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Abstract
The paper deals with a numerical model to investigate the influence of stress state on damage and failure in the ductile steel
X5CrNi18-10. The numerical analysis is based on an anisotropic continuum damage model taking into account yield and
damage criteria as well as evolution equations for plastic and damage strain rate tensors. Results of numerical simulations of
biaxial experiments with the X0- and the H-specimen presented. In the experiments, formation of strain fields are monitored
by digital image correlation which can be compared with numerically predicted ones to validate the numerical model. Based
on the numerical analysis the strain and stress quantities in selected parts of the specimens are predicted. Analysis of damage
strain variables enables prediction of fracture lines observed in the tests. Stress measures are used to explain different stress-
state-dependent damage and failure mechanisms on the micro-level visualized on fracture surfaces by scanning electron
microscopy.
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1 Introduction

During the last years the use of high quality ductile metals
has been remarkably increased due to demands and require-
ments of the customers. For example, reduction in energy
consumption, improved cost efficiency and enforced safety
pretensions have caused intensive research activities to fulfill
environmental, economic and material strength demands. In
products of modern engineering disciplines material prop-
erties are enhanced to reduce localization of irreversible
deformations as well as damage and failure in material
samples under various multi-axial loading conditions. Thus,
analysis of new engineering materials must be based on
accurately predictive and practically applicable constitu-
tive models and corresponding efficient, robust and accurate
numerical algorithms.

It has been observed in many experiments and practi-
cal applications that loading and deformation of material
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elements often leads to localized bands of inelastic strains
accompanied by damage and fracture processes on themicro-
level [3,4,29]. Growth of these micro-mechanisms can then
produce macro-cracks as a cursor of final failure of struc-
tures. These damage and fracture processes acting on the
micro-scale depend on the stress state in a material element.
For example, tensile loadingwith high positive stress triaxial-
ities causes growth and coalescence of micro-pores whereas
in shear and compressive loading micro-shear-cracks occur.
In addition, combination of growth of voids and evolution of
micro-shear-cracks are observed for moderate positive stress
triaxialities and no damage has been observed in experiments
with high negative stress triaxialities [2,12]. Thus, develop-
ment of appropriate phenomenological continuum damage
models and accurate numerical algorithms must be based
on detailed analysis of these stress-state-dependent phenom-
ena on both the micro- and the macro-scale. This demands
a sophisticated experimental program and corresponding
numerical analyses to reveal the connection between stress
states and damage processes.

Various research groups performed during the last decades
experiments with different specimens taken from thin metal
sheets and corresponding numerical simulations to investi-
gate stress-state-dependent material behavior. Uniaxial tests
with specimens with various geometries are used to exam-
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ine deformation and failure behavior for positive and nearly
zero stress triaxialities [1,2,5,11,18,20,22–24,27,33]. Since
only a small range of stress states can be covered in tests
with these uniaxially loaded specimens further experiments
with biaxially loaded ones have been proposed. For exam-
ple, details of anisotropic plastic behavior or limit strain at
fracture are analyzed by biaxial tests with different cruci-
form specimens [19,26,30,35]. In addition, further aspects to
design geometries of biaxially loaded specimens have been
discussed [10,15,21] to study stress-state-dependent damage
and failure mechanisms.

After the experiments scanning electron microscopy can
be used to analyze the fracture surfaces and to reveal
stress-state-dependent fracture processes on the micro-scale
[10,15]. However, these pictures only show the final status
of fracture and do not deliver information on the damage
process during the experiment. An alternative way to inves-
tigate formation of damage during the tests is the numerical
analysis of differently loaded representative volume ele-
ments. For example, numerical studies on the micro-level
with three-dimensionally loaded void-containing unit cells
have been performed to detect stress-state-dependent damage
and fracture mechanisms caused by formation of individual
micro-defects and their interactions [6,12,13,16,17,25,34].
The results are used to propose damage criteria and evolu-
tion equations for macroscopic damage strain rate tensors.

In the present paper, detailed results of further biaxial
experiments and corresponding numerical simulations on
specimens taken from thin steel X5CrNi18-10 sheets cover-
ing a wide range of stress states are presented and discussed.
For motivation, a continuum damage model using damage
mode functions based on experiments and numerical calcu-
lations on the micro-scale is presented. Results of numerical
analysis of biaxial experiments with the recently developed
cruciform X0- and H-specimen are discussed with special
focus on the effect of stress state on material behavior.
Evolution of strain and stress measures in critical regions
of the specimen are computed where damage and fracture
are expected to occur. They are used to predict damage pro-
cesses and fracture mechanisms on both the micro- and the
macro-level.

