, [16] obtain linear convergence in the L∞-norm. Runge-Kutta methods for problems
with set constraints on the control are studied in [33,53,117]. Herein, [33,117] use a second order
Runge-Kutta approximation in order to obtain convergence of order two. In [53], convergence of
arbitrary order is achieved with a Runge-Kutta scheme of appropriate order and a sufficiently
smooth optimal control. Convergence for the value of the objective function is obtained through
a control parametrization enhancing technique in [73].

In order to prove convergence, one usually requires similar conditions as in Chapter 4, in partic-
ular, regularity of the constraints, controllability, and second-order conditions, e.g., a Legendre-
Clebsch condition or a coercivity property of the Hessian of the Lagrange function. Additionally,
the optimal control is assumed to be continuous or Lipschitz continuous. Using the techniques
developed in [37,52,81] and the above conditions, it might be possible to show that a continuous
optimal control is actually Lipschitz continuous.
A common strategy to prove convergence for nonlinear problems with smooth optimal control
is to compare the KKT-conditions of the continuous problem with the KKT-conditions of the
discretized problem. The respective conditions are expressed as generalized equations and an
approximation result as in Theorem 2.2.6 is applied.
Convergence for problems with discontinuous controls is discussed in [3–7,101,113,118]. Linear
problems are considered in [4, 101, 118]. In [4], convergence of order one in the L1-norm, and
of order 1

2 in the L2-norm is shown for the control, if the switching function satisfies a suitable
growth condition around its zeros, and the optimal control is of bang-bang type. In [101, 118],
a controllability assumption is used to prove convergence of an order depending on the control-
lability index. Linear quadratic systems are examined in [3, 5, 6, 113]. [3] obtain results similar

105
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to [4]. A L1 control cost depending on a parameter is augmented in [6]. The result is an optimal
control of bang-zero-bang type and linear convergence is obtained, if the switching function has
a stable structure. For nonlinear optimal control problems with linearly appearing control and
bang-bang solutions convergence is analyzed in [7].
A general convergence theory applicable to approximations of optimal control problems is pro-
vided in [116], which was used in [84] to prove convergence of order one for optimal control
problems subject to index one DAEs without inequality constraints.
In this chapter, we prove convergence for approximations of optimal control problems subject
to index two DAEs with mixed control-state constraints and boundary conditions, therefore
generalizing the results in [80,85]. We use the following scheme:

(a) First, we gather assumptions for the continuous problem in Section 5.1, which are suffi-
cient for the KKT-conditions in Theorem 3.2.5. Furthermore, we introduce a coercivity
condition for the Hessian of the Lagrange function.

(b) In Section 5.2, we approximate the optimal control problem with the implicit Euler dis-
cretization. We modify the discrete problem such that the associated KKT-conditions are
consistent with the KKT-conditions of the continuous problem.

(c) In Section 5.3, we gather properties, which follow from the results in Section 2.4.

(d) We express the respective KKT-conditions as generalized equations in Section 5.4.

(e) In Section 5.5, we apply Theorem 2.2.6 to the generalized equations, which yields a solution
of the discrete KKT-conditions that converges linearly to the continuous KKT-point in
the L∞-norm (Theorem 5.5.6).

(f) Finally, in Section 5.7 we establish a relationship between the multipliers of the necessary
conditions for the modified discrete problem and the multipliers associated with the directly
discretized problem.

These techniques can also be applied to problems with index one DAEs by skipping the modi-
fication step in (b).
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5.1 Continuous Problem
Consider the problem:

Problem 5.1.1 (Optimal Control Problem with Index Two DAE)
Let nx, ny, nu, nψ, nc ∈ N with nψ + ny ≤ 2nx, nc ≤ nu. Let

ϕ : Rnx × Rnx → R, ψ : Rnx × Rnx → Rnψ ,
f : Rnx × Rny × Rnu → Rnx , g : Rnx → Rny , c : Rnx × Rny × Rnu → Rnc ,

be functions.

Minimize ϕ (x (0) , x (1)) ,

with respect to x ∈Wnx
1,∞ ([0, 1]) , y ∈ Lny∞ ([0, 1]) , u ∈ Lnu∞ ([0, 1]) ,

subject to ẋ (t) = f (x (t) , y (t) , u (t)) , a.e. in [0, 1] ,
0Rny = g (x (t)) , in [0, 1] ,
0Rnψ = ψ (x (0) , x (1)) ,
0Rnc ≥ c (x (t) , y (t) , u (t)) , a.e. in [0, 1] .

Throughout this chapter, we assume the following similar to Section 4.2:

Assumption 5.1.2

(5.A1) (Existence / Smoothness of a Minimizer)
Let (x̂, ŷ, û) ∈ Wnx

2,∞ ([0, 1]) × W
ny
1,∞ ([0, 1]) × Wnu

1,∞ ([0, 1]) be a weak local minimizer of
Problem 5.1.1.

(5.A2) (Smoothness of the System)

(a) ϕ and ψ are twice continuously differentiable with respect to all arguments and the
derivatives are Lipschitz continuous

(b) For a sufficiently large convex compact neighborhood M1 of

{(x̂ (t) , ŷ (t) , û (t)) ∈ Rnx × Rny × Rnu | t ∈ [0, 1]} ,

let the mappings

(x, y, u) 7→ f (x, y, u) ,

(x, y, u) 7→ c (x, y, u) ,

be twice continuously differentiable, and the derivatives be Lipschitz continuous in
M1. Furthermore, for a sufficiently large convex compact neighborhood M2 of

{x̂ (t) ∈ Rnx | t ∈ [0, 1]} ,
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let the mapping

x 7→ g (x) ,

be three-times continuously differentiable, and the derivatives be Lipschitz continuous
in M2.

Let L denote the maximum over all Lipschitz constants of

f, g, c,
∂f

∂ (x, y, u) ,
∂g

∂x
,

∂c

∂ (x, y, u) ,
∂2f

(∂ (x, y, u))2 ,
∂2g

(∂x)2 ,
∂2c

(∂ (x, y, u))2 ,
∂3g

(∂x)3 .

Remark 5.1.3
Note that we assume the minimizer (x̂, ŷ, û) to be in Wnx

2,∞ ([0, 1])×Wny
1,∞ ([0, 1])×Wnu

1,∞ ([0, 1])
instead of Wnx

1,∞ ([0, 1])× Lny∞ ([0, 1])× Lnu∞ ([0, 1]). This condition is crucial for the convergence
proof in Section 5.5, since we require the derivatives of the systems functions at the minimizer to
be Lipschitz continuous. It might be possible to weaken this assumption by using the techniques
developed in [37, 52, 81].
According to Lemma 3.2.3, the constraints of Problem 5.1.1 are equivalent to the reduced system

ẋ (t) = f (x (t) , y (t) , u (t)) , a.e. in [0, 1] ,
0Rny = g′ (x (t)) f (x (t) , y (t) , u (t)) , a.e. in [0, 1] ,
0Rny = g (x (0)) ,
0Rnψ = ψ (x (0) , x (1)) ,
0Rnc ≥ c (x (t) , y (t) , u (t)) , a.e. in [0, 1] .

(5.1.1)

For a constant α ≥ 0 and t ∈ [0, 1] we define the following sets

J := {1, . . . , nc} ,

Jα (t) := {j ∈ J | c [t] ≥ −α} , jα (t) := card (Jα (t)) ,

Θα
j := {t ∈ [0, 1] | j ∈ Jα (t)} ,

and we abbreviate the derivatives at the minimizer by

Af (·) := f ′x [·] , Bf (·) := f ′y [·] , Cf (·) := f ′u [·] ,
Ag (·) := g′ [·] ,
Agf (·) := Ȧg (·) +Ag (·)Af (·) , Bg

f (·) := Ag (·)Bf (·) , Cgf (·) := Ag (·)Cf (·) ,
E0 := Ag (0) , Ψ0 := ψ′x0 (x̂ (0) , x̂ (1)) , Ψ1 := ψ′x1 (x̂ (0) , x̂ (1)) ,
Ac (·) := c′x [·] , Bc (·) := c′y [·] , Cc (·) := c′u [·] ,
Aαc (·) :=

[
c′j,x [·]

]
j∈Jα(·)

, Bα
c (·) :=

[
c′j,y [·]

]
j∈Jα(·)

, Cαc (·) :=
[
c′j,u [·]

]
j∈Jα(·)

,

where we consider Aαc (t) , Bα
c (t) , Cαc (t) to be vacuous, if Jα (t) is empty. With this notation we

assume the following:
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Assumption 5.1.4 (Linear Independence, Controllability)

(5.A3) (Index two / Regularity Condition)
There exist constants α > 0 and β > 0 such that for all t ∈ [0, 1] and every $ ∈ Rny+jα(t)

it holds ∥∥∥∥∥∥
[
Bg
f (t) Cgf (t)

Bα
c (t) Cαc (t)

]>
$

∥∥∥∥∥∥ ≥ β ‖$‖ .

(5.A4) (Controllability)
For any e ∈ Rnψ there exists (x, y, u) ∈ Wnx

1,∞ ([0, 1]) × Lny∞ ([0, 1]) × Lnu∞ ([0, 1]) such that
the DAE

ẋ (t) = Af (t)x (t) +Bf (t) y (t) + Cf (t)u (t) , a.e. in [0, 1] ,

0Rny = Agf (t)x (t) +Bg
f (t) y (t) + Cgf (t)u (t) , a.e. in [0, 1] ,

e =
[
E0

Ψ0

]
x (0) +

[
0ny×nx

Ψ1

]
x (1) ,

0Rjα(t) = Aαc (t)x (t) +Bα
c (t) y (t) + Cαc (t)u (t) , a.e. in [0, 1]

is satisfied.

Please note that we coupled the index property of the DAE with the regularity of the inequality
constraint (compare Remark 3.1.4). If (5.A1) - (5.A4) hold, then, by Theorem 3.2.5, there exist
multipliers

ˆ̀0 ∈ R, λ̂f ∈Wnx
1,∞ ([0, 1]) , λ̂g ∈ Lny∞ ([0, 1]) , σ̂ ∈ Rnψ , ς̂ ∈ Rny , η̂ ∈ Lnc∞ ([0, 1])

associated with the weak local minimizer (x̂, ŷ, û) of Problem 5.1.1 such that ˆ̀0 = 1 and

˙̂
λf (t) = −∇xH

(
x̂ (t) , ŷ (t) , û (t) , λ̂f (t) , λ̂g (t) , η̂ (t)

)
, a.e. in [0, 1] ,

0Rny = ∇yH
(
x̂ (t) , ŷ (t) , û (t) , λ̂f (t) , λ̂g (t) , η̂ (t)

)
, a.e. in [0, 1] ,

0Rnu = ∇uH
(
x̂ (t) , ŷ (t) , û (t) , λ̂f (t) , λ̂g (t) , η̂ (t)

)
, a.e. in [0, 1] , (5.1.2)

λ̂f (0) = −∇x0ϕ (x̂ (0) , x̂ (1))− ψ′x0 (x̂ (0) , x̂ (1))> σ̂ − g′ (x̂ (0))> ς̂ ,

λ̂f (1) = ∇x1ϕ (x̂ (0) , x̂ (1)) + ψ′x1 (x̂ (0) , x̂ (1))> σ̂,

0 = η̂ (t)> c (x̂ (t) , ŷ (t) , û (t)) , η̂ (t) ≥ 0Rnc , a.e. in [0, 1]

is satisfied. Herein, the (augmented) Hamilton function is defined by

H : Rnx × Rny × Rnu × Rnx × Rny × Rnc → R,

H (x, y, u, λf , λg, η) := λ>f f (x, y, u) + λ>g g
′ (x) f (x, y, u) + η>c (x, y, u) .
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Analog to Lemma 4.1.4, we can show that

λ̂f ∈Wnx
2,∞ ([0, 1]) , λ̂g ∈W

ny
1,∞ ([0, 1]) , η̂ ∈Wnc

1,∞ ([0, 1]) ,

if (5.A1) - (5.A3) hold. Moreover, for a constant ν ≥ 0 and t ∈ [0, 1] we define

Jν+ (t) :=
{
j ∈ J0 (t) | η̂ (t) > ν

}
, jν+ (t) := card

(
Jν+ (t)

)
, Υν

j :=
{
t ∈ [0, 1] | j ∈ Jν+ (t)

}
,

Ǎνc (t) :=
[
c′j,x [t]

]
j∈Jν+(t)

, B̌ν
c (t) :=

[
c′j,y [t]

]
j∈Jν+(t)

, Čνc (t) :=
[
c′j,u [t]

]
j∈Jν+(t)

,

where we consider Ǎνc (t) , B̌ν
c (t) , Čνc (t) to be vacuous, if Jν+ (t) is empty, and for the functional

ϑ (x0, x1, σ, ς) := ϕ (x0, x1) + σ>ψ (x0, x1) + ς>g (x0) we denote

Λ00 := ∇2
x0x0ϑ (x̂ (0) , x̂ (1) , σ̂, ς̂) , Λ01 := ∇2

x0x1ϑ (x̂ (0) , x̂ (1) , σ̂, ς̂) ,
Λ11 := ∇2

x1x1ϑ (x̂ (0) , x̂ (1) , σ̂, ς̂) .

For the space
X2 := Wnx

1,2 ([0, 1])× Lny2 ([0, 1])× Lnu2 ([0, 1])

equipped with the norm ‖(x, y, u)‖X2
:= max

{
‖x‖1,2 , ‖y‖2 , ‖u‖2

}
we define the symmetric

bilinear form

P : X2 ×X2 → R,

P
((
x1, y1, u1

)
,
(
x2, y2, u2

))
:=
(
x1 (0)
x1 (1)

)> [
Λ00 Λ01

Λ>01 Λ11

](
x2 (0)
x2 (1)

)
(5.1.3)

+
1∫

0


x1 (t)
y1 (t)
u1 (t)


> 
∇2
xxH [t] ∇2

xyH [t] ∇2
xuH [t]

∇2
yxH [t] ∇2

yyH [t] ∇2
yuH [t]

∇2
uxH [t] ∇2

uyH [t] ∇2
uuH [t]



x2 (t)
y2 (t)
u2 (t)

 dt,
which is continuous, since ∇2

(x,y,u)(x,y,u)H [t] is bounded. We assume the following uniform
coercivity condition:
Assumption 5.1.5 (Coercivity)

(5.A5) (Coercivity)
There exist constants ν > 0 and γ > 0 such that for every (x, y, u) ∈ X2, which satisfies

ẋ (t) = Af (t)x (t) +Bf (t) y (t) + Cf (t)u (t) , a.e. in [0, 1] ,

0Rny = Agf (t)x (t) +Bg
f (t) y (t) + Cgf (t)u (t) , a.e. in [0, 1] ,

0Rny = E0x (0) ,

0Rnψ = Ψ0x (0) + Ψ1x (1) ,

0
Rj
ν
+(t) = Ǎνc (t)x (t) + B̌ν

c (t) y (t) + Čνc (t)u (t) , a.e. in [0, 1] ,

it holds
P ((x, y, u) , (x, y, u)) ≥ γ ‖(x, y, u)‖2X2

.
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5.2 Discrete Problem
For N ∈ N let GN := {0 = t0 < t1 < t2 < . . . < tN−1 < tN = 1} be a grid of [0, 1] with ti := ih,
i = 0, 1, . . . , N , and the mesh size h := 1

N . We consider the following direct discretization of
Problem 5.1.1:
Problem 5.2.1 (Discrete Optimal Control Problem with Index Two DAE)

Minimize ϕ (x0, xN ) ,

with respect to x0 ∈ Rnx , (xi, yi, ui) ∈ Rnx × Rny × Rnu , i = 1, . . . , N,

subject to xi−xi−1
h = f (xi, yi, ui) , i = 1, . . . , N,
0Rny = g (xi) , i = 0, 1, . . . , N,
0Rnψ = ψ (x0, xN ) ,
0Rnc ≥ c (xi, yi, ui) , i = 1, . . . , N.

