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Zusammenfassung 

Für die Entwicklung sowie für die Zertifizierung jedes Satellitennavigationsempfängers sind Spezielle 

Tests und Verifikationen mittels realistischer GNSS-Signale notwendig. Prinzipiell bieten sich im 

GNSS-Bereich Feldtests zur Evaluierung von Empfängern an, dieses einfache Verfahren birgt jedoch 

auch eine Reihe von Nachteilen: So ist das Auftreten unterschiedlicher Kombinationen von GNSS-

Signalen nicht kontrollierbar oder reproduzierbar. Einen weiteren Nachteil stellt die fehlende 

Möglichkeit dar, immer wieder dieselben Signale oder Empfangsszenarien zu reproduzieren. 

Gleichzeitig ist das Durchführen von Feldtests sehr teuer und mit viel Aufwand verbunden. Daher ist 

es von besonderer Bedeutung für die Validierung und Tests von GNSS-Empfängern,  GNSS-Signale 

mittels spezieller Geräte unter kontrollierten und wiederholbaren Laborbedingungen zu simulieren. 

GNSS-Simulatoren dienen daher als Testgeräte während des gesamten Entwicklungs- und 

Lebenszyklus eines Satellitennavigationsempfängers. Preiswerte Mehrfrequenz- und Mehrsystem- 

GNSS-Simulatoren tragen zusätzlich zur Konkurrenzfähigkeit der modernen Mehrfrequenz- und 

Mehrsystem- GNSS-Empfänger bei. 

Die Architektur der herkömmlichen Mehrfrequenz-GNSS-Simulatoren basiert auf der Generierung 

jeweils eines einzelnen Frequenzbandes in digitaler Form mittels sog. Field Programmable Gate 

Arrays (FPGAs) oder digitalen Signalprozessoren (DSPs). Hierauf folgt die einzelne Konvertierung zu 

den jeweiligen analogen Signalen und das Mischen aller simulierten Signale in die 

Zielfrequenzbänder. Die Kosten für die speziellen Hochleistungs-FPGAs oder DPSs und teure 

Hardware für das hochpräzise und hochsynchrone Mischen der analogen Signalbänder tragen zu den 

hohen Gesamtkosten dieser Simulatoren bei. 

In dieser Arbeit wird eine alternative breitbandige Architektur eines Echtzeit- und Mehrfrequenz- 

GNSS-Signalsimulators erprobt und evaluiert. Die Signalgenerierung ist auf einem Grafikprozessor 

implementiert. Das digitale Mehrfrequenz-GNSS-Signal wird als ein einzelnes Signalband mit der 

Bandbreite des ganzen GNSS-Frequenzbereiches generiert. Das breitbandige Signal wird mit einem 

breitbandigen Digital-zu-Analog Wandler in ein analoges Signal umgewandelt und kann ohne das 

problematische analoge Zusammenführen und Synchronisieren in das Zielfrequenzband hochgemischt 

werden. 

Eine spezifische und anspruchsvolle Aufgabe der realistischen GNSS-Signalsimulation ist die 

Generierung von Mehrwegeeffekten. Für eine realistische Modellierung wird eine Vielzahl an Kanälen 

mit reflektierten Signalen benötigt. Kanalmodelle für Mehrwegeeffekte sowohl in Outdoor- als auch in 

Indoor- Umgebungen wurden ausgewählt und in einem Softwaresignalsimulator integriert. Hierfür 

wurde ein Algorithmus für die beschleunigte Generierung der Mehrwegekanäle entworfen und 

implementiert. Im Anschluss wurden die simulierten Signale mit den Ergebnissen eines Feldtests 

verglichen und evaluiert. 

Im Rahmen dieser Arbeit wurde ein Testsimulator mit breitbandiger Architektur aufgebaut. Dieser 

setzt sich aus einem leistungsstarken aber kostengünstigen PC und zwei Grafikkarten aus dem Bereich 

der Unterhaltungselektronik sowie einem DAC-Wandler zusammen. Für die Signalgenerierung und 

GNSS-Signalmodulierung wurde hochparallele Algorithmik entworfen, welche die hohe Zahl an  

Prozessorkernen sowie die hierarchische Speicherstruktur der Grafikkarten einsetzen kann. Die 

Qualität der generierten digitalen Signale und der Datendurchsatz der Algorithmen wurden analysiert. 

Die Leistungstests bewiesen eine Echtzeitleistung des Simulators für eine breitbandige Generierung, 
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die alle derzeitigen GNSS-Frequenzbänder einschließt. Hierzu wurden GPS L1 C/A, Galileo E1 OS, 

E5a und E5b mit jeweils bis zu zwölf Signalkanälen simuliert. 

Die digital-zu-anlog Konvertierung wurde für einzelne Signalbänder verifiziert. Die notwendigen 

Anforderungen an einen passenden breitbandigen DAC-Wandler sowie an einen passenden Hoch-

Konverter wurden analysiert und die Verfügbarkeit von entsprechenden Produkten auf dem Weltmarkt 

nachgewiesen. Zur tatsächlichen Einbindung solcher Komponenten in die Architektur wären noch 

bedarfsgerechte Anpassungen notwendig.    
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Abstract 

Testing and verification with real and simulated GNSS signals is an essential part of all stages of the 

lifecycle of a GNSS receiver as well as of the lifecycle of a GNSS-based navigation system. The true 

GNSS signals can be obtained outdoors in a field test. Disadvantages of the field testing are the lack of 

repeatability, the logistics costs and the hardship to obtain true signal parameters. For receiver 

verification, also scenarios that are difficult or expensive to obtain in a field test (scintillation, flight 

scenario, signal in space, etc.) and scenarios that are impossible to encounter (satellite failure, future 

signals, selective availability, etc.) must be tested. These drawbacks can be solved by a GNSS signal 

simulator that synthetizes the GNSS signals according to user specification of system, signal and 

receiver environment features. The simulator is an indispensable tool in the whole receiver 

development and production lifecycle. The costs of these devices influence the total costs of the 

navigation solution development. 

High performance multi-GNSS multi-frequency signal simulators that are able to generate signal for 

scenarios with hundreds of signal channels and multiple frequency bands are required for testing of 

modern multi-frequency receivers. These devices are costly. This is partly caused by the costs of 

multiple high-performance digital signal generation engines (FPGAs or DSPs). Another factor is the 

costs of the hardware for synchronized mixing and up-conversion of the separate signal frequency 

bands. 

In this thesis, an alternative low-cost GNSS signal simulator architecture is proposed. The digital 

GNSS signal is generated on a pair of graphics processing units (GPU) as a single broadband signal 

that includes GNSS signal services spreading from L1 to L5 band. This signal is then converted to 

analog using a single broadband DAC and up-converted to L-band by a broadband upconverter. The 

simulation definition part describing all signal channels in terms of frequency, phase and amplitude of 

each epoch can be built up in a conventional way. 

A specific issue of the high-performance GNSS signal simulation is the generation of multipath. For a 

realistic representation of a multipath scenario, numerous additional signal channels of the multipath 

reflections need to be generated.  In this work, satellite-to-indoor channel characterization with a 

sequence of models is proposed. An algorithm for fast multipath signal generation was designed and 

implemented. A comparison of simulated multipath with a field test scenario is given. 

A prototype of the digital GNSS signal generation module of the simulator was implemented on a test 

system with low-cost components. Consumer-level GPUs were combined with a mass-market PC 

system, both designed for the needs of gaming industry. The signal synthesis algorithms and GNSS 

signal generation concepts were designed for parallel execution on hundreds of processor cores of the 

GPUs and for utilization of the specific GPU memory hierarchy. Issues of digital signal precision and 

algorithm throughput with respect to GPU architecture and native instructions were analyzed. The 

benchmark tests showed that real-time performance of the broadband digital signal generation was 

reached for simultaneous generation the four implemented GNSS services: GPS L1 C/A, Galileo E1 

OS, Galileo E5a and E5b.  

