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Abstract. The paper discusses how parametric sensitivity analysis can be used in certain
model predictive control (MPC) schemes. The sensitivity analysis will be performed with
regard to the initial state measurement and update schemes will be derived that speed-up
the computations. Throughout we restrict the discussion to linear-quadratic optimal control
problems in discrete time, which frequently arise in tracking tasks with MPC. The derived tools
from sensitivity analysis can be embedded into MPC schemes with a prediction step and multi-
step MPC schemes with re-optimization and prediction step. Numerical experiments illustrating
the sensitivity analysis are presented.

1. Introduction
Model predictive control (MPC) is a powerful model-based control framework, which allows
to consider control and state constraints, see [1, 2] for a comprehensive overview. The main
idea is to solve optimal control problems (often in discrete time) repeatedly on moving time
horizons and to apply only the first few control values of the control trajectory. Its practical
performance relies to a large extent on the ability to solve the optimal control problems in real-
time. This is usually the computational bottleneck of the MPC control scheme and efficient
solution techniques are necessary, see [3]. The numerical solution of the respective optimal
control problems require some time until the solution is available. This leads to some latency in
the application of the control. In order to reduce this latency, one could predict the future state
using the model and use the predicted state as initial value for the optimal control problem.
Another idea is to use multi-step MPC schemes, where the first M ∈ N control values of the
computed control trajectory are implemented. As a consequence the system is in open-loop
mode for a longer time period and deviations in the states are not taken into account. In
order to overcome this issue, a re-optimization on shrinking time horizons can be performed for
intermediate state measurements. Instead of performing a potentially costly re-optimization, a
parametric sensitivity analysis can be used to approximate the solution. A thorough theoretical
investigation of several multi-step MPC schemes can be found in [4]. Sensitivity analysis in the
MPC context was also used in [5].

This paper aims to explore numerical methods for sensitivity updates in MPC schemes and
it is organized as follows. The MPC schemes will be introduced in Section 2. The most costly
component in the schemes is the solution of optimal control problems in discrete time. An
efficient semi-smooth Newton method is summarized in Section 3. The structure of the linear
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systems in the semi-smooth Newton method can be exploited to compute sensitivities of the
optimal solution w.r.t. the initial state. The sensitivities allow to derive update schemes for
approximate optimal solutions of certain optimal control problems in the MPC schemes. These
update schemes are explored in Section 4. Numerical results are provided in Section 5.

2. MPC schemes
The main motivation for the sensitivity analysis in this work are MPC schemes. We briefly
summarize the relevant MPC schemes but emphasize that the main focus of this study is on
the sensitivity analysis and the numerical techniques to solve the optimal control subproblems
in the MPC schemes efficiently. Of course there are more aspects related to the MPC control
scheme itself that should be investigated more carefully, such as stability and robustness. For
a rigorous mathematical stability analysis of different M -multistep MPC schemes we refer the
reader to [4].

Throughout this work we consider implicit linear control systems in discrete time k ∈ N0

subject to control or state constraints of the following type:

Ax(k)x(k) +Au(k)u(k) +Bx(k + 1)x(k + 1) +Bu(k + 1)u(k + 1) = r(k), (1)

(x(k), u(k)) ∈ Z(k), (2)

x(0) = x0. (3)

Herein, x(k) ∈ Rn and u(k) ∈ Rm denote the state and control, respectively, at time k ∈ N0,
x0 ∈ Rn is a given initial state vector, and Ax(k) ∈ Rn×n, Au(k) ∈ Rn×m, Bx(k) ∈ Rn×n,
Bu(k) ∈ Rn×m are given time dependent matrices, and r(k) ∈ Rn is a given time dependent
vector. The non-empty sets Z(k) ⊂ Rn × Rm, k ∈ N0, are defined by

Z(k) := {(x, u) ∈ Rn × Rm | Gx(k)x+Gu(k)u ≤ g(k)} (4)

with matrices Gx(k) ∈ Rℓ×n and Gu(k) ∈ Rℓ×m and vectors g(k) ∈ Rℓ for k ∈ N0.

Remark 1 (a) The time index k ∈ N0 is often associated with some time point tk = k · h with
step-size h. In the following we will identify k and tk and use k to simplify the notation.

(b) Implicit systems of type (1) often arise from discretizations of the linear differential equation

x′(t) = A(t)x(t) +B(t)u(t) + d(t).

E.g. the trapezoidal rule with grid points tk = k · h, k ∈ N0, and step-size h > 0 yields the
following scheme, which fits into the class in (1):

(
I − h

2
A(tk+1)

)
x(tk+1)−

(
I +

h

2
A(tk)

)
x(tk)−

h

2
B(tk)u(tk)−

h

2
B(tk+1)u(tk+1)

=
h

2
(d(tk) + d(tk+1)) ,

Please note that the trapezoidal rule is just one possible and frequently used option. Many
other discretization schemes also fit into the class (1).

The aim of this study is to investigate certain classes of model predictive control (MPC)
schemes for (1)-(3). The MPC schemes require to solve instances of the following parametric
optimal control problem in discrete time.



International Workshop on Mathematical Modeling and Scientific Computing 2022
Journal of Physics: Conference Series 2514 (2023) 012008

IOP Publishing
doi:10.1088/1742-6596/2514/1/012008

3

Problem 1 (DOCP(p, n,N)) Minimize

1

2

n+N∑
k=n

(
x(k)⊤Q(k)x(k) + u(k)⊤R(k)u(k)

)
(5)

with respect to (x(n)⊤, u(n)⊤, . . . , x(n+N)⊤, u(n+N)⊤)⊤ ∈ R(N+1)(n+m) and subject to

• (1) for k = n, . . . , n+N − 1,

• (2) for k = n, . . . , n+N , and

• x(n) = p.

