
 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

22
 A

pr
il 

20
22

 

royalsocietypublishing.org/journal/rsos
Review
Cite this article: Dumas G, Fairhurst MT. 2021
Reciprocity and alignment: quantifying coupling

in dynamic interactions. R. Soc. Open Sci. 8:
210138.

https://doi.org/10.1098/rsos.210138
Received: 27 January 2021

Accepted: 22 April 2021
Subject Category:
Psychology and cognitive neuroscience

Subject Areas:
behaviour/cognition/neuroscience

Keywords:
coupling, reciprocity, social cognition,

alignment, multi-scale dynamics
Author for correspondence:
Merle T. Fairhurst

e-mail: m.fairhurst@lmu.de
© 2021 The Authors. Published by the Royal Society under the terms of the Creative
Commons Attribution License http://creativecommons.org/licenses/by/4.0/, which permits
unrestricted use, provided the original author and source are credited.
Reciprocity and alignment:
quantifying coupling in
dynamic interactions
Guillaume Dumas1,2 and Merle T. Fairhurst3,4

1CHU Sainte-Justine Research Center, Department of Psychiatry, University of Montreal,
Quebec, Canada
2Mila – Quebec Artificial Intelligence Institute, University of Montreal, Quebec, Canada
3Institute of Psychology, Faculty of Human Sciences, Bundeswehr University, Munich, Germany
4Faculty of Philosophy and Munich Center for Neuroscience, Ludwig Maximilian University,
Munich, Germany

GD, 0000-0002-2253-1844; MTF, 0000-0001-6540-5891

Recent accounts of social cognition focus on how we do things
together, suggesting that becoming aligned relies on a reciprocal
exchange of information. The next step is to develop richer
computational methods that quantify the degree of coupling
and describe the nature of the information exchange. We put
forward a definition of coupling, comparing it to related
terminology and detail, available computational methods and
the level of organization to which they pertain, presenting
them as a hierarchy from weakest to richest forms of coupling.
The rationale is that a temporally coherent link between
two dynamical systems at the lowest level of organization
sustains mutual adaptation and alignment at the highest
level. Postulating that when we do things together, we do so
dynamically over time and we argue that to determine and
measure instances of true reciprocity in social exchanges is key.
Along with this computationally rich definition of coupling,
we present challenges for the field to be tackled by a
diverse community working towards a dynamic account of
social cognition.
1. Not what but how we do things
with others

Beyond simply doing something together, what makes our
interactions with other social agents interesting, appealing and
useful must surely depend on how we do things together. As
such, a recent theoretical account of alignment shifts the focus
from the nature of the task to the nature of the exchange of
socially relevant information [1]. This dynamic interplay
between self and other, a certain give-and-take, results in the
mutual and reciprocal adaptation of our behaviours to
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communicate, understand and coordinate with one another. Recent research in psychology and
neuroscience has investigated the simultaneous and coordinated activity of two minds (brains) when
they were ‘aligned’, ‘coupled’ or ‘synchronized’. Physiological, neurological and behavioural patterns
of coupling have been reported, coupling which varies depending on whether the individuals are
involved in truly reciprocal ongoing interactive dynamics with others or merely infer, or simulate, the
content of others’ minds at a distance [2,3]. In the following, we try to clarify the terminology used in
the literature (table 1), describe types of coupling in terms of a theoretical hierarchy (table 2), and
compile the available computational methods allowing for clear distinctions to be made between
instances of inter-agent interaction (table 3).

Consider the three cases depicted in figure 1. A keen amateur dancer watches his favourite celebrity
dance pair on one of the many dancing shows on television—he imagines himself in their shoes as they
glide across the floor (figure 1a). This describes an instance in which social cognition may be required
but in which there is clearly no information exchanged between the amateur watching his TV and either
of the dancers on screen. He may, taken with the music, entrain a foot tap or a shoulder shrug in time
with the beat, an example of so-called physical alignment. Here again though, there is only a
unidirectional flow of information. Let us shift to the celebrity pair dancing, let us say, a salsa
(figure 1b). The two dancers are coordinating their intricate, showy moves to the rhythmical music, each
individually vying for the limelight. In this case, one could describe this as a coupling between each
dancer and the external, musical timekeeper. Of course, this may be in addition to some degree of inter-
dancer coupling. We and others [18] might posit that if, by contrast, the pair were dancing the
Argentinian tango, an infinitely more intimate style of dance which requires of the pair to mutually
adapt to each other’s moves, one would assume the degree of coupling between the two dancers to be
richer and greater.

In §2, we first describe the term reciprocity and then review the existing social cognition literature in
which dynamic tasks are used and in which the concepts of reciprocity and coupling are discussed. The
tasks might take richer forms of social interaction such as dance, as described above or reduced models of
cooperation like the extensive literature on sensorimotor synchronization (e.g. synchronized finger
tapping). The measures of behavioural alignment described will range from studies of mutual eye
gaze to temporal synchronization as well as additional measures of neural coupling intended to
bolster a quantification of the degree of coupling present. This review will be organized by describing
different levels of coupling, spanning from spurious synchronization to linguistic alignment, as a
function of the degree of information exchanged (table 2). This will delineate current confusion in the
field as to what coupling entails and distinguish between types of coupling.

