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Abstract

The topic of this PhD thesis are estimates for the discretization error of optimal control problems
with parabolic partial differential equations. Such problems occur e.g. during the hydration
of young concrete. This problem is introduced in this thesis. Subsequently the discretization
of optimal control problems with linear parabolic partial differential equations is discussed in
detail.

A focus are tailored Crank-Nicolson schemes with convergence order two. The specialty
of these tailored schemes is the commutation of optimization and discretization and the
discretization of the state and the control at different discrete times. These discretizations
are introduced for abstract parabolic optimal control problems with a cost functional which
includes the tracking of a desired state over the full space-time cylinder, the tracking of the
terminal state and the control costs.

Furthermore the finite element approximation of some semi-elliptic boundary value problems
is discussed. Such problems are connected with parabolic optimal control problems and are
of different order of differentiation in different dimensions. The corresponding bilinear form
is V -elliptic in an appropriately chosen Hilbert space. For these boundary value problems a
regularity estimate and a priori error estimates for the energy norm and L2-norm are proven.

Numerical examples for the Crank-Nicolson discretization and the finite element approxima-
tion confirm the expected rates of convergence.

Zusammenfassung

Diese Dissertation behandelt die Abschätzung des Diskretisierungsfehlers bei Optimalsteue-
rungsproblemen mit parabolischen partiellen Differentialgleichungen. Solche Probleme treten
beispielsweise bei der Hydratation von jungem Beton auf. Dieses Problem wird zu Beginn der
Arbeit eingeführt. Anschließend wird die Diskretisierung von Optimalsteuerungsproblemen mit
linearen parabolischen partiellen Differentialgleichungen im Detail diskutiert.

Ein Schwerpunkt der Arbeit liegt in angepassten Crank-Nicolson Verfahren, die die Konvergenz-
ordnung zwei liefern. Die Verfahren sind so konstruiert, dass Optimierung und Diskretisierung
kommutieren und der Zustand und die Steuerung an verschiedenen Zeitpunkten diskretisiert
werden. Diese Diskretisierung wird für abstrakte parabolische Optimalsteuerungsprobleme mit
einem Kostenfunktional eingeführt, das das Ansteuern eines gewünschten Zustandes über den
ganzen Raum-Zeit-Zylinder, das Ansteuern eines gewünschten Endzustands und die Kontroll-
kosten beinhaltet.

Außerdem wird eine Finite Elemente Methode für gewisse semielliptische Randwertaufgaben
eingeführt. Die betrachteten Probleme stehen im Zusammenhang mit Optimalsteuerungsproble-
men parabolischer Differentialgleichungen und weisen verschiedene Differentationsordnungen in
verschiedenen Raumdimensionen auf. Die zugehörigen Bilinearformen sind in einem geeignet
gewählten Hilbertraum V -elliptisch. Für die Lösung dieser Randwertprobleme wird eine Regu-
laritätsabschätzung hergeleitet und eine a priori Fehlerschranke in der Energienorm und der
L2-Norm bewiesen.

Numerische Beispiele für die Crank-Nicolson-Diskretisierungen und die Finite Element Me-
thode bestätigen die erwarteten Konvergenzraten.
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1.1. Motivation

As computer and computational power became available the first challenge was the solution
of equations and large systems of equations. These equations were not solved for their own
sake but as approximation of the solution of (partial) differential equations. So the next step
was the development of advanced methods for the discretization and approximation of (partial)
differential equations. In parallel the development of solution algorithms for systems of equations
went on.

Now we are at the point that the numerical solution and approximation of partial differential
equations and the corresponding systems of equations are well studied and we observe the
next step in the requirements of computations. In technical applications the partial differential
equations are not solved for their own sake but the solution should fulfill some requirements. So
the application asks for an, in some sense, optimal solution of the problem. In engineering the
simulation based optimization approach is widely used, i.e. the problem is solved with several
input data and the best solution is chosen afterwards. We discuss the model based simulation,
where we consider the problem in an appropriate function space and develop algorithms which
yield (an approximation of) the optimal solution.

At the beginning of the work on this PhD thesis it was known by the work of Vexler and
coworkers [11, 80, 81, 82, 83, 115] that the approaches optimize-then-discretize and discretize-
then-optimize lead to the same discrete scheme for Galerkin time discretizations of optimal
control problems with parabolic partial differential equations. At this time it was unknown to
many researchers whether a time stepping scheme, which is not also a Galerkin scheme, with
this property exists. By the author of this PhD thesis a Crank-Nicolson discretization, for
which discretization and optimization commute, was developed. This Crank-Nicolson scheme
gives a second order approximation due to a tailored approximation, in which the state and the
control are discretized in different time points. As the Crank-Nicolson scheme coincides with
the Störmer-Verlet discretization it was suddenly obvious that for some symplectic Runge-Kutta
schemes discretization and optimization commute as seen in the case of ordinary differential
equations by Bonnans and Laurent-Varin [16, 17] and Hager [54, 55].
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1. Introduction

In parallel to the author Meidner and Vexler developed a Petrov-Galerkin-Crank-Nicolson
scheme, which also provides a second order approximation. In the preprint [83] Meidner and
Vexler introduce their scheme for an optimal control problem with a finite dimensional control
space and with control constraints, whereas the preprint [4] of Apel and Flaig with a continuous,
infinite dimensional control space but no control constraints was available a little bit later. In
the meantime both preprints have been published [5, 84] and the Crank-Nicolson discretization
of [5] has been adopted to more general optimal control problems for this thesis.

This thesis is divided into several parts, which have strong interconnections. The starting
point is the hydration of concrete and connected optimal control problems with parabolic
partial differential equations. These optimal control problems motivate also the examination of
optimal control problems with linear parabolic partial differential equations. As optimal control
problems can be solved only in very special circumstances analytically, the use of discretization
schemes is essential.

We now give a further short overview of the main results of the different parts of this thesis
and relate them to the literature.

1.2. Hydration of concrete

In the following chapter the real world problem of cracks in young concrete is introduced.
Concrete is produced from the mixing of cement, aggregate, admixtures and water. After
the mixing an exothermic chemical reaction, known as hydration, begins and the rigid body
properties of concrete develop. During this process cracks may occur and are, in most cases,
not wanted. In Chapter 2 we give an overview of the thermo-mechanical properties of young
concrete and formulate related optimal control problems.

An overview of the hydration of young concrete can be found e.g. in the works of Eierle [38],
Krauß [71], Rostásy, Krauß and Gutsch [111] and a series of articles by Rostásy, Krauß and
Budelmann [105, 106, 107, 108, 109, 110].

For model based optimization only few references for the hydration of concrete are known
to the author. Sperber and Tröltzsch [120] discuss optimality conditions for optimal control
problems with semilinear parabolic partial differential equations which were inspired by the
hydration of concrete. Kalkowski [69] simplifies the optimal control of the hydration of thin
structures of concrete to an optimal control problem of ordinary differential equations. Apel
and Flaig [3] present the simulation of the hydration of concrete and introduce a family of
optimal control problems for the hydration of young concrete with parabolic partial differential
equations. Benedix [12] uses adaptive solution algorithms for some optimal control problems
for the hydration of young concrete.

The problem of the hydration of concrete is evocative of the Stefan problem, which describes
e.g. the phase transition of water and ice. But in contrast to Stefan problems and connected phase
field problems where a discrete or smeared interface exists, there is no macroscopic interface in
the hydration of concrete as the chemical reaction proceeds everywhere in the concrete structure
at the same time. For optimal control of phase field problems see e.g. [14, 63, 121].

Another real world optimal control problem with parabolic partial differential equations is
the cooling of glass [62, Chapter 4.2]. In this case a coupled system of a parabolic partial
differential equation and an elliptic partial differential equation with time dependent boundary
condition and time dependent right hand side must be controlled. Optimal control problems

2



1.3. Functional and Numerical analysis

with tracking type functional for this system are discussed in [29, 62, 75, 97, 126]. Clever and
Lang [29] use a cost functional which involves not only the tracking of the state but also the
tracking of the gradient of the state.

1.3. Functional and Numerical analysis

In Chapter 3 and Chapter 4 we recapitulate tools from functional and numerical analysis and
introduce a new a priori estimate and finite element discretization of a semi-elliptic boundary
value problem.

The class of semi-elliptic equations includes all elliptic boundary equations, but also allows
problems with different order of differentiation in different dimensions (see e.g. [59, Definition
1]) as in the problem

−ytt +AAy + y = f in Q = Ω× (0, T ), (1.1)

with an H1
0 (Ω)-elliptic operator A and the boundary conditions

y(·, 0) = 0, in Ω, yt(·, T )−Ay(·, T ) = 0, in Ω,

y = 0 on Σ1,
∂y

∂nA
= 0 on Σ2,

Ay = 0 on Σ1,
∂Ay

∂nA
= 0 on Σ2,

where Σi = Γi× (0, T ) for i = 1, 2 and Γ1 ∪Γ2 = ∂Ω. It is easy to verify that the corresponding
bilinear form is V -elliptic in the Sobolev space V = H(2,1)(Q), the Sobolev space of all L2(Q)-
functions whose second derivative with respect to x and first derivative with respect to t are
square integrable. Equations of the type (1.1) are not only of academic interest but also appear
in the context of optimal control of parabolic partial differential equations. To the knowledge
of the author in the context of parabolic optimal control problems such equations have been
derived first by Büttner [24] and properties, such as ellipticity, have been discussed by Neitzel,
Prüfert and Slawig [88, 89]. Gong, Hinze and Zhou [46] provide a priori and a posteriori error
estimates for mixed finite element discretizations.

For the analysis of this problem we introduce in Chapter 3 Sobolev spaces with variable order
of differentiation in different dimensions, which are also discussed in [15, 74, 77, 79, 92, 127]. A
priori regularity estimates in Besov spaces for the equation (1.1) on the unit circle are given by
Triebel [127]. Estimates for general semi-elliptic equations can be found e.g. in [7, 8, 93, 59].
Even if these references are given, many results are less known than their isotropic counterparts,
often only proven for special cases and the results are widely scattered in the various references.
We collect all the results which are needed for the discussion of a finite element approximation
of the boundary value problem (1.1). Further, a regularity estimate for semi-elliptic boundary
value problem (1.1) is proven.

Beside this in particular classical Sobolev spaces are introduced and regularity estimates for
elliptic and parabolic partial differential equations are given.

In the chapter about numerical analysis of partial differential equations, Chapter 4, we include
the presence in the approximation of the right hand side to our analysis. So we prove also
the error estimate for the Crank-Nicolson time stepping scheme for parabolic equations in the
presence of a numerical evaluation of the right hand side.

3



1. Introduction

Although finite element error estimates are well known for second and fourth order elliptic
boundary value problems, much less is known, if the differential equation has different orders in
different dimensions. So we introduce an anisotropic finite element method and prove a priori
error estimates up to the order h2 + τk in the energy norm and up to the order (τk +h2)(τ +h2)
in the L2(Q)-norm with k = 1, 2, 3 for the semi-elliptic problem (1.1) in one spatial dimension.
In the proof of the interpolation error we apply a technique, which was used by Rachowicz [99]
for the anisotropic discretization of elliptic equations.

Oganesyan [93] provides for a similar semi-elliptic problem the error estimate

‖y − yhτ‖H(2,1)(Q) .

(
τ4 + h8

τ2 + h4

)1/2

‖y‖H(4,2)(Q) ,

but gives neither a L2(Q)-error bound nor numerical examples.
Another example for a semi-elliptic boundary value problem is given by the Onsager equation

(ex (exuxx)xx)xx + buyy = f(x, y), in (0, 1)2,

ux(0, y) = uxx(0, y) = 0, (ex (ex uxx)xx)x (0, y) = g(y),

u(1, y) = ux(1, y) = 0, (exuxx)x (1, y) = 0,

−buy(x, 0) = d
(

ex/2 ux

)
x

+ γ0(x),

buy(x, 1) = d
(

ex/2 ux

)
x

+ γ1(x)

First finite element discretizations of this equation are given in [13, 49]. Eastham and Peterson
[37] use an isotropic tensor product finite element with B-spline basis functions. In contrast
to our technique they only achieve second order of convergence in L2(Ω). It is likely that the
transfer of our approach leads to better approximation rates and suggestions for different step
size for x and y. The technical details in the derivation of error estimates of the Onsager
equation would include the definition of global C2-continuous finite elements and an interpolation
operator which preserves the C2-continuity.

1.4. Parabolic optimal control problems

In Chapter 5 we consider the optimality conditions of the optimal control problem with parabolic
partial differential equations. In particular we consider the optimal control problem

min
y,u

J(y, u),

s.t. Myt +Ay = Gu,

My(0, ·) = Mv(·),

 (1.2)

where the cost functional J(y, u) is defined by

J(y, u) =
α

2

∥∥∥M1/2
D (y(·, T )− yD(·))

∥∥∥2

H
+
β

2

∫ T

0

∥∥∥M1/2
d (y(·, t)− yd(·, t))

∥∥∥2

H
d t+

+
ν

2

∫ T

0

∥∥∥M1/2
u u

∥∥∥2

H
d t.
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1.4. Parabolic optimal control problems

with the control u and the state y. The Hilbert space H is appropriately chosen, the desired
states yD ∈ H, yd(·, t) ∈ H and the initial condition v ∈ H are given. The linear and continuous
operator A maps the subspace V ⊆ H into its dual V ∗. Further the linear continuous and
self-adjoint operator M : V ∗ → V ∗, the linear and continuous operator G : H → V ∗ and the
linear, self-adjoint, positive semi-definite and continuous operators MD, Md, Mu : H → H are
given. The coefficients in the cost functional α, β, ν ∈ R are greater than or equal to zero and
additionally ν > 0 and α+ β > 0 hold. So the equality in (1.2) is in the sense of C(0, T ;V ∗).

The optimality conditions of this problem follow from the theory of optimal control with
partial differential equations, which can be found e.g.. in [62, 78, 101, 128, 129]. These conditions
are given by a system of equations containing the (forward) state equation and the (backward)
adjoint equation which are coupled by the gradient equation, which is sometimes also called
optimality condition.

We observe that the optimality conditions are a Hamiltonian system. This is less often used
in the context of optimal control with partial differential equations but well known in the
context of optimal control problems with ordinary differential equations [16, 17, 27]. In our
numerical analysis we will use the fact that the optimality conditions are a Hamiltonian system.
Finally we see that the optimality system can be reduced to a single H(2,1)(Q)-elliptic equation
(see also [24, 46, 86, 87]).

Examples for the problem (1.2) contain the following (but are not restricted to these cases):

1. Optimal control problem for parabolic partial differential equations:

min
α

2
‖y(·, T )− yD(·)‖+

T∫
0

β

2
‖y − yd‖2L2(Ω) +

ν

2
‖u‖2L2(Ω) d t,

s.t. yt −Ay = u in (0, T ]× Ω,

∂

∂nA
y = 0 on (0, T ]× Γ1,

y = 0 on (0, T ]× Γ2,

y(·, 0) = v in {0} × Ω,

where the boundary ∂Ω of the domain Ω is partitioned into a Neumann boundary Γ1 and
a Dirichlet boundary Γ2, so that ∂Ω = Γ1 ∪ Γ2.

The problem is well posed if we choose yd ∈ L2((0, T ), L2(Ω)) and yD, v ∈ L2(Ω), but
later we will need more regularity to show the second order convergence of discretizations.

2. Optimal control problem for a system of ordinary differential equations:

min
α

2
‖y(·, T )− yD(·)‖2Rn +

T∫
0

β

2
‖y − yd‖2Rn +

ν

2
‖u‖2Rn d t,

s.t. Myt +Ay = Mu,

y(0) = v,

We can think of the spatial discretization of a parabolic partial differential equation,
where M is the mass matrix and A is the stiffness matrix.
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1.5. Discretization of parabolic optimal control problems

In Chapter 6 we discretize the optimal control problem (1.2) with a tailored Crank-Nicolson
time discretization scheme so that discretization and optimization commute. In this thesis the
results of Apel and Flaig [4, 5] are extended to more general optimal control problems. We
introduce a family of time discretizations. One of the Crank-Nicolson discretizations coincides
with the application of the Störmer-Verlet scheme to the corresponding Hamiltonian system.
For this scheme an a priori error estimate of second order is proven.

In Chapter 7 we discuss the finite element approximation of the single H(2,1)(Q)-elliptic
equation which was derived by eliminating the adjoint state and the control in the optimality
conditions. As a conforming approximation of H(2,1)(Q)-elliptic problems was discussed in
Chapter 4, we give only a short reference to these and focus on a mixed finite element
approximation. We see that this mixed finite element approximation is equivalent to the
elimination of the control and adjoint state in one of the Crank-Nicolson discretizations of
Chapter 6.

For time discretizations of the optimal control problem we mention here also the literature for
optimal control problems with ordinary differential equations and parabolic partial differential
equations. Bonnans and Laurent-Varin [16, 17] analyzed the application of symplectic partitioned
Runge-Kutta schemes (SPRK) to the optimal control problem

min Φ (y(T )) (1.3)

s.t. yt = f (u(t), y(t)) , y(0) = y0,

with ordinary differential equations and terminal observation in the target function. With the
aim that both approaches (optimize then discretize and discretize then optimize) result in the
same scheme, they obtained order conditions up to order six, but they mention no method,
which fulfills the conditions. On the other hand a tracking type cost functional for an ordinary
differential equation can be treated as terminal cost functional (1.3) on additional components
of y, see [54, Section 1]: The optimal control problem

min
u

∫ T

0

1

2
‖y − yd‖2H +

ν

2
‖u‖2H d t

s.t. yt = f(u(t), y(t)), y(0) = v

is equivalent to the following optimal control problem with terminal observation

min z(T )

s.t. yt = f(u(t), y(t)), y(0) = v,

zt =
1

2
‖y(t)− yd(t)‖2H +

ν

2
‖u(t)‖2H , z(0) = 0.

Nevertheless as we discuss optimal control problems with partial differential equations, we
discuss a cost functional, which may contain a term for the tracking over the full space-time
cylinder and a term for the tracking of the terminal state, as we use the structure of the solution
of the partial differential equation.

Some of the order conditions of Bonnans and Laurent-Varin can also be found in two papers
by Hager [54, 55]. Moreover Chyba, Hairer and Vilmart [27] analyze for what kind of optimal
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1.5. Discretization of parabolic optimal control problems

control problems with ordinary differential equations symplectic methods are superior to non-
symplectic methods and come to the conclusion that this depends on the optimal control
problem under consideration.

For optimal control problems with ordinary differential equations and constraints we mention
an article by Dontchev, Hager and Veliov [35]. They develop a second order Runge-Kutta
method for control constrained problems and prove an error estimate for the case, when the
derivative of the optimal control has bounded variation.

All these articles deal only with ordinary differential equations but not with partial differential
equations.

In recent papers about the optimal control of parabolic partial differential equations the
mentioned results about the interchangeability of discretization and optimization for certain
time stepping schemes seem to be unknown, or at least uncited, see e.g. [11, 33, 60, 61, 80, 81,
82, 83, 84, 86, 87, 115].

For the optimal control of parabolic partial differential equations space-time finite element
methods are very common. In several papers Vexler and coworkers have developed such methods,
based on a continuous or discontinuous Galerkin method for the time discretization [11, 80,
81, 82, 83, 84, 115], see also [86]. They also achieve the interchangeability of discretization
and optimization. Both, Meidner and Vexler [82] and Neitzel, Prüfert and Slawig [87], discuss
optimal control problems with parabolic partial differential equations with control constraints.
The approach of space-time finite elements is also used by Deckelnick and Hinze [33], who
consider state constraints. Almost all of these discretizations are first order in time. Higher
order estimates can be found in [4, 5, 81, 83, 84].

Due to the coupling of the forward in time state equation and the backward in time adjoint
equation all these discretizations can not be resolved time step by time step but result in a huge
system of equations. Multigrid methods on the space-time grid are particularly efficient for their
solution, see the fundamental work by Borz̀ı [18] which extends earlier works by Hackbusch,
e.g. [52], and the transfer to flow control problems by Hinze, Köster and Turek [60, 61]. The
first order implicit Euler scheme is used for time discretization in all these papers. As the
L2(Ω)-approximation error for linear finite elements is of second order this suggests the choice of
τ = O(h2) for balancing the errors. With further refinements this leads to an anisotropic mesh
and should influence the smoothing and (semi-)coarsening techniques. With the Crank-Nicolson
method, space and time discretization have the same order, and the choice τ = O(h) is possible
for a well-balanced error distribution. We assume that the isotropic elements simplify the
solving techniques.

7
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In this chapter we introduce an optimal control problem of practical interest, which was
also discussed in [3]. The dealing with practical problems from engineering in mathematics
is a challenge as these problems typically model many phenomena, involve nonlinearities and
are already numerically solved by engineers. But even if these problems are simulated often
questions concerning the existence or regularity of solutions remain open. The confidence of
mathematicians discussing such problems is that a new view to a well known problem also
yields new ideas or algorithms which are also of interest for the engineers.

Modern civil engineering and architecture would not be possible without concrete. So
measurement and simulation of all the different aspects of concrete is a wide field of activity
in civil engineering. Our aim is not the overall simulation of all aspects of concrete, but
understanding of a mathematical model and the simulation of the temperature distribution
and a prediction of thermal cracks during hydration. Such macroscopic thermal cracks are not
wanted as they influence the usability or elegance of the final structure.

The simulation of hydration is needed as input for the calculation of material properties,
strengths and stresses and therefore also for the calculation of a crack criterion [114]. Some
crack criteria consider only the temperature but generally a criterion would be preferred which
also accounts for the development of stresses [104, 111].

We summarize the modeling of the hydration, the thermo-mechanical properties in Section 2.1.
In Section 2.2 we discuss the mechanical properties of young concrete, crack criteria are discussed
in Section 2.3.

If, after the simulation of the hydration, the crack criterion indicates that there will be thermal
cracks, some changes in the input data are required. The possibilities of measures are also
described in Section 2.3. The variation of the input data can be interpreted as optimization. We
discuss simulation based optimization and model based optimization in Section 2.4. Furthermore
we introduce a family of abstract optimal control problems for the hydration of concrete in this
section.
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2. Young concrete

2.1. Hydration of concrete

2.1.1. General idea

Concrete is produced from the mixing of cement, aggregate, admixtures and water. By varying
the ratio and kind of the ingredients a wide range of concretes for different purposes can be
composed. After mixing, an exothermic chemical reaction known as hydration starts. During
this reaction the liquid or plastic viscous mass develops the solid properties of the concrete.
The specific solid properties of the concrete are determined by the ratio of the ingredients.

The hydration can be studied on different scales. Studies on microscopic scales inspect the
chemical reaction on a molecular scale. On the other hand studies on the macroscopic scale
investigate the development of heat, mechanical properties and cracks. Therefore the molecular
processes are hidden in an averaged description. We want to introduce and simulate such a
model.

The basis of this description is the degree of hydration which defines the fraction of the
reaction which has occurred until a specific point in time. As this ratio can not be measured
directly different indirect definitions are in use. We use a common definition (see e.g. Eierle [38])
of the degree of hydration based on the heat development

α(t, x) =
Q(t, x)

Q∞
, (2.1)

where Q∞ is the overall heat that is produced by hydration and Q(t, x) is the heat produced
until the time t. Note, that the degree of hydration can assume different values in different
points of the same concrete structure.

A model for the degree of hydration is one of the two main ingredients of a description of
concrete. On the other hand the reaction rate of this reaction depends on the temperature y =
y(t, x), measured in ◦C. Therefore time in the description of the hydration is replaced by the
maturity (effective age). A common form for the maturity is τ(t, y(·, ·)) =

∫ t
0 g (y(ϑ, x)) dϑ with

an appropriate function g(·).

2.1.2. Maturity

In literature different choices for the maturity are known. We present maturities which are
widely used in engineering literature. Freiesleben-Hansen introduced a formula which can be
motivated by chemical reaction kinetics (see e.g. Eierle [38])

τ(t, y(x, ·)) =

t∫
0

exp

(
A

R

(
1

293
− 1

273 + y(x, ϑ)

))
dϑ, (2.2)

where R is the universal gas constant and the activation energy A is a material parameter. In
general A may depend on the temperature but according to Krauß [71, (5.22)] an activation
energy which is independent of the temperature is applicable to a large class of cements.

A simpler maturity was introduced by Saul as (see e.g. Eierle [38])

τ(t, y(x, ·)) =

t∫
0

y(x, ϑ) + 10

30
dϑ, (2.3)
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Figure 2.1.: The adiabatic temperature rise for different concrete recipes is plotted according to
the model parameter in [34, Figure 8.4 and Table 8-3]. In adiabatic experiments the

temperature y is directly proportional to the degree of hydration α = Q(t,x)
Q∞

.The
temperature difference of the temperature y and the fresh concrete temperature y0

is plotted in ◦C and the time t in hours.

This maturity is independent of the concrete in use. Therefore it seems very logical that the
maturity of Freisleben-Hansen (2.2) will produce more realistic simulations. Finally Röhling [102]
introduces

τ(t, y(x, ·)) =

t∫
0

(
y(x, ϑ) + 15

35

)d
dϑ, d ≈ 2 (2.4)

as approximation of the maturity of Freiesleben-Hansen for some specific cements. For d = 1
this implies an affine linear relation of the temperature and the derivative of the maturity as
the maturity of Saul (2.3).

But nevertheless all the maturities have the abstract form

τ(t, y(x, ·)) =

t∫
0

g (y(x, ϑ)) dϑ. (2.5)

In our analysis we will use this abstract notation.

2.1.3. Adiabatic heat development

As mentioned in Section 2.1.1 the basis of the description of hydration is the degree of hydration.
Even if there is a wide range of applications and compositions of concretes, they all share the
basic shape of the development of the degree of hydration (see Figure 2.1). The temperature
development in an adiabatic regime is as follows: In the beginning for some time, there is no
heat development, then the heat development starts slightly, fastens up and ends in a saturation.
Eierle [38] compares different approaches to the modeling of this shape. Wesche [130] proposes

α = α(τ) = eaτ
b

a, b < 0. (2.6)

Another very common approach is the model of Jonasson [67]

α = α(τ) = e
a
[
log
(

1+ τ
τk

)]b
a, b < 0, τk > 0. (2.7)
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2. Young concrete

The parameters a, b in the model by Wesche (2.6) and the parameters a, b, τk in the model by
Jonasson (2.7) are obtained by measurement of the adiabatic heat development and a parameter
fit. In the model of Jonasson (2.7) the parameter a is often set to −1 (see [51, Section 2.3.2.5]
or [94, Formula (4.8) and (4.9) in Section 4.1.2]).

We present the different approaches but we do not want to evaluate them. In our mathematical
setting we write the model for the adiabatic heat development as an integral formulation

α(τ) =

τ∫
0

h(ϑ) dϑ. (2.8)

The development of the mechanical properties of concrete in every point is driven by the
hydration, so the simulation of the progress of hydration is an important task. As the degree of
hydration is measured by the heat development, the heat distribution must be calculated.

For a new concrete structure Ω the heat distribution is governed by the heat equation with
the hydration rate as heat source. Therefore the temperature y = y(t, x) is determined by the
heat equation

cρyt −∇ · (λ∇y) = Q∞α̇ = Q∞
∂α

∂τ

∂τ

∂t
= Q∞h(τ)g(y) in Ω. (2.9)

We assume that the material parameters c, ρ and λ are independent of space, time, temperature
and degree of hydration (see Krauß [71, Chapter 5.1]).

Since the maturity τ is defined in equation (2.5) by an integral over y the heat equation (2.9)
is a integrodifferential equation. For the analysis and numerical analysis of this equation we
prefer to compute τ as additional function, as proposed by Hairer, Norsett and Wanner [58,
Chapter II.17, p.351f]. So we have the additional differential equation

τt = g(y) =
∂τ

∂t
, (2.10)

to consider. Therefore, if we apply a method of lines with fixed spatial discretization, we can
use for the discretization in time any discretization method for ordinary differential equations
and do not need a method specialized for integrodifferential equations as discussed e.g. by
Chuanmiao and Tsimi [26].

To complete the system of equations we still need to specify boundary and initial conditions.
As initial condition for the equation for the maturity (2.10) we choose zero initial data with
respect to the definition of the maturity (2.5). For the temperature y the initial condition is
the temperature y0 of the concrete after mixing and installation. On the boundary we assume
Robin conditions

∂y(t, x)

∂ν
= σ(t, x) (yBND(t, x)− y(t, x)) .

This boundary condition describes the heat transfer through the formwork. Typically the
coefficient σ is not any L2 ((0, T ]× ∂Ω) ∩ L∞ ((0, T ]× ∂Ω) function but a (piecewise) constant
in space and has only finitely many jumps between discrete values in time. These jumps occur
when the formwork is removed or changed. With these Robin boundary conditions it is also
possible to simulate Neumann boundary conditions for symmetry axes (σ = 0 on ΓN ).
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For the ambient temperature we assume the smooth distribution

yBND(t) = ymed +
1

2
yDelta cos

(
2 · π
24
· t
)
,

where t is measured in hours and the values ymed and yDelta can be chosen according to assumed
weather conditions or to the values summarized in the German code DIN 4710 (see [43]).

Altogether the temperature distribution during hydration is described by

τt = g(y) in (0, T ]× Ω,

cρyt − λ∆y = Q∞h(τ)g(y) in (0, T ]× Ω,

∂y(t, x)

∂ν
= σ(t, x) (yBND(t, x)− y(t, x)) on (0, T ]× ∂Ω,

τ(0, x) = 0 in {0} × Ω,

y(0, x) = y0(x) in {0} × Ω.


(2.11)

With realistic assumptions on the properties of the functions h and g the existence and
uniqueness of the solution y and τ of the problem (2.11) can be proven. The uniqueness follows
directly by discussing the difference of two solutions and the choice of an arbitrary test function.
For the existence of the solution Schauders fixed point theorem can be used. For the details we
refer to Benedix [12, Theorem 7.2 and Theorem 7.10].

2.2. Mechanics of young concrete

2.2.1. Quantities in mechanics of young concrete

The heat distribution influences the development of the mechanical properties of concrete. We
consider Young Modulus E, tensile strength fct and compressive strength fcc. The Poisson ratio
ν is assumed to be constant. These quantities develop during hydration, and therefore commonly
used models (see e.g. Krauß [71]) describe them depending on the degree of hydration α. We
use the following model (see [71, 104, 107, 111])

E(α) = E∞

(
α− α0

1− α0

)γ1

(2.12)

fct(α) = fct,∞

(
α− α0

1− α0

)γ2

(2.13)

fcc(α) = fcc,∞

(
α− α0

1− α0

)γ3

. (2.14)

The final values E∞, fct,∞ and fcc,∞ and the exponents γ1, γ2 and γ3 are material parameters,
typical values for γi are γ1 = 1

2 , γ2 = 1 and γ3 = 3
2 (see e.g. [104, Section 4.3.2.1] or [107, Section

3.2.1]). Further the value α0 marks the degree of hydration for which solid body properties can
be measured the first time. This value also depends on the concrete in use.

With these material properties it is possible to compute the thermoelastic stresses. In
thermoelasticity it is assumed that temperature changes induce thermal strains of the form

εtherm(y) = I3αtherm (y(·, t1)− y(·, t0)) (2.15)
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with

I3 =

1 0 0
0 1 0
0 0 1


where no shear strains are introduced (see e.g. Barber [9]). The thermal strain εtherm is a
tensor of second rank and αterm and [y]t1t0 are scalars. The coefficient of thermal expansion αterm

can be assumed independent of the temperature, at least for temperatures below 60◦C [102,
Chapter 5.4]. Further these thermal strains are additive to the elastic strains.

For the material model we discuss either a linear elastic material law with time dependent
Young modulus or a viscoelastic model according to Röhling [102]. In both cases, as the Young
modulus is time dependent, we have a nonlinear material behavior, even if we use linear elastic
material law. Due to this time dependent Young modulus it is possible that, after loading and
unloading, stresses remain in the structure.

The mechanical properties can be calculated in a post processing step after simulation of the
hydration.

2.2.2. Linear elastic material law

The well known linear elastic material law has the form

σ = C(E, ν) : ε,

which can also be written in index-notation as

σij = Cijkl(E, ν)εkl,

where the Einstein summation convention is used, i.e.

σij =
d∑

k=1

d∑
l=1

Cijkl(E, ν)εkl.

The fourth order tensor C possesses the symmetry properties (see e.g. [68])

Cijkl = Cjikl = Cijlk = Cklij ,

and depends in the usual way on the Young modulus E and the Poisson ratio ν, so that the
material law can be written in matrix-vector notation as (see [22, Formula (VI.3.6)])

σ11

σ22

σ33

σ12

σ13

σ23

 =
E

(1 + ν) (1− 2ν)



1− ν ν ν
ν 1− ν ν
ν ν 1− ν

1− 2ν
1− 2ν

1− 2ν





ε11

ε22

ε33

ε12

ε13

ε23

 .
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Note that some authors use an other scaling for the lower part of the material law (see e.g. [10,
Table 4.3 in Section 4.2.3]). They use

σ11

σ22

σ33

σ12

σ13

σ23

 =
E(1− ν)

(1 + ν) (1− 2ν)



1 ν
1−ν

ν
1−ν

ν
1−ν 1 ν

1−ν
ν

1−ν
ν

1−ν 1
1−2ν

2(1−ν)
1−2ν

2(1−ν)
1−2ν

2(1−ν)





ε11

ε22

ε33

2ε12

2ε13

2ε23

 ,

which is an equivalent formulation of the material law.
For constant Young modulus E(t) and some t∗ ∈ (0, T ] the thermal stresses can be computed

(see [9, 116]) to

σ(·, t∗) = C (E, ν) : εtherm = C (E, ν) : I3αtherm (y(·, T )− y(·, 0)) .

But as the Young modulus E(t) is not constant in time, we use a stepwise approach with
ti = t∗

N i to compute the thermal stresses as

σ(·, t∗) =
N−1∑
i=0

C (E(ti+1), ν) : I3αtherm (y(·, ti+1)− y(·, ti)) .

For the identification of the underlying continuous (differential) equation for the thermal stresses,
we subtract the thermal stresses for the times t∗ and t∗ − τ with τ = T

N and divide by the time
step size τ , which yields

σ(·, t∗)− σ(·, tN−1)

τ
= C (E(t∗), ν) : I3αtherm

y(·, t∗)− y(·, tN−1)

τ
.

Passing to the limit with N →∞, which is equivalent to τ → 0, gives the underlying differential
equation

∂

∂t
σ(·, t∗) = C (E(t∗), ν) : I3αtherm

∂

∂t
y(·, t∗).

So a linear material law with time dependent Young modulus for thermoelasticity leads to a
differential equation with a time dependent coefficient. Together with the condition that there
are no thermal stresses initially, the initial value problem for the thermal stresses is

∂

∂t
σ(·, t) = C (E(t), ν) : I3αtherm

∂

∂t
y(·, t),

σ(·, 0) = 0.

 (2.16)

A linear elastic material law is the simplest possibility of the description of materials. And even
this material law implies a non-linear material behavior, as after one cycle of heating up from a
certain temperature and cooling down to this temperature stresses may remain in the material
due the time-dependent Young modulus.

As seen in the work by Onken and Rostásy [94, Section 2.2.3] a linear elastic material law
tends to overestimate the stresses, so a linear elastic material law seems to be on the safe side.
A more realistic choice would be a viscoelastic material law. We do not evaluate the choice
which material law is used for computations and present a viscoelastic material law in the next
section.
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Figure 2.2.: Schematic comparison of the stress development for a viscoelastic material law a
linear elastic material law. For the stress σii in a point under the assumption of
a viscoelastic material law at t = t5 one has to add the green parts, whereas the
stress without relaxation is given by the red line.

2.2.3. Viscoelastic material law

For a more involved material we discuss a viscoelastic material law, as introduced by Röhling
[102]. The viscoelastic material law considers the relaxation of stresses, i.e. a stress increment,
once introduced, will reduce over time. This behavior is sketched in Figure 2.2. At some time
t∗ and with equidistant time steps ti = t∗

N i the viscoelastic stresses, which is introduced in [102,
formula (6.6)], are given by

σ(·, t∗) =

N−1∑
i=0

C (E(ti+1), ν) : I3αtherm (y(·, ti+1)− y(·, ti))ψ(t∗ − ti+1), (2.17)

where the monotone decreasing function ψ with ψ(0) = 1 describes the relaxation. As the
material law is introduced in a time discrete version, we want to reestablish the underlying
differential equation. As in the linear case we subtract the stresses for the times t∗ and tN−1,
but due to the relaxation described by ψ, there is no cancellation of terms. The difference, after
dividing by τ , is given by

σ(·, t∗)− σ(·, tN−1)

τ
= C (E(t∗), ν) : I3αtherm

(y(·, t∗)− y(·, tN−1))

τ
· ψ(t∗ − tN−1)

+

N−2∑
i=0

C (E(ti+1), ν) : I3αtherm (y(·, ti+1)− y(·, ti))

· ψ(t∗ − ti+1)− ψ(tN−1 − ti+1)

τ
.
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t

y
σ
fct

Figure 2.3.: Schematic development of the temperature y (in green), the tensile strength fct (in
blue) and the thermal stresses σ (in red) at some point in the wall. If the absolute
value stresses are greater then the absolute value of the tensile strength, cracks
may occur.

