
HIGH QUALITY FACADE SEGMENTATION BASED ON STRUCTURED RANDOM
FOREST, REGION PROPOSAL NETWORK AND RECTANGULAR FITTING

Kujtim Rahmani, Helmut Mayer

Bundeswehr University Munich, Institute for Applied Computer Science, Neubiberg, Germany
{kujtim.rahmani,helmut.mayer}@unibw.de

Commission II, ICWG II/III

KEY WORDS: Facade Segmentation, Model Fitting, CNN, Object Detection

ABSTRACT:

In this paper we present a pipeline for high quality semantic segmentation of building facades using Structured Random Forest (SRF),
Region Proposal Network (RPN) based on a Convolutional Neural Network (CNN) as well as rectangular fitting optimization. Our
main contribution is that we employ features created by the RPN as channels in the SRF. We empirically show that this is very effective
especially for doors and windows. Our pipeline is evaluated on two datasets where we outperform current state-of-the-art methods.
Additionally, we quantify the contribution of the RPN and the rectangular fitting optimization on the accuracy of the result.

1. INTRODUCTION

Facade segmentation is an important part of urban scene under-
standing and 3D building reconstruction and of interest for archi-
tectural design, movies and video games.

Early work on facade segmentation has focused on window de-
tection and 3D reconstruction from multiple images (Mayer and
Reznik, 2006, Reznik and Mayer, 2008). In recent years, most
work on facade segmentation is based on single images (Cohen
et al., 2014, Jampani et al., 2015, Mathias et al., 2016, Rahmani
et al., 2017, Schmitz and Mayer, 2016). Additionally, the Varcity
dataset (Riemenschneider et al., 2014) has been published focus-
ing on facade image and facade point cloud labeling. As the
above papers, we also concentrate on single facade image seg-
mentation.

The biggest challenges of the basic pixel-wise segmentation are
noise and the complex shapes of facade objects such as doors,
windows and balconies. The first problem particularly concerns
algorithms that classify each pixel or superpixel independently of
its neighbors. It can be reduced by incorporating interaction with
the neighborhood. The latter problem is dealt with by model fit-
ting and by making use of the global structure of facade objects
and architectural constraints. Some approaches encode hard ar-
chitectural constraints in their algorithms, such as a grid window
structure and that all balconies have the same dimension. Oth-
ers employ soft architectural constraints like that the roof is on
top of the building, or that shops are on the first floor. An addi-
tional challenge of facade segmentation is the variety of building
types and architectural styles, which leads to different shapes and
arrangements of the facade objects.

The main contribution of this paperis that we introduce a Re-
gion Proposal Network (RPN) to create proposals for objects
such as window, door, balcony, shop and sky together with their
corresponding probability. These probabilities are transformed
into features which are input to Structured Random Forest (SRF)
(Kontschieder et al., 2014) classification. This leads to a segmen-
tation with very few noise. Finally, a deterministic rectangular

fitting is used to create rectangularly shaped facade objects and a
grid structure.

The pipeline (Fig. 1) presented in this paper outperforms all other
state-of-the-art approaches on the current benchmarks without re-
lying on hard architectural constraints. To clarify the importance
of the introduction of the RPN we introduce the RPN to facade
segmentation and quantify its contribution to the good overall
performance. The high quality results of RPN and SRF are sup-
plemented by a fast and yet accurate model fitting.

The paper is organized as follows: In the next section we give an
overview of related work. Sections 3, 4 and 5 describe in depth
our pipeline SRF, RPN and rectangular fitting, respectively. Ex-
periments and the technical details are given in Section 6. Finally,
we present the evaluation, draw conclusions and point to future
work.

2. RELATED WORK

We distinguish two types of facade segmentation methods:
Grammar based (top-down) and classification-based (bottom-up)
methods. Top-down methods usually first classify each pixel or
generate facade object hypotheses. Then they use shape gram-
mars to parse the facade images. They learn the hierarchy and
distribution of facade objects as well as the architectural charac-
teristics of the data set. Because of this they can predict object
positions, particularly for windows, even when they are occluded
by vegetation or other objects

From a processing perspective, top-down methods first divide the
facade images in bigger parts and then recursively split each part
in smaller facade objects. The division rules are hand crafted or
learned and integrated into a shape parse tree grammar.

