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Abstract: As the construction industry grows, it produces large volumes of construction waste,
which has a tremendous environmental impact and generates public concern in the neighbouring
towns. The construction industry generates a significant volume of waste and faces a challenge
with poor construction waste minimisation in order to prevent adverse environmental and dumping
impacts worldwide. In developing countries, regional waste management systems have increased
problems. Environmental pollution (air, water, and soil) and human health issues are caused by
waste produced in a country as a result of different cultural, social, and religious activities. Prior
studies were reviewed to choose dimensions and items for the data gathering instrument. A pilot
test was conducted to identify potential questionnaire adjustments, and hypotheses were tested
using structural equation modelling (SEM). A total of 220 Malaysian construction professionals
answered the survey, which yielded the results. Five hypotheses have direct correlations based on
the findings, three of which have a significant effect. Furthermore, the findings reveal that policy-
related factors mediate the relationship between improving factors and sustainable construction waste
minimisation. In contrast, they did not mediate the relationship between current practices/generation
and sustainable construction waste management. The established framework can help improve
construction waste management and help achieve global sustainable development goals. The data
reveal that adopting preventive plans to reduce construction waste is one of the most important
aspects of enhancing profitability. This study could aid construction industry players in evaluating
waste management components during the construction and design stages of a building project.

Keywords: effective construction; current practices of waste generation; sustainable construction
waste minimisation; policy-related factors; partial least squares-structural equation modelling (PLS-
SEM)

Sustainability 2022, 14, 656. https://doi.org/10.3390/su14020656 https://www.mdpi.com/journal/sustainability

https://doi.org/10.3390/su14020656
https://doi.org/10.3390/su14020656
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sustainability
https://www.mdpi.com
https://orcid.org/0000-0002-8306-9817
https://orcid.org/0000-0002-9496-5430
https://orcid.org/0000-0003-0341-122X
https://orcid.org/0000-0002-5699-5348
https://doi.org/10.3390/su14020656
https://www.mdpi.com/journal/sustainability
https://www.mdpi.com/article/10.3390/su14020656?type=check_update&version=1


Sustainability 2022, 14, 656 2 of 21

1. Introduction

In 2015, the construction industry significantly impacted the natural and built environ-
ment. In 2019, 16.6 million tonnes of waste were produced, constituting 38% of destruction,
with 43% of those wastes ending up in landfills [1,2]. In the construction and demolition pro-
cedures, massive amounts of waste are generated. Practitioners and scholars have become
deeply concerned about the difficulties interconnected with construction and demolition
waste [3,4]. Furthermore, C&D waste is rapidly increasing and, in most nations, is not
completely managed [5]. Therefore, the architectural, engineering, and construction (AEC)
industry should seek to minimize and recover C&D waste as part of construction waste
management strategies: a green grading system, a circular economy, and zero waste [6,7].
Many reports in the early literature have recommended reusing and recycling C&D waste
to reduce it [8]. The first step in lowering C&D waste is to reduce construction waste. This
is addressed by eliminating the waste’s causative factors [9,10]. Improper designs and
expected design changes have been identified as sources of the primary volume of waste
in the construction industry [11,12]. Poor design has resulted in a 33% increase in overall
construction waste volume [13]. The sources of construction waste can be managed and
prevented where appropriate, resulting in a reduction in waste generation. The causes
of construction waste can be mitigated and avoided where necessary using integrated
building design and design enhancements [14].

In developing countries, the current practice of construction waste management
(CWM) has resulted in a tremendous increase in the amount of waste produced. First,
much more waste (including C & C&D) is generated in metropolitan areas due to continu-
ing population growth and fast urbanisation, particularly in developing countries [14]. UN
research predicts that the global population will grow dramatically over the next 30 years,
reaching 8.5 billion people, with 7.1 billion living in poorer countries [15]. Subsequently,
many people migrate to cities and towns due to these countries’ high economic develop-
ment rates; more waste (including C&D) is generated in the metropolitan regions due to
ongoing population growth and fast urbanization, particularly in developing countries. By
2025, the proportion of people living in cities is expected to increase from 33% to 55% [16].
As a result, the number of newly constructed buildings and infrastructure amenities will
increase, resulting in increased construction waste.

In compliance with policy-related factors, various policy instruments for controlling
construction waste for sustainable urban growth have been developed worldwide [17]. The
effective execution of such policy instruments depends on a broad range of outcomes. One
important consideration is the requirement to estimate the waste generated by construction
projects accurately. Government agencies set the CWM policy for effective monitoring to
ensure that the waste collector handles it efficiently [18]. Governments are taking steps
to resolve these issues, such as enforcing a policy requiring the implementation of waste
management incentives to promote on-site collection and ensure proper reuse, recycling,
or disposal of all types of waste, and enforcing a travel ticketing scheme to regulate the
movement of waste to a public construction contract [19]. The policy also promotes the
usage of recycled waste aggregates from building waste for use in development projects.
In 2006, the volume of building waste disposed of in landfills was reduced by about 30%.