The digital-to-analog conversion was implemented in narrowband. Requirements on broadband 

digital-to-analog converter and upconverter to L-band were analyzed and availability of tailored 

solution was verified for a possible future deployment.   
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1 Introduction 

1.1 GNSS Signal Simulation – Motivation 

Testing and verification with real and simulated GNSS signals is an essential part of all stages of a 

GNSS receiver lifecycle as well as of a lifecycle of a complete navigation system. Additionally, 

testing and verification is a key element on the way to the standardization and certification. It ensures 

correctness of outputs and assesses if and to which extent the desired criteria are fulfilled in terms of 

reliability, efficiency, portability, maintainability, and usability. 

The GNSS signals can be obtained simply outdoors in a field test. Such signals are the only fully 

realistic ones without the limitations inherently caused by limited features of any generating device. 

Nevertheless, the lack of repeatability and the logistics costs for field testing create a market for 

specialized solutions. The simplest solution is offered by so-called record and playback devices. Such 

devices record the GNSS signals during a field test campaign, store it in digital form and offer a 

playback of signal in labor at any time. The playback differs from the original signal to an extent given 

by the abilities of the recording and storage device. However, advantages can be taken from the 

repeated playback function, since all repeated playbacks provide identical GNSS signals.  

The knowledge of true signal parameters of verification signals is important for a crosscheck with 

receiver measurements. Furthermore, the ability to create a scenario that is in field test hard and 

expensive to obtain (scintillation, flight scenario, signal in space, etc.) and to generate signals for a 

scenario that is impossible to obtain in field test (satellite failure, future signals, selective availability, 

etc.) is needed. Neither the field-testing nor a record and playback device can fulfill these 

requirements. Therefore, a family of devices called GNSS signal simulators plays an important role in 

verification and testing of receivers. A GNSS signal simulator synthetizes the GNSS signals according 

to a user specification of system, signal and receiver environment features.  

GNSS signal simulators are indispensable devices in the whole receiver development and production 

lifecycle. These devices are dedicated tools build up as a combination of software, hardware and 

analog radio technology. Costs of these devices influence the total costs of the navigation solution 

development. 

1.2 Scope of Work 

This thesis introduces an alternative GNSS signal simulator architecture. The digital GNSS signal is 

generated on a graphic processing unit (GPU) as a single broadband signal that can include GNSS 

signal services from L1 to L5 band. This single broadband signal is then converted to analog using a 

single DAC and upconverted to L-band by a broadband upconverter. The simulation definition part 

describing all signal channels in terms of frequency, phase and amplitude of each epoch can be built 

up in a conventional way. 

The focus of this thesis is the digital GNSS signal generation module of the simulator. Standard signal 

synthesis algorithms and GNSS signal generation concepts are redesigned for parallel execution on 

hundreds of processor cores of GPUs and for utilization of the specific GPU memory hierarchy. Issues 
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of digital signal precision and algorithm throughput with respect to GPU architecture and native 

instructions are analyzed.  

The digital GNSS signal generation module was implemented using consumer-level GPUs and a 

respective PC system, both coming from the field of gaming industry. The benchmark tests showed 

that real-time performance of the broadband digital signal generation was reached for simultaneous 

generation of four services GNSS services, GPS L1 C/A, Galileo E1 OS, E5a and E5b.  

The digital-to-analog conversion was implemented in narrowband. Requirements on broadband 

digital-to-analog converter and upconverter to L-band were analyzed and availability of tailored 

solution was verified for a possible future deployment. 

Additionally, the topic of multipath GNSS signal generation in a software signal simulator is included 

in the thesis. The satellite to indoor channel is characterized with a sequence of models. Algorithm for 

fast multipath signal generation on a CPU is proposed and comparison of simulated multipath with a 

field test scenario is given. 

1.3 Receiver Testing 

In order to clarify the expectations on GNSS simulators, details about receiver testing procedures, 

receiver-testing tools and the role of the simulators are given in this section. The subsection about 

receiver testing procedures is based on [1] and the subsection about receiver testing tools is based on 

[2]. To the information originating from these sources, this work adds details about the implied 

expectations on GNSS simulators. 

Revenues on the market for GNSS receivers are the key value influencing the range of acceptable 

costs of a simulator. The price of a receiver can vary tremendously: it ranges from consumer receiver 

chips with costs around 10 $ to geodetic receivers with price exceeding 10,000 $. Costs of airborne 

and spaceborne receivers exceed even this value significantly.  

The number of units sold follows the opposite pattern. According to the GNSS Market Report 2015 

[3], 60 million road units, 1,500 million GNSS-enabled smartphones (equipped with low-end chips) 

and 250,000 surveying devices (equipped with high-end receiver modules) were expected to be sold in 

2015. These assumptions imply the market value of 18.1 million dollar for both low-end and top-end 

segment per year. This value determines subsequently the market size for receiver testing. A detailed 

view of the market segmentation for GNSS signal simulators and respective product classes is given in 

Chapter 2. 

1.3.1 Approaches to GNSS Receiver Testing 

Testing of a GNSS receiver requires tests of the software (platform tests, runtime tests, and memory 

tests), the hardware (power consumption) and tests of the analog radio frequency (RF) technology 

(electromagnetic compatibility, noise figure). Moreover, tests of the correctness, in particular the tests 

specific to GNSS-based positioning must be carried out. 

For the software part of the receiver and software models of the hardware part, standard software 

testing approaches are applied. Key point of any testing concept is a test plan. As described in [2], a 

test plan for a GNSS receiver is an outline concept. For each phase of receiver lifecycle, it describes 
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specific milestones at which testing procedures should be carried out. It specifies also the parts of the 

software, which should be tested. Each testing procedure is given as a set of individual tests, each with 

defined inputs and expected correct outputs. Every test has to be documented within a corresponding 

report. It is important to set up such a test plan in advance to the receiver development. 

The testing procedures are scaled according to the desired resolution. Consecutively, three different 

categories of the testing procedures can be identified: 

 Black box: the test inputs and outputs access the tested system only through the end user 

interfaces. 

 Grey box: the test inputs and outputs access individual modules of the tested system and/or 

use additional interfaces for this access. 

 White box: tester has access to the source code and can add code that supports additional input 

and output.  

The type of resolution used for testing procedures in testing loops varies according to the current 

development phase. If a new functionality is added or changed, white-box testing procedures are 

applied on the new code first. After the successful pass, grey-box procedures examine the whole 

module. Thereafter, a black-box testing procedure is applied on the whole system. 

In the final verification and product support phase, a reverse order is applied. First, black-box testing 

procedures are applied on the whole system. If an error occurs, grey-box procedures verify all modules 

individually. Finally, error localization is carried out using white-box testing procedures. 

The role of a GNSS simulator in receiver testing varies according to the phase of the GNSS receiver 

lifecycle. The phases of the lifecycle are ordered as follows: 

 Research and development on new algorithms and solutions  

 Receiver system design and validation 

 Hierarchical element production 

 Consumer evaluation and certification 

 Repair and maintenance 

The whole navigation system is then built up hierarchically, i.e. starting from a chip, following with 

the module, OEM board and finally with the complete navigation system integrated in the final user 

device. At higher levels not only output product must be tested, but incoming components need to be 

verified as well. 

1.3.2 Receiver Testing Tools 

The testing tools can be classified as tools generating receiver input data and tools processing the 

receiver final or partial output. 