State-of-the-art grammar based methods usually achieve an accu-
racy of pixel-wise classification below 85% (Gadde et al., 2016)
on the ECP benchmark dataset (Teboul et al., 2011). A problem
of grammar based methods is their time inefficiency during train-
ing and inference, where they need several minutes to process a
typical image (Koziński et al., 2015, Gadde et al., 2016).
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Figure 1. Architecture of the proposed pipeline for facade parsing (RPN – Regional Proposal Network, SRF – Structured Random
Forest)

Currently, the most efficient but also highest quality methods are
bottom-up. They employ a pipeline architecture which contains
pixel (or superpixel) labeling, object detectors and optimization.
Each part of the pipeline tries to correct wrongly classified pixels
or to optimize the segments created by previous parts.

Dynamic programming (DP) is applied in (Cohen et al., 2014)
to segment facade objects. Pixel-wise classification is used and
hard architectural constraints are encoded as constraints in the
DP. At each of multiple steps of DP optimization a combination
of facade objects is used. In the DP, e.g., the constraints that
windows and balconies are rectangular and that balconies on the
same row usually have the same dimensions are employed. In
the following steps the shop, door, roof and sky segments are
optimized. In (Cohen et al., 2017) the same authors additionally
make use of the symmetry of the facade. This reduces problems
with occlusions and improves the accuracy.

Auto-context (Tu, 2008) is used in (Jampani et al., 2015). The
pipeline consists of boosted random trees, object detectors and
conditional random fields (CRF). First, an object detector for
doors and windows is trained and the scores of the detectors are
used as features in the boosted random trees. Additionally, for
each pixel 761 low level features such as TextonBoost filters, His-
togram of Oriented Gradients (HOG), Local Binary Pattern fea-
tures and averages over image rows and columns are computed.

For building an object detector, the Integral Channel Features de-
tector (Dollar et al., 2009) is employed, which outputs bounding
boxes. The score of each pixel is the sum of the scores of each
bounding box that contains the pixel. Additionally, three itera-
tions of the Auto-context algorithm are used. In each iteration the
output of the previous step is added as well as features such as the
class probability for each pixel, entropy, row and column statis-
tics, distance to the nearest class pixel, color model per class,
bounding box features and neighborhood statistics. The iterations
improve the accuracy by 1% to 8% on the benchmarked dataset
(Jampani et al., 2015). As postprocessing, a CRF is employed to
delineate and reduce the noise of the segments. This improves the
accuracy by no more than another 1% but adds more than 24 sec-
onds. Compared with less than 6 seconds for all previous steps,
the CRF takes more than 80% of the time.

(Martinović et al., 2012) presents a three layered approach. On
the first layer the image is segmented with a Recursive Neural
Network which outputs the class probability distribution of each
pixel. The second layer consists of a door and window detector
and a Markov Random Field (MRF). Since the results are still
noisy and only moderately accurate, a third layer is introduced.

It consists of an energy minimization incorporating architectural
constraints as well as characteristics of the datasets such as that
the second and the fifth floor must have a running (long) balcony.

The above work is extended in the ATLAS approach (Mathias
et al., 2016). First, the image is segmented into superpixels. A
range of segmentation methods such as RNN, Perceptron, Mul-
ticlass Support Vector Machine (SVM), Multiclass Logistic Re-
gression and CRF have been tried and it has been shown that the
SVM works best. The results show that the first layer leads to
an improvement of 2% compared to the previous approach. This
improvement is due to a significantly higher accuracy for the big-
ger classes like shop and roof. On the other hand, the accuracy is
lower for doors. In the second layer, the door and window detec-
tors are improved and a detector for cars which often occlude the
lower part of facades is added. The final postprocessing layer is
similar to (Martinović et al., 2012).

(Rahmani et al., 2017) introduces an SRF demonstrating the good
performance for facade segmentation. The method outperforms
the current classification methods, but the employed iterative op-
timization algorithms does not perform well quantitatively com-
pared to other optimization approaches.

In the following we describe our novel approach which can be
considered as an extension and improvement of (Rahmani et al.,
2017).

3. BASICS OF STRUCTURED RANDOM FORESTS

In this section we present a short introduction of Decision Trees
and Structured Random Forests (Kontschieder et al., 2014) as
well as their advantages for facade segmentation. For more de-
tails, please refer to (Kontschieder et al., 2011a, Kontschieder
et al., 2011b, Kontschieder et al., 2014). The main differ-
ence between traditional Random Forests and Structured Random
Forests is that the output of the SRF is an image patch, while the
traditional output is just a single pixel.