The finite sum on the right hand side is a sum, which lies between the Riemann-Stieltjes
lower and upper sum. The Riemann-Stieltjes lower and upper sum and the Riemann-Stieltjes
integral are introduced in Appendix A or e.g. in the text books by Rudin [112, Chapter 6] and
Smirnow [119, Chapter 1]. By passing to the limit τ → 0 we end up with the Riemann-Stieltjes
integrodifferential equation

∂

∂t
σ(·, t∗) = C (E(t∗), ν) : I3αtherm

∂

∂t
y(·, t∗)

+

∫ t∗

0
C (E(t), ν) : I3αthermψ

′(t∗ − τ) d y(·, t).

With the Theorem A.3 (or [112, Theorem 6.17]) about the connection of Riemann and Rie-
mann-Stieltjes integrals, the integrodifferential equation can be written with a Riemann integral.
Due to the fact, that initially there are no stresses, the continuous initial value problem for the
stresses with the viscoelastic material law (2.17) is given by

∂

∂t
σ(·, t∗) = C (E(t∗), ν) : I3αtherm

∂

∂t
y(·, t∗)

+

∫ t∗

0
C (E(t), ν) : I3αthermψ

′(t∗ − τ)
∂

∂t
y(·, τ) d τ,

σ(·, 0) = 0.


(2.18)

2.3. Crack criteria

The computation of the mechanical properties is the base of the decision whether thermal cracks
in the concrete occur or not. The qualitative development of temperature, tensile strength and
thermal stresses is drafted in Figure 2.3. In the first phase of hydration the concrete is still liquid
and has no rigid body properties. At some point in time, when the degree of hydration reaches
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2. Young concrete

α0, rigid body properties are measurable for the first time, then the temperature still rises and
therefore small compressive stresses establish as the Young modulus is still small. After the
temperature maximum is reached larger tensile stresses can be observed as the Young modulus
is already larger. Cracks occur when the tensile stress is larger than the tensile strength.

After this short discussion it is clear that no cracks will occur because of thermal stresses if

|min (0, σ(t, x)) | ≤ |fct(t, x)| ∀(t, x) ∈ (0, T ]× Ω. (2.19)

In engineering practice one would even add some safety factor so that

|min (0, σ(t, x)) |
|fct(t, x)| ≤ k ∀(t, x) ∈ (0, T ]× Ω (2.20)

with some k < 1 must hold [104, 110, 111].

Crack criteria of this kind need the computation of mechanical properties which is more
expensive than the computation of the heat distribution. As the prediction of cracks in young
concrete has a long history in civil engineering there are temperature criteria which predict
cracks only with the information on the heat distribution. These criteria are computable with
less computational effort and ignore solid mechanical properties of the young concrete so they
must be less accurate. But often they are exact enough for the assessment of the crack risk (see
[110, Section 6.4.1]). If we consider a new concrete wall on a old bottom plate as in Figure 2.4,
a temperature criterion would read as

|y(t, x1)− y(t, x2)| ≤ 15K ∀t ∈ (0, T ], (2.21)

where x1 and x2 denote the midpoints of the new wall and the bottom plate as denoted in
Figure 2.4 (see e.g. [110, Section 6.3] and [102, Sections 7.4 and 7.5 with Tables 7.3–7.5]).

If a crack criterion indicates that cracks are likely, one has to consider counteractive measures.
Different measures are proposed in literature and include, but are not restricted, to the
following examples. Nietner [90] gives an overview about possibilities how to influence the
thermomechanical behavior of concrete. He mentions the fresh concrete temperature, formwork,
cooling pipes, the influence of the concrete recipe and also the influence of the size of the casting
segments. As the choice of casting segments influences the geometry of the computational
domain, we do not discuss this possibility here, but for the other measures further references
are given.

Nietner and Schmidt [91] and Braasch [21] propose to reduce the fresh concrete temperature
by replacing the water by crashed ice. Nietner and Schmidt present a diagram in [91, Figure 9]
for the choice of the largest possible fresh concrete temperature. This approach is based on
simulations with different values of the input parameter and therefore it can be understood as
simulation based optimization approach. Pree [98] also gives lower and upper bounds of the
fresh concrete temperature. Lower bounds of fresh concrete temperature are of interest if low
ambient temperatures influence the progress of the hydration. He also gives experienced data
for the costs for cooling and warming.

Braasch [21] discusses the influence of different formwork and the influence on the heat
transfer coefficient in the boundary condition.

For the cooling during the hydration we mention the use of cooling pipes. Huckfeldt [65]
discusses simplified models for the cooling with water in the pipes. Another possibility of the
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Figure 2.4.: Example for a new wall on an existing basement. For the common temperature
criterion the temperature difference between the two red points x1 and x2 is
measured.

modeling of the cooling is described in the master’s thesis of Gehrmann [44], which models
directly the physics and is discussed in the Appendix B. Staffa [123] also uses cooling pipes for
new structures and heating pipes for warming the existing structures to reduce temperature
differences. The Danish Road Directorate’s research program HETEK discusses in its technical
report [96] the duration of cooling and warming of concrete structures.

Benedix [12] proposes a simple model for the influence of the concrete recipe on the heat
development.

For the planing of measures one would not allow any of the measures mentioned above but
select the measures which are possible and realizable.

2.4. Towards optimal control of the hydration of concrete

The introduction of the measurements for minimizing the risk for cracks motivates, that this
problem can be seen as an optimization problem or optimal control problem. So we introduce
the control u, which describes the influence of the measures on the system. The problem can
be written as abstract optimal control problem as

min J(y, τ, u)

s.t. y, τ solve the system (2.11),

where the control u influences some input data of (2.11)

and a crack criterion is fulfilled,

 (2.22)

where J includes realistic costs for the control u and additionally a model for cooling pipes can
be included. The costs for the control may appear as natural costs for change of formework,
cooling and crack repair, in the sense of a penalty method. An example of such a problem is the
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2. Young concrete

following, where the fresh concrete temperature is used as control and a temperature criterion
is used,

min ‖u‖2L2(Ω1)

s.t. cρy1,t − λ∆y1 = Q∞h(τ)g(y) in (0, T ]× Ω1,

cρy2,t − λ∆y2 = 0 in (0, T ]× Ω2,

τt = g(y1) in (0, T ]× Ω1,

∂y1(t, x1)

∂ν
= σ(t, x) (yBND(t, x)− y1(t, x)) on (0, T ]× ∂Ω1 \ Ω2,

∂y2(t, x)

∂ν
= σ(t, x) (yBND(t, x)− y2(t, x)) on (0, T ]× ∂Ω2 \ Ω1,

y1(t, x) = y2(t, x) on (0, T ]× ∂Ω1 ∩ ∂Ω2,

τ(0, x) = 0 in {0} × Ω1,

y1(0, x) = y0,1(x)− u(x) in {0} × Ω1,

y2(0, x) = y0,2(x) in {0} × Ω2,

|y1(t, x1)− y2(t, x2)| ≤ 15K t ∈ [0, T ].



(2.23)

The initial temperature y0,1 is cooled by the control u in the fresh concrete in Ω1. The
temperature in the bottom plate Ω2 can not be controlled. For practical reasons y0,1 would be
the temperature at which the concrete can be produced without any additional costs for cooling.
The cooling of the fresh concrete can be performed by the use of cold water or even crashed ice.

As there are different ways to cool the fresh concrete down, the costs for the cooling are
clearly nonlinear. We approximate these costs with a quadratic cost functional which can be
motivated by the interpolation of the specific costs for the different cooling possibilities.

For the norm in the cost functional we can use the L2(Ω1)-norm if we assume that the fresh
concrete can be produced and embedded with different temperatures in different places. Under
the assumption that the temperature should be constant in the concrete the functional can be
replaced by the square of the temperature reduction, i.e. u2. After discretization, in space with
finite elements and in time with a time discretization scheme, as the Crank-Nicolson scheme,
the problem can be solved using solvers for nonlinear optimization problems.

This approach can be seen as the discretize-then-optimize of an optimal control problem of
the form

min

∫ T

0
j1(y) + j2(τ) + j3(u) d t

s.t. yt +A(u)y = f(y, τ, u),

τt = g(y),

∂y

∂n
= σ(t, x, u)(yBND − y),

τ(0, x) = 0,

y(0, x) = y0(x),

Crack criterion fulfilled,

where cost functional consists of the functionals j1, j2 and j3. With these functionals it is
possible to describe the control costs, tracking of a desired state or penalization of a crack
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2.4. Towards optimal control of the hydration of concrete

criterion. This kind of optimal control problem was introduced in [3]. Some instances of this
abstract optimal control problem have been discussed by Benedix [12], where adaptive numerical
methods have been used for the solution.

In particular Benedix discusses the following three optimal control problems, where he
uses cost functionals, which only include the control costs, i.e. the difference to an initial
control is penalized. First the initial temperature and heat transfer coefficient in the Robin
boundary condition are the controls and the state constraint y ≤ 72◦C is obtained. As second
example Benedix considers a simple model for the influence of the concrete recipe to the heat
development. So the concrete recipe is the control and as state constraint the crack criterion
|y(x1, t)− y(x2, t)| ≤ 15K is used. As last example he applies the model of Huckfeldt [65] for
cooling pipes. In this example the flow rate is the control and the state constraint y ≤ 57◦C is
considered. For the three examples adaptive numerical calculations are given. They prove the
suitability of his approach.

For our discussion of optimal control problems with parabolic partial differential equations
we focus in the following chapters on the simpler and still challenging problem

min
y,u

α

2

∥∥∥M1/2
D (y(·, T )− yD(·))

∥∥∥2

H
+
β

2

∫ T

0

∥∥∥M1/2
d (y(·, t)− yd(·, t))

∥∥∥2

H
d t

+
ν

2

∫ T

0

∥∥∥M1/2
u u

∥∥∥2

H
d t,

s.t. Myt +Ay = Gu,

My(0, ·) = Mv(·),

with a linear differential operator A and H = L2(Ω).
In preparation of this we introduce the tools from functional analysis and numerical analysis

in the next two chapters.

21





3. Functional analysis and partial
differential equations
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In this Chapter we repeat some basic facts from functional analysis and discuss the regularity
of solutions of partial differential equations.

First we introduce our notation for domains and introduce very few facts from functional
analysis, for an overview about this topic we refer to text books about functional analysis,
e.g. [72]. Then the well known Sobolev spaces are introduced. After the isotropic Sobolev spaces
we discuss also anisotropic Sobolev spaces with mixed order of differentiation and transfer well
known results from isotropic Sobolev spaces to the less studied anisotropic spaces. Isotropic
Sobolev spaces are introduced in any (modern) book about partial differential equations,
e.g. [40, 53, 131], for anisotropic Sobolev spaces only few references exist, e.g. the books [15, 92].
Finally we discuss the regularity of elliptic, semi-elliptic and parabolic partial differential
equations. An a priori regularity estimate for semi-elliptic partial differential equations is also
proven in this section.

For more details about the analysis of elliptic and parabolic partial differential equations we
refer to the text books [40, 53, 131]. For semi-elliptic boundary value problems, there are not
so many references.

3.1. Domains

Definition 3.1 (Domain). [40, Definition in Appendix C.1]. Let d ∈ N be a finite number.
An open and connected set Ω ⊂ Rd is called domain. The boundary Γ = ∂Ω of a domain Ω is
defined as Ω \ Ω. The boundary is called C0,1-boundary or Lipschitz boundary if for any point
x0 ∈ Γ there exists a ball Uε(x0) around x0 and a C0,1-function γ : Rn−1 → R such that (after
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3. Functional analysis and partial differential equations

relabeling the coordinates and an affine transformation if necessary) we have

Ω ∩ Uε(x0) = {x ∈ Uε(x0) : xn > γ(x1, . . . , xn−1)}

Definition 3.2 (Basic Notation). For the rest of this thesis let Ω ⊂ Rd, d ∈ {1, 2, 3} be
a bounded Lipschitz domain with boundary Γ = ∂Ω, which may be partitioned into Γ1 and
Γ2 with Γ1 ∩ Γ2 = ∅ and Γ1 ∪ Γ2 = Γ. Further let T be a finite number, so that (0, T ) is
finite time interval and we define the space time domain Q = Ω× (0, T ) with lateral boundary
Σ = Γ×(0, T ) = ∂Ω×(0, T ), which may be partitioned into Σ1 = Γ1×(0, T ) and Σ2 = Γ2×(0, T ).
This notation is very common in the analysis of parabolic partial differential equations.

3.2. Basic results from functional analysis

We will deal with norms and operators on Hilbert spaces, therefore we repeat some important
fact about these.

Definition 3.3 (Equivalent norms). [72, Definition 2.4-4] Let H be a real valued vector space.
Two norms ‖·‖1, ‖·‖2 are called equivalent norms for the normed space H if there are two
constants c, C > 0 so that

c ‖x‖1 ≤ ‖x‖2 ≤ C ‖x‖1

holds for any x ∈ H.

Theorem 3.4 (Continuous and bounded linear operator). [72, Theorem 2.7-9] A linear
operator A : X → Y is continuous iff the operator is bounded, i.e.

‖Ax‖Y . ‖x‖X , ∀x ∈ X.

Furthermore if the linear operator A is continuous in a single point, it is continuous everywhere.

Theorem 3.5 (Operator norm and dual space). [53, Exercise 6.1.8. and Section 6.3.1] The
operator norm of the operator A : X → Y is defined by

‖A‖L(X,Y ) = sup
‖x‖X=1

‖Ax‖Y = sup
‖x‖X 6=0

‖Ax‖Y
‖x‖X

.

The space L(X,Y ) of all continuous linear operators mapping from the normed space X to the
Banach space Y with the operator norm is a Banach space.

The space X∗ = L(X,R) of all bounded, linear mappings onto R is called dual space to X
and is Banach space with the operator norm.

Theorem 3.6 (Continuation of operators). [53, Theorem 6.1.11.]. Let X0 be a dense subspace
of the normed space X and let Y be a Banach space. For any continuous and linear operator
T0 : X0 → Y there is a unique continuation T with the same operator norm, i.e.

• T0x = Tx for all x ∈ X0,

• For any sequence xn → x with xn ∈ X0 and x ∈ X holds Tx = limn→∞ T0xn,
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3.3. Sobolev spaces

• ‖T0‖L(X0,Y ) = ‖T‖L(X,Y ).

Definition 3.7 (Adjoint or dual operator and positive definite operator). [72, Definition
9.4-1] We call the operator A∗ the adjoint or dual operator of the operator A : H → H iff

〈Ax, y〉H×H = 〈x,A∗y〉H×H , ∀x, y ∈ H.

The operator A is called self adjoint if A∗ = A.
A self adjoint operator T : H → H is called positive definite iff

〈Tx, x〉H×H ≥ 0, ∀x ∈ H.

For a positive definite, self adjoint Operator T : H → H we define the square root A of T by
A2 = AA = T . If A is a positive definite operator it is called positive square root and we write
A = T 1/2.

Theorem 3.8 (Existence and uniqueness of square root of positive definite operators). [72,
Theorem 9.4-2] Every positive definite bounded self adjoint linear operator T : H → H on a
complex Hilbert space H has a unique positive square root A.

Corollary 3.9. If the operator A is the positive definite square root of a positive definite self
adjoint linear operator T : H → H on a real Hilbert space H, then the operator A is self adjoint.

Proof. By simple computation we have

〈Tx, y〉H×H = 〈AAx, y〉H×H = 〈Ax,A∗y〉H×H = 〈x,A∗A∗y〉H×H
and 〈Tx, y〉H×H = 〈x, Ty〉H×H = 〈x,AAy〉H×H .

Thus we have AA = A∗A∗ = T . If we prove that the operator A∗ is positive we have finished
the proof as the positive square root of T is unique by the previous theorem.

But it is easy to see that the operatorA∗ is positive definite as 〈A∗x, x〉H×H = 〈x,Ax〉H×H ≥ 0,
where we have used that A is positive definite.

3.3. Sobolev spaces

For the analysis of partial differential equations we will use function spaces. First we introduce
the classical Sobolev spaces for functions defined on a spatial domain Ω. These spaces are
defined as subspaces of the Lebesgue space L2(Ω) by using a multi-index notation.

3.3.1. Classic Sobolev spaces Hk(Ω)

Definition 3.10 (Lp-Spaces). [39, Definition B.4] The Lebesgue space Lp(Ω) for p ∈ [1,∞)
is defined by

Lp(Ω) :=

{
u : Ω→ R : u is Lebesgue measurable and ‖u‖pLp(Ω) =

∫
Ω
|u|p dω <∞

}
and for p =∞ by

Lp(Ω) :=
{
u : Ω→ R : u is Lebesgue measurable and ‖u‖Lp(Ω) = esssupΩ |u| <∞

}
.
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Definition 3.11 (Multi-index). [36, Section 2] We call a vector α = (α1, . . . , αn) ∈ Nd0
multi-index and we define for the multi-index α ∈ Nd0 the following operations

|α| = α1 + α2 + · · ·+ αd,

xα = xα1
1 · xα2

2 · · ·xαdd ,

Dα =

(
∂

∂x1

)α1
(

∂

∂x2

)α2

· · ·
(

∂

∂xd

)αd
.

Theorem 3.12 (Sobolev spaces Hk(Ω)). Let Ω ∈ Rd be a Lipschitz domain. We recall the
following results about weak derivatives and Sobolev spaces.

• [40, Section 5.2.1.] Given the multi-index α ∈ Nd0. The weak derivative Dαu is defined as∫
Ω
Dαuϕdω = (−1)|α|

∫
Ω
uDαϕdω, ∀ϕ ∈ C∞0 (Ω).

For a function u the weak derivative Dαu is at most unique.

• [53, Theorem 6.2.6.]. For k ∈ N the classical Sobolev space Hk(Ω) is defined by

Hk(Ω) :=
{
u ∈ L2(Ω) : Dαu ∈ L2(Ω) ∀α ∈ Nd0 : |α| ≤ k

}
.

The Sobolev space Hk(Ω) is a Hilbert space with scalar product

(u, v)Hk(Ω) =
∑
α≤k

∫
Ω
DαuDαv dω,

and norm ‖|u|‖Hk(Ω) =
√

(u, u)Hk(Ω).

• [119, Chapter IV.116, IV.118] If the domain Ω can be decomposed into finitely many
subdomains which are star shaped with respect to a ball, then the norm

‖u‖2Hk(Ω) =
∑
α=k

∫
Ω
|Dαu|2 dω + 〈u, u〉L2(Ω)×L2(Ω),

is an equivalent norm for the Hilbert space Hk(Ω).

• [85, Theorem 4.5.1], [119, Theorem IV.115.3] If the domain Ω is star shaped with respect
to a ball and the linear and continuous functionals li(·), i = 1, . . . , N do not vanish
simultaneously for any non-zero polynomial of degree at most k − 1, then the norm

‖u‖2∗ =
∑
α=k

∫
Ω
DαuDαudω +

N∑
i=1

|li(u)| ,

is an equivalent norm for the Hilbert space Hk(Ω).
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• [28, (1.2.3)] If the finite domain Ω has a Lipschitz boundary Γ, then there exists a unique
bounded linear operator T : H1(Ω)→ L2(Γ) with

Tu = u|Γ ∀u ∈ C∞(Ω̄).

Tu is called the trace of u on ∂Ω. We identify Tu with u. The boundedness of the operator
results in the inequality

‖u‖L2(Γ) . ‖u‖H1(Ω) .

• [53, Theorem 6.2.42.]. We introduce the space Hk
0 (Ω) as completion of all smooth

functions with compact support in Ω and its dual space as

Hk
0 (Ω) = C∞0 (Ω), H−k(Ω) = (Hk

0 (Ω))∗.

The space Hk
0 (Ω) is a Hilbert space with the scalar product of Hk(Ω). For Lipschitz

domains Ω we have the characterization

H1
0 (Ω) =

{
v ∈ H1(Ω) : v|∂Ω = 0

}
.

Remark 3.13. If the domain Ω is finite we have Hk
0 (Ω) ⊂ Hk(Ω) and Hk(Ω) 6= Hk

0 (Ω) and
therefore

H−k(Ω) 6=
(
Hk(Ω)

)∗
.

Definition 3.14. [53, (6.4.1)] Given two Hilbert spaces V and H with V ⊆ H and V is dense
in H. We call the inclusion V ⊆ H ⊆ V ∗ Gelfand triplet.

Remark 3.15. For parabolic partial differential equations the two Gelfand triplets

Hk(Ω) ⊆ L2(Ω) ∼= (L2(Ω))∗ ⊆ (Hk(Ω))∗,

Hk
0 (Ω) ⊆ L2(Ω) ∼= (L2(Ω))∗ ⊆ H−k(Ω)

are of interest. The Gelfand triplet property is well known, see e.g. [53, (6.3.8a), (6.3.8b)]. We
do not identify Hk(Ω) with its dual because for this identification we would need to use the
Hk(Ω) inner product instead of the duality pairing, which coincides with the L2(Ω) inner product
for L2(Ω) functions (see also [53, Paragraph with the superscription “Attention” between the
Proof of Corollary 6.3.10. and Exercise 6.3.11]).

3.3.2. Sobolev spaces involving time

For time dependent partial differential equations it is usual to discuss functions with values in
some Hilbert space.

Definition 3.16. [40, Chapter 5.9.2.] The space L2(0, T ;X) consists of all strongly measurable
function u : [0, T ]→ X with

‖u‖2L2(0,T ;Ω) =

∫ T

0
‖u‖2X d t <∞,

and the space C(0, T ;X) consists of all continuous functions u : [0, T ]→ X with

‖u‖C(0,T ;X) = max
0≤t≤T

‖u(t)‖X <∞.
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Just as we have defined Sobolev spaces based on Lebesgue spaces with values in R, we now
define Sobolev spaces based on Lebesgue spaces with values in X.

Definition 3.17. [40, Chapter 5.9.2.] We say v ∈ L2(0, T ;X) is the weak derivative of
u ∈ L2(0, T ;X), iff

∫ T

0
φ′(t)u(t) d t = −

∫ T

0
φ(t)v(t) d t ∀φ ∈ C∞0 (0, T ;R).

The Sobolev space H l(0, T ;X) is defined as the subspace of all L2(0, T ;X)-functions with first
derivative in the space L2(0, T ;X). Its norm is

‖u‖2Hl(0,T ;X) = ‖u‖2L2(0,T ;X) +
l∑

k=1

∥∥∥∥∥ dk

d tk
u

∥∥∥∥∥
2

L2(0,T ;X)

.

Next we discuss in which function space the functions can be identified with a continuous
function

Theorem 3.18. [40, Theorems 5.9.2. and 5.9.3] Assume, that u ∈ H1(0, T ;X) holds. Then
we have also u ∈ C([0, T ];X) and the integral representation

u(t) = u(s) +

∫ t

s
u′(τ) d τ.

Assume that u ∈ L2(0, T ;H1
0 (Ω)) with u′ ∈ L2(0, T ;H−1(Ω)), then we have also

u ∈ C([0, T ];L2(Ω)).

For the time derivative of the norm holds

d

d t
‖u‖2L2(Ω) = 2〈u′, u〉H−1(Ω)×H1

0 (Ω).

Remark 3.19. For the Gelfand triplet V ⊆ H ⊆ V ∗ with H = L2(Ω) and H1
0 (Ω) ⊆ V ⊆ H1(Ω)

we introduce

Y = H1 (0, T ;V ∗) ∩ L2 (0, T ;V ) , (3.1)

P = L2 (0, T ;V ) . (3.2)

We choose V = {v ∈ H1(Ω) : v|Γ1
= 0} and W = H2(Ω) ∩ V .

Remark 3.20. [131] and [62]. In literature the function space Y is sometimes denoted by
W (0, T ) or W (0, T ;H,V ).

28



3.3. Sobolev spaces

3.3.3. Sobolev spaces with mixed order of differentiation

Another view to the Sobolev spaces involving time, is the discussion of spaces with functions,
which are differentiable with different order in different direction.

Theorem 3.21 (Anisotropic Sobolev spaces). [79, Chapter 2.1] The Sobolev-spaces Hα(Q)
with respect to the pair α = (r, s) ∈ N2 defined as

H(r,s)(Q) = L2(0, T ;Hr(Ω)) ∩Hs(0, T ;L2(Ω))

is an Hilbert space with the norm

‖|y|‖2H(r,s)(Q) = ‖y(t)‖2L2(0,T ;Hr(Ω)) + ‖y‖2Hs(0,T ;L2(Ω)) .

Remark 3.22. The Sobolev space H(2,1)(Q) was introduced by several authors. The definition
above can be found in Lions and Magenes [79] or Ladyzhenskaya, Solonnikov and Ural’ceva [74].
They assume that all lower order derivatives have to be in L2(Q). The definition of Nikol’skĭı
[92] and Triebel [127] is slightly different. They assume only that the function itself and its
highest order derivative in every direction are L2(Q)-functions. But Nikol’skĭı also shows which
lower order derivatives can be estimated by the norm of u and the norm of the highest order
derivatives. We repeat a special case of this theorem and collect some equivalent norms of
H(2,1)(Q).

Theorem 3.23. Assume that Q = Ω× (0, 1) is a d+ 1 dimensional rectangle. Let r?, s ∈ N. If

y, D(r,0)y, D(0,s)y ∈ L2(Q)

for all r ∈ Nd0 with |r| = r? and the multi-index l = (l1, l2) = (l1,i, . . . , l1,i, l2) ∈ Nd+1
0 fulfills

1−
d∑
i=1

l1,i
r?
− l2
s
≥ 0,

then the derivative Dly is a L2(Q) function and can be estimated by

‖Dly‖L2(Q) . ‖y‖H(r?,s)(Q).

Proof. This is the anisotropic version of a similar result for the isotropic case which can be
found in the book of Smirnow [119, Comment in Section IV.112.] (see also Theorem 3.12). The
isotropic case is proven for domains that are star shaped with respect to a non-empty ball in
[119, Section IV.116.]. In [119, Section IV.118.] this is generalized in for domains which can be
decomposed in finitely many subdomains which are star shaped with respect to a non-empty
sphere.

For Q = Rn the anisotropic version of the result of Theorem 3.23 can be found in the book
of Nikol’skĭı [92, Theorem 9.2.2.].

For a class of special finite domains (including rectangular domains) a more general result,
which includes the result of Theorem 3.23 as special case, is proven in [15, Theorem 13.6.1.].

29



3. Functional analysis and partial differential equations

So we are prepared to discuss equivalent norms of the Sobolev space H(2,1)(Q).

Theorem 3.24. For a one-dimensional domain Ω = (a, b) and Q = Ω× (0, T ) the norms

‖|y|‖2H(2,1)(Q) = |y|2H(2,1)(Q) + 2 ‖y‖2L2(Q) + ‖yx‖2L2(Q) ,

‖y‖2H(2,1)(Q) = |y|2H(2,1)(Q) + ‖y‖2L2(Q) ,

where the semi-norms are defined by

|y|2H(r,s)(Q) = |y|2H(r,0)(Q) + |y|2H(0,s)(Q) ,

|y|2H(r,0)(Q) =

∫∫
Q

∣∣∣D(r,0)y
∣∣∣2 dx d t, |y|2H(0,s)(Q) =

∫∫
Q

∣∣∣D(0,s)y
∣∣∣2 dx d t

are equivalent norms for the space H(2,1)(Q).

Proof. The inequality ‖y‖2H(2,1)(Q) ≤ ‖|y|‖
2
H(2,1)(Q) is clear. On the other hand if y, yxx ∈ L2(Q)

it follows by Theorem 3.23 that

‖yx‖L2(Q) . ‖y‖L2(Q) + ‖yxx‖L2(Q)

which proves ‖|y|‖H(2,1)(Q) . ‖y‖H(2,1)(Q).

Theorem 3.25. Assume that there exist D linear and bounded functionals li, i = 1, . . . , D in

H(r,s)(Q) with D = s ·
(
d+ r − 1

r − 1

)
which do not vanish at the same time for any non-zero

polynomial of degree at most r − 1 in the spatial dimensions and at most s− 1 in t. Then the
norm

‖y‖∗ = |y|H(r,s)(Q) +
D∑
i=1

|li(y)|

is an equivalent norm for H(r,s)(Q).

Remark 3.26. The dimension of the space of all polynomials of degree at most r−1 in the spatial
variables and degree at most s−1 in the temporal variable is given by D = s·

(
d+r−1
r−1

)
. According to

Kunz [73, Example A.12a)] the dimension of all monomials in d variables of degree k is given by(
d+k−1
d−1

)
. The definition of the binomial coefficient gives

(
d+k−1
d−1

)
=
(
d+k−1
k

)
. For the dimension

of all polynomials of degree at most r − 1 summing up yields
r−1∑
k=0

(
d+ k − 1

k

)
=

(
d+ r − 1

r − 1

)
.

The identity
m∑
k=0

(
n+ k

n

)
=

(
n+m+ 1

n+ 1

)
can be easily shown with induction, using the well

known recursion formula

(
n

k

)
+

(
n

k + 1

)
=

(
n+ 1

k + 1

)
.

Proof of Theorem 3.25. This is the anisotropic version of a norm equivalence presented in
Theorem 3.12 and was proven in [6] for d = 1. For convenience of the reader we repeat the
proof here.
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3.3. Sobolev spaces

As recommended in [93, Proof of Theorem 1] we follow the ideas of the proof of the isotropic
case, which can be found e.g. in [85, Theorem 4.5.1] and [119, Theorem IV.114.3.]. The
inequality

‖y‖∗ . ‖|y|‖H(r,s)(Q)

is clear by the definition of ‖·‖∗ as the functionals li are bounded in H(r,s)(Q).
We prove the inequality

‖|y|‖H(r,s)(Q) . ‖y‖∗ (3.3)

by contradiction. Therefore we assume, that there is a sequence {vn}∞n=0 ∈ H(r,s)(Q) with

‖|vn|‖H(r,s)(Q) > n ‖vn‖∗ . (3.4)

Obviously we have vn 6= 0 and without loss of generality we can assume that the members of
this sequence are normed, i.e. ‖|vn|‖H(r,s)(Q) = 1. The sequence vn is bounded in H(r,s)(Q) and

therefore compact in L2(Q), as H(r,s)(Q) ↪→ H1(Q) ↪→ L2(Q) and the embedding H1(Q) ↪→
L2(Q) is compact. So there is a convergent subsequence with limit v. We denote this subsequence
again by vn. Therefore we have

‖vn − v‖L2(Q) → 0.

With the assumption (3.4) we have

‖vn‖∗ <
1

n
‖|vn|‖H(r,s)(Q)

and therefore ‖vn‖∗ → 0. By the definition of the norm ‖·‖∗ this also implies the convergence
|vn|H(r,s)(Q) → 0. Therefore we have D(r,0)v = 0 and D(0,s)v = 0 in the sense of L2(Q). This

implies also D(r+n,0)v = 0 and D(0,s+n)v = 0 for all n ∈ N. By choosing n large enough and the
Sobolev embedding theorem the function v is a (r, s)-times continuously differentiable function.

This implies that the limit v is a polynomial of degree s− 1 in t and degree r − 1 in x. As
the function v is the limit of the sequence {vn} it follows that ‖v‖∗ = 0 and therefore

D∑
i=1

|li(v)| = 0.

As the functionals li do not vanish for any non-zero polynomial of degree s− 1 in t and degree
r − 1 in x, this implies v ≡ 0 which is a contradiction to the assumption ‖vn‖H(2,1)(Q) = 1.

Furthermore we introduce Sobolev spaces with respect to a multi-index set.

Definition 3.27. Let the set A be a finite set of multi-indices, then we define the Sobolev space

HA(Q) =
{
u ∈ L2(Q) : Dαu ∈ L2(Q), ∀α ∈ A

}
.

The connection between the Sobolev space H(r,s)(Q) and the space HA(Q) is given (implicitly)
by the Theorem 3.23.
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3. Functional analysis and partial differential equations

3.4. Partial differential equations

3.4.1. Elliptic equations: Boundary value problems

We consider the boundary value problem

Ay = u in Ω,

y = 0 on Γ1,

∂y

∂nA
= 0 on Γ2,

 (3.5)

where the operator A is a second order elliptic operator in divergence form, i.e.

Ay = −∇ · Ã(x)∇y + b(x) · ∇y + c(x)y, (3.6)

with a symmetric positive definite matrix Ã(x) ∈ L∞(Ω;Rd×d), b ∈ L∞(Ω;Rd) with ∇ · b ∈
L∞(Ω) and c ∈ L∞(Ω). The conormal derivative is defined by

∂y

∂nA
= Ã∇y · ~n (3.7)

with the outer normal vector ~n on ∂Ω. Instead of the solution of the boundary value problem
(3.5) we discuss the corresponding weak or variational formulation given by

a(y, ϕ) = 〈u, ϕ〉V ∗×V ∀ϕ ∈ V, (3.8)

with

a(y, ϕ) =

∫
Ω
Ã∇y∇ϕ+ b · ∇yϕ+ cyϕdω, (3.9)

V =
{
v ∈ H1(Ω) : y|Γ1

= 0
}
. (3.10)

It is well known that a unique solution of the weak formulation exists under mild assumptions.

Theorem 3.28 (Lax-Milgram Lemma). [28, Theorem 1.1.3.] Let V be a Hilbert space,
a(·, ·) : V × V → R be a continuous and V -elliptic bilinear form, i.e.

‖y‖2V . a(y, y) ∀y ∈ V, (3.11)

|a(y, ϕ)| . ‖y‖V ‖ϕ‖V ∀y, ϕ ∈ V, (3.12)

and let u ∈ V ∗. Then the variational problem of finding a function y ∈ V with

a(y, ϕ) = 〈u, ϕ〉V ∗×V ∀ϕ ∈ V

has one and only one solution.

Remark 3.29. 1. The condition (3.11) is called V -ellipticity of the bilinear form and the
condition (3.12) is the definition of the continuity of a bilinear form.
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3.4. Partial differential equations

2. The V -ellipticity for the bilinear form a(·, ·) of model problem (3.8) with the Hilbert
space V as in (3.10) can be shown with the standard assumptions that the matrix Ã(x) is
uniformly elliptic

zT Ã(x)z & ‖z‖2Rd , ∀z ∈ Rd, almost everywhere in Ω,

and the coefficients c and b fulfill the condition

c− 1

2
∇ · b ≥ 0 almost everywhere in Ω.

These conditions on the coefficients are standard assumptions (see e.g. [39, 48]).

The Lax-Milgram Lemma, Theorem 3.28, yields the existence of a unique solution y ∈ V .
But we will also be interested in more regular solutions, which are contained in the subspace

W ⊂ V with W = H2(Ω)∩V . So we recall the classic regularity result for the Poisson equation.

Theorem 3.30 (Regularity). [47, Theorems 3.2.1.2 and 3.2.1.3] Let u ∈ L2(Ω) and the
domain Ω be a convex polygonal (d = 2) or convex polyhedral (d = 3) bounded domain. Let for
the coefficients additionally Ã ∈ C0,1(Ω̄;Rd×d), with

zT Ã(x)z & ‖z‖2Rd , ∀z ∈ Rd, ∀x ∈ Ω,

and b = 0 hold. For the cases

1. c = 0 and V = H1
0 (Ω)

2. c ∈ R with c > 0 and V = H1(Ω)

the unique solution y ∈ V of

a(y, ϕ) =

∫
Ω
uϕdω ∀ϕ ∈ V

fulfills y ∈W = H2(Ω).

3.4.2. Semi-elliptic equations: Boundary value problems

After the discussion of the basic solution properties of elliptic equations we discuss a certain
class of semi-elliptic partial differential equations with elliptic bilinear form. For a self adjoint
second order H1(Ω)-elliptic operator A we discuss the model problem

−ytt +A2y +
1

ν
y = f in Q,

y = 0 on Σ1,

Ay = 0 on Σ1,

∂

∂nA
y = 0 on Σ2,

∂

∂nA
Ay = 0 on Σ2,

y(x, 0) = 0 in Ω× {0},
yt(x, T ) +Ay(x, T ) = 0 in Ω× {T},



(3.13)
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3. Functional analysis and partial differential equations

with the constant ν ∈ R, ν > 0 and where the derivative ∂
∂nA

y is the conormal derivative is
defined as in (3.7).

Theorem 3.31. For the variational formulation of the model equation (3.13) and a self-adjoint
second order H1(Ω)-elliptic operator A given by

a(y, ϕ) = (f, ϕ) ∀ϕ ∈ V,

a(y, ϕ) =

∫∫
Q
ytϕt +AyAϕ+

1

ν
yϕdx d t+

∫
Ω
yx(x, T )ϕx(x, T ) dx,

(f, ϕ) =

∫∫
Q

1

ν
ydϕdx d t,

V =

{
v ∈ H(2,1)(Q) : v(x, 0) = 0, v = 0 on Σ1,

∂

∂nA
v = 0 on Σ2

}
,


(3.14)

there exists a unique solution y ∈ V for yd ∈ V ∗.

Proof. We prove this Theorem for the case ν = 1. The modifications for arbitrary ν ∈ R+

are obvious. The existence of a unique solution follows with the Lax-Milgram Lemma, if we
can prove the V -ellipticity and continuity of the bilinear form a(·, ·). The V -ellipticity follows
directly as

‖y‖H(2,1)(Q) . a(y, y)−
∫

Ω
(yx(x, T ))2 dx ≤ a(y, y).

