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Abstract
In this paper, we present PARVIS, an interactive visual system for the animated visualiza-
tion of logged parser trace executions. The system allows a parser implementer to create
a visualizer for generated parsers by simply defining a JavaScript module that maps each
logged parser instruction into a set of events driving the visual system interface. The result
is a set of interacting graphical/text windows that allows users to explore logged parser exe-
cutions and helps them to have a complete understanding of how the parser behaves during
its execution on a given input. We used our system to visualize the behavior of textual as
well as visual parsers and describe here two of these uses. Moreover, in order to validate the
efficacy of our system, we ran a user experiment where students analyzed a CUP-generated
parser both with PARVIS, instantiated to LALR parsers, and the standard CUP debug facil-
ities. The results show that students can indeed analyze parser behavior and find mistakes
in parser specifications more easily and quickly using PARVIS. In particular, in some parser
design tasks, using PARVIS participants achieved a higher success rate of 50% in 42% less
time with respect to the baseline system.
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1 Introduction

Parsing textual or visual inputs has always been considered a not easy task both for
researchers working on the definition and/or automatic generation of new parsers, and stu-
dents facing their compiler classes. In fact, since the 80s, in order to ease their work,
researchers and teachers have produced and used many tools able to visualize the data struc-
tures and behavior for a multitude of parsing and parser generation algorithms. These tools
are mostly ad-hoc and very specific to the chosen algorithm to visualize so that they cannot
be used or extended to visualize other parsers.

In order to overcome this, we built PARVIS, a visual system for the animated visualization
of logged parser trace executions. The system is relatively easy to extend for the creation of
new parser visualizers. This is done by simply defining a JavaScript module that maps each
logged parser instruction into a set of events driving the visual system interface.

We have used PARVIS to visualize the behavior of many parsers, in particular, LR, GLR-
based and top-down parsers for visual languages (VL parsers, in short), derived by both
hypergraph [10] and positional grammars [9], and LALR(1) parsers as generated by the
well-known parser generator CUP [36]. In the case of VL parsers (a significant part of VL
research in the last 25 years [6]), the system has been used to help researchers in having
useful feedbacks while building the corresponding parser generators. In the LALR case, the
system has been used to help students to better understand how LALR parsing works and to
have insights on the correctness of both the grammar they are writing and its input.

The system adds to the many approaches that have been studied and implemented in the
last years. In our case, PARVIS has been built with the aim to create a system providing a
simple interface to parser implementers with application to any type of parsers including
VL parsers.

A prototype for visualizing the execution trace of one hypergraph based parser has
already been presented in [7, 8]. However, as opposed to PARVIS, it does not support
adaptation to other parsers.

In this paper, we describe two uses of PARVIS: one for CUP-generated LALR parsers
and the other one for GPSR-generated parsers, which are Visual GLR-based parsers based
on hyperedge replacement grammars. For the first instance, we give the description and the
results of a complete usability experiment drawn on 14 computer science students who took
the Compilers class. The efficacy of the use of PARVIS in building visual environments to
trace parsers’ execution turned out to be very high.

This work is an extension of [5]. The new contribution consists of the GPSR PARVIS

instance described in Section 3.2 and the user experiment described in Sections 4 and 5.
The paper is organized as follows: Sections 2 and 3 describe the architecture of PARVIS

and its instances, respectively, while Sections 4 and 5 report the empirical evaluation of the
system on CUP-generated parsers and its results. The related work is described in Section 6
and the final conclusions are given in Section 7.

2 PARVIS architecture

PARVIS has been built to create an interactive tool to visualize and explore the behavior
of a parser when executed for a given input. We considered a simple animated replay was
not sufficient, because parsers are generally quite complicated and several data structures
correspond to each other during execution (in an LALR parser, e.g., the parse stack, the
partial derivation trees and the input text processed so far). Instead, the tool should allow the
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user to playback the parser behavior in an animated way, to stop the animation, to execute
it step by step, to rewind or to jump to any point of the parser execution. The different data
structures should be able to be displayed as graphs (e.g. derivation trees) and texts (e.g. the
input to be processed) in different views. The cross-references between the different views
should be visualized interactively, for example, by clicking in one view and highlighting it
accordingly in another view.