To sustainably minimise construction waste, one of the most significant tools driving
long-term sustainability is waste management strategy. Waste management has a link to
public health and environmental destruction. Therefore, it is critical to analyse how re-
sources and generated waste are managed to build a sustainable waste management system.
Due to increased construction activities, manufactured goods are transported worldwide,
resulting in waste. Consequently, if they are not handled properly, they have negative
consequences for the natural environment. The Environmental Protection Agency (EPA)
designated construction and demolition waste as waste materials generated during the
design, renovation, or demolition of structures and roads. This includes products produced
as a result of natural disasters [20,21]. Sustainable construction is another important tool
for long-term development that involves deliberating on environmental, social, economic,
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and cultural issues. Establishing a relationship between the economic, environmental,
and social aspects of building design, construction, and use is essential for sustainable
construction. Indeed, environmentally friendly construction is important for achieving
sustainable development [22].

In Malaysia, previous studies on construction projects have investigated many factors
such as ineffective C&DW management and the lack of well-organised and systematic
categorisation with clients, designers, and subcontractors [23,24]. Milios [25] has addressed
many factors such as fundamental obstacles, determining the material choice, communica-
tion complexity, and coordination. Other studies have focused on enhancing CWM reuse
and recycling [26], the inability of contractors to follow exact and thorough CWM regula-
tions [27], the state of CDW treatment and its shortcomings [22,23], and industry guides for
material reuse and recycling in a sustainable environment [28]. Although these factors were
necessary, the impact of the current practice of waste generation on sustainable construction
waste and the mechanism of how policy-elated factors mediate this relationship have been
neglected. In Malaysia, there are currently no legal or economic mechanisms to assist
construction professionals in reducing the amount of trash generated. Therefore, there is a
pressing need to address how the current practice of waste generation impacts sustainable
construction waste minimisation and how policy-related factors moderate the relationship
between them.

Consequently, the study examines the mediating impact of policy-related factors on the
relationship between the practice of waste generation and sustainable construction waste
minimisation. Thus, the fundamental research question is: what is the mediating effect
of policy-related factors on the relationship between the practice of waste generation and
sustainable construction waste minimisation among Malaysian construction professionals?
This study will give empirical evidence for project managers in the construction industry
in Malaysia specially to ensure that waste is minimised by incorporating waste material
reduction, reuse, and recycling. As a result, by extracting valuable goods from construction
waste, effective construction waste management will aid in the achievement of sustainable
development goals in various parts of the world, including Malaysia [29].

2. Literature Review and Hypotheses Development

This section comprises a review of relevant studies in the literature to develop the
conceptual framework, discuss the relationships, and formulate the hypotheses as provided
below.

2.1. Sustainable Construction Waste Management

Considering the alarming rate at which waste is generated and abandoned, C&DW’s
economic impact is significant. Construction materials account for over 40% of the world
economy’s material flow [30]. Moreover, a significant percentage of the overall cost of
construction projects is accounted for by the price of the various materials, which further
implies that any drop in the volume of waste produced will result in considerable project
savings [31]. A few studies have looked at the increase in the number of jobs and sales
of recycled materials due to increased waste diversion from landfills, using both direct
and indirect data [31]. Aside from other environmental issues, this action helps mitigate
the depletion of resources and diverts them from landfills [32]. Waste is produced as a
result of projects, which must account for employee turnover as a result of delays and
higher costs, as well as reduce which must account for turnover because of delays and
the burden of additional costs, reduced productivity, and high waste disposal costs [32].
The concept of social impact can be defined as the practice of understanding, monitoring,
and handling the wide range of social impacts generated from a variety of planned and
unplanned endeavours, ranging from both negative and positive influences [32].

The readiness of people to improve their behaviours and attitudes when it comes
to C&DW generation, collection, and disposal is addressed as social impact in C&DW
management. From a sociological perspective, it is regarded that construction stakeholders’
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participation and commitment are significant C&DW management drivers [33,34]. It is
worth emphasising that social and human capital is concerned with societal sustainability.

Human capital focuses on the skills and loyalty of employees. While social capital
consists of elements such as the quality of life and social standards socially constructed
in each society, social capital comprises various social constructs such as how people
view their roles and status [35]. Kabirifar [36] notes that it is challenging to meet the
expectations of all stakeholders while considering the limits of their time and resources,
and trade-offs are inevitable. Thus, as explained above, the following description emerged:
communities derive their values from sustainability, which is socially implemented through
the development of human resources and the advancement of social capital. It is critical
to efficiently manage social capital for stakeholders to appreciate and recognise the value
of organisation engagement in the system. To the above advantages, we may further add
the improved economic, environmental, and social aids that can be increased from waste
management implementation. The values shown in Table 1 represent the different factors
that contribute to a sustainable C&D energy strategy.

Table 1. The sustainable management contributing factors.

Sustainable Construction
Waste Management Factors References

Environmental

Pollution and deterioration of the
environment (water, soil, air, and noise),
global warming problems, impediments
to green development, greenhouse gas
emissions, fossil fuel emissions, resource
and raw material depletion, and the
effects of unlawful dumping in the
neighbourhood, among other issues

[34,37,38]

Economic

Materials, energy, water, labour, and
equipment expenses, waste
transportation costs, disposal costs, costs
of precious lands filled with C&DW,
reuse and recycling costs, etc.

[39–42]

Social

Short- and long-term health and safety
impacts of C&DW collection, sorting, and
disposal, project stakeholders’ attitudes
toward C&DW management, public
perception and awareness shifts toward
C&DW direction, incentive role in
preventing illegal C&DW dumping,
aesthetic impacts of recycling plants and
material stockpiled, etc.