For the continuity we use the Cauchy-Schwarz inequality

a(y, ϕ) ≤ ‖y‖H(2,1)(Q) ‖ϕ‖H(2,1)(Q) + ‖yx(x, T )‖L2(Ω) ‖ϕx(x, T )‖L2(Ω) .

As H(2,1)(Q) ↪→ C([0, T ];H1(Ω)) (see e.g. [30, (XVIII.1.61.iii)]) we have

‖yx‖L2(Ω) ≤ ‖y‖H1(Ω) ≤ ‖y‖C([0,T ],H1(Ω)) . ‖y‖H(2,1)(Q) .

With this estimate we have proven the continuity of the bilinear form a(·, ·), and therefore the
existence of the unique solution y follows by the Lax-Milgram Lemma.

Now we provide an a priori estimate for semi-elliptic equations, which is needed for the proof
of a L2(Q)-error estimate with the Aubin-Nitsche trick.

Theorem 3.32. If f ∈ L2(Q) and A is a self adjoint operator, then the solution y of the
boundary value problem (3.13) fulfills the estimate

‖y‖2L2(D(A2)) + ‖y‖2H1(D(A)) + ‖y‖2H2(L2(Ω)) . ‖f‖2L2(Q) .

Remark 3.33. If the domain is smooth, we have D(A) = H2(Ω) and D(A2) = H4(Ω) and
therefore in this case the estimate of the theorem is

‖y‖H(4,2)(Q) . ‖f‖L2(Q) .

This is an analogue of Theorem 3.30 for semi elliptic boundary value problems.
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3.4. Partial differential equations

Proof of Theorem 3.32. We introduce the set {ϕk}∞k=1 of orthonormal eigenfunctions of the
operator A with the corresponding eigenvalues λ2

k, which also fulfill the boundary conditions

ϕk = 0, on Γ1,
∂

∂n
ϕk = 0, on Γ2.

It is well known that the orthonormal eigenfunctions of a self-adjoint elliptic operator form an
orthonormal basis of L2(Ω) [40, Theorem 6.5.1.]. By the definition of the eigenfunctions we
have Aϕk = λ2

kϕk and therefore the boundary conditions

Aϕk = 0, on Γ1,
∂

∂n
Aϕk = 0, on Γ2.

are also fulfilled. So we write the solution of the equation as eigenfunction expansion

y =
∞∑
k=1

yk(t)ϕk

with time-dependent coefficients yk(t). When we insert this representation into the differential
equation, this yields

−yk,tt +

(
λ4
k +

1

ν

)
yk = fk (3.15)

for every k with the (time-dependent) Fourier coefficients fk =
∫

Ω fϕk dω of the right hand
side and initial and terminal conditions

yk(0) = 0,

yk,t(T ) + λ2
kyk(T ) = 0.

The weak form of this problem for every yk is∫ T

0
fkz d t =

∫ T

0
yktzt +

(
λ4
k +

1

ν

)
ykz d t+ λ2

kyk(T )z(T ) =: ak(yk, z),

∀z ∈ H1(0, T ) : z(0) = 0.

If we use yk as test function and the Cauchy-Schwarz inequality we have the estimate

ak(yk, yk) = ‖yk,t‖2L2(Q) +

(
λ4
k +

1

ν

)
‖yk‖2L2(Q) + λ2

ky
2
k(T ) =

∫ T

0
fkyk d t

≤ ‖fk‖L2(Q) ‖yk‖L2(Q) . (3.16)

This yields directly (
λ4
k +

1

ν

)
‖yk‖L2(Q) . ‖fk‖L2(Ω) . (3.17)

With (3.16) and (3.17) we can also estimate

‖yk,t‖2L2(Q) ≤ ‖fk‖L2(Q) ‖yk‖L2(Q) ≤ ‖fk‖2L2(Q)

1

λ4
k + 1

ν

.
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Taking the square root gives

λ2
k ‖yk,t‖L2(Q) . ‖fk‖L2(Q) .

Further we have an estimate for yk,tt with (3.15), the triangle inequality and (3.17)

‖yk,tt‖L2(Q) ≤ ‖fk‖L2(Q) +

(
λ4
k +

1

ν

)
‖yk‖L2(Q)

. ‖fk‖L2(Q) .

Altogether the estimate

‖yk,tt‖2L2(Q) + λ4
k ‖yk,t‖2L2(Q) + λ8

k ‖yk‖2L2(Q) . ‖fk‖2L2(Q)

is established.
Summing up over k implies y ∈ H2(0, T ;L2(Ω)) ∩H1(0, T ;D(A)) ∩ L2(0, T ;D(A2)) and the

bound

‖ytt‖2L2(Q) + ‖Ayt‖2L2(Q) +
∥∥A2y

∥∥2

L2(Q)
. ‖f‖2L2(Q) ,

which is the desired estimate.

3.4.3. Parabolic equations: Initial boundary value problems

After the discussion of partial differential equations with V -elliptic bilinear form, we now
consider the parabolic initial boundary value problem

yt +Ay = u in Q,

y = v on Ω× {0},
y = 0 on Σ1,

∂y

∂nA
= 0 on Σ2,


(3.18)

where the operator A is a partial differential operator of second order. We assume that
the spatial operator A has a representation in the form of equation (3.6) and is elliptic in
the sense that all eigenvalues of coefficient matrix Ã of the leading part are positive but we
do not need that the operator A is V -elliptic. As indicated above, we discuss this initial
boundary value problem in the space Y with the Gelfand triplet V ⊂ H ⊂ V ∗, where we choose
V = {v ∈ H1(Ω) : v|Γ1 = 0} and H = L2(Ω).

As in Section 3.4.1 we associate with the differential operator A the bilinear form a(·, ·). We
assume that the bilinear form is continuous and fulfills G̊arding’s inequality, i.e.

a(u, ϕ) ≤ C ‖u‖V ‖ϕ‖V , ∀u, ϕ ∈ V, (3.19)

c ‖u‖2V ≤ a(u, u) + k ‖u‖2H , with some 0 ≤ k <∞ and ∀u ∈ V. (3.20)

In contrast to the elliptic problems, we need only to assume G̊arding’s inequality with some
k ∈ R but not the stronger V -ellipticity, which is G̊arding’s inequality with k = 0. Due to the
temporal component of parabolic problems there are properties, which are fulfilled without loss
of generality.
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Theorem 3.34. Consider the parabolic initial boundary value problem (3.18). We can assume
without loss of generality, that

1. if G̊arding’s inequality (3.20) holds for a parabolic initial boundary value problem for some
k > 0, G̊arding’s inequality (3.20) holds also for k = 0,

2. if the operator A is given as in (3.6) then the condition c− 1
2∇ · b ≥ 0 is fulfilled and

3. we have homogeneous initial conditions y(·, 0) = 0.

Proof. The proof of the first point of this Theorem can be found in the proof of [131, Theorem
26.1]. For convenience of the reader we repeat these arguments here. Let y be the solution of
the problem (3.18). The function w = y · e−λt with λ ∈ R and with the derivatives

∂w

∂t
= yt · e−λt−λy · e−λt,

Aw = e−λtAy,

fulfills the initial boundary value problem

wt +Aw + λw = e−λt u in Q,

w = v on Ω× {0},
w = 0 on Σ1,

∂w

∂nA
= 0 on Σ2.


(3.21)

The bilinear form a(u, v) + λ〈u, v〉H×H associated with the initial boundary value problem
(3.21) is continuous and, for λ large enough, fulfills G̊arding’s inequality with k = 0. The second
point follows just in the same way by choosing λ large enough.

For the proof of the last property we split the solution y(x, t) into

y(x, t) = v(x) + ỹ(x, t).

The function ỹ(x, t) solves the problem

ỹt +Aỹ = u−Av in Q,

ỹ = 0 on Ω× {0},
ỹ = v on Σ1,

∂ỹ

∂nA
=

∂ṽ

∂nA
on Σ2,

so it is clear, that we can assume y(·, 0)v = 0 in the original problem if we solve for ỹ and allow
an inhomogeneous right hand side of the equation.

Next we define the weak solution of the problem (3.18).
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Definition 3.35 (Weak solution for parabolic partial differential equations I). [62, Definition
1.27] A weak solution y ∈ Y of (3.18) is the solution of the variational problem

〈yt, ϕ〉V ∗×V + a(y, ϕ) = 〈u, ϕ〉H×H ∀ϕ ∈ V,
〈y(·, 0), ϕ〉H×H = 〈v, ϕ〉H×H ∀ϕ ∈ H.

}
(3.22)

This is not the only possibility of the definition of weak solutions of parabolic initial boundary
value problems. An alternative definition is the following.

Definition 3.36 (Weak solution for parabolic partial differential equations II). [62, Definition
1.28] A weak solution y ∈ Y of (3.18) is the solution of the variational problem

B(y, ϕ) =

∫ T

0
〈u, ϕ〉H×H d t ∀ϕ ∈ P,

〈y(·, 0), ϕ〉H×H = 〈v, ϕ〉H×H ∀ϕ ∈ H,

B(y, ϕ) =

∫ T

0
〈yt, ϕ〉V ∗×V + a(y, ϕ) d t.


(3.23)

with space P defined in (3.2)

Next we see, that the both definitions are equivalent and that there exists a unique weak
solution to the problem (3.18).

Theorem 3.37 (Existence and uniqueness for parabolic partial differential equations). Let T
finite and Ω a domain with Lipschitz boundary and let the inequalities (3.19) and (3.20) hold.
then

• [62, Theorem 1.33] the definitions (3.22) and (3.23) of a weak solution of (3.18) are
equivalent and

• [131, Theorem 26.1.] the problem (3.18) has a unique weak solution y ∈ Y.

Finally we give the improved regularity results for parabolic problems. For such results we
need compatibility conditions which we introduce in the following assumption.

Assumption 3.38. We define the regularity assumption up to order m as

g0 = v ∈V,
g1 = u(·, 0)−Ag0 ∈V,

...
...

gm =
dm−1

d tm−1
u(·, 0)−Agm−1 ∈V.


(CAm)

With this conditions we give two regularity results, one for only the temporal regularity and
one which also gives higher spatial regularity.
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Theorem 3.39 (Abstract regularity result). [131, Theorem 27.2 and Theorem 27.3] Let for the
initial boundary value problem (3.18) hold the conditions of G̊arding’s inequality and continuity
(3.19) and (3.20). Let further the right hand side

u ∈ Hk(0, T ;V ∗),

the compatibility assumptions (CAm) up to order m be fulfilled and additionally

dm

d tm
u(·, 0)−Agm ∈ H

hold. Then the solution y has the improved regularity with respect to t, namely

y ∈ Hm+1(0, T ;V ),
dm+2

d tm+2
y ∈ L2(0, T ;V ∗).

Theorem 3.40 (Spatial regularity). [40, Theorem 7.5 and Theorem 7.6 ]. Consider a smooth
domain Ω with C∞-boundary. Let the operator A in the initial boundary value problem (3.18)
be a symmetric operator, let G̊arding’s inequality (3.20) and the condition of continuity (3.19)
hold and let the Neumann boundary Σ2 be empty. Let the regularity assumptions

v ∈ H2m+1(Ω),

dk u

d tk
∈ L2(0, T ;H2m−2k(Ω)) for k = 0, . . . ,m

and the compatibility assumptions (CAm) up to order m hold. Then the solution y of the initial
boundary value problem has the following improved regularity with respect to t and x

dk y

d tk
∈ L2(0, T ;H2m+2−2k(Ω)) for k = 0, . . .m+ 1,

Remark 3.41. For homogeneous Dirichlet boundary conditions the proof of Theorem 3.40 in
[40] gives additionally dm

d tm y ∈ L∞(0, T ;L2(Ω)) ∩ L2(0, T ;H1
0 (Ω)).
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In this chapter we deal with the numerical analysis of partial differential equations and
Hamiltonian systems. These results are of general purpose and not restricted to the numerical
analysis for optimal control problems, therefore we discuss them in a self-contained chapter.

First we discuss the finite element discretization of partial differential equations with elliptic
bilinear form. In particular we prove an a priori estimate for the finite element error for
some H(2,1)(Q)-elliptic equations. As finite elements we use Hermite-Lagrange tensor product
elements.

For parabolic equations we discuss the Crank-Nicolson discretization for the case that the
right hand side is an approximation of the exact right hand side. This is a focus in our analysis
that we consider the case that the right hand side of the equation is also approximated and not
evaluated exactly.

Finally we recall some results of the numerical analysis of Hamiltonian systems.
For the numerical analysis we need the space of polynomials which we define now.

Definition 4.1 (Polynomial spaces). The space of all real valued polynomials of degree less or
equal n is defined as

Pn = span
{
t0, t1, . . . , tn

}
,

the space of all polynomials of degree less or equal n on the interval (a, b) with values in some
Banach or Hilbert space V is given as

Pn ((a, b), V ) =

{
n∑
i=0

(t− a)iϕi, with t ∈ (a, b) and ϕi ∈ V for i = 1, . . . , n

}
,

and in the same way we we define the space

Pn (Ω, V ) ,

of all polynomials of degree less or equal n on the domain Ω with values in V .
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4.1. Partial differential equations with V -elliptic bilinear form

4.1.1. General results

We start with the numerical analysis for V -elliptic bilinear forms and introduce the Galerkin
approximation of this equation.

Definition 4.2 ((Conforming) Galerkin method). The solution y ∈ V of the variational problem
fulfills

a(y, ϕ) = 〈f, ϕ〉H×H ∀ϕ ∈ V. (4.1)

For the (conforming) Galerkin approximation of this problem we search a solution yh ∈ Vh ⊂ V
such that

a(yh, ϕ) = 〈f, ϕ〉H×H ∀ϕ ∈ Vh, (4.2)

where the subspace Vh is finite dimensional.

Theorem 4.3 (Céa’s Lemma). [28, Theorem 2.4.1. and Remark 2.4.1.] Let a(·, ·) be a V -
elliptic continuous bilinear form and let the functions y and yh be the solutions of the variational
problem (4.1) and (4.2). Then the estimate

‖y − yh‖V ≤ C inf
vh∈Vh

‖y − vh‖V ,

holds with a constant C which is independent of the subspace Vh.

Remark 4.4. 1. So we have bounded the error of the Galerkin approximation by the error
of the best approximation in the space Vh.

2. In the numerical realization of the variational problem (4.2) we need to evaluate the
integrals 〈f, ϕ〉H×H for a basis of the space Vh exactly. As this is not possible in general, a
common remedy is the use of a quadrature rule for the evaluation of this integral. This is
equivalent to replace the function f by an appropriately chosen interpolant fh. Therefore
one solves the problem

a(yh, ϕ) = 〈fh, ϕ〉H×H ∀ϕ ∈ Vh. (4.3)

As the test and the ansatz functions on the left hand side are known, one can choose
a numerical integration scheme, for which the application of the numerical integration
and exact integration of the terms of the bilinear form yields the same result, at least for
constant coefficients. For variable coefficients the application of a quadrature rule may
lead to an approximating bilinear form, so that one solves the problem

ah(yh, ϕ) = 〈fh, ϕ〉H×H ∀ϕ ∈ Vh. (4.4)

The additional errors which are introduced due to the numerical integration is discussed
in the following Theorem.
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Theorem 4.5 (First Strang Lemma). [28, Theorem 4.1.1] Let yh be the solution of (4.4) and
let the function y be the solution of the equation (4.1). Assume that the bilinear form of (4.4) is
uniformly elliptic, i.e. the constant in the ellipticity inequality (3.8) can be chosen independent
of the discretization parameter h of the family of subspaces Vh. Then the estimate

‖y − yh‖V . inf
vh∈Vh

{
‖y − vh‖V + sup

wh∈Vh

|a(vh, wh)− ah(vh, wh)|
‖wh‖V

}

+ sup
wh∈Vh

|〈f − fh, wh〉H×H |
‖wh‖V

holds.

Remark 4.6. 1. We will focus on the case for which ah(vh, wh) = a(vh, wh) for vh, wh ∈ Vh
is fulfilled. This condition can easily established in the case of constant coefficients.

2. In the estimate are two expressions with a supremum. These expressions are operator
norms and therefore the norm of the corresponding operators in V ∗h .

3. The first term of the estimate is the best approximation error as in the Céa Lemma.
Therefore we see that the approximation fh of the right hand side f should have at least
the same order as the best approximation error.

Until now we have discussed error estimates in the norm of the Hilbert space V . Now we
establish an error estimate in the norm of the pivot space H of the Gelfand triplet.

Theorem 4.7 (Aubin Nitsche Trick). Let the functions y and yh be the solutions of the
variational problem (4.1) and (4.3). Then we have for the H-norm the estimate

‖y − yh‖H . sup
‖g‖H=1

inf
zh∈Vh

{
‖y − yh‖V ‖zg − zh‖V + |〈f − fh, zh〉H×H |

}
(4.5)

where the function zg is defined as the solution of the variational problem

a(ϕ, zg) = 〈g, ϕ〉H×H , ∀ϕ ∈ V. (4.6)

Proof. We transfer the ideas of the proof of [28, Theorem 3.2.4], where the Aubin-Nitsche trick
is proved for the case that one uses exact integration of the right hand side 〈f, ϕh〉H×H , to the
case that the right hand side is approximated by 〈fh, ϕh〉H×H . This is also part of [28, Exercise
4.1.3.].

With the variational problem (4.1) and its numerical Galerkin approximation (4.3) we have

a(y − yh, ϕh) = 〈f − fh, ϕh〉H×H ∀ϕh ∈ V. (4.7)

If the numerical approximation fh coincides with f and the integration is performed exact, this
relation is called Galerkin orthogonality.

Using this relation and the difference y− yh as test function for the dual problem (4.6) yields
for any function zh ∈ Vh

〈g, y − yh〉H×H = a(y − yh, zg) = a(y − yh, zg − zh) + 〈f − fh, zh〉H×H
. ‖y − yh‖V ‖zg − zh‖V + 〈f − fh, zh〉H×H .
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As this inequality holds for any zh in Vh we can take the infimum on the right hand side. Due
to the identification H ∼= H∗ we can estimate the norm of H by the operator norm

‖y − yh‖H . ‖y − yh‖H∗ = sup
‖g‖H=1

〈g, y − yh〉H×H∗

and the proof of this theorem is finished.

The goal of the abstract error estimate (4.5) is to prove that the error in the norm of the
space H has a better convergence rate then the error in the norm of the space V . This is done
under general assumptions in the following theorem.

Theorem 4.8 (Error Estimate based on the Aubin Nitsche Trick). For a general error estimate
we need the following three assumptions.

1. There is a subspace W ⊆ H, such that for any f ∈ H the solution y of the variational
problem (4.1) is in the space V ∩W and the a priori estimate

‖y‖W . ‖f‖H (4.8)

holds with a constant C which does not depend on the choice of the right hand side f .

2. The a priori estimate carries over to the solution of the dual problem (4.6), so that

‖zg‖W . ‖g‖H . (4.9)

3. For any function zg ∈W exists an approximation zh ∈ Vh with

‖zg − zh‖V . hs ‖zg‖W . (4.10)

If these assumptions are satisfied, the error between the solution y of the problem (4.1) and the
solution yh of the problem (4.3) is bounded by

‖y − yh‖H . hs (‖y − yh‖V + ‖f − fh‖H) + ‖f − fh‖W ∗ . (4.11)

Proof. For the proof of this Theorem we bound the terms of the estimate (4.5) of the abstract
Aubin-Nitsche-Theorem 4.7.

For the first term we use the approximation result in W

‖y − yh‖V ‖zg − zh‖V . ‖y − yh‖V hs ‖zg‖W ,

the a priori estimate for the dual problem and the norm of the right hand side of the dual
problem ‖g‖H = 1

‖y − yh‖V hs ‖zg‖W . hs ‖y − yh‖V ‖g‖H . hs ‖y − yh‖V .

For the second term we add a zero and use the fact, that the scalar product of the space H
and the primal-dual pairing W ∗ ×W coincide to get

〈f − fh, zh〉H×H = 〈f − fh, zh − zg〉H×H + 〈f − fh, zg〉H×H
. ‖f − fh‖H ‖zg − zh‖H + ‖f − fh‖W ∗ ‖zg‖W .
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For the first term of this expression we repeat the application of the estimate for the approxi-
mation, the a apriori estimate for the dual problem and the norm of the right hand side of the
dual problem

‖f − fh‖H ‖zg − zh‖H . ‖f − fh‖H hs ‖zg‖W . hs ‖f − fh‖H ‖g‖H . hs ‖f − fh‖H .

Finally we apply the stability estimate for the dual problem

‖f − fh‖W ∗ ‖zg‖W . ‖f − fh‖W ∗ ‖g‖H . ‖f − fh‖W ∗ .

Altogether we have proven the estimate of the theorem.

Finite element error estimates for second order elliptic partial differential equations are well
known (see e.g. [28]) and shortly sketched in Appendix C. In the following section we focus
on finite element error estimates for semi-elliptic partial differential equations with V -elliptic
bilinear forms.

4.1.2. Semi-elliptic partial differential equations

Discretization and error estimates

After the recapitulation of general results, we apply the ideas now to the semi-elliptic model
problem (3.13), which was given by

−ytt +A2y +
1

ν
y = f in Q,

y = 0 on Σ1,

Ay = 0 on Σ1,

∂

∂n
y = 0 on Σ2,

∂

∂n
Ay = 0 on Σ2,

y(x, 0) = 0 in Ω× {0},
yt(x, T ) +Ay(x, T ) = 0 in Ω× {T},



(4.12)

and the corresponding variational problem

a(y, ϕ) = 〈f, ϕ〉L2(Q)×L2(Q) ∀ϕ ∈ V,

a(y, ϕ) =

∫ T

0

∫
Ω
ytϕt +AyAϕ+

1

ν
yϕdω d t−

∫
Ω
Ay(x, T )ϕ(x, T ) d t,

 (4.13)

with the space V =
{
v ∈ H(2,1)(Q) : v|Σ1

= 0, ∂
∂nv
∣∣
Σ2

= 0
}

. As seen in Theorem 3.31 the

bilinear form is V -elliptic and continuous.

For the discretization we restrict us to the case, where the variable x is one dimensional.
We use a finite element method with a finite element mesh Th,τ with rectangular elements θ
and a tensor product ansatz with a linear, quadratic or cubic Lagrange ansatz in the temporal
dimension and a continuously differentiable cubic Hermite ansatz in the spatial dimension
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for which the discretization parameters h and τ can be chosen independently. We define the
interpolation operator on the finite element mesh with the nodes (xi, tj) by

Ikhτ : H(3,2)(Q)→ C1(0, X)⊗ C0(0, T ),

Ikhτw
∣∣∣
θ
∈ P3 ⊗ Pk,

Ikhτw
(
xi, tj +

m

k
τ
)

= w
(
xi, tj +

m

k
τ
)

for m = 0, · · · , k,

D(1,0)Ikhτw
(
xi, tj +

m

k
τ
)

= D(1,0)w
(
xi, tj +

m

k
τ
)

for m = 0, · · · , k.

The finite element approximation yhτ ∈ Vh,τ is the solution of

a(yhτ , ϕ) = 〈fhτ , ϕ〉L2(Q)×L2(Q) ∀ϕ ∈ Vhτ , (4.14)

where the approximation of the right hand side is given by fhτ = Ihτf and the function space
Vhτ is defined as

Vhτ =
{
v ∈ V : v ∈ C1(0, X)⊗ C0(0, T ), v|θ ∈ P3 ⊗ Pk, ∀θ ∈ Thτ

}
.

The interpolation error is estimated in the following Theorem.

Theorem 4.9 (Interpolation error estimate). For a function y ∈ HA(Q)∩H(3,2)(Q) with the
multi-index set A = {(0, 0), (0, k + 1), (i, 1), (4, 0), (2, j)} with i ∈ {1, . . . , 4} and j ∈ {1, . . . , k}
the interpolation error can be estimated by∥∥∥y − Ikhτy∥∥∥

H(2,1)(Q)
. hi

∥∥∥D(i,1)y
∥∥∥
L2(Q)

+ τk
∥∥∥D(0,k+1)y

∥∥∥
L2(Q)

+ τ j
∥∥∥D(2,j)y

∥∥∥
L2(Q)

+ h2
∥∥∥D(4,0)y

∥∥∥
L2(Q)

,∥∥∥y − Ikhτy∥∥∥
L2(Q)

. τk+1
∥∥∥D(0,k+1)y

∥∥∥
L2(Q)

+ h4
∥∥∥D(4,0)y

∥∥∥
L2(Q)

.

We use this interpolation error estimate for the estimates of the finite element error. As the
proof is technical and rather long, we give the proof later.

Before, we apply it to the discretization error estimates for the finite element solution yhτ .

Theorem 4.10 (Error estimate in the energy norm). If for the exact solution of the variational
problem y ∈ HA(Q)∩H(3,2)(Q) with the multi-index set A = {(0, 0), (0, k+1), (i, 1), (4, 0), (2, j)}
with i ∈ {1, . . . , 4} and j ∈ {1, . . . , k} holds, the approximation error for finite element solution
yhτ with an ansatz of polynomial degree k in time can be bounded by

‖y − yhτ‖H(2,1)(Q) . hi
∥∥∥D(i,1)y

∥∥∥
L2(Q)

+ τk
∥∥∥D(0,k+1)y

∥∥∥
L2(Q)

+ τ j
∥∥∥D(2,j)y

∥∥∥
L2(Q)

+ h2
∥∥∥D(4,0)y

∥∥∥
L2(Q)

+ sup
wh∈Vhτ

∣∣〈f − fhτ , wh〉L2(Q)×L2(Q)

∣∣
‖wh‖H(2,1)(Q)

.
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Proof. As the bilinear form a(·, ·) is V -elliptic, Vhτ ⊆ V and the functions y and yhτ are the
solutions of the variational problems (4.13) and (4.14), we can apply the first Strang Lemma
Theorem 4.5 to get

‖y − yhτ‖H(2,1)(Q) . inf
vh∈Vh

‖y − vh‖H(2,1)(Q) + sup
wh∈Vhτ

∣∣〈f − fhτ , wh〉L2(Q)×L2(Q)

∣∣
‖wh‖H(2,1)(Q)

.

Therefore, for the error in the energy norm, we need to bound the best approximation errors in
the first Strang Lemma. To bound the best approximation errors we can use the interpolation
error estimate of the Theorem 4.9 and the proof is done.

Note that for the approximation of the second term we need only to estimate the interpolation
error in the L2(Q)-norm.

Remark 4.11. The last term in the error estimate of Theorem 4.10 can be estimated with the
L2(Q)-interpolation error estimate of Theorem 4.9 as

sup
wh∈Vhτ

∣∣〈f − fhτ , wh〉L2(Q)×L2(Q)

∣∣
‖wh‖H(2,1)(Q)

≤ sup
w∈V

∣∣〈f − fhτ , w〉L2(Q)×L2(Q)

∣∣
‖w‖H(2,1)(Q)

≤ ‖f − fhτ‖L2(Q) . τk+1
∥∥∥D(0,k+1)y

∥∥∥
L2(Q)

+ h4
∥∥∥D(4,0)y

∥∥∥
L2(Q)

for f ∈ H(4,k+1)(Q). If the right hand side f is less regular but the products of the right hand
side with test functions can be integrated exactly, the use of Céa’s Lemma, Theorem 4.3, instead
of the first Strang Lemma is a remedy.

Remark 4.12. In Theorem 4.10 the regularity assumption is given in terms of Sobolev spaces
with respect to a multi-index set. We discuss now, for which Sobolev spaces H(r,s)(Q) the
regularity assumptions are fulfilled in the most interesting case i = 2 and j = k, in which the
Theorem provides an error estimate of order 2 with respect to the spatial discretization and
of order k with respect to the temporal discretization. Our tool for this discussion is Theorem
3.23. In Figure 4.1 we have illustrated, which mixed derivatives are bounded for certain Sobolev
spaces H(r,s)(Q):

1. For k = 1 the multi-index set is A = {(0, 0), (0, 2), (4, 0), (2, 1)}. These derivatives exists
for functions in the space H(4,2)(Q).

2. For k = 2 the multi-index set is A = {0, 0), (0, 3), (4, 0), (2, 1), (2, 2)}. These derivatives
exist for functions in the spaces H(4,4)(Q) or H(6,3)(Q).

3. For k = 3 the multi-index set is A = {0, 0), (0, 4), (4, 0), (2, 1), (2, 3)}. These derivatives
exist for functions in the spaces H(5,5)(Q) or H(8,4)(Q).

Before we prepare the proof of Theorem 4.10 with some Lemmas, we also give a L2(Q)-error
estimate.

Theorem 4.13 (L2(Q)-error estimate with the Aubin-Nitsche trick). For a solution y, which
fulfills the regularity assumptions of the previous Theorem 4.10 for i = 2 and j = k and a right
hand side f ∈ HA(Q), the error in the L2(Q)-norm can be estimated by

‖y − yhτ‖L2(Q) .(h2 + τk)(h2 + τ) ‖y‖HA(Q) + ‖f − fhτ‖H(4,2)∗(Q) . (4.15)
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t

x0 1 2 3 4

1

2

(a) Multi-indices for the tem-
poral discretization with
polynomials of degree
k = 1.

t

x0 1 2 3 4 5 6

1
2
3
4

(b) Multi-indices for the
temporal discretization
with polynomials of de-
gree k = 2.

t

x0

1
2
3
4
5

1 2 3 4 5 6 7 8

(c) Multi-indices for the tem-
poral discretization with
polynomials of degree
k = 3.

Figure 4.1.: With these figures we illustrate the multi-indices which are needed for the estimates
in Theorem 4.10 for the case i = 2 and j = k in black. For better overview
additional multi-indices are added as circles. For the Sobolev space H(r,s)(Q) all
the derivatives corresponding to the multi-indices below the line, which connects
(0, s) and (r, 0) are L2(Q) functions, according to Theorem 3.23.

Proof. For the proof of this Lemma the proof of Lemma 4.8 can directly be transferred. For
the spaces we set H = L2(Q), V = H(2,1) and W = HA. The a priori estimates (4.8) and (4.9)
were proven in Theorem 3.32. The approximation estimate (4.10) in the form

‖zg − zh‖H(2,1)(Q) .
(
h2 + τ

)
‖zg‖HA(Q)

is the result of Theorem 4.10.

Therefore the Aubin Nitsche Theorem 4.8 yields

‖y − yhτ‖L2(Q) .
(
h2 + τ

) (
‖y − yhτ‖H(2,1)(Q) + ‖f − fhτ‖L2(Q)

)
+ ‖f − fhτ‖H(4,2)∗(Q) .

The application of the energy error and interpolation error estimates given in Theorem 4.9 and
Theorem 4.10 yield the result.

Remark 4.14. The term

‖f − fhτ‖H(4,2)∗(Q)

in the L2(Q)-error estimate can be treated as in Remark 4.11.

Remark 4.15. The error estimates in Theorems 4.10 and 4.13 imply the following choice of
discretization parameters:

1. For the linear ansatz in time the error estimates of Theorems 4.10 and 4.13 imply a choice
of τ ∼ h2 for balancing the discretization error in the energy-norm and the L2(Q)-norm.

With this choice of discretization parameters the error in the energy norm behaves asymp-
totically like O(h2) and the error in the L2(Q)-norm behaves asymptotically like O(h4).
With respect to the number of unknowns N the errors are of order N−2/3 and N−4/3,
respectively.
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2. For the quadratic ansatz in time the error estimate of Theorem 4.10 implies a choice of
τ ∼ h for balancing the discretization error in the energy-norm.

This choice of the discretization parameters leads to an asymptotic error behavior of O(h2)
in the energy norm and O(τh2 +τ3 +τ2h2 +h4) ∼ O(h3) in the L2(Q)-norm. With respect
to the number of unknowns N the errors are of order N−1 and N−3/2.

3. For the quadratic ansatz in time the error estimate of Theorem 4.13 implies at least
a choice of τ ∼ h2 to get an error estimate of order h4 in the L2(Q)-norm. So the
asymptotic error is like O(h2) in the energy norm and O(h4) in the L2(Q)-norm. With
respect to the number of unknowns N the errors are of order N−2/3 and N−4/3, i.e. worse
in comparison with the choice τ ∼ h.

4. For the cubic ansatz in time the error estimates of Theorem 4.10 implies a choice of
τ ∼ h2/3 for second order convergence in the energy norm. This choice of the discretization
parameters leads to an asymptotic error behavior of O(h2) in the energy norm and O(h8/3)
in the L2(Q)-norm. With respect to the number of unknowns N the errors are of order
N−6/5 and N−24/15.

Interpolation error estimate

We split the proof of the Theorem 4.9 into three lemmas. We will prove an estimate on the
reference element R = (0, 1)2 and get the convergence order by transformation to the world
element.

Lemma 4.16. Let y ∈ HA(Q)∩H(3,2)(Q) with the multi-index set A = {(0, k + 1), (i, 1)} with
i ∈ {1, . . . , 4}. Then the time derivative of the interpolation error on one element θ can be
bounded by ∥∥∥D(0,1)

(
y − Ikhτy

)∥∥∥
L2(θ)

. τk
∥∥∥D(0,k+1)y

∥∥∥
L2(θ)

+ hi
∥∥∥D(i,1)y

∥∥∥
L2(θ)

.

Proof. For the proof we use the standard transfer to the reference element R = (0, 1)2 and
follow the ideas of [99, Section 2.1] On R, we denote all quantities by ·̂. We start with∥∥∥D(0,1)

(
y − Ikhτy

)∥∥∥2

L2(θ)
=

∫
R

τh

τ2

(
D̂(0,1)

(
ŷ − Îkhτ ŷ

))2
d ω̂.

Next we introduce the temporal interpolation

Îkτ : H(3,2)(R)→ H3 ((0, 1))⊗ C0(0, T ),

Îkτ ŷ ∈ H3 ((0, 1))⊗ Pk,

Îkτ ŷ
(
x̂,
m

k

)
= ŷ

(
x̂,
m

k

)
, for m = 0, . . . , k,

that is well-defined for almost all x̂ ∈ (0, 1). By adding and subtracting this function and the
triangle inequality we have to estimate∥∥∥D(0,1)

(
y − Ikhτy

)∥∥∥
L2(θ)

≤
√
h

τ

(∫
R

(
D̂(0,1)

(
ŷ − Îkτ ŷ

))2
d ω̂

)1/2

+

√
h

τ

(∫
R

(
D̂(0,1)

(
Îkτ ŷ − Îkhτ ŷ

))2
d ω̂

)1/2

(4.16)
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For some fixed x̂∗ ∈ (0, 1) we can use the standard one dimensional interpolation result∫ 1

0

(
D̂(0,1)

(
ŷ − Îkτ ŷ

) (
x̂∗, t̂

))2
d t̂ .

∫ 1

0

(
D̂(0,k+1)ŷ

(
x̂∗, t̂

))2
d t̂,

which yields ∫
R

(
D̂(0,1)

(
ŷ − Îkτ ŷ

))2
d ω̂ .

∫
R

(
D̂(0,k+1)ŷ

)2
d ω̂.

The other integral in the estimate (4.16) is also an one-dimensional interpolation error as
Îkhτ ŷ is an interpolant of Îkτ ŷ. The application of the standard one dimensional interpolation
result yields for i = 1, . . . , 4 the estimate∫

R

(
D̂(0,1)

(
Îkτ ŷ − Îkhτ ŷ

))2
d ω̂ .

∫
R

(
D̂(i,1)Îkτ ŷ

)2
d ω̂.

To end the proof of this lemma we need finally to prove the estimate∫
R

(
D̂(i,1)Îkτ ŷ

)2
d ω̂ .

∫
R

(
D̂(i,1)ŷ

)2
d ω̂. (4.17)

With the nodal Lagrangian interpolation basis ϕi(t) ∈ Pk, i = 0, . . . , k with

ϕi

(
i

k

)
= δik

the action of the temporal interpolation operator Îkτ can be described by

Îkτ ŵ(x̂, t̂) =
k∑
i=0

ŵ(x̂, t̂i)ϕi(t̂).

With the basis χi =
∑i

j=0 ϕj (see also [2, Section 5]) the interpolation can be written as

Îkτ ŵ =
k−1∑
i=0

(
ŵ(x̂, t̂i)− ŵ(x̂, t̂i+1)

)
χi(t̂) + ŵ(x̂, t̂k)

= −
k−1∑
i=0

(∫ t̂i+1

t̂i

D̂(0,1)ŵ(x̂, ŝ) d ŝ

)
χi(t̂) + ŵ(x̂, t̂k).

Therefore the first derivative of the interpolant is given by

D̂(0,1)Îkτ ŵ = −
k−1∑
i=0

(∫ t̂i+1

t̂i

D̂(0,1)ŵ d ŝ

)
χ′i(t̂)

and the L2(R)-norm of this derivative can be estimated as∥∥∥D̂(0,1)Îkτ ŵ
∥∥∥
L2(R)

≤
k−1∑
i=0

∥∥∥D̂(0,1)ŵ
∥∥∥
L1(t̂i,t̂i+1;L2(0,1))

∥∥χ′i(t̂)∥∥L2((0,1))

.
∥∥∥D̂(0,1)ŵ

∥∥∥
L1(0,1;L2(0,1))

.
∥∥∥D̂(0,1)ŵ

∥∥∥
L2(R)

.
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Choosing ŵ = D̂(i,0)ŷ yields the estimate (4.17). Altogether we have proven the estimate∥∥∥D(0,1)
(
y − Ikhτy

)∥∥∥2

L2(θ)
≤ τh

τ2

∫
R

(
D̂(0,k+1)ŷ

)2
d ω̂ +

τh

τ2

∫
R

(
D̂(i,1)ŷ

)2
d ω̂.