On the one hand, the tool should be general enough to be used with as many parsers as
possible and to support as many different data structures as possible. On the other hand, it
should be easy to use in order to help to better understand the sometimes complicated behav-
ior of parsers by supporting domain-specific representations and showing their changes
during parser execution in an appealing animated way.

Another requirement results from the fact that most parsers are generated by parser gen-
erators. Manually customizing such parsers so that their behavior can be visualized with
PARVIS would be tedious. Instead, one would prefer to extend the parser generator so that
it automatically generates such parsers. A further requirement, therefore, is that existing
parser generators should be easy to extend in this way.

PARVIS implements these goals with the architecture shown in Fig. 1. The visualization
of the parser behavior is done offline after the termination of the parser. The parser must
be able to create a log file about its execution, which is the basis for the later visualization.
Therefore the log file must inform about the sequence of the executed analysis steps, but
also about the processed input file.

PARVIS represents the parser execution as a sequence of so-called events for which a
Java API is provided. Instead of an unstructured sequence of events, they can be structured
as an event tree, which is described in more detail below.

A log file must be translated into an event tree to visualize them. This is done by the
reader script, which is programmed in JavaScript and executed by the script interpreter. It
reads the log file and creates the event tree in memory using the Java API.

After completion of building the event tree, the PARVIS runtime visualizes and animates
the parser execution in the PARVIS user interface. The UI provides the user with several
controls for this purpose.

Based on this architecture, two steps are necessary to adapt PARVIS to a parser generator
or the parsers generated by it and to visualize the behavior of these parsers with PARVIS:

1. One has to extend the parser runtime in a way that a log file is generated during each
parser run.

2. One has to write the reader script that translates each log file into an event tree.

These steps are only necessary once for a parser runtime. PARVIS can then visualize
the behavior of all parsers that use this runtime (e.g. all parsers generated with the parser
generator CUP).

Fig. 1 PARVIS architecture
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Basically, there is no restriction for the format used in log files. Since the reader script
is programmed in JavaScript, JSON is easy to process. However, XML or any other text
format is also possible.

2.1 Events and event tree

Each animated visualization consists of a sequence of events. For illustration, let us consider
the following example, which is a sequence of three events: The first event (e1) creates a
node in the view that represents the parse stack, the second event (e2) creates an edge from
this node to the previously added node, and the third event (e3) deletes the last created node
with its outgoing edge.

If such event sequences are automatically processed one after the other, an animation is
created. However, it is also possible to execute these events step by step or to go back step
by step to return to earlier visualization states. Furthermore, one can jump to any event or
fast forward or rewind the visualization accordingly.

PARVIS provides a Java API for the creation of a large number of such events. Each event
is represented by an object in memory, which can be processed forward or backward. To
visualize the event sequence e1, e2, e3 in the above example, the associated event objects
must be processed forward one after the other. If one stops processing and then goes back
one step, the event object for event e3 must be processed backwards, that is, the node that
was deleted previously and its outgoing edge must be recreated and displayed in the view.

Parsers perform their analysis as a sequence of analysis steps, for example, in an LALR
parser, as a sequence of shift and reduce steps, which in turn can be divided into a sequence
of actions. For example, a reduce step first removes a certain number of states from the
parse stack and then pushes a new state on the stack. Each of these actions, in turn, consists
of a sequence of events that correspond to a visualization. Besides primitive events (e.g.
the creation of new nodes or edges), PARVIS also provides composite events. They each
combine a sequence of events into a higher-level one. For example, to process a compos-
ite event, the events grouped together below it must be processed one after the other. The
sequence of all events of a parser execution can thus be structured hierarchically in the form
of the so-called event tree. This allows one to represent the individual analysis steps and the
actions “contained” in them as composite events in a LALR parser. Actions can then consist
of sequences of primitive events.

Figure 2 shows an example to illustrate event trees and their generation from the log file
using the reader script. Figure 2a shows a log entry of a log file in JSON format. It describes
that a GPSR parser (see Section 3.2) has created a new state q1(a, n). This entry is processed
in the reader script by the state function (Fig. 2b). The parameter obj then contains the
object after the JSON object has been read. The function creates a sequence of primitive
events by instantiating the corresponding event classes of the Java API. First, an event is
created to create a new node. The parameters provided indicate that the node is to be created
in the graph gss and should belong to the sequence of events under the composite event
curAction. Please note that by executing new Node the reader script actually does not
create a node in gss, but an event. The node is only created when this event is executed
during the processing of the event tree. And if PARVIS has to process this event backwards
later, this node is deleted again.