2 Continuum damagemodel

Numerical prediction of inelastic deformation, damage and
fracture behavior is based on the phenomenological contin-
uum model [7,9] taking into account experimental observa-
tions [10,11,14,18] and results from numerical investigations
on the micro-scale [12,13,16]. The theoretical framework is
briefly summarized in the present paper to demonstrate the
necessity of analysis of multiaxial experiments with various
loading conditions to propose and to validate evolution equa-
tions for plastic and damage strain rate tensors.

The continuumdamagemodel is based on the introduction
of damaged and correspondingfictitious undamaged configu-
rations [31,32,36,37]. In the kinematics, the strain rate tensor
is additively decomposed into elastic, Ḣ

el
, effective plastic,

˙̄Hpl
, and damage parts, Ḣda . Thus, a kinematic description

of damage is proposed and the damage strain rate tensor
is taken to be an appropriate damage variable representing
the volume fraction of micro-defects as well as taking into
account the effect of their current shape and orientation on
the macroscopic material behavior.

In the effective undamaged configurations, the effective
Kirchhoff stress tensor

T̄ = 2G Ael +
(
K − 2

3
G

)
trAel 1 (1)

is introduced where G and K are the constant shear and bulk
modulus of the undamagedmatrixmaterial, respectively, and
Ael is the elastic part of the strain tensor. In addition, onset
of plastic yielding in the matrix material is governed by the
yield criterion

f pl
(
Ī1, J̄2, c

) =
√
J̄2 − c

(
1 − a

c
Ī1

)
= 0, (2)

with the effective first and second deviatoric stress invariants
Ī1 = trT̄ and J̄2 = 1

2 devT̄·devT̄, the equivalent yield stress
c of the matrix material and the hydrostatic stress coefficient
a.

Furthermore, the effective plastic strain rate

˙̄Hpl = γ̇ N̄ (3)

describes evolution of plastic deformations where N̄ =
1√
2 J̄2

devT̄ denotes the normalized deviatoric stress tensor

and γ̇ = N̄· ˙̄Hpl
is the equivalent plastic strain rate measure

representing the amount of increase of plastic deformations.
Moreover, the damaged configurations are considered to

characterize thebehavior of the anisotropically damagedduc-
tile metal. The elastic behavior is also influenced by damage
[28] and, therefore, the elastic constitutive equation takes into
account both the elastic and the damage strain tensors, Ael

and Ada . Then, the Kirchhoff stress tensor is written in the
form

T = 2
(
G + η2 trAda

)
Ael

+
(
K − 2

3
G + 2η1 trAda

)
trAel 1

+ η3

(
Ada · Ael

)
1

+ η3 trAelAda + η4

(
AelAda + AdaAel

)
(4)
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with the additional constitutive parameters η1, . . . , η4 mod-
eling deterioration of the macroscopic elastic material prop-
erties caused by damage and fracture processes on the
micro-level. Onset of damage is modeled by the damage cri-
terion

f da = α I1 + β
√
J2 − σ = 0 (5)

expressed in terms of the stress invariants I1 = trT and
J2 = 1

2 devT·devT. In Eq. (5) the equivalent damage stress
measure σ is introduced corresponding to material tough-
ness to micro-defect propagation and the variables α and
β represent damage mode parameters taking into account
the different damage mechanisms acting on the micro-level:
void-growth-dominatedmodes for large positive triaxialities,
micro-shear-crack modes for negative stress triaxialities, and
mixed modes (simultaneous growth of voids and formation
of micro-shear-cracks) for moderate positive stress triaxial-
ities. These damage mode parameters have been identified
by micro-mechanical numerical analysis considering void-
containing representative volume elements under different
three-dimensional loading conditions [12,13,16]. They have
been expressed in terms of the stress intensity σeq = √

3J2
(von Mises equivalent stress), the stress triaxiality

η = σm

σeq
= I1

3
√
3J2

(6)

defined as the ratio of the mean stress σm and the von Mises
equivalent stress σeq as well as on the Lode parameter

ω = 2T2 − T1 − T3
T1 − T3

with T1 ≥ T2 ≥ T3 (7)

here expressed in terms of the principal components of the
Kirchhoff stress tensor T1, T2 and T3.

In addition, the damage strain rate tensor is expressed in
the form

Ḣda = μ̇

(
ᾱ

1√
3
1 + β̄ N + δ̄ M

)
(8)

with the equivalent damage strain rate measure μ̇ describ-
ing the amount of increase in irreversible damage strains
as well as the normalized stress related deviatoric tensors
N = 1

2
√
J2
devT̃ and M = 1

‖devS̃‖ devS̃ with

devS̃ = devT̃ devT̃ − 2

3
J2 1 (9)

where T̃ is the stress tensor work-conjugate to the damage
strain rate tensor (8). In Eq. (9) the parameters ᾱ, β̄ and
δ̄ are kinematic variables characterizing the portion of vol-
umetric and isochoric damage-based deformations. These

parameters are also micro-mechanically motivated and are
associated to the different damage and fracture processes on
the micro-scale discussed above. They have been determined
by numerical calculations on the micro-scale [12,13,16].