Transferring the integrals back on the element θ yields the result.

Lemma 4.17. Assume that y ∈ HA(Q)∩H(3,2)(Q) with the multi-index set A = {(4, 0), (2, j)}
with j ∈ {1, . . . , k}. Then the second spatial derivative of the interpolation error on the element
θ can be bounded by∥∥∥D(2,0)

(
y − Ikhτy

)∥∥∥
L2(θ)

. τ j
∥∥∥D(2,j)y

∥∥∥
L2(θ)

+ h2
∥∥∥D(4,0)y

∥∥∥
L2(θ)

.

Proof. As in the proof of the previous lemma we follow the ideas of [99, Section 2.1] and transfer
the integral onto the reference element, where we denote quantities on the reference element
by ·̂. This yields ∥∥∥D(2,0)

(
y − Ikhτy

)∥∥∥2

L2(θ)
=

∫
R

τh

h4

(
D̂(2,0)

(
ŷ − Îkhτ ŷ

))2
d ω̂.

Next we introduce the spatial interpolation

Îh : H(3,2)(R)→ C1 ((0, 1))⊗H2(0, T ),

Îhŷ ∈ P3 ⊗H2 ((0, T )) ,

D(i,0)Îhŷ
(
m, t̂

)
= D(i,0)ŷ

(
m, t̂

)
, for i = 0, 1 and m = 0, 1.

By adding and subtracting this interpolant and the triangle inequality we split the integral into∥∥∥D̂(2,0)
(
y − Ikhτy

)∥∥∥2

L2(θ)
.
τh

h4

∫
R

(
D̂(2,0)

(
ŷ − Îhŷ

))2
d ω̂

+
τh

h4

∫
R

(
D̂(2,0)

(
Îhŷ − Îkhτ ŷ

))2
d ω̂. (4.18)

As in the previous lemma the first integral can be estimated as an one dimensional interpolation
error, which yields ∫

R

(
D̂(2,0)

(
ŷ − Îhŷ

))2
d ω̂ .

∫
R

(
D̂(4,0)ŷ

)2
d ω̂.

Again the other integral in the estimate (4.18) is also an one-dimensional interpolation error as
Îkhτ ŷ is an interpolant of Îhŷ. The application of the standard one dimensional interpolation
result yields with j = 1, . . . , k the estimate∫

R

(
D̂(2,0)

(
Îhŷ − Îkhτ ŷ

))2
d ω̂ .

∫
R

(
D̂(2,j)Îhŷ

)2
d ω̂.

To end the proof of this lemma we need finally to prove the estimate∫
R

(
D̂(2,j)Îhŷ

)2
d ω̂ .

∫
R

(
D̂(2,j)ŷ

)2
d ω̂.
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To this end let

f(x̂) = D̂(0,j)ŷ
∣∣∣
t̂=t̂∗

, g(x̂) = D̂(0,j)Îhŷ
∣∣∣
t̂=t̂∗

= ÎhD̂
(0,j)ŷ

∣∣∣
t̂=t̂∗

,

for some fixed t̂∗.
As the solution of the variational problem

min
p∈H2(0,1)

∫ 1

0

(
d2

d x̂2
p(x̂)

)2

d x̂

s. th. p(0) = a, p(1) = b,
d

dx
p(0) = c,

d

dx
p(1) = d,

is given by the Hermite interpolant (using that the corresponding Euler-Lagrange equation is
pxxxx = 0) we have ∫ 1

0

(
d2

d x̂2
g(x̂)

)2

d x̂ ≤
∫ 1

0

(
d2

d x̂2
f(x̂)

)2

d x̂

Returning to the definition of the functions f and g and recalling that t̂∗ was chosen arbitrarily,
the estimate holds for (almost) all t̂ ∈ (0, 1) and therefore we have∫

R

(
D̂(2,j)Îhŷ

)2
d ω̂ .

∫
R

(
D̂(2,j)ŷ

)2
d ω̂.

Altogether we have proven the estimate∥∥∥D(2,0)
(
y − Ikhτy

)∥∥∥2

L2(θ)
.
τh

h4

∫
R

(
D̂(4,0)ŷ

)2
d ω̂ +

τh

h4

∫
R

(
D̂(2,j)ŷ

)2
d ω̂.

Transferring the integrals back on the element θ yields the result.

Lemma 4.18. Assume that y ∈ HA(Q) with the multi-index set

A = {(0, k + 1), (j, 1), (4, 0), (2, i)} with j ∈ {1, . . . , 4} and i ∈ {1, . . . , k}.

Then the interpolation error on an element can be bounded by∥∥∥y − Ikhτy∥∥∥
L2(θ)

. τk+1
∥∥∥D(0,k+1)y

∥∥∥
L2(θ)

+ h4
∥∥∥D(4,0)y

∥∥∥
L2(θ)

.

Proof. As in the Lemmas 4.16 and 4.17 we transfer the error to the reference element. On the
reference element we can estimate the L2(R)-norm by the stronger H(4,k+1)(R)-norm, and by
using Theorem 3.25, we get∥∥∥ŷ − Îkhτ ŷ∥∥∥

L2(R)
≤
∥∥∥ŷ − Îkhτ ŷ∥∥∥

H(4,k+1)(R)

.
∣∣∣ŷ − Îkhτ ŷ∣∣∣

H(4,k+1)(R)
+

4·(k+1)∑
i=1

∣∣∣li(ŷ − Îkhτ ŷ)
∣∣∣

= |ŷ|H(4,k+1)(R) +

4·(k+1)∑
i=1

∣∣∣li(ŷ − Îkhτ ŷ)
∣∣∣ .
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4.1. Partial differential equations with V -elliptic bilinear form

For the linear functionals li we choose

li(y) = y

(
0,
i− 1

k

)
, for i = 1, . . . , k + 1,

li(y) = y

(
1,
i− (k + 2)

k

)
, for i = k + 2, . . . , 2(k + 1),

li(y) = D(1,0)y

(
0,
i− 2(k + 1)− 1

k

)
, for i = 2(k + 1) + 1, . . . , 3(k + 1),

li(y) = D(1,0)y

(
1,
i− 3(k + 1)− 1

k

)
, for i = 3(k + 1) + 1, . . . , 4(k + 1).

By the uniqueness of the polynomial interpolation it is clear, that the condition on the functionals
of Theorem 3.25 is fulfilled. With the interpolation properties of the interpolation operator Ikhτ
we see that

4·(k+1)∑
i=1

∣∣∣li(ŷ − Îkhτ ŷ)
∣∣∣ = 0.

By transferring back to the element θ the proof is finished.

So we have proven all results which we need to prove the interpolation error estimate of
Theorem 4.9.

Proof of Theorem 4.9. The interpolation error on every element is bounded with Lemma 4.16,
Lemma 4.17 and Lemma 4.18. For an interpolation error estimate on the whole domain we
split the integration over the domain to the integration over the elements and sum up.

Numerical example

Example 4.19. For a numerical example we consider the problem

−ytt + yxxxx + y = f in (0, 1)2,

y = 0 on {0} × (0, 1),

yxx = 0 on {0} × (0, 1),

yx = 0 on {1} × (0, 1),

yxxx = 0 on {1} × (0, 1),

y = 0 in (0, 1)× {0},
yt − yxx = 0 in (0, 1)× {T},

where the right hand side is chosen, so that the function

y = (t− 1)2 tx3 (x− 1)4 (4.19)

is the exact solution. For the computation we use finite element meshes with τ2 = h and observe
the predicted convergence rates in Figure 4.2.
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Figure 4.2.: Observed convergence rates for the Hermite-Lagrange tensor product finite element
method for the numerical Example 4.19. The L2(Q)-norm of the error is plotted
in blue with squares, the H(0,1)(Q)-semi norm in red with diamonds and the
H(2,0)(Q)-semi norm in magenta with triangles. The lines in green without any
markers indicate h2 and h4.

4.2. Parabolic partial differential equations

In this Section we discuss the discretization of parabolic initial boundary value problems

〈yt, ϕ〉V ∗×V + a(y, ϕ) = 〈u, ϕ〉H×H
y(·, 0) = v,

}
(4.20)

where the bilinear form a(·, ·) fulfills G̊arding’s inequality. We will focus on Crank-Nicolson
schemes as time stepping schemes for the discretization of this problem.

Assumption 4.20 (Time Discretization). For the time discretization we introduce the time
grid 0 = t0 < t1 < · · · < tN−1 < tN = T with time step size τi = ti − ti−1 and time intervals
Ii = (ti−1, ti). We denote the midpoints of the time intervals with ti+ 1

2
= ti+1+ti

2 . We introduce

τ = mini τi and τ = maxi τi as the minimal and the maximal time step size in the discretization.
Further we assume that there is a constant γ > 0, independent of the discretization level such
that

τ ≤ γτ.
We denote an approximation of a function y at the time t = ti by yi and of a function u at the
time t = ti+ 1

2
by ui+ 1

2
.

As discretization of the parabolic initial boundary value problem 4.20 we discuss the Crank-
Nicolson scheme

〈yh,0, ϕ〉H×H = 〈v, ϕ〉H×H ∀ϕ ∈ Vh,〈
yh,i+1 − yh,i

τ
, ϕ

〉
H×H

+ a

(
yh,i+1 + yh,i

2
, ϕ

)
=
〈
uh,i+ 1

2
, ϕ
〉
H×H

for i = 0, . . . , N,∀ϕ ∈ Vh,

 (4.21)
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4.2. Parabolic partial differential equations

where the finite dimensional subspace Vh ⊂ V is chosen as finite element space Vh ⊂ V .

Remark 4.21. In literature there are different interpretation of the term Crank-Nicolson
scheme. In the book of Thomée [125] the scheme (4.21) is called Crank-Nicolson scheme. There
the midpoint rule is used for the time discretization of the right hand side. In the book of
Johnson [66, (8.24)] the scheme〈

yh,i+1 − yh,i
τ

, ϕ

〉
H×H

+ a

(
yh,i+1 + yh,i

2
, ϕ

)
=

〈
uh,i + uh,i+1

2
, ϕ

〉
H×H

is considered as Crank-Nicolson scheme, where the trapezoidal rule is used for the time dis-
cretization of the right hand side. The only difference is the approximation of the right hand
side.

We will call any scheme of the form〈
yh,i+1 − yh,i

τ
, ϕ

〉
H×H

+ a

(
yh,i+1 + yh,i

2
, ϕ

)
=
〈
ũh,i+ 1

2
, ϕ
〉
H×H

with 〈
ũh,i+ 1

2
, ϕ
〉
H×H

=
〈
u(·, ti+ 1

2
), ϕ
〉
H×H

+ C
(
h2 + τ2

)
∀ϕ ∈ Vh (4.22)

a Crank-Nicolson scheme. So for the time approximation of the right hand side the midpoint
rule or the trapezoidal rule can be used but also Simpsons rule

ũi+ 1
2

=
1

6
uk− 1

2
+

4

6
uk+ 1

2
+

1

6
uk− 3

2

is equally well suited. This is motivated by the next theorem, in which it is shown that the
condition (4.22) guarantees second order convergence of the Crank-Nicolson scheme.

Let y ∈ Y be the solution of the continuous problem and yh ∈ Yh = L2((0, T ), Vh) the solution
of the problem after discretization in space with linear finite elements. Finally let yh,i be the
approximation of yh with the scheme (4.21) at the time ti.

Theorem 4.22. Let

C1(y, v) = ‖v‖W +

∫ T

0
‖yt(·, s)‖W d s, (4.23)

C2(y, u) =

∫ T

0
‖yttt(·, s)‖H + ‖Ay,tt(·, s)‖H d s+

∫ T

0
‖utt(·, s)‖H d s. (4.24)

Further assume, that

• the symmetric bilinear form a(·, ·) : V × V → R fulfills G̊arding’s inequality and is
continuous, and further

0 ≤ a(y, y) ∀y ∈ V,

• for the initial data v ∈ H2(Ω) holds,
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• linear finite elements are used for the spatial discretization,

• for the exact solution y ∈ H3((0, T ), L2(Ω)) ∩H2((0, T ), H2(Ω)) holds.

For a given approximation of the right hand side uh,i+ 1
2

with∥∥∥uh,i+ 1
2
− u(·, ti+ 1

2
)
∥∥∥
L2(Ω)

≤ C1h
2 + C2τ

2

for i = 0, . . . , N−1 with C1 and C2 specified in (4.23) and (4.24), the error between the solution
y and the solution yh,i of the Crank-Nicolson scheme (4.21) is bounded by

‖yh,i(·)− y(·, ti)‖L2(Ω) . C1h
2 + C2τ

2.

Remark 4.23 (Regularity). In the analysis of Crank-Nicolson schemes as time stepping
schemes we assume y ∈ H3((0, T ), L2(Ω)) ∩ H2((0, T ), H2(Ω)). For such a regularity in a
problem with parabolic partial differential equations we need a smooth right hand side and
further compatibility conditions on initial and boundary conditions. These are discussed in
Theorems 3.39 and 3.40.

In the example of a smooth domain Ω, e.g. if the domain is one dimensional, one obtains
from Theorem 3.40

y ∈ L2((0, T ), H2(Ω)) ∩ L∞((0, T ), H1
0 (Ω)) ∩H1((0, T ), L2(Ω)).

If we assume further

u ∈ H2((0, T ), L2(Ω)) ∩H1((0, T ), H2(Ω)) ∩ L2((0, T ), H4(Ω)),

v ∈ H1
0 (Ω), Av ∈ H1

0 (Ω), AAv ∈ H1
0 (Ω), AAAv ∈ L2(Ω)

we get the improved regularity

y ∈ H3((0, T ), L2(Ω)) ∩H2((0, T ), H2(Ω)) ∩ ∩H1((0, T ), H4(Ω)) ∩ L2((0, T ), H6(Ω)).

Definition 4.24. For the error splitting we define the projection Rh : V → Vh as

a(Rhy(·, ti), ϕ) = a(y(·, ti), ϕ) ∀ϕ ∈ Vh, (4.25)

for the case that G̊arding’s inequality is fulfilled with k = 0 and as

a(Rhy(·, ti), ϕ) = a(y(·, ti), ϕ) ∀ϕ ∈ Vh, (4.26)

and

∫
Ω
Rhy(·, ti) dω =

∫
Ω
y(·, ti) dω. (4.27)

for the case that k = 0 in G̊arding’s inequality is not possible.

Remark 4.25. In Theorem 3.34 we have seen that we can assume k = 0 in G̊arding’s inequality
without loss of generality. In Definition 4.24 we have nevertheless distinguished the cases k = 0
and k 6= 0 in G̊arding’s inequality as it is not necessary for the numerical realization of the
Crank-Nicolson scheme to perform the transformation w = e−λt y and to discretize the function
w instead of the function y. Furthermore for the use of the transformation w = e−λt y in the
context of optimal control problem one has also to care that the state is also part of the cost
functional and of the right hand side of the adjoint state.
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4.2. Parabolic partial differential equations

Lemma 4.26. The projection Rhy(·, ti) is well-defined and if the domain Ω is convex we have
the estimate

‖Rhy(·, ti)− y(·, ti)‖L2(Ω) ≤ h2 ‖y(·, ti)‖H2(Ω) .

Proof. This projection estimate is well known, even for the case k = 0 in G̊arding’s inequality
[23, Chapter 5.2, Chapter 5.7 and Theorem 5.7.6].

We discuss first the case that k = 0 in G̊arding’s inequality is not possible. Consider the
function

ỹ(·) = y(·, ti)−
1

meas(Ω)

∫
Ω
y(·, ti) dω,

ỹ ∈ H?(Ω) =

{
v ∈ H1(Ω) :

∫
Ω
v dω = 0

}
for any ti and its projection ỹh ∈ V ?

h =
{
v ∈ Vh :

∫
Ω vh dω = 0

}
defined by

a(ỹh, ϕ) = a(ỹ, ϕ) ∀ϕ ∈ Vh. (4.28)

It is well known that this projection is unique ([23, Chapter 5.2] or [124, Theorem 4.4.]) and it
is well known that

‖ỹ − ỹh‖H1(Ω) . h |ỹ|H2(Ω) .

As the domain Ω is convex we get second order convergence in L2(Ω) with the usual duality
argument (see [23, Theorem 5.7.6]). We compute the projection Rhy(·, ti) as

Rhy(·, ti) = ỹh +
1

meas(Ω)

∫
Ω
y(·, ti) dω. (4.29)

It is easy to see that this Rhy fulfills (4.26) and (4.27).
The projection is unique as (4.28) has a unique solution and any function y ∈ H1(Ω) can be

written as y = y0 + c with y0 ∈ H?(Ω) and a constant c.
In the case of k = 0 the well known estimate

‖ỹ − ỹh‖H1(Ω) . h |ỹ|H2(Ω) .

can be applied directly.

We split the errors into the difference between the exact solution and its projection

ρyi (·) = Rhy(·, ti)− y(·, ti),

and the difference between the projection and the numerical approximation

θyi (·) = yh,i(·)−Rhy(·, ti),

Lemma 4.27. [125, Theorem 1.2] Assume that the assumptions of Theorem 4.22 are fulfilled.
The error between the solution and the corresponding projection can be estimated by

‖ρyi ‖L2(Ω) = ‖Rhy(·, ti)− y(·, ti)‖L2(Ω) . h2 ‖v‖H2(Ω) + h2

∫ ti

0
‖y,t(·, s)‖H2(Ω) d s.
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Proof. The projection the estimate

‖Rhy(·, ti)− y(·, ti)‖L2(Ω) . h2 ‖y(·, ti)‖H2(Ω) (4.30)

is well known (see Lemma 4.26). With the fundamental theorem of calculus (see Theorem 3.18)
we have

‖y(·, ti)‖H2(Ω) =

∥∥∥∥v(·) +

∫ ti

0
y,t(·, s) d s

∥∥∥∥
H2(Ω)

≤ ‖v‖H2(Ω) +

∫ ti

0
‖y,t(·, s)‖H2(Ω) d s,

which is the desired estimate.

Proof of Theorem 4.22. With the error splitting and Lemma 4.27 it is sufficient to discuss the
difference θyi between the projection and the numerical approximation. For this estimate we
follow the proof of [125, Theorem 1.6]. Therefore we transform the right hand side of (4.21) for
θy and obtain by the use of the discretization scheme〈

θyi − θ
y
i−1

τ
, ϕ

〉
H×H

+ a

(
θyi + θyi−1

2
, ϕ

)
=

=
〈
uh,i− 1

2
(·), ϕ

〉
H×H

− a
(
Rhy(·, ti) +Rhy(·, ti−1)

2
, ϕ

)
−
〈
Rhyi(·)−Rhyi−1(·)

τ
, ϕ

〉
H×H

.

The definition of Rh and adding and subtracting the differential equation for the exact solution
yields 〈

θyi − θ
y
i−1

τ
, ϕ

〉
H×H

+ a

(
θyi + θyi−1

2
, ϕ

)
=
〈
y,t(·, ti+ 1

2
), ϕ
〉
H×H

+ a
(
y(·, ti+ 1

2
), ϕ
)

+
〈
uh,i− 1

2
(·)− u(·, ti− 1

2
), ϕ
〉
H×H

− a
(
y(·, ti) + y(·, ti−1)

2
, ϕ

)
−
〈
Rhyi(·)−Rhyi−1(·)

τ
, ϕ

〉
H×H

Using the regularity assumption Ay(·, t) ∈ H and adding another zero ends in〈
θyi − θ

y
i−1

τ
, ϕ

〉
H×H

+ a

(
θyi + θyi−1

2
, ϕ

)
= −

〈
(Rh − I)

y(·, ti)− y(·, ti−1)

τ
+
y(·, ti)− y(·, ti−1)

τ
− y,t(·, ti+ 1

2
), ϕ

〉
H×H

−
〈
A
y(·, ti+1) + y(·, ti)

2
−Ay(·, ti+ 1

2
), ϕ

〉
H×H

+
〈
uh,i− 1

2
(·)− u(·, ti− 1

2
), ϕ
〉
H×H

=: −〈ω1,i, ϕ〉H×H − 〈ω2,i, ϕ〉H×H +
〈
uh,i− 1

2
(·)− u(·, ti− 1

2
), ϕ
〉
H×H

.

By simple computation we have the identity〈
θyi − θ

y
i−1

τ
,
θyi + θyi−1

2

〉
H×H

=
1

2τ
‖θi‖2H −

1

2τ
‖θi−1‖2H

=
1

2τ

(
‖θi‖H + ‖θi−1‖2H

)(
‖θi‖H − ‖θi−1‖2H

)
.
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4.2. Parabolic partial differential equations

We recall the the assumption

0 ≤ a
(
θyi + θyi−1

2
,
θyi + θyi−1

2

)
.

and use
θyi +θyi−1

2 as test function which gives

1

2τ

(
‖θi‖H + ‖θi−1‖2H

)(
‖θi‖H − ‖θi−1‖2H

)
≤〈

θyi − θ
y
i−1

τ
,
θyi + θyi−1

2

〉
H×H

+ a

(
θyi + θyi−1

2
,
θyi + θyi−1

2

)
≤(

‖ω1,i‖H + ‖ω2,i‖H +
∥∥∥uh,i− 1

2
− u(·, ti− 1

2
)
∥∥∥
L2(Ω)

)
1

2

(
‖θyi ‖H +

∥∥θyi−1

∥∥
H

)
.

After cancellation of the common factor ‖θyi ‖H +
∥∥θyi−1

∥∥
H

and repeated application we get

‖θyi ‖H ≤
∥∥θyi−1

∥∥
H

+ τ ‖ω1,i‖H + τ ‖ω2,i‖H + τ
∥∥∥uh,i− 1

2
− u(·, ti− 1

2
)
∥∥∥
H

≤ ‖θy0‖H L2(Ω) +
i∑

j=1

τ ‖ω1,j‖H +
i∑

j=1

τ ‖ω2,j‖H + τ
i∑

j=1

(
C1h

2 + C2τ
2
)

≤ ‖θy0‖H +
i∑

j=1

τ ‖ω1,j‖H +
i∑

j=1

τ ‖ω2,j‖H +
(
C1h

2 + C2τ
2
)
.

With the projection estimate of Lemma 4.27 we can estimate

‖θy0‖H = ‖v −Rhv‖H . h2 ‖v‖W

and

τ

∥∥∥∥(Rh − I)
y(·, ti)− y(·, ti−1)

τ

∥∥∥∥
H

≤ h2C1.

The second term of ωj can be estimated as in [125, Theorem 1.6]

τ

∥∥∥∥y(·, ti)− y(·, ti−1)

τ
− y,t(·, ti+ 1

2
)

∥∥∥∥
H

=
1

2

∥∥∥∥∥∥
∫ t

j− 1
2

tj−1

(t− tj−1)2y,ttt d t+

∫ tj

t
j− 1

2

(t− tj)2y,ttt d t

∥∥∥∥∥∥
H

. τ2

∫ tj

tj−1
‖y,ttt‖H d t.

The remaining estimate for ω2,j given by

τ

∥∥∥∥Ay(·, ti+ 1
2
)−A

(
y(·, ti+1) + y(·, ti)

2

)∥∥∥∥
H

. τ2

∫ tj

tj−1

‖Ay,tt‖H d t

follows similarly. So the proof is done.
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4.3. Hamiltonian systems

Finally we consider the discretization of Hamiltonian systems.

Definition 4.28. A Hamiltonian system is a system of differential equations with

d

d t
p = −Hq(p, q),

d

d t
q = −Hp(p, q),

where the Hamiltonian H is a given function.

Remark 4.29. In mechanics Hamiltonian systems are common and have a initial condition
for both sets of variables p and q. But the initial conditions are not part of the definition of a
Hamiltonian system, it is also possible to pose initial conditions for p and terminal conditions
for q. This is the case if we consider Hamiltonian systems for optimal control problems.

A common scheme for Hamiltonian system is the second order Störmer-Verlet scheme.
Hairer, Lubich and Wanner propose in [57, Chapter II.2] and [56, (1.24)] an extension of the
Störmer-Verlet scheme to general partitioned problems

ẏ = g(y, p), ṗ = f(y, p). (4.31)

As noted in [56, Section 1.8] this scheme goes back to [32]. The scheme is given as

pn = pn−1/2 +
τ

2
f(yn, pn−1/2)

pn+1/2 = pn +
τ

2
f(yn, pn+1/2)

yn+1 = yn +
τ

2

(
g(yn, pn+1/2) + g(yn+1, pn+1/2)

)
 (SV)

Remark 4.30. With pure algebraic manipulation on the Störmer-Verlet scheme (SV) we see:

1. By elimination of the first equation of (SV) the Störmer-Verlet scheme can be written
as equations in the time points ti for the function y and in the time points ti+1/2 for the
function p.

2. On the other hand by elimination of the second equation of (SV), the scheme can be
written in the time points ti for both functions y and p.

Theorem 4.31. [57, Theorem II.2.2 or Theorem III.2.5 or Theorem VI.3.4] The Störmer-
Verlet scheme is a scheme of second order, i.e. let y and p the solution of (4.31) and yi, pi+1/2

the solution of (SV), then

‖y(ti)− yi‖Rn +
∥∥p(ti+1/2)− pi+1/2

∥∥
Rn . O(τ2).

As mentioned optimal control problems are also Hamiltonian systems. The Störmer-Verlet
scheme is a symplectic partitioned Runge-Kutta scheme. In [16, 17] Bonnans and Laurent-Varin
discuss the application of such schemes to optimal control problems with ordinary differential
equations. Order conditions for third and higher order symplectic partitioned Runge-Kutta
scheme are also given in [16, 17, 54, 55, 57], but we do not discuss such schemes as they need a
high regularity of the solution. The Störmer-Verlet scheme (SV) fulfills the order conditions
of [16, 17].
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In this Chapter we introduce an abstract parabolic optimal control problem. For this problem
we derive the optimality conditions and discuss the Hamiltonian nature of these conditions.
We discuss also that the optimality conditions for this problem can be reduced to an equation
which only involves the optimal control but not the state or the optimal state but not the
optimal control.

In the discussion of the discretization in the next chapter we will discuss the discretization of
the optimal control problem, the Hamiltonian system of optimality conditions and the equation
which does not involve the control.

5.1. Optimality conditions

For the statement of an abstract parabolic optimal control problem we need some very general
assumptions.

Assumption 5.1 (General Assumptions). We assume that the following very general assump-
tions hold for the rest of this thesis.

1. There is an Gelfand triplet V ⊆ H ∼= H∗ ⊆ V ∗.

2. There are three constants α, β, ν ∈ R with α, β ≥ 0, α+ β > 0 and ν > 0.

3. For the three functions v ∈ H, yD ∈ H and yd(·, t) ∈ H holds.

4. The operator M : V ∗ → V ∗ is linear, positive definite, self-adjoint and continuous.

5. The operators A : V → V ∗ and G : H → V ∗ are linear and continuous.

6. The operators MD : H → H, Md : H → H and Mu : H → H are linear, positive semi
definite, self-adjoint and continuous.

With these assumptions we formulate a general parabolic optimal control problem.
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5. Parabolic Optimal Control Problems

Problem 5.2 (Parabolic Optimal Control Problem). Let the Assumptions 5.1 be fulfilled. Then
the abstract parabolic optimal control problem is defined by

min
y,u

J(y, u),

s.t. Myt +Ay = Gu,

My(0, ·) = Mv(·),

 (5.1)

where the equations should be understood in the sense of L2(0, T ;V ∗) and the cost functional
J(y, u) is defined by

J(y, u) =
α

2

∥∥∥M1/2
D (y(·, T )− yD(·))

∥∥∥2

H
+
β

2

∫ T

0

∥∥∥M1/2
d (y(·, t)− yd(·, t))

∥∥∥2

H
d t+

+
ν

2

∫ T

0

∥∥∥M1/2
u u

∥∥∥2

H
d t.

Remark 5.3. To discuss the solution of (5.1) in the space C(0, T ;V ∗), we need the regularity
y ∈ C1(0, T ;V ∗). This regularity can be established with the regularity theory for the differential
equation in (5.1), regularity assumptions on the data and the discussion of the optimality
conditions.

Remark 5.4. The existence of the positive square roots M
1/2
D , M

1/2
d and M

1/2
u of the operators

MD, Md and Mu is established in Theorem 3.8. For the computation of the cost functional J(y, u)

we do not need to know or compute M1/2 as
∥∥M1/2x

∥∥2

H
= 〈M1/2x,M1/2x〉H×H = 〈Mx, x〉H×H

as the root of a self adjoint operator is a self adjoint operator itself (see Corollary 3.9).

Remark 5.5 (More general problems). In setting of Problem 5.2 we restrict ourselves to the
case that the control space and the space of observation of the state y in the cost functional
match with the pivot space H of our Gelfand triplet. For the discussion of the optimality
conditions for optimal control problems with more general control spaces U see e.g. [62, Chapter
3] and [78, Chapter III.2.]. If one chooses more general control spaces, one has to be careful as
the Riesz isomorphism between U and U∗ is not the identity on L2(Ω) (see [62]). Therefore
here the control space U = H is chosen for clarity and shortness of presentation. With the
introduction of a more general control space one could also discuss Neumann boundary control
if one chooses U = L2(∂Ω) or U = H1/2(∂Ω) and G as the extension operator (see [78, 101]).

In applications of the Problem 5.2 to optimal control problems with parabolic partial
differential equations the operators possess typically more regularity as given in Problem 5.2.
Namely we assume the following properties.

Assumption 5.6. 1. Let W ⊆ V be a Hilbert space.

2. Let the Assumptions 5.1 hold.

3. The linear operator M : V ∗ → V ∗ is the continuation of a positive definite operator
M̃ : W →W .

4. The operator A induces a continuous bilinear form which fulfills G̊arding’s inequality
(3.20).
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5.1. Optimality conditions

5. The linear operator G : H → V ∗ is the continuation of an operator G̃ : V → V . Therefore
we know that G̃∗ : V → V and so we have G∗ : V → V .

We give now some examples which are covered by this abstract optimal control problem.

Example 5.7. Distributed control of the heat equation with homogeneous Dirichlet boundary
conditions. In this case we choose V = H1

0 (Ω), H = L2(Ω), A = −∆ and G = M = Md =
MD = Mu = I. In this case the Assumptions 5.1 and 5.6 hold.

Example 5.8. Distributed control of the heat equation with homogeneous Neumann boundary
conditions. In this case we choose V = H1(Ω), H = L2(Ω), A = −∆ and G = M = Md =
MD = Mu = I.

Example 5.7 and Example 5.8 are special cases of the more general following example.

Example 5.9. Distributed control and observation of the heat equation with homogeneous
Dirichlet boundary conditions on Γ1 and homogeneous Neumann boundary conditions on Γ2,
where Γ1 ∪ Γ2 = ∂Ω and Γ1 ∩ Γ2 = ∅. In this case we choose V =

{
v ∈ H1(Ω) : v|Γ1 = 0

}
,

H = L2(Ω), A = −∆ and G = M = Md = MD = Mu = I.

Example 5.10. Distributed control of the heat equation with homogeneous Neumann boundary
conditions, where the control only acts on a sub domain ΩU ⊂ Ω and the desired states are only
given on sub domains on ΩD ⊂ Ω and Ωd ⊂ Ω respectively. In this case we choose V = H1, H =
L2(Ω), A = −∆, M = I. The other operators can be defined by 〈Gu,ϕ〉H×H = 〈Muu, ϕ〉H×H =∫

Ω χΩUuϕdω, 〈MDv, ϕ〉H×H =
∫

Ω χΩDvϕdω and 〈Mdv, ϕ〉H×H =
∫

Ω χΩdvϕdω with the char-
acteristic functions χΩi of Ωi for Ωi ∈ {ΩD,ΩD,ΩU}.

This example fits into the setting of Problem 5.2. But due to the definition of the spatial
operators one would assume that there are singularities near the boundaries of Ωd, ΩD and ΩU .
Therefore the stronger regularity assumptions of Assumption 5.6 are not fulfilled, i.e. the control
operator G is not a map H1(Ω) → H1(Ω). A remedy could be the use of weighted Sobolev
spaces and graded meshes or the discussion of a regularized problems, where the characteristic
functions are replaced by

(ηε ∗ χΩi) (x) =

∫
Ω
ηε(ξ)χΩi(x− ξ) dω

with a smooth function ηε.

Example 5.11. A finite element discretization of distributed control of the heat equation with
homogeneous Dirichlet boundary conditions or homogeneous Neumann boundary conditions.
In this case we choose V = H = Rn, A as stiffness matrix. M is a mass matrix, where the
Dirichlet boundary conditions are incorporated, and G = Md = MD are mass matrices, where
no boundary conditions have been considered.

For the deduction of the optimality conditions of the Problem 5.2 we introduce the Lagrangian

L(y, u, p) =
α

2

∥∥∥M1/2
D (y(·, T )− yD(·))

∥∥∥2

H
+
β

2

∫ T

0

∥∥∥M1/2
d (y(·, t)− yd(·, t))

∥∥∥2

H
d t+

+
ν

2

∫ T

0

∥∥∥M1/2
u u

∥∥∥2

H
d t+

+

∫ T

0
〈Myt +Ay −Gu, p〉V ∗×V d t+ 〈M (y(·, 0)− v) , p(·, 0)〉H×H


(5.2)
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5. Parabolic Optimal Control Problems

and compute the first order condition for a stationary point of the Lagrangian, i.e. we set the
first variations to zero. The Lagrange functional is well defined for y ∈ Y and u, p ∈ P. For
the computation of the first variation we choose admissible variations ϕ ∈ P and φ ∈ Y with
φ(·, 0) = 0. The optimal solution (ȳ, p̄, ū) fulfills

∂

∂ε
L(ȳ, ū, p̄+ εϕ)

∣∣∣∣
ε=0

=

∫ T

0
〈Mȳt +Aȳ −Gū, ϕ〉V ∗×V d t

+ 〈M (ȳ(·, 0)− v) , ϕ(·, 0)〉H×H = 0, (5.3)

∂

∂ε
L(ȳ, ū+ εϕ, p̄)

∣∣∣∣
ε=0

=

∫ T

0
ν〈Muū, ϕ〉H×H − 〈ϕ,G∗p̄〉V ∗×V d t = 0, (5.4)

∂

∂ε
L(ȳ + εφ, ū, p̄)

∣∣∣∣
ε=0

= α〈MD (ȳ(·, T )− yD(·)) , φ〉H×H+

+ β

∫ T

0
〈Md (ȳ(·, t)− yd(·, t)) , φ〉H×H d t+

+

∫ T

0
〈Mφt +Aφ, p̄〉V ∗×V + 〈Mφ(·, 0), p̄(·, 0)〉H×H d t = 0. (5.5)

For the last equation we use partial integration in time

∂

∂ε
L(y + εφ, u, p)

∣∣∣∣
ε=0

= α〈MD (ȳ(·, T )− yD(·)) , φ〉H×H

+ 〈Mφ(·, T ), p̄(·, T )〉V ∗×V − 〈Mφ(·, 0), p̄(·, 0)〉V ∗×V

+ β

∫ T

0
〈Md (ȳ(·, t)− yd(·, t)) , φ〉H×H d t+

+

∫ T

0
〈−Mp̄t, φ〉V ∗×V + 〈A∗p̄, φ〉V ∗×V d t

+ 〈Mφ(·, 0), p̄(·, 0)〉H×H = 0. (5.6)

As we have used admissible variations φ with φ(·, 0) = 0 the term 〈Mφ(·, 0), p̄(·, 0)〉H×H vanishes.
For the partial integration in time we do not only need y ∈ Y and u, p ∈ P as for the Lagrangian,
but we need also p ∈ Y, so that the time derivative of the adjoint state p is well defined.

As the optimality conditions should be fulfilled for all admissible variations ϕ and φ the
optimality conditions are the weak form of the following system.

Problem 5.12 (Optimality Conditions). Find ȳ, p̄ ∈ L2(0, T ;V ) ∩ H1(0, T ;V ∗) and ū ∈
L2(0, T ;V ) so that

Mȳt +Aȳ = Gū,

Mȳ(·, 0) = Mv(·),
Mp̄t −A∗p̄ = βMd (ȳ − yd) ,
Mp̄(·, T ) = αMD (yD(·)− ȳ(·, T )) ,

Muū =
1

ν
G∗p̄


(5.7)

hold in the sense of V ∗.
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5.1. Optimality conditions

Remark 5.13. We have chosen the sign of the Lagrange multiplier so that ū = 1
νG
∗p̄ as in

[19, 20, 50]. The other choice, ū = − 1
νG
∗p̄, is also popular.

Theorem 5.14. Let the Assumptions 5.6 hold. Then, for a given control u there is a unique
solution of the state equation

Myt +Ay = Gu,

My(·, 0) = Mv(·).

Further for a given state y there is a unique solution of the adjoint equation

Mpt −A∗p = βMd (y − yd) ,
Mp(·, T ) = αMD (yD(·)− y(·, T )) .