The remaining lines show that further events are created, including Tooltip and Click-
Decoration events, which provide the node with a tooltip when executed or register activities
that PARVIS performs when the user clicks on the node in the view.
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Fig. 2 Fragments of a log file in JSON format (a) and of a reader script (b)

2.2 PARVIS user interface

The PARVIS UI only has the PARVIS main window as a fixed component. It shows infor-
mation about the log file and the event tree in which one can collapse composite events (see
Fig. 3). Clicking on one of these events rewinds or moves forward the visualization to this

Fig. 3 PARVIS main window
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event. There are also VCR-like controls for executing the next or previous event as shown in
the event tree. In addition, one can use the play button to automatically process the sequence
of events displayed in the tree as an animated visualization one after the other.

Further windows can be set up by the reader script. These include windows for displaying
graphs. PARVIS uses the graph drawing library yFiles1 for the automatic layout of graphs
and smooth animations. yFiles provides a variety of automatic layout methods, e.g. hier-
archical layout (layered graph drawing), tree layout, spring embedder. The layout method
can also be specified via the reader script. Text windows can also be created. Controlled by
events, text parts can be highlighted (see the following section).

In this way, PARVIS can be easily configured for different parsers. In the following, we
demonstrate PARVIS instances for two parsing approaches.

3 PARVIS instances

PARVIS has already been used by the authors to visualize the execution of LALR parsers
generated with CUP2 and visual language parsers. Examples of the latter are Predictive Top-
Down (PTD) [10], Predictive Shift-Reduce (PSR) [11, 12], and Generalized PSR (GPSR)
parsers [15, 25] generated with GRAPPA3 as well as pLR parsers [9]. As described in the
previous section, we had to extend the parser runtime and write a reader script, so that the
parser generates a log file during its execution, which translates the script into an event tree.
The log file format used is JSON apart from the pLR case where XML was used instead.

In the following, we refer to PARVIS, which can display the log files of a family of
parsers by means of a single reader script, as a (customized) PARVIS instance.

All these PARVIS instances have in common that, for reasons of clarity, the parser data
structures are visualized in several windows. However, the representation in the different
windows is never independent of each other. Instead, the user can interactively explore the
relationships between the separately displayed data structures. This is made possible by the
fact that selecting components in one window leads to highlighting the associated compo-
nents in another window. This functionality must be implemented by the respective reader
script. PARVIS provides an API for this.

In the following, we describe two PARVIS instances, one for LALR parsers generated by
the parser generator CUP, and one for hypergraph parsers generated by the parser generator
GRAPPA. In particular, we discuss how they use interaction and highlighting to visualize the
relationship between the information distributed to different windows.

3.1 CUP

CUP (Construction of Useful Parsers) is an LALR parser generator written in Java that
implements standard LALR(1) parser generation [36]. In order to be able to use PARVIS,
we have modified the CUP runtime so that the parsers generated by it are able to also write
a log.json file during the parsing of an input file. This job has been simplified by the fact
that CUP already produces log messages that could be easily used to produce the JSON log.

1https://www.yworks.com/products/yfiles
2http://www2.cs.tum.edu/projects/cup/
3http://www.unibw.de/inf2/grappa
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The log file lists the classic steps performed by an LALR parser: read the next token
from the input, reduce with a grammar production, shift to a state, syntax error, accept input.
Each step “contains” its component operations: push/pop on the stack, goto another state of
the automaton, etc.

In addition to the main PARVIS window, the PARVIS instance for CUP consists of 6
windows, as shown in Fig. 4, that are mainly used to show the current status of the parser
(i.e. the status before the execution of the highlighted event on the main window). They are
listed in the following, from left to right and from top to bottom.

– Input: shows the parsing input file. The already processed input is shown in red, the last
read (but still unprocessed) token is in blue, and the rest is in back.

– Input tokens: shows the tokenization of the input file. For each token, line and column
in the input file are shown, and the same colors of the Input window are used.