As mentioned before, input signals can be easily gained by field testing. Figure 1-1 gives a closer look 

at the application of this method to the receiver. The environment is native; the application of the 

signal is identical to the real case. Full black box testing of the complete receiver and navigation 

system can be carried out. The weak point is the source of reference signal parameters for verification. 

These can be obtained from a reference receiver with higher quality than the tested receiver or from a 
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GNSS monitoring network. As a further cross-check parameter, also the receiver position known from 

a geodetic measurement can serve.  

Another way to get input signal is the usage of a signal-generating tool. These tools are GNSS signal 

simulators or record and playback devices. 

GNSS signal simulators offer full repeatability of the signal generation and the ability to control the 

signal generation parameters. Key advantage is the generation of not yet implemented signals or rare 

special cases. Nevertheless, the signal parameters and the signal itself are not absolutely real and the 

range of settings to generate special cases is limited.  

 

Figure 1-1 Field testing 

A GNSS signal simulator is either a RF simulator, generating the analog RF signal as it would leave 

the antenna of a receiver. Alternatively, it is a digital intermediate frequency (DIF) generator 

generating the digital signal as it would leave the front end (FE) of the receiver. Details to these two 

simulator classes and their closer description are given in Chapter 2 GNSS Signal Simulators.  

In case of RF simulators, the signal is input in the receiver by cable after the antenna. The antenna 

pattern and low noise amplifier (LNA) influence must be simulated and therefore cannot be 

completely real. However, these parameters can be directly used for verification and are fully known. 

Important is also the ability of the simulator to apply different true parameters and message parameters 

for a realistic testing of receiver behavior. An overview of the testing with signal simulator is given in 

Figure 1-2. 

 

Figure 1-2 Signal simulators 

Record and replay devices offer repeatability of the signal generation, real signal parameters, real but 

costly scenarios and the ability to control signal power. Nevertheless it is difficult to anticipate and 

impossible to control the signal parameters. The signal is modified through down-conversion, 

sampling, synthesis and up-conversion procedures. 

As in case of a simulator, the generated signal is transmitted through a cable to the front end (FE) of 

the receiver. It is therefore important that the antenna of the simulator is identical to the antenna that 

was used for recording of the signal. The parameters of the front end of the replay device should fit the 

parameters of the front end of the tested receiver.  
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A special case of a record and playback device is a digital intermediate frequency (DIF) signal 

recorder. For recording, is uses the same front-end as the target receiver. Then, the digital signal is 

directed to a storage medium instead of being only processed by the receiver signal-processing 

module. An IF-replay function of the receiver loads the digital signal from the medium in the same 

way as in would have been received in real time. The DIF signal recorder is therefore receiver specific 

and it either comes to market as an add-on of a high-end receiver or it is an in-house tool developed 

for testing of own receiver products. 

As in case of field testing, the signal parameters of a record and replay scenario are obtained directly 

from a reference receiver and/or from a GNSS monitoring network. An overview of the testing 

procedure using record and playback device is given in Figure 1-3. 

 

Figure 1-3 Record and playback devices 

Beside the signal generating tools and field testing, also hybrid solutions are now wide spread in 

receiver verification. A typical example is a test bed with special ground based signal transmitting 

pseudolites. For example, the GATE test bed in Berchtesgaden, Germany, transmits Galileo signals 

from pseudolites placed on surrounding mountain peaks. A receiver under test receives both pseudolite 

and standard GNSS signals over an antenna. The signal transmitted from the static constellation of 

pseudolites is adjusted to position and speed of the tested receiver through a reference receiver to 

emulate realistic signal parameters of a satellite constellation. Therefore, the testing of the whole 

receiver system is possible similar to field testing. Configurable and known transmission settings add 

some advantages of a signal simulator. An overview of the testing procedure in the test bed is depicted 

in Figure 1-4. 

 

Figure 1-4 GATE test bed in Berchtesgaden, Germany: pseudolites transmitting Galileo signals 

Overview of testing infrastructure available in Europe can be found at the European GNSS Simulator 

and Testing Infrastructure portal [5].  
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1.3.3 Testing of Receiver Modules 

For the specification of the role of a GNSS simulator in receiver testing, an overview of the receiver 

architecture is given. A generalized architecture of a receiver is depicted in Figure 1-5. This section 

focuses on the specific parameters of each component of the front end, baseband processor, navigation 

processor and user interface to be tested and shows, where the simulator input and simulator 

parameters can be applied. 

 

 

Figure 1-5 GNSS receiver structure 

For the grey-box testing of the receiver front end, the signal from field testing or from a simulator can 

be taken as input. Nevertheless, the knowledge of analog signal parameters of the signal is necessary.  

Parameters to be verified are local oscillator’s phase noise limits, noise figure of each component, 

noise figure of the complete front end, second- and third-order intermodulation and characteristics of 

each filter. Spectrum analyzer and oscilloscope can be used to evaluate the analog inter-stage signals. 

For testing of the baseband processor, either a DIF signal simulator or a RF signal simulator can be 

used to generate test input. In case of the acquisition module, the functionality must be inspected, i.e. 

the following questions need to be investigated: Are all satellite signal channels acquired? Does the 

acquisition of pseudolite signals work correctly? Are the signal code phase and Doppler frequency 

correctly measured and do they work for all possible combinations of both?  

Besides its functionality, also the acquisition sensitivity and power profile must be measured. These 

features can be tested only with a signal generator with configurable power settings. Furthermore, the 

dynamics behavior, i.e. elevation, speed, acceleration and jitter limits must be evaluated with velocity 

and acceleration profiles. For these tests, a configurable signal generator is necessary. At this point, 

nevertheless, a caution must be exercised. Signal simulators have limited configurability in terms of 

acceleration, jerk and rotation. Limits of the expectation on the simulator must be clarified to choose 

the simulator with fitting parameter ranges. This topic including a proposal of standardized description 

of these parameters is discussed in [6]. 

The tracking module of the receiver baseband processor is tested similar to the acquisition module. 

Functionality, sensitivity and reactions to the dynamics behavior must be verified. Specifically, the 

precision and stability of code and carrier tracking must be tested. The input signal from a GNSS 

simulator is very helpful for profiles and special cases. Nevertheless, the authenticity of the generated 

signal is limited, because the slight distortions below the limits given in GNSS system specification 



1 Introduction 

22 

 

differ. The real distortions by individual satellites are not equal to distortions caused by the parameters 

of simulator components. For these fine-tuning, real tests with real signals in case of already 

transmitted GNSS signal or test bed signals in case of not yet implemented signals must be included in 

the test plan.  

For verification of the navigation data extraction module, all aspects of data message decoding and 

interpretation must be thoroughly tested. For the test of all levels of data decoding, both a GNSS 

simulator and field tests can deliver input: demodulated symbols, decoded message bits, check sums 

and error correction coding, frame synchronization and data interpretation. Nevertheless for the 

verification of rare events, specifically concerning time (end of week, week rollover, new leap second, 

new ephemerides or almanac), niche situations (not-healthy satellite, special bad data cases) and new 

message schemes a RF or DIF signal simulator is necessary. 

The key part of the navigation processor module is the calculation of receiver position, velocity and 

time (PVT). This module is in comparison to a telecommunication receiver the really unique part of a 

GNSS receiver.  

In this module, the processing of all the input data for time measurement and all the respective niche 

cases – end-of-week, end-of-year, week number rollover, and leap-second event – need to be verified. 

Precision of the time measurement plays a key role in the final receiver PVT solution and the resulting 

output and it must be proved with utmost care. The same must be carried out for position and velocity 

measurements, where again precision in static and dynamic scenarios and performance in whole range 

of niche situations: maximum speed, acceleration, conversions of special coordinates (crossing 

equator, 0° and 180° meridian) must be verified. 

Input for this module can come from field measurements or, in case of niche events, from a simulator. 