Proof. The existence and uniqueness of the state equation follows directly with Theorem 3.37

as the norm 〈My, y〉1/2H×H is an equivalent L2(Ω)-norm.

For the adjoint equation we use the same arguments and the time transformation t̃ = T − t,
with which the adjoint equation can be transformed to an initial-boundary value problem for a
parabolic partial differential equation.

As the Lagrange method is a formal method we need to establish that the system of the
optimality conditions is solvable. This can be done by the introduction of a reduced cost
functional j(u), where the state y in the cost functional J(y, u) is replaced by SGu with the
(linear) solution operator S of the partial differential equation and we write y(·, ·;u) = SGu, so

j(u) = J(SGu, u) =

=
α

2

∥∥∥M1/2
D ((SGu)(·, T )− yD(·))

∥∥∥2

H
+
β

2

∫ T

0

∥∥∥M1/2
d ((SGu)(·, t)− yd(·, t))

∥∥∥2

H
d t+

+
ν

2

∫ T

0

∥∥∥M1/2
u u

∥∥∥2

H
d t.

The existence of the linear operator S follows by the solvability of the state equation.

Lemma 5.15. The reduced cost functional j(u) has a unique minimum, the optimal control ū.

Proof. The the reduced cost functional is quadratic and therefore a convex functional with

j(0) <∞,
lim
k→∞

j(kϕ) =∞ ∀ϕ ∈ H with ‖ϕ‖H = 1.

Further the functional is lower semicontinuous. This implies that a minimizer u of the functional
exists [78, Remark 1.2]. As the quadratic functional is strictly convex the uniqueness follows by
standard arguments.

For the reduced functional we compute the first directional derivative.
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5. Parabolic Optimal Control Problems

Lemma 5.16. The directional derivative of the reduced cost functional at the optimal control
ū in the direction u is given by

j′(ū)u = α〈MDSGū(·, T )−MDyD(·),SGu(·, T )〉H×H+

+ β

∫ T

0
〈MdSGū−Mdyd,SGu〉H×H d t+ ν

∫ T

0
〈Muū, u〉H×H d t.

Proof. For the computation of the derivative of the reduced cost functional we compute the
first variation as Raymond [101]. For the reduced cost functional we have

j(ū) =
α

2
〈MD ((SGū)(·, T )− yD(·)) , (SGū)(·, T )− yD(·)〉H×H +

+
β

2

∫ T

0
〈Md ((SGū)(·, t)− yd(·, t)) , (SGū)(·, t)− yd(·, t)〉H×H d t+

+
ν

2

∫ T

0
〈Muū, ū〉H×H d t

and

j(ū+ εu) =
α

2
〈MD ((SG(ū+ εu))(·, T )− yD(·)) , (SG(ū+ εu))(·, T )− yD(·)〉H×H +

+
β

2

∫ T

0
〈Md ((SG(ū+ εu))(·, t)− yd(·, t)) , (SG(ū+ εu))(·, t)− yd(·, t)〉H×H d t+

+
ν

2

∫ T

0
〈Mu(ū+ εu), ū+ εu〉H×H d t

= j(ū)+

+ εα 〈MD ((SG(ū))(·, T )− yD(·)) , (SG(u))(·, T )− yD(·)〉H×H +

+ εβ

∫ T

0
〈Md ((SG(ū))(·, t)− yd(·, t)) , (SG(u))(·, t)− yd(·, t)〉H×H d t+

+ εν

∫ T

0
〈Mu(ū), u〉H×H d t+

+ ε2α

2
〈MD(SGu)(·, T ), (SGu)(·, T )〉H×H + ε2β

2

∫ T

0
〈MdSGu, SGu〉H×H d t+

+ ε2 ν

2

∫ T

0
〈Muu, u〉H×H d t.

With the definition of the directional derivative j′(ū)u = limε→0
j(ū+εu)−j(ū)

ε the proof is
done.

For the simplification of this derivative we can (re)introduce the adjoint state p̄ and use a
generalized partial integration which we prove in the following Lemma.

Lemma 5.17. For the optimal state ȳ = SGū, defined by the state equation

Mȳt +Aȳ = Gū,

Mȳ(·, 0) = Mv
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and the adjoint state p̄ and yϕ defined by

Mp̄t −A∗p̄ = βMd (ȳ − yd) , Myϕt +Ayϕ = Gϕ,

Mp̄(·, T ) = αMD (yD(·)− ȳ(·, T )) , Myϕ(·, 0) = 0.

the following integration formula holds

α〈MDȳ −MDyD, y
ϕ〉H×H + β

∫ T

0
〈Mdȳ −Mdyd, y

ϕ〉H×H d t =

= −
∫ T

0
〈G∗p̄, ϕ〉H×H

Proof. We follow the ideas of the proof of Raymond [101, Theorem 5.2.3.]. By integration by
parts in time and the use of the initial condition for yϕ and the terminal condition for p̄ we get∫ T

0
〈Myϕt , p̄〉V ∗×V d t = −

∫ T

0
〈Mp̄t, y

ϕ〉V ∗×V d t

+ 〈Mp̄(T ), ϕ(T )〉H×H − 〈Myϕ(0), ϕ(0)〉H×H =

=

∫ T

0
−〈A∗p̄, yϕ〉+ β〈Md (yd − ȳ) , yϕ〉H×H d t

+ α〈MD (yD − ȳ(T )) , yϕ〉H×H
And therefore we have, as claimed in this lemma

−
∫ T

0
〈Gϕ, p̄〉H×H d t = −

∫ T

0
〈Myϕt , p̄〉V ∗×V + 〈Ayϕ, p̄〉V ∗×V d t =

=

∫ T

0
β〈Md(ȳ − yd), yϕ〉H×H d t+ α〈MD(ȳ(T )− yD), yϕ〉H×H .

Application of this Lemma to the gradient of the reduced cost functional of Lemma 5.16
yields the following representation of the gradient.

Theorem 5.18. The gradient of the reduced cost functional has the representation

j′(ū)u =

∫ T

0
〈νMuu−G∗p̄, u〉H×H d t.

With this theorem the optimality condition j′(ū)u = 0 is equivalent to the optimality
conditions (5.7) and therefore we have justified the use of the formal Lagrange technique.

In the next section we have a closer look to the optimality conditions.

5.2. Connection to Hamiltonian systems

In this section we have a close look on the optimality conditions (5.7),

Mȳt +Aȳ =
1

ν
GM−1

u G∗p̄, Mp̄t −A∗p̄ = βMd(ȳ − yd),
Mȳ(·, 0) = Mv(·) Mp̄(·, T ) = αMD(yD(·)− ȳ(·, T )),
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where we have eliminated the optimal control due to the optimality condition νMuū = G∗p̄.
Our goal is to interpret these conditions as Hamiltonian system.

If we have now a close look at the optimality conditions, we observe that this system has the
structure of a Hamiltonian system, i.e.

Mȳt = −Hp = −Aȳ +
1

ν
GM−1

u G∗p̄, (5.8)

Mp̄t = Hy = A∗p̄+ βMdȳ − βMdyd (5.9)

with the Hamiltonian

H(y, p) =
β

2
〈Mdy, y〉H×H − β〈Mdyd, y〉H×H + 〈Ay, p〉V ∗×V

− 1

2ν
〈GM−1

u G∗p, p〉H×H . (5.10)

Remark 5.19. In contrast to classical Hamiltonian systems known in mechanics, where the
system has initial conditions for y and p, our system has a initial condition for ȳ and a terminal
condition for p̄. Nevertheless it fulfills the definition of a Hamiltonian System as there is an
Hamiltonian with Mȳt = −Hp and Mp̄t = Hy.

Remark 5.20. The choice of the Hamiltonian is not unique as

Mp̄t = −H̃y = A∗p̄+ βMdȳ − βMdyd (5.11)

Mȳt = H̃p = −Aȳ +
1

ν
GM−1

u G∗p̄, (5.12)

is also a Hamiltonian system with with the Hamiltonian

H̃(y, p) = −H(y, p). (5.13)

In the following two subsections we will discuss conditions with which the optimality conditions
are equivalent to a single equations. For Hamiltonian systems in mechanics this is well known,
the Hamiltonian mechanics considers first order equations for state and velocity of the system,
whereas Lagrangian mechanics considers a system of second order equations for the state.

5.3. Single equations for the state or the adjoint state

In the case that β 6= 0 and that the operator Md is invertible, we use the second equation of
the Hamiltonian system (5.9) as definition of the optimal state

Mdȳ =
1

β
Mp̄t −

1

β
A∗p̄+Mdyd (5.14)

and insert this into the first equation (5.8) to get

− 1

β
MM−1

d Mp̄tt +
1

β
MM−1

d A∗p̄t −
1

β
AM−1

d Mp̄t +
1

β
AM−1

d A∗p̄+
1

ν
GM−1

u G∗p̄

= Myd,t +Ayd.

68



5.3. Single equations for the state or the adjoint state

To assure that this is still a valid equation in V ∗ we need the additional regularity p̄tt(·, t) ∈ V ∗,
p̄t(·, t) ∈ V , A∗p̄(·, t) ∈ V , yd(·, t) ∈ V and yd,t ∈ V ∗ instead of the regularity p̄(·, t) ∈ V ,
A∗p(·, t) ∈ V ∗ , p̄t(·, t) ∈ V and yd(·, t) ∈ H which is implied by the optimality conditions. In
the case that the control costs and the observation are measured with the same operator M
which is used in the differential equation, i.e. Mu = Md = M , the equation simplifies to

− 1

β
Mp̄tt +

1

β
A∗p̄t −

1

β
Ap̄t +

1

β
AM−1A∗p̄+

1

ν
GM−1G∗p̄ = Myd,t +Ayd.

And for a self adjoint operators A this equation is

− 1

β
Mp̄tt +

1

β
AM−1Ap̄+

1

ν
GM−1G∗p̄ = Myd,t +Ayd. (5.15)

On the other hand, if the product of operators GM−1
u G∗ is invertible, we can also use the

first equation (5.8) as definition of the optimal adjoint state

p̄ = ν(GM−1
u G∗)−1Mȳt + ν(GM−1

u G∗)−1Aȳ (5.16)

and insert this into the second equation (5.9). This yields

−νM(GM−1
u G∗)−1Mȳtt − νM(GM−1

u G∗)−1Aȳt

+νA∗(GM−1
u G∗)−1Mȳt + νA∗(GM−1

u G∗)−1Aȳ + βMdȳ = βMdyd.

For a self adjoint operator A and G = Mu = Md = M this is

−νMȳtt + νAM−1Aȳ + βMȳ = βMyd. (5.17)

For the solution of the equations (5.15) or (5.17) we still need to specify boundary conditions.
The boundary conditions for the temporal boundaries t = 0 and t = T for the adjoint state
(5.15) are

Mp̄(x, T ) = αMD (ȳ(x, T )− yD(x)) in Ω,

Mp̄t(x, 0)−Ap̄(x, 0) = β (v(x)− yd(0, x)) in Ω.

The first condition is the terminal condition for the adjoint state p̄ and the second equation is
just the adjoint equation for t = 0 together with the initial condition My(0, x) = Mv(0).

For the equation (5.17) we have for the temporal boundary the conditions

Mȳ(x, 0) = Mv(x) in Ω,

νMȳt(x, T ) + νAȳ(x, T ) + αMDȳ(·, T ) = αMDyD(x) in Ω.

The first condition is the initial condition for ȳ. For the second condition there are two
interpretations. On the one hand it is the state equation Mȳt +Aȳ = 1

νMp̄ together with the
definition of the adjoint state p̄ given by equation (5.14). And on the other hand the condition
can be obtained by the terminal condition for the adjoint state

If the operator A is a partial differential operator on the spatial domain Ω we need additional
boundary conditions on the spatial boundary for the equations (5.15) or (5.17).
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Example 5.21. Assume that the operator A is a self-adjoint second order elliptic operator
with the boundary conditions

ȳ = 0 on Σ1,
∂ȳ

∂nA
= 0 on Σ2, (5.18)

where Σ1 = Γ1 × (0, T ) and Σ2 = Γ2 × (0, T ) with Γ1 ∪ Γ2 = ∂Ω and Γ1 ∩ Γ2 = ∅. Then it is
well known that the adjoint state has the boundary conditions

p̄ = 0 on Σ1,
∂p̄

∂nA
= 0 on Σ2. (5.19)

In the case that the operator A is a second order elliptic operator the operator product AM−1A
in the equation (5.15) and (5.17) is a fourth order operator. Therefore we need to specify two
boundary conditions on every spatial boundary.

For the equation (5.15) for the adjoint state p̄ the first condition is given as the boundary
condition (5.19) of the original adjoint state. For the second set of boundary conditions we can
use the boundary conditions for the state (5.18) together with the definition of the state by the
adjoint state given by the equation (5.14).

0 = Mȳ =
1

β
Mp̄t −

1

β
Ap+Myd on Σ1,

0 =
∂Mȳ

∂nA
=

1

β

∂Mp̄t
∂nA

− 1

β

∂Ap̄

∂nA
+
∂Myd
∂nA

on Σ2.

Due to the first set of boundary conditions (5.19) we have Mp̄t = 0 on Σ1 and ∂Mp̄t
∂nA

= 0 on Σ2.
Therefore the second boundary condition simplifies to

Ap̄ = βMyd on Σ1, (5.20)

∂Ap̄

∂nA
=
∂Myd
∂nA

on Σ2. (5.21)

Similarly in this case we need also to specify two boundary conditions on every spatial boundary
for the equation (5.17) for the state ȳ. Again, the first set of boundary conditions is given by
the boundary conditions (5.18) for the state y. For the second set of conditions we use the
boundary conditions for the adjoint state (5.19) together with the definition of the adjoint state
by equation (5.16), which implies

0 =
1

ν
Mp̄ = Mȳt +Ap̄ on Σ1

0 =
1

ν
M

∂p̄

∂nA
= M

∂ȳt
∂nA

+
∂Āp̄

∂nA
on Σ2.

Due to the homogeneous boundary conditions (5.18) we have ȳt = 0 on Σ1 and ∂ȳt
∂nA

= 0 on Σ2

and therefore the second set of boundary conditions on the spatial boundary is

Aȳ = 0 on Σ1,
∂Aȳ

∂nA
= 0 on Σ2. (5.22)

Altogether we have seen that the solution of the optimal control problem is equivalent to the
solution of one of the following two problems.
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Problem 5.22 (H(2,1)(Q)-elliptic Problem for p̄). Assume that the operator A is a self-adjoint
second order elliptic operator with boundary conditions as in Example 5.21 and Mu = MD =
Md = G = M . Then the optimal adjoint state is given as the solution of the following equation
together with the boundary conditions

−Mp̄tt +AM−1Ap̄+
β

ν
GM−1G∗p̄ = Myd,t +Ayd in Q,

α

β
Mp̄t(x, T ) +Mp̄(x, T )− α

β
A∗p̄(x, T ) = αMyD(x)− αMyd(x, T ) for x ∈ Ω,

Mp̄t(x, 0)−Ap̄(x, 0) = βM(v(x)− yd(0, x)) for x ∈ Ω,

p̄ = 0 on Σ1,

∂p̄

∂nA
= 0 on Σ2,

Ap̄ = βMyd on Σ1,

∂Ap̄

∂nA
=
∂Myd
∂nA

on Σ2,

Problem 5.23 (H(2,1)(Q)-elliptic Problem for ȳ). Assume that the operator A is a self-adjoint
second order elliptic operator with boundary conditions as in Example 5.21 and Mu = MD =
Md = G = M . Then the optimal state is given as the solution of the following equation together
with the boundary conditions

−Mȳtt +AM−1Aȳ +
β

ν
Mȳ =

β

ν
Myd in Q,

Mȳ(x, 0) = Mv(x) for x ∈ Ω,

Mȳt(x, T ) +Aȳ(x, T ) +
α

ν
MDȳ(x, T ) =

α

ν
MDyD(x) for x ∈ Ω,

ȳ = 0 on Σ1,

∂ȳ

∂nA
= 0 on Σ2,

Aȳ = 0 on Σ1,

∂Aȳ

∂nA
= 0 on Σ2.

Remark 5.24. For the case of an self adjoint operator A and the choice of G = M we see
that the optimal state ȳ and the optimal adjoint state p̄ fulfill the same differential equation
with different right hand sides and different boundary conditions. Problem 5.23 is well posed
for a desired state yd ∈ L2(Q), whereas we need yd ∈ L2(0, T ;H1(Ω)) for Problem 5.22. If the
operator A is an elliptic differential operator of order two, this equation is of second order in
time and fourth order in space.

Remark 5.25. The elimination of the state in the optimality conditions is also discussed in
[24] and [86]. They start by taking the time derivative of the state equation.

71



5. Parabolic Optimal Control Problems

Remark 5.26. Due to the inversion of the operator M in the product of operators AM−1A in
the equations for the state (5.17) and the adjoint state (5.15) it is quite natural to formulate
these equations as mixed problems. A three field problem for the state is given by the equations

Aȳ = Mz̄,

Mȳ = Mw̄,

−νMȳtt + νAz̄ + βMw̄ = βMyd

 (5.23)

together with the boundary conditions of Problem 5.23 and a mixed system for the adjoint state
is given by

Ap̄ = Mq̄,

1

ν
G∗p̄ = Mū,

−Mp̄tt +Aq̄ + βGū = βMyd,t + βAyd

 (5.24)

together with the boundary conditions of Problem 5.22.

We consider the systems (5.23) and (5.24) as three field problems, so we can discretize the
functions ȳ and w̄ and the functions ū and p̄ differently.

Gong, Hinze and Zhou [46] introduce mixed systems similar to (5.24) and (5.24). But
they only consider two field problems, as they do not introduce the functions, which we have
called w̄ and ū.

5.4. Summary

In this chapter we discussed the continuous optimality conditions for optimal control problems
with parabolic partial differential equations.

But for the solution of the most non-trivial optimal control problem we need to discretize
the problem. This discretization can take place at different stages:

1. One can discretize the optimal control Problem 5.2 and solve the resulting optimization
problem. This approach is called discretize-then-optimize and is discussed in the next
Chapter.

2. One can discretize the continuous optimality conditions of Problem 5.12 and solve the
resulting system. This approach is called optimize-then-discretize and is also discussed in
the next Chapter.

3. One can discretize the H(2,1)(Q)-elliptic Problem 5.23 or 5.22 for a solution of the optimal
state ȳ or the optimal adjoint state p̄ or the optimal control ū. As we have discussed
conforming finite element approximations of H(2,1)(Q) semi-elliptic equations in Section
4.1.2, the convergence properties of these discretizations for these problems are also clear.

4. One can discretize the mixed formulation of the H(2,1)(Q)-elliptic problem of Remark 5.26.
The equivalence of the mixed problem for the state y (5.23) to a discretize-then-optimize
and a optimize-then-discretize approach is discussed in Section 7.2.
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5.4. Summary

Optimal Control Problem Optimization Problem

Continuous Optimality System Discrete Optimality System

H(2,1)(Q)-equation for y or p Approximation of H(2,1)(Q)-equation

Discretize

Discretize

Discretize

Optimize Optimize

Eliminate Eliminate

Figure 5.1.: Possibilities of optimization and discretization for optimal control problems with
parabolic partial differential equations.

In the remaining part of this thesis we discuss the discretization at different levels and whether
the discretization and optimization at the different level result in the same discrete scheme
after optimization and discretization, i.e. whether the different paths in Figure 5.1 result in the
same discrete scheme or not.
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6. Crank-Nicolson and Störmer-Verlet
schemes for parabolic optimal control
problems
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In the previous chapter we have introduced an abstract parabolic optimal control problem
(5.1) and derived the corresponding optimality conditions. In this chapter we want to discretize
this problem, compute an approximation of the solution and prove error bounds. We follow the
ideas of [4, 5] and generalize these ideas to the optimal control problem (5.1).

For the discretization there are two approaches very common. First we can discretize (5.1)
directly and solve a linear-quadratic optimization problem. This is the first-discretize-then-
optimize approach. Second we can discretize the optimality conditions (5.7) and discretize
the Hamiltonian systems of differential equations. This approach is called first-optimize-then-
discretize.

The first and the second approach are very common. Furthermore one would prefer an
approach where the resulting discrete system for this two approaches coincides. In first-discretize-
then-optimize approaches the discretization of the adjoint equation is given by the choice of the
discretization of the state equation and the cost functional. One has no influence if this is an
appropriate discretization of the continuous adjoint equation. If one uses the first-optimize-
then-discretize approach one can freely choose discretizations for the state and the adjoint state.
But this could result in a scheme where the overall solution operator is neither symmetric
nor positive definite. Further the gradient equation can contain matrices of dimension Rn1×n2

with n1 6= n2.
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t 1
2

tN− 1
2

t0 t1 tN

Figure 6.1.: Comparison of the time grids for the discretization of y and p. First line p, second
line y.

6.1. Discretize then optimize

We start with the time discretization of the optimal control Problem 5.2, which consists of the
equations

min
y,u

J(y, u),

s.t. Myt +Ay = Gu,

My(0, ·) = Mv(·),

with

J(y, u) =
α

2

∥∥∥M1/2
D (y(·, T )− yD(·))

∥∥∥2

H
+
β

2

∫ T

0

∥∥∥M1/2
d (y(·, t)− yd(·, t))

∥∥∥2

H
d t+

+
ν

2

∫ T

0

∥∥∥M1/2
u u

∥∥∥2

H
d t.

We focus on the temporal discretization of the equations, for the full discretization one has to
replace all the operators A, G, M , Md, MD and Mu and the spaces by its discrete counterparts,
e.g. finite element matrices and Rn instead of the space H and V . As introduced in Section 4.2
the Crank-Nicolson scheme for the state equation of the optimal control Problem 5.2 reads

〈Myk+1 − yk
τ

, ϕ〉H×H + 〈Ayk+1 + yk
2

, ϕ〉V ∗×V = 〈Gũk+ 1
2
, ϕ〉H×H , (6.1)

where we discretize y in the grid points tk. For the choice of ũk+ 1
2

different possibilities exist.

With ũk+ 1
2

= u(tk+ 1
2
) we obtain the midpoint rule.

For the discretization of the optimal control Problem 5.2 not only the differential equation
but also the cost functional has to be discretized. In view of (6.1) we discretize the state y
again in the grid points tk and u in the midpoints tk+ 1

2
of the time intervals (see Figure 6.1). A

discretization of the cost functional is given by

βτ

4

∥∥∥M1/2
d (y0 − yd,0)

∥∥∥2

H
+
βτ

2

N−1∑
k=1

∥∥∥M1/2
d (yk − yd,k)

∥∥∥2

H
+
βτ

2

∥∥∥M1/2
d (yN − yd,N )

∥∥∥2

H
+

+
α

2

∥∥∥M1/2
D (yN − yD)

∥∥∥2

H
+
τν

2

N−1∑
k=0

∥∥∥M1/2
u uk+ 1

2

∥∥∥2

H
,

where the trapezoidal rule is used for the discretization of the first integral with yd,k = yd(tk)
and the midpoint rule for the second integral. This choice seems quite natural as for the
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discretization of the state equation we need only values of y, yd and u at these points. Together
with the discretization of the differential equation

M
yk+1 − yk

τ
+A

yk+1 + yk
2

= Guk+ 1
2
,

My0 = Mv

we obtain our first discretization. To solve this linear-quadratic optimization problem we form
a Lagrange functional as

L (y,u,p) =
βτ

4

∥∥∥M1/2
d (y0 − yd,0)

∥∥∥2

H
+
βτ

2

N−1∑
k=1

∥∥∥M1/2
d (yk − yd,k)

∥∥∥2

H
+

+
βτ

4

∥∥∥M1/2
d (yN − yd,N )

∥∥∥2

H
+
α

2

∥∥∥M1/2
D (yN − yD)

∥∥∥2

H
+
τν

2

N−1∑
k=0

∥∥∥M1/2
u uk+ 1

2

∥∥∥2

H
+

+ 〈M(y0 − v), p0〉H×H + τ
N−1∑
k=0

〈Myk+1 − yk
τ

+A
yk+1 + yk

2
−Guk+ 1

2
, pk+ 1

2
〉H×H

with y = (y1, . . . , yN )T , u =
(
u 1

2
, . . . , uN− 1

2

)T
and p =

(
p0, p 1

2
, . . . , pN− 1

2

)T
,

with the Lagrange multipliers p. The choice of the indices ·i+ 1
2

for the Lagrange multiplier is

motivated by the continuous optimality conditions (5.7). The Lagrange multipliers are only used
to determine the optimal control. From this point of view it seems quite natural to discretize
the control and adjoint state in the same way. This choice of discretization will be important
and is essential if we analyze the discretization of the adjoint state later on. Other authors,
as in [11, 103], who discussed Crank-Nicolson or the corresponding continuous Galerkin time
stepping schemes did not use this discretization of the adjoint state and were therefore not able
to proof second order convergence.

Our discretization was introduced in [4, 5] and also used by other authors [70, 84].

We solve the first order necessary conditions for the optimal solution (ȳ, ū, p̄)

∂L (ȳ, ū, p̄)

∂yi
= 0 for i = 0, . . . , N,

∂L (ȳ, ū, p̄)

∂p0
= 0

∂L (ȳ, ū, p̄)

∂pi+ 1
2

= 0 for i = 0, . . . , N − 1,

∂L (ȳ, ū, p̄)

∂ui+ 1
2

= 0 for i = 0, . . . , N − 1.

Note further that we discuss a convex cost functional such that the necessary first order
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optimality conditions are sufficient, too. The resulting system is the weak form of

Mȳ0 = Mv,

M
ȳi+1 − ȳi

τ
+A

ȳi+1 + ȳi
2

= Gūi+ 1
2

for i = 0, . . . , N,

νMuūi+ 1
2

= G∗p̄i+ 1
2

for i = 0, . . . , N − 1,

M
p̄ 1

2
− p̄0

τ
−A∗

p̄ 1
2

2
= βMd

ȳ0 − yd,0
2

,

M
p̄i+ 1

2
− p̄i− 1

2

τ
−A∗

p̄i+ 1
2

+ p̄i− 1
2

2
= βMd (ȳi − yd,i) for i = 0, . . . , N − 2,

−M
p̄N− 1

2

τ
−A∗

p̄N− 1
2

2
= βMd

ȳN − yd,N
2

+ αMD
ȳN − ȳD

τ
.



(OC CN1)

For the convergence analysis later on we will set

−Mp̄N = αMD (ȳN − ȳD)

and replace the last half step by

M
p̄N − p̄N− 1

2

τ
−A∗

p̄N− 1
2

2
= βMd

ȳN − yd,N
2

,

−Mp̄N = αMD (ȳN − ȳD) .

 (OC CN1*)

This approach is motivated by the terminal condition for the adjoint state in the continuous
optimality conditions.

Remark 6.1. At the beginning we had to choose a discretization of the cost functional. Another
possible choice is the midpoint rule for both integrals in the cost functional. This gives the
optimization problem

min
α

2

∥∥∥M1/2
D yN − yD

∥∥∥2

H
+
βτ

2

N−1∑
k=0

∥∥∥∥M1/2
d

(
yk + yk+1

2
− yd,k+1 + yd,k

2

)∥∥∥∥2

H

+

+
τν

2

N−1∑
k=0

∥∥∥M1/2
u uk+ 1

2

∥∥∥2

H

M
yk+1 − yk

τ
+A

yk+1 + yk
2

= Guk+ 1
2

My0 = Mv


(CN2)

The corresponding Lagrange functional is

L (y,u,p) =
α

2

∥∥∥M1/2
D yN − yD

∥∥∥2

H
+
βτ

2

N−1∑
k=0

∥∥∥∥M1/2
d

(
yk + yk+1

2
− yd,k+1 + yd,k

2

)∥∥∥∥2

H

+

+
τν

2

N−1∑
k=0

∥∥∥M1/2
u uk+ 1

2

∥∥∥2

H
+ 〈M(y0 − v), p0〉H×H

+ τ
N−1∑
k=0

〈Myk+1 − yk
τ

+A
yk+1 + yk

2
−Guk+ 1

2
, pk+ 1

2
〉H×H
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6.1. Discretize then optimize

and the first order optimality conditions are

Mȳ0 = Mv,

M
ȳi+1 − ȳi

τ
+A

ȳi+1 + ȳi
2

= Gūi+ 1
2

for i = 0, . . . , N − 1,

νMuūi+ 1
2

= G∗p̄i+ 1
2

for i = 0, . . . , N − 1,

M
p̄ 1

2
− p̄0

τ
−A∗

p̄ 1
2

2
= βMd

ȳ0+ȳ1

2 − yd,0+yd,1
2

2
,

M
p̄i+ 1

2
− p̄i− 1

2

τ
−A∗

p̄i+ 1
2

+ p̄i− 1
2

2
=

= βMd

ȳi+ȳi−1

2 − yd,i−1+yd,i
2

2
+ βMd

ȳi+ȳi+1

2 − yd,i+1+yd,i
2

2
for i = 1, . . . , N − 2,

−M
p̄N− 1

2

τ
−A∗

p̄N− 1
2

2
= βMd

ȳN−1+ȳN
2 − yd,N+yd,N−1

2

2
+

+ αMD
ȳN − yD

τ
.



(OC CN2)

The difference in both system is the discretization of the right hand side of the adjoint system.
The right hand side of the adjoint equation of (OC CN2),

ȳi+ȳi−1

2 − yd,i+1+yd,i
2

2
+

ȳi+ȳi+1

2 − yd,i+1+yd,i
2

2
,

can be interpreted as averaged approximation of ȳi − yd,i (see Figure 6.2). It is also for this
scheme possible to introduce an approximation of the adjoint state at the terminal time T by

−Mp̄N = αMDȳN − ȳD

and replace the last half step by

M
p̄N − p̄N− 1

2

τ
−A∗

p̄N− 1
2

2
= βMd

ȳN−1+ȳN
2 − yd,N+yd,N−1

2

2
−Mp̄N = αMD (ȳN − ȳD) .

 (OC CN2*)
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ȳi

ȳi−1

ȳi+1ȳi−1+ȳi
2

+
ȳi+ȳi+1

2

2

ti−1 ti ti+1
ti+ti+1

2
ti−1+ti

2

ȳiȳi−1

ȳi+1

ȳi−1+ȳi
2

+
ȳi+ȳi+1

2

2

ti−1 ti ti+1
ti+ti+1

2
ti−1+ti

2

Figure 6.2.:
ȳi−1+ȳi

2
+
ȳi+ȳi+1

2
2 vs ȳi

6.2. Optimize then discretize

In the first section of this chapter we discretized the optimal control Problem 5.2 and discussed
the optimality conditions for the discrete optimization problem. Now we discretize the continuous
optimality conditions of Problem 5.12, which are

Mȳt +Aȳ = Gū,

Mȳ(·, 0) = Mv(·),
Mp̄t −A∗p̄ = βMd (ȳ − yd) ,
Mp̄(·, T ) = αMD (yD(·)− ȳ(·, T )) ,

Muū =
1

ν
G∗p̄.

In Section 5.2 we have seen that these optimality conditions form a Hamiltonian system.
Therefore we apply the Störmer-Verlet scheme (SV) of Section 4.3 (on page 60)

Mȳ0 = Mv,

M
ȳi+1 − ȳi

τ
+A

ȳi+1 + ȳi
2

= Gūi+ 1
2

for i = 0, . . . , N,

νMuūi+ 1
2

= G∗p̄i+ 1
2

for i = 0, . . . , N − 1,

M
p̄ 1

2
− p̄0

τ
−A∗

p̄ 1
2

2
= βMd

ȳ0 − yd,0
2

,

M
p̄i+ 1

2
− p̄i− 1

2

τ
−A∗

p̄i+ 1
2

+ p̄i− 1
2

2
= βMd (ȳi − yd,i) for i = 0, . . . , N − 2,

M
p̄N − p̄N− 1

2

τ
−A∗

p̄N− 1
2

2
= βMd

ȳN − yd,N
2

Mp̄N = αMD (ȳD − ȳN )

to these conditions and observe that this system is the system (OC CN1) with terminal step
(OC CN1*).

Remark 6.2. The Störmer-Verlet scheme is a symplectic partitioned Runge-Kutta scheme. In
[16, 17] Bonnans and Laurent-Varin discuss the application of such schemes to optimal control
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problems with ordinary differential equations. They use a slightly different Hamiltonian and
prove order conditions. This implies that the scheme (OC CN1) is an second order scheme,
if we have sufficient the regularity. For the convergence proof of the Störmer-Verlet scheme
with techniques known from ordinary differential we need C3-regularity with respect to the time
variable. As this regularity assumption is rather high in the case of time dependent partial
differential equations, we will discuss a convergence proof with less regularity later on. But first
we see, that we can also get the scheme (OC CN2) with an optimize-then-discretize approach.

6.3. Galerkin method

To show, that we can reach the scheme (OC CN2) with an optimize-then-discretize approach
we use a Galerkin method. Galerkin methods are also popular discretizations of evolution
equations. We start with the continuous Lagrange functional (5.2) and the corresponding
optimality conditions (5.3), (5.4) and (5.5) given by the first variation of the Lagrange functional
set to zero

∫ T

0
〈Mȳ,t +Aȳ −Gū, ϕ〉V ∗×V d t+ 〈M (y(·, 0)− v, ϕ(·, 0))〉H×H = 0 ∀ϕ ∈ P,∫ T

0
ν〈Muū, ψ〉H×H − 〈ψ,G∗p̄〉V ∗×V = 0 ∀ψ ∈ P,

α 〈MD (ȳ(·, T )− yD(·)) , φ〉H×H + β

∫ T

0
〈Md (ȳ − yd) , φ〉V ∗×V d t

+

∫ T

0
〈Mφ,t +Aφ, p̄〉V ∗×V d t+ 〈Mφ(·, 0), p(·, 0)〉H×H = 0 ∀φ ∈ Y.

As the Lagrangian, this version of the optimality conditions is well defined for the state y ∈ Y
and the adjoint state p ∈ P. So we need no additional regularity assumption and therefore we
avoid the partial integration in time direction for the adjoint equation. For the discretization
we choose test functions

φi ∈ Y1 =
{
φ ∈ Y : φ|t∈(ti,ti+1) ∈ P1(ti, ti+1, V )

}

and

ψi+ 1
2
, ϕi+ 1

2
∈ P0 =

{
φ ∈ P : φ|t∈(ti,ti+1) ∈ P0(ti, ti+1, V )

}
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for the discretization, so that∫ t1

0
−〈Mφ1,t, p̄〉V ∗×V − 〈A∗p̄, φ1〉V ∗×V d t =

〈Mφ1(·, 0), p̄(·, 0)〉H×H+β

∫ t1

0
〈Md(ȳ − yd), φ1〉V ∗×V d t,∫ ti+1

ti−1

−〈Mφi,t, p̄〉V ∗×V − 〈A∗p̄, φi〉V ∗×V d t = β

∫ ti+1

ti−1

〈Md(ȳ − yd), φi〉V ∗×V d t

for i = 2, . . . , N − 2,∫ tN

tN−1

−〈MφN−1,t, p̄〉V ∗×V − 〈A∗p̄, φN−1〉V ∗×V d t =

α〈MD(ȳ(·, T )− yD(·), φN−1〉H×H+

∫ tN

tN−1

〈M(ȳ − yd), φN−1〉V ∗×V d t,

〈M̄y(·, 0)−Mv,ϕ− 1
2
(·, 0)〉 = 0,∫ ti+1

ti

〈Mȳ,t, ϕi+ 1
2
〉V ∗×V + 〈Aȳ, ϕi+ 1

2
〉V ∗×V d t =

∫ ti+1

ti

〈Gū, ϕi+ 1
2
〉V ∗×V d t

for i = 0, . . . , N − 1,∫ ti+1

ti

ν〈Muū, ψi+ 1
2
〉V ∗×V d t =

∫ ti+1

ti

〈G∗p̄, ψi+ 1
2
〉V ∗×V d t

for i = 0, . . . , N − 1.



(6.2)

For the time discretization of these equations we need also to discretize the remaining functions.
If we discretize with y, yd ∈ Y1, u, p ∈ P0 and evaluate the integrals exactly (for the computation
of the integrals see Appendix D), this yields the weak form of the system

Mȳ0 = Mv,

M
ȳi+1 − ȳi

τ
+A

ȳi+1 + ȳi
2

= Gūi+ 1
2

for i = 1, . . . , N − 1,

M
p̄ 1

2
− p̄0

τ
−A∗

p̄ 1
2

2
=

2

6
βMd (ȳ0 − yd,0) +

1

6
βMd (ȳ1 − yd,1) ,

M
p̄i+ 1

2
− p̄i− 1

2

τ
−A∗

p̄i+ 1
2

+ p̄i− 1
2

2
=

=
1

6
βMd (ȳi−1 − yd,i−1) +

4

6
βMd (ȳi − yd,i) +

1

6
βMd (ȳi+1 − yd,i+1)

for i = 1, . . . , N − 2,

−
p̄N− 1

2

τ
−A∗

p̄N− 1
2

2
=

=
1

6
βMd (ȳN−1 − yd,N−1) +

2

6
βMd (ȳN − yd,N ) +

α

τ
MD (ȳN − yD) ,

G∗p̄i+ 1
2

= νMuūi+ 1
2

for i = 1, . . . , N − 1.