[43,44]

2.2. Current Practices/Generation

The construction industry has grown rapidly as people’s living standards have im-
proved. Increased demand for infrastructure projects, variations in usage patterns, and
population growth contribute to waste [45]. Construction waste consists of building debris,
rubble, earth, concrete, steel, timber, and mixed site clearance materials resulting from
different construction activities. In addition, construction trash, such as asbestos produced
during the demolition of existing structures, can be problematic Kabir [46]. As a result, it
is critical to have a comprehensive and well-defined strategy and technology to manage
waste generated by building operations to minimise the negative impact on environmental,
social, and economic factors.

Regarding waste management technologies, Kabir [46] has indicated that waste min-
imisation, reuse, recycling, and composting should be the most environmentally friendly
measures in the waste management hierarchy. Malaysia implements the industrial building
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system (IBS), a waste-controlling and ecologically friendly construction method [47]. A
prefabricated component-based construction system is referred to as an IBS [48]. However,
according to Bajjou and Chafi [49], greater initial expenses deter construction professionals
from adopting this strategy even though IBS could be one of the most effective strategies to
reduce on-site waste.

2.3. Factors Driving Improvement

These factors improve waste management to ease the shortcomings of CWM. Table 2
illustrates some of the most critical variables that go into the management of C&D waste.

Table 2. Factors for Improving Waste Management (CWM).

Group Factors for Improving Waste Management (CWM) References

Construction Factors

Segregation of waste and collection in dedicated bins

[50,51]

Green buildings that minimise the emission of toxic
substances throughout their life cycle

Green building practices

Industrial building system (IBS)

Design management to prevent the over-specification
of materials

Building information modelling (BIM)

Stock control measures to avoid the over-ordering
of materials

Manpower Factors

The pledge of the contractor’s representative at the site

[52,53]Contribution and cooperation of subcontractor

Organisation breakdown structures involved in
waste management

Management Factors

Cost estimation for waste treatment bills required

[54,55]

Studies on the feasibility of waste
estimating methodologies

Adequate training to develop the necessary skills
and experience

Additional tender premiums where waste initiatives
are to be implemented

2.4. Mediating Policy-Related Factors

The Malaysian government is taking steps to resolve these issues, such as enforcing a
policy requiring the implementation of waste management incentives to promote the on-site
collection and ensure proper reuse, recycling, or disposal of all types of waste, and enforcing
a travel ticketing scheme to regulate the movement of waste to a public construction
contract. The policy also promotes the usage of recycled waste aggregates from building
waste for use in development projects. The appropriate measurement of construction
waste at the project level, which is an experiential level of both the government and the
construction sector to take adequate measures, is critical to successfully implementing
this policy. In 2021, the regulations were formulated to produce an interconnected and
comparatively successful system. Hong Kong’s policy structure for managing CWM
resulted in a 30 percent reduction in building waste disposal volume in landfills. The
construction waste disposal fee plan has already produced around HK 55 million (USD 7
million) [56]. Furthermore, policymakers in developing countries such as the United States
of America, Korea, Japan, China, and Vietnam appear to be concerned about construction
waste minimisation policies. Kabir [46] revealed that construction waste minimisation
policies are conveyed as fundamental waste management strategies and a powerful tool for
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achieving synergistic effects with national approaches for prevention, resource procurement,
and emission reduction [57].

2.4.1. Construction Waste Management Policy

Due to the development of sustainable improvements as a new standard, the building
industry has begun to recognise the negative effects on the environment [46]. On the
other hand, construction is not a sustainable and environmental activity by definition.
Scholars have cited a series of negative construction impacts, including waste generation,
resource depletion, land deterioration, and harmful emissions [58]. Waste makes up a
large amount of municipal waste. Thus, it is critical to have a proper policy dealing with
the building industry if you want to live in a pollution-free environment. As a result,
Malaysia’s government established the Construction Industry Development Board (CIDB)
to reform the industry and enhance environmental performance and awareness among its
key players [59]. The Malaysian government has also established Standard Building Works
Specifications (SBW) overseen by the Ministry of Works. All government policies and
procedures reflect a desire to manage construction waste effectively. Although construction
professionals do not comply with all policies, a more holistic approach is necessary to
preserve economic, social, and environmental factors. Policy-related factors are shown in
Table 3.

Table 3. Policy-related factors.

Industry Policy Factor Cost Estimation for the Quantity of Waste
Treatment: a Bill Is Required References

Studies on the feasibility of waste
estimating techniques

[54,55]

Adequate training to develop the necessary
skills and experience

Where waste activities are to be
implemented, there will be additional

tender premiums.

A residential officer is in charge of
waste management.

Optimizing legal procedures for the
installation of waste treatment equipment

2.4.2. Summary of Literature Review

For the conceptual framework of this research, six models of the construction waste
management approach were established. First, the framework in construction projects was
reviewed [60]. At this stage, the focus was to determine the components of the critical
elements of construction waste management in every aspect. The selection and adoption of
each component were made based on the following criteria: the component’s suitability
for construction waste management through the application of the three Rs (reduce, reuse,
recycle) in a construction project, and the suitability for integrating construction waste
management through application of the three Rs for each component.