In §3, we then propose key challenges for cognitive science to further study coordinated interaction in
humans. This will include a discussion of the current limitations of analysis techniques for the
investigation of coupling, with an overview of current measures used in the literature and potential
ones in development (table 3). This also means, based on the synthesis of tasks and guided by how
the available technology and analysis methods and models allow us to observe and quantify
coupling, we propose potential avenues for future work. Specifically, with a theoretically and
computationally richer description of coupling, we present four areas that can be extended, namely
going beyond coupling (e.g. uncoupling and metastability), going beyond the dyad (i.e. larger
groups), designing computational models and social machines and developing experimental tasks that
cut across the levels of coupling.
2. Reciprocity and coupling
We have suggested that rather than focus on what individuals are doing together, we should instead
attempt to describe and quantify how they are interacting; that is, detail the nature of the exchange of
information between interacting agents [1]. Moreover, we have suggested that as a spectrum and as a
degree of the reciprocal information flow, interactions can be graded as more or less social.
Interestingly, this quantitative approach as a function of information flow is also used for describing
reciprocity in non-biological systems as well [19]. In humans, this type of referential communication
and evidence for mechanisms that support this ability to infer the intentions of others and compare
self and other can be seen from as early as two months of age [20]. It has, however, been suggested
that these capacities must be fine-tuned throughout development [21,22]. This conceptualization of
reciprocity has been looked at in dyads [23] and groups [24] both between human–human interactions
but also those involving human and non-human agents [25,26].
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Table 3. Quantifying interactions: a summary of mathematical methods to measure coupling. Many tools have been proposed to
quantify coupling but there is no gold standard, as each presents benefits and limitations. Four main features are of matter of
interest (as columns): directedness, the ability to attribute directionality to the coupling on top of its strength; linearity, the fact
that the coupling is proportional to the change of the inputs; complexity, the required burden in computations necessary to
obtain the measure (i.e. proxy of computation duration); and stationarity, how the method require core characteristics of the
time series (e.g. mean, variance and spectral characteristics) to remain stable relative to the timescale of the analyses.
Abbreviations: PDC partial direct coherence; ARX autoregressive with eXogenous; PLV phase locking value; MPD mean phase
difference; wPLI weighted phase locking index; CCOR circular correlation coefficient.

methods directed linear complexity stationarity references

correlation no yes low yes [4,5]

coherence no yes low yes [6]

Granger causality/PDC/ARX yes yes high yes [7–10]

PLV/MPD/wPLI/CCOR no no low no [11–13]

cross-recurrence yes no low no [14,15]

transfer entropy/mutual information yes no high no [16,17]

(a) (b) (c)

Figure 1. Coupling and alignment as a function of an exchange of socially relevant information. Offline observation of dancers on a
screen (a) may engage social cognition brain networks but this case does not involve a reciprocal exchange of information and as
such, other than possible entrainment through coordinated foot tapping in time with the beat, results in little or no coupling
between the TV watcher and the dancers on the screen. This would therefore be described as a weak form of alignment. By
contrast, the two dancers engaged in a salsa (b) individually entrain with the rhythm of the music while interacting with and
adapting to each other. This results in a certain level of coupling which can be quantified. Although seemingly similar, the
two dancers locked into a tight hold for an Argentinian tango (c) may, as a function of a greater degree of information
exchange, exhibit higher levels of coupling in this more intimate style of dance that requires tighter coordination between
interacting partners.
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Perhaps most generally, reciprocity is the interdependency between units of a coupled system [27]
and describes accommodation and adaptation that allow two or more agents to become aligned.
Importantly, this process begins with perception of the nature of an information exchange. Studies
have shown that from a third person perspective, we are able to extract details of the exchange so as
to imagine and understand interactions that do not involve ourselves [28,29]. According to Sebanz
et al. [21], this process in which agents infer the intentions and adapting to the action of others
depends on shared representations of objects and tasks, shared attention and the ability to integrate
the predicted effects of one’s own and others’ actions. The ability to create shared representations
more generally is potentially dependent on mirror neuron system (MNS) which facilitates action
anticipation. In addition, de Bruin et al. suggest the need for perspective taking [22]. Most relevant to
the sections that follow, however, are the quantifiable accommodation patterns of reciprocity, that is
ways to measure the manner, level and degree of the interdependency of interacting agents. The
diversity of these patterns as a function of context mean that the flow can but does not necessarily
have to be symmetrical [30] and may involve either mirrored or complementary responses [21,31].
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Based on growing literature describing the ways in which individuals coordinate in time and space,
we have compiled words used to refer to and describe reciprocity in human interaction (table 2). A
challenge remains in clearly assessing the differences and commonalities between these terms beyond
their origin and the phenomenon they are supposed to describe. At the community level, the term
‘coupling’ may be the least connoted and thus we choose to use it as a common thread.

In the following section, we clarify through examples how the word coupling takes different flavours
across the literature and may account for different phenomena. Specifically, by the order in which the
examples are presented, we describe a hierarchy, organized from weakest to strongest (or richest)
levels of coupling (table 1 and table 2). In the examples presented, we describe not only the nature of
the information exchanged (if any) but also describe the kind of coupling this might produce along
with the ways this coupling has or may be quantified.