Nevertheless, also special end-to-end simulators exist, which simulate tracking loops output together 

with navigation data and can be used to test PVT algorithms. They are mostly used in the development 

phase of a receiver. 

1.3.4 Testing Specific to Various Receiver Design 

For different receiver designs, specific tests must be carried out. In case of software receivers, the real-

time capability must be verified and assessed. In case of non-real-time operation systems, very long (> 

24 h) tests must be carried out. For multi-threading implementation of a receiver, the unrepeatable 

computation order must be taken into account. Record and playback devices are limited in length of a 

test by the capacity of the storage medium. Simulator or field measurements are suitable for this task, 

nevertheless the repeatability offered by a simulator is convenient for bottleneck pin point. 

Hardware and programmable hardware (field-programmable gate array - FPGA) based receivers need 

special tests of FPGA designs and breadboard prototypes. For these tasks, simulators as well as record 

and playback devices can be deployed. 

In case of multi-frequency receivers with multiple front ends, the inter-frequency biases must be tested 

and compensated accordingly. Multi-frequency simulators deliver the necessary input; nevertheless, 

these simulators are quite expensive, especially because the adjustment of inter-frequency biases in the 

simulator is a very demanding task. 
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Multi-GNSS receivers, even though only single frequency based, need additional tests that take into 

account multiple time references and coordinate frames. 

Spaceborne and partly also airborne receivers are dependent on simulators for qualification tests as the 

respective speed, elevation, acceleration, etc. parameters are extremely costly to test in field. Specific 

tests for spaceborne qualification like radiation tolerance also apply. 

1.3.5 Tests for Benchmarking  

Testing is also needed for benchmarking of the GNSS receiver performance. Typical tests are time-to-

first fix (TTFF) measurements for various start-up modes, acquisition sensitivity measurements 

(minimum power level at which the receiver is able to correctly identify a satellite signal) and tracking 

sensitivity measurements for given time limit (minimum power level at which the receiver is able to 

correctly acquire, track and reacquire a satellite signal). Additionally, tests of assistance information 

and receiver clock specification apply. The key parameter to be measured is the positioning accuracy. 

There are several various definitions of this parameter, for example the 1 PPS Test (point per second). 

For receivers with 1 pps output, it compares position output with 1 pps output from a timing receiver 

or from the raw data of the simulator and it evaluates the variance of the position accuracy. Further 

benchmarking tests are time precision test and dynamic positioning test giving profiles of received 

velocity and acceleration. For these tasks, a GNSS simulator is a necessary tool. 

During the benchmarking of a GNSS receiver, also the reaction to the various signal errors is 

evaluated. These are ionospheric errors and scintillation, tropospheric error, clock error, intentional 

and unintentional interference, multipath, satellite failure (RAIM testing). For backward compatibility, 

also selective availability switched off in 2000 can be taken into account. Input for such tests is 

difficult to obtain in field tests, but signal simulators offer models and settings for generation of such 

errors.  

Benchmarking is done also in general, non-GNSS specific categories, like power consumption, 

electromagnetic compatibility and in final product specific categories. 

1.3.6 Testing of GNSS Receivers for Certification  

For many areas of operation of a GNSS receiver, one or more kinds of certification apply. Specific 

testing procedures must be passed by the receiver to obtain the certification.  

A certification can be requested as a prerequisite for introduction at a local market. It can be also 

bound to a specific market segment. Typical field, where certification is needed, is the area of safety-

of-life applications. A specific certification is necessary for airborne receivers and for public-fleet 

management. In the United States, it is also needed for deployment in mobile phones to follow the E-

911 regulation. 

The US emergency call service E-911 is regulated by a special mandate of the Federal 

Communications Commission. The Phase II of this mandate requires caller location to be established 

for 67% of mobile calls within 50 meters and for 95% of calls within 100 meters for telephone 

handset-based solutions [7]. In contrast to it, the EU directive E-112 from 2003 requires the mobile 
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phone service providers to provide whatever information they have about the location from which the 

emergency call was made, even though no requirements on availability and accuracy are given. 

The certification for GNSS receivers in the application area of cellular phones is summarized in [8]. 

The relevant group of standards are the 3GPP (Third Generation Partnership Program) standards. The 

3GPP GPS Performance Standards (TS 34.171) concern the GPS receivers. They define minimum 

performance requirements in given set of tests cases with given initial conditions concerning among 

others number of satellites-in-view and signal strength. Besides the GNSS specific standards, also 

more general 3GPP2 CDMA Performance Standards (TIA 916) apply to GNSS receivers. 

More recently, 3GPP2 standards have been developed. Standard TS 37.571-1 covers multi-

constellation GNSS systems. It defines minimum performance requirements for GNSS receivers 

supporting multi-constellation. It includes the same set of test as in case of TS 34.171 standard. For 

example, for the sensitivity fine time assistance test for multi-constellation receiver the satellite 

allocation per constellation is stated to be six satellites for single constellation, three and three for two 

constellations respectively and two, two and two for three constellations. In addition, new standards 

are being rolled out for over-the-air (OTA) testing, namely the CTIA TIS requirement.  

Standard certification equipment include GNSS signal simulator and multi-GNSS reference receiver. 

The test equipment must be certified itself before it can be employed for the certification. 
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2 GNSS Signal Simulators 

GNSS signal simulators generate input signal for receiver testing at all stages of receiver lifecycle. 

This chapter gives categorization of the simulators and overview of the features of the contemporary 

commercial devices. 

2.1 Categorization of GNSS Signal Generating Devices 

The family of simulators of GNSS signal comprises various devices with confusing naming 

conventions. The term “GNSS simulator” stands typically for a tool that simulates operation of a 

GNSS receiver. It produces as an output receiver coordinates or pseudorange data called also raw data. 

Sometimes this term is also used for a tool simulating the receiver operation together with operation of 

the GNSS system. In this case, the tool should be called unambiguously an end-to-end GNSS 

simulator. For devices generating analog or digital GNSS signal as an output, the term GNSS signal 

simulator should be used. 

Ambiguity surrounds also the usage of terms GNSS signal generator and GNSS signal simulator. In 

the literature consensus was reached [2] that the term GNSS signal generator labels a device 

generating one channel (i.e. signal from one satellite) of RF GNSS signal. In contrast to it, a GNSS 

signal simulator, called equivalently also GNSS constellation simulator, generates RF GNSS signal 

with multiple channels and simulates the geometry of the satellites in motion. It applies additional 

signal errors including satellite and propagation induced errors with respect to the given geometry. 

A device generating digital intermediate frequency GNSS signal is also sometimes called a GNSS 

simulator. The precise term is nevertheless DIF GNSS generator or GNSS IF (software) signal 

simulator.  

2.1.1 DIF GNSS Generator 

A digitized intermediate frequency generator is the simulator type with lowest internal technical 

complexity. It is a software application that generates the DIF signal as it would be output out of the 

specific receiver front end. It is therefore a receiver-specific or at least receiver front-end specific tool. 

A complete constellation of satellite signals is simulated in a defined operating environment with all 

special cases and signal errors. The range of simulated features resembles a GNSS RF signal 

simulator. Antenna pattern and front end filters are added. The principle of application of a DIF 

generator is given in Figure 2-1. 

 

Figure 2-1 Application of DIF generator for receiver testing  
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2.1.2 GNSS Signal Generator 

A GNSS signal generator offers full control over parameters of one generated RF GNSS signal 

channel. Power level can be typically adjusted over the whole range from ca.-90 dBW to ca. -185 

dBW. Doppler profile can be set and full navigation message configured. Products on the market offer 

choice of one channel from range of one to four signal services. Devices from Spirent, Meguro and 

Spectracom are depicted in Figure 2-2.  