3.1 Decision Trees

A Decision Tree (DT) is a classification algorithm that accepts
as input an n-dimensional feature vector x from a dataset D
and outputs a class label y ∈ Y , where Y is the set of class
labels. Formally, we can represent a DT by ft(x) = y. A
DT classifies a sample recursively by branching down to a leaf
node. At each node of a DT a split function is learned decid-
ing how to traverse down until the leaf node is reached. The leaf
node assigns a class label to the sample. In facade segmentation
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the data samples are the pixel’s features and the set of labels is:
Y = {”window”, ”door”, ”wall”, sky”, ..}

Each node decides based on the learned split function which is
defined as follows (with parameters θj)

h(x, θj) ∈ 0, 1 (1)

The sample will continue its path to the left node if the output of
the split function is 0, otherwise it continues to the right.

3.2 Training of Decision Trees

During training DTs try to find the best split function (Equation
1) so that they achieve the highest possible accuracy. Formally,
the set Sj ⊆ X×Y , which has “arrived” at tree node j should be
split in two subsets by the split function in a way that the quality
of the split is maximized. Often the measure of quality is the
information gain:

Ij = I(Sj , S
L
j , S

R
j ) , (2)

where SL
j = (x, y) ∈ Sj | h(x, θj) = 0, SR

j = Sj \ SL
j . The

DT selects the parameters θj that maximize the information gain.

The parameters of the split function are usually chosen randomly
for a certain number (often up to three) of features and their cor-
responding thresholds. This process is repeated several times and
the combination of features and their corresponding thresholds
that maximize the information gain Ij (Equation 2) are chosen as
parameters of the split function.

3.3 Random Forests

A Random Forest is a set of T independent DTs. To classify a
sample, Random Forests accumulate the T predictions of each
tree. From these labels the Random Forests choose a single label,
usually by majority vote or consensus. DTs have the problem of
overfitting which the redundancy of several trees helps to reduce.

3.4 Structured Random Forests

For facade segmentation it is beneficial to consider the local and
global structures of the facade objects. The features and the seg-
mentation algorithm which embody the architectural constraints
as well as the object hierarchy. For this, we use SRFs, as they
encode the local structure of the objects in their split nodes.

Standard Random Forests label each pixel independently of its
neighborhood, leading to labeling to labels with a lot of salt-and-
pepper noise. The adaptation of structured learning (Nowozin
and Lampert, 2011) to random forests produces as output a patch.
This results into almost noise free segments and highly accurately
labeled images.

Additionally, SRF have the advantages, that they output for each
pixel a patch and that during training also the labels of the neigh-
boring pixels are used. For each pixel multiple labels are pro-
posed from the neighboring pixels and during training the neigh-
borhood is integrated in the split function.

Unfortunately, the patches lead to an exponential increase of the
output space compared to the Standard Random Forests. To
overcome this problem, different reduction techniques are em-
ployed for the output space such as Principal Component Anal-
ysis (PCA) (Dollár and Zitnick, 2013) and probabilistic ap-
proaches such as (Kontschieder et al., 2014). In this paper a repre-
sentative patch is computed for each node as the joint probability
distribution of the labels assigned to a leaf node.

We use a training methodology similar to (Kontschieder et al.,
2011b). The best split parameters are chosen based on the infor-
mation gain of up to three joint distributions. The training pro-
cedure works as follows: Let St be the subset of sample patches
that has reached the node t. Each sample of St has dimension
d × d with center (0, 0). We randomly choose up to three posi-
tions (i, j) around the center patch with |i| ≤ n and |j| ≤ n (n
is a chosen neighborhood) as well as a feature and a threshold for
each position. The information gain is evaluated for 400 to 1000
randomly chosen combinations of up to three positions, features
and thresholds and the best parameters for St are chosen. This is
repeated recursively until the leaf node is reached.

3.5 Optimization for Structured Random Forests

Each patch is of dimension d × d and we evaluate every pixel,
meaning that each pixel is covered by d2 patches (except pixels
at the borders of the image). The d2 values are distributed over
the classes and the final pixel label is chosen by majority vote.

We use an iterative optimization method (Kontschieder et al.,
2011b) which produces sharper edges for the segments, a higher
accuracy and removes noisy small segments. It selects the best
labeling from the set of patches for each tree of the forest.