The relevance and approach for explaining the construction sector in Malaysia are
discussed in the conceptual framework of this research given in Figure 1. The approach to
waste management (reduce, reuse, and recycle) is mainly applicable in many developing
nations. Waste management in numerous countries is complex and can be influenced
by numerous considerations, such as population growth, transportation infrastructure,
geographical area, and environmental regulations [57]. It has also been noted that waste
management in developing countries is different from that in developed countries. Another
important technique for the sustainable construction process involving environmental,
social, economic, and cultural concerns is sustainable construction. It is more necessary for
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sustainable construction to evaluate the relationship between the economic, environmental,
and social aspects of building design, construction, and use. Long-term sustainability neces-
sitates sustainable construction [61,62]. For example, Umar [63] emphasises the advantages
of high-performance C&D waste management for a smooth construction process while
reducing environmental effects. It adheres to the two pillars of sustainable construction:
resource-saving and pollution reduction [64]. As indicated in Figure 1, waste management
is critical to sustainable construction [65]; the evaluation of CWM performance is influenced
by sustainable construction. Environmental, social, and economic sustainability elements
are all thought to impact CWM outcomes [66–68]. The relationship between current prac-
tices/generation and policy-related factors has not been significant [69]. However, current
practices/generation was found to affect sustainable construction waste management sig-
nificantly. Additionally, significantly increasing key drivers have a statistically significant
positive mediating impact on policy-related variables of sustainable construction waste
management. On the other hand, improved factors have had little impact on sustainable
construction waste management. Furthermore, policy-related factors have been established
to significantly impact sustainable construction waste management [70,71]. Thus, it can be
concluded from the above literature review that there are seven hypotheses of this study
that need to be investigated among Malaysian construction projects, as shown in Figure 1.
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3. Methodology

The research approach was developed using a conceptual model. This method is
based on a three-step process that includes identifying model constructs, (ii) categorising
construction, and (iii) specifying relationships between these constructs [72]. The study
adopted the questions from previous studies to measure the study’s variables, such as
existing waste generation techniques, enhancing factors, policy-related factors, and sustain-
able construction waste management. Validation of the instrument of this study (survey)
has been conducted in two stages—first, the face and content validity of this survey by
experts. The second phase consisted of the pilot study, which had to assess the instrument’s
reliability before the main study [73–75]. Thus, after the validation stage, the survey was
ready to collect the data to test the hypotheses of this study. This questionnaire was divided
into two sections. Part one contained demographic information about the respondents, and
part two included items to measure variables of this study as shown in Tables 1–3 using a
five-point Likert scale ranging from “never” to “always” [76,77].

Subsequently, based on a random stratified sampling technique, 220 survey responses
were collected from Malaysian construction professionals working in various regions
throughout the country. According to Kline [78], a complex path model requires about
200 sample sizes or larger to analyse. At the same time, Yin [79] recommended that for
SEM, it is appropriate for the sample size to exceed 100. The survey was administered in
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person (self-administered) and received a high response rate of 85.9% [80]. The data were
filtered and loaded into SPSS statistical software to conduct data screening checks before
submission to the model test by PLS-SEM.

Structural Equation Modelling (SEM)

Three techniques from the literature review were evaluated to investigate the current
study model: (i) multiple linear regression (MLR), (ii) system dynamics (SD), and (iii)
structural equation modelling (SEM). First, the regression equation was not used because
the link between variables was not considered, which is a fundamental limiting condition
for implementing the regression equation. Second, due to the nature of the data (for
example, data that are independent of time), the system dynamics technique could not
be used. Finally, the structural equation modelling (SEM) method describes the link
between various observable and non-observable factors; therefore, it was appropriate
for the study’s needs. The PLS-SEM is a handy tool for dealing with variable faults [81].
In this study, the SEM technique was utilised to establish the link between modelling
the relationship between current waste generation practices and sustainable construction
waste minimisation and to investigate the mediating role of policy-related factors on the
relationship between the current practice of waste generation and sustainable construction
waste. According to Nayernia [82], structural equation modelling has developed into
a non-experimental research tool with previously unknown procedures for hypothesis
testing. In social science research, according to Yuan [83], structural equation modelling
is a prevalent and well-known approach to data analysis. In previous studies, the PLS-
SEM analysis method has been used in many sectors such as the building sector [84–86],
transportation sector [87–89], construction waste generation [90,91], and assessment of
the environmental and economic impacts of construction and demolition waste [92]. In
addition, according to Hair et al. [93], partial least square (PLS) methods are now well-
known as an alternative to the SEM method. The PLS-SEM, along with other programmes
such as AMOS and LISREL, is a versatile and effective method for building and predicting
statistical models [94]. Therefore, PLS-SEM has been employed to test the hypotheses of
this study as below:

Hypothesis 1 (H1). There is a significant impact of current practices/generation on policy-related
factors.

Hypothesis 2 (H2). There is a significant impact of current practices/generation on sustainable
construction waste management.

Hypothesis 3 (H3). There is a significant impact of improving factors on policy-related factors.

Hypothesis 4 (H4). There is a significant impact of improving factors on sustainable construction
waste management.

Hypothesis 5 (H5). There is a mediating role of policy-related factors in the relationship between
the current practices/generation and sustainable construction waste management.