3 Numerical aspects

The numerical simulations have been performed using the
finite element program ANSYS enhanced by a user-defined
material subroutine. This subroutine has been developed
based on the constitutive equations of the proposed contin-
uum damage model. Integration of the evolution equations
of the plastic (3) and damage strains (8) is performed by
the inelastic predictor–elastic corrector method [8]. This
leads to fast convergence and stability of the numerical algo-
rithm until damage reaches a critical state indicating onset
of macro-cracking. The respective specimens have been dis-
cretized by eight-node-elements of type Solid185 with linear
displacement fields to quantify the three-dimensional strain
fields as well as the stresses and the damage quantities in
critical regions of the specimens. Geometries of the X0-
and H-specimen as well as their finite-element-discretization
are shown in Fig. 1. The meshes are based on 86,400 ele-
ments for the X0-specimen and 139,320 elements for the
H-specimen, respectively, and show remarkable refinement
in the notches where high gradients of strain and stress vari-
ables are expected to occur. In preliminary studies results
with different meshes have been examined and the meshes
simulating the localized strain fields in an accurate manner
have been chosen. The specimens are simultaneously loaded
in direction 1 and 2 and the displacements of the red nodes
are computed leading to the relative displacements Δu1 and
Δu2 between the red points in axis 1 and 2, respectively.

For the numerical simulation material parameters are
needed as input variables for the investigated low carbon
steel X5CrNi18-10. Using the load–displacement-curve of a
uniaxial tension test the elastic parameters are identified to
be Young’s modulus E = 180,000 MPa and Poisson’s ratio
ν = 0.3 whereas the plastic hardening behavior is modeled
by the Voce law

c(γ) = c0 + H1 γ +H2(1 − e(−n γ)) (10)

with the initial yield strength c0 = 194 MPa, the hardening
parameters H1 = 477 MPa and H2 = 184 MPa as well as
the hardening exponent n = 5.3. These parameters lead to
excellent agreement of the numerical and experimental load–
displacement-curves, see Fig. 2.

The damage parameters in Eq. (4) are chosen to be
ηi = 150,000 MPa for positive or zero stress triaxialities
(η ≥ 0) and ηi = −150,000 MPa for negative ones (η < 0)
to achieve good agreement of numerically predicted and
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Fig. 1 Geometry and finite element mesh of the X0- and H-specimen
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Fig. 2 Load–displacement-curve of the uniaxial tension test

experimental load–displacement curves. The stress-state-
dependent parameters in the damage criterion (5) and in the
damage rule (8) have been identified by numerical simula-

tions on the micro-level [12]: The damage mode parameter
α is given by

α(η) =
⎧⎨
⎩
0 for −1

3 ≤ η ≤ 0

1
3 for η > 0

(11)

whereas β is taken to be the non-negative function

β(η, ω) = β0(η, ω = 0) + βω(ω) ≥ 0, (12)

with
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β0(η) =
⎧⎨
⎩

−0.45 η + 0.85 for −1
3 ≤ η ≤ 0

−1.28 η + 0.85 for η > 0
(13)

and

βω(ω) = −0.017ω3 − 0.065ω2 − 0.078ω. (14)

Furthermore, the non-negative parameter ᾱ ≥ 0 charac-
terizing the amount of volumetric damage strain rates caused
by isotropic growth of micro-defects is given by the relation

ᾱ(η) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 for η < 0.09864

−0.07903 + 0.80117 η for 0.09864 ≤ η ≤ 1

0.49428 + 0.22786 η for 1 < η ≤ 2

0.87500 + 0.03750 η for 2 < η ≤ 3.33333

1 for η > 3.33333.

(15)

The parameter β̄ characterizing the amount of anisotropic
isochoric damage strain rates caused by evolution of micro-
shear-cracks is given by the relation

β̄(η, ω) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0.94840 + 0.11965 η + β̄ω for −1
3 ≤ η ≤ 1

3

1.14432 − 0.46810 η + β̄ω for 1
3 < η ≤ 2

3

1.14432 − 0.46810 η for 2
3 < η ≤ 2

0.52030 − 0.15609 η for 2 < η ≤ 10
3

0 for η > 10
3

(16)

with β̄ω = (−0.0252 + 0.0378 η)(1 − ω2). In addition, the
parameter δ̄ also corresponding to the anisotropic damage
strain rates caused by the formation of micro-shear-cracks is
given by

δ̄(η, ω) =
⎧⎨
⎩

fδ(η) δ̄ω(ω) for −1
3 ≤ η ≤ 2

3

0 for η > 2
3

(17)

with fδ(η) = −0.12936 + 0.19404 η and δ̄ω(ω) = 1 − ω2.