In DOCP(p, n,N), n denotes the current time, N ∈ N is the prediction horizon, and p is
the initial state at time n. For given (p, n,N) let xn,N (k; p) and un,N (k; p), k = n, . . . , n + N ,
denote a solution of DOCP(p, n,N ). The basic MPC scheme yields a feedback control law
µN : N0 × Rn → Rm by setting

µN (n, p) := un,N (n; p) (n ∈ N0, p ∈ Rn)

whenever a solution of DOCP(p, n,N) exists. The basic MPC scheme works as follows:

Algorithm 1 (Basic MPC algorithm)

(0) Initialization: Set n = 0, choose prediction horizon N ∈ N.
(1) Measure (or predict) state xn at time n.

(2) Solve DOCP(xn, n,N) and set µN (n, xn) = un,N (n;xn).

(3) Apply control µN (n, xn) at time n to the control system.

(4) Set n← n+ 1 and go to (1).

The basic MPC algorithm has to be seen as an idealized control scheme because it is implicitly
assumed that a solution of DOCP(p, n,N ) in step (2) is available instantaneously at time n,
which in practice is not the case. Solving DOCP(p, n,N ) requires some computational time and
thus the control input µN (n, xn) can only be implemented with a delay. In order to take this
delay into account we will investigate two modifications of Algorithm 1:

(a) MPC with a prediction step.

(b) Multi-step MPC with re-optimization and prediction.

To this end, let M ∈ N denote the (maximum) solution time for DOCP(p, n,N ). Of course,
this number can only be estimated in practice. The MPC scheme with prediction step works as
follows:

Algorithm 2 (MPC with prediction step)

(0) Initialization: Set n = 0, choose prediction horizon N ∈ N and solver budget M .

(1) Measure state xn at time n and predict state xn+M at time n+M using the model (1) for
k = n, . . . , n+M − 1 with initial value x(n) = xn.

(2) Solve DOCP(xn+M , n+M,N) and set µN (n+M,xn+M ) = un+M,N (n+M ;xn+M ).

(3) Apply control µN (n+M,xn+M ) at time n+M to the control system.

(4) Set n← n+M and go to (1).



International Workshop on Mathematical Modeling and Scientific Computing 2022
Journal of Physics: Conference Series 2514 (2023) 012008

IOP Publishing
doi:10.1088/1742-6596/2514/1/012008

4

Please note that solving the optimal control problem in step (2) of Algorithm 2 takes M time
units by assumption and thus its solution is available only at time n+M , if the optimization is
started at time n. In the time period from n to n+M the process runs with the previous control
un,N (n;xn) (control is kept constant for simplicity) or with un,N (n+ i;xn) for i = 0, . . . ,M − 1
in an open-loop mode without feedback.

The accuracy of the MPC scheme with prediction step depends on the accuracy of the
prediction, that is, the accuracy of the model. If the actual state at n + M differs from
the predicted state xn+M in step (1), then a procedure to quickly update the solution of
DOCP(xn+M , n + M,N) in step (2) would be desirable. We will achieve this by sensitivity
updates as described in Section 4.

A further improvement to the MPC scheme with prediction step can be obtained by the
following multi-step MPC scheme with re-optimization and prediction step. It is assumed that
a solution for the first time range from 0 to M is known.

Algorithm 3 (Multi-step MPC with re-optimization and prediction step)

(0) Initialization: Set n = 0, choose prediction horizon N ∈ N and solver budget M . Measure
state x0.

(1) Predict state xn+M at time n+M using the model (1) for k = n, . . . , n+M − 1 with initial
value x(n) = xn.

(2) Compute future solution for predicted state: Solve DOCP(xn+M , n+M,N).

(3) In parallel to (2) perform the following steps for k = 0, . . . ,M :

(3.1) Measure state xn+k at time n+ k for k > 0.
(3.2) Solve DOCP(xn+k, n+k,N−k) and define µN,M (n+k, xn+k) = un+k,N−k(n+k;xn+k).
(3.3) Apply control µN,M (n+ k, xn+k) at time n+ k to the control system.

(4) Set n← n+M and go to (1).

In step (3.2) optimal control problems are solved on a shrinking time horizon from n+ k to
n+N . For these optimal control problems, a potentially very good initial guess is available at
time n from the solution of DOCP(xn, n,N) in the preceding step of (2). Please notice that the
trajectory tail of the solution of DOCP(xn, n,N) is feasible in (3.2) on the shrinḱıng time horizon
owing to Bellman’s optimality principle. This preceding solution, however, was computed for
predicted states based on the model and not for the actual measured states in (3.1). Again,
the accuracy of the initial guess depends on the accuracy of the model predictions. Although
the optimal control problems in (3.2) can usually be solved quicker than the problem in (2),
step (3.2) still requires time and it would be desirable to have a quick way to simply update
the preceding solution for the actual state measurements and to avoid the explicit solution of
DOCP(xn+k, n+k,N−k) in (3.2). Again, we will achieve this by sensitivity updates as described
in Section 4.