– Stack: shows the current contents of the stack as a sequence of graphical nodes. Yellow
nodes correspond to states that have just processed a terminal, while orange nodes to
states that have just processed a non-terminal. In addition, a tooltip shows the kernel of
the sets of items of the corresponding state for each node.

– CUP dump: shows the information produced by CUP during the generation of the
parser, which includes the lists of: the states of the automaton, the grammar terminals,
the grammar non-terminals, the grammar productions.

– Current status: shows the current state number and the last token read from the input.
– Stack element parse tree: shows the parsing tree underlying a stack node in the Stack

window, when the node is left-clicked. The same colors are used for the nodes in the
Stack window. In addition, a tooltip on non-terminals shows the number of the grammar
production used to generate it.

Numerous user interactions are also possible, and in particular for each window:

• Input tokens: a left-click on a token updates all the windows (except the Stack element
parse tree window) to the state immediately after the execution of the read next token

Fig. 4 PARVIS instance for a CUP generated parser (after clicking the state:5 node in the Stack window)
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action that has returned the clicked token; a right-click on a token highlights the
corresponding element in the Input window.

• Input: it has a similar behavior as the Input tokens window. A right-click on the text
highlights the corresponding token in the Input window.

• Stack: a click on an element causes the following changes to the other windows:

– Input: the input text processed up to the element state is highlighted.
– Input tokens: the input tokens processed up to the element state are high-

lighted.
– CUP dump: the set of items and their goto transitions of the corresponding

element state are highlighted.
– Stack element parse tree: the parse tree corresponding to the element symbol

is shown.

The Fit graph button makes the stack occupy the whole window (without exceeding it),
while the Relayout button causes a new application of the layout algorithm.

• Current status: a click on the current token causes its highlighting in the Input and Input
tokens windows.

• Stack element parse tree: a click on a tree node causes the corresponding consumed text
and tokens to be highlighted, respectively, in the Input and Input tokens windows.

In order to validate this PARVIS instance, we report an empirical evaluation and its results
in Sections 4 and 5.

3.2 GPSR

This example demonstrates that PARVIS can not only be used for conventional parsers that
analyze text. Rather, one can also create PARVIS instances for parsers based on hypergraph
grammars that analyze hypergraphs and can thus be used for visual languages. Here the
concepts of hypergraphs, hypergraph grammars, and their parsers will be described only so
far as to be able to understand their PARVIS instances. Details can be found, e.g., in [12, 14,
15, 25].

Hyperedge replacement grammars (HRGs) are special hypergraph grammars and a direct
extension of context-free grammars, such as those underlying LALR parsers. They operate
on hypergraphs. These are generalized graphs whose edges are called hyperedges and can
connect not only two but, depending on the type of the hyperedge, any number of nodes.
The type of a hyperedge is expressed by its label.

Figure 5 shows a graphical representation of a hypergraph: Nodes are represented by
ellipses, hyperedges by rectangles. Each ellipse contains the name of the respective node,
while each rectangle contains the label and thus the type of the respective hyperedge.
Arrows between rectangles and ellipses indicate which nodes are visited by the hyperedges,
numbers indicate the order of the visited nodes.

Note, however, that hypergraphs are mathematical structures without a fixed representa-
tion rule. Hypergraphs can serve as a mathematical model of visual languages whose syntax
and structure are described by HRGs. In this example we consider flowcharts (see the top-
left window in Fig. 6). Nodes are small black circles, hyperedges are yellow rectangles,
green diamonds and orange rounded rectangles that represent actions, decisions or start and
stop. Arrows indicate which nodes are connected by a hyperedge. The direction of arrows
indicates control flow.
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Fig. 5 Generic hypergraph representation

In fact, this flowchart and the hypergraph in Fig. 5 have the same hypergraph as a
model. The label of each hyperedge in the hypergraph determines its shape in the flowchart,
e.g. pred-hyperedges are represented as diamonds, which indicate decisions. That way, the
flowchart and the hypergraph differ just in the way how hyperedges are depicted and in the
overall layout: whereas the flowchart is drawn from top to bottom as usual, nodes and hyper-
edges in Fig. 5 are arranged almost arbitrarily (in fact, a simple spring embedder layout has
been employed).