For the (augmented) Hamilton function

H̆ : Rnx × Rny × Rnu × Rnx × Rny × Rnc → R

H̆
(
x, y, u, λ̆f , λ̆g, η̆

)
:= λ̆>f f (x, y, u) + λ̆>g g (x) + η̆>c (x, y, u) , (5.2.1)

and multipliers

˘̀0 ∈ R, σ̆ ∈ Rnψ , ς̆ ∈ Rny ,

λ̆f,i ∈ Rnx , i = 0, 1, . . . , N,
λ̆g,i ∈ Rny , i = 1, . . . , N,
η̆i ∈ Rnc , i = 1, . . . , N,

we get the following necessary conditions

λ̆f,i−λ̆f,i−1
h = −∇xH̆

(
xi, yi, ui, λ̆f,i−1, λ̆g,i−1, η̆i

)
, i = 1, . . . , N,

0Rny = ∇yH̆
(
xi, yi, ui, λ̆f,i−1, λ̆g,i−1, η̆i

)
, i = 1, . . . , N,

λ̆f,0 = −˘̀0∇x0ϕ (x0, xN )− ψ′x0 (x0, xN )> σ̆ − g′ (x0)> ς̆ ,
λ̆f,N = ˘̀0∇x1ϕ (x0, xN ) + ψ′x1 (x0, xN )> σ̆,
0Rnu = ∇uH̆

(
xi, yi, ui, λ̆f,i−1, λ̆g,i−1, η̆i

)
, i = 1, . . . , N,

0 = c (xi, yi, ui)> η̆i, η̆i ≥ 0, i = 1, . . . , N,

(5.2.2)

cf. [47, Theorem 5.4.4].
Remark 5.2.2
Please note that the discrete necessary conditions hold for the Hamilton function H̆ defined in
(5.2.1) (with an index shift) instead of

H (x, y, u, λf , λg, η) = λ>f f (x, y, u) + λ>g g
′ (x) f (x, y, u) + η>c (x, y, u) ,

as in the continuous case. This leads to a discrepancy between the respective necessary conditions,
since the continuous necessary conditions with the Hamilton function H̆ do not have a solution
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in general (cf. [8, Example 3.16]). Therefore, the respective KKT-conditions are not consistent
with each other (compare (ii) in Theorem 2.2.6), i.e., the error that arises from inserting the
continuous KKT-point into the discrete KKT-conditions does not converge to zero, if the mesh
size h tends to zero. This discrepancy can be overcome by exhibiting extra assumptions such that
the continuous KKT-conditions with Hamilton function H̆ defined in (5.2.1) have a solution.
This permitted us to show that the respective KKT-conditions with the Hamilton function H̆ are
consistent with each other. However, this approach failed in the attempt to verify uniform strong
regularity (compare Definition 2.2.4). Specifically, we were unable to prove the step in Lemma
5.5.4. Thus, a different strategy was required.
As illustrated in Section 3.2, the necessary conditions of optimal control problems with higher
index DAEs actually coincide with the necessary conditions of the index reduced problem. In
order to obtain suitable discrete necessary conditions, we emulate the index reduction idea of
the continuous case, i.e., replacing the algebraic constraint 0Rny = g (x (t)) in [0, 1] with the
hidden constraint 0Rny = g′ (x (t)) f (x (t) , y (t) , u (t)) almost everywhere in [0, 1], and the extra
initial condition 0Rny = g (x (0)). To that end, we consider the discrete algebraic constraint

0Rny = g (xi) , i = 0, 1, . . . , N,

and replace it with a discrete derivative, in particular, the backwards difference approximation

0Rny = g (xi)− g (xi−1)
h

, i = 1, . . . , N,

together with the initial condition 0Rny = g (x0). In addition, we solve the difference equation

xi − xi−1
h

= f (xi, yi, ui)

for xi−1, which yields xi−1 = xi − hf (xi, yi, ui), and insert it into the backwards difference
approximation, which results in

0Rny = g (xi)− g (xi − hf (xi, yi, ui))
h

, i = 1, . . . , N.

With the notation g̃h (x, y, u) := g(x)−g(x−hf(x,y,u))
h we get the reduced problem:

Problem 5.2.3 (Discrete Optimal Control Problem with Reduced DAE)

Minimize ϕ (x0, xN ) ,

with respect to x0 ∈ Rnx , (xi, yi, ui) ∈ Rnx × Rny × Rnu , i = 1, . . . , N,

subject to xi−xi−1
h = f (xi, yi, ui) , i = 1, . . . , N,
0Rny = g̃h (xi, yi, ui) , i = 1, . . . , N,
0Rny = g (x0) ,
0Rnψ = ψ (x0, xN ) ,
0Rnc ≥ c (xi, yi, ui) , i = 1, . . . , N.
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Note that Problem 5.2.1 and Problem 5.2.3 are equivalent, since

0Rny = g (xi) , for i = 0, 1, . . . , N,
⇔ 0Rny = g(xi)−g(xi−1)

h , for i = 1, . . . , N, and 0Rny = g (x0) ,

and
xi−xi−1

h = f (xi, yi, ui) , for i = 1, . . . , N,
⇔ xi−1 = xi − hf (xi, yi, ui) , for i = 1, . . . , N.

Therefore, the difference-algebraic equations of the respective problems are equivalent. We define
the discrete Hamilton function by

H̃h : Rnx × Rny × Rnu × Rnx × Rny × Rnc → R,

H̃h (x, y, u, λf , λg, η) := λ>f f (x, y, u) + λ>g g̃h (x, y, u) + η>c (x, y, u) . (5.2.3)

Then, with multipliers

`0 ∈ R, σ ∈ Rnψ , ς ∈ Rny ,

λf,i ∈ Rnx i = 0, 1, . . . , N,
λg,i ∈ Rny i = 1, . . . , N,
ηi ∈ Rnc i = 1, . . . , N,

the necessary conditions of Problem 5.2.3 can be expressed as follows (cf. [47, Theorem 5.4.4]):
λf,i−λf,i−1

h = −∇xH̃h (xi, yi, ui, λf,i−1, λg,i−1, ηi) , i = 1, . . . , N,
0Rny = ∇yH̃h (xi, yi, ui, λf,i−1, λg,i−1, ηi) , i = 1, . . . , N,
λf,0 = −`0∇x0ϕ (x0, xN )− ψ′x0 (x0, xN )> σ − g′ (x0)> ς,
λf,N = `0∇x1ϕ (x0, xN ) + ψ′x1 (x0, xN )> σ,
0Rnu = ∇uH̃h (xi, yi, ui, λf,i−1, λg,i−1, ηi) , i = 1, . . . , N,

0 = c (xi, yi, ui)> ηi, ηi ≥ 0, i = 1, . . . , N.

(5.2.4)

The multipliers, which satisfy (5.2.2) and (5.2.4), respectively, are not equal in general. In
Section 5.7 we derive a relationship between the respective multipliers.
Remark 5.2.4
Another strategy for deriving suitable discrete KKT-conditions would be to first reduce the con-
tinuous DAE in Problem 5.1.1 to an index one DAE and then apply a discretization scheme.
However, this approach has several drawbacks from a practical point of view, where the dynamics
are often automatically produced by software packages. Thus, an index reduction can only be
done numerically. Furthermore, since there is no process to enforce that the discretized reduced
system satisfies the algebraic constraint 0Rny = g (x (t)), the so-called drift-off effect might occur
(cf. [19, 54]).
The main goal in this chapter is to prove that Problem 5.2.3 has a solution with associated
multipliers satisfying (5.2.4), which converge towards the weak local minimizer (x̂, ŷ, û) and
its associated Lagrange multipliers, respectively. To that end, we first write the respective
KKT-conditions as generalized equations in Section 5.4. Then, we verify the conditions of
Theorem 2.2.6 for these equations in Section 5.5. Thus, we obtain a solution of the discrete
KKT-conditions, which converges linearly to the solution of the continuous KKT-conditions.
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5.3 Preparations
In the same way as in Section 2.4, we consider finite dimensional subspaces of Lnp ([0, 1]) and
Wn

1,p ([0, 1]) defined as

Lnp,h ([0, 1]) :=
{
v ∈ Lnp ([0, 1]) | v (t) = v (ti) , t ∈ (ti−1, ti] , i = 1, . . . , N

}
,

Wn
1,p,h ([0, 1]) :=

{
v ∈Wn

1,p ([0, 1]) | v (t) = v′ (ti) (t− ti−1) + v (ti−1) ,

t ∈ (ti−1, ti] , i = 1, . . . , N} ,

for p = 2,∞, where v′ (ti) := v(ti)−v(ti−1)
h denotes the backwards difference approximation. This

allows us to write the constraints of Problem 5.2.3 as

x′h (ti) = f (xh (ti) , yh (ti) , uh (ti)) , i = 1, . . . , N,
0Rny = g̃h (xh (ti) , yh (ti) , uh (ti)) , i = 1, . . . , N,
0Rny = g (xh (t0)) ,
0Rnψ = ψ (xh (t0) , xh (tN )) ,
0Rnc ≥ c (xh (ti) , yh (ti) , uh (ti)) , i = 1, . . . , N,

for (xh, yh, uh) ∈ Wnx
1,∞,h ([0, 1]) × Lny∞,h ([0, 1]) × Lnu∞,h ([0, 1]). Let us abbreviate the derivatives

of g̃h at (x̂, ŷ, û) by

Ãgf,h (·) := g̃′h,x [·] , B̃g
f,h (·) := g̃′h,y [·] , C̃gf,h (·) := g̃′h,u [·] .

We introduce the spaces and subspaces

Xp := Wnx
1,p ([0, 1])× Lnyp ([0, 1])× Lnup ([0, 1]) ,

Xp,h := Wnx
1,p,h ([0, 1])× Lnyp,h ([0, 1])× Lnup,h ([0, 1]) ,

Y α
p := Lnxp ([0, 1])× Lnyp ([0, 1])× Rny × Rnψ × Lncp (Θα) ,

Y α
p,h := Lnxp,h ([0, 1])× Lnyp,h ([0, 1])× Rny × Rnψ × Lncp,h (Θα) ,

Y̌ ν
p := Lnxp ([0, 1])× Lnyp ([0, 1])× Rny × Rnψ × Lncp (Υν) ,

Y̌ ν
p,h := Lnxp,h ([0, 1])× Lnyp,h ([0, 1])× Rny × Rnψ × Lncp,h (Υν) ,

Lncp (Θα) :=×
j∈J

Lp
(
Θα
j

)
, Lncp (Υν) :=×

j∈J
Lp
(
Υν
j

)
,

Lncp,h (Θα) :=×
j∈J

Lp,h
(
Θα
j

)
, Lncp,h (Υν) :=×

j∈J
Lp,h

(
Υν
j

)

equipped with the norms

‖(x, y, u)‖Xp := max
{
‖x‖1,p , ‖y‖p , ‖u‖p

}
,∥∥∥(af , agf , aE , aΨ, a

α
c

)∥∥∥
Y αp

:= max
{
‖af‖p ,

∥∥∥agf∥∥∥p , ‖aE‖ , ‖aΨ‖ , ‖aαc ‖p
}
,∥∥∥(af , agf , aE , aΨ, ǎ

ν
c

)∥∥∥
Y̌ νp

:= max
{
‖af‖p ,

∥∥∥agf∥∥∥p , ‖aE‖ , ‖aΨ‖ , ‖ǎνc‖p
}
.
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For these spaces we define the linear operators

Fα ∈ L (X∞, Y α
∞) ∩ L (X2, Y

α
2 ) , F̌ ν ∈ L

(
X∞, Y̌

ν
∞

)
∩ L

(
X2, Y̌

ν
2

)
,

Fαh ∈ L
(
X∞,h, Y

α
∞,h

)
∩ L

(
X2,h, Y

α
2,h

)
, F̌ νh ∈ L

(
X∞,h, Y̌

ν
∞,h

)
∩ L

(
X2,h, Y̌

ν
2,h

)

by

Fα (x, y, u) :=



ẋ (·)−Af (·)x (·)−Bf (·) y (·)− Cf (·)u (·)
Agf (·)x (·) +Bg

f (·) y (·) + Cgf (·)u (·)
E0x (0)

Ψ0x (0) + Ψ1x (1)
Aαc (·)x (·) +Bα

c (·) y (·) + Cαc (·)u (·)


,

F̌ ν (x, y, u) :=



ẋ (·)−Af (·)x (·)−Bf (·) y (·)− Cf (·)u (·)
Agf (·)x (·) +Bg

f (·) y (·) + Cgf (·)u (·)
E0x (0)

Ψ0x (0) + Ψ1x (1)
Ǎνc (·)x (·) + B̌ν

c (·) y (·) + Čνc (·)u (·)


,

Fαh (xh, yh, uh) (t) :=



x′h (ti)−Af (ti)xh (ti)−Bf (ti) yh (ti)− Cf (ti)uh (ti)
Ãgf,h (ti)xh (ti) + B̃g

f,h (ti) yh (ti) + C̃gf,h (ti)uh (ti)
E0xh (t0)

Ψ0xh (t0) + Ψ1xh (tN )
Aαc (ti)xh (ti) +Bα

c (ti) yh (ti) + Cαc (ti)uh (ti)


,

F̌ νh (xh, yh, uh) (t) :=



x′h (ti)−Af (ti)xh (ti)−Bf (ti) yh (ti)− Cf (ti)uh (ti)
Ãgf,h (ti)xh (ti) + B̃g

f,h (ti) yh (ti) + C̃gf,h (ti)uh (ti)
E0xh (t0)

Ψ0xh (t0) + Ψ1xh (tN )
Ǎνc (ti)xh (ti) + B̌ν

c (ti) yh (ti) + Čνc (ti)uh (ti)


,

for t ∈ (ti−1, ti] , i = 1, . . . , N , which satisfy the following according to Lemma 2.4.10:

Lemma 5.3.1 (Surjectivity Conditions)
Let (5.A1) - (5.A4) hold. Then, Fα and F̌ ν are uniformly surjective with some constant κ > 0.
Furthermore, there exists a h1 > 0 such that for all 0 < h ≤ h1 the operators Fαh and F̌ νh are
uniformly surjective with some constant κ̃ > 0 independent of h.

Proof. Since Jν+ (t) ⊆ Jα (t) for all t ∈ [0, 1], assumption (5.A3) implies

∥∥∥∥∥∥
[
Bg
f (t) Cgf (t)

B̌ν
c (t) Čνc (t)

]>
$

∥∥∥∥∥∥ ≥ β ‖$‖
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for all t ∈ [0, 1] and every $ ∈ Rny+jν+(t). Thus, the linear system

ẋ (t) = Af (t)x (t) +Bf (t) y (t) + Cf (t)u (t) , a.e. in [0, 1] ,

0Rny = Agf (t)x (t) +Bg
f (t) y (t) + Cgf (t)u (t) , a.e. in [0, 1] ,

0Rny×Rnψ =
[
E0

Ψ0

]
x (0) +

[
0ny×nx

Ψ1

]
x (1) ,

0
Rj
ν
+(t) = Ǎνc (t)x (t) + B̌ν

c (t) y (t) + Čνc (t)u (t) , a.e. in [0, 1]

is completely controllable. In order to apply Lemma 2.4.10, it remains to show that the condi-
tions in Assumption 2.4.4 hold. To that end, for an arbitrary i ∈ {1, . . . , N} and t ∈ (ti−1, ti]
using the mean-value theorem in [59, p. 40] yields

∥∥∥Agf (t)− Ãgf,h (ti)
∥∥∥ =

∥∥∥∥ ddt (g′ [t])+ g′ [t]Af (t)− g′ [ti]− g′ (x̂ (ti)− hf [ti])
h

−g′ (x̂ (ti)− hf [ti])Af (ti)
∥∥

≤

∥∥∥∥∥∥g′′ (x̂ (t)) f [t]−
1∫

0

g′′ (x̂ (ti)− θhf [ti]) f [ti] dθ

∥∥∥∥∥∥
+
∥∥g′ [t]− g′ (x̂ (ti)− hf [ti])

∥∥ ‖Af‖∞ +
∥∥g′ [·]∥∥∞ ‖Af (t)−Af (ti)‖

≤

∥∥∥∥∥∥
1∫

0

g′′ (x̂ (t))− g′′ (x̂ (ti)− θhf [ti]) dθ

∥∥∥∥∥∥ ‖f [·]‖∞ +
∥∥g′′ [·]∥∥∞ ‖f [t]− f [ti]‖

+ L
(
‖f [·]‖∞ ‖Af‖∞ +

∥∥g′ [·]∥∥∞)h
≤ L

(
‖f [·]‖2∞ +

∥∥g′′ [·]∥∥∞ + ‖f [·]‖∞ ‖Af‖∞ +
∥∥g′ [·]∥∥∞)h

Moreover, for all t ∈ (ti−1, ti] it holds

∥∥∥Bg
f (t)− B̃g

f,h (ti)
∥∥∥ =

∥∥g′ [t]Bf (t)− g′ (x̂ (ti)− hf [ti])Bf (ti)
∥∥

≤
∥∥g′ [t]− g′ (x̂ (ti)− hf [ti])

∥∥ ‖Bf‖∞ +
∥∥g′ [·]∥∥∞ ‖Bf (t)−Bf (ti)‖

≤ L
(
‖f [·]‖∞ ‖Bf‖∞ +

∥∥g′ [·]∥∥∞)h,
and by the same token

∥∥∥Cgf (t)− C̃gf,h (ti)
∥∥∥ ≤ L

(
‖f [·]‖∞ ‖Cf‖∞ + ‖g′ [·]‖∞

)
h for all t ∈ (ti−1, ti],

which proves the assertion. �

We abbreviate the discrete Hamilton function (5.2.3) at the continuous KKT-point by

H̃h [ti, ti−1] := H̃h
(
x̂ (ti) , ŷ (ti) , û (ti) , λ̂f (ti−1) , λ̂g (ti−1) , η̂ (ti)

)
, i = 1, . . . , N,
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and analog for its derivatives. Additionally, we define the discrete bilinear form as

Ph : X2,h ×X2,h → R,

Ph
((
x1
h, y

1
h, u

1
h

)
,
(
x2
h, y

2
h, u

2
h

))
:=
(

x1
h (t0)

x1
h (tN )

)> [
Λ00 Λ01

Λ>01 Λ11

](
x2
h (t0)

x2
h (tN )

)
(5.3.1)

+
N∑
i=1

h


x1
h (ti)
y1
h (ti)
u1
h (ti)


> 
∇2
xxH̃h [ti, ti−1] ∇2

xyH̃h [ti, ti−1] ∇2
xuH̃h [ti, ti−1]

∇2
yxH̃h [ti, ti−1] ∇2

yyH̃h [ti, ti−1] ∇2
yuH̃h [ti, ti−1]

∇2
uxH̃h [ti, ti−1] ∇2

uyH̃h [ti, ti−1] ∇2
uuH̃h [ti, ti−1]



x2
h (ti)
y2
h (ti)
u2
h (ti)

 ,
which is symmetric and continuous, since

∇2
(x,y,u)(x,y,u)H̃h [ti, ti−1] , i = 1, . . . , N

is bounded according to (5.A1) and (5.A2). In addition, by Lemma 2.4.12, the bilinear form Ph
satisfies the following:
Lemma 5.3.2 (Discrete Coercivity)
Let (5.A1) - (5.A5) hold. Then, there exist h1, γ̃ > 0 such that for all 0 < h ≤ h1 the bilinear
form Ph is coercive on ker

(
F̌ νh

)
with constant γ̃ > 0.