4 Numerical analysis of biaxial experiments

The X0-specimen enables analysis of tension dominated
stress states with different loading conditions superimposed
by small shear effects. On the other hand, with the H-
specimen shear dominated stress states occur which can
be superimposed with tensile or compressive loads leading
to further stress combinations and, therefore, to alterna-
tive damage and failure processes on the micro-level. Thus,

Exp. Num. F  [kN]

u  [mm]

LF  : LF1 2
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Fig. 3 Load–displacement-curves of the X0-specimen

the proposed experimental-numerical program with differ-
ent load ratios can be used to study stress-state-dependent
behavior in detail.

4.1 X0-specimen

The inelastic deformation as well as damage and failure
behavior of the X0-specimen are analyzed for three different
loading conditions. For the load ratio F1 : F2 = 1 : 1 the
forces in axis 1 and 2 are simultaneously increased by the
same level leading to tensile behavior in the notches of the
X0-specimen. For F1 : F2 = 0.5 : 1 combined tension-shear
behavior is expected to occur whereas F1 : F2 = −0.5 : 1
will lead to more predominant shear behavior in the notched
regions.

The load–displacement-curves F1(Δu1) for the different
load ratios are shown in Fig. 3. For the load ratio F1 : F2 =
1 : 1 the load maximum of about F1 = 12 kN is reached and
the final displacement is Δu1 = 2.2 mm. In the experiment
with F1 : F2 = 0.5 : 1 the load maximum is only about
F1 = 8 kN and the displacement only reaches Δu1 = −0.5
mm. For the load ratio F1 : F2 = −0.5 : 1 the behavior is
more ductile with load maximum of about F1 = −8 kN and
the displacement reaches Δu1 = −8 mm. In all cases the
numerical simulation nicely predicts the experimental load–
displacement curves.

Since the load–displacement-curves discussed above only
characterize the global behavior of the specimen more
detailed analysis is required. For example, strain fields on
the surfaces of the notches can be studied in detail based on
the experimentally obtained ones by digital image correla-
tion technique. In Fig. 4 experimental (left) and numerically
predicted (right) strain fields are shown for the different load-
ing conditions where the maximum and minimum principal
strains, Amax and Amin , are monitored at the displacement
stage 2

3Δu1. In particular, for the load ratio F1 : F2 = 1 : 1
the maximum principal strain reaches Amax = 0.56 at the
boundary of the notch and a vertical band of localized strains
can be seen in Fig. 4a1. This numerically predicted behav-
ior agrees with the experimentally observed one but in the
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Fig. 4 a Maximum and b minimum principal strains of the X0-
specimen for (1) F1 : F2 = 1 : 1, (2) F1 : F2 = 0.5 : 1, (3)
F1 : F2 = −0.5 : 1 (left: experiment, right: numerical simulation)

experiment the band is less localized. The minimum princi-
pal strain at the notch boundaries is Amin = −0.25 and the
numerically predicted field nicely corresponds to the experi-
mental one, see Fig. 4b1. For the load ratio F1 : F2 = 0.5 : 1
the maximum principal strain Amax reaches 0.6 at the notch
boundaries and a localized band with orientation from top
left to bottom right can be seen (Fig. 4a2). The numerically
predicted distribution agrees well with the experimental one.
The minimum principal strain reaches Amin = −0.29 and
also good agreement of experimental and numerical strain
field can be seen in Fig. 4b2. For the loading condition
F1 : F2 = −0.5 : 1 the principal strains reach the high-
est values in the center of the notch surface. The maximum
one is 0.74 (Fig. 4a3) and the minimum one reaches −0.65
(Fig. 4b3) which are only a bit higher than the experimen-
tal ones. In both cases more widespread bands occur with
orientation from top right to bottom left. From Fig. 4 it can
be concluded that depending on the loading conditions dif-
ferent strain behavior occurs and the numerical simulations
well predict the experimental distributions and values of the
strain fields. This can be seen as validation of the theoretical
and numerical approach presented in this paper.