3. Numerical solution of DOCP(p, n,N)
The efficient numerical solution of DOCP(p, n,N ) is a key ingredient for the MPC schemes.
To this end we propose a semi-smooth Newton method for the numerical solution of the first
order necessary Karush-Kuhn-Tucker (KKT) conditions, see [6, 7]. It is convenient to use the
abbreviations

zk =

(
x(k)
u(k)

)
, Hk =

(
Q(k) 0
0 R(k)

)
, Ψ = (I|0), rk = r(k), gk = g(k),

and
Ak = (Ax(k)|Au(k)), Bk = (Bx(k)|Bu(k)), Gk = (Gx(k)|Gu(k))

for k ∈ N0. With these abbreviations DOCP(p, n,N ) reads as follows:
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Problem 2 Minimize

1

2

n+N∑
k=n

z⊤k Hkzk (6)

with respect to z = (z⊤n , . . . , z
⊤
n+N )⊤ and subject to the constraints

Akzk +Bk+1zk+1 = rk, k = n, . . . , n+N − 1, (7)

Gkzk ≤ gk, k = n, . . . , n+N, (8)

Ψzn = p. (9)

Let λ = (λ⊤n , . . . , λ
⊤
n+N−1)

⊤, µ = (µ⊤n , . . . , µ
⊤
n+N )⊤, and σ denote the vectors of Lagrange

multipliers for the constraints (7), (8), and (9), respectively. The Lagrange function of
DOCP(p, n,N) is defined by

L(z, λ, µ, σ, p) :=
1

2

n+N∑
k=n

z⊤k Hkzk + σ⊤(Ψzn − p)

+
n+N−1∑
k=n

λ⊤k (Akzk +Bk+1zk+1 − rk) +
n+N∑
k=n

µ⊤k (Gkzk − gk).

Let Hk be positive semidefinite and symmetric for all k ∈ N0. Then DOCP(p, n,N ) is convex
and, since the Abadie constraint qualification is satisfied for the linear constraints, the following
Karush-Kuhn-Tucker (KKT) conditions are necessary and sufficient for a global minimum of
DOCP(p, n,N):

0 = ∇znL = Hnzn +A⊤
n λn +G⊤

nµn +Ψ⊤σ,

0 = ∇zkL = Hkzk +A⊤
k λk +B⊤

k λk−1 +G⊤
k µk, k = n+ 1, . . . , n+N − 1,

0 = ∇zn+NL = Hn+Nzn+N +B⊤
n+Nλn+N−1 +G⊤

n+Nµn+N ,

and for k = n, . . . , n+N the complementarity conditions

0 ≤ µk ⊥ gk −Gkzk ≥ 0

are satisfied. The Fischer-Burmeister function φ : R2 → R,

φ(a, b) :=
√
a2 + b2 − a− b,

see [6], allows to equivalently re-write the complementarity conditions as the non-smooth
equation

φ(gk −Gkzk, µk) = 0,

where the latter equation is understood as a component-wise application of φ to the components
of the vectors gk −Gkzk and µk.

The necessary and sufficient conditions together with the constraints yield the nonlinear
equation

F(η) = 0, η = (σ⊤, z⊤n , µ
⊤
n , λ

⊤
n , . . . , z

⊤
n+N−1, µ

⊤
n+N−1, λ

⊤
n+N−1, z

⊤
n+N , µ

⊤
n+N )⊤ (10)
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with

F(η) =


Ψzn − p
βn(η)

...
βn+N (η)

 ,

where for k = n, . . . , n+N − 1,

βk(η) =

 ∇zkL(z, λ, µ
(j), σ, p)

φ(gk −Gkzk, µk)
Akzk +Bk+1zk+1 − rk

 , βN =

(
∇zn+NL(z, λ, µ, σ, p)

φ(gn+N −Gn+Nzn+N , µn+N )

)
.

Application of a semi-smooth Newton method to the non-smooth equation (10) to this
nonlinear and non-smooth equation yields the iteration

Vjd
(j) = −F(η(j)), (11)

η(j+1) = η(j) + d(j), j = 0, 1, 2, . . .

Herein Vj ∈ ∂F(η(j)), where ∂F(η(j)) is the generalized Jacobian of F owing to Clarke [8]. The
linear system (11) possesses a particular structure with a block banded matrix and reads as
follows: 

Ω0

Ω⊤
0 Γn Ωn+1

Ω⊤
n+1 Γn+1

. . .
. . .

. . . Ωn+N

Ω⊤
n+N Γn+N




dσ
dn
dn+1
...

dn+N

 = −


Ψz

(j)
n − p
βn
βn+1
...

βn+N


Herein, for k = n, . . . , n+N − 1 we have dk = (d⊤zk , d

⊤
µk
, d⊤λk

)⊤, dn+N = (d⊤zn+N
, d⊤µn+N

)⊤,

Γk =

 Hk G⊤
k A⊤

k
−SkGK Tk
Ak

 , Γn+N =

(
Hn+N G⊤

n+N
−Sn+NGn+N Tn+N

)
,

and
(Sk, Tk) ∈ ∂φ(gk −Gkz

(j)
k , µ

(j)
k ),

and for k = n+ 1, . . . , n+N − 1,

Ω0 =
(
Ψ 0 0

)
, Ωk =

 0 0 0
0 0 0
Bk 0 0

 , Ωn+N =

 0 0
0 0

Bn+N 0

 .

The semi-smooth Newton method possesses fast local convergence properties under
appropriate assumptions, i.e. a superlinear and even a quadratic convergence rate, see
[9, 10, 6, 11, 12]. Extensions to infinite spaces can be found in, e.g., [9, 10, 13, 14]. It can
be globalized using an Armijo-type line-search, see [12, 15]. Within an MPC method it is
particularly useful owing to its excellent warm start properties. The generalized Jacobian has
a block-banded structure and can be factorized using a banded LU decomposition. In our
implementation we used the Lapack routine DGBTRF.
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4. Sensitivity analysis and sensitivity updates
DOCP(p, n,N) is a parametric optimization problem. We are particularly interested in the
dependence of its solution on the parameter p. For given (p, n,N) let zn,N (p) denote a solution
of DOCP(p, n,N) and λn,N (p), µn,N (p), and σn,N (p) the corresponding Lagrange multipliers.

We are interested in properties of the solution mapping or parameter-to-solution mapping
p 7→ zn,N (p). Conditions under which the solution mapping depends locally in a continuously
differentiable way on the parameter p are of particular interest, since then a linearization

zn,N (p) = zn,N (p̂) + z′n,N (p̂)(p− p̂) + o(∥p− p̂∥)

around a nominal parameter p̂ is permitted and

z̃n,N (p) := zn,N (p̂) + z′n,N (p̂)(p− p̂)

serves as an approximate solution to DOCP(p, n,N), see [16]. The solution differentiability of
the solution maping is established in [17] for parametric nonlinear programs. The following
theorem is an adapted version and tailored to DOCP(p, n,N ).