Formally, let a training image I with labels l be given, let the
SRF F be defined as a set of T structured decision trees and let
the tree t ∈ T for pixel at position (i,j) predict the patch p(t)(i,j).
We define an optimization function agreement score counting the
number of correctly predicted pixels of the patch p(t) on the la-
beled image l.

φ(i,j)(p(t), l) =
∑

(r,c)∈p(t)

[p(t)(i,j)(r, c) = l(r, c)] (3)

When labeling the patch with center at position I(i, j), the patch
from the tree that has produced the highest agreement score is se-
lected as representative patch. Other trees with lower agreement
scores are ignored. This step is performed for every pixel with
d2 proposals and the class label for each pixel is chosen through
majority vote. The optimization can be performed multiple times
until convergence. For the complete proof and more details we
refer to (Kontschieder et al., 2011b)

This iterative technique tries to shape the object boundaries sim-
ilar to the objects that the SRF has “seen” during training.

4. REGION PROPOSAL NETWORK

With the recent advances in Convolutional Neural Networks
(CNN) (LeCun et al., 1990), the accuracy of object detection and
Region Proposal Network (RPN) algorithms has considerably im-
proved (Ren et al., 2015, Liu et al., 2016). Large data sets such as
ImageNet (Krizhevsky et al., 2012) and COCO (Lin et al., 2014)
have been made available for training and testing.

We use a pretrained model as basis to train our RPN. We em-
ploy the Single Shot Detector-300 (SSD-300) (Liu et al., 2016) as
RPN for classes window, door, balcony, long (running) balcony,
shop, roof and sky. For each object a separate feature (channel)
is created (Figs. 1 and 2). The detectors output rectangles with
an attached probability for the existence of the object. Each pixel
in the box is given the probability value of the object mapped to
the [0,255] range with “inverse min-max normalization”. In the
ECP dataset, the RPN produces six features (Fig. 2). During
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(a) (b) (c) (d) (e) (f) (g)

Figure 2. Region Proposal Network (RPN). The output of the RPN for the facade objects in image (a) for (b) balconies, (c) long
balconies, (d) windows, (e) shops, (f) doors and (g) roof. The intensity represents the confidence of the network in the existence of an

object at that position. The brighter the region, the higher is the probability of the existence of the object.

the experiments we realized that with a small addition of space
around an object (padding) during the training phase, the object
detector performs better. This is particularly helpful for entrance
doors which are usually surrounded by the wall making it easier
for the RPN to identify them. Additionally, this helps to dis-
tinguish entrance doors from shop doors, because the latter are
mainly surrounded by windows.

We have compared RPN with the results of Integral Feature
Channel (Dollar et al., 2009) and Deformable Part-based Model
(DPM) (Girshick et al., 2012) detectors used in previous work
(Jampani et al., 2015, Mathias et al., 2016, Rahmani et al., 2017)
and found that the RPN performs considerably better.

5. RECTANGULAR FITTING

After labeling by the SRF, the image is post-processed. We em-
ploy architectural constraints embodying the following assump-
tions: The facade objects window, door, balcony and shop have
a rectangular shape, roof and wall are divided by a horizontal
straight line and windows from a grid structure.

First, we count all vertical and horizontal “changes” between
window, door, balcony and shop to wall or other objects and vice-
versa. This reduces the search space for object boundaries and
from the statistics we derive the grid structure. Other methods
delineate the objects based on the objects on the same row and
column. We abstain from this, because the height and the width,
particularly of windows, can change depending on the viewing
angle of the image and further image distortions incurred during
the rectification of the image. Our fitting is, thus, based only on
the local labeling.

We have defined a minimization function to fit the objects in the
rectangle,. Formally, let rectangle Rx1,y1,x2,y2 be defined by its
upper left (x1, y1) and bottom right corner (x2, y2). Let our ob-
ject to be fitted have class label oc. We then define the optimiza-
tion problem as follows:

argmin
x1,x2,y1,y2

x2∑
i=x1

y2∑
y1

I[L(i, j) 6= oc]+

x2+k∑
i=xi−k

y2+k∑
y1−k

I[L(i, j) = oc ∧ (i, j) 6∈ Rx1,y1,x2,y2 ] (4)

Figure 3. Rectangular Fitting for a door. (a) The orange polygon
is generated by the SRF and the dashed line represents the

rectangle with minimum loss.

where I[] is the indicator function and k a parameter which is em-
pirically determined. Hypotheses are generated from the statistics
of “changes” and the rectangle Rx1′ ,y1′ ,x2′ ,y2′ with the mini-
mum score is selected.