Hypothesis 6 (H6). There is a mediating role of policy-related factors in the relationship between
the improving factors and sustainable construction waste management.

4. Results
4.1. Assessing the Measurement Model

The SEM is depicted in Figure 1 as well as the study’s conceptual model. According to
Henseler [95], indicator reliability involves (i) evaluating a measurement model that entails
estimating, (ii) composite reliability, (iii) average variance extracted (AVE), and (iv) validity
discrimination. In general, outside load indications in the range of 0,40 to 0,70 must be
removed only if doing so results in a significant increase in AVE and composite reliability,
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but if the range is less than 0.40, they should be removed directly [93]. Table 4 and Figure 2
reveal that all outside loading values in the measurement model were more than 0.7. The
results of Table 4 show that the model’s structures passed this test. In the supplementary
file, there is a table called Item Loading.

Table 4. Internal reliability and convergent validity.

Construct Cronbach’s
Alpha Rho_A CR AVE

Design Factors 0.790 0.793 0.845 0.537
Design Development Stages/Lean

Construction 0.831 0.834 0.869 0.579

Construction and Site Management 0.783 0.790 0.844 0.539
External and Workers/Handling

Factors 0.792 0.794 0.846 0.531

Planning and Design Factors 0.820 0.821 0.864 0.537
Management Practices 0.762 0.763 0.830 0.563
Construction Factors 0.816 0.820 0.860 0.500

0.843 0.847 0.878 0.627
Waste Minimisation Measures 0.846 0.848 0.878 0.522

Effective to Improve CWM 0.854 0.855 0.886 0.574
Waste Management Policy Factors 0.764 0.764 0.832 0.672

Industry Factors 0.814 0.816 0.858 0.562
Factors in the Environment 0.725 0.727 0.814 0.504

Economic Constraints 0.891 0.894 0.913 0.567
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Values greater than 0.70 are recommended for further investigation [95]. For all
outside loads greater than 0.7, the internal consistency of composite reliability (CR) was
evaluated [96]. Table 4 shows that all of the model’s variables passed the CR > 0.70 test
and were thus accepted. AVE is a standard metric used to measure the model’s constructs’
convergent validity, with values greater than 0.50 indicating an acceptable convergent
value, as indicated by [97].

4.2. Goodness of Fit of Model

According to Henseler and Sarstedt [98], the geometric mean of both the average
R2 and the average variance extracted from endogenous variables was proposed as the
goodness of fit (GoF). Simultaneously, the AVE (community) considers the quality of the
index’s measurement models. If the numbers are 0.1, 0.25, or 0.36, the GoF index is termed
small, medium, or big, respectively [99]. The equation can be used to compute the GoF
index:

GOF =

√
R2 ×AVE =

√
0.764× 0.4319 = 0.574

The GoF criteria determine if GoF values are not acceptable (less than 0.1), low-slung
(0.1 to 0.25), moderate (0.25–0.36), or high (beyond 0.36) in order to be accepted as a globally
acceptable PLS model. As a result, based on these requirements and the Gof value of (0.574),
the GoF model is likely to be significant enough to be designated as a worldwide PLS-SEM
model. Based on Adabre [100], the model’s GoF of 0.39 is relatively high. As a result, the
research model is correct.

4.3. Discriminant Validity

By the norms observed, discrimination validity is defined as a concept that appropri-
ately differs from the other constructs. The model’s discriminative validity thus means that
it captures things that are not properly reflected in the model by other constructs [101]. The
discriminant validity was evaluated by the cross loading criterion. In assessing discriminat-
ing validity, the square AVE roots of each construct can be compared to the correlations
between them. According to Ab Hamid [102], the AVE’s square root is greater than the
correlation between latent variables. The results show that the measuring model in Table 5
had a discriminating value for sustainable construction waste management (SCWM).

Table 5. Fornell-Larcker criterion.

m1 m2 x11 x12 x13 x14 x21 x22 x23 x24 x25 y1 y2 y3

m1 0.68
m2 0.50 0.644
x11 0.525 0.477 0.637
x12 0.592 0.565 0.602 0.632
x13 0.611 0.59 0.599 0.601 0.662
x14 0.616 0.639 0.574 0.552 0.553 0.639
x21 0.615 0.638 0.489 0.582 0.561 0.594 0.666
x22 0.630 0.551 0.485 0.597 0.607 0.557 0.643 0.641
x23 0.601 0.521 0.523 0.585 0.601 0.621 0.605 0.611 0.638
x24 0.562 0.563 0.492 0.563 0.602 0.588 0.642 0.631 0.60 0.667
x25 0.593 0.509 0.518 0.579 0.592 0.615 0.61 0.601 0.610 0.650 0.648
y1 0.594 0.551 0.549 0.613 0.630 0.578 0.598 0.606 0.510 0.640 0.59 0.635
y2 0.305 0.587 0.477 0.546 0.582 0.599 0.563 0.539 0.608 0.601 0.525 0.517 0.65
y3 0.147 0.128 0.255 0.237 0.158 0.202 0.127 0.1 0.137 0.109 0.139 0.185 0.147 0.753

4.4. Assessing the Structural Model

It is time to assess the structural model after establishing measurement model reli-
ability and validity. Collinearity, path coefficients, coefficient of determination (R2), and
effect size are all terms that are used to describe the relationship between two variables (f 2);
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these and predictive significance were all discussed in the literature as recommendations
for evaluating and presenting the structural model (Q2).