Theorem 1 (Sensitivity theorem) Let p̂ be a nominal parameter and let the following
assumptions be satisfied:

(i) Let η̂ with components ẑn,N , λ̂n,N , µ̂n,N , and σ̂n,N be a KKT point with (10).

(ii) Let ẑn,N satisfy the Linear Independence Constraint Qualification (LICQ).

(iii) Let strict complementarity hold for the multiplier µ̂n,N .

(iv) Let the Hessian matrix of the Lagrange function L w.r.t. to z be positive definite on the
critical cone of DOCP(p̂, n,N).

Then:

(a) There exist neighborhoods Bϵ(p̂) and Bδ(η̂), such that DOCP(p, n,N) has a unique local
minimum

η(p) ∈ Bδ(η̂)

for each p ∈ Bϵ(p̂).

(b) The active sets of DOCP(p, n,N) and DOCP(p̂, n,N) coincide for p ∈ Bϵ(p̂).

(c) The mapping η(·) is continuously differentiable with respect to p and the sensitivities

ζ ′n,N,k(p̂) = (z′n,N,k(p̂)
⊤, µ′n,N,k(p̂)

⊤, λ′n,N,k(p̂)
⊤)⊤ (k = n, . . . , n+N − 1),

ζ ′n,N,n+N (p̂) = (z′n,N,n+N (p̂)⊤, µ′n,N,n+N (p̂)⊤)⊤,

σ′n,N (p̂)

in η′(p̂) =
(
σ′n,N (p̂)⊤, ζ ′n,N,n(p̂)

⊤, . . . , ζ ′n,N,n+N (p̂)⊤
)⊤

satisfy the linear equation
Ω0

Ω⊤
0 Γn Ωn

Ω⊤
n Γn+1

. . .
. . .

. . . Ωn+N

Ω⊤
n+N Γn+N




σ′n,N (p̂)

ζ ′n,N,n(p̂)

ζ ′n,N,n+1(p̂)
...

ζ ′n,N,n+N (p̂)

 =


I
0
0
...
0

 , (12)

where the matrices Γk, k = n, . . . , n+N , are evaluated at η̂.



International Workshop on Mathematical Modeling and Scientific Computing 2022
Journal of Physics: Conference Series 2514 (2023) 012008

IOP Publishing
doi:10.1088/1742-6596/2514/1/012008

8

A proof of the theorem follows the lines of the proofs in [17] or [18, Theorem 6.1.4] for more
general nonlinear programs. The Hessian matrix of L w.r.t. z is given by the block diagonal
matrix diag(Hn, . . . ,Hn+N ). In order to show (12) it is exploited that either Sk or Tk in Γk

is zero while the respective other value is non-zero, if strict complementarity holds. Sensitivity
results without strict complementarity can be found in [19]. The conditions (i)-(iv) are sufficient
for ẑ being a minimum of DOCP(p̂, n,N). In particular, the matrix in (12) is non-singular at
ẑ under these conditions. The estimation of the neighborhoods in the theorem is difficult in
general. A numerical approach can be found in [20]. For linear-quadratic problems it is known,
see [21], that the solution depends piecewise linearly on the initial state. Hence, it is theoretically
possible to identify the corresponding polytopic regions in the state space, where the active set
changes. This would allow to obtain globally exact parametric solutions to the linear-quadratic
problems. However, this becomes numerically intractable for high dimensional state spaces and
we prefer the local analysis provided by the sensitivity theorem, which is valid for nonlinear
problems as well. Nevertheless part (b) indicates that the boundaries of the polytopic regions
are connected to a change in the active set.

4.1. Sensitivity update for MPC with prediction step
We exploit the sensitivity result in Theorem 1 and use it in step (2) of Algorithm 2 to improve
the solution of the prediction. Recall that xn+M in DOCP(xn+M , n +M,N) is a prediction
of the state at time n + M . This prediction relies on the measurement xn at time n and
the model (1). In general, however, p̂ = xn+M will deviate from the actual state at time
n + M . Let p = x̃n+M denote the measurement of the state at time n + M . Then the
solution of DOCP(p̂, n +M,N) can be improved using a sensitivity update. To this end, let
u′n+M,N,k(p̂), k = n+M, . . . , n+M +N , denote the sensitivities of the optimal control sequence

of DOCP(p̂, n+M,N), which is determined by (12) with n replaced by n+M .
For p ≈ p̂ and k = n +M, . . . , n +M + N the nominal optimal control can be updated by

the linear Taylor approximation

un+M,N,k(p) ≈ ũn+M,N,k(p) := un+M,N,k(p̂) + u′n+M,N,k(p̂)(p− p̂). (13)

The approximations for k = n+M and k = n+M +1 can then be used to update the solution
of DOCP(xn+M , n+M,N) in step (2) of Algorithm 2 and we obtain the following algorithm:

Algorithm 4 (MPC with prediction step and sensitivity update)

(0) Initialization: Set n = 0, choose prediction horizon N ∈ N and solution budget M ≤ N .

(1) Measure state xn at time n and predict state xn+M at time n+M using the model (1) for
k = n, . . . , N +M − 1 with initial value x(n) = xn.

(2) Solve DOCP(xn+M , n+M,N) and perform a sensitivity analysis with respect to xn+M by
solving (12) with n replaced by n+M .

(3) Measure the state x̃n+M at n+M and set µN (n+M,xn+M ) = ũn+M,N,n+M (x̃n+M ).

(4) Apply control µN (n+M,xn+M ) at time n+M to the control system.