PARVIS must be able to graphically represent hypergraphs. Compared to the visualization
of input texts for LALR parsers, an additional difficulty is that hypergraphs can be displayed
in a variety of ways. Of course, a generic representation as shown in Fig. 5 is basically
sufficient, but it does not represent the diagram modeled with the hypergraph sufficiently.
Figure 6 illustrates that the domain-specific representation in the form of a flowchart is
more suitable. The reader script creates this representation as a graph from the log informa-
tion about the input hypergraph and then displays it in a PARVIS window. The PARVIS API
provides various node and edge shapes and layout algorithms for this purpose. For instance,
it also allows adding tooltips with detailed information on the represented hyperedge.
Figures 5 and 6 show the results of this transformation (and a tooltip example). The generic
representation (Fig. 5) is always available; the specific flowchart representation in Fig. 6
naturally assumes that the input graph models a flowchart. Different types of diagrams then
require different reader scripts.

Like context-free grammars, HRGs use replacement rules, which replace hyperedges car-
rying non-terminal labels. The derivation process and derivation trees are defined similarly
as for context-free grammars. We consider Generalized Predictive Shift-Reduce (GPSR)
parsers [15, 25] here, which “lift” the idea of textual Generalized LR (GLR) parsers4 to
HRGs and which can be used for any HRG. GPSR parsers manage not just one, but many
stacks simultaneously, which are stored and processed in a so-called graph-structured stack
(GSS) compressed in the form of a DAG. The top-right window in Fig. 6 shows such a GSS:

4GLR parsers are in fact an extension of LR parsers [34].
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Fig. 6 PARVIS instance of a GPSR parser for flowcharts
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The nodes of this GSS are states of the parser, edges refer to predecessor states. We will not
go into the exact meaning of these states of their labels here. Details can be found in [12,
15].

In fact, each path from a top state to the unique bottom state corresponds to one of
the stacks processed simultaneously. The GSS in Fig. 6, therefore, represents two stacks
simultaneously. Compare the stack representation in Fig. 4, which always consists of exactly
one path. The edges of the GSS are labeled with hyperedges, which have been pushed onto
the stack together with the subsequent state.

The topmost states of a stack are highlighted in orange or red. The current state pro-
cessed by the parser is shown in red. If the user clicks on a state or if the parser has
selected a state for current processing during execution and it is therefore displayed in
red, all nodes and hyperedges of the input hypergraph already processed in this state
are highlighted (see the red highlights in the flowchart representation in Fig. 6 or in
the generic hypergraph representation in Fig. 5). In this way, one can see the order in
which nodes and edges of the hypergraph are processed during the parser execution. Note
that, in contrast to texts, hypergraphs do not have an inherently predefined processing
sequence.

In a separate window (on the bottom of Fig. 6) the partial derivation trees identified by
the parser so far are displayed as a parse forest.5 The roots of these trees correspond to the
edge labels in the GSS. However, this correspondence is not permanently visualized in order
not to overload the display. Instead, the corresponding derivation tree is highlighted when
the user clicks on an edge of the GSS, or conversely, the edge of the GSS is highlighted
when the user clicks on the root of a derivation tree.

The PARVIS instance with the generic representation of hypergraphs, which can be used
for all GPSR parsers, contains 388 lines of JavaScript code. The domain-specific flowchart
representation requires an additional 64 lines. The scripts read log files in JSON format,
which are generated by the GPSR parser runtime.

Without a corresponding visualization of the GPSR parsers, the development of the
GPSR parser generator as part of GRAPPA would hardly have been possible. One of the
concretely solved problems was the deletion of states from the GSS. In contrast to LALR
parsers, in which each reduce step performs a fixed number of pop operations and thus
automatically removes states from the stack, the situation in the GSS is more complicated.
Pop operations on a stack represented in the GSS may only delete states if they are not
simultaneously a member of other stacks. Without suitable visualization of the graphical
structure of the GSS, the realization of this functionality would have been very difficult,
if at all.

