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ABSTRACT: 
 
3D building reconstruction from point clouds is an active research topic in remote sensing, photogrammetry and computer vision. 
Most of the prior research has been done on 3D building reconstruction from LiDAR data which means high resolution and dense 
data. The interest of this work is 3D building reconstruction from Digital Surface Models (DSM) of stereo image matching of space 
borne satellite data which cover larger areas than LiDAR datasets in one data acquisition step and can be used also for remote 
regions. The challenging problem is the noise of this data because of low resolution and matching errors. In this paper, a top-down 
and bottom-up method is developed to find building roof models which exhibit the optimum fit to the point clouds of the DSM. In 
the bottom up step of this hybrid method, the building mask and roof components such as ridge lines are extracted. In addition, in 
order to reduce the computational complexity and search space, roofs are classified to pitched and flat roofs as well. Ridge lines are 
utilized to estimate the roof primitives from a building library such as width, length, positions and orientation. Thereafter, a top-
down approach based on Markov Chain Monte Carlo and simulated annealing is applied to optimize roof parameters in an iterative 
manner by stochastic sampling and minimizing the average of Euclidean distance between point cloud and model surface as fitness 
function. Experiments are performed on two areas of Munich city which include three roof types (hipped, gable and flat roofs). The 
results show the efficiency of this method in even for this type of noisy datasets.           
 
 

                                                                 
*  Corresponding author.   

1. INTRODUCTION 

Automatic generation of 3D building models is an essential pre-
requisite in a wide variety of applications such as tourism, 
urban planning and automatic navigation. Although over the 
last decades, many approaches of building detection and 
reconstruction from 3D point clouds and high resolution aerial 
images have been reported. The fully 3D building 
reconstruction is still a challenging issue due to the complexity 
of urban scenes. There are basically two strategies for building 
roof reconstruction: bottom-up/data-driven and top-
down/model-driven methods. The bottom-up methods (e.g. 
region growing (Rottensteiner and Briese, 2003), Hough 
transform (Vosselman and Dijkman, 2001), RANSAC (Tarsha-
Kurdi et al., 2008)) extract roof planes and other geometrical 
information from the point clouds. For roof reconstruction, the 
corresponding planes are assembled and vertices, ridges and 
eaves are determined (Sohn and Huang, 2008). Sampath and 
Shan (2010) used a bottom-up approach to segment the LiDAR 
points to planar and non-planar planes using eigenvalues of the 
covariance matrix in a small neighborhood. Then, the normal 
vectors of planar points are clustered by fuzzy k-means 
clustering. Afterwards, an adjacency matrix is considered to 
obtain the breaklines and roof vertices of corresponding planes. 
This method is used for reconstruction of moderately complex 
buildings.   Rottensteiner et al. (2005), presents an algorithm to 
delineate building roof boundaries from LIDAR data with high 
level of detail. In this method, roof planes are initially extracted 

by region growing segmentation based upon surface normal 
vectors of a digital surface model. Then, in order to reduce 
user-defined thresholds in the procedure of step edge detection 
and increasing the robustness of the method, statistical 
reasoning about geometrical relations between neighboring 
entities (homogeneous co-ordinates and variance-covariance 
matrices of these coordinate) is taking into account. In addition, 
the effect of occluded parts of roof polygons is eliminated by 
considering domain specific information. 
The top-down methods use pre-defined parameterized roof 
models to fit optimum models to the given point cloud, where 
the quality of the fitness is evaluated by a cost function. Kada 
and McKinley (2009) proposed a 2D partitioning algorithm that 
splits the building’s footprint into the non-intersecting and 
quadrangular cells. The shape of roof in each cell is detected by 
the directions of normal vectors. Lafarge (2010) used a 
structural approach to reconstruct 3D building models from 
DSM of satellite imagery using rectangular building footprints. 
The simple urban structures are extracted from the library of 3D 
parametric block and assembled. Then, they are controlled by 
stochastic Gibbs models. A Bayesian decision finds the optimal 
configuration of 3D-blockes using a Monte Carlo sampler. 
Huang et al., (2013) developed top-down combined with 
bottom-up approaches to reconstruct 3D building models from 
LiDAR points cloud. Based on a pre-defined primitive library, a 
generative statistical modelling is conducted to reconstruct roof 
models. Selection of roof primitives and sampling of their 
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parameters are driven by the Reversible Jump Markov Chain 
Monte Carlo (RJMCMC) technique. 
Airborne and terrestrial laser scanner data are widely used in 
state of the art approaches for building reconstruction due to 
having high accuracy and density. Overviews are given by 
(Haala and Kada (2010) and Brenner (2005)). Currently, due to 
the improvement in spatial resolution of satellite imagery and 
the launching of numerous satellites there is an arising interest 
in developing algorithms for 3D point cloud generation by 
stereo satellite image matching. Although the accuracy of the 
3D point clouds from satellite images is generally lower than 
that of LiDAR data, we assume that they are still sufficient for 
building recognition and reconstruction. Therefore the 
challenge is to achieve plausible results from such relatively 
low quality data.  
 