2.1. Similarity, spurious coupling and shared input
Different factors can contribute to the observation of a temporally coherent link between two dynamical
systems. Before even trying to decipher the way in which these systems might interact together through
different levels of coupling, spurious ones must be discussed. Here, the temporal correlations observed
do not correspond to a coupling between the two systems—or at least at the timescale of interest—but to
a lack of independence between them. Their dependence can come from shared external perturbation or a
common intrinsic property. The major risk would be to draw incorrect inferences, so beware of ‘the
spectre of ‘spurious’ correlations’ [30].

Shared noise may be the most common source of dependence between two signals. What is usually
considered as background noise may include uncontrolled perturbations spanning across physical,
physiological and even psychological levels. At the physical level, this includes the environmental
electromagnetic noise (e.g. power line at 50 or 60 Hz) or even thermal noise inducing common
physiological responses (i.e. sweating). The physiological level is particularly sensitive for
neuroimaging where artefacts like eye blinks, muscles (e.g. smiles) or heartbeat can also create an
illusion of neural coupling. Finally, at the psychological level, uncontrolled environmental factors such
as sounds heard by participants or shared visual perturbations (e.g. the light if participants are in the
same room) may also increase the noise in the data.

Common property is also a classic confounding factor, although this remains more often implicit and
thus ignored. Statisticians have warned against the inflation of correlation by shared non-stationarity,
variance or autocorrelation. High non-stationarity could become especially problematic for long-term
correlations (note: this phenomenon is especially documented for the unit root stochastic processes)
[31]. Those issues are particularly important to keep in mind when investigating social interaction,
especially in studies of interbrain ‘coupling’ [32]. Burgess [11] recently showed how similar spectral
modulation by the same task can lead to a spurious increase of synchronization between the brain
activity of two participants, even in the absence of any exchange of information.

Fortunately, there are good practices to limit spurious coupling and even techniques to avoid them.
Burgess [11] for instance, recommends a focus on ‘improved experimental control and the use of a
different measure of phase synchronization’. Some measures such as circular correlation (CCor) or
weighted phase-locking index (wPLI) are for instance less biased estimators of synchronization than
spectral similarity change. It must be noted that wPLi is very specific to magnetoencephalography
(MEG) and electroencephalography (EEG) data and is used as an estimate of synchronization between
neural signals. Dean & Dunsmuir [32] advise to detrend and ‘prewhiten the series being cross-
correlated’. Besides correlation, they suggest the use of predictive models (e.g. autoregressive or Granger
causality), still admitting that ‘causal intervention experiments are commonly necessary to determine
whether the model genuinely captures influences at work in the system’.

Spurious coupling can also be studied on its own as an interesting measure of shared contamination
by the environment. For instance, in the case of the report by Hasson et al. [33], Burgess [11] states that
‘the participants simultaneously experience the same stimuli such as watching a movie together, even
though they are not directly interacting’. This can be seen as a false-positive at other levels but
studying such similarity can lead to insights about how different people react to similar natural
stimuli. For instance, social contexts tend to maximize the correlation of blood oxygen level-dependent
(BOLD) signals across individuals looking at the same movie. Such experimental design can also
better quantify between-subject variance and how different neural pathways can sustain the same task
[34]. In psychiatry, the inter-individual variability is even characteristic of certain disorders, autism
being the canonical example. In autism spectrum disorders (ASD), there is a strong heterogeneity at
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both biological and phenotypical levels. Some even argue ASD is associated with a higher internal noise
and poor external noise filtering [35]. Such structural and dynamical heterogeneity will affect measures of
coupling, even spurious ones, but this dissimilarity of coupling could have functional consequences on
the propensity to create genuine coupling [36].

2.2. Unconscious, physiological coupling
Though spurious physical and neuro/physiological coupling driven by the similarity of input must be
qualified and controlled for, it certainly must not be confused with the unconscious but the
coordinated coupling of individuals at the sub-personal level. Specifically, as a marked difference from
spurious coupling, in these cases, we see that although not under conscious control, changes evoked
at a physiological level are coordinated between interacting agents. There is already a wealth of
research exploring how behavioural coordination, social cohesion and indeed feelings of affiliation
depend on or result in unconscious physiological coupling.

Starting with the primary dyad, infants and their caregivers will typically exchange information in a
dynamic manner that will result in a degree of reciprocity and synchrony which begins at a physiological
level [37]. Both the synchronization of heartbeats [38] and levels of oxytocin, the so-called ‘bonding
hormone’ [39], have been shown to enhance physiological and behavioural readiness for social
engagement. Engagement of these systems has been observed to continue into adulthood, where, for
example, in cases of physically coordinated musical groups, coupling of breathing and cardiac rates
has been quantified [40]. Additionally, oxytocin is thought to underlie the enhancement of inter-brain
synchrony in male adults [41]. Similarly, a priming study on romantic couples identified a correlation
between increased accuracy in rating negative emotional states and higher synchrony in their skin
conductance and time of pulse transmission from the heart to the fingers [42]. Konvalinka et al. [43]
have quantified information exchange as a function of ‘interpersonal similarity’ showing that
firewalkers and related spectators (i.e. family members or friends) were more likely than unrelated
individuals to become coupled at a physiological level. This unconscious signalling is surely a form of
communication which, through physiological changes, signals changes in mood or state (though not
explicitly). Whether through coordination of heartbeats or respiration rate, information is exchanged in
order to initiate or facilitate alignment. The factors that modulate physiological coupling are still
largely unknown; however, recent work on interpersonal touch has shown that interpersonal
respirational and heart rate coupling is increased during partner touch [44]. Moreover, this new line of
evidence shows that the affective context (i.e. the presence of pain) modulates the effect touch has on
physiological coupling.