In fact, parser visualization had a major impact on the research on GPSR parsers: Orig-
inal GPSR parsers [15] turned out to be too inefficient without manual tuning. This is so
because GPSR parsers identify parses of an input graph in a search process that may run
into dead ends. They are inefficient because they waste time in this process and because
they discard all information collected in these dead ends. They rather recreate the same
information over and over again. The details of these problems remained hidden in the com-
plexity of the parsers’ data structures, but was easy to see after using an earlier prototype of
PARVIS and visualizing the progress of GPSR parsers. Memoization techniques [25] then
helped to overcome these problems, which would not have been identified without parser
visualization.

5GPSR parsers make in fact use of so-called compressed parse forests similar to GLR parsers.

309Multimedia Tools and Applications (2022) 81:299–317



4 Evaluation

We carried out a user-study aimed at evaluating the performance of the PARVIS instance
for CUP-generated parsers from both the points of view of effectiveness and efficiency.
To this aim, we compared it to a baseline development environment (see Section 4.2). In
the experiment, we asked participants to use both systems to complete some simple and
common tasks in parser design.

4.1 Participants

For the experiment, we recruited 14 (all male) participants. They were all computer science
master students between 22 and 27 years old (M = 24.2, SD = 1.8). All of them declared
medium or high knowledge of parsers (they all had attended a course of compilers for their
master’s degree), all except one declared a medium or high knowledge of IntelliJ IDEA.6

Eleven of them also had a medium or high knowledge of its debugging environment. Lastly,
eleven of them had a medium or high ability to read and interpret the log file of CUP parser
generator.

4.2 Apparatus

The experiment was conducted in a well-lit laboratory, with all participants doing the same
task at the same time. To put the participants at ease, we allowed them to run the experi-
ment directly on their laptops, on which many of them already had some software installed
for the exam of compilers. Although the systems were heterogeneous (different operating
systems and computational power), they all had the minimum requirements for running the
experimental software.

The experimental software for the baseline condition was the IntelliJ IDEA IDE with its
integrated debugging environment and CUP parser generator (our modified version already
mentioned in Section 3.1). The screenshot in Fig. 7 shows the standard support provided to
developers using CUP, that is the CUP log and debug messages (bottom) and the content of
the XML file (resultTree.xml, top) produced when running the program.

Additionally, in only one experimental condition, the participants were allowed to use
PARVIS (see Section 3.1 for a description of the interface). Before starting the experiment,
we made sure that all laptops were aligned with the same software bundle (except for the
operating system).

4.3 Procedure

Before starting the experiment, participants were instructed on the aims and procedures
of the experiment; they were then asked to complete a brief survey asking age, gender,
level of knowledge of parsers and parser generators, programming IDEs and debugging
environments.

Before starting the experiment, participants had a short (about 30 minutes) explanation
on the use of PARVIS and a 30 minutes practice session to get familiar with its use to get
information and solve simple parsing problems.

6https://www.jetbrains.com/idea/
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Fig. 7 IntelliJ IDEA IDE provided to developers using CUP

Each participant had to perform a total of two sessions (one for each experimental condi-
tion), each including four different tasks. As the tasks were knowledge-based (participants
had to acquire knowledge and report a response) we designed tasks with two variants, a and
b, in order to avoid knowledge transfer from the first experimental condition to the other.
The tasks were the following:

1. discover the error in the grammar and report it (one wrong terminal was added in a
production);

2. discover the error in the grammar and report it (one wrong non-terminal was added to
a production);

3. discover the number of nodes in a parsing tree for a given input block and report it;
4. discover the states in the stack after an input token was processed and report them.

We set a time limit of 10 minutes to complete a task. All participants started the same
task at the same time. At the end of a task, the participant had to submit the response through
a simple web-form prepared on the e-learning platform of the department (at the end of the
10 minutes the form was automatically submitted containing what had been written by the
participant up to that moment). The submission time was chosen as a timestamp for task
completion. Participants who sent the response before the time limit could rest up to the
start of the next task. At the end of each session, participants were allowed to rest for a
few minutes. In tasks where text commentary was required for the response (not numeric
response), its correctness was evaluated by the researchers.