Proof. In order to apply Lemma 2.4.12, it remains to show that the conditions in Assumption
2.4.11 hold. Since the KKT-point

(
x̂, ŷ, û, λ̂f , λ̂g, ς̂ , σ̂, η̂

)
is Lipschitz continuous and (5.A2)

holds, we find a constant L∇2H ≥ 0 using similar techniques as in Lemma 5.3.1 such that for all
i ∈ {1, . . . , N} and t ∈ (ti−1, ti] we obtain∥∥∥∥∥∥∥∥


∇2
xxH [t] ∇2

xyH [t] ∇2
xuH [t]

∇2
yxH [t] ∇2

yyH [t] ∇2
yuH [t]

∇2
uxH [t] ∇2

uyH [t] ∇2
uuH [t]



−


∇2
xxH̃h [ti, ti−1] ∇2

xyH̃h [ti, ti−1] ∇2
xuH̃h [ti, ti−1]

∇2
yxH̃h [ti, ti−1] ∇2

yyH̃h [ti, ti−1] ∇2
yuH̃h [ti, ti−1]

∇2
uxH̃h [ti, ti−1] ∇2

uyH̃h [ti, ti−1] ∇2
uuH̃h [ti, ti−1]


∥∥∥∥∥∥∥∥ ≤ L∇2Hh,

which proves the assertion. �

From this, we can immediately conclude with Lemma 2.4.14 and Lemma 2.4.15 that continuous
and discrete Legendre-Clebsch conditions are satisfied:
Lemma 5.3.3 (Legendre-Clebsch Conditions)
Let (5.A1) - (5.A5) hold with coercivity constant γ > 0. Then, for every t ∈ [0, 1] and each

v ∈ ker
([

Bg
f (t) Cgf (t)

B̌ν
c (t) Čνc (t)

])
the continuous Legendre-Clebsch condition

v>
[
∇2
yyH [t] ∇2

yuH [t]
∇2
uyH [t] ∇2

uuH [t]

]
v ≥ γ ‖v‖2

holds.
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Furthermore, there exist h1, γ̃ > 0 such that for all 0 < h ≤ h1, every i ∈ {1, . . . , N}, and each

v ∈ ker
([

B̃g
f,h (ti) C̃gf,h (ti)
B̌ν
c (ti) Čνc (ti)

])
the discrete Legendre-Clebsch condition

v>
[
∇2
yyH̃h [ti, ti−1] ∇2

yuH̃h [ti, ti−1]
∇2
uyH̃h [ti, ti−1] ∇2

uuH̃h [ti, ti−1]

]
v ≥ γ̃ ‖v‖2

holds.

�

5.4 Abstract Setting

Our aim is to apply Theorem 2.2.6 to the continuous necessary conditions (5.1.2) of Problem
5.1.1 and the discrete necessary conditions (5.2.4) of Problem 5.2.3. Thus, we write the KKT-
conditions of the respective systems as generalized equations of the form (2.2.1). To that end,
for p = 2,∞ we define the following spaces

Ξp := Wnx
1,p ([0, 1])× Lnyp ([0, 1])× Lnup ([0, 1])

×Wnx
1,p ([0, 1])× Lnyp ([0, 1])× Rny × Rnψ × Lncp ([0, 1]) ,

ξ := (x, y, u, λf , λg, ς, σ, η)

Ξp,h := Wnx
1,p,h ([0, 1])× Lnyp,h ([0, 1])× Lnup,h ([0, 1])

×Wnx
1,p,h ([0, 1])× Lnyp,h ([0, 1])× Rny × Rnψ × Lncp,h ([0, 1]) ,

ξh := (xh, yh, uh, λf,h, λg,h, ςh, σh, ηh)

Ωp := Lnxp ([0, 1])× Rnx × Rnx × Lnyp ([0, 1])× Lnup ([0, 1])

×Lnxp ([0, 1])× Lnyp ([0, 1])× Rny × Rnψ × Lncp ([0, 1]) ,

ω :=
(
ωHx , ωϑ0 , ωϑ1 , ωHy , ωHu , ωf , ω

g
f , ωg0 , ωψ, ωc

)
Ωp,h := Lnxp,h ([0, 1])× Rnx × Rnx × Lnyp,h ([0, 1])× Lnup,h ([0, 1])

×Lnxp,h ([0, 1])× Lnyp,h ([0, 1])× Rny × Rnψ × Lncp,h ([0, 1]) ,

ωh :=
(
ωHx,h, ωϑ0,h, ωϑ1,h, ωHy ,h, ωHu,h, ωf,h, ω

g
f,h, ωg0,h, ωψ,h, ωc,h

)
,

equipped with the norms

‖ξ‖Ξp := max
{
‖x‖1,p , ‖y‖p , ‖u‖p , ‖λf‖1,p , ‖λg‖p , ‖ς‖ , ‖σ‖ , ‖η‖p

}
,

‖ω‖Ωp := max
{
‖ωHx‖p , ‖ωϑ0‖ , ‖ωϑ1‖ ,

∥∥ωHy∥∥p , ‖ωHu‖p ,
‖ωf‖p ,

∥∥∥ωgf∥∥∥p , ‖ωg0‖ , ‖ωψ‖ , ‖ωc‖p
}
.
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Moreover, we define the functions T : Ξ∞ → Ω∞ and Th : Ξ∞,h → Ω∞,h as

T (ξ) :=



λ̇f (·) +∇xH (x (·) , y (·) , u (·) , λf (·) , λg (·) , η (·))
λf (0) +∇x0ϕ (x (0) , x (1)) + ψ′x0 (x (0) , x (1))> σ + g′ (x (0))> ς

λf (1)−∇x1ϕ (x (0) , x (1))− ψ′x1 (x (0) , x (1))> σ
∇yH (x (·) , y (·) , u (·) , λf (·) , λg (·) , η (·))
∇uH (x (·) , y (·) , u (·) , λf (·) , λg (·) , η (·))

ẋ (·)− f (x (·) , y (·) , u (·))
g′ (x (·)) f (x (·) , y (·) , u (·))

g (x (0))
ψ (x (0) , x (1))

c (x (·) , y (·) , u (·))



,

and for i = 1, . . . , N, t ∈ (ti−1, ti]

Th (ξh) (t) :=



λ′f,h (ti) +∇xH̃h (xh (ti) , yh (ti) , uh (ti) , λf,h (ti−1) , λg,h (ti−1) , ηh (ti))
λf,h (t0) +∇x0ϕ (xh (t0) , xh (tN )) + ψ′x0 (xh (t0) , xh (tN ))> σh

+g′ (xh (t0))> ςh
λf,h (tN )−∇x1ϕ (xh (t0) , xh (tN ))− ψ′x1 (xh (t0) , xh (tN ))> σh
∇yH̃h (xh (ti) , yh (ti) , uh (ti) , λf,h (ti−1) , λg,h (ti−1) , ηh (ti))
∇uH̃h (xh (ti) , yh (ti) , uh (ti) , λf,h (ti−1) , λg,h (ti−1) , ηh (ti))

x′h (ti)− f (xh (ti) , yh (ti) , uh (ti))
g̃h (xh (ti) , yh (ti) , uh (ti))

g (xh (t0))
ψ (xh (t0) , xh (tN ))

c (xh (ti) , yh (ti) , uh (ti))



.

Note that T is defined with the (continuous) Hamilton function H and Th with the (discrete)
Hamilton function H̃h in (5.2.3), which occurs in the necessary conditions (5.2.4) for Problem
5.2.3. Additionally, the set valued mappings F : Ξ∞ ⇒ Ω∞ and Fh : Ξ∞,h ⇒ Ω∞,h are defined
by

F (ξ) :=



{
0Lnx∞ ([0,1])

}
{0Rnx}
{0Rnx}{

0Lny∞ ([0,1])

}{
0Lnu∞ ([0,1])

}{
0Lnx∞ ([0,1])

}{
0Lny∞ ([0,1])

}
{0Rny }
{0Rnψ }
Fc (η)



, Fh (ξh) :=



{
0Lnx∞ ([0,1])

}
{0Rnx}
{0Rnx}{

0Lny∞ ([0,1])

}{
0Lnu∞ ([0,1])

}{
0Lnx∞ ([0,1])

}{
0Lny∞ ([0,1])

}
{0Rny }
{0Rnψ }
Fc,h (ηh)



,
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Fc : Lnc∞ ([0, 1])⇒ Lnc∞ ([0, 1]) , Fc,h : Lnc∞,h ([0, 1])⇒ Lnc∞,h ([0, 1]) ,

Fc (η) :=


{
ωc ∈ Lnc∞,+ ([0, 1]) | η (t)> ωc (t) = 0, a.e. in [0, 1]

}
, if η ∈ Lnc∞,+ ([0, 1])

∅, otherwise
,

Fc,h (ηh)

:=


{
ωc,h ∈ Lnc∞,h,+ ([0, 1]) | ηh (ti)> ωc,h (ti) = 0, i = 1, . . . , N

}
, if ηh ∈ Lnc∞,h,+ ([0, 1])

∅, otherwise
,

where Lnc∞,+ ([0, 1]) ⊆ Lnc∞ ([0, 1]) and Lnc∞,h,+ ([0, 1]) ⊆ Lnc∞,h ([0, 1]) consist of functions, which
are non-negative almost everywhere on [0, 1]. For this notation we consider the generalized
equations

0Ω ∈ T (ξ) + F (ξ) , (5.4.1)

0Ω ∈ Th (ξh) + Fh (ξh) . (5.4.2)

5.5 Convergence Proof
Throughout this section, we assume that the conditions (5.A1) - (5.A5) hold. Our goal is to
apply Theorem 2.2.6 for the KKT-point ξ̂ :=

(
x̂, ŷ, û, λ̂f , λ̂g, ς̂ , σ̂, η̂

)
(which solves the continu-

ous inclusion (5.4.1)) and the discrete generalized equation (5.4.2), thus we need to verify the
following conditions:

(i) T ′h (·) is Lipschitz continuous with a constant independent of h.

(ii) There exist ξ̃h ∈ Ξ∞,h and ω̂h ∈ Ω∞,h such that

0Ω ∈ Th
(
ξ̃h
)

+ ω̂h + Fh
(
ξ̃h
)

and
∥∥∥ξ̃h − ξ̂∥∥∥Ξ∞

→ 0, ‖ω̂h‖Ω∞ → 0 for h→ 0.

(iii) There exist h1, %, ρ > 0 such that for all 0 < h ≤ h1 and every ζ ∈ B% (0Ω∞) the inclusion

ζ ∈ Th
(
ξ̃h
)

+ ω̂h + T ′h
(
ξ̃h
) (
ξh − ξ̃h

)
+ Fh (ξh)

has a unique solution ξh (ζ) ∈ Bρ
(
ξ̃h
)
, which is Lipschitz continuous with respect to ζ and

a Lipschitz constant independent of h.

According to the smoothness assumption (5.A2), the function T ′h (·) is Lipschitz continuous,
hence condition (i) of Theorem 2.2.6 is satisfied.
For (ii) we define the projections ∆h : Ξ∞ → Ξ∞,h, ∆1,n

h : Wn
1,∞ ([0, 1]) → Wn

1,∞,h ([0, 1]), and
∆0,n
h : Ln∞ ([0, 1]) ∩ Cn0 ([0, 1])→ Ln∞,h ([0, 1]) as

∆h (ξ) :=
(
∆1,nx
h (x) ,∆0,ny

h (y) ,∆0,nu
h (u) ,∆1,nx

h (λf ) ,∆0,ny
h (λg) , ς, σ,∆0,nc

h (η)
)
,

∆1,n
h (v) (t0) := v (t0) ,

∆1,n
h (v) (t) := v′ (ti) (t− ti−1) + v (ti−1) , t ∈ (ti−1, ti] , i = 1, . . . , N,

∆0,n
h (v) (t) := v (ti) , t ∈ (ti−1, ti] , i = 1, . . . , N,
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(compare Figure 2.1). Then, ∆h

(
ξ̂
)

and ω̂h ∈ Ω∞,h defined by

ω̂h (t) :=



− λ̂f (ti)−λ̂f (ti−1)
h −∇xH̃h [ti, ti−1]

0Rnx

0Rnx

−∇yH̃h [ti, ti−1]
−∇uH̃h [ti, ti−1]
− x̂(ti)−x̂(ti−1)

h + f [ti]
−g̃h [ti]
0Rny

0Rnψ

0Rnc



,

for t ∈ (ti−1, ti], i = 1, . . . , N satisfy the inclusion

0Ω ∈ Th
(
∆h

(
ξ̂
))

+ ω̂h + Fh
(
∆h

(
ξ̂
))
.

Furthermore, since(
x̂, ŷ, û, λ̂f , λ̂g, η̂

)
∈Wnx

2,∞ ([0, 1])×Wny
1,∞ ([0, 1])×Wnu

1,∞ ([0, 1]) (5.5.1)

×Wnx
2,∞ ([0, 1])×Wny

1,∞ ([0, 1])×Wnc
1,∞ ([0, 1]) ,

it holds ∥∥∥x̂ (t)−∆1,nx
h (x̂) (t)

∥∥∥ =
∥∥x̂ (t)− x̂ (ti−1)− x̂′ (ti) (t− ti−1)

∥∥ ≤ 2
∥∥∥ ˙̂x
∥∥∥
∞
h,∥∥∥∥ ddt

(
x̂ (t)−∆1,nx

h (x̂) (t)
)∥∥∥∥ =

∥∥∥ ˙̂x (t)− x̂′ (ti)
∥∥∥ ≤ ∥∥∥¨̂x

∥∥∥
∞
h,∥∥∥ŷ (t)−∆0,ny

h (ŷ) (t)
∥∥∥ = ‖ŷ (t)− ŷ (ti)‖ ≤

∥∥∥ ˙̂y
∥∥∥
∞
h

for t ∈ (ti−1, ti], i = 1, . . . , N . Analog, we obtain bounds for
(
û, λ̂f , λ̂g, η̂

)
, thus∥∥∥ξ̂ −∆h

(
ξ̂
)∥∥∥

Ξ
→ 0 for h→ 0,

with a linear convergence rate. By (5.A2) and (5.5.1), we find a constant L∇H ≥ 0 such that∥∥∥∇xH [t]−∇xH̃h [ti, ti−1]
∥∥∥ ≤ L∇Hh,∥∥∥−∇yH̃h [ti, ti−1]

∥∥∥ =
∥∥∥∇yH [t]−∇yH̃h [ti, ti−1]

∥∥∥ ≤ L∇Hh,∥∥∥−∇uH̃h [ti, ti−1]
∥∥∥ =

∥∥∥∇uH [t]−∇uH̃h [ti, ti−1]
∥∥∥ ≤ L∇Hh

for t ∈ (ti−1, ti], i = 1, . . . , N , and therefore we have∥∥∥∥∥− λ̂f (ti)− λ̂f (ti−1)
h

−∇xH̃h [ti, ti−1]
∥∥∥∥∥ =

∥∥∥∥∥∥∥
1
h

ti∫
ti−1

− ˙̂
λf (t)−∇xH̃h [ti, ti−1] dt

∥∥∥∥∥∥∥
=

∥∥∥∥∥∥∥
1
h

ti∫
ti−1

∇xH [t]−∇xH̃h [ti, ti−1] dt

∥∥∥∥∥∥∥
≤ L∇Hh
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for i = 1, . . . , N . By the same token, we get
∥∥∥− x̂(ti)−x̂(ti−1)

h + f [ti]
∥∥∥ ≤ Lh for i = 1, . . . , N .