The existing noise in the point cloud data which generated from 
satellites imagery causes difficulties in the computation of the 
geometrical features, e.g., normal vectors based on information 
of neighboring points. Thus, bottom-up methods, e.g., finding 
roof planes based on the point cloud segmentation, is 
considered to have low feasibility because of the number of 
incomplete and irregular roof planes which need  geometric 
constraints to reconstruct plausible roofs.  
The quality of DSM from satellite imagery is compared visually 
with LiDAR-DSM, which are also used as reference data. 
Figure 1 shows elevation profiles for DSM of WorldView-2 and 
DSM of LiDAR data. In figure 1 (c) red colour represents DSM 
from satellite image and green colour represents DSM of 
LiDAR point clouds for a selected profile (black line) in figure 
1 (a) and (b).     
 

 
 

 
 
Figure 1. Comparison for profiles of buildings in two datasets: 

(a) WorldView-2-DSM, (b) LiDAR-DSM and (c) elevation 
profiles reconstructed from imagery (red) and LiDAR (green) 

 
In this paper, a top-down method is developed to find building 
roofs which exhibit the optimum fit to the point clouds of 
Digital Surface Model (DSM) from satellite images. The DSM 
is generated from Digital Globes’ WordView-2 panchromatic 

data, with 0.5 m ground sampling distance, by means of Semi-
Global-Matching (SGM) (Hirschmüller 2008, d’Angelo et al. 
2008). The selected area for the experimental results is located 
in Munich city centre. 
The goal of this work is to generate Level of Detail 2 (LOD2) 
models consisting of the basic roof types. For this purpose, first 
a bottom-up approach is used to detect the building mask. Then, 
the pitched and flat building roofs are discriminated by means 
of detection of mean curvature and Gaussian curvature. 
Afterwards, the ridge lines of pitched roofs are extracted 
according to the local maximum (of heights) of the DSM in 
each building mask. Then, a top-down approach is presented for 
3D modeling. A primitive library is defined to compose roof 
models. Using the ridge lines and height values, the roof 
parameters such as length, width and orientation are initialized. 
The sampling of primitive parameters is driven by the Markov 
Chain Monte Carlo (MCMC) technique. A simulated annealing 
methodology is developed to find the optimum parameters and 
model which fit to the data iteratively. After reconstruction of 
the roof primitives, the neighboring primitives are merged 
according to regularization rules. In this step, a geometrical 
adjustment is considered to combine the neighboring primitives.  
Preliminary results on the Munich test dataset show the 
potential of the proposed approach in dealing with low quality 
point clouds from satellite imagery. The primitive-based top-
down reconstruction achieves plausible models despite data 
artefacts.  
  
The paper is organized as follows. In section 2, bottom-up 
efforts including building mask detection, building roof type 
selection and ridge line extraction are presented. Section 3 
introduces the top-down approach consisting of the definition of 
the roof primitive library and the MCMC sampling using 
simulated annealing algorithm. Section 4 provides the results 
for two datasets and discussions. Section 5 presents conclusions 
and future works.     
 

2. BOTTOM-UP METHOD 

In roof modeling, a bottom-up approach may suffer from 
incomplete and irregular roof parts using noisy data. Geometric 
constraints can be imposed to ensure plausible results. For large 
urban scenes, however, the roof complexity as well as the 
number of parameters is too high. A search within the whole 
area is time-consuming and cannot guarantee the appropriate 
results. Therefore an efficient way is to find the balance 
between bottom-up and top-down methods. The following 
bottom-up methods are used in order to limit the search space 
and, thus, reduce the computational complexity for the 
subsequent top-down reconstruction (Section 3). 
 
2.1 Building Mask Detection 

Satellite images of urban scenes contain a wide range of objects 
such as trees, lawn, buildings, river and road. The proposed 
work focuses on the detection and reconstruction of buildings. 
 