After completing the two sessions, participants were asked to fill a System Usability
Scale (SUS) [3] questionnaire for each of the two systems. SUS includes ten statements,
that alternate between positive and negative, to which respondents have to specify their
level of agreement using a five-point Likert scale. Each SUS questionnaire has a score
between 0 and 100, which was averaged on all participants. Finally, they were asked to fill
a questionnaire, in which they where asked their preferred system (PARVIS or baseline) and
their feedback for the two systems in open form.
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4.4 Design

The experiment was a single-factor within-subjects design. The factor was the system, which
included two levels: PARVIS or baseline. Our dependent variables were the task success rate
and the total task time.

In the following, we refer to a trial as a single task execution by a single participant, and
so the total number of trials was 14 participants×4 tasks×2 variants = 112 trials. The task
success rate was calculated as the fraction of the count of trials with a correct response over
the total number of trials. The total task time was calculated as the total time (not including
rests and breaks) spent on the four tasks.

We counterbalanced the two systems by randomly assigning a number (between 1 and
14) to each participant and arranging the sessions according to the order shown in Table 1.

Besides counterbalancing our single factor, the scheme reported in the table had the
following advantages:

– it allowed our participants to switch just once between the two experimental conditions,
thus changing their computer settings just once;

– it allowed us to have all participants doing the same task at the same time, thus
simplifying the execution and control of the experiment.

5 Results and discussion

All participants completed the experiment. For each participant, the experiment lasted about
one hour and a half, including rests and excluded training. As our dependent variables are
ratio scale measurements, we tested significance on both of them using a paired-samples
t-test.

5.1 Task success rate

Regarding the task success rate, the grand mean was 53.6%. PARVIS had a higher success
rate of 64.3%, while baseline had 42.9%, with an advantage for PARVIS of 50.0%. Figure 8
reports the task success rates in detail for all tasks and systems.

The effect of system on task success rate was statistically significant (t (13) = −2.747,
p = .0166).

5.2 Total task time

Regarding the total task time (reported here in minutes and seconds), the grand mean was
16′53′′. Participants were faster with PARVIS, for which we recorded an average time spent
on the four task of 12′23′′, while for baseline we had 21′23′′. This gives PARVIS a time

Table 1 Counterbalancing scheme used in the experiment

Participants Session 1 Tasks Session 2 Tasks

T1(a) T2(a) T3(a) T4(a) T1(b) T2(b) T3(b) T4(b)

1-7 PARVIS baseline

8-14 baseline PARVIS
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Fig. 8 Task success rate

saved of 42.1%. For more details, Fig. 9 reports the average time spent on each task for each
system.

The effect of system on session time was statistically significant (t (13) = 4.716, p <

.001).

5.3 User satisfaction and free-form comments

As regards user satisfaction, the mean SUS score was 81.8 (SD = 12.8) for PARVIS and 35.0
(SD = 15.0) for baseline. As SUS scores are supposed to be an interval scale measurement
[31], we performed a paired-samples t-test on them. The test revealed a statistical signifi-
cance between the two techniques (t (13) = −8.910, p < .001). This result was confirmed
by the final questionnaire, where all participants preferred PARVIS.

From the open-feedback questionnaire, we recorded appreciation for PARVIS from many
participants. In particular, some comments were enthusiastic: “wished I had this before”;
“very fast and intuitive”; “the software is simple to use despite the complexity of the parsing
operations. The system offers an overview of the parsing output, making the final situation
clear and simplifying the bug check and fix operations”. From comments on the baseline
system, we understood that PARVIS allows overcoming limitations of the baseline system,
e.g. the difficulty in understanding the debug messages given by CUP during parsing and in
realizing the content of the stack and the execution flow.

Most complaints about PARVIS were due to the high number of windows opened at the
same time which were difficult to manage for some participants. They would have preferred
a single-window interface.

Fig. 9 Average time spent on each task. Error bars show the standard deviation
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5.4 Discussion

The first two tasks were defined in such a way that students could easily find the solution
in a few minutes with either of the two systems. Whereas the task success rates were very
similar in both cases, task completion time was considerably less with PARVIS. The remain-
ing two tasks were made intentionally more challenging in order to stress the use of the
two systems. The third task required to discover a parse tree after a certain amount of the
input had been processed. This was especially more difficult for students using baseline;
they had to interpret the CUP dump information, which contains parse trees as condensed
XML structures. Apparently, this is more difficult and time consuming than using parse tree
visualizations provided by PARVIS. This has been confirmed by the fact that only a single
participant was able to complete this task successfully using the baseline system. The last
task assessed the capability of tracing the states on the stack while parsing the input. In this
case, 50% of the students using PARVIS, but only 21% of the students using baseline were
able to present a solution in time.