Intuitively, this minimization function produces rectangles which
contain as many pixels of class oc as possible and try to avoid
pixels of other classes (Fig. 3).

To compute the number of pixels in each rectangle, we use an in-
tegral image representation (Viola and Jones, 2001). With it, the
score of each rectangle can be computed with O(1) time com-
plexity. Compared to other methods such as CRF (Jampani et al.,
2015) and DP (Cohen et al., 2014, Cohen et al., 2017), our opti-
mization method is fastest in terms of time complexity and, still,
produces the highest quality results (Figs. 4 and 5).

6. EXPERIMENTS

6.1 Datasets

ECP This dataset consists of 104 rectified facade images of build-
ings from Paris with Hausmannian architecture. All images are
labeled according to the seven semantic classes balcony, door,
roof, shop, wall and window with balconies, doors, windows and
shops modeled as rectangles. The dataset was first published by
(Teboul et al., 2011) but some annotations were not correct. In
2012 (Martinović et al., 2012) corrected these annotations. In our
experiments we use the later dataset.
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Graz The dataset contains 50 rectified images from Graz
(Riemenschneider et al., 2012) comprising facades of different ar-
chitectural styles (Classicism, Biedermeier, Historicism and Art
Nouveau). Each image is labeled according to the four semantic
classes door, sky, wall and window

To train the RPN for the ECP dataset we have collected and an-
notated a larger number of facade images.

6.2 Image Features

The SRF has been trained with similar channels as in (Rahmani
et al., 2017), such as RGB and CIELab color, HOG, location in-
formation, 17 TextonBoost filter responses and the scores of the
RPN. We have removed the features that have a low information
gain. We use Extremely Randomized Trees (Geurts et al., 2006),
which results in high quality trees as well as fast computation and
results of higher quality.

Since the facades are rectified, it is meaningful to add as features
the row variance and median of the RGB channels as well as the
corresponding deviation from the median. These “statistical” fea-
tures have a high information gain especially for the Graz dataset
for which the content is simpler and where the images do not
contain occlusions.

7. EVALUATION

We have evaluated our algorithm on both datasets using 80%
of the data for training and 20% for testing. The split of the
dataset has been chosen randomly. The SRF for the ECP dataset
is trained with patches of size 17 × 17 and for the Graz dataset
we have chosen as patch size 11 × 11. For the ECP dataset we
have evaluated also patches of sizes 15 × 15 and 19 × 19 and
for the Graz dataset of sizes 13 × 13 and 15 × 15, but the re-
sults were not significantly different (the absolute difference in
accuracy was 0.1%).

The empirical results have been compared with the results for
current published work on the datasets (Martinović et al., 2012,
Mathias et al., 2016, Jampani et al., 2015, Cohen et al., 2014,
Cohen et al., 2017, Rahmani et al., 2017). From Tables 1 and 2
one can see that our method outperforms the other methods. Our
algorithm is more than 2% better on the Graz dataset and 0.4%
on the ECP dataset than the current state of the art. Additionally,
our method is an order of magnitude better than other methods
in recognizing doors due to the good cooperation of the RPN and
SRF.

We have evaluated our algorithm in four stages: the Baseline
(oursBase) evaluates the Structured Random Forest performance
without the RPN. For the ECP dataset this leads to weak results
for windows and, particularly, doors. Since the content of the
Graz dataset images is simpler, the statistical features suffice for
it to produce good results.

Incorporation of the RPN features into the SRF (oursRPN ) sig-
nificantly improves the performance. The accuracy for doors on
the ECP dataset increases by more than 30% and is better than
the current state-of-the-art methods by more than 7%. Addition-
ally, the RPN also improves the accuracy for window by 7%. The
windows located on the roof are occluded by balconies due to the
viewing angle. This affects our algorithm, which labels the oc-
cluded window parts as balcony (Figs. 5 and 6) and,thus, does not
achieve an accuracy higher than 80% on the ECP dataset. In the

Graz dataset, the RPN also improves the door and window accu-
racy, but not with the same magnitude as for the ECP dataset.

The optimization step (oursO) does not significantly improve the
overall result quantitatively, but it removes noise which positively
effects the rectangular fitting.

The rectangular fitting (oursRF ) improves the overall accuracy by
more than 0.5% for both dataset. It creates high-quality labeled
images. The final result is suitable for many applications that
need highly precisely delineated facade objects, such as 3D city
models.