The equivalent damage strain measure μ [see Eq. (8)]
characterizes the amount of damage in the material. Figure
5 shows the distribution of μ on the surface of the notch
as well as in the cross section shortly before fracture hap-
pens and they are compared with photos of the fracture lines
of the failed X0-specimen. In particular, for the load ratio
F1 : F2 = 1 : 1 a small band of damaged points can be
seen in Fig. 5a1 with maximum values in the center of the
notchμ = 0.11. This indicates that themacro-crack will start
in this point and then runs to the surfaces. The fracture line

0

(a1) (a2) (a3)

(b1) (b2) (b3)

0.11 0 0.13 0 0.013

Fig. 5 Failure behavior: a numerically predicted equivalent damage
strain μ (left: surface, right: cross section), b fracture line for (1) F1 :
F2 = 1 : 1, (2) F1 : F2 = 0.5 : 1, (3) F1 : F2 = −0.5 : 1 (X0-
specimen)

(Fig. 5b1) is vertical corresponding to the distribution of dam-
age. For the loading condition F1 : F2 = 0.5 : 1 a slightly
diagonal band can be seen in Fig. 5a2 with a non-symmetric
distribution in the cross section. Themaximum value reaches
μ = 0.13. The distribution of μ also agrees with the fracture
line shown in Fig. 5b2. Loading with F1 : F2 = −0.5 : 1
leads to a diagonal band of the equivalent damage strain μ

from top right to bottom left with the maximum value of
μ = 0.013 in the center of the cross section, see Fig. 5a3.
This damage distribution leads to the diagonal fracture line
shown in Fig. 5b3. It can be concluded that the distribution
of the scalar damage parameter μ agrees well with the frac-
ture line whose geometry remarkably depends on the loading
conditions of the X0-specimen.

It is well known that the stress state affects the damage and
failure processes on the micro-level and, therefore, the dis-
tribution and amount of the stress triaxiality η and the Lode
parameter ω are examined in detail. Figure 6 shows these
stress parameters as well as SEM pictures of the fracture sur-
faces of differently loaded X0-specimens. In particular, for
the load ratio F1 : F2 = 1 : 1 very high stress triaxiali-
ties up to η = 0.68 are numerically predicted in the center
of the notch, see Fig. 6a1. The corresponding Lode param-
eter is ω = −0.5. These stress parameters are typical for
tension dominated stress states caused by simultaneous ten-
sile loading in both axes 1 and 2. For this loading case, in
the SEM picture (Fig. 6b1) remarkably large voids can be
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Fig. 6 a Stress triaxiality η and Lode parameter ω, b SEM pictures of the fracture surface for (1) F1 : F2 = 1 : 1, (2) F1 : F2 = 0.5 : 1, (3)
F1 : F2 = −0.5 : 1 (X0-specimen)

seen with vertical (out-of-picture) orientation and dimples
leading to this typical fracture mode. For the loading condi-
tion F1 : F2 = 0.5 : 1 Fig. 6a2 shows the stress triaxiality
η = 0.57 and the Lode parameter ω = −0.7 which are
numerically predicted in the center of the notch. Thus, the
hydrostatic tensile stress is smaller compared to the first load
ratio which can also be seen in the SEM picture in Fig. 6b2.
The damage mechanism is dominated by small voids which
are slightly sheared to the left side. This behavior is typi-
cal for tension dominated stress states with small amount of
shear which is caused by this load ratio F1 : F2 = 0.5 : 1 in
the center of theX0-specimen.On the other hand, for the load
ratio F1 : F2 = −0.5 : 1 the stress triaxiality is only η = 0.2
and theLode parameter isω = −0.4 in the center of the notch
(Fig 6a3). This shear-dominated stress state leads to forma-
tion of some voidswhich are remarkably sheared aswell as to
formation of micro-shear-cracks as can be seen in Fig. 6b3.
Thus, the predicted stress triaxialities in critical regions of
the specimen can be used to predict the damage and fracture
processes acting on the micro-level leading to final failure.

4.2 H-specimen

The inelastic deformation as well as damage and failure
behavior of the H-specimen are analyzed for three differ-
ent loading conditions. For the load ratio F1 : F2 = 1 : 0

Exp. Num. F  [kN]

u  [mm]

LF  : LF1 2

1   0:
1   1:

-0.5   1:

1

1

10

-10

20

1 2-1-2

Fig. 7 Load–displacement-curves of the H-specimen

only the force in axis 1 is increased leading to tensile behav-
ior in the notches of the H-specimen. For F1 : F2 = 1 : 1
the forces in axis 1 and 2 are simultaneously increased by
the same level leading to combined tension-shear behavior
whereas F1 : F2 = −0.5 : 1 will lead to shear behavior with
superimposed compression in the notched regions.