Finally, using the Taylor expansion and exploiting g′ [ti] f [ti] = 0Rny yields for i = 1, . . . , N∥∥∥∥g (x̂ (ti))− g (x̂ (ti)− hf [ti])
h

∥∥∥∥
=

∥∥∥∥∥∥−g′ [ti] f [ti] + h

1∫
0

(1− θ) g′′ (x̂ (ti)− θhf [ti]) (f [ti] , f [ti]) dθ

∥∥∥∥∥∥
≤ h

1∫
0

(1− θ)
(∥∥g′′ (x̂ (ti))

∥∥+
∥∥g′′ (x̂ (ti))− g′′ (x̂ (ti)− θhf [ti])

∥∥) ‖f [·]‖2∞ dθ

≤ h
1∫

0

(1− θ)
(∥∥g′′ [·]∥∥∞ + θhL ‖f [·]‖∞

)
‖f [·]‖2∞ dθ ≤

(∥∥g′′ [·]∥∥∞ + L ‖f [·]‖∞
)
‖f [·]‖2∞ h.

Overall, we conclude ‖ω̂h‖Ω → 0 for h→ 0 with a linear convergence rate, hence condition (ii)
holds.

Using the techniques in [80] we take the following steps in order to verify condition (iii) (see
Figure 5.1):

Linear
Quadratic

Optimization
Problem 5.5.1

Modified Linear
Quadratic

Optimization
Problem 5.5.2

Uniform Strong
Regularity in
the Ξ∞-norm

for Problem 5.5.2

Uniform Strong
Regularity in
the Ξ∞-norm

for Problem 5.5.1

Uniform Strong
Regularity in
the Ξ2-norm

for Problem 5.5.2

neglecting
inactive

inequality
constraints Lemma 5.5.3

Lemma 5.5.4Lemma 5.5.5

Figure 5.1: Scheme to verify condition (iii) (uniform strong regularity) for (5.4.2).
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(a) First, we see that the (perturbed) linearized inclusion

ζ ∈ Th
(
∆h

(
ξ̂
))

+ ω̂h + T ′h
(
∆h

(
ξ̂
)) (

ξh −∆h

(
ξ̂
))

+ Fh (ξh) (5.5.2)

represents the KKT-conditions of a linear quadratic optimization problem (Problem 5.5.1).

(b) Then, we modify the inequality constraints of that problem by neglecting inactive con-
straints and obtain a system, where the gradients of all constraints are linear independent
(Problem 5.5.2).

(c) Using the discrete coercivity condition in Lemma 5.3.2 we show that the modified problem
has a unique solution for every perturbation, which satisfies condition (iii) in the weaker
Ξ2-norm (Lemma 5.5.3).

(d) Exploiting the discrete Legendre-Clebsch condition in Lemma 5.3.3 and the sensitivity
result in Corollary 2.3.10 yields uniform strong regularity in the Ξ∞-norm (Lemma 5.5.4).

(e) Finally, we show that for sufficiently small perturbations the unique solution of the modified
problem is also the unique solution of the original linear quadratic problem, thus (5.5.2)
satisfies (iii) in the Ξ∞-norm (Lemma 5.5.5).

For an arbitrary perturbation ζ ∈ Ω∞,h we denote

πh (ζ) =



πHx,h (ζ)
πϑ0,h (ζ)
πϑ1,h (ζ)
πHy ,h (ζ)
πHu,h (ζ)
πf,h (ζ)
πgf,h (ζ)
πg0,h (ζ)
πψ,h (ζ)
πc,h (ζ)



:= Th
(
∆h

(
ξ̂
))

+ ω̂h − T ′h
(
∆h

(
ξ̂
))

∆h

(
ξ̂
)
− ζ.

Then, the (perturbed) linearized inclusion becomes

0Ω ∈ T ′h
(
∆h

(
ξ̂
))
ξh + Fh (ξh) + πh (ζ) ,
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which we can write as

λ′f,h (ti) + ∇2
xxH̃h [ti, ti−1]xh (ti) + ∇2

xyH̃h [ti, ti−1] yh (ti)
+ ∇2

xuH̃h [ti, ti−1]uh (ti) + Af (ti)> λf,h (ti−1)
+ Ãgf,h (ti)> λg,h (ti−1) + Ac (ti)> ηh (ti)

+ πHx,h (ζ) (ti) = 0Rnx ,

λf,h (t0) + Λ00xh (t0) + Λ01xh (tN )
+ Ψ>0 σh + E>0 ςh

+ πϑ0,h (ζ) = 0Rnx ,

λf,h (tN ) + Λ>01xh (t0) + Λ11xh (tN )
+ Ψ>1 σh + πϑ1,h (ζ) = 0Rnx ,

∇2
yxH̃h [ti, ti−1]xh (ti) + ∇2

yyH̃h [ti, ti−1] yh (ti)
+ ∇2

yuH̃h [ti, ti−1]uh (ti) + Bf (ti)> λf,h (ti−1)
+ B̃g

f,h (ti)> λg,h (ti−1) + Bc (ti)> ηh (ti)
+ πHy ,h (ζ) (ti) = 0Rny ,

∇2
uxH̃h [ti, ti−1]xh (ti) + ∇2

uyH̃h [ti, ti−1] yh (ti)
+ ∇2

uuH̃h [ti, ti−1]uh (ti) + Cf (ti)> λf,h (ti−1)
+ C̃gf,h (ti)> λg,h (ti−1) + Cc (ti)> ηh (ti)

+ πHu,h (ζ) (ti) = 0Rnu ,

x′h (ti) − Af (ti)xh (ti) − Bf (ti) yh (ti) − Cf (ti)uh (ti) + πf,h (ζ) (ti) = 0Rnx ,

Ãgf,h (ti)xh (ti) + B̃g
f,h (ti) yh (ti) + C̃gf,h (ti)uh (ti) + πgf,h (ζ) (ti) = 0Rny ,

E0xh (t0) + πg0,h (ζ) = 0Rny ,

Ψ0xh (t0) + Ψ1xh (tN ) + πψ,h (ζ) = 0Rnψ ,

Ac (ti)xh (ti) + Bc (ti) yh (ti) + Cc (ti)uh (ti) + πc,h (ζ) (ti) ≤ 0Rnc ,

ηh (ti) ≥ 0Rnc ,

ηh (ti)> (Ac (ti)xh (ti) + Bc (ti) yh (ti) + Cc (ti)uh (ti) + πc,h (ζ) (ti)) = 0,

for i = 1, . . . , N . These are the KKT-conditions of the following Problem:
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Problem 5.5.1 (Discrete Linear Quadratic Optimization Problem)

Minimize 1
2Ph ((xh, yh, uh) , (xh, yh, uh)) +

N∑
i=1

h


xh (ti)
yh (ti)
uh (ti)


>

πHx,h (ζ) (ti)
πHy ,h (ζ) (ti)
πHu,h (ζ) (ti)


+xh (t0)> πϑ0,h (ζ) + xh (tN )> πϑ1,h (ζ) ,

with respect to xh ∈Wnx
1,∞,h ([0, 1]) , yh ∈ L

ny
∞,h ([0, 1]) , uh ∈ Lnu∞,h ([0, 1]) ,

subject to x′h (ti) = Af (ti)xh (ti) +Bf (ti) yh (ti) + Cf (ti)uh (ti)− πf,h (ζ) (ti) ,
0Rny = Ãgf,h (ti)xh (ti) + B̃g

f,h (ti) yh (ti) + C̃gf,h (ti)uh (ti) + πgf,h (ζ) (ti) ,
0Rny = E0xh (t0) + πg0,h (ζ) ,
0Rnψ = Ψ0xh (t0) + Ψ1xh (tN ) + πψ,h (ζ) ,
0Rnc ≥ Ac (ti)xh (ti) +Bc (ti) yh (ti) + Cc (ti)uh (ti) + πc,h (ζ) (ti) ,

for i = 1, . . . , N .

The index set of the active constraints of Problem 5.5.1 stay the same as in the unperturbed
case for sufficiently small perturbations, as we will prove later in Lemma 5.5.5. Thus, we modify
Problem 5.5.1 by neglecting inactive inequality constraints:
Problem 5.5.2 (Modified Discrete Linear Quadratic Optimization Problem)

Minimize 1
2Ph ((xh, yh, uh) , (xh, yh, uh)) +

N∑
i=1

h


xh (ti)
yh (ti)
uh (ti)


>

πHx,h (ζ) (ti)
πHy ,h (ζ) (ti)
πHu,h (ζ) (ti)


+xh (t0)> πϑ0,h (ζ) + xh (tN )> πϑ1,h (ζ) ,

with respect to xh ∈Wnx
1,∞,h ([0, 1]) , yh ∈ L

ny
∞,h ([0, 1]) , uh ∈ Lnu∞,h ([0, 1]) ,

subject to x′h (ti) = Af (ti)xh (ti) +Bf (ti) yh (ti) + Cf (ti)uh (ti)− πf,h (ζ) (ti) ,
0Rny = Ãgf,h (ti)xh (ti) + B̃g

f,h (ti) yh (ti) + C̃gf,h (ti)uh (ti) + πgf,h (ζ) (ti) ,
0Rny = E0xh (t0) + πg0,h (ζ) ,
0Rnψ = Ψ0xh (t0) + Ψ1xh (tN ) + πψ,h (ζ) ,

and c′j,x [ti]xh (ti) + c′j,y [ti] yh (ti) + c′j,u [ti]uh (ti)

+πc,h,j (ζ) (ti)
{

= 0, if ti ∈ Υν
j

≤ 0, if ti ∈ Θα
j \Υν

j

, j ∈ Jα (ti) ,

for i = 1, . . . , N .
If the sufficient conditions in Theorem 2.3.5 hold, then this linear quadratic optimization problem
has a global minimum. According to Lemma 5.3.2, the bilinear form Ph is coercive on ker

(
F̌ νh

)
,

hence Problem 5.5.2 has a global minimum. Moreover, by Remark 2.3.4, the associated Lagrange
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multipliers are unique, if the linear independence constraint qualification in Definition 2.3.3 is
satisfied. Consider the system of linear equations

E0xh (t0) = aE0

Ψ0xh (t0) + Ψ1xh (tN ) = aΨ

x′h (t1) − Af (t1)xh (t1) − Bf (t1) yh (t1) − Cf (t1)uh (t1) = af (t1)
Ãgf,h (t1)xh (t1) + B̃g

f,h (t1) yh (t1) + C̃gf,h (t1)uh (t1) = ãgf,h (t1)
Aαc (t1)xh (t1) + Bα

c (t1) yh (t1) + Cαc (t1)uh (t1) = aαc (t1)
x′h (t2) − Af (t2)xh (t2) − Bf (t2) yh (t2) − Cf (t2)uh (t2) = af (t2)

Ãgf,h (t2)xh (t2) + B̃g
f,h (t2) yh (t2) + C̃gf,h (t2)uh (t2) = ãgf,h (t2)

Aαc (t2)xh (t2) + Bα
c (t2) yh (t2) + Cαc (t2)uh (t2) = aαc (t2)

...
...

...
x′h (tN ) − Af (tN )xh (tN ) − Bf (tN ) yh (tN ) − Cf (tN )uh (tN ) = af (tN )

Ãgf,h (tN )xh (tN ) + B̃g
f,h (tN ) yh (tN ) + C̃gf,h (tN )uh (tN ) = ãgf,h (tN )

Aαc (tN )xh (tN ) + Bα
c (tN ) yh (tN ) + Cαc (tN )uh (tN ) = aαc (tN )

,

where aE0 ∈ Rny , aΨ ∈ Rnψ , and af (ti) ∈ Rnx , ãgf,h (ti) ∈ Rny , aαc (ti) ∈ Rjα(ti) for i = 1, . . . , N .
According to Lemma 5.3.1, this system has a solution for arbitrary(

aE0 , aΨ, af (t1) , ãgf,h (t1) , aαc (t1) , . . . , af (tN ) , ãgf,h (tN ) , aαc (tN )
)
.

Thus, for every ζ ∈ Ω∞,h the set of admissible vectors for Problem 5.5.2 is not empty and the
matrix 

[
E0

Ψ0

] [
0ny×nx 0ny×ny 0ny×nu

Ψ1 0nψ×ny 0nψ×nu

]
Rh (t1) Sh (t1)

Rh (t2) Sh (t2)
. . .

Rh (tN ) Sh (tN )


,

where

Rh (t1) :=


1
hInx

0ny×nx
0jα(t1)×nx

 , Rh (ti) :=


1
hInx 0nx×ny 0nx×nu

0ny×nx 0ny×ny 0ny×nu
0jα(ti)×nx 0jα(ti)×ny 0jα(ti)×nu

 , i = 2, . . . , N,

Sh (ti) :=


− 1
hInx +Af (ti) Bf (ti) Cf (ti)
Ãgf,h (ti) B̃g

f,h (ti) C̃gf,h (ti)
Aαc (ti) Bα

c (ti) Cαc (ti)

 , i = 1, . . . , N,

has full row rank. Therefore, the linear independence constraint qualification is satisfied for
Problem 5.5.2. Consequently, for every ζ ∈ Ω∞,h Problem 5.5.2 has a unique (global) minimizer
together with unique multipliers, which we denote by

ξ̄h (ζ) :=
(
x̄h (ζ) , ȳh (ζ) , ūh (ζ) , λ̄f,h (ζ) , λ̄g,h (ζ) , ς̄h (ζ) , σ̄h (ζ) , η̄h (ζ)

)
,
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where we set η̄h,j (ζ) (ti) = 0, if j ∈ J \ Jα (ti) for i = 1, . . . , N . Moreover, for all i = 1, . . . , N
we denote η̄αh (ζ) (ti) := [η̄h,j (ζ) (ti)]j∈Jα(ti) , and prove the following (compare step (c) above):

Lemma 5.5.3
Let (5.A1) - (5.A5) hold. Then, there exist h1, lL2 > 0 such that for all 0 < h ≤ h1 and every
ζ1, ζ2 ∈ Ω∞,h it holds

∥∥∥ξ̄h (ζ1)− ξ̄h (ζ2)
∥∥∥

Ξ2
≤ lL2 ‖ζ1 − ζ2‖Ω∞ . (5.5.3)

Proof. Since we aim to obtain a bound in the Ξ2-norm, we consider Problem 5.5.2 in X2,h

instead of X∞,h. This does not change the optimization problem, because these spaces are finite
dimensional, and therefore isomorphic. Choose h1 > 0 such that Lemma 5.3.1 and Lemma
5.3.2 hold for constants κ̃ > 0 and γ̃ > 0, respectively. Then, by Lemma 2.1.6, the operator
Fαh ◦ I