It should be mentioned that most of the students were in fact familiar with the grammar
used in the experiment; they had been working on this grammar during the previous month
when they developed their compiler project. Moreover, they were already familiar with the
programming environment consisting of CUP and IntelliJ IDEA, which they used during
their Compiler course. Nevertheless, participants performed better using PARVIS.

6 Related work

Data structure and algorithm visualizations have been studied for more than 35 years [4,
20, 33], and now many web resources exist implementing visualizations and animations of
almost all the most common data structures and algorithms based on them, e.g. Algoma-
tion7 and VisulAlgo.8 However, lately, the research in this field has shrunk considerably.
Most of the important papers are in the range from 1980 to 2000 and the applications have
been basically two: visual debugging [26] and teaching and learning [32]. Among the still
currently developed tools is JSAV [20], a JavaScript algorithm visualization library that is
meant to support the development of general algorithm visualizations for online learning
material.

Visualization tools more specific to the case of parsers can be categorized in parsing
algorithm visualizers and visual compilers.

Parsing algorithm visualizers are generally able to illustrate the construction of a parser
from a grammar, and then to show the execution of the created parser on a provided input
string. These tools often do not allow to export the generated parser since they have been
built mostly for teaching purposes. Some examples are: LLparse and LRparse [2] and [21]
that visualize predictive parsing and simple LR parsing; JFLAP [29], still in development,
that is capable of displaying recursive-descent parsing, predictive parsing, simple LR pars-
ing, and CYK parsing; Predictive Parsing Visualization Tool (PPVT) [16], a recent tool,
that is capable of showing the functioning of predictive parsers; and Parsing Algorithms
Visualization Tool (PAVT) [30].

7http://www.algomation.com
8https://visualgo.net
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A visual compiler visually shows its execution to the user during the compilation of
a program (usually with speed control left to the user), showing structures such as sym-
bol table, parsing stack and parse tree. The first tools on PL/0 [1] and CLANG [27] were
hand-coded and date back to the 1980s, whereas, in the following decade, the focus was on
modified compiler-compilers to generate them. These include the tools Visual YACC [35],
GYACC [23], CUPV [19], VOCOCO [28], LISA [24]. In particular, CUPV is also based on
CUP but discontinued. It used to provide a GUI to the generated parser showing the parser
data structures (e.g. stack, etc.). It could also optionally visualize reductions, individual item
sets, lookaheads and semantic values (for which the user could implement dedicated views,
for example, for an Abstract Syntax Tree).

Among other tools we can cite PAT [13, 17], now discontinued, which has been used for
the visualization and statistical comparison of various GLR parsers, [18] for visualizing
lexical generation processes and [22] that is an educational tool for visualizing compiling
techniques based on deterministic parsers.

In all the tools above, the visualization code is embedded either in the parser or in its
parser generator, requiring a big development effort and making them very specific to the
implementation.

In this categorization, PARVIS can be considered as a visual compiler with the excep-
tion that the visualization is based on a logged list of parser execution steps. This allows a
developer to easily create a new parser visualization tool for a given parser or parser gen-
erator, with the cost of adding code for the generation of the log (besides its reader script).
As shown in Section 3.1, this has been fairly easy with CUP.

7 Conclusions and future work

In this paper, we presented a new architecture for the easy development of parser visualiza-
tion tools. The architecture can be applied to any type of parser and requires as input a log
file containing a trace of execution of the considered parser and a JavaScript file for its inter-
pretation. We introduced two instances of PARVIS: one to visualize the execution of CUP
generated parsers, for educational purposes, and one to visualize the behavior of a gener-
alized hypergraph-based parser to support the researchers during its development. In order
to validate the efficacy of the use of PARVIS we also ran a usability study by involving 14
compiler students and presented the results that were very encouraging.

As future work, we plan to add statistical comparison features to PARVIS in order to
support comparisons among the parser instances created. Furthermore, we plan to add the
possibility to run a parser and its PARVIS instance concurrently in order to have online
visualization of parser execution.
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