The load–displacement-curves F1(Δu1) for the different
load ratios are shown in Fig. 7. For the load ratio F1 : F2 =
1 : 0 the load maximum of about F1 = 19 kN is reached and
the final displacement is Δu1 = 1.9 mm. In the experiment
with F1 : F2 = 1 : 1 the load maximum is only about
F1 = 13 kN and the displacement only reaches Δu1 = 0.68
mm. For the load ratio F1 : F2 = −0.5 : 1 the loadmaximum
of about F1 = −7.5 kN is reached and the displacement is
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0

(a1) (a2) (a3)

(b1) (b2) (b3)

0 0

0 0 0-0.26 -0.5 -0.69

0.6 0.78 0.62

Fig. 8 aMaximum and bminimum principal strains of the H-specimen
for (1) F1 : F2 = 1 : 0, (2) F1 : F2 = 1 : 1, (3) F1 : F2 = −0.5 : 1
(left: experiment, right: numerical simulation)

Δu1 = −1.4 mm. Deviations in the experimental curves
for tensile loading in direction 1 can be seen which might
be caused by inhomogeneities in material micro-structure
especially in the notched regions. However, the numerical
simulation is able to predict the global behavior and may be
seen as the mean curve of the experimental ones.

In addition, strain fields on the surfaces of the notches can
be examined in detail based on the experimentally obtained
ones by digital image correlation technique. In Fig. 8 exper-
imental (left) and numerically predicted (right) strain fields
are shown for the different loading conditionswhere themax-
imum and minimum principal strains, Amax and Amin , are
monitored at the displacement stage 2

3Δu1. In particular, for
the load ratio F1 : F2 = 1 : 0 the maximum principal strain
reaches Amax = 0.60 in the notch and a vertical band of
localized strains can be seen in Fig. 8a1. This numerically
predicted behavior agrees with the experimentally observed
one but in the experiment the maxima are slightly smaller
and the numerically predicted strain band is more localized.
The minimum principal strain at the notch boundaries is
Amin = −0.26 and the field nicely corresponds to the exper-
imental one, see Fig. 8b1. For the load ratio F1 : F2 = 1 : 1
the maximum principal strain Amax reaches 0.78 in the notch
center and a localized band with vertical orientation can be
seen (Fig. 8a2).Thenumerically predicteddistribution agrees
well with the experimental one and the experimental values
are only marginally smaller. The minimum principal strain
reaches Amin = −0.50 and also good agreement of exper-
imental and numerical strain fields can be seen in Fig. 8b2.
For the loading condition F1 : F2 = −0.5 : 1 the princi-
pal strains reach the highest values in the center of the notch
surface. The maximum one is 0.62 (Fig. 8a3) and the mini-

0

(a1) (a2) (a3)

0 00.1 6 0.015 0.014

(b1) (b2) (b3)

Fig. 9 Failure behavior: a numerically predicted equivalent damage
strain μ (left: surface, right: cross section), b fracture line for (1) F1 :
F2 = 1 : 0, (2) F1 : F2 = 1 : 1, (3) F1 : F2 = −0.5 : 1 (H-specimen)

mum one reaches −0.69 (Fig. 8b3). In both cases localized
bands occur with orientation from top right to bottom left.
FromFig. 8 it can be concluded that depending on the loading
conditions different strain behavior occurs and the numerical
simulations well predict the experimental strain fields. This
can be seen as validation of the theoretical and numerical
approach presented in this paper.

Figure 9 shows the distribution of the equivalent damage
strain measure μ on the surface of the notch as well as in the
cross section shortly before fracture happens and they are
compared with the fracture lines of the failed H-specimen.
In particular, for the load ratio F1 : F2 = 1 : 0 a small band
of damaged points can be seen in Fig. 9a1 with maximum
values at the boundaries of the notch μ = 0.16. This indi-
cates that the macro-crack will start in these points and then
runs through the area. The fracture line (Fig. 9b1) is vertical
corresponding to the distribution of damage. For the loading
condition F1 : F2 = 1 : 1 a vertical band can be seen in Fig.
9a2with non-symmetric distribution in the cross section. The
maximum value reaches μ = 0.015. The distribution of μ

also agrees with the fracture line shown in Fig. 9b2. Load-
ing with F1 : F2 = −0.5 : 1 leads to a diagonal band of
the equivalent damage strain μ from top right to bottom left
with maximum of μ = 0.014 at the boundaries of the cross
section, see Fig. 9a3. This damage distribution leads to the
diagonal fracture line shown in Fig. 9b3. It can again be con-
cluded that the distribution of the scalar damage parameter
μ agrees well with the fracture line whose geometry remark-
ably depends on the loading conditions of the H-specimen.
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Fig. 10 a Stress triaxiality η and Lode parameter ω, b SEM pictures of the fracture surface for (1) F1 : F2 = 1 : 0, (2) F1 : F2 = 1 : 1, (3)
F1 : F2 = −0.5 : 1 (H-specimen)