This kind of coupling is measured, most generally speaking, as a correlation between physiological
measures. These methods are constantly being refined with measure-specific approaches allowing one
to quantify degrees of synchrony and thus potentially a measure of emotional coherence across
interacting agents. Of course, what might be of most interest is that this unconscious coordination at a
physiological level may, and in certain cases does, scale up to a level of conscious awareness of coupling.

2.3. Spontaneous, unconscious motor coupling
Based on the definition by [2], we suggest that examples such as coordinated rocking or swaying at a
concert, or walking in step down a sidewalk represent a primarily physical level of alignment, akin to
the kind of coordinated action seen in flocks of birds [45]. Although it is certain that this kind of
coordinated and often tightly coupled, temporally synchronized motor behaviour allows a diverse
range of species to become a social unit [46,47], these types of alignment are assumed not to be as
rich as the consciously coordinated, dynamically adaptive changes we make, say, in group music
making. Within this literature, however, coordinated actions are still described as varying in the
degree of stability and magnitude [48]. In contrast with what we would assume are richer forms of
social interactions, ones which are intentional and where the higher degree of coupling is intrinsic to
the task (e.g. rowing), in more spontaneous forms of alignment various perceptual-motor couplings
result in synchronization at a physical level [49,50]. Specifically, we assume that at this level, some
degree of information is exchanged either in the form of or which results in observable synchronous
motor output which varies as a function of the coupling of co-actors. As such, the methods used to
quantify this generally passive phenomenon are often limited to correlation [51]. An interesting case
to consider is entrainment, which refers to individuals becoming physically entrained to a common
external rhythmic stimulus. In this example, a temporal signal in the music produces a physical,



royalsocietypublishing.org/journal/rsos
R.Soc.Open

Sci.8:210138
10

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

22
 A

pr
il 

20
22

 

sensorimotor coupling between the listener and the musical beat. Is anything communicated here? This
brings to bear the idea that in these cases of unconscious coupling, one must consider how necessary
intention or willingness to interact is to higher levels of coupling.

The development illustrates well how unconscious motor coupling and innate access to others’
emotional states [52] can lead to more advanced sensorimotor coupling and higher semantic
alignment, especially with language [53]. This transition phase demonstrates how the levels of
coupling we are discussing here do not exist in isolation. During development, the physiological
coupling may prompt spontaneous entrainment and via feedback loop may then allow interacting
agents, mother and child in this case, to move into a more adaptive level of sensorimotor interactions.
Those adaptive levels range from the primary sense of agency to the ability to communicate with the
other, not only by reproduction of existing forms but also through the creation of new patterns, and
in the end the ability to anticipate the behaviour of the other and even mentalize their intention. The
sense of agency self-organizes progressively through the coupling with the world [54,55] and the right
balance between full autonomy and reactivity [56]. The creativity develops with the emergence of new
patterns through co-regulation between the child and its caretakers [57]. This co-regulation starts with
imitation of adults, but young children also initiate and maintain similar communicative behaviour
with their preverbal peers [58]. Even children with autism, although described as typically deficient in
social interaction and often inattentive to others’ social behaviours, are sensitive to being imitated
[59,60]. Through those imitative, and not necessarily goal-oriented interactions, children build their
self–other equivalences for actions which lead them to better anticipate what the others will do [61]
and to interpret others as having similar psychological states [62,63]. The shared representation of self
and other leading to action experience has been postulated as important for representational
understanding and mentalizing [64–66].

Spontaneous and unconscious motor coupling could thus constitute the beginning of the path toward
the Theory of Mind [67]. It thus seems there are both qualitative and quantitative differences between
these forms of passive motor coupling and both entrainment or imitation. Specifically, as explored in
more detail in the next section, examples like coordinated movement on rocking chairs rely on and
are triggered by a fairly basic perturbation from the outside. By contrast, higher levels of coupling
such as sensorimotor coupling may be initiated by an external stimulus and maintained internally
through a higher degree of reciprocal information exchange. In these more active forms of interaction,
the reproduced movement may involve a degree of anticipation [68], potentially relying on internal
models and memory processes [69] resulting in an altered version of the behaviour and leading to the
emergence of new patterns. Additionally, if one was to describe the signal produced, in these highly
repetitive motor coupling events, one would observe both a higher degree of rhythmicity, which may
be absent say in imitation, longer trains of events (instances of mimicry are typically limited to 3–5 s),
and potentially some lag between the two interacting signals.

2.4. Sensorimotor coupling
As discussed in the previous section, more spontaneous, unconscious examples of motor coupling (such
as temporal entrainment) may communicate the intention or willingness to interact. From the
developmental literature, we see that what may start as a spontaneous, internally generated action
may result in a cycle of coordinated responses and permit mother and child to move into a more
adaptive level of sensorimotor interactions [70]. It therefore seems key to point at this time that this
may be an example of a transition phase between levels of coupling; that is, that although presented
separately in this present discussion, these levels don’t exist in isolation. Through feedback loops, this
mechanism becomes a useful strategy to understand and learn about self and the environment.