GNSS signal generators are used for testing of front end and baseband processor, especially for 

optimization of acquisition and tracking loop. They are handy for measuring power and Doppler 

profiles. They are mostly utilized in development and production stages of receiver lifecycle. They are 

similar to and usable as pseudolites. The functionality of a GNSS signal generator can be a subset of 

GNSS signal simulator functionality, but in its application field the advantage is the low cost below 

ca.10,000 EUR. 

 

Figure 2-2 Single-channel GNSS signal generators: Spirent GSS6300 (L1/E1/G1/B1) [9] - left, Meguro 

MSG-2051A (L1 C/A) [10] - middle, Spectracom GSG-51 (L1 C/A) [11] - right 

2.1.3 GNSS Signal Simulator 

The GNSS signal simulators on the market are mostly sorted according to available signal services 

into three categories as single-service, single-frequency multi-service and multi-frequency multi-

service signal simulators. 

A single-service simulator generates RF signal of the full constellation of satellite channels of one 

GNSS signal service for a receiver in motion. It offers mostly 8 to 12 channels for the maximum 

number of satellites in view. Generation errors (clock error, evil waveforms, and satellite failure), 

propagation errors (ionospheric error, tropospheric error, and multipath error), interferences 

(unintentional and jamming) as well as receiver errors prior to simulator input to the receiver (antenna 

pattern and low-noise amplifier gain) can be added. Simulators use two-levels of modeling. True 

models describe the simulated scenario. They are applied on the signal being generated. Broadcast 

models describe the scenario as it would be modelled and broadcast by the respective GNSS or SBAS 

service provider. They are used to generate the data transmitted in the respective message. The 

relationship between these two levels of modelling is nevertheless to be set by the user. Price of these 

devices ranges between 50,000 and 100,000 EUR. 

A single-frequency multi-service simulator adds one or more signal services located in the same 

frequency band, typically in the L1 band. User assigns the available channels to the satellites of the 

signal service of his choice and adjusts the intersystem time delay.  
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The multi-frequency multi-service simulators, also called professional simulators in the literature, 

strive to offer the full scale of GNSS current and planned signal services. Such simulators comprise 

several individual single-service simulator modules on multiple frequency bands with the intersystem 

time settings. These devices are expensive as it is hard to reach full inter-frequency synchronization 

and generate so many channels at once. Price of these devices starts at around 200,000 EUR and rises 

open-end along with the number of services and frequencies included. Exemplifying products on the 

market in 2013 are depicted in Figure 2-3.  

  

Figure 2-3 Spirent GSS8000 [9], 3 carriers – left; IFEN NavX-NCS Professional [12], 9 carriers – middle; 

Spectracom GSG-64 [11], 4 carriers – right   

As a special subcategory of the GNSS signal simulators, the military simulators should be mentioned. 

They are typically available as an extension to a single- or multi-frequency simulator. In case of GPS, 

all three GPS L1, L2 and L5 frequency bands are available and the military (classified) Y – codes and 

M – codes can be generated. A military simulator also delivers data for testing the receiver SAASM 

module - red keys, black keys and over-the-air rekeying (OTAR). Additional functionality are also up 

to 16 RF outputs for CRPA antenna testing, input to INS testing on IF (mainly Honeywell H764G and 

Northrop Grumman LN-100G) and the tools for integrated GPS/INS tests (delivery of attitude and 

velocity increments). Equipment for receiver clock g-sensitivity testing is on board. Costs for such a 

military simulator exceed 1,000,000 USD. Examples of such devices are given by the military 

extensions to Spirent and the CAST-2000 simulator, depicted in Figure 2-3 left and Figure 2-4 left. 

 

 

Figure 2-4 GPS Signal Simulator CAST-5000 [13] with 2 carriers – left, Cobham GPSG-1000 [14] with 1 

carrier – right  

2.2 Features of GNSS Signal Generating Devices 

The usage of simulators implies also several issues. The advantages and disadvantages are closely 

described in [2]. These devices can be easily used as a jammer or a spoofer. Except scientific 

experiments, no observation of such a misuse has been published to date. Another topic is the 

copyright infringement caused by further utilization of simulator products, either selling or distributing 
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of files recorded from a simulator. This data can be easily generated and used with help of a record 

and playback device. 

The quality of the generated signal is the main figure of merit of a simulator. The signal should be as 

similar as possible to the real signal with all possible simulator settings. The author of [15] names key 

parameters for good performance to be: 

 Quality of code and carrier phase generation. This means that pseudorange root mean square 

(RMS) error should be below 0.3 m including the inter-channel bias. The uncertainty of 

pseudorange rate (RMS error) should not exceed 0.03 m/s. Inter-channel code and carrier 

alignment must be one order of magnitude better than the expected performance of the receiver 

under test. 

 Precision of the power level. Uncertainty of the overall simulated power level should not exceed 

1.0 dB or at most 2.0 dB.  

 Quality of carrier signal in terms of phase noise and frequency stability. Carrier frequency should 

be centered with an accuracy of not worse than a few Hz even after a few years of operation. 

Master clock stability over one day should stay within ± 5 × 10-10. 

 Physical dimensions. For lab test, limitations on dimensions are flexible. The device mostly needs 

only to fit in a standard lab rack mount. For special on-site tests, a need for a handheld device, like 

GPSG-1000 from Cobham depicted in Figure 2-4, may exist. 

2.3 Overview of RF Simulators Market 

GNSS signal simulators are niche electronic and software-driven products on the special electronics 

market. The development in the field of GNSS system towards multiple systems and signals paired 

with high precision pose very high and steadily increasing expectations on the devices. In this chapter, 

a market overview of the RF GNSS signal simulators as a category defined in section 2.1.3 is given 

together with insight in their capabilities. Table 2-1 gives the overview of implemented signals and 

systems. Table 2-2 lists the maximum number of simultaneously generated channels and frequency 

bands. The ability to simulate data for differential corrections and advanced signal perturbations is 

also listed according to the datasheets of the products. Both tables show the status in 2014. 

The Spirent Communications has been developing and manufacturing GPS signal simulators since 

1985 [9].  The company is the market leader covering all segments of the GNSS simulator market. 

Only the flagship of their products, the model GSS9000 introduced in 2014, is listed in the overview. 

In the full configuration with all additional modules, it covers practically all current and planned 

GNSS and SBAS signals and offers modelling of all effects influencing the signals. Even the military 

signals, SAASM modules and IMU testing are included. 

The key competitor in the segment of high-end scientific simulators is IFEN GmbH [12] followed by 

Spectracom [11]. Until 2014, the NavX-NCS by IFEN outperformed Spirent’s top product in the 

number of simultaneously generated channels and frequency bands. However, this Europe based 

company does not participate in the segment of military simulators, which in US generates a great deal 

of revenues. In this segment, the CAST Navigation [13] is involved featuring strong GPS/INS focus. 