Furthermore, the distribution and amount of the stress
triaxiality η and the Lode parameter ω are investigated in
detail. Figure 10 shows these stress parameters as well as
SEM pictures of the fracture surfaces of differently loaded
H-specimens. In particular, for the load ratio F1 : F2 = 1 : 0
very high stress triaxialities up to η = 0.68 are numeri-
cally predicted in the center of the notch, see Fig. 10a1. The
corresponding Lode parameter is ω = −0.5. These stress
parameters are typical for tension dominated stress states
caused by tensile loading in axis 1 only. For this loading case,
in the SEM picture (Fig. 10b1) remarkably large voids can
be seen with vertical (out-of-picture) orientation and dimples
leading to this typical fracture mode. For the loading condi-
tion F1 : F2 = 1 : 1 Fig. 10a2 shows the maximum stress
triaxiality η = 0.4 with the corresponding Lode parameter
ω = −1.0. In the center of the notched region, the stress
triaxiality η = 0.3 and the Lode parameter ω = −0.7 are
reached. Thus, the shear stress is dominant which can also
be seen in the SEM picture in Fig. 10b2. The damage mech-
anism is dominated by micro-shear-cracks and only small
voids which are sheared to the left side. This behavior is typ-
ical for shear-tension stress states. On the other hand, for the
load ratio F1 : F2 = −0.5 : 1 the stress triaxiality is only
η = 0.0 and the Lode parameter is ω = −0.2 in the center
of the notch (Fig 10a3). This shear-compression stress state
leads to formation ofmicro-shear-crackswhereas preexisting

voids have been compressed and sheared as can be seen in
Fig. 10b3. Hence, the predicted stress triaxialities in critical
regions of the specimen can be used to predict the damage
and fracture processes acting on the micro-level leading to
final failure.

5 Conclusions

In the paper a numerical model has been discussed to investi-
gate the influence of stress state on damage and failure in the
ductile steel X5CrNi18-10. The numerical analysis is based
on a thermodynamically consistent anisotropic continuum
damage model taking into account yield and damage crite-
ria as well as evolution equations for plastic and damage
strain rate tensors. An efficient and accurate numerical algo-
rithm has been developed and implemented as a user-defined
material subroutine in the finite element program ANSYS.
Results of numerical simulations of biaxial experiments with
the X0- and the H-specimen covering a wide range of stress
states have been presented. In the experiments, formation
of strain fields are monitored by digital image correlation
which can be compared with numerically predicted ones to
validate the numerical model. Based on the numerical anal-
ysis the strain and stress quantities in selected parts of the
specimens have been predicted. Analysis of damage strain
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variables enables prediction of fracture lines observed in the
tests. Numerically predicted stress fields are used to explain
different stress-state-dependent damage mechanisms visual-
ized on fracture surfaces by scanning electron microscopy.
The paper clearly shows the efficient way to combine exper-
iments and numerical analysis to understand the complex
mechanisms of damage and failure in ductile metals on the
micro- and the macro-level.

Acknowledgements The project has been funded by the Deutsche
Forschungsgemeinschaft (DFG, German Research Foundation) under
ProjectNumber 281419279, this financial support is gratefully acknowl-
edged.

Funding Open Access funding enabled and organized by Projekt
DEAL.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, youwill need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

References

1. Bai Y, Wierzbicki T (2008) A new model of metal plasticity and
fracture with pressure and Lode dependence. Int J Plast 24:1071–
1096

2. Bao Y, Wierzbicki T (2004) On the fracture locus in the equivalent
strain and stress triaxiality space. Int J Mech Sci 46:81–98

3. Benzerga AA, Leblond JB (2010) Ductile fracture by void growth
to coalescence. Adv Appl Mech 44:169–305

4. Besson J (2010) Continuum models of ductile fracture: a review.
Int J Damage Mech 19:3–52

5. Bonora N, Gentile D, Pirondi A, Newaz G (2005) Ductile damage
evolution under triaxial state of stress: theory and experiments. Int
J Plast 21:981–1007

6. Brocks W, Sun DZ, Hönig A (1995) Verification of the transfer-
ability of micromechanical parameters by cell model calculations
with visco-plastic material. Int J Plast 11:971–989

7. Brünig M (2003) An anisotropic ductile damage model based on
irreversible thermodynamics. Int J Plast 19:1679–1713

8. Brünig M (2003) Numerical analysis of anisotropic ductile contin-
uum damage. Comput Methods Appl Mech Eng 192:2949–2976

9. BrünigM (2016)A thermodynamically consistent continuumdam-
age model taking into account the ideas of CL Chow. Int J Damage
Mech 25:1130–1141

10. Brünig M, Brenner D, Gerke S (2015) Stress state dependence of
ductile damage and fracture behavior: experiments and numerical
simulations. Eng Fract Mech 141:152–169

11. Brünig M, Chyra O, Albrecht D, Driemeier L, Alves M (2008) A
ductile damage criterion at various stress triaxialities. Int J Plast
24:1731–1755

12. BrünigM, Gerke S, Hagenbrock V (2013)Micro-mechanical stud-
ies on the effect of the stress triaxiality and the Lode parameter on
ductile damage. Int J Plast 50:49–65