As one moves conceptually to the level of sensorimotor coupling, we start considering cases in which
an external stimulus triggers an appropriate and coordinated response. This is a natural ‘joint’ extension
of within-agent action–perception coupling [21]. Specifically, through links and neural overlap between
action planning and perception, both within the individual and joint-action cases, sensorimotor systems
allow for both an adaptive and predictive coordination between perceived sensory stimuli and an
appropriate motor response [71]. I hear an interesting beat, I anticipate the onset of the next beat and
I tap my foot in rhythm with it. In a joint-action scenario, I see you clap your hands, I predict the
onset of the next beat and I clap my hands in synchrony with you. It should be noted that beyond
external triggers in the auditory and visual domain, our temporally coordinated actions either in
direct physical contact with others (e.g. dancing) or when manipulating an indirect object together
with others [72] (e.g. moving a heavy table) may involve coupling that relies on our other senses,
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especially that of touch [73]. The deaf percussionist, Dame Evelyn Glennie, coordinates her musical
movements at exceptionally precise time scales through sight and tactile vibrations. Empirically, this
type of temporal coordination is studied under the umbrella term of sensorimotor synchronization
[74]. Whether investigating reduced models of coordination in which participants synchronize finger
taps with pacing tones or flashes or richer tasks employing adaptive (and predictive) partners, this
vast literature demonstrates a higher level of coupling between the two signals. An important point of
clarification must be made at this point, namely that one should not confuse observed
synchronization either at the level of behaviour or at the level of the brain in which two correlated
signals simply follow the same pattern in time with true coordination in which two signals are
coupled as a function of adaptive and predictive mechanisms.

Sensorimotor coordination differs from the previous level of coupling in several ways, and the case of
dance and group music making neatly illustrates these differences. As mentioned in §1, there are interesting
distinctions to be made and to be studied in seemingly similar types of social interactions, such as dancing
the tango or dancing the salsa. By comparing two types of dance we see varying levels of reliance on the
external timekeeper as well as the degree of coupling between the dancers [1,18]. In the case of two dancers
making synchronized movements in time, observed and even measured synchronization between their
movements may or may not be a result of true reciprocity or coupling. One may also speak of the
directionality of the exchange of information and the alteration of one’s behaviour in response to the
perceived stimulus. One player initiates a rallentando, the other may or may not either perceive this cue
or slow down sufficiently to coordinate their sounds in time. Sensorimotor coordination can therefore be
more or less adaptive and predictive [66]. In lower levels of coordination, we may merely be trying to
copy or follow an external stimulus (a fellow agent) as a model but in more complex cases, like group
music making, we must both adapt our behaviour to coordinate as well as implement predictive
mechanisms to account for more complex tempo changes [75].

From the sensorimotor synchronization literature, one finds a diverse array of methods to quantify
temporal coordination and sensorimotor coupling, from estimating the strength of serial dependencies
between successive asynchronies during paced finger tapping with a metronome [76] to the coupling
between players in a string quartet ([77,78], see §3). This work has provided insight into both the
adaptive and predictive mechanisms that underlie coordination during sensorimotor synchronization
tasks. From the adaptive side, error correction estimates have been obtained by fitting models to
asynchrony time series (for a review, see [78] and used as a proxy for the degree of coupling
(described as such by [1,79,80]). Looking more towards the predictive aspect of temporal coordination,
using temporal data from the inter-tap-intervals (ITIs from the human tapper) and inter-onset-
intervals (IOIs of the pacing signal), Pecenka & Keller [81] used the ratio between the lag-0 and lag-1
cross-correlations of ITIs and IOIs (a prediction-tracking PT ratio) as a measure of prediction in
sensorimotor synchronization with tempo changing tapping tasks [81]. Based on several studies, it has
been shown that a PT-ratio larger than 1 reflects an individual’s tendency to predict tempo changes,
while a ratio smaller than 1 indicates a tendency to copy (track) tempo changes. The PT-ratio has been
found to correlate positively with musical experience, tapping abilities and neural activation in brain
networks comprising cortico-cerebellar motor-related areas and medial cortical areas [82]. Extending
the initial (adaptive) correction models, van der Steen & Keller [68] employed simulation techniques
to create and test the adaptation and anticipation model (ADAM) of sensorimotor synchronization
which incorporates both reactive and predictive elements.

The degree and manner of information exchange may vary as a function of the roles played by the
interacting individuals. As investigated in the sensorimotor synchronization literature as well as in
richer, real-world examples of coordinated behaviour, ‘leaders’ (temporal or hierarchical) may set a
given tempo or example of behaviour and adapt minimally, while ‘followers’ will focus their attention
on copying and/or following the dictated pattern and adapt more [79,83,84]. How these varying roles
are played may be dependent on either mimicking or signalling strategies, with leaders making more
communicative actions [85]. The predictability of the ‘leader’s’ behaviour may act as a signal, that
serves as a form of non-verbal communication to establish the respective roles of interacting partners
[86]. Interestingly, assumedly related to predictability, individuals who are more similar (more ‘like-
me’) perform optimally in sensorimotor synchronization tasks [80].