4.4.1. Path Coefficients

The estimations of the relationships between the model’s constructs are referred to as
path coefficients [103]. The coefficients range from +1 to −1, with +1 indicating a strong
positive association, 0 indicating a weak or non-existent relationship, and −1 indicating a
strong negative relationship. PLS bootstrapping, a statistical approach for obtaining many
simulated samples from a single dataset, was used to test the hypotheses. This programme
calculates standard errors and provides confidence intervals for various sample statistics
when performing hypothesis testing [93]. Table 6 displays the estimated model together
with the estimated path coefficients and p-values for the leading hypotheses.

Table 6. Hypothesis testing.

Path Direct Effect β t-Value p-Value

H1: Current Practices/Generation ->
Policy-Related Factors −0.046 0.619 0.537 NS

H2: Current Practices/Generation -> Sustainable
Construction Waste Management 0.252 4.878 0.000 ***

H3: Improving Factor Drivers ->
Policy-Related Factors 0.898 14.39 0.000 ***

H4: Improving Factor Drivers -> Sustainable
Construction Waste Management −0.077 1.043 0.3 NS

H5: Policy-Related Factors -> Sustainable
Construction Waste Management 0.766 12.133 0.000 ***

*** p < 0.001; NS Not significant.

Since (=−0.046, t = 0.619, p > 0.05), H1 current practices/generation has no statistically
significant effect on policy-related factors. As a result, H1 was rejected. However, since
(=0.252, t = 4.878, p > 0.000), current practices/generation has a statistically significant
positive effect on sustainable construction waste management in H2. As a result, H2 is
acceptable. In H3, (=0.898, t = 14.39, p > 0.001), improving factor drivers have a statistically
significant positive effect on policy-related factors. As a result, H3 is accepted. In H4
(=−0.077, t = 1.043, p > 0.05,) improving factors have no statistically significant effect
on sustainable construction waste management. As a result, H4 is rejected. Finally, in
H5 (=0.766, t = 12.133, p > 0.001), H5 is accepted because policy-related factors have a
statistically significant beneficial impact on sustainable construction waste management.

According to the mediation analysis, in H6 Policy-related factors did not medi-
ate the relationship between current practice/generation and sustainable construction
waste management (β = −0.035, t = 0.584, p > 0.05 ). While in H7, the mediation re-
sults showed that policy-related factors have a strong indirect positive effect on the re-
lationship between improving factors and sustainable construction waste management
(β = 0.688, t = 8.254, p < 0.001),as shown in Table 7. All these hypotheses have been
shown in Figure 3.
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Table 7. Indirect Effects.

Relationship Indirect Effect Bootstrapped Confidence
Interval Decision

Path Coeff t-Value t-Value 95% LL 95% UL

H6 CPG-PRF-SCWM −0.035 0.584 0.561 −0.188 0.05 No mediation

H7 IFD-PRF-SCWM 0.688 8.254 0.000 *** 0.536 0.866 Full mediation

Note: *** = *** p < 0.001, LL: Lower level, UL: Upper level.
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4.4.2. Power of Exploratory of Model

The coefficient of determination (R2), the impact of independent variables on latent
dependent variables, was measured using one of the structural model parameters [103].
Hair Jr [104] indicated that resulting R2 values of 0.19, 0.33, or 0.67 are considered low,
moderate, or high, respectively. Furthermore, the adjusted R2 values can be used to
evaluate the quality of different models or to compare them in different scenarios. Table 8
shows the results, which reveal that the exogenous factors have much variety, whereas the
endogenous variables have much variation. Which show that exogenous factors have a lot
of diversity, but endogenous variables have a lot of variability.

Table 8. Associated R Square Adjusted and R Square.

Construct R Square R Square Adjusted Variance Explained

Policy Related Factors 0.741 0.739 High
Sustainable Construction
Waste Management 0.787 0.785 High

4.5. Effect Size ( f 2)

The f 2 effect size measures the strength of each exogenous variable in explaining
endogenous variables. If the f 2 value of a construct is between 0.02 and 0.14, it is considered
to have a small effect; if the f 2 value is between 0.15 and 0.34, it is considered to have
a medium effect; and if the f 2 value is greater than 0.35, it is considered to have a large
effect. An f 2 value of less than 0.02 indicates that the construct has no impact on the
endogenous construct [105]. The f 2 effect size of the constructs is shown in Table 9. The
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findings show that current practices/generation has little impact on policy-related factors
but significantly impacts sustainable construction waste management. Improving variables
have a tremendous impact on policy-related factors but have no effect on sustainable
construction waste management. Finally, policy-related factors significantly impact the
long-term management of construction waste.

Table 9. Predictive Relevance.