13. BrünigM, Gerke S, Hagenbrock V (2014) Stress-state-dependence
of damage strain rate tensors caused by growth and coalescence of
micro-defects. Int J Plast 63:49–63

14. Brünig M, Gerke S, Schmidt M (2016) Biaxial experiments
and phenomenological modeling of stress-state-dependent ductile
damage and fracture. Int J Fract 200:63–76

15. Brünig M, Gerke S, Schmidt M (2018) Damage and failure at neg-
ative stress triaxialities. Int J Plast 102:70–82

16. Brünig M, Hagenbrock V, Gerke S (2018) Macroscopic damage
laws based on analysis of microscopic unit cells. ZAMM J Appl
Math Mech Z Angew Math Mech 98:181–194

17. ChewH, Guo T, Cheng L (2006) Effects of pressure-sensitivity and
plastic dilatancy on void growth and interaction. Int J Solids Struct
43:6380–6397

18. Driemeier L, Brünig M, Micheli G, Alves M (2010) Experiments
on stress-triaxiality dependence of material behavior of aluminum
alloys. Mech Mater 42:207–217

19. Demmerle S, Boehler J (1993) Optimal design of biaxial tensile
cruciform specimens. J Mech Phys Solids 41:143–181

20. Dunand M, Mohr D (2011) On the predictive capabilities of the
shear modified Gurson and the modified Mohr–Coulomb fracture
models over a wide range of stress triaxialities and Lode angles. J
Mech Phys Solids 59:1374–1394

21. Gerke S,Adulyasak P, BrünigM (2017)Newbiaxially loaded spec-
imens for analysis of damage and fracture in sheet metals. Int J
Solids Struct 110:209–218

22. Glema A, Kakol W, Lodygowski T (1997) Numerical modeling
of adiabatic shear band formation in a twisting test. Eng Trans
45:419–431

23. Glema A, Lodygowski T, Sumelka W (2010) Nowacki’s double
shear test in the framework of the anisotropic thermo-elasto-
viscoplastic material model. J Theor Appl Mech 48:973–1001

24. Gao X, Zhang G, Roe C (2010) A study on the effect of the stress
state on ductile fracture. Int J Damage Mech 19:75–94

25. Kim J, Gao X, Srivatsan T (2003) Modeling of crack growth in
ductile solids: a three-dimensional analysis. Int J Solids Struct
40:7357–7374

26. Kuwabara T (2007) Advances in experiments on metal sheet and
tubes in support of constitutive modeling and forming simulations.
Int J Plast 23:385–419

27. Lou Y, Chen L, Clausmeyer T, Tekkaya AE, Yoon J (2017) Mod-
eling of ductile fracture from shear to balanced biaxial tension for
sheet metals. Int J Solids Struct 11:169–184

28. Lemaitre J (1996) A course on damagemechanics. Springer, Berlin
29. Lodygowski T (1996) Theoretical and numerical aspects of plastic

strain localization. Wydawnictwo Politechniki Poznanskiej, Poz-
nan

30. Müller W, Pöhland K (1996) New experiments for determining
yield loci of sheet metal. Mater Process Technol 60:643–648

31. Murakami S (1988) Mechanical modeling of material damage. J
Appl Mech 55:280–286

32. MurakamiS,OhnoN(1981)Acontinuum theoryof creep and creep
damage. In: Ponter ARS, Hayhorst DR (eds) Creep in structures.
Springer, Berlin, pp 422–443

33. Roth CC,Mohr D (2016) Ductile fracture experiments with locally
proportional loading histories. Int J Plast 79:328–354

34. Shen J, Mao J, Boileau J, Chow C (2014) Material damage eval-
uation with measured microdefects and multiresolution numerical
analysis. Int J Damage Mech 23:537–566

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


Computational Mechanics (2021) 68:487–497 497

35. SongX, Leotoing L, Guines D, Ragneau E (2017) Characterization
of forming limits at fracturewith an optimized cruciform specimen:
application to DP600 steel sheets. Int J Mech Sci 126:35–43

36. Voyiadjis GZ, Kattan PI (1992) A plasticity–damage theory for
large deformation of solids. I. Theoretical formulation. Int J Eng
Sci 30:1089–1108

37. Voyiadjis GZ, Kattan PI (1999) Advances in damage mechanics:
metals and metal matrix composites. Elsevier, Amsterdam

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123


	Numerical analysis of stress-state-dependent damage and failure behavior of ductile steel based on biaxial experiments 
	Abstract
	1 Introduction
	2 Continuum damage model
	3 Numerical aspects
	4 Numerical analysis of biaxial experiments
	4.1 X0-specimen
	4.2 H-specimen

	5 Conclusions
	Acknowledgements
	References