(5) Set n← n+M and go to (1).

Please note that the sensitivity analysis is only justified under the assumptions of Theorem 1
for sufficiently small perturbations p from p̂. As a consequence the linearization might not
provide good approximations for large deviations. In the latter situation, it is recommended to
fully re-solve the optimal control problem for the measured state x̃n+M . The updated solution
may serve as an initial guess, though.
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4.2. Sensitivity update for multi-step MPC with prediction step and re-optimization
In this section we aim to avoid the explicit solution of DOCP(xn+k, n + k,N − k) for
k = 0, . . . ,M , in step (3.2) of Algorithm 3. Instead we approximate the optimal solution of
DOCP(xn+k, n+ k,N − k) with suitable sensitivity updates. We require the following auxiliary
result.

Theorem 2 Let n ∈ N0, N ∈ N, and p̂, q̂ ∈ Rn be given such that (1) is satisfied, i.e.

Ax(n)p̂+Au(n)un,N,n(p̂) +Bx(n+ 1)q̂ +Bu(n+ 1)un,N,n+1(p̂) = rn, (14)

where un,N,k(p̂), k = n, . . . , n + N , denotes the optimal control of DOCP(p̂, n,N). Let the
assumptions of Theorem 1 be fulfilled for DOCP(p̂, n,N) and let u′n,N,k(p̂) denote the sensitivities

of un,N,k(p̂) for k = n, . . . , n+N . Let the matrix

P (n) := Ax(n) + Au(n)u
′
n,N,n(p̂) +Bu(n+ 1)u′n,N,n+1(p̂)

be non-singular. Then there exist δ > 0 and ∆ > 0 and a function ρn : Bδ(q̂) → B∆(p̂) with
p̂ = ρn(q̂) and

Ax(n)ρn(q) +Au(n)un,N,n(ρn(q)) +Bx(n+ 1)q +Bu(n+ 1)un,N,n+1(ρn(q)) = rn (15)

for all q ∈ Bδ(q̂). Moreover, ρn is differentiable in Bδ(q̂) with

ρ′n(q̂) = −P (n)−1Bx(n+ 1). (16)

Proof. According to Theorem 1 there exists a neighborhood Bϵ(p̂) such that p 7→ un,N,k(p) is
differentiable for all p ∈ Bϵ(p̂) and all k = n, . . . , n +N . Since P (n) is non-singular and p̂ and
q̂ satisfy the equation (14), the implicit function theorem yields the existence of neighborhoods
Bδ(q̂) and B∆(p̂) with ∆ ≤ ϵ, and a differentiable function ρn : Bδ(q̂) → B∆(p̂) with (15).
Differentiation of (15) w.r.t. q and evaluation at q = q̂ yields (16).

We are now interested in the problem DOCP(q̂n+1, n + 1, N − 1) with q̂n+1 = xn,N,n+1(p̂),
where xn,N,n+1(p̂) refers to the optimal solution of DOCP(p̂, n,N) with p̂ = x̂n. We assume that
an optimal solution of DOCP(x̂n, n,N) is available and a sensitivity analysis has been performed
for the parameter p̂.

The optimal solution of DOCP(q̂n+1, n + 1, N − 1) is then immediately available according
to Bellman’s optimality principle, since the trajectory tail

zn,N,n+1(p̂), . . . , zn,N,n+N (p̂)

is optimal for DOCP(q̂n+1, n + 1, N − 1) with q̂n+1 = xn,N,n+1(p̂). We are now interested in
investigating perturbations in q̂n+1.

This is essentially the situation of step (3.2) in Algorithm 3. For k = 0 we can use the
sensitivities of DOCP(x̂n, n,N) to update its solution in the presence of a perturbation xn of
x̂n as outlined in the previous sections. Recall that this solution is already available in the
MPC algorithm from the previous prediction step. For k = 1 and a perturbation qn+1 = xn+1

of q̂n+1 the sensitivities of DOCP(q̂n+1, n + 1, N − 1) could be used to update the solution of
DOCP(q̂n+1, n + 1, N − 1). One way to obtain these sensitivities is to solve linear equation
(12) with n replaced by n + 1. Once the linear system is solved, an approximate solution to
DOCP(qn+1, n+ 1, N − 1) can be computed by the sensitivity update

un+1,N−1,k(qn+1) ≈ un+1,N−1,k(q̂n+1) + u′n+1,N−1,k(q̂n+1)(qn+1 − q̂n+1)
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for k = n+ 1, . . . , n+N , where u′n+1,N−1,k(q̂n+1) denotes the sensitivity of the optimal control

of DOCP(q̂n+1, n + 1, N − 1). In view of MPC only the update for k = n + 1 is needed for
implementation on the controlled system. Solving (12), however, requires time and causes a
delay.

Hence, we are seeking to answer the following question:

Can we compute an approximate solution for DOCP(qn+1, n+ 1, N − 1) for a perturbation
qn+1 of q̂n+1 using only the solution and senstivities of DOCP(p̂, n,N) without re-solving
(12) for DOCP(q̂n+1, n+ 1, N − 1)?

The answer is given in the following theorem.

Theorem 3 Let the assumptions of Theorem 2 be fulfilled. Then the sensitivity of the optimal
control un+1,N−1,n+1(q̂n+1) of DOCP(q̂n+1, n+ 1, N − 1) is given by

u′n+1,N−1,n+1(q̂n+1) = u′n,N,n+1(p̂)ρ
′
n(q̂n+1)

= −u′n,N,n+1(p̂)P (n)
−1Bx(n+ 1).

Proof. For q ∈ Bδ(q̂n+1), see Theorem 2, we have the relation

un+1,N−1,n+1(q) = un,N,n+1(ρn(q))

and by differentiation

u′n+1,N−1,n+1(q̂n+1) = u′n,N,n+1(p̂)ρ
′
n(q̂n+1)

= −u′n,N,n+1(p̂)P (n)
−1Bx(n+ 1).