This company entered the market of non-military simulators first in 2007 and it is now present even on 

the opposite side of the product spectrum with their simple hand-held devices. 
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The hand-held devices, marked as HH in Table 2-1, are a young segment of the market. Conventional 

simulators use the standard rack form factor with an additional laptop. In contrast to it, the hand-held 

devices joined all functionality of one signal service simulation, display and steering in a compact, 

several pounds heavy box with rugged coating. Besides the already mentioned CAST, also the 

company Cobham [14], formerly Aeroflex Test Solutions, markets such a hand-held simulator.  
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L1P(Y), L1M, 

L2M 

E1, 

E5ab, E6 

G1, 

G2 
L1 

B1, 

B2, 

B3 

L5S 

WAAS L1, 

L5, 

EGNOS, 

MSAS, 

GAGAN 

IFEN NavX-NCS SS 
L1, L2/L2C, 

L5 

E1, 

E5ab, E6 

G1, 

G2 
L1 

B1, 

B2, 

B3 

L5S 

WAAS L1, 

L5, 

EGNOS, 

MSAS, 

GAGAN  

Spectracom GSG-64 SS 

L1C/A, 

L1P,L2P,  L2C, 

L5 

E1, E5ab 
G1, 

G2 
L1 

B1, 

B2 
L5S 

WAAS, 

EGNOS, 

MSAS, 

GAGAN  

CAST 

Navigation 
CAST-SGX 

SS 

HH 
L1 C/A, L1P No No No No No WAAS 

CAST 

Navigation 
CAST-2000 SS 

L1 C/A, L1P, 

L1M, L2P, 

L2M 

No No No No No WAAS 

Rohde & 

Schwarz 
SMBV100A SS L1 C/A, L1P E1 

G1, 

G2 
L1 B1 No No 

National 

Instruments 

NI GPS 

Simulator 
SS L1 C/A No No No No No No 

Cobham GPSG-1000 
SS 

HH 

L1 C/A, L1C, 

L2C, L5 
E1, E5ab No No No No 

WAAS, 

EGNOS 

Racelogic LabSat3 

DIF

+ 

RP 

L1 C/A E1 G1 L1 B1 No No 

NavSys AGHS 

DIF

+ 

RP 

L1C/A, L1P, 

L1M, L2P, 

L2M 

No G1 No No No No 

Table 2-1 GNSS signal simulator market products – type, signals and services. SS – real-time signal 

simulator, DIF + RP – DIF simulator and replay device, HH – hand-held device 
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GNSS simulators build as software modules on the top of a general purpose vector signal generators 

are another new segment of the market. They do not offer the high-end features of a specialized GNSS 

simulator, but they can add full scale of radio and telecommunication signals for development of 

combined chips and applications. Rohde & Schwarz offers broad GNSS functionality for their vector 

signal generator [16]. National Instruments also sells a simple GPS L1 C/A module for their modular 

signal generation and processing system [17]. 
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Spirent 

Communications 

160 + 640 

+ 4 
10 Yes Yes Yes Yes Yes Yes Yes 

IFEN 108 9 ? Yes No Yes No Yes Yes 

Spectracom 64 4 No Yes No No Yes Yes Yes 

CAST Navigation 
16 1 No No No Yes No Yes Yes 

60 + 8 2 Yes Yes No Yes Yes Yes Yes 

Rohde & Schwarz 24 2 No Yes No Yes No Yes Yes 

National 

Instruments 
12 1 No No No No No No Yes 

Cobham 12 1 No No No No No Yes Yes 

Racelogic 36 3 No No No No No Yes Yes 

Navsys unlimited ? No No No No No Yes Yes 

Table 2-2 GNSS signal simulator market products – performance and signal error effects 

Most of the devices pre-generate some constellation description first, and then generate the digital and 

analog signal in real time. Devices with such architecture are labeled as SS (Signal Simulator) in Table 

2-1. The devices that work as a non-real-time DIF signal generator, which saves the DIF signal to a 

storage device and replays it on demand in real-time, are labeled as DIF + RP. Racelogic offers such a 

device with focus on multi-system single frequency receiver testing [18]. NavSys markets a modular 

system combining Matlab-based DIF generator with playback function [19]. 

Besides the listed manufacturers and their products, also American GNC Corporation offers a 

simulator product called AGNC-2000RTGIS GPS/IMU Real-Time Simulator [20]. Little information 

is published about this device. This and the fact that it was developed in the frame of GSA (US 

General Service Administration) could indicate that the device was not developed with the focus on 

continuous commercialisation. 
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As the simplest simulator in the comparison the product by National Instruments can be seen. It 

simulates from the all the features listed in the tables only the receiver dynamics. The most complex 

contemporary device by Spirent offers full scale of transmitted, propagation and receiver errors. Table 

2-2 shows a simplified overview of chosen abilities, but the implementation of the features and 

settings they offer differ tremendously among the devices. Data sheets of the simulator rarely state 

closer information about the implemented models, so the direct contact with the manufacturers in 

necessary for detailed comparison of the products. 

2.4 Previous Work on GNSS Signal Simulation and GPU-based 
Signal Processing in GNSS Technology 

The GNSS signal simulation is a niche topic in the GNSS field. The manufacturers of the commercial 

devices give the information about the signal features and quality in the product description, but do not 

publish information about the architecture and algorithms. Publications of the manufactures focus 

either on verification of the simulator or testing procedures with usage of their products. Verification 

of the Galileo signal simulation was published by Spirent [21] and performance evaluation of the 

multi-frequency multi-service simulator was published by IFEN [22]. 

Literature about experimental modelling on top of a commercial simulator is a topic where multiple 

publications with participation of the simulator manufacturers exist. Ionospheric scintillation 

modelling on top of Spirent simulator was described in [23]. This is possible thanks to the signal 

description input interface with 1 kHz update rate (model GSS9000) [9].  

Overview of the GNSS signal simulators was at latest the topic of GNSS literature in 2013 as series 

about GNSS simulator products and technology [24]. 

The publications about the state-of-art of the simulator architecture and algorithms can be found in the 

field of experimental simulation systems developed at research institutions and universities. These 

focus mostly on DIF simulators. These tools are needed by the research groups themselves and they 

have to fit their research projects and to be compatible with their experimental GNSS receivers. 

In [25] a CPU-based DIF simulator for GPS and Galileo with multipath simulation was introduced. 

Another CPU-based DIF simulator of L1 C/A and E1 signal with conversion of 6 Msps signal to 

analog using a PCIe DAC board was described in [26]. A multiservice DIF simulator on top of NI PXI 

system is introduced in [27]. Architecture of an experimental RF simulator with FPGA and DSP is 

roughly described in [28]. 

The deployment of GPU in GNSS signal processing was already demonstrated in GPU based GNSS 

receivers. The first work, [29], was published in 2008 and it described a GPU-based tracking. The 

authors of [30] followed in 2009 with acquisition and tracking, using CUDA to program the GPU. 

Thereafter, authors of [31] published a deployment of GPU for tracking. A SW receiver with GPU 

based tracking was introduced also by [32], [33], [34] and [35]. A later version of the GPU-using SW 

receiver [29] switched later to CUDA technology as well [36]. 

In parallel to the first publication of single service version of the GPU based GNSS signal simulation 

architecture [37], which is subject of this work, another work on GPU based GNSS signal simulator 

was published [38]. As only the presentation is given in English and the paper itself in Chinese, closer 

comparison of the concepts is not possible to the author of this thesis. 
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3 GNSS Signal Simulation Theory 

3.1 Digital Signal Generation 

3.1.1 Digital Signal 

Digital representation of an analog signal characterizes the signal voltage levels as a sequence of 

digital numbers. Analog signal voltage level is a continuous variable defined at any time point. Hence, 

its complete digital representation would have to include infinite number of points with infinite 

precision.  Such a representation would not be appropriate to be processed by any real world device, 

since it would require an infinite amount of memory and infinite amount of bits per number. Sampling 

solves such a problem by taking samples at the fixed time intervals, as shown in Figure 3-1, where T 

represents the interval between two successive samples in seconds and x(t) represents the voltage level 

at time point t.  

 

Figure 3-1 Analog (continuous) signal and digital samples of voltage at the sampling time instants [39] 

For the sampling interval T, we can define the sampling rate in samples per second or equivalently in 

Hertz by 

 𝑓𝑆 =
1

𝑇
 . 