Non-verbal communication typically starts with mimicry and imitation with many animals imitating
and copying the behaviour of their conspecific. This starts early in life, with the co-regulation of
exchanges between mother and infant, and the development of social cognition [57]. This mutual
influence continues in adulthood with a spontaneous tendency to imitate [87,88]. A question that
remains to be clarified, as indeed across all levels of coupling, is how conscious the process might be.
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In the case of mimicry, this typically unconscious tendency to copy differs from entrainment in that
it is an active phenomenon: it may initially be triggered by an external stimulus but can continue
without it [89].

Although the focus of this review is on studies involving dynamic tasks that involve mutual
interactions that develop across time, a further difference between this and the previous level of
coupling is that while entrainment is recursive, mimicry and other examples of rhythmical imitation
can happen as a one-shot event. As such, different computational methods might be useful depending
on the number of exchanges that occur within an interaction, with phase-based methods as described
or cases of dynamic, rhythmic coordination and information theory measures for single-event
behaviour (table 3). In either one-shot or more dynamic cases of imitation, the independence between
the stimulus and the imitated response suggests both differentiated neural mechanisms that allow for
this ability as well as the need for more sophisticated anticipatory computational methods to quantify
coupling in these interactions that go beyond measures of correlation. Specifically, one might assume
measures of transfer of entropy as superior to Granger causality estimation since its estimation is more
general (nonlinear and non-Gaussian) [90]. From a clinical perspective, a great deal of work continues
to be done studying deficits in autism to advance our knowledge of sensorimotor coupling, that is
more adaptive reciprocal exchanges. Using coupled oscillator modelling and a pendulum imitation
task, this report describes the deficit in social synchronization as a function of coupling [91].

2.5. Goal and semantic alignments
Goal-oriented awareness is the ability to perceive goals and perceptions of others; it can range from gaze
following and shared attention up to communication of cues and representation [92]. Goal-directed
behaviours are complementary and provide a key element of prospective control [93,94]. During
development, this ability to infer intentions and attribute goals to others is intrinsically tied to motor
cognition [95]; however, there seems to be a chicken-egg problem in what appears first: the ability to
interact with others, or the ability to represent them [96]. Grossmann [97] has provided evidence that
infants are equipped from birth to preferentially direct their attention to and process social stimuli.

The emergence of meaning starts well before the emergence of language. As mentioned in the
previous section, sensorimotor coupling is an interface between the non-verbal and the verbal, the
motor and the social, the individual and the collective. The scientific literature illustrates this tension
at both theoretical and experimental levels [74]. From human evolution to child development, proper
coupling at the sensorimotor level seems the pre-requirement for language. Sensory-motor couplings
with the environment stabilize the dynamics of early neural assemblies and thus shape ‘neural
attractors’ [98]. The landscape of spontaneous activity is then able to influence behaviour through
those attractors, shifting the organism from passive entrainment to an active coupling [99]. The more
those attractors are entrenched, the better they resonate with ongoing coupling. Such phenomena are
well documented in other fields (e.g. odour perception) where the resonance of neural dynamics in
accordance with past experiences has been proven to encode meaningful events [100].

Many animals coordinate the movement of their bodies, but humans expand this ability to thoughts,
including those that we express verbally [101]. Since this alignment of our understanding of the world
with the others may be essential to learn and to adapt, there may be strong evolutionary pressure on
moving from imitation to language [102]. Vygotsky explains the way in which learners develop their
conceptual capacities, working just outside their independent capacity, relying on the supports or
scaffolds of their learning environment. For instance, language is considered as initially rising like a
means of communication between the child and the people in his environment. This is only later, with
the development of internal speech that it comes to organize the thought of the child [48]. There is a
lot of similarity with the hypothesis of Michael Grazziano that, evolutionarily speaking, our sense of
self has followed the need to interpret the behaviour of others [103]. There is a transfer of the capacity
of functional control to language structure and it is possible to demonstrate ‘[this] continuity of
language with other intentional communication by underscoring the richness of the functional
organization of co-action that underlies the capacity to use language’ [104].
3. Beyond traditional coupling
We have seen how social cognition is a braiding of biological, behavioural and social couplings. Based on
the synthesis of tasks and methods, we will now delineate some positive proposals for future work: first,
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to go beyond the concept of the coupling per se by also investigating uncoupling, transient coupling or
even metastability; second, to go beyond dyads, through the study of larger groups; third, to better
integrate computational approaches, not only for modelling the phenomena but also as social
machines integrated into the social interaction itself; and finally, through the development of multi-
level experiments, where the intertwined nature of social cognition is probed at all the levels
simultaneously.

3.1. Beyond coupling: uncoupling and metastability
A good way to understand a phenomenon is to study its opposite. What can uncoupling tell us about
coupling? In neuroscience, active desynchronization has been observed [105,106] and may constitute a
fundamental mechanism of brain adaptability, with desynchronization preventing the brain from
being stuck in a particular state (e.g. epileptic seizure). At the behavioural level, too much
synchronization can be a problem (e.g. mob mentality and speculative bubbles), and uncoupling from
others can be necessary and adaptive (e.g. end of a musical piece of ensemble music).