Theorem 3 provides an update rule, which relies on the already computed sensitivities of
DOCP(p̂, n,N).

The above procedure can be extended inductively for a number k ∈ {1, . . . ,M}, since the
trajectory tail

zn,N,n+k(p̂), . . . , zn,N,n+N (p̂)

is optimal for DOCP(q̂n+k, n + k,N − k) with q̂n+k = zn,N,n+k(p̂). To this end we exploit the
relation

un+k,N−k,n+k(qn+k) = un,N,n+k(ρn ◦ ρn+1 ◦ · · · ◦ ρn+k−1(qn+k))

for k = 1, . . . ,M and qn+k sufficiently close to q̂n+k (such that ρn ◦ ρn+1 ◦ · · · ◦ ρn+k−1(qn+k) ∈
Bϵ(p̂)). By the chain rule we obtain

u′n+k,N−k,n+k(q̂n+k) = (−1)k−1u′n,N,n+k(p̂)

k−1∏
j=0

P (n+ j)Bx(n+ 1 + j)

with

P (n+ j) =
(
Ax(n+ j) +Au(n+ j)u′n,N,n+j(p̂) +Bu(n+ 1 + j)un,N,n+1+j(p̂)

)−1
.

This proves the following theorem.

Theorem 4 Let the assumptions of Theorem 2 be fulfilled for n, n+1, . . . , n+M with M ≤ N .
Then the sensitivity of the optimal control un+k,N−k,n+k(q̂n+k) of DOCP(q̂n+k, n + k,N − k),
k ∈ {1, . . . ,M}, is given by

u′n+k,N−k,n+k(q̂n+k) = (−1)k−1u′n,N,n+k(p̂)
k−1∏
j=0

P (n+ j)Bx(n+ 1 + j).
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5. Numerical experiments
All computations were performed on a laptop with 8 GB RAM and Intel®Core™i5-5200U @
2.20 GHz processor to signify the minimal required computational time and the fast system
convergence even under limited resources.

Here we investigate the path tracking problem for a kinematic vehicle, in which we employ
and compare the performance of the basic MPC Algorithm 1, the MPC Algorithm 2 with
prediction step, and the MPC Algorithm 4 with prediction step and sensitivity update. To avoid
redundancy, these algorithms are denoted in the sequel as Alg.1, Alg.2, and Alg.4 respectively.
The motion of the vehicle is formulated in curvilinear coordinates relative to a reference path
[22] as

s′(t) =
v(t) cos(ψ(t)− ψr(t))

1− r(t) · κr(s(t))
, (17a)

r′(t) = v(t) sin(ψ(t)− ψr(t)), (17b)

ψ′(t) = v(t)κ(t), (17c)

κ′(t) = u(t), (17d)

ψ′
r(t) = s′(t)κr(s(t)). (17e)

Where s is the arclength of the projected vehicle position unto the reference path, r denotes the
lateral offset to this path, ψ is the vehicle’s yaw angle, κ is the curvature of the vehicle’s driven
path, ψr is the reference path angle, and u controls the vehicle’s lateral jerk. This non-linear
model is discretized and used in coordination with a Runge-Kutta fourth-order method to reach
an accurate estimation of the states xn+M at time n+M for the prediction phase in Algorithms
2 and 4. Henceforth, the vehicle is assumed to drive with the constant velocity V = 15 [m/s].

Linearization of (17) for small deviations from the reference path yields the linear differential
equation system

s(t)
r(t)
ψ(t)
κ(t)
ψr(t)


′

︸ ︷︷ ︸
=x′(t)

=


0 0 0 0 0
0 0 V 0 −V
0 0 0 V 0
0 0 0 0 0
0 0 0 0 0


︸ ︷︷ ︸

=A


s(t)
r(t)
ψ(t)
κ(t)
ψr(t)


︸ ︷︷ ︸

=x(t)

+


0
0
0
1
0


︸ ︷︷ ︸

=B

u(t) +


V
0
0
0

V κr(s(t))


︸ ︷︷ ︸

=d

. (18)

Thus, a tracking optimal control problem on the time horizon [0, tf ] reads as

Minimize
1

2

∫ tf

0
x(t)⊤Qx(t) + u(t)⊤Ru(t) dt

subject to (18), initial value x(0) = p̂, control constraints u(t) ∈ [umin, umax],
and state constraints r(t) ∈ [rmin, rmax], κ(t) ∈ [κmin, κmax].

Herein, R > 0 and

Q =


0 0 0 0 0
0 1 0 0 0
0 0 1 0 −1
0 0 0 0 0
0 0 −1 0 1

 .

Discretization by the implicit trapezoidal rule yields the following optimal control problem
in discrete time:
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Minimize

h

2

(
1

2

(
x⊤0 Qx0 + u⊤0 Ru0

)
+

N−1∑
k=1

(
x⊤k Qxk + u⊤k Ruk

)
+

1

2

(
x⊤NQxN + u⊤NRuN

))

subject to the constraints

xk+1 = xk +
h

2
(Axk +Buk + dk +Axk+1 +Buk+1 + dk+1) , k = 0, . . . , N − 1,

g ≥ Gxxk +Guuk, k = 0, . . . , N,

x0 = p̂.

This problem fits into the class DOCP(p̂, 0, N) with the settings

Ax = −(I + h

2
A), Au = Bu = −h

2
B, Bx = (I − h

2
A), rk =

h

2
(dk + dk+1)

and

Gx =


0 1 0 0 0
0 −1 0 0 0
0 0 0 1 0
0 0 0 −1 0
0 0 0 0 0
0 0 0 0 0

 , Gu =


0
0
0
0
1
−1

 , g =


rmax

−rmin

κmax

−κmin

umax

−umin

 .