The DSM is generated from Digital Globes’ WordView-2 data 
by using SGM. The experimental selected area is Munich city 
centre, containing large and complex buildings. In order to 
approximately recognize the location of buildings, first a 
normalized DSM (nDSM) is utilized which contains only above 
ground objects to discriminate the ground level objects from the 
higher level ones. An advanced rule-based fuzzy spectral 
classification is further applied (Krauss et al., 2012) to 
distinguish surface classes. In this method, fuzzy rules are 

(a) (b) 

(c) 
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employed to determine the parameters for spectral classes 
(vegetation, water, shadow and soil) to classify the objects of 
pan-sharpened satellite images. Using the nDSM and imposing 
threshold on these parameters the buildings are separated from 
other objects like trees and road.   
 
2.2  Roof type classification 

Surface curvature is used to recognize the surface type. One 
way for the computation of surface curvature is based on the 
detection of curves on the surface. At each point on the surface 
there is a direction of maximal normal curvature ( 1k ) and a 

direction of minimal normal curvature (
2k ) for all space curves 

(Besl and Jain, 1986).Thus, k1 and k2 are computed based on 
the first and second fundamental forms in local coordinates, 
respectively. In terms of these principal curvatures, the most 
important features of surface are Gaussian curvature (K) and 
mean curvature (H), which can be computed as follows: 
 

21kkK    , 
2

21 kk
H


   

 
Surfaces are categorized to the eight types: Peak, Ridge, Flat, 
Minimal Surface, Pit, Valley, and Saddle Valley depending on 
the sign combinations of H and K (Table 1).The DSM in the 
building area is, thereby, classified into flat or pitched roof, 
according to the sign of H and K. 
 

H K Surface Type H K Surface 
Type 

H<0 K<0 Saddle Ridge H=0 K=0 Flat 
H<0 K=0 Ridge H>0 K<0 Saddle 

Valley 
H<0 K>0 Peak H>0 K=0 Valley 
H=0 K<0 Minimum 

Surface 
H>0 K>0 Pit 

Table 1. Surface classification based on sign of H and K 
 
 
2.3  Ridge line extraction 

Ridge lines of roofs are of great interest as they indicate the 
initial values of parameters such as length, width, orientation, 
and position of the building. The extraction of ridge lines helps 
to reduce the search space for fitting a model (from a predefined 
library, cf. Section 3.1) into the points cloud by statistical 
sampling (Section 3.2).  
Ridge lines are determined for pitched roofs and planes are 
considered for flat roof. For ridge line extraction, three features 
are used. Local maximum is an important feature to extract the 
building ridge points. Reconstruction based geodesic dilation 
operator is used to extract local maximum of the DSM in 
building areas. For this purpose, this morphological operator 
dilates a marker image and then masks it by a mask image 
iteratively (Arefi, 2009). The second feature is ridge points of 
orthorectified panchromatic image using the canny operator. 
The third feature is building mask which is generated by 
method mentioned in section 2.1. These three features are 
combined and ridge points are extracted roughly. The RANSAC 
method is used to fit the line to each group of these points.  In 
case of flat roofs, a hypothetical line in the middle of the roof 
plane is assumed. Evaluation of height values close to the end 
points of ridge lines results in discriminating gable roofs from 
hipped roofs.  For hipped roofs the changes of the height from 

two end points of the ridge line are low and the roof height 
decreases gradually. For gable roofs, the two end points of the 
ridge line are followed by a vertical wall (Partovi et al., 2013).  
 

3. TOP-DOWN METHOD 

In our top-down approach, a library of primitives is pre-defined 
and a statistical search based on MCMC with simulated 
annealing is conducted to sample roof parameters. The 
generated candidate models are evaluated by comparing them 
with the input DSM. The goal is to find the optimal 
combination of parameters for roof model reconstruction.  
 
3.1  Library of roof primitives 

 In general, the reconstruction strategy is conducted depends on 
the data resolution. Although the resolution of aerial images is 
higher, the DSM of stereo satellite image matching is rather 
noisy even if it has up to 4pt/m2 density. In this work we, 
employ only five basic roof primitives (flat, shed, gable, hipped 
and mansard) for the modeling.    
A library of primitives (Figure 2) is the basis of top-down 
approaches. As mentioned above, we propose a simplified 
library containing five primitives in two groups with planar 
shapes and rectangular footprints. Planar roof and rectangular 
footprints are used not only because they have less shape 
parameters but also they are basic forms which cover the 
majority of the buildings in urban area. The parameters of 
library primitives are defined as: 
 

},,{; SCP ,                             (2) 

 
where the parameter space   consists of position parameters 

},,{ azimuthyxP  and contour parameters },{ widthlengthC  . 