Social coordination requires complementary actions, not only pure synchronization. For instance,
antiphase coordination at the sensorimotor level already shows a departure from the in-phase mode of
coordination. Tackling this aspect, the Haken–Kelso–Bunz model managed to uncover new forms of
dynamics and outperformed previous accounts of synchronization focused on the in-phase mode [107].
In dialogues, this is also necessary, and distinctive turn-taking can be observed akin to anti-phase
correlated oscillators [108]. By contrast, brief phases of total desynchronization can also be observed
[109] thus showing how even the absence of a social sign can become one, signalling boredom or need
to take the lead in the interaction. Uncoupling or indeed the shift between phases of being coupled or
uncoupled may moreover serve as a signal between interacting agents. Both the fluidity and speed of
transition between phases may vary and implicitly communicate a level of expertise [110]. Relatedly, a
measure of time to resynchronize, that is the time taken in a temporal coordination task to
resynchronize their tapping with the new metre (time to resynchronize, TTR) indicates an ability to
disengage from the current entrainment process and to entrain to a new metre [111].

3.2. Beyond the dyad: larger groups
Another way of generalizing a principle is to apply recurrence: if n_0 is true, and n implies it works at
n + 1, then it works, at least theoretically, for any n. In this review, we have mostly covered the study of
dyadic interactions with only a few studies having ventured beyond the barrier of testing two
participants. As Zhang et al. [112] put it, there is a blind spot between the ‘very few and very many’
despite the fact most of our daily interactions take place among larger groups.

Moving beyond the dyad, the types of coupling seen and measured in dyads may act as a mechanism
for alignment across larger groups. Richardson et al. [48] have shown how individual-level differences in
synchrony relate to group-level cohesiveness by analysing movement data with a Kuramoto-based
method to quantify cluster phase and investigate patterns of synchrony across six individuals rocking
in a circle. Konvalinka et al. [43] elegantly quantified dynamic heart rate synchrony between active
participants with their related observers, but not with their unrelated observers during a collective
fire-walking ritual. Within the musical domain, research has explored these mesoscopic scales looking
at small groups of ensemble players [78,113] to the one of a chorus [114]. Again in choruses,
oscillatory couplings of cardiac and respiratory activity among singers and the conductor engaged in
choir singing have been reported [40]. It is interesting therefore to note that as a function of how these
effects are studied, that is through joint action paradigms, coupling at this level outside the laboratory
may also stem from common input (i.e. joint attention). In the case of choir singers, studies have
explored the manner in which, based on the external timekeeper (conductor) or depending on the
audience [114], individuals adjust the intensity of their vocal output in order to optimize the so-called
‘self-to-other ratio’, which reflects the degree to which an individual can hear their own sounds
among co-performers’ sounds [115]. Recently, neuroscience even invited itself into the classroom to
investigate how a group of students become coupled during learning [116].

Virtual social networks have greatly contributed in the development of mathematical tools to model
the larger datasets as related to connectivity between large(r) groups of people. Unfortunately, the focus
has been put on static networks rather than dynamical ones. An interesting question to be tackled in
future research is whether the degree and richness of coupling naturally have to decrease as a
function of interacting agents?
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3.3. Beyond humans: social machines and coupling with artefacts
The obvious next frontier for the study of social interaction is to investigate the manner in which we
coordinate our bodies and minds when we interact with non-human social machines. Technology is
increasingly shaping our social structures [117] and we already interact with virtual versions of our
loved ones over Skype as well as with artificial agents in the form of video games, automated phone
operators, chat bots and hyper frequency trading software (see also, https://www.youtube.com/
watch?v=nyJtEGJGkMU). Additionally, scenarios exist and can be imagined in which artefacts couple
between each other such as they do for the ‘Internet of Things’ and between drones. From an
academic perspective, the study of inter-agent coupling involving both human and non-human
machines allows us to probe further as to the necessary and sufficient criteria and levels of coupling
that are required for co-agents to coordinate and become aligned.

Empirically, a great deal of work has already been done, particularly in the domain of temporal
coordination, employing social machines or virtual partners to investigate the nature of social
interactions. These have ranged from pre-programmed partners providing fixed scenarios for
interaction to more adaptive virtual partners [78,79,118,119]. The use of these partners has not only
deepened our understanding of coordination behaviour but also to measure changes in emotional
responses to either competitive or cooperative conditions when coordinating with the virtual
movements of a virtual partner (VP) [120]. In all cases, the use of a social machine is to reliably
manipulate the interaction between agents by controlling the VP with programmable algorithms or
models which are derived as a function of generalized behavioural dynamics. VP tended to mirror the
human’s intrinsic behavioural repertoire; a suitable coupling provided the interaction necessary to
produce patterns of social coordination. ‘The latter were neither the product of the VP’s nor the sole
outcome of the human’s behavioural dispositions, but rather a truly emergent collective pattern that
resulted from their interaction’ [121].

In general, these social machines can be seen as a dynamical, mathematical mirror where the
‘exploration of the machine’s behaviour may be viewed as an exploration of us as well’ [122]. If
artificial machines can serve as a valuable bootstrap of natural machines, the question is how flexible
the apparatus must be to deal with co-agents which do not entirely behave, say in terms of richness,
as human partners. Moreover, within these mixed agent designs, a particularly interesting question
relates to the manner in which goal-directed behaviour is signalled, that is how intentions are
communicated between human and machine.