For numerical evaluation, we choose the following test parameters: p̂ = (0.0, 3, 0.1, 0, 0)⊤,
tf = 10 [s], N = 100, M = 10, umax = −umin = 0.3 [1/(ms)], κmax = −κmin = 0.1 [1/m],
rmax = −rmin = 4 [m]. Additionally, we recreate sensor measurement noise on x̃n+M for
the sensitivity updates by imposing random perturbations on r̃ − r̂ ∈ [−0.1, 0.1] and on
κ̃− κ̂ ∈ [−0.002, 0.002]. For the tracking problem, we use the test track depicted in figure 1 as
the reference path, which is a 1:1 model of the test track located in campus of the Universität
der Bundeswehr München.

In the sequel we will vary the weight R for the control effort in the objective function and
discuss the achieved results by the proposed MPC algorithms. Herein, the initial guess was
set to zero for the entire vector η. The CPU time for solving (12), i.e. for computing the
sensitivities, contains the set-up of equation (12), an LU decomposition of the matrix, and n
(=state dimension) forward-backward substitutions to solve the equation. In fact, in a more
efficient implementation one could even spare the LU decomposition, since it can be re-used
from the final iterate of the semi-smooth Newton method. This would further reduce the CPU
time for the sensitivity analysis. However, we will see in the following subsections that the CPU
time for the sensitivities is very low.

5.1. The case R = 100
We choose R = 100 as the weight for the control effort in the objective function, which yields
the trajectories displayed in figure 2 for the different MPC algorithms. The deviation in the
vehicle’s trajectory from the reference path is represented by the state r and the error in heading
ψ−ψr, which are illustrated in figures 3 and 4 respectively. The scenario begins with the initial
deviation r = 0.3 [m] and ψ−ψr = 0.1 [rad] and, as expected, the idealized Alg.1 converges the
fastest since it operates instantaneously at 0 [s] as shown in figure 6. However, the other two
algorithms operate more realistically and only yield a control action after the first time step has
passed, which explains the greater overshoot in system states before stabilization. Nevertheless,
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Figure 1. Reference test track for the path tracking problem
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Figure 2. Generated vehicle trajectories as achieved by the MPC algorithms with R = 100.

all algorithms are able to eliminate the initial deviation within the first 4 seconds (around
s = 60 [m]) and the state constraints are not active during the entire solution space.

To properly assess the path tracking behavior, we omit data entries prior to the initial error
stabilization and summarize the algorithms’ results in table 1. For compactness, we also include
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Figure 3. Vehicle’s lateral offset r across the reference path with R = 100.
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Figure 4. Deviation of the vehicle heading to the reference path ψ − ψr with R = 100.

the CPU time tCPU for solving the DOCP(p̂, 0, 100) using the semi-smooth Newton method
in Section 3 and the CPU time tCPU,s for solving (12), i.e. for computing the sensitivities,
for all data entries. We notice that Alg.1 and Alg.2 exhibit similar behaviors with minimal
deviation from the reference path, while Alg.4 yields comparatively larger deviations. These
values are however coherent with the magnitude of the perturbations we introduced to the
system states, which highlights the controller’s ability to consistently stabilize the system
despite the imposed noise. Additionally, this approach is suitable for real-time applications
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Figure 5. The constraints for κ are not activated with R = 100.
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Figure 6. Numerical solution of DOCP with R = 100: Control u. The constraint u ≥ umin is
only active momentarily at the first solution step.

as tCPU < tk+1 − tk, k ∈ N0, i.e. the DOCP solution is always available at the requested time.
Finally, the time for computing the sensitivities is negligible compared to solving the DOCP, as
tCPU,s ≤ 0.003731 [s].

To better illustrate the control and its sensitivities w.r.t. an initial state p, we shift our
focus to the numerical solution of the DOCP for a single step, i.e. the first solution step at
time 0.1 [s] with p̂ = (1.4925, 3.2187, 0.1012, 0.0, 1.0e − 06)⊤. The control and sensitivities are
displayed in figure 7, where the plots have different scales for the control value and the respective
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Table 1. Path tracking results achieved by the MPC algorithms with R = 100
||r|| [m] ||ψ − ψr|| [rad] tCPU [s] max(tCPU,s) [s]

mean max mean max mean max
Alg.1 0.038275 0.440323 0.003680 0.040423 0.005587 0.021811 -
Alg.2 0.043051 0.502377 0.004178 0.047116 0.005524 0.018018 -
Alg.4 0.136355 0.688770 0.010950 0.054566 0.008287 0.021578 0.003731

sensitivities, e.g., the sensitivity w.r.t. the initial curvature κ(0) is high whereas the sensitivity
w.r.t. to the initial offset r(0) is comparatively low. As stated by Theorem 1, the sensitivities
on the bang-bang arcs of the control are zero.
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Figure 7. Comparison of control ũ(q) from combined solution of DOCP(p̂, 1, 100) and sensitivity
analysis against the control solution u(q) from re-optimization with R = 100. Moreover, the
sensitivities w.r.t. the relevant initial states r(0), ψ(0), κ(0), ψr(0) are displayed (sensitivity w.r.t.
s(0) is = 0). Please note the different scales of control values (left y-axis) and sensitivity values
(right y-axis). In all cases the sensitivities and control values beyond 4 [s] are close to zero and
are not depicted.

The sensitivities allow to update the control values using the linear Taylor approximation
in (13) and, as guaranteed by Theorem 1, the approximation will be very accurate for small
perturbations in p in p̂. We omit numerical results as they simply confirm the theory. Instead
we investigate the use of sensitivity updates in Theorem 3 in Section 4.2.