Construct SSO SSE Q2 (=1-SSE/SSO)

Policy Related Factors 4320 3031.281 0.298
Sustainable Construction Waste

Management 6210 4985.28 0.197

5. Discussion

The sustainable construction waste factors were drawn from a variety of field-specific
literature. Seven hypotheses were explored in this research, five of which showed signifi-
cant correlations, though the rest used policy-related factors as a mediating input. However,
Table 5 shows that the structure of current practices/generation constructs failed to pre-
dict the policy-related factors. Additionally, improving-factor constructs failed to predict
sustainable construction waste management. With three directly statistically significant
hypotheses (H2, H3, and H5), then, the results of this study revealed statistically insignif-
icant direct hypotheses (H1 and H4). Construction waste management has measured
current waste generation practices in Malaysia in terms of present practices and issues with
disposal and monitoring, including a lack of competent employees to perform efficient
trash collection and disposal procedures and the estimation of Malaysia’s construction
waste generation. The majority of contractors do not consistently use separation and recy-
cling, waste recycling, reuse, or disposal. At all stages of construction, the sector is under
increasing pressure to develop good working procedures. Based on the abovementioned
findings, this study classifies effective contributing factors that affect C&DW management
into four groups: a legislative framework for or sustainable C&DW management [106,107];
waste management Policy, industry policy, environmental, economic, and social factors;
the C&DW project life cycle; and C&DW management tools that influence the C&DW
stakeholder climate and project working environment. The attitudes of project stakeholders
toward C&DW management have social, short-term, and long-term impacts on health and
safety. Incentives to prevent illegal C&DW dumping significantly impact recycling plants
and material inventories.

This study found that in H1, current practices/generation do not affect policy-elated
factors (β =−0.046, t = 0.619, p < 0.573). This result is in line with the findings of earlier stud-
ies [108–110]. All of these studies reported that current practices/generation do not affect
policy-related factors. Otherwise, according to hypothesis H2, current practises/generation
have an impact on sustainable construction waste management (β = 0.252, t = 4.878, p <
0.000). This result is in line with prior research findings from various studies [111] that
current waste generating practices significantly impact sustainable construction waste
management. This finding also agrees with the findings by [39,112,113].

Improving factors have been assessed by proposing and investigating factors for
improving waste management to mitigate the shortcomings of the waste management
program. In hypothesis H3, according to the findings of this study, improving factors
affect policy-related factors (β = 0.898, t = 14.39, p < 0.000). This result is consistent with
previous findings reported in several prior studies [22,114]. All of these studies reported
that improving factors have a significant impact on policy-related factors. Otherwise,
this study found that in H4, policy-related factors do not affect sustainable construction
waste management (β = −0.077, t = 1.043, p < 0.3). This finding is aligned with prior
results reported in a previous study [115,116]. Therefore, all of these studies reported that
improving factors do not affect sustainable construction waste management. The results of
a previous study [117] support this result.
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Policy-related factors are the most successful in stimulating sustainable construction.
In addition, even when planning new construction waste management systems, sustainable
construction waste management techniques are more results-oriented than ways that can
drive progress. Further, the adoption of sustainable construction waste management can
be aided by government policy in various ways, according to Shafii [118]. Research by
Bamgbade [119] noted that several policies, such as government assistance, regulation, and
standards, as well as the implementation of energy-efficiency labels in the construction
industry in Malaysia, all help to broaden the industry. These policies and procedures can
be utilised to create a waste management program These policies and approaches can
be used to develop a waste management system that includes reduction, minimisation,
reuse, recycling, recovery, and construction waste disposal. Several researchers have
reported similar results [39,120–123], noting the influence of various sustainable waste
management steps on government policy-related factors. Furthermore, ongoing study
will help to establish sustainable construction waste reduction strategies and government
regulations that support sustainable development goals. The community and nature can
also be supported in various ways.

The importance of waste reduction has drawn the attention of many scientists and
professionals, resulting in numerous research efforts. As a result, the integration of all
C&DW tool contributions has been found important in reducing C&DW. This study di-
vides C&DW management tools into three categories: information technology tools for
C&DW management, C&DW management approaches, and C&DW management tech-
nologies [124]. For hypothesis H5, this study discovered that policy-related factors affect
sustainable construction waste management (β = 0.766, t = 12.133, p < 0.000). These findings
are consistent with research findings from several previous studies [22]. According to all
of these studies, policy-related factors have a major impact on sustainable construction
waste management. The outcome of [125,126] supported this finding. In the case of H6,
there is an indirect effect; Preacher and Hayes [127] indicated that percent boot CI: (LL =
−0.188, UL = 0.05) does straddle a 0 in between, which indicates there is no mediation. The
statistical findings indicate that PRFs do not significantly mediate between factors. Besides,
there is a statistically significant direct effect between CPG (IV) and SCWM (DV) (β = 0.252,
t = 4.878, p < 0.000), as shown in Table 4.

Accordingly, policy-related factors do not mediate the relationship between CPG
and SCWM; therefore, H6 is rejected. The study showed that policy-related Factors do
not mediate the relationships between CPG (IV) and SCWM (DV) in Malaysia because
having such a strategy minimises the pressures of governmental policies, and the factors
are positively correlated. Government policies, such as regulatory and fiscal tools and plans
and programs, have been proven to be the most important antecedents for encouraging
enterprises to eco-innovate. This result is the same as the result of [128,129].