Shape parameters ( S ) include ridge/eave height and the depth 
of hips. Primitives of library consist of two groups (F) and (H). 
Group F includes shed and flat roof and group H consist of all 
variants of pitched roofs such as gable roof, hipped roof and 
mansard roof. The roof components such as vertices, edges and 
facets and their relationships are determined from the 
parameters of primitives. Then, these roof features are used for 
primitive merging, calculating reconstruction errors and 
extracting building footprints (Huang and et al, 2011).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(1) 

z1 z2 

azimuth 
hipl2

hipl1

hipd1 

hipd2
length

width 

(x,y) 
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Figure 2. The library of roof primitives 
 
 
3.2  Statistical building roof modeling  

3.2.1 MCMC: MCMC is a class of stochastic sampling 
techniques which is efficient for data evaluation in high-
dimensional solution spaces (Green, 1995). In the proposed 
method, the numbers of primitive parameters are considered 
fixed for each type of roof. In each iteration, the proposed 
candidate model is evaluated by the cost function evaluating to 
receive the highest quality of fit for the roof model to the data. 
The cost function computes the deviation from the points to 
their corresponding facet of roof. The MCMC search ends when 
the deviation converges and the candidate model is accepted if 
the deviation is lower than a predefined threshold. In the 
proposed work, ridge line extraction (cf. Section 2.3) speeds up 
the MCMC search and improves the efficiency and robustness.  
 
3.2.2 Simulated annealing: Within the developed 
methodology, simulated annealing is used for an important 
variant of MCMC algorithm to solve the global optimization 
problem to avoid local minimum. In this work, simulated 
annealing is searching for a minimum of the cost function by 
‘cooling the temperature’ slowly. The cost function E is defined 
by the summation of the orthogonal distances of the 3D DSM 
points to the candidate roof model, 2D horizontal distances of 
the point cloud to the boundary of the building mask and the 
number of points covered within each building model. Each 
function Fi has identical weight 

iw  in computation procedure. 

 





1

)(
i

ii xFwE  

 
In this fashion, first the cost function is computed with initial 
parameters. Each roof type is parameterized according to the 
library and these parameters are sampled using normal 
distributions. In each step, the cost function of current value is 
compared with the previous minimum value. If it is lower than 
the latter, the latter will be updated. In the other case, it may 
still be accepted according to the Boltzmann probability. 

Boltzmann equation of simulated annealing is presented as 
below (Parkinson and et al., 2013): 
 

)exp(
TE

E
P

avg


  

 
where, P is the probability that a higher cost function value, 
i.e., a worse candidate, to be accepted. E  is the cost function 
difference between the current value and the previous minimum 
value. T is a temperature and avgE is the running average 

value of the E . This equation means if the energy of the cost 
function value increase, the probability of accepting of that gets 
smaller.  Furthermore, in the simulated annealing algorithm 
reducing the ‘temperature’ gradually leads to decreasing the 
probability of accepting worse candidates in the search.  
The flowchart of the proposed simulated annealing scheme is 
shown in Figure 3.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3. Simulated algorithm for roof parameters selection 
 
The search is conducted until the convergence criterion is 
reached, i.e., the difference between two sequential cost values 
is less than a given threshold (0.2) in a certain period (100 
iterations). 
 

4. EXPERIMENTS AND DISCUSSION  

Experiments are performed on WorldView-2 stereo image data 
for urban areas in Munich, Germany. 

(3) 
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The resolutions of panchromatic images and reconstructed 
DSM are 0.5 m. In the figure 4, DSMs for two test areas are 
shown. 
 

   
 

 
 

 
 
Figure 4. Test dataset of areas I and II. (a) and (c) orthorectified 

pansharpened images.  (b) and (d) DSM. 
  
4.1  Roof type classification 

Mean curvature and Gaussian curvature are important curvature 
features which can be used to classify the surface. In this work, 
we take advantage of these features for distinguishing pitched 
roofs from flat roofs in the urban areas. In the procedure of 
building mask generation, some buildings are excluded based 
on height threshold. Then, the classification is only applied on 
the remaining building roofs. Also complex roofs are not 
covered in this work. Figure 5 shows the pitched roof by red 
and flat roof by white color.  
 