(OC G1)
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6.3. Galerkin method

We observe that the left hand side of this system coincides with the discretizations (OC CN1)
and (OC CN2), but the right hand side of the adjoint equation is a different discretization,
which is also a Crank-Nicolson discretization in the sense of Remark 4.21 .

We discuss now, whether it is possible to get a more convenient Crank-Nicolson discretization
as Galerkin scheme. Therefore we have a closer look on the right hand side of the system (6.2)
and (OC G1). The right hand side of the state equation is given by the integral∫ ti+1

ti

〈Gū, ϕi+ 1
2
〉V ∗×V d t.

With the chosen discretization this is an integral in time over the product of a piecewise constant
function times a piecewise constant function. This choice of ansatz and test function just yields
a convenient Crank-Nicolson discretization.

Also the discretization of the right hand side with a piecewise linear function with piecewise
constant functions as test functions would yield a Crank-Nicolson discretization.

Whereas the integral on the right hand side of the adjoint equation∫ ti+1

ti−1

〈Md(ȳ − yd), φi〉V ∗×V d t

is an integral over a product of two piecewise linear functions in time. If we want to reach a
more common Crank-Nicolson discretization for this equation we need to modify this equation
so that we have an integral over the product of a piecewise constant times a piecewise linear
function in time. As the integrals on the left hand sides yield an Crank-Nicolson discretization,
we can not alter the test function without changing the discretization on the left hand side.
But if we project (y − yd) ∈ Y1 onto a piecewise constant function z ∈ P0, we have an integral
in time over the product of a piecewise constant times a piecewise linear function.

To this end, we consider the algebraically equivalent optimal control problem

min
u

α

2

∥∥∥M1/2
D (y(·, T )− yD)

∥∥∥2

H
+
β

2

∫ T

0

∥∥∥M1/2
d z

∥∥∥2

H
d t+

∫ T

0

ν

2

∥∥∥M1/2
u u

∥∥∥2

H
d t,

s.t. My,t +Ay = Gu,

My(0) = Mv,

Mz = M(y − yd).

This corresponds to the Lagrange functional

L̃(y, z, u, p, q) =
α

2

∥∥∥M1/2
D (y(·, T )− yD)

∥∥∥2

H
+
β

2

T∫
0

∥∥∥M1/2
d z

∥∥∥2

H
d t+

T∫
0

ν

2

∥∥∥M1/2
u u

∥∥∥2

H
d t

+

T∫
0

〈My,t +Ay −Gu, p〉V ?×V d t+ 〈My(·, 0)−Mv, p(·, 0)〉H×H

+

∫ T

0
〈Mq, y − yd − z〉H×H d t
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6. Crank-Nicolson and Störmer-Verlet schemes for parabolic optimal control problems

with an additional Lagrange multiplier q ∈ L2((0, T ), H). This functional is well defined for
y ∈ Y, yd ∈ L2((0, T ), H) and u, p, z ∈ P. The advantage is that we can discretize y and z
differently as described above. The first order optimality conditions are

∂L̃(ȳ + εφ, z̄, ū, p̄, q̄)

∂ε

∣∣∣∣∣
ε=0

= α〈MD (y(·, T )− yD) , φ〉H×H

+

∫ T

0
〈Mφt +Aφ, p̄〉V ?×V + 〈Mq̄, φ〉H×H d t

+ 〈Mφ(·, 0), p̄(·, 0)〉H×H = 0 ∀φ ∈ Y,
∂L̃(ȳ, z̄ + εϑ, ū, p̄, q̄)

∂ε

∣∣∣∣∣
ε=0

=

∫ T

0
β〈Mdz̄, ϑ〉H − 〈Mq̄, ϑ〉H d t = 0 ∀ϑ ∈ P,

∂L̃(ȳ, z̄, ū+ εψ, p̄, q̄)

∂ε

∣∣∣∣∣
ε=0

=

∫ T

0
〈νMuū−G∗p̄, ψ〉V ?×V d t = 0 ∀ψ ∈ P,

∂L̃(ȳ, z̄, ū, p̄+ εϕ, q̄)

∂ε

∣∣∣∣∣
ε=0

=

∫ T

0
〈Mȳt +Aȳ −Gū, ϕ〉V ?×V d t+

+ 〈Mȳ(·, 0)−Mv,ϕ(·, 0)〉H×H = 0 ∀ϕ ∈ P,
∂L̃(ȳ, z̄, ū, p̄, q̄ + εη)

∂ε

∣∣∣∣∣
ε=0

=

∫ T

0
〈Mη, ȳ − yd − z̄〉H×H d t = 0 ∀η ∈ P.

This system is equivalent to (6.2) which justifies the use of the formal Lagrange approach. If
we choose for the discretization φ, y ∈ Y1 and for all other functions the discretization space
P0 we have to solve, after elimination of the additional variables z and q

Mȳ0 = Mv

M
ȳi+1 − ȳi

τ
+A

ȳi+1 − ȳi
2

= Gūi+ 1
2

for i = 1, . . . , N − 1,

M
p̄ 1

2
− p̄0

τ
−A∗

p̄ 1
2

2
= βMd

ȳ0+ȳ1

2 − yd,0+yd,1
2

2

M
p̄i+ 1

2
− p̄i− 1

2

τ
−A∗

p̄i− 1
2

+ p̄i+ 1
2

2
= βMd

ȳi−1+ȳi
2 − yd;i−1+yd;i

2

2

+ βMd

ȳi+ȳi+1

2 − yd;i+yd;i+1

2

2
for i = 1, . . . , N − 2,

−M
p̄N− 1

2

τ
−A∗

p̄N− 1
2

2
= βMd

ȳN+ȳN−1

2 − yd,N+yd,N−1

2

2

+
α

τ
MD (ȳN − yD) ,

νMuūi+ 1
2

= G∗p̄i+ 1
2

for i = 1, . . . , N − 1.



(OC G2)

Hence, this approach is equivalent to (OC CN2).
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Remark 6.3. Another possible discretization of the equations (6.2) is obtained by again using
y ∈ Y1, u, p ∈ P0 but the approximate evaluation of the integral with the midpoint rule for the
intervals [ti−1, ti] and [ti, ti+1]. This yields

Mȳ0 = Mv

M
ȳi+1 − ȳi

τ
+A

ȳi+1 − ȳi
2

= Gūi+ 1
2

for i = 1, . . . , N − 1,

M
p̄ 1

2
− p̄0

τ
−A∗

p̄ 1
2

2
= βMd

ȳ0+ȳ1

2 − yd;0+yd;1
2

2

M
p̄i+ 1

2
− p̄i− 1

2

τ
−A∗

p̄i− 1
2

+ p̄i+ 1
2

2
= βMd

ȳi−1+ȳi
2 − yd;i−1+yd;i

2

2

+ βMd

ȳi+ȳi+1

2 − yd;i+yd;i+1

2

2
for i = 1, . . . , N − 2,

−M
p̄N− 1

2

τ
−A∗

p̄N− 1
2

2
= βMd

ȳN+ȳN−1

2 − yd,N+yd,N
2

2
+
α

τ
MD (ȳN − yD) ,

νMuūi+ 1
2

= G∗p̄i+ 1
2

for i = 1, . . . , N − 1,

which is (OC CN2).

In summary, the Galerkin method with exact integration led to a new scheme, (OC G1),
which can be interpreted as another variant of the Crank-Nicolson scheme. The Galerkin method
with quadrature or projection reproduced scheme (OC CN2). For the scheme (OC CN1) we
did not find a quadrature rule with which it is a Galerkin scheme.

6.4. Convergence analysis

Now we discuss the approximation properties of the numerical schemes. Therefore let us specify
the conditions, for which the convergence proof is done.

Assumption 6.4. • Let the Assumptions 5.6 for parabolic optimal control problems hold.

• Let H1
0 (Ω) ⊆ V ⊆ H1(Ω) and H = L2(Ω).

• Let A be a second order differential operator which fulfills G̊arding’s inequality (3.20) and
additionally

0 ≤ a(y, y).

• Let Ω be convex and W = V ∩H2(Ω).

• Let for the solution of the corresponding stationary problems

a(y, ϕ) = 〈u, ϕ〉H×H ∀ϕ ∈ V, a(yh, ϕ) = 〈uh, ϕ〉H×H ∀ϕ ∈ Vh,
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and the corresponding dual problems

a(ϕ, p) = 〈u, ϕ〉H×H ∀ϕ ∈ V, a(ϕ, ph) = 〈u, ϕ〉H×H ∀ϕ ∈ Vh,

the error estimates

‖y − yh‖H . h2 ‖y‖W , ‖p− ph‖H . h2 ‖p‖W

hold.

• Let for the initial data v ∈W hold.

• Let for the exact solution ȳ, p̄, ū ∈ H3((0, T ), L2(Ω)) ∩H2((0, T ), H2(Ω)) hold.

• Let

C1(ȳ, p̄) = ‖v‖H2(Ω) +

∫ T

0
‖ȳ,t(·, s)‖W ) + ‖p̄,t(·, s)‖W d s (6.3)

C2(ȳ, p̄) =

∫ T

0
‖ȳ,ttt(·, s)‖H + ‖Aȳ,tt(·, s)‖H d s

+

∫ T

0
‖p̄,ttt(·, s)‖H + ‖Ap̄,tt(·, s)‖H + ‖ū,tt(·, s)‖H d s

+ ‖p̄,tt(·, T )‖H + ‖Ap̄,t(·, T )‖H + ‖p̄,tt(·, 0)‖H + ‖Ap̄,t(·, 0)‖H
+ ‖p̄,tt‖L2(0,T,W ) ,


(6.4)

Theorem 6.5. Let Assumptions 6.4 hold. If the scheme (OC CN1) is applied to the optimal
control conditions of Problem 5.12 the error can be estimated by

‖ȳh,i(·)− ȳ(·, ti)‖H + ‖ȳh,0(·)− ȳ(·, 0)‖H . C1(ȳ, p̄)h2 + C2(ȳ, p̄)τ2,∥∥∥p̄h,i− 1
2
(·)− p̄(·, ti− 1

2
)
∥∥∥
H

+ ‖p̄h,0(·)− p̄(·, 0)‖H . C1(ȳ, p̄)h2 + C2(ȳ, p̄)τ2,

‖p̄h,N (·)− p̄(·, T )‖H . C1(ȳ, p̄)h2 + C2(ȳ, p̄)τ2,

i = 1, . . . , N

with C1 and C2 as in (6.3) and (6.4), i.e. we have a scheme of second order in h and τ .

In preparation for the proof we will prove four lemmas. In these lemmas we discuss the
convergence of the state with a given control, the error splitting for the adjoint state, the
approximation of the adjoint state with a given state and the convergence of the control.

Remark 6.6. For the proof we assume without loss of generality that the operator M : H → H
is the identity. This assumption is without loss of generality as

〈〈u, v〉〉H×H = 〈Mu, v〉H×H

defines an equivalent L2(Ω)-scalar product which introduces an equivalent L2(Ω)-norm.
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6.4. Convergence analysis

Remark 6.7 (Regularity). In our analysis we assume

ȳ, p̄ ∈ H3((0, T ), L2(Ω)) ∩H2((0, T ), H2(Ω)).

For such a regularity in a problem with parabolic partial differential equations we need a smooth
right hand side and further compatibility conditions on initial and boundary conditions, see
Theorem 3.39 and Theorem 3.40.

In the example of a smooth domain Ω, e.g. if the domain is one dimensional, one obtains
from Theorem 3.40

ȳ ∈ L2((0, T ), H2(Ω)) ∩ L∞((0, T ), H1
0 (Ω)) ∩H1((0, T ), L2(Ω))

and hence

p̄ ∈ H2((0, T ), L2(Ω)) ∩H1((0, T ), H2(Ω)) ∩ L2((0, T ), H4(Ω))

and with a bootstrapping argument

ȳ, p̄ ∈ H3((0, T ), L2(Ω)) ∩H2((0, T ), H2(Ω)) ∩H1((0, T ), H4(Ω)) ∩ L2((0, T ), H6(Ω))

under the assumptions

yd ∈ H2((0, T ), L2(Ω)) ∩H1((0, T ), H2(Ω)) ∩ L2((0, T ), H4(Ω))

yD, v ∈ H1
0 (Ω), Av, AyD ∈ H1

0 (Ω), AAv, AAyD ∈ H1
0 (Ω), AAAv,AAAyD ∈ L2(Ω).

Lemma 6.8. Assume that we have a given control with∥∥∥ū(·, ti+ 1
2
)− uh,i+ 1

2

∥∥∥
L2(Ω)

. h2C1 + τ2C2.

If we solve the numerical schemes (OC CN1), (OC CN2) or (OC G1) with this given control
for the state, then the error estimate

‖ȳ(·, ti)− yh,i‖L2(Ω) . h2C1 + τ2C2 for i = 1, . . . , N

holds for the corresponding state.

Proof. We recall that the three discretization scheme differ in the discretization of the adjoint
state, but coincide in the discretization of the state.

The error bound of this lemma is the result of Theorem 4.22.

With a given approximation of the state, we can discuss the approximation of the adjoint
state.

We use again error splitting techniques. For the splitting we use again the elliptic projection
Rh which was defined in Definition 4.24. We split the errors in the adjoint state into the
difference between the exact solution and its projection

ρp̄0(·) = Rhp̄(·, 0)− p̄(·, 0), ρp̄
i− 1

2

(·) = Rhp̄(·, ti− 1
2
)− p̄(·, ti− 1

2
),

and the difference between the projection and the numerical approximation

θp0(·) = ph,0(·)−Rhp̄(·, 0), θp
i− 1

2

(·) = ph,i− 1
2
(·)−Rhp̄(·, ti− 1

2
).
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Lemma 6.9. The error between the adjoint state and its projection can be estimated by∥∥∥∥ρp̄i− 1
2

∥∥∥∥
H

=
∥∥∥Rhp̄(·, ti− 1

2
)− p̄(·, ti− 1

2
)
∥∥∥
H

. h2 ‖p̄(·, T )‖W + h2

∫ T

t
i− 1

2

‖p̄,t(·, s)‖W d s,

∥∥ρp̄0∥∥L2(Ω)
= ‖Rhp̄(·, 0)− p̄(·, 0)‖H . h2 ‖p̄(·, T )‖W + h2

∫ T

0
‖p̄,t(·, s)‖W d s.

Proof. For the state equation this result is proven in Lemma 4.27. For the adjoint state we
integrate backward in time from t = T to t = ti− 1

2
or t = 0.

Lemma 6.10. For a given discretized state yh,i with ‖yh,i − ȳ(·, ti)‖L2(Ω) ≤ C1h
2 + C2τ

2 with

C1 and C2 specified in (6.3) and (6.4), the error of the numerical approximation of the adjoint
state with the scheme (OC CN1) is bounded by∥∥∥ph,i− 1

2
(·)− p̄(·, ti− 1

2
)
∥∥∥
L2(Ω)

. C1h
2 + C2τ

2,

‖ph,0(·)− p̄(·, 0)‖L2(Ω) . C1h
2 + C2τ

2.

Proof. Due to Lemma 6.9 we only need to discuss the error between the projection of the
adjoint state and the numerical approximation. The proof is done with an analogous arguments
as the proof Lemma 6.8 and Theorem 4.22.

We look at the first half time step, the inner time steps and the last half time step separately.
For a bound of the error θp0 the use of the numerical scheme gives〈
θp1

2

− θp0
τ

, ϕ

〉
H×H

− a
(
θ 1

2

2
, ϕ

)

=

〈
βMd

y0 − yd,0
2

− βMd
ȳ(·, 0)− yd(·, 0)

2
, ϕ

〉
H×H

+

〈
p̄t(·, 0)

2
−
p̄(·, t 1

2
)− p̄(·, t0)

τ
, ϕ

〉
H×H

+

〈
I −Rh

p̄(·, t 1
2
)− p̄(·, 0)

τ
, ϕ

〉
H×H

+ a

(
− p̄(·, 0)

2
+Rh

p̄(·, 0)

2
, ϕ

)
,

for the equality we have used the definition of the time stepping scheme and have added two
zeros, once we used the continuous adjoint equation for t = 0 and the other time we added
and subtracted the same expression. Due to the definition of the projection Rh the term

a
(
− p̄(·,0)

2 +Rh
p̄(·,0)

2 , ϕ
)

vanishes, if we use test functions ϕ ∈ Vh. The use of −θp0 as test

function yields

1

τ
‖θp0‖

2
H =

〈
θp1

2

, θp0

〉
H×H

+ β

〈
Md

y0 − yd,0
2

−Md
ȳ(·, 0)− yd(·, 0)

2
,−θp0

〉
H×H

+

〈
p̄t(·, 0)

2
−
p̄(·, t 1

2
)− p̄(·, t0)

τ
,−θp0

〉
H×H

+

〈
I −Rh

p̄(·, t 1
2
)− p̄(·, 0)

τ
,−θp0

〉
H×H

+ a

θp12
2
,−θp0

 .
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The last term can be estimated by

a

θp12
2
,−θp0

 =

〈
A
θp1

2

2
,−θp0

〉
H×H

. ‖θp0‖H
∥∥∥∥θp1

2

∥∥∥∥
H

.

With the Cauchy-Schwarz inequality and after cancellation of the common factor this yields
the estimate

‖θp0‖H .

∥∥∥∥θp1
2

∥∥∥∥
H

+
τ

2

∥∥∥∥θp1
2

∥∥∥∥
H

+ τ ‖ω0‖H + τC(h2 + τ2), (6.5)

with

ω0 = (I −Rh)
p̄(·, 0)− p̄(·, τ2 )

τ
+
p̄(·, τ2 )− p̄(·, 0)

τ
− p̄,t(·, 0)

2
.

For a bound of θp
i+ 1

2

we discuss the inner time discretization nodes of the scheme. The scheme

gives

〈
θp
i+ 1

2

− θp
i− 1

2

τ
, ϕ

〉
H×H

− a

θpi+ 1
2

+ θp
i− 1

2

2
, ϕ


= β 〈Md (yi − yd,i) +Md (yd(·, ti)− ȳ(·, ti)) , ϕ〉H×H

+

〈
p̄t(·, ti)−

p̄(·, ti+ 1
2
)− p̄(·, ti− 1

2
)

τ
, ϕ

〉
H×H

+

〈
(I −Rh)

p̄(·, ti+ 1
2
)− p̄(·, ti− 1

2
)

τ
, ϕ

〉
H×H

+

〈
A
p̄(·, ti+ 1

2
) + p̄(·, ti− 1

2
)

2
−Ap̄(·, ti), ϕ

〉
H×H

,

for the equality we have used the definition of the time stepping scheme and have added two
zeros, once we used the continuous adjoint equation for t = ti and the other time we added and

subtracted the same expression. The use of −
θp
i+ 1

2

+θp
i− 1

2
2 as test function yields∥∥∥∥θpi− 1

2

∥∥∥∥
H

≤
∥∥∥∥θpi+ 1

2

∥∥∥∥
H

+ τ
∥∥∥ωi− 1

2

∥∥∥
H

+ τC
(
h2 + τ2

)
with

ωi− 1
2

= (I −Rh)
p̄(·, ti− 1

2
)− p̄(·, ti+ 1

2
)

τ
+
p̄(·, ti+ 1

2
)− p̄(·, ti− 1

2
)

τ
− p̄t(·, ti)+

+
Ap̄(·, ti− 1

2
) +Ap̄(·, ti+ 1

2
)

2
−Ap̄(·, ti).

Finally we investigate the last step. For this we use the formulation with the additional

89
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terminal adjoint state as in (OC CN1*). To derive a bound for θp
N− 1

2

we look at

〈
θpN − θ

p

N− 1
2

τ
, ϕ

〉
H×H

− a

θpN− 1
2

2
, ϕ


=

〈
βMd

yN − yd,N
2

− βMd
ȳ(·, tN )− yd(·, tN )

2
, ϕ

〉
+

〈
p̄(·, tN )− p̄(·, tN− 1

2
)

τ
−
Rhp̄(·, tN )−Rhp̄(·, tN− 1

2
)

τ
, ϕ

〉
+

1

2
a
(
Rhp̄(·, tN− 1

2
), ϕ
)

+

〈
1

2
p̄t(·, tN )−

p̄(·, tN )− p̄(·, tN− 1
2
)

τ
, ϕ

〉
− 1

2
a (p̄(·, tN ), ϕ) ,

where we have done the same steps as in the other cases. With −θp
N− 1

2

as test function we have

∥∥∥∥θpN− 1
2

∥∥∥∥2

H

+

〈
θpN ,−θ

p

N− 1
2

〉
H×H

≤
〈
θpN − θ

p

N− 1
2

τ
,−θp

N− 1
2

〉
H×H

− 1

2
a

(
θp
N− 1

2

,−θp
N− 1

2

)
due to the assumptions on the bilinear form a(·, ·). Therefore we get with the Cauchy-Schwarz
inequality and cancellation of a common factor the estimate∥∥∥∥θpN− 1

2

∥∥∥∥
H

≤
∥∥θpN∥∥H + τ

∥∥∥ωN− 1
2

∥∥∥
H

+ τC
(
h2 + τ2

)
with

ωN− 1
2

= (I −Rh)
p̄(·, tN )− p̄(tN− 1

2
)

τ
+

1

2
p̄,t(·, tN )−

p̄(·, tN )− p̄(·, tN− 1
2
)

τ

+
Ap̄(·, tN− 1

2
)−Ap̄(·, tN )

2
.

Summing up, yields the estimates

‖θp0‖L2(Ω) .

∥∥∥∥θp1
2

∥∥∥∥
L2(Ω)

+
τ

2

∥∥∥∥θp1
2

∥∥∥∥
H

+ τ ‖ω0‖H + τC(h2 + τ2)

.
τ

2

∥∥∥∥θp1
2

∥∥∥∥
H

+
∥∥θpN∥∥H + τ ‖ω0‖H + τ

N∑
j=1

∥∥∥ωN− 1
2

∥∥∥
H

+ C
(
h2 + τ2

)
,∥∥∥∥θpi− 1

2

∥∥∥∥
H

≤
∥∥∥∥θpi+ 1

2

∥∥∥∥
H

+ τ
∥∥∥ωi− 1

2

∥∥∥
H

+ τC
(
h2 + τ2

)
≤
∥∥θpN∥∥H + τ

N∑
j=i

∥∥∥ωN− 1
2

∥∥∥
H

+ C
(
h2 + τ2

)
,∥∥∥∥θpN− 1

2

∥∥∥∥
H

≤
∥∥θpN∥∥H + τ

∥∥∥ωN− 1
2

∥∥∥
H

+ τC
(
h2 + τ2

)
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with, as defined above,

ω0 = (I −Rh)
p̄(·, 0)− p̄(·, τ2 )

τ
+
p̄(·, τ2 )− p̄(·, 0)

τ
− p̄,t(·, 0)

2
,

ωi− 1
2

= (I −Rh)
p̄(·, ti− 1

2
)− p̄(·, ti+ 1

2
)

τ
+
p̄(·, ti+ 1

2
)− p̄(·, ti− 1

2
)

τ
− p̄t(·, ti)+

+
Ap̄(·, ti− 1

2
) +Ap̄(·, ti+ 1

2
)

2
−Ap̄(·, ti),

ωN− 1
2

= (I −Rh)
p̄(·, tN )− p̄(tN− 1

2
)

τ
+

1

2
p̄,t(·, tN )−

p̄(·, tN )− p̄(·, tN− 1
2
)

τ

+
Ap̄(·, tN− 1

2
)−Ap̄(·, tN )

2
.

Due the assumptions on the approximation properties of yN we have∥∥θpN∥∥ ≤ C (τ2 + h2
)
,

thus we only need to bound the differences ωi.

As in the proof of Theorem 4.22 we can bound τ
∑N−1

j=i

∥∥∥ωi− 1
2

∥∥∥
L2(Ω)

as in [125, Theorem 1.6].

So we only need to bound the errors ω0 and ωN− 1
2

in the first and the last step.

The first term of ω0 and ωN− 1
2

is the error of a projection and therefore of order h2, where we

used also the cancellation of the factor 1
τ with the factor τ . The other terms are of order τ2 as

−τ
2
p̄,t(·, 0) + p̄

(
·, τ

2

)
− p̄(·, 0) =

τ2

8
p̄,tt(·, 0) +

1

2

∫ τ
2

0

(
s− τ

2

)2
p̄,ttt(·, s) d s,

−τ
2
p̄,t(·, tN ) + p̄(·, tN )− p̄(·, tN− 1

2
) = −τ

2

8
p̄,tt(·, tN ) +

1

2

∫ T

t
N− 1

2

(
s− tN− 1

2

)2
p̄,ttt(·, s) d s,

τ
Ap̄(·, tN− 1

2
)−Ap̄(·, tN )

2
= −τ

2

4
Ap̄,t(·, tN ) +

τ

2

∫ T

t
N− 1

2

(
s− tN− 1

2

)
Ap̄,tt(·, s) d s

hold. So all terms of the error estimate are bounded with order h2 + τ2.

Remark 6.11. Lemma 6.10 can also be used to investigate how accurate the data for a right
hand side of the optimality system need to be evaluated so that the Crank-Nicolson scheme
preserves second order convergence.

Finally we need to assure that the control approximation is of second order. To this end we
introduce some further notation. The interpolation operator Jτ is defined by

Jτu(·, T ) = u(·, T ), Jτu(·, 0) = u(·, 0),

Jτu(·, tk+ 1
2
) = u(·, tk+ 1

2
), ∀k = 0, . . . , N − 1,

Jτu linear in (0, t 1
2
), (tk− 1

2
, tk+ 1

2
), (tN− 1

2
, tN ), ∀k = 1, . . . , N − 1,

Jτu continuous in [0, T ].
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The optimal control is denoted by ū and ūh,τ at the discrete level. Finally we recall the standard
interpolation error estimate

‖u− Jτu‖L2(Q) . τ2 ‖u,tt‖L2(0,T,H2(Ω)) ∀u ∈ H2((0, T ), H2(Ω)). (6.6)

Lemma 6.12. If for the optimal control ū ∈ H3((0, T ), L2(Ω))∩H2((0, T ), H2(Ω)) holds, then
the error of the control approximation can be bounded by

‖Jτ ūh,τ − ū‖L2(Q) . C1h
2 + C2τ

2.

Proof. We follow the proof of [81, Theorem 6.1] and start with the weak form of the optimality
condition ∫ T

0
〈νMuū(·, t)−G∗p̄(·, t), ϕ〉H×H d t = 0 ∀ϕ ∈ L2(Ω),

and its discretization

τ

2
〈νMuūh,0 −G∗p̄h,0, ϕ〉H×H = 0 ∀ϕ ∈ Vh.

τ
〈
νMuūh,k+ 1

2
−G∗p̄h,k+ 1

2
, ϕ
〉
H×H

= 0 ∀ϕ ∈ Vh, for k = 0, . . . , N − 1,

τ

2
〈νMuūh,N −G∗p̄h,N , ϕ〉H×H = 0 ∀ϕ ∈ Vh.

This is equivalent to the optimality condition of (OC CN1). Now we insert some admissible
control u into the reduced continuous cost functional

j(u) =
α

2
‖MDSu(·, T )−MDyD‖2H +

∫ T

0

β

2
‖MdSu−Mdyd‖2H +

ν

2
‖Muu‖2H d t

with the (linear) solution operator S of the corresponding parabolic initial boundary value
problem. As seen in Theorem 5.18 the first derivative of this functional can be written with the
adjoint state in the form

j′(u)(ϕ) =

∫ T

0
〈νMuu(·, t)−G∗p(·, t;u), ϕ〉H×H d t (6.7)

with p(·, ·;u) being the adjoint state corresponding to the control u. The second derivative of
the cost functional is

j′′(u)(ϕ,ϕ) =

∫ T

0
ν〈Muϕ,ϕ〉H×H + 〈G∗Sϕ, Sϕ〉H×H d t ≥

∫ T

0
ν‖ϕ‖2L2(Ω) d t (6.8)

and therefore independent of u. The discrete optimality condition

τ

2
〈νMuūh,0 −G∗p̄h,0, ϕ〉H×H = 0 ∀ϕ ∈ Vh.

τ
〈
νMuūh,k+ 1

2
− Ḡ∗ph,k+ 1

2
, ϕ
〉
H×H

= 0 ∀ϕ ∈ Vh, for k = 0, . . . , N − 1,

τ

2
〈νMuūh,N −G∗p̄h,N , ϕ〉H×H = 0 ∀ϕ ∈ Vh.
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implies, as the space Vh is finite dimensional,

νMuūh,0 −G∗p̄h,0 = 0

νMuūh,k+ 1
2
−G∗p̄h,k+ 1

2
= 0 for k = 0, . . . , N − 1.

νMuūh,N −G∗p̄h,N = 0.

And therefore we have the optimality condition also for the interpolant in time

νJτMuūh,τ − JτG∗p̄h,τ = 0.

We define the functional j′hτ (JτMuūh,τ ) as the weak form of this optimality condition

j′hτ (JτMuūh,τ )(Jτϕh,τ ) =

∫ T

0
〈νJτMuūh,τ − JτG∗p̄h,τ (·, ·, ūh,τ ), Jτϕh,τ 〉H×H d t.

For the optimal solution we have

j′hτ (JτMuūh,τ )(Jτϕh,τ ) = 0 ∀Jτϕh,τ ∈ Y1,h. (6.9)

with the space

Y1,h =
{
y ∈ C ([0, T ], Vh) , y|(ti,ti+1) ∈ P1 ((ti, ti+1), Vh) ∀i ∈ {0, 1, . . . , N}

}
.

For the error between the projection of the exact solution and the numerical approximation

eh,τ = JτRhū− Jτ ūh,τ

we have with any ϕ ∈ H3((0, T ), L2(Ω)) ∩H3((0, T ), H2(Ω)) and with (6.8)

ν‖eh,τ‖2L2(Q) ≤ j′′(ϕ)(eh,τ , eh,τ ) = j′ (JτRhū) (eh,τ )− j′ (Jτ ūh,τ ) (eh,τ ) .

Due to the optimality conditions (6.9) and

j′(ū)(ϕ(·)) = 0 ∀ϕ ∈ L2(Q) ⊃ Y1,h,

this is equal to

ν ‖eh,τ‖2H ≤ j′(JτRhū)(eh,τ )− j′(ū)(eh,τ )

+ j′hτ (Jτ ūh,τ ) (eh,τ )− j′ (Jτ ūh,τ ) (eh,τ ).

After the application of the Cauchy-Schwarz inequality for L2(Q) in (6.7) this is

ν ‖eh,τ‖2L2(Q) . ν ‖MuJτRhū−Muū‖L2(Q) ‖eh,τ‖L2(Q)

+ ‖G∗p̄(·, ·; ū)−G∗p(·, ·; JτRhū)‖L2(Q) ‖eh,τ‖L2(Q)

+ ‖G∗p(·, ·, Jτ ūh,τ )−G∗Jτ p̄h,τ (·, ·; Jτ ūh,τ )‖L2(Q) ‖eh,τ‖L2(Q)

+ ν ‖MuJτ ūh,τ −MuJτ ūh,τ‖L2(Q) ‖eh,τ‖L2(Q) ,
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where Jτ p̄h,τ (·, ·; Jτ ūh,τ ) denotes the discrete adjoint state corresponding to the control Jτ ūh,τ .
Thus we proved for the error between the projection of the optimal control and its numerical
approximation the estimate

ν ‖eh,τ‖L2(Q) . ν ‖Mu (JτRhū− ū)‖L2(Q)

+ ‖G∗ (p̄(·, ·; ū)− p(·, ·; JτRhū))‖L2(Q)

+ ‖G∗ (p(·, ·; Jτ ūh,τ )− Jτ p̄h,τ (·, ·; Jτ ūh,τ ))‖L2(Q) .

With this result, the error between the optimal control and its numerical approximation can be
estimated with the the triangle inequality. This yields

‖ū− Jτ ūh,τ‖L2(Q) ≤ ‖ū−Rhū‖L2(Q) + ‖Rhū− JτRhū‖L2(Q) + ‖JτRhū− Jτ ūh,τ‖L2(Q)

. ‖I +Mu‖ ‖ū−Rhū‖L2(Q) + ‖I +Mu‖ ‖Rhū− JτRhū‖L2(Q)

+
1

ν
‖G∗‖ ‖p̄(·, ·; ū)− p(·, ·; JτRhū)‖L2(Q)

+
1

ν
‖G∗‖ ‖p(·, ·; Jτ ūh,τ )− Jτ p̄h,τ (·, ·; Jτ ūh,τ )‖L2(Q) .

The first term, the error between the optimal control and its projection, can be bounded
as in Lemma 6.9. The second term is bounded by an interpolation result as in (6.6). The
last term can be bounded due to the Theorem 4.22 and Lemma 6.10. For the third term we
discuss p̃ = p̄(·, ·; ū)− p(·, ·; JτRhū). By subtraction the differential equations for p̄(·, ·; ū) and
p(·, ·; JτRhū) we see, that this functions fulfills the differential equation

p̃,t −A∗p̃ = βMdỹ

p̃(·, T ) = αMDỹ(·, T )

with homogeneous boundary conditions. The right hand side ỹ is the solution of

ỹ,t +Aỹ = Gū−GJτRhū
ỹ(·, 0) = 0

with the same homogeneous boundary conditions on the spatial boundary. With the a priori
estimate of Theorem 3.40 we obtain

‖ỹ‖L2(Q) ≤ ‖G‖ ‖ū− JτRhū‖L2(Q) ≤ ‖G‖ ‖ū−Rhū‖L2(Q) + ‖Rhū− JτRhū‖L2(Q) .

This estimate can also be applied to the adjoint equation, as the adjoint equation can be
transformed to a parabolic initial boundary value problem with time t̃ = T − t. Therefore we
have the estimate

‖p̃‖L2(Q) ≤ ‖ỹ‖L2(Q) ≤ ‖ū− JτRhū‖L2(Q) .

So we have bound all terms in the estimate for ‖ū(·, ·)− Jτ ūh,τ (·, ·)‖L2(Q).

All together we have proven Theorem 6.5.
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6.5. Variable time steps

Proof of Theorem 6.5. The convergence of the control follows with Lemma 6.12. The con-
vergence of the control implies the convergence of the state (Lemma 6.8), which implies the
convergence of the adjoint state (Lemma 6.10).

Finally we transfer the result to the other schemes.

Remark 6.13. We have not shown that the schemes (OC G2) and (OC CN2) are second order
schemes. The schemes only differ from (OC CN1) in the right hand side of the adjoint state
and for the non-final time steps we have (by Taylor expansion)

yi−1+yi
2 − yd,i−1+yd,i

2

2
+

yi+yi+1

2 − yd,i+yd,i+1

2

2
= yi − yd,i + O(τ2),

yi−1 − yd,i−1

6
+

4

6
(yi − yd,i) +

yi+1 − yd,i+1

6
= yi − yd,i + O(τ2).

Therefore the assumptions of Lemma 6.10 hold for these time steps. But for the final step we
can only show

yN−1+yN
2 − yd,N+yd,N−1

2

2
=
yN − yd,N

2
+ O(τ),

1

6
(yN−1 − yd,N−1) +

2

6
(yN − yd,N ) =

yN − yd,N
2

+ O(τ).

by Taylor expansions. Nevertheless we see in the numerical example in Section 6.6 that all the
schemes seem to be of second order.

For Crank-Nicolson discretizations of parabolic partial differential equation with irregular
initial data it is known that even two first order implicit Euler starting steps do not destroy
the convergence [100, Theorem 2]. We hope that we can transfer similar results to the schemes
(OC G2) and (CN2). This is work of further research.

6.5. Variable time steps

As mentioned before, it is well known that for higher regularity of the solution of parabolic
partial differential equations additional compatibility conditions for the initial and boundary
data are needed. If the compatibility conditions are not fulfilled or the initial data are non-
smooth, graded time step sizes are in use, see e. g. [117, Section 5.2] for the h-version (or
better τ -version in this context) of a discontinuous Galerkin scheme in time or [95] for different
approaches for the Crank-Nicolson scheme and non-smooth initial data.

These incompatibilities can appear in the state for t = 0 and in the adjoint state for t = T .
Therefore the error analysis for appropriate time step generating function is done in Section
6.5.2.

6.5.1. Generalization to variable time step sizes

We generalize our scheme (OC CN1) to variable time step sizes. Therefore let τi = ti − ti−1 for
i = 1, . . . , N . The Crank-Nicolson discretization with variable time step size is

M
yk+1 − yk
τk+1

+A
yk+1 + yk

2
= Guk+ 1

2
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and for the cost functional we chose the trapezoidal rule for the first integral and the midpoint
rule for the second integral, which yields

βτ1

4

∥∥∥M1/2
d (y0 − yd,0)

∥∥∥2

H
+
N−1∑
k=1

β
τk

∥∥∥M1/2
d (yk − yd,k)

∥∥∥2

H
+
∥∥∥M1/2

d τk+1(yk − yd,k)
∥∥∥2

H

4

+
βτN

4

∥∥∥M1/2
d (yN − yD,N )

∥∥∥2

H
+

N−1∑
k=0

ντk+1

2

∥∥∥M1/2
u uk+ 1

2

∥∥∥2

H
.