Likewise, in (H7), Preacher and Hayes [127] imply that percent boot CI: (LL = 0.536,
UL = 0.866) There is no 0 between the two numbers, indicating a mediation. The statistical
data show that PRFs have a significant moderating impact between factors. Additionally,
nearby remains a statistically insignificant direct effect between IFD (IV) and SCWM (DV)
(β = −0.077, t = 1.043, p < 0.3), as shown in Table 7. Accordingly, CPG mediates the re-
lationship between IFD and SCWM, thus indicating that H7 is supported. According to
the findings, policy-related factors mediate the relationships between work activities and
driving performance amongst Malaysians by boosting plan reliability, reducing the number
of stacks, and panelling the material handling distance. Contractors are discouraged from
actively engaging because of their relationships with employees and unions, suppliers, and
environmentally responsible construction procedures. According to Samari [130], govern-
ment funding is the most successful in improving green construction because it is more
results-oriented than other strategies for promoting sustainable construction waste manage-
ment. Governments can also encourage the use of environmentally friendly construction
waste management in a number of different ways. The research by Bamgbade [119] in-
dicated that the Malaysian government might advance sustainable construction waste
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agendas through several policies, including cash rewards, law and standards, and building
labelling with an energy efficiency rating. This process can develop into a waste manage-
ment system that includes waste reduction, minimisation, reuse, recycling, recovery, and
construction waste disposal. The aforementioned result has been reported by a number of
researchers [39,120–123]. Government policy can help at many stages of sustainable waste
management.

6. Conclusions

CWM generates more than 100 tonnes of construction material every year in Malaysia,
causing significant environmental and social problems. Particularly since 2020, the amount
has continued to rise at a rapid rate. According to the findings and discussion above,
this paper looked at the mediating role of policy-related factors in the relationship be-
tween current practices/generation, improving factors, and sustainable construction waste
management. The findings show that there is no significant relationship between current
practices/generation and policy-related factors. However, current practices/generation
was found to affect sustainable construction waste management significantly. Furthermore,
improving factor drivers have been proven to significantly impact policy-related factors.
However, improving factor drivers have not significantly affected sustainable construction
waste management. Besides that, policy-related factors have been shown to meaningfully
impact sustainable construction waste management. Moreover, this study established the
mediating role of policy-related factors as an instrument that highlights the relationships
among improving factors and sustainable construction waste Management. The study
showed that policy-related factors have almost no influence on the relationship between
current waste generation practises and sustainable construction waste management.

• This study offers a theoretical contribution by examining the significant positive me-
diating role of improving factors on policy-related factors that significantly affect
sustainable construction waste management, thus enhancing the existing body of
knowledge. It also makes a practical contribution by providing a strategic methodolog-
ical approach to help management strengthen the performance of small businesses
and ensure their long-term effectiveness.

• The model shows that the study findings reveal that exploratory power is considered
sustainable, with R2 values of 0.83 percent. Based on Figure 2 and Table 5 results, the
findings of this investigation proved that all hypotheses were supported.

• According to the model, the CDW management model components may indicate
ways to deal with construction waste more sustainably. Future research should focus
on worldwide construction industry norms, waste management, and construction
demolition trash.

6.1. Theoretical Contribution

This study will add to the amount of knowledge in the construction industry about
waste management measures. One of the major impediments to developing efficient con-
struction waste management strategies in Malaysia’s metropolis was the lack of attention
to waste management in the existing policy. Buildings are not designed to meet waste
management needs due to a lack of attention, and contractors lack awareness of waste
management. Due to the similarity of reduced reuse and recycling measures, stakeholders
do not understand 3R CW management strategies. The issue in current systems has been
identified. As a result, the only way construction sites can effectively deal with the large
amount of trash generated is for clients and construction experts to be more effective and
efficient in SCWM. This finding contributes to the body of knowledge in the literature to be
a foundation for future researchers interested in construction waste management strate-
gies to investigate how other possible variables impact construction waste management
strategies.



Sustainability 2022, 14, 656 16 of 21

6.2. Practical Contribution

Those components of the model are considered as a basis for guiding better sustain-
able construction. First, the model could assist owners and construction professionals
in reducing the waste backlog and improving the environmental safety of workers and
construction infrastructure. These findings may also allow building owners and building
experts to minimise the future issue of non-materials and high costs. Second, the CWM
model could serve as a reference for contractors, managers, and other construction pro-
fessionals on how to collect, handle, and integrate key waste management processes into
residential construction projects. The findings may benefit many construction industries,
particularly those in developing countries with extensive manufacturing waste but very
limited knowledge. They could help small and medium-sized construction companies
become more environmentally conscious and develop practical and sustainable solutions.
Third, the findings enable project leadership teams to prioritise their construction projects’
workforce, materials, equipment, and time during the planning phase, reducing waste and
boosting efficiency and sustainability. Finally, this study has set the groundwork for better
standards, which could be important for evaluating and reducing waste. Construction
waste prevention is critical, as it avoids design flaws that contribute to waste production.
Construction waste is primarily detected through traditional construction techniques.

Despite the study’s achievements, the limitations associated with the data collection
approach are well-acknowledged. The data for this study were gathered from worker
construction professionals to understand their perspectives on the study variables. How-
ever, this did not replicate a deep understanding of the study issues from all parties
involved. Hence, we recommend that a qualitative method be applied to categorise addi-
tional elements linking to sustainable construction waste management from supervisors’
and administrators’ perspectives in Malaysian construction projects to generate valuable
results. Furthermore, the data for this study were collected in Malaysia and may have
limited generalizability; consequently, it is preferred that data collection be expanded to
include numerous nations.
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