(3-1) 

A signal period of t seconds is thus represented by a series of n amplitude values, where the length of 

the series evaluates to 

 𝑛 = 𝑡𝑓𝑆. (3-2) 

Additionally, we have to represent the continuous analog signal with a sample rate, which is high 

enough so that the analog signal can be constructed from the digital series by a digital-to-analog 

converter correctly. Thus we need to set the minimum sample rate so that no unwanted signals occur 

in the desired frequency band. The sampling theorem guarantees perfect construction of the analog 

signal from its digital representation, as long as the sample rate is more than twice as large as the 

highest-frequency component fmax of the analog signal to be represented. The minimum sample rate 

must fulfill the criterion 
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 𝑓𝑆 > 2𝑓𝑚𝑎𝑥. (3-3) 

This fundamental rule is known as the Nyquist-Shannon sampling theorem. The half of the sampling 

frequency fS / 2 is called the Nyquist frequency, Nyquist limit or folding frequency. 

If the Nyquist-Shannon criterion is not fulfilled, unwanted signals called aliases will occur in the 

desired frequency band. In practice, the high frequencies that would cause aliasing need to be removed 

before sampling using a lowpass filter. When converting the digital signal to analog, the image 

frequencies occur and a reconstruction lowpass filter smoothing the recovered sample-and-hold 

voltage levels to an analog signal have to be applied after digital-to-analog conversion [39]. 

The relation of the spectrum of the sampled signal XS(f) to the original baseband spectrum X(f) of the 

analog signal is given by  

 𝑋𝑆(𝑓) =
1

𝑇
∑ 𝑋(𝑓 − 𝑛𝑓𝑠).

∞

𝑛=−∞

 
(3-4) 

Where X(f ± nfS) is the spectrum of the baseband signal in case of n = 0 and spectrum of the signal 

images in case of n ≠ 0. An example of the original spectrum of the signal is depicted in Figure 3-2 

(A). The spectrum of the respective digital signal sampled with fS > 2fmax  is depicted in Figure 3-2 (B). 

Only the part of the spectra defined by equation (3-4) for n = -1, 0, 1 is included in the figure. When 

using fS = 2fmax, the spectrum and its images are directly adjacent to each other, as depicted in Figure 

3-2 (C). In this case, a realizable lowpass filter cannot recover the signal without influencing the 

frequencies close to fmax and fmin. When using fS < 2fmax, the spectra overlap and the interval (fmax – 

(2fmax - fS), fmax) is interfered by the image signal, as depicted in Figure 3-2 (D). 

 

Figure 3-2 Spectrum of original signal (A) and sampled signal with more than sufficient sampling rate (B), 

sufficient sampling rate (C) and insufficient sampling rate (D) 
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3.1.2 Digital to Analog Conversion 

The steps of construction of the analog signal from the digital signal is illustrated in Figure 3-3. The 

digital-to-analog converter converts the digital signal samples yn(t) to the analog sampled signal yS(t). 

The hold circuit produces the sample-and-hold voltage yH(t). The hold circuit depicted in Figure 3-3 

(C) is realized according to the zero-order hold (ZOH) model. The ZOH model converts analog 

sampled signal yS(t) to continuous analog signal by holding each sample value for one sample interval. 

The hold function in ZOH model is a zero-order polynomial function, in other words the constant 

function. A far less common alternative to the ZOH is the first-order hold model, that connects the 

impulses of yS(t) with a linear function. 

 

Figure 3-3 Steps of digital-to-analog conversion of the signal. A – digital signal, B - analog sampled signal, 

C –analog sample-and-hold voltage signal, D – generated analog signal [39]. 

The zero-order hold circuit converts the sequence of modulated Dirac impulses ys(t) to the signal 

 𝑦𝐻(𝑡) = ∑ 𝑦(𝑛) ∙ 𝑟𝑒𝑐𝑡 (
𝑡 − 𝑛𝑇

𝑇
−

1

2
)

∞

𝑛=−∞

, (3-5) 

Resulting in an effective impulse response  

 ℎℎ(𝑡) =
1

𝑇
∙ 𝑟𝑒𝑐𝑡 (

1

𝑇
−

1

2
). 

(3-6) 

The transfer function of the ZOH hold circuit is given by 

 𝐻𝐻(𝑠) =
1 − 𝑒−𝑠𝑇

𝑠𝑇
, 

(3-7) 

where s = j2f. 

The frequency response of the DAC together with the hold circuit can be obtained as 

 𝐻𝐻(𝑓) = 𝑒−𝑗𝜋𝑓𝑇
sin (𝜋𝑓𝑇)

𝜋𝑓𝑇
. (3-8) 

In terms of magnitude of frequency response, we can calculate 
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 |𝐻𝐻(𝑓)| = |
sin (𝜋𝑓𝑇)

𝜋𝑓𝑇
. | (3-9) 

The magnitude frequency response shapes the sampled signal spectrum in the desired frequency band 

according to the sin(x)/x function. The positive effect is that the spectral images are attenuated due to 

the lowpass effect of the sin(x)/x function. An example of such a spectrum is depicted in Figure 3-4. 

This effect must be considered when designing a lowpass filter to remove the image frequencies from 

the generated analog signal. Detailed description of the features can be found in [40]. 

 

Figure 3-4 Example of spectrum of sampled signal [42] 

The sample-and-hold effect can be compensated using an equalizer with an opposite magnitude 

response to the response of the hold circuit. The sampling rate can be increased and combined with 

interpolation. Baseband spectrum and its images are separated farther apart and lower-order filter can 

be used. This strategy is used in designs of PCIe DAC boards.  

The digital signal yn(n) enters the DAC in form of a sequence of binary representation of each sample 

value. Each this binary represented sample consists of p bits and the number of voltage steps that can 

be represented by this binary number is 2p. The finite resolution of the sample introduces the 

quantization error, described by the equation 

 𝑒𝑞(𝑛) = 𝑦𝑛(𝑛) − 𝑦(𝑛), (3-10) 

where yn(n) represents the digital signal samples with binary precision p bits and y(n) represents the 

signal level expressed with unlimited precision.  

The quantization error is bound by half of the voltage step size. With respect to maximum amplitude 

Amax, this relationship can be defined as 

 |𝑒𝑞(𝑛)| ≤
𝐴𝑚𝑎𝑥

2𝑝2
, 

(3-11) 

where the minimum amplitude step Amin = Amax / 2
p. For a signal of sufficient length, where the step 

size is much smaller than the dynamic range of the signal samples the quantization error appears in 

uniform distribution. With respect to the theory of probability, the power of quantization noise is 

related to the quantization step in a way described by equation 
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 𝐸(𝑒𝑞
2(𝑛)) =

𝐴𝑚𝑖𝑛
2

12
, 

(3-12) 

where E() is the expectation function and Amin = 1/2p. The closer explanation of the formula can be 

found in [41]. The quantization error appears in the form of the quantization noise. Its level is typically 

described with the means of the signal-to-noise ratio (SNR). The signal to quantization noise ratio can 

be evaluated as 

 𝑆𝑁𝑅 =
𝐸(𝑦𝑛

2)

𝐸(𝑒𝑞
2)

. (3-13) 

 

Practical calculation of the SNR can be done using the root mean squared (RMS) value for expectation 

function evaluation as 

 𝑆𝑁𝑅 =
∑ 𝑦𝑛

2(𝑛)𝑁−1
𝑛=0

∑ 𝑒𝑞
2(𝑛)𝑁−1

𝑛=0

. (3-14) 

Another source of spurious signals added by DAC is the timing jitter. Depending on the quality of the 

clock input, this spurious energy is of non-linear nature and it is much lower in amplitude than the 

replicated images.  