The corresponding Lagrangian is

L(y,u,p) =
βτ1

4

∥∥∥M1/2
d (y0 − yd,0)

∥∥∥2

H

+
N−1∑
k=1

β
τk

∥∥∥M1/2
d (yk − yd,k)

∥∥∥2

H
+
∥∥∥M1/2

d τk+1(yk − yd,k)
∥∥∥2

H

4

+
βτN

4

∥∥∥M1/2
d (yN − yd,N )

∥∥∥2

H
+
α

2

∥∥∥M1/2
D (yN − yN )

∥∥∥2

H

+

N−1∑
k=0

ντk+1

2

∥∥∥M1/2
u uk+ 1

2

∥∥∥2

H
+ 〈M (y0 − v) , p0〉H×H

+
N−1∑
k=0

τk+1

〈
M
yk+1 − yk
τk+1

+A
yk+1 + yk

2
−Guk+ 1

2
, pk+ 1

2

〉
H×H

.

The first order conditions ∂L
∂p0

, ∂L
∂p
i+ 1

2

(for i = 0, . . . N − 1), ∂L
∂u

i+ 1
2

(for i = 0, . . . N − 1) and ∂L
∂yi

(for i = 0, . . . N) are

My0 = Mv

M
ȳi+1 − ȳi
τi+1

+A
ȳi+1 + ȳi

2
= Gūi+ 1

2
for i = 0, . . . N − 1,

νMuūi+ 1
2

= G∗p̄i+ 1
2

for i = 0, . . . N − 1,

M
p̄ 1

2
− p̄0

τ1
+A

p̄ 1
2

2
=
β

2
Md(ȳ0 − yd;0)

Mp̄i+ 1
2
−Mp̄i− 1

2
−A

τip̄i− 1
2

+ τi+1p̄i+ 1
2

2
= β

τi + τi+1

2
Md(ȳi − yd;i) for i = 1, . . . , N − 2,

−M
p̄N− 1

2

τN
−A

p̄N− 1
2

2
=
β

2
Md(ȳN − yd;N )

+
α

τN
MD (yN − yD) .

The only difference to the optimality system (OC CN1), in addition to the replacement of τ by
τi, is the discretization of the adjoint state for the indices i = 1, . . . , N − 2.

6.5.2. Convergence analysis

In this section we show that second order convergence is also possible in the case of variable
time step sizes. The Lemmas 6.8 and 6.10 of the previous section, which also discuss perturbed
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6.5. Variable time steps

Figure 6.3.: Comparison of the discretization time nodes of y and p. Midpoints of the intervals
[pi− 1

2
, pi+ 1

2
] are additionally inserted in gray. First line y, second line p

approximations, are the key to our analysis (see also Remark 6.11).
The forward equation is the same as in the case of constant time step sizes. Therefore we

achieve second order convergence if p̄i+ 1
2

is a second order approximation.

So we only need to discuss the approximation of the backward equation. If we show second
order convergence for p̄i+ 1

2
we are done. We only have problems if the time-step sizes change. In

these cases the midpoint of the interval [ti− 1
2
, ti+ 1

2
] and ti do not coincide anymore (see Figure

6.3). The time step size between p̄i− 1
2

and p̄i+ 1
2

is equal to τi+1+τi
2 = ti+1−ti−1

2 . For simplicity

and shortness we assume yd,i = 0. All the arguments for yi carry over to yd,i if yd is smooth
enough. So we discuss the scheme

−Mp̄i− 1
2

+Mp̄i+ 1
2

+A
τip̄i− 1

2
+ τi+1p̄i+ 1

2

2
= β

τi + τi+1

2
Mdȳi

for p̄i− 1
2

and show that this scheme is a O
(
τ2
i

)
perturbation of the midpoint-rule

M
−p̄i− 1

2
+ p̄i+ 1

2

ti+1−ti−1

2

+Ap̄

(
ti− 1

2
+ ti+ 1

2

2

)
= βMdȳ

(
ti−1+ti

2 + ti+ti+1

2

2

)
.

If we have proven this we can use Lemma 6.8 and are done. Therefore we divide our scheme by
the time step size ti+1−ti−1

2 ,

M
−p̄i− 1

2
+ p̄i+ 1

2

ti+1−ti−1

2

+
1

ti+1−ti−1

2

A
τip̄i− 1

2
+ τi+1p̄i+ 1

2

2
= βMdȳi.

Lemma 6.14. If the changes of time step size are of order

τi+1 − τi = O
(
τ2
)
, (6.10)

then

y

(
ti−1+ti

2 + ti+ti+1

2

2

)
− y(ti) = O

(
τ2
)
,

Ap

(
ti− 1

2
+ ti+ 1

2

2

)
− 1

ti+1−ti−1

2

A
τip(ti− 1

2
) + τi+1p(ti+ 1

2
)

2
= O

(
τ2
)
.

Proof. For the proof we use Taylor expansions. With the assumption (6.10) we have

y

(
ti−1+ti

2 + ti+ti+1

2

2

)
− y(ti) = ẏ(ti)

ti−1 − 2ti + ti+1

4
+ h.o.t. = O

(
τ2
i

)
.
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For the other term we compare Taylor expansions

1
ti+1−ti−1

2

A
τip(ti− 1

2
) + τi+1p(ti+ 1

2
)

2
=

=
1

τi + τi+1
A
(
τi

(
p(ti)−

τi
2
ṗ(ti) + h.o.t.

)
+ τi+1

(
p(ti) +

τi
2
ṗ(ti) + h.o.t.

))
=

= Ap(ti) +
τ2
i+1 − τ2

i

τi + τi+1

1

2
Aṗ(ti) + h.o.t. = Ap(ti) +

τi+1 − τi
2

Aṗ(ti) + h.o.t.

and

Ap

(
ti− 1

2
+ ti+ 1

2

2

)
= Ap(ti) +Aṗ(ti)

(
ti + ti−1 + ti + ti+1

4
− ti

)
+ h.o.t.

= Ap(ti) +Aṗ(ti)

(
τi+1 − τi

4

)
+ h.o.t.

As above the difference of the two expansions is of order O
(
τ2
i

)
.

Altogether we have proven the convergence for variable time step sizes.

Theorem 6.15. The scheme with variable time step sizes is a second order scheme if the time
grid satisfies assumption (6.10).

Corollary 6.16. Last we mention a method to provide a variable time step distribution which
fulfills equation (6.10). Therefore we choose a monotone mesh generating function k which
fulfills

k ∈ C2 ([0, 1], [0, T ]) k(0) = 0 k(1) = T ti = k

(
i

N

)
.

The resulting time step sizes τi fulfill the condition (6.10) of theorem 6.15.

Proof. We use Taylor expansions of both sides of (6.10). For the left hand side we have

τi+1 − τi = ti+1 − 2ti + ti−1 = k

(
i+ 1

N

)
− 2k

(
i

N

)
+ k

(
i− 1

N

)
= k

(
i

N

)
+ k′

(
i

N

)
1

N
+

1

2
k′′ (ξ1)

1

N2
− 2k

(
i

N

)
+ k

(
i

N

)
− k′

(
i

N

)
1

N
+

1

2
k′′ (ξ2)

1

N2

=
1

2

(
k′′ (ξ1) + k′′ (ξ2)

) 1

N2
= O

(
1

N2

)
with some ξ1 ∈ [ iN ,

i+1
N ] and ξ2 ∈ [ i−1

N , iN ]. And for the right hand side we compute

τi = ti − ti−1 = k

(
i

N

)
−
(
k

(
i

N

)
− k′

(
i

N

)
1

N
+

1

2
k′′ (ξ3)

1

N2

)
= k′

(
i

N

)
1

N
− 1

2
k′′ (ξ3)

1

N2
= O

(
1

N

)
.

This finishes this proof as τi+1 − τi is of higher order then needed for (6.10).
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Remark 6.17. Rösch discusses in [103] a parabolic optimal control problem with a terminal
objective functional and control constraints. He uses

k(t) = T − T (1− t)4

as grading function and shows that with this grading towards t = T the convergence of the
control is of order 3

2 . With our scheme he would have obtained order 2 for the case without
constraints.

Remark 6.18. For the simulation of parabolic partial differential equations with discontinuous
Galerkin schemes as time discretization, Schötzau and Schwab introduce

k(t) = T · t(2r+3)/θ

as mesh generating function in [117, Section 5.2]. The constant r is the polynomial degree of the
discontinuous Galerkin scheme in time and the constant θ ∈ (0, 1] corresponds to the smoothness
of the initial data, so that y0 ∈ Hθ(Ω). Clearly this function fulfills also our conditions.

6.6. Numerical examples

6.6.1. Solution Algorithm

As we discuss a problem without control or state constraints it is possible to eliminate the
optimality condition in the discrete system. Altogether for (OC CN1) we have to solve the
linear system


I II

III IV




Ȳτ

P̄τ

 =


R1

R2

 (6.11)
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with the sub-matrices and the sub-vectors given by

I =


K
L K

. . .
. . .

L K

 , II =


−C

. . .
. . .

−C

 ,

III =


−βMd

. . .

−βMd

−α
τMD − β

2Md

 , IV =


−K −L

. . .
. . .

−K −L
−K

 ,

Ȳτ =


ȳ1
...
...
ȳN

 , P̄τ =


p̄ 1

2
...
...

p̄N− 1
2

 ,

R1 =


−Lv

0
...
0

 , R2 =


−βMdyd,1

...
−βMdyd,N−1

−α
τMDyD − β

2Mdyd,N



with K = M
τ + A

2 ∈ Rn×n, C = 1
νGM

−1
u G∗ ∈ Rn×n and L = −M

τ + A
2 ∈ Rn×n, where the

operators have been replaced by their discrete counterpart, i.e. M is the mass matrix and A the
stiffness matrix and so on. As the adjoint state p̄0 does not influence the further computations,
it can be computed afterwards.

If we choose (OC CN2) the lower left sub-matrix and the lower part of the right hand side
have to be replaced by

III =


−β

2Md −β
4Md

−β
4Md −β

2Md −β
4Md

. . .
. . .

. . .

−β
4Md −β

2Md −β
4Md

−β
4Md −α

τMD − β
4Md

 ,

R2 =


−βMd

yd,0+2yd,1+yd,2
4

...

−βMd
yd,N−2+2yd,N−1+yd,N

4

−α
τMDyD − βMd

yd,N−1+yd,N
4

 ,
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and for the discretization (OC G1) the lower matrices are replaced by

III =


−4

6βMd −β
6Md

−β
6Md −4

6βMd −β
6Md

. . .
. . .

. . .

−β
6Md −4

6βMd −β
6Md

−β
6Md −α

τMDyD − 2
6βMd

 ,

R2 =


−βMd

yd,0+4yd,1+yd,2
6

...

−βMd
yd,N−2+4yd,N−1+yd,N

6

−α
τMDyD − βMd

yd,N−1+2yd,N
6

 .

6.6.2. Tracking over the full space time cylinder

As first numerical example we choose the tracking over the full space-time cylinder and no
tracking of a terminal state, i.e. α = 0 and β = 1 in the cost functional of Problem 5.2.

Example 6.19. The first numerical example is taken from [4, 5]. We choose a test problem
with parabolic partial differential equations with homogeneous Neumann boundary conditions

min

1∫
0

1

2
‖y − yd‖2H +

ν

2
‖u‖2H d t

y,t −∆y = u in Ω× (0, T ],

∂

∂n
y = 0 on ∂Ω× (0, T ],

y = 0 in Ω× {0}.


(6.12)

For our numerical example we study Ω× (0, T ] = (0, 1)2 × (0, 1].
We measure the error by

max

{(
(ȳhi − ȳ(ti, x))T M (ȳhi − ȳ(ti, x))

)1/2
, i = 0, . . . , N

}
,

and max

{(
(p̄hi − p̄(ti, x))T M (p̄hi − p̄(ti, x))

)1/2
, i = 0,

1

2
,
3

2
, . . . , N − 1

2

}
.

For these expressions we have proven error bounds of order τ2. It can be interpreted as a
discretization of the L∞

(
[0, T ], L2(Ω)

)
-error between the numerical approximation and the

interpolant of the exact solution. Inspired by [81], where a Dirichlet problem is given as
numerical example, we choose for our Neumann problem

yd(t, x1, x2) = c7wa(t, x1, x2) + c8wb(t, x1, x2)+

+ c9wa(0, x1, x2) + c10wb(0, x1, x2)+

+ c11wa(1, x1, x2) + c12wb(1, x1, x2) (6.13)

with wa(t, x1, x2) = e
1
3
π2t cos(πx1) cos(πx2)

and wb(t, x1, x2) = e−
1
3
π2t cos(πx1) cos(πx2).
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c1 c2 c3 c4 = c5 = c6

−5

(
5 e−

1
3π

2 −6

)
−6+7 e

1
3π

2 5 −1
4

7+141 e
1
3π

2
+7

(
e

1
3π

2
)2

−6−106 e−
1
3π

2

−6+7 e
1
3π

2
1
4

(a) Coefficients for y.

c7 c8 c9 c10 = c11 = c12

−5
9

(9+35νπ4)
(

5 e−
1
3π

2 −6

)
−6+7 e

1
3π

2 5 + 175
9 νπ4 4 · c3 · c10

1
4 + νπ4

(b) Coefficients c7, c8, c9, c10, c11, c12 for yd.

Table 6.1.: Coefficients for the numerical Example 6.20.

The exact solution (y, p) of this optimal control problem can be represented by a linear combina-
tion of wa(t, x1, x2), wb(t, x1, x2), wa(0, x1, x2), wb(0, x1, x2), wa(1, x1, x2) and wb(1, x1, x2),

ȳ(t, x1, x2) = c1wa(t, x1, x2) + c2wb(t, x1, x2)+

+ c3wa(0, x1, x2) + c4wb(0, x1, x2) + c5wa(1, x1, x2) + c6wb(1, x1, x2). (6.14)

The coefficients must be chosen such that the optimality system is satisfied. The choice of the
coefficients is not unique, using Maple we computed the solution displayed in Table 6.1.

For clarity of presentation of the numerical results the convergence plots are split into two
parts. On the left hand side we always plot the error in the state ȳ, on right hand side the error
of the adjoint state p̄.

We nicely observe second order convergence for different ν in Figure 6.4 for the example
(6.12), (6.13), (6.14). As the same spatial discretization is used for all examples the error is
dominated by this for small time step sizes. We see also that different problems are solved for
different ν and that the error constants become larger for decreasing ν.

6.6.3. Terminal state tracking

As second numerical example we consider an example with terminal state tracking and no
tracking of a desired state over the full time interval, i.e. α = 1 and β = 0 in the cost functional
of Problem 5.2.

In this case all three numerical schemes (OC CN1), (OC CN2) and (OC G1) coincide, as the
three schemes differ only in the discretization of the right hand side of the adjoint equation
which refers to the tracking of a desired state over the full time interval.
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(c) Convergence of y for ν = 1 · 10−2
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(d) Convergence of p for ν = 1 · 10−2

Figure 6.4.: Plot of the error against the step size τ for different ν for the Example 6.20 Spatial
discretization is for all time step sizes the same. On the left side the errors for the
approximation of the state y and on the right side the errors for the approximation
of the adjoint state p are plotted. The green lines indicate τ, τ2, blue with square
the scheme (OC CN1), red with diamonds the scheme (OC CN2)≡(OC G2) and
magenta with triangles the scheme (OC G1).
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y0,1 yD,1 C1,1 C2,1 C3,1

1 1 − −1+e−π
2

2νπ2 eπ2 + eπ2 − e−π2
−1+eπ

2
+2νπ2 eπ

2

2νπ2 eπ2 + eπ2 − e−π2 2π2νC1,1

Table 6.2.: Coefficients for the numerical Example 6.20.
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(b) Convergence for ν = 0.001

Figure 6.5.: Plot of the error against the step size τ for different ν for the example with data
according to Table 6.2. For the spatial discretization linear FEM were chosen, the
mesh parameter h was chosen independent of τ . The error for the state y is plotted
in blue with square markers and the error of the adjoint state is plotted in red with
diamond markers.

Example 6.20. The problem for this example is given by

min
1

2
‖y(·, T )− yD‖2H +

ν

2

∫ T

0
‖u‖2L2(Ω) d t,

y,t −∆y = u in Ω× (0, T ),

∂

∂n
y = 0 on ∂Ω× (0, T ),

y = v in Ω× {0},

with Ω = (0, 1) and T = 1. Further we choose v =
√

2 cos(πx) and yD =
√

2 cos(πx). The
solution has the representation

ȳ = C1,1 cos(πx) eπt +C2,1 cos(πx) e−πt, p̄ = C3,1 cos(πx) eπt .

The coefficients for this example can be found in Table 6.2.

For the spatial discretization we choose a finite element discretization where the mesh param-
eter h was chosen independent of τ . The numerical experiments confirm nicely the order of
convergence, see Figure 6.5.
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y0,i yD,i C1,i C2,i C3,i

ai bi
−bi+ai e−λi

−2νλi eλi − eλi + e−λi
−−bi+ai eλi +2νλiai eλi

−2νλi eλi − eλi + e−λi
2λiνC1,i

Table 6.3.: Coefficients for the exact solution (6.16) to the data (6.15).

Remark 6.21. Hou, Imanuvilov and Kwon give in their paper [64] for the optimal control
problem

min
1

2
‖y − yD‖2H +

ν

2

∫ T

0
‖u‖2H d t

yt −∇ · (A(x)∇y) = 0 for (t, x) ∈ Q,
y(t, x) = 0 for (t, x) ∈ Σ,

y(0, x) = v(x) for (t, x) ∈ Ω,

the solution of optimal state ȳ as eigenfunction expansion. They assume Dirichlet boundary
conditions and that the function A(x) is symmetric matrix-valued C1(Ω̄)-function that is
uniformly positive definite. We extend their representation to the solution for the state ȳ and
the adjoint state p̄ for more general symmetric operators and boundary conditions. Therefore
we introduce the L2(Ω)-orthonormal eigenfunctions {ei}∞i=1 of the spatial operator A with the
corresponding eigenvalues {λi}∞i=0. Let the initial value and the desired state be given as
eigenfunction expansions

v =
∞∑
k=0

y0,kei, yD =
∞∑
k=0

yD,kei. (6.15)

The optimal control problem decouples into problems for every eigenfunction ei and has the
solution

ȳ =

∞∑
i=0

C1,iei eλit +C2,iei e−λit, p̄ =

∞∑
i=0

C3,iei eλit . (6.16)

For given y0,i and yD,i these coefficients can be computed to the values given in Table 6.3. These
coefficients have been computed with Maple.

Remark 6.22. In Remark 6.21 a representation of the solution as eigenfunction expansion
is given and for our numerical example we have chosen an example where the exact solution
is known. Nevertheless the numerical analysis of the optimal control problem with terminal
observation is of interest. On the one hand the eigenfunctions are only known for special
operators and special domains. And on the other hand the optimal control problem with terminal
observation is only a special case of the optimal control Problem 5.2. For the more general
choices of the parameter, i.e. α 6= 0 and β 6= 0 we are not able to construct a solution in general.
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6. Crank-Nicolson and Störmer-Verlet schemes for parabolic optimal control problems

6.7. Summary

In this chapter we have introduced three time discretization schemes for the discretization of
optimal control problems with parabolic partial differential equations.

The scheme (OC CN1) was derived with discretize-then-optimize approach with a Crank-
Nicolson discretization of the state equation. On the other hand we have seen that the
scheme (OC CN1) is also the Störmer-Verlet discretization of the optimality condition, so for
this approach discretize-then-optimize and optimize-then-discretize lead to the same discrete
scheme.

The discretization (OC CN2) was also introduced by the discretize-then-optimize approach.
Later on we have seen, that this approach is also a Galerkin discretization with a quadrature rule
or with additional variables. So we have also for this approach the commutation of discretization
and optimization.

The third discretization (OC G1) is a Galerkin discretization, which was introduced by
optimizing and then discretizing. We have no time stepping scheme introduced and not
discussed whether discretization and optimization commute or this scheme.

For the scheme (OC CN1) we have proven second order convergence and we have proven that
the discretization of the inner time steps of the schemes (OC CN2) and (OC G1) are second
order perturbations of the scheme (OC CN1).

The numerical examples confirm the second order convergence.
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7. Space time finite elements for
approximation of the optimal state
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In Chapter 6 we discussed Crank-Nicolson discretizations for the first discretize then optimize
and the first optimize then discretize approach. These two approaches deal with the discretization
of the optimal control problem and the optimality conditions, and end up in a system containing
state variables y, adjoint state variables p and control variables u. But we have seen in Section 5.3
that we can eliminate two of the functions in the optimality conditions and discuss a equation
only for the state y or the adjoint state p. In this chapter we discretize these H(2,1)(Q)-elliptic
equations directly with finite elements and transfer the ideas of the elimination of two variables
to the discrete scheme (OC CN2).

This approach is of interest when we are just interested in the optimal control but not in
the optimal state (as we have an optimal control problem and not the problem of the optimal
state) or in the optimal state but not the optimal control (so we are solving the problem of the
optimal state).

We discuss a conforming finite element and a mixed finite element method for this approach.
We see that the mixed approximation can also be reached with a first-discretize-then-optimize
or first-optimize-then-discretize approach for the optimality conditions.

For simplicity and clarity of presentation we will assume a self adjoint operator A, MD =
Md = Mu = G = M and only tracking of a state over the full space time cylinder and no
terminal tracking, i.e. α = 0 in the cost functional of the problem (5.1).

7.1. A Conforming Finite Element Method

As seen in Section 5.3 the solution of a parabolic optimal control problem is equivalent to
the solution of an H(2,1)(Q)-elliptic boundary value problem in the space-time domain. The
corresponding equations are stated in Problem 5.22 and Problem 5.23.
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7. Space time finite elements for approximation of the optimal state

For a spatially one dimensional domain a conforming discretization of H(2,1)(Q)-elliptic
equations with Hermite Lagrange tensor product finite elements has been investigated in Section
4.1.2. The boundary conditions in Section 4.1.2 were chosen so that they coincide with the
boundary conditions for Problem 5.23 in the case of a desired state on the full space time
domain and no desired terminal state. So the numerical Example 4.19 is also a numerical
example for the discretization of optimal control problems as H(2,1)(Q)-elliptic equations.

The only difference in boundary conditions for Problem 5.22, compared to the conditions of
Problem 5.23, are inhomogeneities in the boundary conditions. The difference for a desired
terminal state also appears only in the boundary condition. Therefore we do not discuss these
problems here in detail.

7.2. Mixed finite element approximations

In this Section we introduce a mixed discretization for this equation and show that this
discretization is connected to the Crank-Nicolson-discretization (OC CN2) of the previous
Chapter.

7.2.1. Mixed discretization as Galerkin approximation

Mixed formulation

For a mixed discretization of the H(2,1)(Q)-elliptic equation in Problem 5.23 we use the mixed
formulation (5.23) for the state y of Remark 5.26, i.e.

Aȳ = Mz̄,

Mȳ = Mw̄,

−νMȳtt + νAz̄ + βMw̄ = βMyd.

The boundary conditions for this problem are

Mȳ = Mv in Ω× {0},
Mȳt +Aȳ = 0 in Ω× {T},

ȳ = 0 on Σ1,
∂ȳ

∂n
= 0 on Σ2,

z̄ = 0 on Σ1,
∂z̄

∂n
= 0 on Σ2.

As usual in the numerical analysis of boundary value problems, we assume that the Dirichlet
boundary values are homogeneous and therefore v = 0. With test functions with φ(x, 0) = 0
and partial integration in time, given by∫ T

0
−ν〈Mȳtt, φ〉H×H d t =

∫ T

0
ν〈Mȳt, φt〉H×H d t

− 〈Mȳt(x, T ), φ(x, T )〉H×H + 〈Mȳt(x, 0), φ(x, 0)〉H×H

=

∫ T

0
ν〈Mȳt, φt〉H×H d t− 〈Mȳt(x, T ), φ(x, T )〉H×H ,
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7.2. Mixed finite element approximations

the weak form of the system is given by ∫ T

0
a(ȳ, ϕ) d t =

∫ T

0
〈Mz,ϕ〉H×H d t

∀ϕ ∈ L2(0, T ;V ),∫ T

0
〈Mȳ, ψ〉H×H d t =

∫ T

0
〈Mw,ψ〉H×H d t

∀ψ ∈ L2(0, T ;H),∫ T

0
〈Myd, ψ〉H×H d t =

∫ T

0
〈Mwd, ψ〉H×H d t

∀ψ ∈ L2(0, T ;H),

a(ȳ(x, T ), φ(x, T ))

+

∫ T

0
ν〈Mȳt, φt〉H×H + νa(z̄, φ) + β〈Mw̄, φ〉H×H d t =

∫ T

0
β〈Mwd, φ〉H×H d t

∀φ ∈ H1(0, T ;V ) : φ(x, 0) = 0,



(7.1)

where for the solution (w̄, ȳ, z̄) ∈ L2(0, T ;H) × {y ∈ H1(0, T ;V ) : y|t=0 = 0} × L2(0, T ;V )
holds. For the discretization of this system we choose a tensor product ansatz.

Structure of the matrices

Prior a discussion of the discretization of the mixed system (7.1), we investigate the general
structure of the matrices of a tensor product Petrov-Galerkin finite element discretization. To
that end let for the spatial discretization the set {χti(x)}ni=0 be a basis for the test space and the
set {χai (x)}ni=0 a basis of the ansatz space. For the temporal discretization let the set {ρtj(t)}Nj=0

be a basis for the test space and the set {ρaj (t)}Nj=0 a basis of the ansatz space.

Tensor product bases for ansatz space are given by the set {χai (x) · ρaj (t)}n,Ni=0,j=0 and for the

test space by the set {χti(x) · ρtj(t)}n,Ni=0,j=0, where every spatial ansatz function or spatial test
function is multiplied with every temporal ansatz function or temporal test function, respectively.
A function f in the ansatz space can be represented as

f =
N∑
j=0

n∑
i=0

χai (x)ρaj (t)fij

with coefficients fij ∈ R. For the assembly of the matrices of the weak form (7.1) we need the
evaluation of integrals with some spatial operator K, in our case K = A or K = M , applied
to a function f of the ansatz space multiplied with some test function. In general we have to
compute ∫ T

0
〈Kf, χtk(x)ρtl(t)〉V ∗×V d t (7.2)

for all combinations of χtk ∈ {χti(x)}ni=0 and ρtl ∈ {ρtj(t)}Nj=0. As the linear spatial operator K
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7. Space time finite elements for approximation of the optimal state

does not depend on t this is for some fixed choice of (k, l) ∈ {0, . . . , n} × {0, . . . , N}

∫ T

0
〈Kf, χtk(x)ρtl(t)〉V ∗×V d t =

∫ T

0

〈
K

 N∑
j=0

n∑
i=0

χai (x)ρaj (t)fij

 , χtk(x)ρtl(t)

〉
V ∗×V

d t

=
N∑
j=0

(∫ T

0
ρaj (t)ρ

t
l(t) d t ·

n∑
i=0

〈
Kχai (x), χtk(x)

〉
V ∗×V fij

)
. (7.3)

Further let Kh and fj be the matrix and the vector given by

Kh =

Kh,00 · · · Kh,0n
...

...
Kh,n0 · · · Kh,nn

 , with Kh,ki = 〈Kχai (x), χtk(x)〉V ∗×V , (7.4)

fj =

f0j
...
fnj

 .

With this matrix and vector we can replace the inner sum of (7.3) by the k− th line of a matrix
vector product as

∑n
i=0

〈
Kχai (x), χt0(x)

〉
V ∗×V fij

...∑n
i=0

〈
Kχai (x), χtn(x)

〉
V ∗×V fij

 =


∑n

i=0Kh,0ifij
...∑n

i=0Kh,nifij

 = Khfj .

So we see that the computation of the spatial and temporal integrals decouples as
∫ T

0 〈Kf, χt0(x)ρtl(t)〉 d t
...∫ T

0 〈Kf, χtn(x)ρtl(t)〉 d t

 =
N∑
j=0

∫ T

0
ρaj (t)ρ

t
l(t) d tKhfj .

Therefore the tensor product structure of the discretization is also transferred to the structure
of the matrices.

Discretization

After the analysis of the structure of the matrices we discuss the lowest order conforming ansatz
and test spaces for discretization. The integrals for the temporal discretization can be computed
easily, which is done in Appendix D. We choose the lowest order conforming test space and
ansatz space for the temporal discretization, i.e.

yτ , φ ∈
{
v ∈ C(0, T ;C(0, X)) : v|t∈(ti,ti+1) ∈ P1(ti, ti+1;Vh)

}
,

wτ , zτ , ϕ, ψ ∈
{
L2(0, T );C(0, X) : v|t∈(ti,ti+1) ∈ P0(ti, ti+1;Vh)

}
.
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7.2. Mixed finite element approximations

The full discretization of (7.1) with this choice is given by

Ah
ȳh,1
2

= Mhz̄h, 1
2
,

Ah
ȳh,i−1 + yh,i

2
= Mhz̄h,i− 1

2
,

for i = 2, . . . , N,

Mh
ȳh,1
2

= Mhw̄h, 1
2
,

Mh
ȳh,i−1 + ȳh,i

2
= Mhw̄h,i− 1

2
,

for i = 2, . . . , N,

Mh
ydh,i−1 + ydh,i

2
= Mhw̄dh,i− 1

2
,

for i = 1, . . . , N,

νMh
−yh,i−1 + 2yh,i − yh,i+1

τ2
+ νAh

z̄h,i− 1
2

+ z̄h,i+ 1
2

2

+βMh

wh,i− 1
2

+ wh,i+ 1
2

2
= βMh

wdh,i− 1
2

+ wdh,i+ 1
2

2
,

for i = 1, . . . , N − 1,

νMh
yh,N − yh,N−1

τ2
+ νAhzh,N− 1

2
+ βMhwh,N− 1

2
+Ayh,N = βMhwdh,N− 1

2
,



(7.5)

where the matrices Ah and Mh are the spatial finite element discretization of the operators A
and M . For the lowest order spatial discretization one can choose continuous, piecewise linear
finite elements.

7.2.2. Crank-Nicolson discretization as a mixed approximation

In Section 5.3 we eliminated two of the three unknown functions of an optimal control prob-
lem in the continuous setting. Now we repeat this approach for the discrete optimization
problem (OC CN2).

We recall the full discretization of system (OC CN2) with terminal step (OC CN2*) for the
case of A self adjoint, Md = MD = Mu = G = M , α = 0 and v = 0

Mhȳh,0 = 0 (7.6)

Mh
ȳh,i+1 − ȳh,i

τ
+Ah

ȳh,i+1 + ȳh,i
2

=
1

ν
Mhp̄h,i+ 1

2
(7.7)

for i = 0, . . . , N − 1,

Mh

p̄h, 1
2
− p̄h,0
τ

−Ah
p̄h, 1

2

2
= βMh

ȳh,0+ȳh,1
2 − ydh,0+ydh,1

2

2
, (7.8)

Mh

p̄h,i+ 1
2
− p̄h,i− 1

2

τ
−Ah

p̄h,i+ 1
2

+ p̄h,i− 1
2

2
=

= βMh

ȳh,i+ȳh,i−1

2 − ydh,i−1+ydh,i
2

2
+ βMh

ȳh,i+ȳh,i+1

2 − ydh,i+1+ydh,i
2

2
(7.9)

for i = 1, . . . , N − 2,
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7. Space time finite elements for approximation of the optimal state

Mh

p̄h,N − p̄h,N− 1
2

τ
−Ah

p̄h,N− 1
2

2
= βMh

ȳh,N−1+ȳh,N
2 − ydh,N+ydh,N−1

2

2
(7.10)

Mhph,N = 0, (7.11)

where the matrices Ah and Mh are the discretizations of the operators A and M . Now we
use (OC CN2) for the definition of the adjoint state and eliminate state and control of the
optimality system. We use the state equation (7.7) as definition for the adjoint state

1

ν
Mhp̄h,i+ 1

2
= Mh

ȳh,i+1 − ȳh,i
τ

+Ah
ȳh,i+1 + ȳh,i

2
for i = 0, . . . , N − 1.

and insert this to the adjoint equation (7.9)–(7.11). As the first half step of the adjoint equation
(7.8) is not needed for a solution of of the state y (see Section 6.6), we do not use this equation.

For the inner time steps (7.9) this elimination of the adjoint state yields

ν
Mh

ȳh,i+1−ȳh,i
τ +Ah

ȳh,i+1+ȳh,i
2 −Mh

ȳh,i−ȳh,i−1

τ −Ah ȳh,i+ȳh,i−1

2

τ
−

− νAh
ȳh,i+1−ȳh,i

τ +M−1
h Ah

ȳh,i+1+ȳh,i
2 +

ȳh,i−ȳh,i−1

τ +M−1
h Ah

ȳh,i+ȳh,i−1

2

2
=

= βMh

ȳh,i+ȳh,i−1

2 − ydh,i−1+ydh,i
2

2
+ βMh

ȳh,i+ȳh,i+1

2 − ydh,i+1+ydh,i
2

2

and after simplification

−νMh
ȳh,i−1 − 2ȳh,i + ȳh,i+1

τ2
+ νAhM

−1
h Ah

ȳh,i+1 + 2ȳh,i + ȳh,i−1

4

+ βMh
ȳh,i+1 + 2ȳh,i + ȳh,i−1

4
= βMh

ydh,i+1 + 2ydh,i + ydh,i−1

4
.

(7.12)

To avoid the inversion of the matrix Mh we introduce z̄h,i+ 1
2

as the solution of

Ah
ȳh,i+1 + ȳh,i

2
= Mhz̄h,i+ 1

2
, for i = 0 . . . , N − 2,

so that

A
ȳi+1 + 2ȳi + ȳi−1

4
= M

z̄i+ 1
2

+ z̄i− 1
2

2
.

Similarly we introduce w̄ 1
2

and wd, 1
2

as solution of

Mh
ȳh,i+1 + ȳh,i

2
= Mhw̄h,i+ 1

2
, for i = 0 . . . , N − 2.

Mh
ydh,i+1 + ydh,i

2
= Mhwdh,i+ 1

2
. for i = 0 . . . , N − 2.
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7.2. Mixed finite element approximations

So the inner time steps (7.12) are equivalent to the solution of the mixed system

Ah
ȳh,i+1 + ȳh,i

2
= Mhz̄h,i+ 1

2
,

for i = 0, . . . N − 2

Mh
ȳh,i+1 + ȳh,i

2
= Mhw̄h,i+ 1

2
,

for i = 0, . . . N − 2

Mh
ydh,i+1 + ydh,i

2
= Mhwdh,i+ 1

2
,

for i = 0, . . . N − 2

νMh
−ȳh,i−1 + 2ȳh,i − ȳh,i+1

τ2
+ νAh

z̄h,i+ 1
2

+ z̄h,i− 1
2

2

+βMh

w̄h,i+ 1
2

+ w̄h,i− 1
2

2
= βMh

wdh,i+ 1
2

+ wdh,i− 1
2

2
.

for i = 1, . . . N − 1



(7.13)

These are the corresponding equations of the mixed formulation (7.5) of the previous section.

For the final half time step (7.11) the elimination gives

Mh
ph,N
τ
− νMh

ȳh,N−ȳh,N−1

τ +Ah
ȳh,N+ȳh,N−1

2

τ
− νAh

ȳh,N−ȳh,N−1

τ +M−1
h Ah

ȳh,N+ȳh,N−1

2

2

= βMh

ȳh,N−1+ȳh,N
2 − ydh,N+ydh,N−1

2

2
,

Mhph,N = 0.

which is equivalent to

νMh
ȳh,N − ȳh,N−1

τ2
+AhM

−1
h Ah

ȳh,N + ȳh,N−1

4
+ νAh

ȳh,N
τ

+ βMh
ȳh,N−1 + ȳh,N

4
=

= βMh
ydh,N + ydh,N−1

4
.

As before we write this as mixed system

Ah
ȳh,N + ȳh,N−1

2
= Mhz̄h,N− 1

2
,

Mh
ȳh,N + ȳh,N−1

2
= Mhw̄h,N− 1

2
,

Mh
ydh,N + ydh,N−1

2
= Mhwdh,N− 1

2
,

−νMh
ȳh,N−1 − ȳh,N

τ2
+ νAh

z̄h,N− 1
2

2
+ νAh

ȳh,N
τ

+ βMh

w̄h,N− 1
2

2
= βMh

wdh,N− 1
2

2


(7.14)

So the system of the Crank-Nicolson discretization (OC CN2) can be written as mixed
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problem consisting of the systems of equations (7.13) and (7.14). Altogether we have to solve

Ah
ȳh,1
2

= Mhz̄h, 1
2
,

Ah
ȳh,i + ȳh,i+1

2
= Mhz̄h,i+ 1

2
,

for i = 1, . . . , N − 1,

Mh
ȳh,1
2

= Mhw̄h, 1
2
,

Mh
ȳh,i+1 + ȳh,i

2
= Mhw̄h,i+ 1

2

for i = 1, . . . , N − 1,

Mh
ydh,i+1 + ydh,i

2
= Mhwdh,i+ 1

2
,

for i = 1, . . . , N − 1,

−νMh
ȳh,i−1 − 2ȳh,i + ȳh,i+1

τ2
+ νAh

z̄h,i+ 1
2

+ z̄h,i− 1
2

2

+βMh

w̄h,i+ 1
2

+ w̄h,i− 1
2

2
= βMh

wdh,i+ 1
2

+ wdh,i− 1
2

2
,

for i = 1, . . . , N − 1, ,

−νMh
ȳh,N−1 − ȳh,N

τ2
+ νAh

z̄h,N− 1
2

2

+νAh
ȳh,N
τ

+ βMh

w̄h,N− 1
2

2
= βMh

wdh,N− 1
2

2
.