3.4. Beyond unitary scale: multi-level experiment and modelling
Since we have demonstrated how multi-scale, our coupling with others can be, the last challenge for
future studies is to integrate at least two levels of coupling in one design. Of course, all levels are
present by default but here we are considering an explicit experimental protocol allowing the study of
two scales and their interaction. A major challenge would be to unwind the cycle of physiological
coupling and synchronized behaviour. We may ask ‘Which comes first?’ but there is not necessarily a
defined order associated with these levels of coupling. If no phenomenon occurs after the other but
both occur simultaneously, it metaphorically reflects the process of light simultaneously creating
shadow [123]. A major challenge remains at both theoretical and methodological levels to nevertheless
capture the potential flow of causality between scales [124]. The question of what we measure is thus
intimately linked to how we model the whole system and its boundary. Research has mostly focused
on how one level predicts or correlates in coupling in another, with those results highlighting local
evidence of how levels interact.

If those levels of coupling are happening simultaneously, the coupling may on top account for two
major phenomena co-constraining themselves: similarity and communication (figure 2). We have
mentioned above that at various levels of coupling, similarity can facilitate reciprocal alignment and
communication. However, one might argue that while the degree of coupling may reflect the
similarity across the interdependent biological, behavioural and cultural levels, it may also be that
similarity is rendered possible thanks to the information exchange (figure 2). Culture illustrates
perfectly this double constraint: it is shaped by the never-ending reciprocal exchange between
humans, while simultaneously shaping their communication by modulating the similarity of their
social environment. But if we take perspective, culture modulates multiple factors in social interaction
[125]—the normative approach of cognitive psychology and neuroscience has indeed been questioned
by anthropologists [126]. Since culture is shaped through communication between humans, and, as

https://www.youtube.com/watch?v=nyJtEGJGkMU
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Figure 2. Coupling as a measure of similarity and communication between individuals. The observed coupling between individuals
measures their active exchange of information through communication, but also their passive similarity across the interdependent
biological, behavioural and cultural levels. Interestingly, communication is facilitated between similar individuals, and,
simultaneously, similarity is possible thanks to communication, especially at the cultural level.
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we argue, the similarity is participating in the facilitation of communication: the two faces of the coin of
coupling, i.e. similarity and communication, are like M.C. Escher’s Drawing Hands, questioning the
classical linear reductionist perspective. Such mutual constraints between being shaped by and
shaping are well known in ecology as niche construction. In the case of social cognition, two related
challenges are to understand at the phylogenetics level how ‘social niches’ emerged during evolution
[127], especially in Homo sapiens, and at the ontogenetic level how individual niche may be disrupted
and lead to psychiatric conditions, especially autism [128].

While experiments can provide valuable data for a multi-scale account of social cognition,
computational methods have captured the potential mechanisms at play, especially at the scale of
neurobehaviour. In an extension to the above section on virtual or social machines, computational
social neuroscience has provided human–machine but also machine–machine interaction paradigms.
For instance, simulations of two virtual brains interacting have allowed us to probe what may be the
role of anatomy in inter-brain synchronization [129]. Numerical models have demonstrated that the
shared topology of the human connectome (shaped by evolution) not only contributes to spurious
synchronizations but also to the propensity to couple with others through perception-action cycles
[130]. While these first results propose new perspectives on how anatomical heterogeneity in autism
may contribute to the difficulty of coordinating with others, underlying models need to get more
personalized by integrating individuals’ anatomy and more realistic biophysical models [131].
Alternative models of interaction have already started to probe social disorders in the context of
computational psychiatry [132]. For instance, hierarchical Bayesian modelling has uncovered how
social decision is altered in autism [133]. Regression of neural activity based on dyadic behavioural
parameters allows to characterize socio-affective phenotypes at the biological level [134,135].

Finally, computational models can apply to group dynamics as well. For instance, Zhang et al. [112]
have demonstrated how metastable coordination within and between groups is modulated by the
diversity of individual preference (e.g. rhythm frequency). Based on Kuramoto and Winfree-based
models, a set of specialized prediction-based models aiming to more specifically investigate
coordination behaviour in sensorimotor synchronization tasks is under development [136]. These
methods will be used to probe both behavioural measures and neural data to quantify the degree of
coupling between the interacting agents but also, more importantly, to identify what characteristics
(e.g. amplitude, phase) of neurobehavioral time series are involved. Different factors such as the
nature of the partner and the nature of the information exchanged can contribute to the observation of
a temporally coherent link between the dynamical systems.
4. Conclusion
We have seen how our coupling with others is a braiding of biological, behavioural and social coupling,
implicating different flavours of what is exchanged between people (and social machines) when they
interact. If those levels are of course constructed pragmatically, they also mirror a certain hierarchy of
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organizational levels. Overall, there is a tension between the informative nature of varying degrees of
predictable signals. Multiple frameworks exist to embrace prediction as the main purpose of
integrating information across multiple levels. Predictive coding may be one of the most popular
because it provides this integration with a plausible neurophysiological mechanism [136]. Despite the
existence of such theories spanning multiple levels, we should remind ourselves about the
arbitrariness of those categories. As Claude Bernard said, ‘systems are only in the mind of humans’. This
reinforces the need for parsimonious descriptions and concepts that are measurable and applicable at
different scales.
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