−1
X2,h
◦ Fαh

? ∈ L
(
Y α

2,h
?, Y α

2,h

)
, where IX2,h is the canonical isomorphism between X2,h and

X?
2,h (compare Theorem 2.1.3), is bijective and the inverse is uniformly bounded. Additionally,

there exist constants ΓFα ,ΓP ≥ 0 satisfying

∥∥∥∥I−1
X2,h
◦ Fαh

? ◦
(
Fαh ◦ I−1

X2,h
◦ Fαh

?
)−1

∥∥∥∥
L
(
Y α2,h,X2,h

) ≤ ΓFα , (5.5.4)∣∣∣Ph ((x1
h, y

1
h, u

1
h

)
,
(
x2
h, y

2
h, u

2
h

))∣∣∣ ≤ ΓP
∥∥∥(x1

h, y
1
h, u

1
h

)∥∥∥
X2

∥∥∥(x2
h, y

2
h, u

2
h

)∥∥∥
X2

for all
(
x1
h, y

1
h, u

1
h

)
,
(
x2
h, y

2
h, u

2
h

)
∈ X2,h. We abbreviate the perturbation that appears in the

constraints of Problem 5.5.2 by

s (ζ) (ti) :=



πf,h (ζ) (ti)
πgf,h (ζ) (ti)
πg0,h (ζ)
πψ,h (ζ)

[πc,h,j (ζ) (ti)]j∈Jα(ti)



for ζ ∈ Ω∞,h and i = 1, . . . , N . Now, we can transform Problem 5.5.2 such that the perturbation
does not appear in the constraints, in particular, we introduce new variables


zh

wh

vh

 :=


xh

yh

uh

+ I−1
X2,h
◦ Fαh

? ◦
(
Fαh ◦ I−1

X2,h
◦ Fαh

?
)−1

s (ζ) , (5.5.5)
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which yields the optimization problem

OP (ζ)
Minimize Jh (zh, wh, vh, ζ) ,

with respect to zh ∈Wnx
1,∞,h ([0, 1]) , wh ∈ L

ny
∞,h ([0, 1]) , vh ∈ Lnu∞,h ([0, 1]) ,

subject to z′h (ti) = Af (ti) zh (ti) +Bf (ti)wh (ti) + Cf (ti) vh (ti) ,
0Rny = Ãgf,h (ti) zh (ti) + B̃g

f,h (ti)wh (ti) + C̃gf,h (ti) vh (ti) ,
0Rny = E0zh (t0) ,
0Rnψ = Ψ0zh (t0) + Ψ1zh (tN ) ,

and c′j,x [ti] zh (ti) + c′j,y [ti]wh (ti)

+c′j,u [ti] vh (ti)
{

= 0, if ti ∈ Υν
j

≤ 0, if ti ∈ Θα
j \Υν

j

, j ∈ Jα (ti) ,

for i = 1, . . . , N,

where

Jh (zh, wh, vh, ζ) := 1
2Ph ((zh, wh, vh) , (zh, wh, vh)) +Qh (zh, wh, vh, ζ) ,

Qh (zh, wh, vh, ζ) :=
N∑
i=1

h


zh (ti)
wh (ti)
vh (ti)


>

πHx,h (ζ) (ti)
πHy ,h (ζ) (ti)
πHu,h (ζ) (ti)


+ zh (t0)> πϑ0,h (ζ) + zh (tN )> πϑ1,h (ζ)

− Ph
(
I−1
X2,h
◦ Fαh

? ◦
(
Fαh ◦ I−1

X2,h
◦ Fαh

?
)−1

s (ζ) , (zh, wh, vh)
)
.

Utilizing the Cauchy-Schwarz inequality yields the existence of a constant Γ1 ≥ 0 such that

|Qh (zh, wh, vh, ζ)| ≤ Γ1 ‖(zh, wh, vh)‖X2,h
‖ζ‖Ω∞,h

for all (zh, wh, vh) ∈ X2,h, ζ ∈ Ω∞,h. Since the perturbation appears linearly in the objective
function Jh (zh, wh, vh, ζ), the properties of Lemma 5.3.1 and Lemma 5.3.2 remain valid. Hence,
OP (ζ) has a unique minimizer for every ζ ∈ Ω∞,h, which we denote by (z̄h (ζ) , w̄h (ζ) , v̄h (ζ)).
Consequently, for every ζ ∈ Ω∞,h the objective function Jh satisfies the optimality condition at
(z̄h (ζ) , w̄h (ζ) , v̄h (ζ)), i.e.,

0 ≤ ∇(zh,wh,vh)Jh (z̄h (ζ) , w̄h (ζ) , v̄h (ζ) , ζ)> ((zh, wh, vh)− (z̄h (ζ) , w̄h (ζ) , v̄h (ζ)))

= Ph ((z̄h (ζ) , w̄h (ζ) , v̄h (ζ)) , (zh, wh, vh)− (z̄h (ζ) , w̄h (ζ) , v̄h (ζ)))

+Qh (zh − z̄h (ζ) , wh − w̄h (ζ) , vh − v̄h (ζ) , ζ)

for all admissible (zh, wh, vh). Since the constraints in OP (ζ) are independent of the perturba-
tion, (z̄h (ζ1) , w̄h (ζ1) , v̄h (ζ1)) is feasible for OP (ζ2) and (z̄h (ζ2) , w̄h (ζ2) , v̄h (ζ2)) is feasible for



5.5. CONVERGENCE PROOF 129

OP (ζ1) for all ζ1, ζ2 ∈ Ω∞,h. This in turn implies

0 ≤ Ph ((z̄h (ζ1) , w̄h (ζ1) , v̄h (ζ1)) , (z̄h (ζ2) , w̄h (ζ2) , v̄h (ζ2))− (z̄h (ζ1) , w̄h (ζ1) , v̄h (ζ1)))

+Qh (z̄h (ζ2)− z̄h (ζ1) , w̄h (ζ2)− w̄h (ζ1) , v̄h (ζ2)− v̄h (ζ1) , ζ1)

0 ≤ Ph ((z̄h (ζ2) , w̄h (ζ2) , v̄h (ζ2)) , (z̄h (ζ1) , w̄h (ζ1) , v̄h (ζ1))− (z̄h (ζ2) , w̄h (ζ2) , v̄h (ζ2))) ,

+Qh (z̄h (ζ1)− z̄h (ζ2) , w̄h (ζ1)− w̄h (ζ2) , v̄h (ζ1)− v̄h (ζ2) , ζ2) .

Adding these inequalities and utilizing the coercivity of Ph yields

Qh (z̄h (ζ2)− z̄h (ζ1) , w̄h (ζ2)− w̄h (ζ1) , v̄h (ζ2)− v̄h (ζ1) , ζ1 − ζ2)

≥ Ph ((z̄h (ζ2) , w̄h (ζ2) , v̄h (ζ2))− (z̄h (ζ1) , w̄h (ζ1) , v̄h (ζ1)) ,

(z̄h (ζ2) , w̄h (ζ2) , v̄h (ζ2))− (z̄h (ζ1) , w̄h (ζ1) , v̄h (ζ1)))

≥ γ̃ ‖(z̄h (ζ2) , w̄h (ζ2) , v̄h (ζ2))− (z̄h (ζ1) , w̄h (ζ1) , v̄h (ζ1))‖2X2
.

Exploiting the boundedness of Qh results in

‖(z̄h (ζ2) , w̄h (ζ2) , v̄h (ζ2))− (z̄h (ζ1) , w̄h (ζ1) , v̄h (ζ1))‖X2
≤ Γ1

γ̃
‖ζ2 − ζ1‖Ω∞ .

With (5.5.4) and (5.5.5) we conclude that there exists a constant l1 ≥ 0 such that

‖(x̄h (ζ2) , ȳh (ζ2) , ūh (ζ2))− (x̄h (ζ1) , ȳh (ζ1) , ūh (ζ1))‖X2
≤ l1 ‖ζ2 − ζ1‖Ω∞

for all ζ1, ζ2 ∈ Ω∞,h. Since
(
λ̄f,h (ζ) , λ̄g,h (ζ) , ς̄h (ζ) , σ̄h (ζ) , η̄αh (ζ)

)
is an element of the Hilbert

space Y α
2,h, there exists a unique operator

(
λ̄f,h (ζ) , λ̄g,h (ζ) , ς̄h (ζ) , σ̄h (ζ) , η̄αh (ζ)

)?
in the dual

space Y α
2,h

? with equal norm value according to Theorem 2.1.3. This allows us to express the
stationarity of the Lagrange function for Problem 5.5.2 as

0X?
2,h

= Ph ((x̄h (ζ) , ȳh (ζ) , ūh (ζ)) , ·) + Fαh
?
((
λ̄f,h (ζ) , λ̄g,h (ζ) , ς̄h (ζ) , σ̄h (ζ) , η̄αh (ζ)

)?)
(·) .

Solving for
(
λ̄f,h (ζ) , λ̄g,h (ζ) , ς̄h (ζ) , σ̄h (ζ) , η̄αh (ζ)

)?
yields(

λ̄f,h (ζ) , λ̄g,h (ζ) , ς̄h (ζ) , σ̄h (ζ) , η̄αh (ζ)
)?

(·)

= −
(
Fαh ◦ I−1

X2,h
◦ Fαh

?
)−1
◦ Fαh ◦ I−1

X2,h
◦ Ph ((x̄h (ζ) , ȳh (ζ) , ūh (ζ)) , ·) .

Thus, by exploiting (5.5.4) we find a constant Γ2 ≥ 0 such that for all ζ1, ζ2 ∈ Ω∞,h it holds∥∥∥(λ̄f,h (ζ2) , λ̄g,h (ζ2) , ς̄h (ζ2) , σ̄h (ζ2) , η̄αh (ζ2)
)

−
(
λ̄f,h (ζ1) , λ̄g,h (ζ1) , ς̄h (ζ1) , σ̄h (ζ1) , η̄αh (ζ1)

)∥∥∥
Y α2

=
∥∥∥(λ̄f,h (ζ2) , λ̄g,h (ζ2) , ς̄h (ζ2) , σ̄h (ζ2) , η̄αh (ζ2)

)?
−
(
λ̄f,h (ζ1) , λ̄g,h (ζ1) , ς̄h (ζ1) , σ̄h (ζ1) , η̄αh (ζ1)

)?∥∥∥
Y α2,h

?

≤ Γ2 ‖(x̄h (ζ2) , ȳh (ζ2) , ūh (ζ2))− (x̄h (ζ1) , ȳh (ζ1) , ūh (ζ1))‖X2
≤ Γ2l1 ‖ζ2 − ζ1‖Ω∞ .
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Finally, by using the difference equation for λ̄f,h we obtain a constant l2 ≥ 0 with∥∥∥λ̄′f,h (ζ2)− λ̄′f,h (ζ1)
∥∥∥

2
≤ l2 ‖ζ2 − ζ1‖Ω∞ ,

hence the assertion (5.5.3) holds for lL2 := max {l1,Γ2l1, l2}. �

Thus far, we have shown uniform strong regularity in the weaker Ξ2-norm. In order to obtain
uniform strong regularity in the Ξ∞-norm, we consider a parametric optimization problem de-
pending on

(
x̄h (ζ) , λ̄f,h (ζ) , π (ζ)

)
and apply the sensitivity result in Corollary 2.3.10, which

yields the following (compare step (d) above):
Lemma 5.5.4
Let (5.A1) - (5.A5) hold. Then, there exist h1, lL∞ , % > 0 such that for all 0 < h ≤ h1 and every
ζ1, ζ2 ∈ B% (0Ω∞) it holds ∥∥∥ξ̄h (ζ1)− ξ̄h (ζ2)

∥∥∥
Ξ∞
≤ lL∞ ‖ζ1 − ζ2‖Ω∞ .

Proof. Choose h1 > 0 such that Lemma 5.3.1 and the discrete Legendre-Clebsch condition in
Lemma 5.3.3 are satisfied, and (compare Lemma 2.4.5) for all 0 < h ≤ h1, i = 1, . . . , N , and
every $ ∈ Rny × Rjα(ti) it holds∥∥∥∥∥∥

[
B̃g
f,h (ti) C̃gf,h (ti)
Bα
c (ti) Cαc (ti)

]>
$

∥∥∥∥∥∥ ≥ β

2 ‖$‖ . (5.5.6)

For arbitrary 0 < h ≤ h1 and i ∈ {1, . . . , N} we consider the parametric optimization problem
depending on χ (ζ) (ti) :=

(
x̄h (ζ) (ti) , λ̄f,h (ζ) (ti−1) , π (ζ) (ti)

)
:

LQP (χ (ζ) (ti))

Minimize 1
2

(
w

v

)> [
∇2
yyH̃h [ti, ti−1] ∇2

yuH̃h [ti, ti−1]
∇2
uyH̃h [ti, ti−1] ∇2

uuH̃h [ti, ti−1]

](
w

v

)

+
(
w

v

)> [
∇2
yxH̃h [ti, ti−1] Bf (ti)>

∇2
uxH̃h [ti, ti−1] Cf (ti)>

](
x̄h (ζ) (ti)

λ̄f,h (ζ) (ti−1)

)

+
(
w

v

)>(
πHy ,h (ζ) (ti)
πHu,h (ζ) (ti)

)
,

with respect to w ∈ Rny , v ∈ Rnu ,

subject to 0Rny = Ãgf,h (ti) x̄h (ζ) (ti) + B̃g
f,h (ti)w + C̃gf,h (ti) v + πgf,h (ζ) (ti) ,

and c′j,x [ti] x̄h (ζ) (ti) + c′j,y [ti]w + c′j,u [ti] v

+πc,h,j (ζ) (ti)
{

= 0, if ti ∈ Υν
j

≤ 0, if ti ∈ Θα
j \Υν

j

, j ∈ Jα (ti) .
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(5.5.6) and the discrete Legendre-Clebsch condition correspond to the linear independence con-
straint qualification in Definition 2.3.3 and the second-order sufficient conditions in Theorem
2.3.5, respectively. Hence, (ȳh (ζ) (ti) , ūh (ζ) (ti)) is the unique minimizer of LQP (χ (ζ) (ti)) to-
gether with the unique multiplier

(
λ̄g,h (ζ) (ti−1) , η̄αh (ζ) (ti)

)
. Moreover, (5.5.6) and the discrete

Legendre-Clebsch condition coincide with (i) and (ii) in Corollary 2.3.10, respectively. Thus,
for an arbitrary %̃ > 0, there exist Lipschitz continuous functions

w : B%̃ (χ (0Ω∞) (ti))→ Rny , v : B%̃ (χ (0Ω∞) (ti))→ Rnu ,

λg : B%̃ (χ (0Ω∞) (ti))→ Rny , ηα : B%̃ (χ (0Ω∞) (ti))→ Rj
α(ti)

such that (w (χ (ζ) (ti)) , v (χ (ζ) (ti))) is the unique solution of LQP (χ (ζ) (ti)) together with the
unique Lagrange multiplier (λg (χ (ζ) (ti)) , ηα (χ (ζ) (ti))) for each χ (ζ) (ti) ∈ B%̃ (χ (0Ω∞) (ti)).
Note that π (ζ1)−π (ζ2) = ζ1−ζ2 is satisfied for all ζ1, ζ2 ∈ Ω∞,h. Utilizing the Sobolev inequality
in Lemma A.7 and the result of Lemma 5.5.3 yield

‖x̄h (ζ1) (ti)− x̄h (ζ2) (ti)‖ ≤ 2 ‖x̄h (ζ1)− x̄h (ζ2)‖1,2 ≤ 2lL2 ‖ζ1 − ζ2‖Ω∞ , (5.5.7)∥∥∥λ̄f,h (ζ1) (ti−1)− λ̄f,h (ζ2) (ti−1)
∥∥∥ ≤ 2

∥∥∥λ̄f,h (ζ1)− λ̄f,h (ζ2)
∥∥∥

1,2
≤ 2lL2 ‖ζ1 − ζ2‖Ω∞ .

Therefore, we find a % > 0 such that

χ (ζ) (ti) =
(
x̄h (ζ) (ti) , λ̄f,h (ζ) (ti−1) , π (ζ) (ti)

)
∈ B%̃ (χ (0Ω∞) (ti))

for every ζ ∈ B% (0Ω∞). Since (ȳh (ζ) (ti) , ūh (ζ) (ti)) is the unique minimizer of LQP (χ (ζ) (ti))
and

(
λ̄g,h (ζ) (ti−1) , η̄αh (ζ) (ti)

)
is the associated, unique Lagrange multiplier, for every pertur-

bation ζ ∈ B% (0Ω∞) it holds

(w (χ (ζ) (ti)) , v (χ (ζ) (ti)) , λg (χ (ζ) (ti)) , ηα (χ (ζ) (ti)))

=
(
ȳh (ζ) (ti) , ūh (ζ) (ti) , λ̄g,h (ζ) (ti−1) , η̄αh (ζ) (ti)

)
.