Finally, we note that the developed pipeline has also its weak-
nesses. Particularly during learning, the SRF develops a high
confidence in the RPN since its features have a high information
gain. Thus, when the RPN is wrong, i.e., proposes an object with
a high probability which actually does not exists, the SRF is not
able to recover (Fig. 6).

8. CONCLUSION AND FUTURE WORK

We have presented a method for facade segmentation which out-
performs other state-of-the-art methods in terms of accuracy and
quality. The Structured Random Forest, the Region Proposal Net-
work based on a Convolutional Neural Network and the rectangu-
lar fitting method constitute a very good combination for facade
segmentation. Rectangular model fitting is particularly suitable
for this task due to the shape of the facade objects. With the
assumption of a grid structure for windows we added a global
constraint. Finally we note that our novel approach does not only
produce a high quality result, but is also very efficient. We con-
sider to implement and improve it in a way that it can process
more than one facade image per second on a normal computer
without a significant influence on the accuracy.
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Class Results
I II III IV V oursBase oursRPN oursO oursRF

Sky 91 88 88 90.6 75.7 86 89.9 90.0 91.3
Window 60 76 85 80.9 79.2 79 80.6 80.9 83.7
Door 41 52 64 63 79.0 91.8 93.7 94.1 93.8
Wall 84 95 96 95.8 96 96 96.1 96.3 96.5
Overall 78.0 89.6 91.6 91.68 91.1 91.9 92.6 92.8 93.6

Table 1. Labeling results on dataset Graz of different methods (I-(Riemenschneider et al., 2012), II-(Cohen et al., 2014), III-(Cohen et
al., 2017), IV-(Jampani et al., 2015), V-(Rahmani et al., 2017)), oursBase – Structured Random Forest (SRF) only, oursRPN – SRF
with Region Proposal Network (RPN), oursO – SRF with optimization and oursRF – Rectangular Fitting applied to ours O . Best

results given in bold.

(a) (b) (c) (d) (e)

Figure 4. Qualitative results on the Graz dataset. The facade segments are homogeneous and nearly without noise. Column (a) input
images, (b) results from Structured Random Forest with Regional Proposal Network, (c) results after 6 iterations of the optimization,

(d) results after Rectangular Fitting and (e) ground truth. Object classes: - window, - door, - sky, - wall

Class Results
I II III IV V OursBase OursRPN OursO OursRF

Door 81.3 79 79.47 79 71 56.6 89.1 89.0 89.2
Shop 93.2 94 95.17 96 95 95.3 95.5 96.0 96.3
Balcony 89.3 91 86.43 92 87 86.4 89 90.0 89.2
Window 82.3 85 80.41 87 78 70.4 77.3 78.0 78.6
Wall 92.9 90 91.52 91 89 91.4 92.9 92.6 93.5
Sky 98.2 97 96.18 97 96 95.3 97.1 97.2 97.2
Roof 89.2 93 91.02 91 79 93.2 94.9 94.8 93.0
Average 89.49 89.4 88.60 - 85.22 84.11 90.8 91.1 91.0
Overall 91.42 90.82 90.24 91.8 88.02 88.9 91.5 91.6 92.2

Table 2. Labeling results on dataset ECP of different methods (I-(Riemenschneider et al., 2012), II-(Cohen et al., 2014), III-(Cohen et
al., 2017), IV-(Jampani et al., 2015), V-(Rahmani et al., 2017)). ”ours”, cf. Table 1. Best results given in bold.
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(a) (b) (c) (d) (e)

Figure 5. Qualitative results on the ECP dataset. The facade segments are homogeneous and nearly without noise. Column (a) input
images, (b) results from Structured Random Forests with Regional Proposal Network, (c) results after 19 iterations of optimization,
(d) results after Rectangular fitting, (e) ground truth. Object classes: - window, - door, - balcony, - sky, - wall,

- roof
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(a) (b) (c) (d)

Figure 6. This segmentation has a low accuracy since the object detector proposes with high confidence a long (running) balcony in
the middle of the facade. Although this long balcony does not exist, the Structured Random Forest (SRF) “trusts” the Region Proposal
Network(RPN) output and the SRF produces a wrongly labeled image. Column (a) input image, (b) RPN output for long balcony (c)

result from SRF, and (d) ground truth. Object classes: - window, - door, - balcony, - sky, - wall, - roof
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