(7.15)

This system is just the same system, which was obtained by the mixed discretization of the
H(2,1)(Q)-elliptic equation for y in (7.5). So we have seen the following equivalence.

Theorem 7.1 (Equivalence of (OC CN2) and mixed finite element discretization). For a
optimal control problem with parabolic partial differential equations with tracking over the full
space time cylinder and no tracking of the terminal state the Crank-Nicolson discretization
(OC CN2) is equivalent to a finite element discretization of the mixed problem for the state
(7.1) given by (7.5).

Remark 7.2. With this equivalence it is possible to prove the convergence of the numerical
scheme (OC CN2) with the convergence of the mixed discretization of the H(2,1)(Q)-elliptic
equation for the state y given in Problem 5.23 and vice versa.

The convergence of the mixed approximation and the convergence of the time stepping scheme
(OC CN2) are still open. In Section 6.4 it was only shown that the inner time steps of the
scheme (OC CN2) are a pertubation of the scheme (OC CN1) of order τ2.

Remark 7.3. We chose to eliminate the controls ūi+ 1
2

and the adjoint states p̄i+ 1
2

and not the

controls ūi+ 1
2

and the states ȳi in the numerical scheme (OC CN2) as the the elimination of

the adjoint state can be done without solving a non-trivial linear system.
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7.2. Mixed finite element approximations

7.2.3. No mixed formulation based on (OC CN1)

In Section 7.2.2 we have discussed that the discretization scheme (OC CN2) can be interpreted
as mixed Galerkin scheme if we eliminate the adjoint state. One could ask if the same
is also possible for the scheme (OC CN1), in which the adjoint state or the state can be
eliminated. In this section we will see where the problems for a identification of the scheme
(OC CN1) with a Galerkin scheme are. Therefore we recall the system (OC CN1) for the case
Md = MD = Mu = G = M and α = 0

Mhȳ0 = Mhv,

Mh
ȳh,i+1 − ȳh,i

τ
+Ah

ȳh,i+1 + ȳh,i
2

=
1

ν
Mhp̄h,i+ 1

2
, (7.16)

for i = 0, . . . , N − 1,

Mh

p̄h, 1
2
− p̄h,0
τ

−Ah
p̄h, 1

2

2
= βMh

ȳh,0 − yhd,0
2

,

Mh

p̄h,i+ 1
2
− p̄h,i− 1

2

τ
−Ah

p̄h,i+ 1
2

+ p̄h,i− 1
2

2
= βMhȳh,i − βMydh,i (7.17)

for i = 0, . . . , N − 2,

−Mh

p̄h,N− 1
2

τ
−Ah

p̄h,N− 1
2

2
= βMh

ȳh,N − ydh,N
2

,

where Ah and Mh are the spatial discretizations of A and M . For the discussion of the problems
which occur if we interpret the discretization (OC CN1) as mixed formulation, we focus on the
equations for the inner time nodes (7.16) and (7.17).

As in the previous section we have, due to (7.16)

1

ν
Mhp̄h,i+ 1

2
= Mh

ȳh,i+1 − ȳh,i
τ

+Ah
ȳh,i+1 + ȳh,i

2
.

If we insert this definition of p̄h,i+ 1
2

into the inner time steps of the adjoint equation (7.17) this

yields

−Mh
ȳh,i−1 − 2ȳh,i + ȳh,i+1

τ2
+AhM

−1
h Ah

yh,i−1 + 2yh,i + yh,i+1

4
+Mhyh,i = −Mhydh,i.

This is equivalent to the mixed formulation

Ah
ȳh,i+1 + ȳh,i

2
= Mhz̄h,i+ 1

2
(7.18)

Mhȳh,i = Mhw̄h,i (7.19)

−Mh
ȳh,i−1 − 2ȳh,i + ȳh,i+1

τ2
+Ah

z̄h,i+ 1
2

+ z̄h,i− 1
2

2
+Mhw̄h,i = −Mydh,i (7.20)

We want now to reproduce this discretization as finite element discretization of the mixed
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7. Space time finite elements for approximation of the optimal state

system (7.1), given by ∫ T

0
a(ȳh, φ) d t =

∫ T

0
〈Mhzh, φ〉H×H d t,∫ T

0
〈Mhȳh, ψ〉H×H d t =

∫ T

0
〈Mhw̄h, ψ〉H×H d t,∫ T

0
〈Mhydh, ψ〉H×H d t =

∫ T

0
〈Mhwdh, ψ〉H×H d t,

a(ȳh(x, T ), ϕ(x, T ))

+

∫ T

0
ν〈Mhȳh,t, ϕt〉H×H + νa(z̄h, ϕ) + β〈Mhw̄h, ϕ〉H×H d t =

∫ T

0
β〈Mhwdh, ϕ〉H×H d t.

For a conforming ansatz we have to choose a piecewise linear and continuous ansatz in time
for ȳ and a piecewise linear and continuous ansatz for ϕ. With a picewise linear and continuous
anstatz for this two functions we are able to produce the first term of (7.20). The choice of
piecewise constant functions for z and φ is also quite clear. This implies (7.18) and the second
term of (7.20).

For the reproduction of (7.18)–(7.20) as finite element method we would still need a set of
(polynomial) test functions ψ and a set of (polynomial) ansatz functions for w̄, so that

Mhȳh,iτ =

∫
supp(ψi)

〈Mhȳh, ψi〉H×H d t =

∫
supp(ψi)

〈Mhw̄h, ψi〉H×H d t = Mhw̄iτ (7.21)∫ ti+1

ti

〈Mhw̄h, ϕi〉H×H d t = Mhȳh,iτ (7.22)

holds with piecwise linear test functions ϕi.

If we choose a piecewise linear and continuous ansatz for w̄h, the condition (7.21) would
imply the identity w̄h,i = ȳh,i. But as the integral of piecewise linear and continuous ansatz
functions with piecewise linear and continuous test functions is given by (see also Appendix D)∫ ti+1

ti−1

〈Mhȳh, ϕ〉H×H d t =
τ

6
Mhȳh,i−1 +

4

6
τMhȳh,i +

τ

6
Mhȳh,i+1,

this choice does not lead to 7.22.

If we choose on the other hand a piecewise constant ansatz for w̄h with w̄h|(ti,ti+1) = w̄h,i+ 1
2
,

the integration would yield∫ ti+1

ti−1

〈Mhw̄h, ϕ〉H×H d t =
τ

2
Mhw̄h,i− 1

2
+
τ

2
Mhw̄h,i+ 1

2
,

which is also not equivalent to 7.22.

So it is not clear if such sets of polynomial test and ansatz functions exists, which fulfill (7.21)
and (7.22) for piecewise linear and continuous functions ȳh and ϕi. So we have at this point
no equivalence of (OC CN1) and a mixed finite element discretization of a corresponding
H(2,1)(Q)-elliptic equation.
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7.3. Summary

Optimal Control Problem Optimization Problem

Continuous Optimality System Discrete Optimality System

Discretize

Discretize

Optimize Optimize

Figure 7.1.: For (OC CN1) optimization and discretization commute.

Optimal Control Problem Optimization Problem

Continuous Optimality System Discrete Optimality System

H(2,1)(Q)-equation for y Mixed approximation of H(2,1)(Q)-equation

Discretize

Discretize

Discretize

Optimize Optimize

Eliminate Eliminate

Figure 7.2.: For (OC CN2) discretization and elimination commute additionally.

7.3. Summary

Now we can review the paths in the graph of Figure 5.1 on page 73.
For the scheme (OC CN1) we have seen in Chapter 6 that optimization and discretization

commute, but in the previous section we did not find a mixed discretization which is equivalent to
the elimination of adjoint state and control in (OC CN1). So for this scheme only discretization
and optimization commute, see Figure 7.1.

In Chapter 6 we have also observed that optimization and discretization commute for the
scheme (OC CN2). Furthermore in Section 7.2.2 it was shown that the scheme (OC CN2) is also
equivalent to the mixed discretization of the H(2,1)(Q)-elliptic boundary value problem (5.23)
for the optimal state ȳ. So for this scheme also the elimination of the adjoint state and the
control commute with the discretization, see Figure 7.2.
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8. Conclusions and outlook
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8.1. Conclusions

In this thesis we have discussed several topics which are interconnected. The main goal was to
demonstrate that there are relevant optimal control problems with parabolic partial differential
equations and that there are methods for the solution of optimal control problems, which
provide second or higher order of convergence.

We take the conclusions for the different topics separately.

Hydration of concrete.

First we focused on the hydration of concrete. We have seen that there are optimal control
problems with parabolic partial differential equations of interest in applications. For some
optimal control problems in this context we have proposed to discretize the problem and solve
this problem with a solver for finite dimensional problems which considers the optimal control
problem as finite dimensional optimization problem. For a further analysis of optimal control
problems we did not discuss optimal control problems with a semilinear parabolic equation, but
the still challenging optimal control problems with linear parabolic equations.

Functional analysis and numerical analysis.

In preparation of the discussion of parabolic optimal control problems, we discussed basic facts
from functional analysis and have proven an a priori regularity estimate for an H(2,1)(Q)-elliptic
boundary value problem. Further we have shown an a priori estimate for a tensor product
conforming finite element approximation for this equations.

Discretization of parabolic optimal control problems.

During the discussion of Crank-Nicolson and Störmer-Verlet discretizations of optimal control
problems with parabolic partial differential equations, we have seen the importance of tailored
approximations with different approximation of the state and the control. Due to this choice
of discretization we were able to prove second order convergence. We presented a family of
discretization schemes, and discussed the equivalence of the discretize-then-optimize approach
and the optimize-then-discretize approach. Further we have seen that some schemes are also
Galerkin schemes and can bee seen as mixed discretization of a semi-elliptic equation.
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8. Conclusions and outlook

8.2. Outlook

As always in science every question answered poses new, still unanswered, questions. Again
these questions are sorted by topic.

Hydration of concrete.

We have reviewed a model of the hydration of young concrete. The open question is the direct
discussion and discretization of the connected full optimal control problems with control and
state constraints. During this it may also be necessary to use a more complicated model for the
mechanics of concrete.

Numerical analysis.

The numerical analysis of semi-elliptic partial differential equations was restricted to the case of a
spatial one dimensional domain. The question about error estimates for higher spatial dimensions
remains open. With two dimensional domain the space time domain Q is a three dimensional
domain and with three spatial dimension the space time domain is even four dimensional. The
Sobolev embedding theorem provides the continuous embedding Hk(Ω) ⊆ C l(Ω̄) for k − l > d

2
[131, Theorems 6.2 and 6.2]. So for the proof of an interpolation error one would need higher
regularity assumption or the use of other techniques as quasi-interpolation.

The convergence of the pure time discretization of the Crank-Nicolson scheme with less
regularity was proven by Schieweck [113]. Schieweck proves the second order convergence for
parabolic partial differential equations with respect to the time discretization only if the right
hand side is evaluated exactly. As his proof uses the usual duality technique of Theorem 4.7
this result can be transferred also to the case of an approximation of the right hand side. As
Schieweck discusses only the time discretization error, one needs still the discussion of the
spatial discretization error at this point if one considers the case of reduced regularity.

Discretization of parabolic optimal control problems.

In our discussion of the discretization error of the Crank-Nicolson discretization we have used a
proof which discusses the Crank-Nicolson scheme as time stepping scheme. If we adopt the
proof of [113] and use a similar technique for the convergence of the adjoint state, which is not
trivial, one could decrease the regularity assumptions. This would be of interest if one discusses
a case where the optimal solution has less regularity. Reasons for this could be less regular
initial or desired terminal states. The Crank-Nicolson scheme in the case of irregular initial
data has been discussed by Østerby [95]. As the Crank-Nicolson discretization can also bee
seen as discontinuous Galerkin discretization, hence one could also think about the adoption of
the results of Schötzau and Schwab [117] for discontinuous Galerkin time discretizations.

Non-convex polygonal domains might be another reason for a less regular solutions. Also
in the case of optimal control problems with control (or even state) constraints, the optimal
solution has reduced regularity in comparison with the unconstrained case.

Moreover, we have only discussed distributed control, so the discretization and convergence
of boundary control problems remains another open question.
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A. Riemann-Stieltjes integral

For the introduction of the Riemann-Stieltjes integral we follow the ideas of the textbook [112,
Chapter 6] by Rudin with extensions found in textbook [119, Chapter 1] by Smirnow.

Definition A.1 (Riemann-Stieltjes integral). [112, Definition 6.2] Let P be a partition with
the property

P = {xi ∈ [a, b], i = 0, . . . , n : a = x0 ≤ x1 ≤ · · · ≤ xn = b} .

For a monotone increasing function α, which we is bounded on the interval [a, b], we introduce
the Riemann-Stieltjes upper and lower sums as

S(P, f, α) =
N∑
i=1

(
sup

x∈(xi−1,xi)
f(x)

)
· (α(xi)− α(xi−1)) ,

s(P, f, α) =

N∑
i=1

(
inf

x∈(xi−1,xi)
f(x)

)
· (α(xi)− α(xi−1)) .

If the infimum over all possible partitions of the upper sum and the supremum of the lower sum
coincide, i.e.

inf
P
S(P, f, α) = sup

P
s(P, f, α),

then we define the Riemann-Stieltjes integral as∫ b

a
f(x) dα(x) = inf

P
S(P, f, α).

Remark A.2. In the Definition A.1 we follow the definition of the Riemann-Stieltjes integral
in [112, Definition 6.2]. But the Riemann-Stieltjes integral can be defined for a wider class
of functions α as in this definition. As shown in [119, Chapter I.9] it is sufficient, that the
function α has bounded variation, i.e.

lim
P

∑
xi∈P

|α(xk)− α(xk+1)| <∞,

where the limit is taken over all partitions P of the interval [a, b]. This can be easily understood
as ∫ b

a
f(x) d (α1(x) + α2(x)) =

∫ b

a
f(x) dα1(x) +

∫ b

a
f(x) dα2(x),
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A. Riemann-Stieltjes integral

(see [112, Theorem 6.12 (e)]) and as every function with bounded variation is the difference
of two monotone increasing functions [119, Theorem I.8.5]. So we have for the function
α(x) = α1(x)− α2(x), that the Riemann-Stieltjes integral can expressed a∫ b

a
f(x) dα(x) =

∫ b

a
f(x) dα1(x)−

∫ b

a
f(x) dα2(x),

as seen in [119, Chapter 1.9].

For the connection to the Riemann integral we recall the following Theorem.

Theorem A.3 (Connection of Riemann-Stieltjes integral and Riemann integral). [112, Theo-
rem 6.17] For a monotone increasing function α with Riemann integrable derivative α′ and a
bounded function f on the interval [a, b] the following both integrals coincide∫ b

a
f(x) dα(x) =

∫ b

a
f(x)α′(x) dx.
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B. A model for cooling pipes

In this appendix we discuss the model of Gehrmann [44] for the cooling pipes. The author of
this PhD thesis was involved in the master’s thesis [44] as supervisor.

For the development of a physical model of a concrete wall with cooling pipes, as sketched in
Figure B.1a, we discuss only a small area around a pipe, Figure B.1b. As the wall of the pipe is
rather small compared with the pipe and the concrete part, we neglect the wall of the pipe and
assume that the rigid concrete and the fluid in the cooling pipes have direct contact (see Figure
B.1c). The differential equations in the rigid body and in the fluid in the cooling pipe are well
known, see e.g. the text book of Larsson and Thomée [76]. In the rigid part Ω2 we have the
usual heat equation

%c
∂y2

∂t
−∇ · (λ∇y2) = p,

where % is the density, c the heat capacity, λ the thermal conductivity and f the heat introduced
by the hydration. In the fluid in the pipes the heat is also transported by convection, therefore
the equation for the heat distribution in the pipe is

%c
∂y1

∂t
−∇ · (λ∇y1) +∇ · (c%~vy1) = 0,

with the velocity field ~v of the fluid. The interesting part in the derivation of the equation are
not the equation in the different domains, but the conditions on the interface. Therefore let
Ωd be an arbitrary smooth test domain which consist of two nonempty parts Ωd,1 = Ωd ∩ Ω1

and Ωd,2 = Ωd ∩ Ω2. For simplicity we can assume that these parts Ωd,1 and Ωd,2 are domains,
i.e. open and connected. For the domain Ωd the conservation of energy holds, i.e. the temporal
changes of the energy in all test domains Ωd equals the heat transfer over the boundary and
the internal heat sources, so that

d

d t

∫
Ωd

edω = −
∫
∂Ωd

j · ~nd s+

∫
Ωd

p dω, (B.1)

with the energy density e, the heat flux f and the heat source p. For the derivation of an
differential equation, we are going to apply the Gauß divergence theorem. As we distinguish
the quantities in the different domains, we apply now the Gauß divergence theorem in each
of the subdomains Ωd,1 and Ωd,2. The boundary integral in the conservation of energy (B.1)
can be written as integrals over the boundary of the subdomains Ωd,1 and Ωd,2 and an integral
over the common interface, which is part of both boundaries. So the boundary integral can be
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B. A model for cooling pipes

(a) Concrete wall with cooling
pipes.

δr1

(b) Geometry of the concrete
around a pipe with diam-
eter r1 and thickness δ of
the wall of the pipe.

r1

(c) Simplified geometry, if the
thickness of the wall of the
pipes goes to 0, i.e. δ → 0.

Figure B.1.: Cooling pipes in a concrete wall.

Ω1

Ω2
(a) Domain in the pipe is de-

noted Ω1 and the concrete
domain is Ω2

Ωd

(b) Geometry with an arbi-
trary test domain Ωd ⊂
Ω1 ∪ Ω2.

Figure B.2.: Testdomain for pipe in concrete.
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−→n1
−→n2Ωd,1 Ωd,2

Figure B.3.: Outer normals of the subdomains Ωd,1 and Ωd,2 on the interface.

expressed as

−
∫
∂Ωd

j · ~nd s = −
∫
∂Ωd

j · ~nd s−
∫
∂Ωd,1\∂Ωd

j1 · ~n1 d s+

∫
∂Ωd,1\∂Ωd

j1 · ~n1 d s

−
∫
∂Ωd,2\∂Ωd

j2 · ~n2 d s+

∫
∂Ωd,2\∂Ωd

j2 · ~n2 d s

= −
∫
∂Ωd,1

j1 · ~n1 d s−
∫
∂Ωd,2

j2 · ~n2 d s

+

∫
∂Ωd,1\∂Ωd

j1 · ~n1 d s+

∫
∂Ωd,2\∂Ωd

j2 · ~n2 d s.

The outer normals ~n1 and ~n2 of the both subdomains point in opposite directions (see also
Figure B.3), so that ~n2 = −~n1. With this geometric property and the Gauß divergence theorem
the boundary integral is equivalent to

−
∫
∂Ωd

j · ~nd s = −
∫

Ω1

∇ · j dω −
∫

Ω2

∇ · j dω +

∫
∂Ωd,1\∂Ωd

(j1 − j2) · ~n1 d s.

So the balance of energy can be written as

d

d t

∫
Ωd,1

e1 dω +
d

d t

∫
Ωd,2

e2 dω = −
∫

Ωd,1

∇ · j1 dω −
∫

Ωd,2

∇ · j2 dω

+

∫
∂Ωd,1

(j1 − j2) · ~n1 d s+

∫
Ωd

p dω.

The energy densities ei and the heat fluxes ji can be connected with the temperature yi. The
energy density is an affine linear function (see e.g. [76, formula (1.11)]), so that

ei = e0,i + %cyi.

for the heat flux in the rigid body we can use Fourier’s law

j2 = −λ2∇y2.

In the pipe the heat is transported by diffusion and convection, so that

j1 = −λ1∇y1 + ~ve,
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B. A model for cooling pipes

Figure B.4.: Velocity profile of a fluid or gas in a pipe. The streamlines are orthogonal to the
outer normal vector.

with the velocity field ~v of the fluid.
As the integral equation does not only hold for a specific test domain Ωd but for all possible

test domain Ωd, the equation must hold pointwise, so that the equations in the both domains
are

%cy2 − λ2∆y2 = p in Ω2, (B.2)

%cy1 − λ1∆y1 +∇ · ~v%cy1 = p in Ω1. (B.3)

On the boundary we have the identity

−λ1∇y1 · ~n1 + ~ve · ~n1 = −λ2∇y2 · ~n1 on ∂Ω1.

On the boundary the velocity of the fluid and the outer normal are orthogonal, as the fluid
cannot cross the wall of the pipe (see Figure B.4). So the equation on the boundary simplifies
to the condition

−λ1∇y1 · ~n1 = −λ2∇y2 · ~n1 on ∂Ω1. (B.4)

The system (B.2), (B.3) and (B.4) can be solved numerically, but the following example shows
that the system is still not complete.

Example B.1. Let Ω = (−1, 1)2 with Ω1 =
(
−1

2 ,
1
2

)2
and Ω2 = Ω \ Ω1. Consider the initial

value problem

y1t −∆y1 = 0 in (0, T ]× Ω1,

y2t −∆y2 = 0 in (0, T ]× Ω2,

∂y1

∂n
=
∂y2

∂n
on (0, T ]× ∂Ω1 = (0, T ]× {∂Ω1 ∩ ∂Ω2} ,

∂y2

∂n
= 0 on (0, T ]× {∂Ω2 \ ∂Ω1} ,

y1(·, 0) = 1 in (0, T ]× Ω1,

y2(·, 0) = 0 in (0, T ]× Ω2.
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It has the solution y1 ≡ 1 and y2 ≡ 0. But this solution is physical not reasonable, as there is
no diffusion across the interface due to the fact that ∂y1

∂n = ∂y2

∂n = 0, which represent perfect
insulation of Ω1 and Ω2.

Remark B.2. For elliptic boundary value problems with jumps in the coefficients one has two
conditions on the interface

y1 = y2 on ∂Ω1,

λ1∇y1 · ~n1 = λ2∇y2 · ~n1 on ∂Ω1.

The first Dirichlet-like condition expresses the thermodynamical equilibrium.
If we look at our model, the first question is, whether the modeled system is in a thermodynamic

equilibrium. There is no reason that the temperature of the water at the wall of the pipe and
the temperature of the concrete at the other side of the pipe have the same temperature. It is
reasonable that the temperature of the water in and the temperature of the inner wall of the
pipe coincide just as the temperature of the concrete and the temperature of the outer wall of
the pipe. But as we have neglected the diameter of the wall of the pipe we need an additional
condition for the description of the coupling of the two temperatures.

For this condition we use Newton’s law, that the heat flux is proportional to the temperature
difference

j · n = σp (yi − ya) .

Together with Fourier’s law on the rigid part and the consideration of the convection in the
pipes this yields

λ2∇y2 · n1 = σp (y2 − y1) ,

−λ1∇y1 · n1 = σp (y1 − y2) .

In [44] these conditions are replaced by

y1 = κy2 on (0, T ]× ∂Ω1.

where the coefficient κ describes the losses over the interface.

With this additional boundary condition the system is described by

%cy2 − λ2∆y2 = p in (0, T ]× Ω2,

%cy1 − λ1∆y1 +∇ · ~v%cy1 = p in (0, T ]× Ω1.

y1 = κy2 on (0, T ]× ∂Ω1.

−λ1∇y1 · ~n1 = −λ2∇y2 · ~n1 on (0, T ]× ∂Ω1,

 (B.5)

where some additional Dirichlet, Neumann or Robin boundary conditions must be posed on the
boundary (0, T ]× {∂Ω2 \ ∂Ω1}.

127





C. The finite element method for elliptic
partial differential equations

As example for the theory, which we repeated in Section 4.1.1, we consider a second order
elliptic differential equation with constant coefficients and the variational formulation

a(y, ϕ) = 〈f, ϕ〉L2(Ω)×L2(Ω) ∀ϕ ∈ V, where H1
0 (Ω) ⊆ V ⊆ H1(Ω)

with a V -elliptic, continuous bilinear form a(·, ·). Further we assume that the domain Ω is
nonempty, convex and polygonal one, two or three dimensional domain.

Assumption C.1 (Assumptions on the spatial discretization). For the discretization we
introduce a family of triangulations Th of this domain into intervals, triangles or simplices
(depending on the dimension) with the following properties:

• The triangulation covers the domain: Ω =
⋃
θ∈Th

θ.

• The intersection of two different elements θ1 ∈ Th and θ2 ∈ Th is either empty or a
common node or a common edge or a common facet of the triangulation.

• For the ratio of the diameter hk of an element and the radius ρk of the largest circle or

ball, which is contained in an element, is bounded, i.e.
hk
ρk
≤ σ, ∀θ ∈ Th.

As discrete space we introduce

Vh =
{
v ∈ C0(Ω) ∩ V (Ω) : v|θ ∈ P1(θ,R) ∀θ ∈ Th,

}
. (C.1)

Let {x1, . . . , xn} be the set of the nodes of the triangulation Th, then the nodal or Lagrangian
basis of the space Vh is given by

ϕi(xj) = δij , ∀i, j ∈ {1, . . . , n},
ϕ linear on θ, ∀θ ∈ Th.

For the approximation we replace f by its Lagrangian interpolation fh(x) =
∑n

i=1 f(xi)ϕi(x).
The interpolation error estimate

‖v − vh‖L2(Ω) . hk+1 |v|Hk+1(Ω) , k = 0 or 1 (C.2)

is well known for functions v ∈ H2(Ω) ([28, Theorem 3.1.6]).
The finite element approximation yh is defined as solution of the finite dimensional problem

a(yh, ϕ) = 〈fh, ϕ〉L2(Ω)×L2(Ω) ∀ϕ ∈ Vh.
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C. The finite element method for elliptic partial differential equations

The error in the H1(Ω)-norm can be bounded due to the first Strang’s Lemma, Theorem 4.5.
As the bilinearforms a(·, ·) and ah(·, ·) coincide the remaining terms can be bounded with the
interpolation error estimate (C.2), and therefore

‖y − yh‖H1(Ω) . h
(
‖y‖H2(Ω) + h ‖f‖L2(Ω)

)
.

For an error estimate in the L2(Ω)-norm we can use the Aubin Nitsche Trick in Theorem 4.8 If
the stability estimates (4.8)–(4.9) hold for this example and the approximation result (4.10) is
fulfilled,the error can be estimated with

‖y − yh‖L2(Ω) . h2
(
‖y‖H2(Ω) + ‖f‖L2(Ω)

)
.
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D. Integrals of Finite Element functions
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For the realization of a finite element method we need to evaluate the integration of the
product of ansatz functions with test functions. In this chapter we compute these integrals for
some one dimensional combinations which are often used in this thesis.

D.1. Finite Element space

We consider functions mapping from an interval [0, T ] to R. The generalization to ansatz
functions mapping from the interval [0, T ] to the Hilbert space V is straightforward.

We recall the space of polynomials up to order k

Pk((0, T )) = span
{
t0, t1, · · · , tk

}
.

For the discretization we introduce a time grid 0 = t0 < t1 < · · · < tN = T with step size
τ = ti+1 − ti. For the discretization in t we use continuous piecewise linear functions

Y1 =
{
y ∈ C([0, T ]) : y|(ti,ti+1) ∈ P1((ti, ti+1))∀i ∈ {0, · · · , N − 1}

}
(D.1)

and discontinuous piecewise constant functions

P0 =
{
y ∈ L2((0, T )) : y|(ti,ti+1) ∈ P0((ti, ti+1))∀i ∈ {0, · · · , N − 1}

}
. (D.2)

The Lagrangian basis for the space Y1 is given as

ϕi(tj) = δij , ∀i, j ∈ {0, 1, 2, . . . , N},
ϕi linear in [tj , tj+1] ∀i, j ∈ {0, 1, 2, . . . , N − 1}.

For the computation of integrals we need a representation of these basis functions, we use the
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form

ϕ0(t) =


t1 − t
t1 − t0

if t ∈ [t0; t1],

0 if t 6∈ [t0; t1],

ϕi(t) =


t− ti−1

ti − ti−1
if t ∈ [ti−1; ti),

ti+1 − t
ti+1 − ti

if t ∈ [ti; t1+1],

0 if t 6∈ [ti−1; t1+1],

ϕN (t) =


t− tN−1

tN − tN−1
if t ∈ [tN−1, tN ],

0 if t 6∈ [tN−1, tN ].

Further we need to evaluate y ∈ Y1 for computing the integrals. The function y in the time
intervals [ti−1, ti] and [ti, ti+1] has the representation

y =


yi−1 +

t− ti−1

ti − ti−1
(yi − yi−1) for t ∈ [ti−1; ti),

yi +
t− ti
ti+1 − ti

(yi+1 − yi) for t ∈ [ti; ti+1).

Finally a basis for the space P0 is

φi+ 1
2

=

{
1 if t ∈ (ti, ti+1],

0 if t 6∈ (ti, ti+1].

Now we have introduced everything we need for the computation of the integrals.

D.2. Integrals

D.2.1. Piecewise linear test and ansatz space

For the integrals which involve a piecewise linear test and ansatz space we compute for the
product of the functions∫ T

0
yϕi d t =

∫ ti

ti−1

(
yi−1 +

t− ti−1

ti − ti−1
(yi − yi−1)

)
· t− ti−1

ti − ti−1
d t+

+

∫ ti+1

ti

(
yi +

t− ti
ti+1 − ti

(yi+1 − yi)
)
· ti+1 − t
ti+1 − ti

d t =

=
τ

6
yi−1 +

4

6
τyi +

τ

6
yi+1,∫ T

0
yϕ0 d t =

∫ t1

0

(
y0 +

t

τ
(y1 − y0)

)
· t1 − t

τ
d t =

τ

6
y0 +

2

6
y1,∫ T

0
yϕN d t =

∫ tN

tN−1

(
yN−1 +

t− tN−1

τ
(yN − yN−1)

)
· t− tN−1

τ
d t =

=
τ

6
yN−1 +

2

6
τyN ,
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and for the product of the derivatives∫ T

0
ytϕi,t d t =

∫ ti

ti−1

yi − yi−1

ti − ti−1
· 1

ti − ti−1
d t+

∫ ti+1

ti

yi+1 − yi
ti+1 − ti

· −1

ti+1 − ti
d t =

=
−yi−1 + 2yi − yi+1

τ2
τ,∫ T

0
ytϕ0,t d t =

∫ t1

0
− y1 − y0

(tN − tN−1)2 d t =
y0 − y1

τ2
τ,∫ T

0
ytϕN,t d t =

∫ tN

tN−1

yN − yN−1

(tN − tN−1)2 d t =
yN − yN−1

τ2
τ.

D.2.2. Piecewise linear ansatz and piecewise constant test space

For the integral of the product of a piecewise linear function (or its derivative) with a piecewise
constant function we have∫ T

0
yφi d t =

∫ ti

ti−1

yi−1 +
t− ti−1

ti − ti−1
(yi − yi−1) d t =

τ

2
yi−1 +

τ

2
yi,∫ T

0
ytφi d t =

∫ ti

ti−1

1

ti − ti−1
(yi − yi−1) d t = yi − yi−1.

D.2.3. Piecewise constant test and ansatz space

Finally the integral of two piecewise constant functions is∫ T

0
pφi d t =

∫ ti

ti−1

pi− 1
2

d t = τpi− 1
2
.
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E.1. Basic concept

The software for the numerical examples of this thesis is developed in Matlab. The pde-toolbox
of Matlab is not used but a finite element implementation that uses ideas of the Matlab
finite element codes by Alberty, Carstensen and Funken [1] and of the adaptive finite element
implementation in Matlab by Chen and Zhang [25]. For the fast assembly of the matrices ideas
presented by Davis [31] and Funken, Praetorius and Wissgott [41] are used.

The code does not use the native object model of Matlab for object orientation, but uses
nevertheless ideas of object oriented software development. All the informations about a finite
element mesh with its element nodes, elements, matrices and solutions are stored in a single
structure, which we will call mesh structure. A typical function call during a finite element
computation with the code has typically the form

mesh = do something (mesh, some other arguments)

At this point the user interface does not differ dramatically from the user interface of object
oriented Matlab programs as Matlab passes all arguments by value and not by reference, even
objects in object orientated Matlab. One may wonder if it is efficient to pass large structures
as arguments, but this is no problem as Matlab performs the copy action not at the moment
of the function call but only if the function performs a write access to the object. Further for
structures not the whole structure is copied but only the field, which is changed (see [118]).

Inspired by many Matlab-based Finite Element implementations the mesh structure has (at
least) the following components.

mesh.nodes: A list with the coordinates of all nodes.

mesh.elem: In every line of this matrix there are the number of the nodes of an element.

mesh.solu: In this component the solution of the differential equation will be saved.

mesh.solt: For parabolic equations in this vector the time discretization points are given.

mesh.type: For compatibility with other Matlab finite element codes. If the corresponding
node is the corner node of an element it contains the entry 1.
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mesh.Dirichlet, mesh.Neumann, mesh.Robin: In these components the boundary meshes are
saved. The structure is the same as in mesh.elem.

There are functions for the construction of simple one and two dimensional geometries and
uniform refinements. Furthermore, there is a function for the import of meshes generated by
the open source program gmsh[45]. With an additional C++-program by Gebhardt [42] it is
possible to convert meshes produced by the TetGen and NETGEN to the gmsh format.

On top of this general concept there are implementations for the different partial differential
equations.

E.2. Second order equations and optimal control for parabolic
equations

For second order elliptic boundary value problems or parabolic initial boundary value problems
the matrices are saved after assembling in the additional components

mesh.A, mesh.K, mesh.M, mesh.R,

of the structure. The mass matrix is saved in mesh.M, the matrix for the Robin boundary
conditions in, mesh.R and the stiffness matrix in mesh.A and mesh.K. There are two copies
for the stiffness matrix, so that one copy can be unchanged and one copy can be modified to
implement Dirichlet boundary conditions by a penalty approach.

There are assembly routines for linear Lagrangian finite elements in one, two and three
spatial dimensions. For the one dimensional case there also are quadratic and cubic Lagrangian
elements available. The two and three dimensional functions use exact precomputed values
for the integrals and the one dimensional uses numerical integration with the Gauß-Kronrod
quadrature provided by the Matlab routine quadgk.

On top of this simple finite element code an extension for the simulation of optimal control
problems exists.

The routines, which implement the Crank-Nicolson discretizations (OC CN1) (OC CN2)
(OC G1) for parabolic optimal control problems, assume only that a structure with (at least)
the components

mesh.A, mesh.M

is given and evaluations of the desired states are provided. This mesh structure can be provided
by the finite element implementation described above, but every other structure or discretization
with these components is also accepted. So the spatial discretization can be easily modified.

The linear system of the discretization, given by (6.11) (or the linear systems corresponding
to the other discretizations), are assembled based on the existing matrices and solved with the
standard linear solver of Matlab. Of course it is possible to replace the linear solver by another
algorithm.

E.3. Hydration of concrete

For the simulation of the hydration of concrete the structure is enriched with the additional
fields which contain material and model parameter. Further the fields

mesh.maturity, mesh.hydration
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contain references to functions, which describe the maturity and the heat development in use.
So the model in use can be easily adopted by changing these function references.

After the computation of the temperatures with the solution methods for initial value problems
provided by Matlab, the stresses can be computed and are also stored in additional fields of the
mesh structure.

There are functions for the visualization of the solution. For two dimensional domains the
profiles with computed solution can be plotted along the time axis. Further the plot of a value
at given point can be plotted over time.

For a more satisfactory visualization the solution can be exported in the vtk file format. The
exported files can be visualized with vtk-viewers such as ParaView [122].

E.4. Fourth order elliptic equations and H(2,1)(Q)-elliptic
equations

In preparation of the Lagrange-Hermite tensor product finite elements for the H(2,1)-elliptic
equations, there exists an implementation of one dimensional cubic Hermite elements. In this
implementation the structure possesses the additional field
mesh.dof

which doubles the nodes, as in every node two degree of freedom are allocated, one for the
solution and one for the derivative of the solution, to provide a global continuous differentiable
solution. Note that therefore for Hermite element also Neumann boundary conditions need a
modification of the linear system as the derivative at the nodes is also a degree of freedom.

For the discretization of H(2,1)(Q)-elliptic equations the mesh structure is once more enriched
with an additional component. The field
mesh.bnd

contains a structure for the management of the boundary meshes and boundary conditions.
After assembly, where again numerical quadrature with Gauß-Kronrod quadrature provided

by the Matlab routine quadgk is used, the linear system can be solved with the linear solver of
Matlab.
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ichischen Zementindustrie, Wien, http://www.zement.at/service/literatur/detail.
asp?wid=253, 2005.

[99] Waldemar Rachowicz. An anisotropic h-type mesh-refinement strategy. Computer Methods
in Applied Mechanics and Engineering, 109:169–181, 1993.

[100] Rolf Rannacher. Finite element solution of diffusion problems with irregular data.
Numerische Mathematik, 43:309–327, 1984.

[101] Jean-Pierre Raymond. Optimal control of partial differential equations. Lecture notes
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