Exploiting the Lipschitz continuity of (w (χ (ζ) (ti)) , v (χ (ζ) (ti)) , λg (χ (ζ) (ti)) , ηα (χ (ζ) (ti)))
we find a constant l1 ≥ 0 satisfying∥∥∥(ȳh (ζ1) (ti) , ūh (ζ1) (ti) , λ̄g,h (ζ1) (ti−1) , η̄αh (ζ1) (ti)

)
−
(
ȳh (ζ2) (ti) , ūh (ζ2) (ti) , λ̄g,h (ζ2) (ti−1) , η̄αh (ζ2) (ti)

)∥∥∥
≤ l1 max

{
‖x̄h (ζ1) (ti)− x̄h (ζ2) (ti)‖ ,

∥∥∥λ̄f,h (ζ1) (ti−1)− λ̄f,h (ζ2) (ti−1)
∥∥∥ ,

‖π (ζ1) (ti)− π (ζ2) (ti)‖}

for every ζ1, ζ2 ∈ B% (0Ω∞). Using (5.5.7) we conclude there exists a l2 ≥ 0 such that∥∥∥(ȳh (ζ1) (ti) , ūh (ζ1) (ti) , λ̄g,h (ζ1) (ti−1) , η̄αh (ζ1) (ti)
)

−
(
ȳh (ζ2) (ti) , ūh (ζ2) (ti) , λ̄g,h (ζ2) (ti−1) , η̄αh (ζ2) (ti)

)∥∥∥ ≤ l2 ‖ζ1 − ζ2‖Ω∞ .

Finally, utilizing the difference equation for x̄h and λ̄f,h we find lL∞ ≥ 0 satisfying∥∥∥ξ̄h (ζ1)− ξ̄h (ζ2)
∥∥∥

Ξ∞
≤ lL∞ ‖ζ1 − ζ2‖Ω∞

for every ζ1, ζ2 ∈ B% (0Ω∞), which completes the proof. �
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We now have uniform strong regularity for the solution and multipliers ξ̄h (ζ) of the modified
system in Problem 5.5.2. It remains to show that for sufficiently small h and ζ, ξ̄h (ζ) is also the
(unique) solution of Problem 5.5.1 (compare step (e) above).
Lemma 5.5.5
Let (5.A1) - (5.A5) hold. Then, there exist h1, %, ρ > 0 such that for all 0 < h ≤ h1 and every
ζ ∈ B% (0Ω∞), (x̄h (ζ) , ȳh (ζ) , ūh (ζ)) is the unique minimizer of Problem 5.5.1 together with the
unique Lagrange multipliers

(
λ̄f,h (ζ) , λ̄g,h (ζ) , ς̄h (ζ) , σ̄h (ζ) , η̄h (ζ)

)
, and it holds(

x̄h (ζ) , ȳh (ζ) , ūh (ζ) , λ̄f,h (ζ) , λ̄g,h (ζ) , ς̄h (ζ) , σ̄h (ζ) , η̄h (ζ)
)
∈ Bρ

(
∆h

(
ξ̂
))
.

Proof. Choose h1, %, ρ > 0 such that Lemma 5.5.4 holds with constant lL∞ and

% ≤ min
{

α

2 (3lL∞ (‖Ac‖∞ + ‖Bc‖∞ + ‖Cc‖∞) + 1) ,
ν

2lL∞

}
,

ρ := lL∞%.

Let ζ ∈ B% (0Ω∞) be arbitrary. We recall

πc,h (ζ) (ti) = c [ti]− c′x [ti] x̂ (ti)− c′y [ti] ŷ (ti)− c′u [ti] û (ti)− ζc (ti) , i = 1, . . . , N,

which for every j ∈ J , i ∈ {1, . . . , N} gives us

c′j,x [ti] x̄h (ζ) (ti) + c′j,y [ti] ȳh (ζ) (ti) + c′j,u [ti] ūh (ζ) (ti) + πc,h,j (ζ) (ti)

= c′j,x [ti] (x̄h (ζ) (ti)− x̂ (ti)) + c′j,y [ti] (ȳh (ζ) (ti)− ŷ (ti))

+ c′j,u [ti] (ūh (ζ) (ti)− û (ti)) + cj [ti]− ζc,j (ti)

≤ (‖Ac‖∞ + ‖Bc‖∞ + ‖Cc‖∞) (‖x̄h (ζ) (ti)− x̂ (ti)‖+ ‖ȳh (ζ) (ti)− ŷ (ti)‖

+ ‖ūh (ζ) (ti)− û (ti)‖) + cj [ti] + ‖ζ‖Ω∞
≤ (‖Ac‖∞ + ‖Bc‖∞ + ‖Cc‖∞) 3lL∞ ‖ζ‖Ω∞ + cj [ti] + ‖ζ‖Ω∞
≤ α

2 + cj [ti]

according to Lemma 5.5.4 and the choice of %. Then, for any j ∈ J , i ∈ {1, . . . , N} with ti /∈ Θα
j

it holds

c′j,x [ti] x̄h (ζ) (ti) + c′j,y [ti] ȳh (ζ) (ti) + c′j,u [ti] ūh (ζ) (ti) + πc,h,j (ζ) (ti)

≤ α

2 + cj [ti] <
α

2 − α = −α2 < 0.

Moreover, for any j ∈ J , i ∈ {1, . . . , N} with ti ∈ Υν
j we have

ν − η̄h,j (ζ) (ti) < η̂j (ti)− η̄h,j (ζ) (ti) ≤ |η̂j (ti)− η̄h,j (ζ) (ti)| ≤ lL∞ ‖ζ‖Ω∞ ≤
ν

2 ,

hence η̄h,j (ζ) (ti) > ν
2 > 0. This implies that (x̄h (ζ) , ȳh (ζ) , ūh (ζ)) is admissible for Problem

5.5.1. Furthermore, by Lemma 5.3.2 and Lemma 5.3.1, the sufficient conditions of Theorem 2.3.5
and the linear constraint qualification of Definition 2.3.3 are satisfied for (x̄h (ζ) , ȳh (ζ) , ūh (ζ)).
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Thus, it is the unique minimizer of Problem 5.5.1 and the associated Lagrange multipliers(
λ̄f,h (ζ) , λ̄g,h (ζ) , ς̄h (ζ) , σ̄h (ζ) , η̄h (ζ)

)
are unique for every ζ ∈ B% (0Ω∞) according to Remark

2.3.4. Finally, since ξ̄h (ζ) =
(
x̄h (ζ) , ȳh (ζ) , ūh (ζ) , λ̄f,h (ζ) , λ̄g,h (ζ) , ς̄h (ζ) , σ̄h (ζ) , η̄h (ζ)

)
and

ξ̄h (0Ω∞) = ∆h

(
ξ̂
)

it holds∥∥∥ξ̄h (ζ)−∆h

(
ξ̂
)∥∥∥

Ξ∞
≤ lL∞ ‖ζ‖Ω∞ ≤ lL∞% = ρ,

which completes the proof. �

We summarize the main convergence result of this chapter in a final theorem, which establishes
the convergence of the solution of Problem 5.2.3 to the solution of Problem 5.1.1 by applying
Theorem 2.2.6:
Theorem 5.5.6 (Convergence)
Let (5.A1) - (5.A5) hold. Then, there exist ĥ, l > 0 such that for every 0 < h ≤ ĥ, Problem
5.2.3 has a unique solution and associated Lagrange multipliers that converge linearly to the
weak local minimizer of Problem 5.1.1 and the associated Lagrange multipliers with respect to
the L∞-norm.
Remark 5.5.7
Please note that convergence was shown for the multipliers associated with Problem 5.2.3. In
Section 5.7, a relationship between the respective multipliers of Problem 5.2.1 and Problem 5.2.3
is derived. However, it is unclear, if the multipliers associated with Problem 5.2.1 are convergent,
since a jump condition occurs for the adjoint multipliers. Therefore, convergence with respect to
the L∞-norm can not be expected.

5.6 Example
Consider the implicit Euler discretization of Example 3.3.1

Minimize x4,h (tN ) ,
subject to x′1,h (ti) = uh (ti)− yh (ti) , 0 = x1,h (t0) , 0 = x1,h (tN ) ,

x′2,h (ti) = uh (ti) , 1 = x2,h (t0) , −1 = x2,h (tN ) ,
x′3,h (ti) = −x2,h (ti) ,
x′4,h (ti) = 1

2uh (ti)2 , 0 = x4,h (t0) ,
0 = x1,h (ti) + x3,h (ti) ,

and the system with a discrete index reduction as described in Problem 5.2.3

(RDOCP− 1)

Minimize x4,h (tN ) ,
subject to x′1,h (ti) = uh (ti)− yh (ti) , 0 = x1,h (t0) , 0 = x1,h (tN ) ,

x′2,h (ti) = uh (ti) , 1 = x2,h (t0) , −1 = x2,h (tN ) ,
x′3,h (ti) = −x2,h (ti) ,
x′4,h (ti) = 1

2uh (ti)2 , 0 = x4,h (t0) ,
0 = uh (ti)− yh (ti)− x2,h (ti) ,
0 = x1,h (t0) + x3,h (t0) .
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For problem (RDOCP− 1) we want to compare the solution of the (discrete) KKT-conditions
with the continuous KKT-point of Example 3.3.1, in order to illustrate that the discrete Lagrange
multipliers converge to the continuous multipliers. The necessary conditions for (RDOCP− 1)
read as

λ′f1,h
(ti) = 0, λf1,h (t0) = −σ1,h,

λ′f2,h
(ti) = λf3,h (ti−1) + λg,h (ti−1) , λf2,h (t0) = −σ2,h,

λ′f3,h
(ti) = 0, λf3,h (tN ) = 0,

λ′f4,h
(ti) = 0, λf4,h (tN ) = 1,

0 = −λf1,h (ti−1)− λg,h (ti−1) ,
0 = λf1,h (ti−1) + λf2,h (ti−1) + λf4,h (ti−1)uh (ti) + λg,h (ti−1)

for i = 1, . . . , N . The KKT-conditions have the solution

x1,h (ti) = − 2h
1−h2 t

3
i −

(1−h)(1−2h)
1−h2 t2i + 1−h+2h2

1−h2 ti,

x2,h (ti) = − 6h
1−h2 t

2
i − 21−3h−h2

1−h2 ti + 1,
x3,h (ti) = 2h

1−h2 t
3
i + (1−h)(1−2h)

1−h2 t2i − 1−h+2h2

1−h2 ti,

x4,h (ti) = 24h2

(1−h2)2 t
3
i + 12h(1−3h−h2)

(1−h2)2 t2i + 21−6h+7h2+6h3−2h4

(1−h2)2 ti,

yh (ti) = 6h
1−h2 t

2
i + 21−9h−h2

1−h2 ti − 3 (1+h)(1−3h)
1−h2 ,

uh (ti) = − 12h
1−h2 ti − 21−3h−4h2

1−h2 ,

λf1,h (ti) = − 12h
1−h2 ,

λf2,h (ti) = 12h
1−h2 ti + 2 (1−h)(1−2h)

1−h2 ,

λf3,h (ti) = 0,
λf4,h (ti) = 1,
λg,h (ti) = 12h

1−h2 ,

which compared to the continuous solution we calculated in Section 3.3 yields

|x1 (ti)− x1,h (ti)| ≤ 6h,
|x2 (ti)− x2,h (ti)| ≤ 13h,
|x3 (ti)− x3,h (ti)| ≤ 6h,
|x4 (ti)− x4,h (ti)| ≤ 28h,
|y (ti)− yh (ti)| ≤ 34h,
|u (ti)− uh (ti)| ≤ 21h,

|λf1 (ti)− λf1,h (ti)| ≤ 13h,
|λf2 (ti)− λf2,h (ti)| ≤ 20h,
|λf3 (ti)− λf3,h (ti)| = 0,
|λf4 (ti)− λf4,h (ti)| = 0,
|λg (ti)− λg,h (ti)| ≤ 13h,

for i = 1, . . . , N , h ≤ 1
4 . Therefore, the solution of (RDOCP− 1), as well as the associated

Lagrange multipliers converge linearly to the continuous solution and its associated multipliers
(compare Figure 5.2, Figure 5.3, and Figure 5.4).
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Figure 5.2: Comparison of differential states for N = 10 and N = 20.
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Figure 5.3: Comparison of algebraic states and controls for N = 10 and N = 20.
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Figure 5.4: Comparison of multipliers for N = 10 and N = 20.

5.7 Relationship between Discrete Multipliers

In this section, we aim to derive a relationship between the multipliers, which satisfy the respec-
tive necessary conditions of

Minimize ϕ (x0, xN ) ,

with respect to x0 ∈ Rnx , (xi, yi, ui) ∈ Rnx × Rny × Rnu , i = 1, . . . , N,

subject to xi−xi−1
h = f (xi, yi, ui) , i = 1, . . . , N,
0Rny = g (xi) , i = 0, 1, . . . , N,
0Rnψ = ψ (x0, xN ) ,
0Rnc ≥ c (xi, yi, ui) , i = 1, . . . , N,

(5.7.1)
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and the reduced problem

Minimize ϕ (x0, xN ) ,

with respect to x0 ∈ Rnx , (xi, yi, ui) ∈ Rnx × Rny × Rnu , i = 1, . . . , N,

subject to xi−xi−1
h = f (xi, yi, ui) , i = 1, . . . , N,
0Rny = g̃h (xi, yi, ui) , i = 1, . . . , N,
0Rny = g (x0) ,
0Rnψ = ψ (x0, xN ) ,
0Rnc ≥ c (xi, yi, ui) , i = 1, . . . , N,

(5.7.2)

where g̃h (x, y, u) := g(x)−g(x−hf(x,y,u))
h . We recall the necessary conditions of (5.7.1)

λ̆f,i−λ̆f,i−1
h = −∇xH̆

(
xi, yi, ui, λ̆f,i−1, λ̆g,i−1, η̆i

)
, i = 1, . . . , N,

0Rny = ∇yH̆
(
xi, yi, ui, λ̆f,i−1, λ̆g,i−1, η̆i

)
, i = 1, . . . , N,

λ̆f,0 = −˘̀0∇x0ϕ (x0, xN )− ψ′x0 (x0, xN )> σ̆ − g′ (x0)> ς̆ ,
λ̆f,N = ˘̀0∇x1ϕ (x0, xN ) + ψ′x1 (x0, xN )> σ̆,
0Rnu = ∇uH̆

(
xi, yi, ui, λ̆f,i−1, λ̆g,i−1, η̆i

)
, i = 1, . . . , N,

0 = c (xi, yi, ui)> η̆i, η̆i ≥ 0, i = 1, . . . , N,

(5.7.3)

where the (augmented) Hamilton function is defined by

H̆
(
x, y, u, λ̆f , λ̆g, η̆

)
:= λ̆>f f (x, y, u) + λ̆>g g (x) + η̆>c (x, y, u) , (5.7.4)

and the necessary conditions of (5.7.2)
λf,i−λf,i−1

h = −∇xH̃h (xi, yi, ui, λf,i−1, λg,i−1, ηi) , i = 1, . . . , N,
0Rny = ∇yH̃h (xi, yi, ui, λf,i−1, λg,i−1, ηi) , i = 1, . . . , N,
λf,0 = −`0∇x0ϕ (x0, xN )− ψ′x0 (x0, xN )> σ − g′ (x0)> ς,
λf,N = `0∇x1ϕ (x0, xN ) + ψ′x1 (x0, xN )> σ,
0Rnu = ∇uH̃h (xi, yi, ui, λf,i−1, λg,i−1, ηi) , i = 1, . . . , N,

0 = c (xi, yi, ui)> ηi, ηi ≥ 0, i = 1, . . . , N,

(5.7.5)

where the (augmented) Hamilton function is defined by

H̃h (x, y, u, λf , λg, η) := λ>f f (x, y, u) + λ>g g̃h (x, y, u) + η>c (x, y, u) . (5.7.6)

In order to derive a relationship, we first consider the adjoint algebraic equation and stationarity
condition in (5.7.3)

0Rny = ∇yH̆
(
xi, yi, ui, λ̆f,i−1, λ̆g,i−1, η̆i

)
= f ′y (xi, yi, ui)> λ̆f,i−1 + c′y (xi, yi, ui)> η̆i,

0Rnu = ∇uH̆
(
xi, yi, ui, λ̆f,i−1, λ̆g,i−1, η̆i

)
= f ′u (xi, yi, ui)> λ̆f,i−1 + c′u (xi, yi, ui)> η̆i
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for i = 1, . . . , N , and in (5.7.5)

0Rny = ∇yH̃h (xi, yi, ui, λf,i−1, λg,i−1, ηi)

= f ′y (xi, yi, ui)> λf,i−1 + f ′y (xi, yi, ui)> g′ (xi − hf (xi, yi, ui))> λg,i−1 + c′y (xi, yi, ui)> ηi
= f ′y (xi, yi, ui)>

(
λf,i−1 + g′ (xi − hf (xi, yi, ui))> λg,i−1

)
+ c′y (xi, yi, ui)> ηi,

0Rnu = ∇uH̃h (xi, yi, ui, λf,i−1, λg,i−1, ηi)

= f ′u (xi, yi, ui)> λf,i−1 + f ′u (xi, yi, ui)> g′ (xi − hf (xi, yi, ui))> λg,i−1 + c′u (xi, yi, ui)> ηi
= f ′u (xi, yi, ui)>

(
λf,i−1 + g′ (xi − hf (xi, yi, ui))> λg,i−1

)
+ c′u (xi, yi, ui)> ηi

for i = 1, . . . , N . It follows from the difference equation that xi−1 = xi − hf (xi, yi, ui) for
i = 1, . . . , N . Thus, the conditions are equal, if

λ̆f,i−1 = λf,i−1 + g′ (xi−1)> λg,i−1, i = 1, . . . , N,
η̆i = ηi, i = 1, . . . , N.