  
 

 
 

 
 

Figure 5. Roof type classification for areas I and II: reference 
images (a),(c) from © Google Maps and the classification 

results (b),(d). 
 
A quality assessment is manually performed by comparing the 
classified roof and the reference images. In the proposed 
method for area I, 12 roofs from 16 roofs and for area II, 3 roofs 
from 5 roofs are classified correctly.    
 
4.2  Ridge lines extraction 

In order to initialize the roof primitives’ parameters, ridge lines 
of individual building parts are extracted. Roof primitives’ 
parameters consist of width, length, orientation, centroid, lateral 
and longitudinal hip. Lateral hip is almost half of the width 
because all roofs are considered symmetric. Longitudinal hip is 
computed based upon distance between end point of ridge line 
and end point of mask in direction of ridgeline.  Figure 6 
illustrates that these parameters are computed by ridge line 
(green lines), extended line (blue lines) and extracted points in 
perpendicular direction of the ridge line (red lines) in the mask 
area.   

(a) (b) 

(c) 

(d) 

(I) 

(a) (b) 

(c) 

(d) 

(II) 
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Figure 6. Extracted ridge lines and roof parameters  

     
4.3  Roof reconstruction 

A primitive library is pre-defined to compose roof models that 
fit the data. Using the ridge lines and height values, the roof 
parameters such as length, width and orientation are initialized 
as shown in the previous section. The sampling of primitive 
parameters is driven by the MCMC technique with simulated 
annealing scheme. An example of a reconstruction process is 
presented in Figure 7(a) showing intermediate candidate models 
(green) during the statistical search. The final optimum building 
model is indicated in red color. Figure 7(b) shows the 
convergence of the fitness value. 
 

 
 

 
 
Figure 7. Statistical roof reconstruction: (a) search of optimum 

model (red) and (b) the convergence of cost function 
 

Figure 8 presents the final reconstruction results in the two test 
areas in the forms of projection on DSM (top) and 3D model 
(bottom).   
 

  
 

 
 
 

 
 
 

 
Figure 8. Reconstruction results of the areas I (a, b) and II (c, 
d). Flat roofs and pitched roofs are shown in purple and green 

color, respectively. 
 
 The experiments demonstrate the potential of the proposed 
method to deal with the challenges of using satellite image data 
for urban scenes, i.e., (1) relatively low data resolution, (2) high 
noise in the reconstructed DSM and (3) the occlusion through 
trees in dense urban area. Several buildings, however, have not 
been correctly classified and reconstructed. (Figure 5, 
highlighted building with red color). In addition, in Figure 5 (c) 
the highlighted building with yellow color could not be 

(a) 

(b) 

(b) 

(c) 

(d) 

(a) 
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classified correctly due to having a complex shape and a 
prismatic model has been considered to reconstruct it. 
Problematic are mostly small buildings with adjacent trees, 
where the data noise has a larger influence on the stability of 
reconstruction. 
 

5. CONCLUSION 

In this paper a hybrid method is proposed based on top-down 
and bottom-up strategies. This method finds the roofs optimally 
fitting the DSM derived from stereo satellite images. The 
satellite data derived DSM has low quality in comparison with 
LiDAR data and DSM from aerial images. In a bottom-up 
approach building roof types are firstly classified to pitched and 
flat roofs. Ridge lines are extracted and roof primitives’ 
parameters are initialized according to the extracted ridge lines. 
In the proposed scheme, the results of bottom-up approaches 
help to speed up the following top-down step and improve the 
efficiency and robustness. In the top-down approach, first a 
primitives library is defined, which contains the five most 
popular roof types (flat, shed, gable, hipped and mansard roofs). 
MCMC with simulated annealing is applied for the sampling of 
parameters until a stop criterion is fulfilled. For each iteration 
the average of Euclidean distances between model and points 
clouds with the number of mask points inside the model is 
computed as fitness function. Fitness values are compared 
between two sequential iterations. If the fitness values of further 
iterations do not show any more changes, the algorithm is 
stopped. The experimental results in two datasets of Munich 
city prove the potential of the proposed algorithm in dealing 
with noisy and low quality DSM of satellite data. 
For the future work, model selection methods can be improved 
to distinguish the roof types automatically and will be 
integrated into the statistical search process. The proposed 
method can be extended for complex roofs by enriching the 
primitive library and conducting primitive merging.  
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