For a perturbation of −0.1 [m] in the component r and 0.002 [rad] in the component ψ of q̂1
at time k = 1 (resp. time t1 = h) we obtain

u′1,N−1,1(q̂1) = (0.0,−7.5413e− 02,−9.1921e− 01,−5.5644e+ 00, 9.1921e− 01)⊤,

u′1,N−1,2(q̂1) = (0.0,−3.3130e− 02,−5.1694e− 01,−3.9082e+ 00, 5.1694e− 01)⊤.
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These updates allow to compute approximate control values

ũ1,N−1,1(q) = u1,N−1,1(q̂1) + u′1,N−1,1(q̂1)(q1 − q̂1),
ũ1,N−1,2(q) = u1,N−1,2(q̂1) + u′1,N−1,2(q̂1)(q1 − q̂1).

For comparison, the re-optimization of DOCP(q1, 1, N − 1) in this example required 0.01092 [s],
which is approximately six times the solution time for the sensitivity analysis 0.00174 [s]. The
errors in the control values are |u1,N−1,1(q1)−ũ1,N−1,1(q1)| = 0 and |u1,N−1,2(q1)−ũ1,N−1,2(q1)| ≈
2.068e− 03, which yields a sufficiently good approximation.

5.2. The case R = 5
We choose R = 5 as the weight for the control effort in the objective function, as it offers a good
compromise between system aggressiveness and minimizing the required computational effort
for solving the DOCP, see Section 3. This yields the trajectories displayed in figure 8 for the
different MPC algorithms, as well as the system states illustrated in figures 9, 10, and 11. The
control output depicted in figure 12 starts with a bang-bang arc, then the control remains on
a free arc for the rest of the time interval and approaches zero quickly, such that the initial
deviation is eliminated by all algorithms within the first 2.8 seconds (around s = 42 [m]).

-500 -300 -100 100 300 500
x[m]

-500

-300

-100

100

y
[m

]

Reference
Alg.1
Alg.2
Alg.4

Figure 8. Generated vehicle trajectories as achieved by the MPC algorithms with R = 5.

Due to the aggressive controls, the state κ approaches both its upper and lower constraints
during the bang-bang control arc, yet it does not activate the state constraints due to the rapid
system stabilization. Hence, similar to R = 100, no state constraints are activated during the
entire solution space.

As shown in table 2, all algorithms display significant improvement in all path tracking
parameters when compared to R = 100, with the exception of a slight increase inmean(||ψ−ψr||)
for Alg.4. This can be explained by the higher sensitivity to ψ, which, combined with
the random perturbations and the more aggressive controls, makes it difficult for the solver
to correct minor deviations in the vehicle’s heading. Furthermore, there is a noticeable
increase in tCPU , which corresponds to 150% increase in the required computational time in
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Figure 9. Vehicle’s lateral offset r across the reference path with R = 5.
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Figure 10. Deviation of the vehicle heading to the reference path ψ − ψr with R = 5.

the worst case for Alg.4. However, the approach is still valid for real-time applications as
max(tCPU ) = 0.035966 < tk+1 − tk = 0.1, k ∈ N0. Finally, the time for solving (12), i.e. for
computing the sensitivities, is tCPU,s ≤ 0.004153 [s] and it is in the same range as for R = 100
and again it is negligible.

Figure 13 shows the control and its sensitivities w.r.t. the initial state p̂. The plots have
different scales for the control value and the respective sensitivities. Especially the sensitivity
w.r.t. the initial curvature κ(0) is high whereas the sensitivity w.r.t. to the initial offset r(0) is
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Figure 11. Despite the more aggressive response, the constraints for κ are not activated with
R = 5.
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Figure 12. Numerical solution of DOCP with R = 5: Control u. Note the bang-bang arc at
t ∈ [0, 1.0] before rapid system stabilization.

comparatively low.
As stated by Theorem 1, the sensitivities of the control on the bang-bang arcs are zero. As a

consequence, if the sensitivity update is used within the two MPC schemes, the active controls
at the beginning of the time interval will remain unchanged under perturbations. Hence, the
MPC schemes proceed with the control values on the boundary of the control constraints until
the control leaves the box constraints. On the free arcs, the sensitivity updates kick in similar
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Table 2. Path tracking results achieved by the MPC algorithms with R = 5
||r|| [m] ||ψ − ψr|| [rad] tCPU [s] max(tCPU,s) [s]

mean max mean max mean max
Alg.1 0.009891 0.125330 0.001108 0.017017 0.005627 0.029300 -
Alg.2 0.011739 0.146783 0.001301 0.021475 0.005524 0.030496 -
Alg.4 0.098705 0.405953 0.012630 0.051335 0.008387 0.035966 0.004153
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Figure 13. Comparison of control ũ(q) from combined solution of DOCP(p̂, 1, 100) and
sensitivity analysis against the control solution u(q) from re-optimization with R = 5.
Additionally, the sensitivities w.r.t. the relevant initial states r(0), ψ(0), κ(0), ψr(0) are displayed
(sensitivity w.r.t. s(0) is = 0). Please note the different scales of control values (left y-axis) and
sensitivity values (right y-axis). In all cases the sensitivities and control values beyond 3 [s] are
close to zero and are not depicted.

to the case R = 100, where control bounds were inactive. Please note that this is not a mistake
since the optimal solution in this case starts with an active control constraint.

6. Conclusion
We explored how parametric sensitivity analysis can be used in MPC schemes with prediction
step and multi-step MPC schemes with re-optimization and prediction and showed that
sensitivity updates can reduce the computational load while they deliver good approximations to
perturbed optimal solutions. It was also shown that the sensitivity update has no effect on active
control arcs, if the control starts with an active arc on the prediction horizon of the MPC step.
While the numerical studies in this paper focused on a single optimal control problem in order
to evaluate the sensitivity updates, further numerical studies are necessary for the full MPC
control loop and the overall performance including stability investigations. Such investigations
are beyond the scope of this study and we leave this open for future investigations.
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