(5.7.7)

With this relation and the transversality conditions we obtain

λ̆f,0 = −˘̀0∇x0ϕ (x0, xN )− ψ′x0 (x0, xN )> σ̆ − g′ (x0)> ς̆

= λf,0 + g′ (x0)> λg,0
= −`0∇x0ϕ (x0, xN )− ψ′x0 (x0, xN )> σ − g′ (x0)> ς + g′ (x0)> λg,0.

This yields the natural choice

˘̀0 = `0,

σ̆ = σ, (5.7.8)

ς̆ = ς − λg,0.

For i = 1, . . . , N − 1 we consider the difference equation in (5.7.3)

λ̆f,i − λ̆f,i−1
h

= −∇xH̆
(
xi, yi, ui, λ̆f,i−1, λ̆g,i−1, η̆i

)
= −f ′x (xi, yi, ui)> λ̆f,i−1 − g′ (xi)> λ̆g,i−1 − c′x (xi, yi, ui)> η̆i

(5.7.7)= −f ′x (xi, yi, ui)>
(
λf,i−1 + g′ (xi−1)> λg,i−1

)
− g′ (xi)> λ̆g,i−1 (5.7.9)

−c′x (xi, yi, ui)> ηi.
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Additionally, (5.7.7) and the difference equation in (5.7.5) imply

λ̆f,i − λ̆f,i−1
h

= λf,i − λf,i−1
h

+ g′ (xi)> λg,i − g′ (xi−1)> λg,i−1
h

= −∇xH̃h (xi, yi, ui, λf,i−1, λg,i−1, ηi) + g′ (xi)> λg,i − g′ (xi−1)> λg,i−1
h

= −f ′x (xi, yi, ui)> λf,i−1 −
(
g′ (xi)− g′ (xi − hf (xi, yi, ui))

h

)>
λg,i−1

−
(
g′ (xi − hf (xi, yi, ui)) f ′x (xi, yi, ui)

)>
λg,i−1 − c′x (xi, yi, ui)> ηi

+g′ (xi)> λg,i − g′ (xi−1)> λg,i−1
h

= −f ′x (xi, yi, ui)> λf,i−1 −
(
g′ (xi)− g′ (xi−1)

h

)>
λg,i−1

−
(
g′ (xi−1) f ′x (xi, yi, ui)

)>
λg,i−1 − c′x (xi, yi, ui)> ηi

+g′ (xi)> λg,i − g′ (xi−1)> λg,i−1
h

= −f ′x (xi, yi, ui)>
(
λf,i−1 + g′ (xi−1)> λg,i−1

)
+g′ (xi)>

λg,i − λg,i−1
h

− c′x (xi, yi, ui)> ηi

for i = 1, . . . , N − 1. Subtracting this equation from (5.7.9) yields

0Rnx = −g′ (xi)> λ̆g,i−1 + g′ (xi)>
λg,i − λg,i−1

h
,

hence the conditions are equal, if

λ̆g,i−1 = −λg,i − λg,i−1
h

, i = 1, . . . , N − 1. (5.7.10)

Furthermore, the transversality conditions and (5.7.8) imply

λ̆f,N = ˘̀0∇x1ϕ (x0, xN ) + ψ′x1 (x0, xN )> σ̆

= `0∇x1ϕ (x0, xN ) + ψ′x1 (x0, xN )> σ

= λf,N .

Consequently, λ̆f,N = λf,N + g′ (xN )> λg,N holds, if we set λg,N = 0Rnx . Therefore, (5.7.10)
implies λ̆g,N−1 = λg,N−1

h . Finally, we summarize the relationships between the respective multi-
pliers

λ̆f,i−1 = λf,i−1 + g′ (xi−1)> λg,i−1, i = 1, . . . , N,
λ̆g,i−1 = −λg,i−λg,i−1

h , i = 1, . . . , N − 1,
λ̆g,N−1 = λg,N−1

h ,

η̆i = ηi, i = 1, . . . , N,
˘̀0 = `0,

σ̆ = σ,

ς̆ = ς − λg,0.

(5.7.11)
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Example 5.7.1
In order to illustrate the relationship of the discrete multipliers in (5.7.11), we consider the
following index two problem from [8, Example 3.16]:

Minimize 1
2x1 (1)2 + x3 (1) ,

subject to ẋ1 (t) = u (t) , 1 = x1 (0) ,
ẋ2 (t) = −y (t) + u (t) ,
ẋ3 (t) = 1

2

(
y (t)2 + u (t)2

)
, 0 = x3 (0) ,

0 = x2 (t) .

(5.7.12)

The necessary conditions for this problem with the Hamilton function in (5.7.4)

H̆
(
x1, x2, x3, y, u, λ̆f1 , λ̆f2 , λ̆f3 , λ̆g

)
= λ̆f1u+ λ̆f2 (−y + u) + 1

2 λ̆f3

(
y2 + u2

)
+ λ̆gx2

have no solution. However, the local minimum principle in Theorem 3.2.5 for `0 = 1 with the
Hamilton function

H (x1, x2, x3, y, u, λf1 , λf2 , λf3 , λg) = λf1u+ λf2 (−y + u) + 1
2λf3

(
y2 + u2

)
+ λg (−y + u)

has the solution
x1 (t) = −1

3 t+ 1, λf1 (t) = 2
3 ,

x2 (t) = 0, λf2 (t) = 0,
x3 (t) = 1

9 t, λf3 (t) = 1,
y (t) = −1

3 , λg (t) = −1
3 ,

u (t) = −1
3 .

For (5.7.12) we consider the discretization in (5.7.1)

(DOCP− 2)

Minimize 1
2x

2
1,N + x3,N ,

subject to x1,i−x1,i−1
h = ui, 1 = x1,0,

x2,i−x2,i−1
h = −yi + ui,

x3,i−x3,i−1
h = 1

2
(
y2
i + u2

i

)
, 0 = x3,0,

0 = x2,i,

and the reduced discretization in (5.7.2)

(RDOCP− 2)

Minimize 1
2x

2
1,N + x3,N ,

subject to x1,i−x1,i−1
h = ui, 1 = x1,0,

x2,i−x2,i−1
h = −yi + ui,

x3,i−x3,i−1
h = 1

2
(
y2
i + u2

i

)
, 0 = x3,0,

0 = x2,i−(x2,i−h(−yi+ui))
h

= −yi + ui,

0 = x2,0.
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The necessary conditions for (DOCP− 2) stated in (5.7.3) with the Hamilton function H̆ yield
the solution

x1,i = −1
3 ih+ 1, i = 0, 1, . . . , N,

x2,i = 0, i = 0, 1, . . . , N,

x3,i = 1
9 ih, i = 0, 1, . . . , N,

yi = −1
3 , i = 1, . . . , N,

ui = −1
3 , i = 1, . . . , N,

λ̆f1,i = 2
3 , i = 0, 1, . . . , N,

λ̆f2,i = −1
3 , i = 0, 1, . . . , N − 1,

λ̆f2,N = 0,
λ̆f3,i = 1, i = 0, 1, . . . , N,
λ̆g,i = 0, i = 0, 1, . . . , N − 2,

λ̆g,N−1 = − 1
3h ,

˘̀0 = 1.

(5.7.13)

Note that λ̆f2,i and λ̆g,i satisfy a jump condition at their respective final index. Since we have
linear algebraic constraints the discrete Hamilton function H̃h for (RDOCP− 2) coincides with
the continuous Hamilton function, thus

H̃h (x1, x2, x3, y, u, λf1 , λf2 , λf3 , λg) = λf1u+ λf2 (−y + u) + 1
2λf3

(
y2 + u2

)
+ λg (−y + u) .

With the necessary conditions in (5.7.5) we obtain the solution

x1,i = −1
3 ih+ 1, i = 0, 1, . . . , N,

x2,i = 0, i = 0, 1, . . . , N,
x3,i = 1

9 ih, i = 0, 1, . . . , N,
yi = −1

3 , i = 1, . . . , N,
ui = −1

3 , i = 1, . . . , N,

λf1,i = 2
3 , i = 0, 1, . . . , N,

λf2,i = 0, i = 0, 1, . . . , N,
λf3,i = 1, i = 0, 1, . . . , N,
λg,i = −1

3 , i = 0, 1, . . . , N − 1,
`0 = 1,

(5.7.14)

for (RDOCP− 2). The multipliers in (5.7.13) and (5.7.14) satisfy the relations in (5.7.11),
since g′ (x1,i, x2,i, x3,i) = (0, 1, 0) and therefore

λ̆f1,i = λf1,i = 2
3 , i = 0, 1, . . . , N,

λ̆f2,i = λf2,i + λg,i = −1
3 , i = 0, 1, . . . , N − 1,

λ̆f2,N = λf2,N = 0,
λ̆f3,i = λf3,i = 1, i = 0, 1, . . . , N,
λ̆g,i−1 = −λg,i−λg,i−1

h = 0, i = 1, . . . , N − 1,
λ̆g,N−1 = λg,N−1

h = − 1
3h .

Please note that λ̆g,N−1 → −∞ as h→ 0.

In this chapter, we examined the convergence property of the implicit Euler discretization of an
optimal control problem subject to an index two DAE and a mixed control-state constraint by
writing the respective KKT-conditions as generalized equations and applying the approximation
result in Theorem 2.2.6. A suitable reformulation of the discretized optimization problem was
used in order to obtain consistent KKT-conditions. This transformation allowed us to prove
convergence not only for the states and control, but also for the associated Lagrange multipliers
in the L∞-norm with linear convergence rate. The results of [80] and [85] were generalized by
including algebraic equations and boundary conditions, respectively.
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Chapter 6

Conclusion and Outlook

In this thesis, optimal control problems subject to Hessenberg DAEs and mixed control-state
constraints are studied, extending results in the literature on necessary conditions, sufficient
conditions and convergence analysis.

In Chapter 3, a local minimum principle is derived for the index one case with weakened regular-
ity assumptions on the mixed control-state constraints. The results are then applied to optimal
control problems with higher index DAEs by reducing the index to one. One drawback of this
approach could be that, in the higher index case, the multipliers of the adjoint differential equa-
tions are only Lipschitz continuous, thus less smooth than the differential state. In the future,
the results could be improved with a different approach, and further generalized by including
pure state constraints.

A Hamilton Jacobi inequality is exploited in Chapter 4 in order to derive second-order suffi-
cient conditions for our problem class. Herein, a quadratic function is constructed by using the
solution of an appropriate Riccati equation. The conditions of the Hamilton Jacobi inequality
are verified by considering two finite dimensional optimization problems, and applying suitable
sufficient conditions to these problems. The main effort was to prove sufficient conditions for
a special type of a parametric optimization problem with the available assumptions. Problems
with DAEs and pure state constraints, as well as problems with more general DAEs could be
investigated in the future.

The investigation in Chapter 5 was limited to Hessenberg DAEs of order two. Convergence
was proven for the states and control, as well as the associated Lagrange multipliers by compar-
ing the continuous and discrete KKT-conditions written as generalized equations and applying a
suitable approximation theorem. In contrast to the index one case, there is a structural discrep-
ancy between the continuous and discrete KKT-conditions, caused by an implicit index reduction
in the continuous local minimum principle. Therefore, standard techniques for proving conver-
gence fail. The first approach to overcome the discrepancy was to consider systems that satisfy
the continuous necessary conditions with the Hamilton function associated with the discrete nec-
essary conditions. However, for this class of problem it seemed impossible to verify the uniform
strong regularity condition, since the adjoint DAE has index two and therefore certain regularity
conditions were not satisfied. The main task then became to find a suitable reformulation of the
discretized optimization problem, which yields discrete KKT-conditions that are consistent with
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continuous KKT-conditions. This was achieved by emulating the continuous index reduction.
It is conceivable that this method of discrete index reduction may be generalized and applied to
problems with Hessenberg DAEs of arbitrary order in future research. The groundwork in terms
of necessary and sufficient conditions has already been established in Chapter 3 and Chapter 4,
respectively. Problems with higher index DAEs might require suitable Runge-Kutta schemes,
which could also be used to obtain convergence of higher order. Furthermore, problems with
DAEs and pure state constraints, and linear problems with bang-bang optimal controls could
be investigated in the future. Additionally, it might be possible to weaken the smoothness
assumption of the minimizer by using the techniques developed in [37,52,81].



Chapter A

Appendix

In order to improve the reading flow, we collected auxiliary lemmas in this appendix that are
unsuitable for the other chapters.
First, we prove some properties for matrices, including bounds for solutions of matrix difference
equations. Then, we show that the graphs of certain types of set-valued mappings are closed /
compact. Lastly, we provide the definition of measurable functions, Gronwall lemmas, a Sobolev
inequality, and variational lemmas.
The first two proofs examine the norms of specific matrix differences:
Lemma A.1
Let there exist a sequence (ni)i∈N ⊂ N and matrices Ai, Bi ∈ Rni×ni+1 for i ∈ N. Then, for
every N ∈ N it holds∥∥∥∥∥ N×

i=1
Ai −

N×
i=1

Bi

∥∥∥∥∥ ≤
N∑
k=1
‖Ak −Bk‖

(
k−1×
i=1
‖Bi‖

)(
N×

i=k+1
‖Ai‖

)
.

Proof. We use the induction principle to proof the assertion.
For N = 2 the assertion is true, since

‖A1A2 −B1B2‖ = ‖A1A2 −B1A2 +B1A2 −B1B2‖ ≤ ‖A1 −B1‖ ‖A2‖+ ‖A2 −B2‖ ‖B1‖ .

Suppose the assertion holds for N ∈ N. Then, it follows∥∥∥∥∥N+1×
i=1

Ai −
N+1×
i=1

Bi

∥∥∥∥∥ =
∥∥∥∥∥
(
N×
i=1

Ai

)
AN+1 −

(
N×
i=1

Bi

)
BN+1

∥∥∥∥∥
≤
∥∥∥∥∥ N×
i=1

Ai −
N×
i=1

Bi

∥∥∥∥∥ ‖AN+1‖+ ‖AN+1 −BN+1‖
∥∥∥∥∥ N×
i=1

Bi

∥∥∥∥∥
≤

N∑
k=1
‖Ak −Bk‖

(
k−1×
i=1
‖Bi‖

)(
N×

i=k+1
‖Ai‖

)
‖AN+1‖

+ ‖AN+1 −BN+1‖
N×
i=1
‖Bi‖

=
N∑
k=1
‖Ak −Bk‖

(
k−1×
i=1
‖Bi‖

)(
N+1×
i=k+1

‖Ai‖
)

+ ‖AN+1 −BN+1‖
(N+1)−1

×
i=1

‖Bi‖

=
N+1∑
k=1
‖Ak −Bk‖

(
k−1×
i=1
‖Bi‖

)(
N+1×
i=k+1

‖Ai‖
)
,

which completes the proof. �
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Lemma A.2
Suppose the matrices A,B ∈ Rn×n are non-singular. Then it holds∥∥∥A−1 −B−1

∥∥∥ ≤ ∥∥∥A−1
∥∥∥ ∥∥∥B−1

∥∥∥ ‖A−B‖ .
Proof. Exploiting the inequality∥∥∥In −A−1B

∥∥∥ =
∥∥∥A−1 (A−B)

∥∥∥ ≤ ∥∥∥A−1
∥∥∥ ‖A−B‖

yields ∥∥∥A−1 −B−1
∥∥∥ =

∥∥∥− (In −A−1B
)
B−1

∥∥∥
≤
∥∥∥B−1

∥∥∥ ∥∥∥In −A−1B
∥∥∥

≤
∥∥∥A−1

∥∥∥ ∥∥∥B−1
∥∥∥ ‖A−B‖ ,

which proves the assertion. �

In Riccati equations, the following well-known type of matrix occurs:
Lemma A.3
For n,m ∈ N with n ≥ m suppose Q ∈ Rn×n is symmetric, and C ∈ Rm×n has full rank m.
Moreover, it holds

d>Qd > 0 for all d ∈ ker(C) \ {0Rn} . (A.1)

Then, the matrix

T :=
[
Q C>

C 0m×m

]
∈ R(n+m)×(n+m)

is non-singular.

Proof. Assume rank(T ) < n+m. Then, there exist
(
d

e

)
∈ Rn × Rm \

{(
0Rn

0Rm

)}
with

(
0Rn

0Rm

)
= T

(
d

e

)
=
(
Qd+ C>e

Cd

)
,

hence d ∈ ker(C). We conclude

0 = d>
(
Qd+ C>e

)
= d>Qd,

which, by (A.1), implies d = 0Rn . Thus, C>e = 0Rn , and since C has full row rank it holds

e = 0Rm , which contradicts
(
d

e

)
6=
(

0Rn

0Rm

)
. �
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Lemma A.3 allows us to prove the following:
Lemma A.4
Let E ∈ Rn×n, Q ∈ Rm×m be symmetric, C ∈ Rl×m with rank (C) = l ≤ m, and A ∈ Rm×n,
B ∈ Rl×n. Furthermore, there exist ε, γ > 0 such that

d>Ed ≥ ε ‖d‖2 for all d ∈ Rn, (A.2)

e>Qe ≥ γ ‖e‖2 for all e ∈ ker (C) .

Then, there exists a constant κ > 0 such that the matrices

M :=
[
E +D>T−1D D>

D T

]
, T :=

[
Q C>

C 0l×l

]
, D :=

[
A

B

]
,

satisfy

(
d

e

)> [
E +D>T−1D A>

A Q

](
d

e

)
=


d

e

0Rl


>

M


d

e

0Rl

 ≥ κ
∥∥∥∥∥
(
d

e

)∥∥∥∥∥
2

for all
(
d

e

)
∈ ker ([B,C]).

Proof. Define the non-singular matrices

S :=
[

In 0n×(m+l)

−T−1D Im+l

]
, S−1 =

[
In 0n×(m+l)

T−1D Im+l

]
,

which satisfy S>MS =
[

E 0n×(m+l)

0(m+l)×n T

]
. For an arbitrary

(
d

e

)
∈ ker ([B,C]) we

denote 
a

b

c

 := S−1


d

e

0Rl

 =


d

T−1Dd+
(

e

0Rl

)  ,

which with D =
[
A

B

]
implies

Cb = [C,0l×l]
(
b

c

)
= [C,0l×l]

(
T−1Dd+

(
e

0Rl

))
= [0l×m, Il]TT−1Dd+ Ce = Bd+ Ce = 0Rl ,

thus b ∈ ker (C). In addition, a = d and c = [0l×m, Il]T−1Dd = [0l×m, Il]T−1Da, hence for
α :=

∥∥T−1∥∥ ‖D‖+ 1 > 0 it holds ‖c‖ ≤ α ‖a‖. Since

∥∥∥∥∥
(
d

e

)∥∥∥∥∥ =

∥∥∥∥∥∥∥∥


d

e

0Rl


∥∥∥∥∥∥∥∥ =

∥∥∥∥∥∥∥∥S

a

b

c


∥∥∥∥∥∥∥∥ ≤ ‖S‖

∥∥∥∥∥∥∥∥

a

b

c


∥∥∥∥∥∥∥∥ ,
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we conclude

(
d>, e>,01×l

)
M


d

e

0Rl

 =
(
a>, b>, c>

)
S>MS


a

b

c



=
(
a>, b>, c>

) [ E 0n×(m+l)

0(m+l)×n T

]
a

b

c


= a>Ea+

(
b>, c>

) [ Q C>

C 0l×l

](
b

c

)
Cb=0= a>Ea+ b>Qb
(A.2)
≥ ε ‖a‖2 + γ ‖b‖2

≥ ε

2 ‖a‖
2 + γ ‖b‖2 + ε

2α ‖c‖
2

≥ min
{
ε

2 , γ,
ε

2α

}∥∥∥∥∥∥∥∥

a

b

c


∥∥∥∥∥∥∥∥

2

≥ κ

∥∥∥∥∥
(
d

e

)∥∥∥∥∥
2

for κ := min{ ε2 ,γ, ε2α}
‖S‖2 , which completes the proof. �

For N ∈ N, h := 1
N , and ti := ih, i = 0, 1, . . . , N we consider the matrix difference equation

Φ′h(ti) = Ah(ti)Φh(ti), i = 1, . . . , N,

Φh(t0) = In,

where Ah ∈ Ln×n∞,h ([0, 1]). The solution of this equation satisfies the following inequalities:
Lemma A.5

(i) If h ≤ 1
2‖Ah‖∞

, then for all i = 1, . . . , N it holds

‖Φh(ti)‖ ≤ exp (2 ‖Ah‖∞ ti) ,∥∥Φ′h(ti)
∥∥ ≤ ‖Ah‖∞ exp (2 ‖Ah‖∞ ti) .

(ii) If h < 1
‖Ah‖∞

, then for all i = 1, . . . , N the matrix Φh(ti) is non-singular and it holds∥∥∥Φh(ti)−1
∥∥∥ ≤ exp (‖Ah‖∞ ti) .
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Proof.

(i) For i = 1, . . . , N the inequality ‖hAh(ti)‖ ≤ h ‖Ah‖∞ ≤
1
2 is satisfied, thus the Neumann

series of (In − hAh(ti)) converges and the inverse exists. This implies

Φh(ti) = (In − hAh(ti))−1 Φh(ti−1), i = 1, . . . , N.

Additionally, it holds

‖Φh(ti)‖ ≤
∥∥∥(In − hAh(ti))−1

∥∥∥ ‖Φh(ti−1)‖ ≤ 1
1− h ‖Ah‖∞

‖Φh(ti−1)‖

= 1− h ‖Ah‖∞ + h ‖Ah‖∞
1− h ‖Ah‖∞

‖Φh(ti−1)‖

=
(

1 + h ‖Ah‖∞
1− h ‖Ah‖∞

)
‖Φh(ti−1)‖

≤
(

1 + h ‖Ah‖∞
1− 1

2

)
‖Φh(ti−1)‖

= (1 + 2h ‖Ah‖∞) ‖Φh(ti−1)‖ ,

for i = 1, . . . , N . Define ai := ‖Φh(ti)‖ ≥ 0, i = 0, 1, . . . , N and β := 2 ‖Ah‖∞ > 0, which
satisfy

ai ≤ (1 + βh) ai−1, i = 1, . . . , N.

Applying Lemma A.10 yields

‖Φh(ti)‖ = ai ≤ exp (βih) a0 = exp (2 ‖Ah‖∞ ti) ‖Φh(t0)‖ = exp (2 ‖Ah‖∞ ti)

for i = 0, 1, . . . , N . This immediately implies∥∥Φ′h(ti)
∥∥ ≤ ‖Ah(ti)‖ ‖Φh(ti)‖ ≤ ‖Ah(ti)‖ exp (2 ‖Ah‖∞ ti) ≤ ‖Ah‖∞ exp (2 ‖Ah‖∞ ti)

for all i = 1, . . . , N .

(ii) Analog to (i), we prove that for h < 1
‖Ah‖∞

and i = 1, . . . , N the matrix (In − hAh(ti)) is

non-singular. This implies Φh(ti) = (In − hAh(ti))−1 Φh(ti−1) =
i−1
×
k=0

(In − hAh(ti−k))−1,

hence Φh(ti) is non-singular for i = 0, 1, . . . , N . Moreover, for i = 1, . . . , N it holds
Φh(ti−1)−1 (In − hAh(ti)) = Φh(ti)−1 and therefore∥∥∥Φh(ti)−1

∥∥∥ ≤ ∥∥∥Φh(ti−1)−1
∥∥∥ ‖(In − hAh(ti))‖ ≤ (1 + h ‖Ah‖∞)

∥∥∥Φh(ti−1)−1
∥∥∥ .

Applying Lemma A.10 for ai :=
∥∥Φh(ti)−1∥∥ ≥ 0, i = 0, 1, . . . , N and β := ‖Ah‖∞ yields∥∥∥Φh(ti)−1

∥∥∥ = ai ≤ exp (βih) a0 = exp (‖Ah‖∞ ti) , i = 0, 1, . . . , N.

�
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For continuous set-valued functions defined on a compact interval we prove the following:

Lemma A.6
Let n,m, k ∈ N with k + m < n, a, b ∈ R with a < b, ρ > 0, and the matrix functions
A : [a, b] → Rk×n, B : [a, b] → Rm×n be continuous. Furthermore, let the set valued mappings
K : [a, b]⇒ Rn and M : [a, b]⇒ Rn be defined by

K(t) := {d ∈ Rn | A(t)d = 0Rk , B(t)d ≤ 0Rm} , M(t) := K(t) ∩ Bρ (0Rn) .

Then, graph (K) is closed and graph (M) is compact.

Proof. Since for every t ∈ [a, b] the matrices A(t) ∈ Rk×n and B(t) ∈ Rm×n are linear,
continuous operators and k+m < n, the set K(t) is non-empty and closed, and the set M(t) is
non-empty and compact. Let [(ti, di)]i∈N ⊆ graph (K) be a convergent sequence with

lim
i→∞

(ti, di) =
(
t̂, d̂
)
.

Then, it holds A(ti)di = 0Rk and B(ti)di ≤ 0Rm for every i ∈ N. By continuity of A (·), for
every ε > 0 there exists N ∈ N such that for all i ≥ N it holds

∥∥∥A(ti)−A(t̂)
∥∥∥ < ε

2‖d̂‖ and∥∥∥di − d̂∥∥∥ < ε
2‖A‖∞

. Consequently,

∥∥∥A(ti)di −A(t̂)d̂
∥∥∥ ≤ ∥∥∥A(ti)−A(t̂)

∥∥∥ ∥∥∥d̂∥∥∥+
∥∥∥di − d̂∥∥∥ ‖A‖∞ < ε, i ≥ N,

and therefore 0Rk = lim
i→∞

A(ti)di = A(t̂)d̂. By the same token, it follows B(t̂)d̂ ≤ 0Rm , hence(
t̂, d̂
)
∈ graph (K), which proves the closeness of graph (K). Finally, since

graph (M) = graph (K) ∩ ([a, b]× Bρ (0Rn))

and [a, b]× Bρ (0Rn) is compact, we conclude that graph (M) is also compact. �

For functions in Wn
1,2 ([0, 1]) the following inequality holds:

Lemma A.7 (Sobolev Inequality)
Let u ∈Wn

1,2 ([0, 1]) with norm ‖u‖1,2 := max {‖u‖2 , ‖u̇‖2} be given. Then, it holds

‖u‖∞ ≤ 2 ‖u‖1,2 .

Proof. Define v : [0, 1] → Rn by v (·) :=
·∫

0
u (τ) dτ . Then, by the mean-value theorem, there

exists s ∈ (0, 1) such that

1∫
0

u (τ) dτ = v (1)− v (0) = v̇ (s) = u (s) .
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Thus, by exploiting the Cauchy-Schwartz inequality we get for every t ∈ [0, 1]

‖u (t)‖ =

∥∥∥∥∥∥u (s) +
t∫
s

u̇ (τ) dτ

∥∥∥∥∥∥
≤ ‖u (s)‖+

t∫
s

‖u̇ (τ)‖ dτ

≤
1∫

0

‖u (τ)‖ dτ +
1∫

0

‖u̇ (τ)‖ dτ

≤ ‖u‖2 + ‖u̇‖2
≤ 2 ‖u‖1,2 .

�

In order to properly define the Lebesgue space Lnp ([a, b]) we require the notion of a measurable
function (cf. [9]):
Definition A.8 (Measurable Function)
Let (Ω,A) and

(
Ω̃, Ã

)
be measurable spaces, i.e., Ω and Ω̃ are sets and A and Ã are σ-algebras

on Ω and Ω̃, respectively. The mapping T : Ω→ Ω̃ is called (A− Ã−)measurable, if it holds

T−1
(
Ã
)
∈ A for all Ã ∈ Ã.

For d ∈ N and Ω ⊆ Rd we consider the measurable space
(
Ω,Bd

)
endowed with the Lebesgue

measure defined on Rd, where Bd is the σ-algebra generated by the set of all half open intervals
[a1, b1) × · · · × [ad, bd) ⊂ Rd. Thus, the equivalence classes in the Lebesgue space Lnp ([a, b])
contain (B −Bn-)measurable functions v : [a, b]→ Rn (compare Definition 1.2).
Finally, we provide some Gronwall and variational lemmas, which proofs can be found in, e.g.,
[47]:
Lemma A.9 (Continuous Gronwall Lemma, [47, Lemma 1.1.14])
Let a : [0, 1]→ R be a integrable function, α ∈ L∞ ([0, 1]), and β ≥ 0 with

a(t) ≤ α(t) + β

t∫
0

a(τ)dτ

for almost every t ∈ [0, 1]. Then, it holds

a(t) ≤ ‖α(·)‖∞ exp (βt)

for almost every t ∈ [0, 1].
Lemma A.10 (Discrete Gronwall Lemma, [47, Lemma 4.1.21])
Let h > 0, β > 0, an ≥ 0, n = 0, 1, . . . , N be related by

an ≤ (1 + hβ) an−1, n = 1, . . . , N.

Then, it holds
an ≤ exp (βnh) a0, n = 0, 1, . . . , N.
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Lemma A.11 (Variational Lemma, [47, Lemma 3.1.9])
Let v ∈ L∞ ([a, b]). If for every w ∈W1,∞ ([a, b]) with w(a) = w(b) = 0

b∫
a

v(t)w(t)dt = 0

is satisfied, then v(t) = 0 almost everywhere in [a, b].
Lemma A.12 (Variational Lemma, [47, Lemma 3.3.7])
Let v ∈ L1 ([a, b]). If for every w ∈ L∞ ([a, b]) with w(t) ≥ 0 almost everywhere in [a, b] the
inequality

b∫
a

v(t)w(t)dt ≥ 0

is satisfied, then v(t) ≥ 0 almost everywhere in [a, b].
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[40] Fabian, M., Habala, P., Hájek, P., Montesinos, V., Zizler, V.: Banach Space Theory: The
Basis for Linear and Nonlinear Analysis, CMS Books in Mathematics, Springer, New York,
(2011)



156 BIBLIOGRAPHY

[41] Folland, G.: Real Analysis, John Wiley & Sons, New York, (1984)

[42] Gear, C. W.: Differential-algebraic equation index transformations, SIAM Journal on Sci-
entific and Statistical Computing, 9, 39–47 (1988)

[43] Gear, C. W.: Differential algebraic equations, indices, and integral algebraic equations,
SIAM Journal on Numerical Analysis, 27(6), 1527–1534 (1990)

[44] Geiger, C., Kanzow, C.: Theorie und Numerik restringierter Optimierungsaufgaben,
Springer, Berlin–Heidelberg–New York, (2002)

[45] Gerdts, M.: Local Minimum principle for optimal control problems subject to index-two
differential-algebraic equations, Journal of Optimization Theory and Applications, 130(3),
443–462 (2006)

[46] Gerdts, M., Kunkel, M.: A globally convergent semi-smooth Newton method for control-state
constrained DAE optimal control problems, Computational Optimization and Applications,
48(3), 601–633 (2011)

[47] Gerdts, M.: Optimal control of ODEs and DAEs. Walter de Gruyter, Berlin/Boston, (2012)

[48] Gerdts, M., Kunkel, M.: Convergence Analysis of Euler Discretization of Control-State
Constrained Optimal Control Problems with Controls of Bounded Variation, Journal of
Industrial and Management Optimization, 10(1), 311–336 (2014)

[49] Gerdts, M.: A survey on optimal control problems with differential-algebraic equations,
Differential-Algebraic Equations Forum, Editors: Ilchmann, A., Reis, T., 103–161, (2015)

[50] Giaquinta, M., Modica, G.: Mathematical Analysis. An Introduction to Functions of Several
Variables, Springer, New York, (2009)
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