3.1.3 Digital Signal Synthesis 

Digital to analog conversion is traditionally considered to be a part of a signal processing system, 

where analog signal is converted to digital, processed, and then converted to analog again. With the 

progress of performance of the digital processing hardware, application of digital signal in the field of 

signal generation became possible. The so called direct digital signal synthesis (DDS) have already 

replaced the traditional analog techniques in many applications with lower sample rates and 

bandwidth. The advantage of the analog techniques is the lower power consumption and less spurious 

frequencies. The older and current GPS satellites generate the signal still in analog.  

The common analog signal generation techniques include direct analog synthesis (DAS) and phase-

lock loop (PLL) method. DDS overcomes most of the problems associated with both DAS and PLL 

techniques. It is superior in terms of precision, ease of implementation and flexibility, which leads to 

its widespread use in digital communication systems [42]. In analog systems, the frequency is 

controlled with analog components, resulting in poor stability due to drift in the components, poor 

frequency resolution due to limitations in analog dials, and difficulty with digitally controlled tuning. 

Furthermore analog signal generators stray in frequency over time. Changes in temperature, humidity 

and other variables can affect the output of the analog oscillator.  

A direct digital synthesis system consists of a frequency reference clock signal, numerically controlled 

oscillator (NCO) and digital-to-analog converter. The reference clock signal is generated by a single 

crystal oscillator. The theoretical maximum output frequency of a DDS system is given by Nyquist-

Shannon theorem (3-3) to be fclk / 2. In practice, maximum frequency in the range between fclk / 2.5 and 

fclk / 4.5 is used due to limitations at the analog reconstruction filter [42]. When also the image 
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frequencies of the sampled signal spectrum at multiples of the sample rate are used, a signal with 

higher frequency can be generated. A general schema of an NCO is depicted in Figure 3-5.  

 

Figure 3-5 NCO schema 

An NCO produces at its output a discrete-time quantized version of the desired output waveform. The 

period of the waveform is controlled by the frequency control word f, which holds the phase 

increment. A phase accumulator holds the actual phase and adds the value of the frequency control 

word at each clock epoch. The accumulated phase is then used as an input in the phase-to-amplitude 

converter (PAC). The value in the accumulator ACC at clock epoch n is given by 

 𝐴𝐶𝐶(𝑛) = (𝐴𝐶𝐶(𝑛 − 1) + ∆𝑓)𝑚𝑜𝑑 2𝑁. (3-15) 

The modulo 2N arithmetic of the N-bit accumulator simulates the periodicity of the waveform being 

generated. Considering the f and ACC to be integer numbers within interval [1, 2N-1], the average 

frequency of accumulator overflow is given by 

 𝑓𝑜𝑣𝑒𝑟𝑓𝑙𝑜𝑤 = 𝑓𝑐𝑙𝑘

∆𝑓

2𝑁
. 

(3-16) 

The frequency of the output signal fout is identical to the average frequency of accumulator overflow. 

The minimum output frequency is given by f  = 1 and evaluates to fmin = fclk / 2
N. The phase increment 

of the NCO in radians can be calculated as 

 ∆𝑓−𝑟𝑎𝑑=
∆𝑓2𝜋

2𝑁
. 

(3-17) 

The signal is generated with two basic approaches. The first is called pulse output direct digital 

synthesis. In this approach, the PAC converter is either omitted, or it is realized by the most-

significant-bit (MSB) function or the carry (i.e. overflow) bit function. As a result, the sawtooth, 

rectangular, or pulse waveforms are generated respectively. Other waveforms are then generated from 

these basic patterns. 

The second approach is the usage of a lookup table. The PAC is implemented as a look-up table with 

2M waveform samples as items. The accumulated phase value is used as an index into the waveform 

lookup table. Resulting amplitude sample is represented by P bits. The waveform period is determined 

by the frequency control word and the clock frequency.  
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The phase truncation from N to M bits is needed, because the size of the look-up table can be the 

major design issue of the DDS system. Therefore, there is a need to limit the memory sources 

consumed by the NCO. When a sine waveform is generated by the NCO, the phase truncation causes 

the output signal sequence to be formed as follows 

 𝑆𝑡(𝑛) = sin (
2𝜋

2𝑀
𝑖𝑛𝑡𝑒𝑔𝑒𝑟 𝑝𝑎𝑟𝑡 [

∆𝑓𝑛

2𝑁−𝑀]). 
(3-18) 

If M < N and f < 2N-M, the DDS system produces a frequency that is biased. Every so often, the 

accumulator output does not advance; the lookup table causes the DAC to deliver the same voltage as 

on the previous clock cycle. The phase is thus held back by 2/ 2M radians before continuing to 

increase.  

3.1.3.1 Spurious Components due to Truncation of Phase 

The truncation of the phase output word to M bits does not affect the frequency accuracy itself, but 

produces a time-varying periodic phase error, which is the primary source of spurious products. This 

phase error has a form of phase modulation with a periodic sawtooth waveform [42]. The location of 

the spurs caused by the phase truncation occurs at integral multiples of fspur given by 

 𝑓𝑠𝑝𝑢𝑟 =
𝑓𝑐𝑙𝑘∆𝑓

2𝑁−𝑀
− 𝑘𝑓𝑐𝑙𝑘, 𝑘 ∈ ℤ. 

(3-19) 

The first harmonic spur is typically the strongest one. The more the phase gets truncated and M 

decreases, the closer spurs move to the ideal signal. The spurs closely adjacent to the target signal are 

harder to filter out. 

Let broadband GNSS signal generation system introduced later in this work in section 5.5 serve as an 

example. The configuration of such a DSS system generates signal with bandwidth of ca. 427 MHz 

with fclk = SR = 1.4 Gsps. For simplicity, only E5ab with intermediate frequency (IF) of 51.15 MHz 

and L1 with IF of 434.775 MHz are considered. The NCO is implemented using N = 32 bits for the 

accumulator and for the frequency control word. The PAC is realized using a special hardware circuit 

operating on floating point numbers with precision of 24 bits. The first harmonic spur caused by the 

phase truncation is then placed at 7.9 × 1015 Hz and at 8.5 × 1014 Hz for L1 and E5 respectively. First 

the spurs of the order k > 106 approach the target bandwidth, week enough not to harm the signal of 

interest. 

Let the broadband GNSS signal generation be considered further on. When a PAC with lower 

resolution was used, the spurs would get closer to the signal. Let  M  {8, 7,  6, 5, 4, 3, 2} and the 

order of the spurs k  {-5, …, 0, …, 5}.  

The spurs occurring close to the target bandwidth are depicted in Figure 3-6. The L1 and E5 GNSS IF 

signal bands are visualized as areas with proportional bandwidth; their respective spurs are given as 

stems. The spurs of the signals are labeled with b denoting the number of bits of PAC resolution M 

and with k denoting the order of the spur. The figure shows that first with M = 6, the spurs would 

occur near to and with M = 5 within the signal band. In this case they could not be filtered out 

effectively.  
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Figure 3-6 Example of spurious products caused by NCO phase truncation (fclk = 1.4 Gsps,  b - bits of PAC 

resolution, k - order of the spur) 

3.1.3.2 Spurious Components due to Truncation of Amplitude 

The next source of spurious product is the finite word length effects of the PAC output (amplitude) 

word [43]. The word length P of the PAC output is typically equivalent to the number of quantization 

levels for the DAC. The quantization to DAC format can also be done after mixing of multiple 

channels before input into DAC. This truncation introduces distortion and for periodic signals, this 

distortion consists of harmonic spurious frequency components [42]. The DAC resolution can be 

improved by oversampling, but it will lead to the need for a clock several times faster than the 

minimum clock frequency fclk.  

Considering the example of the broadband signal generation defined above and in detail in section 5.5, 

the amplitude is calculated with special hardware circuit with 21.19 bits precision. The DAC proposed 

in section 8.1 features resolution of 14 bits and it oversamples the digital signal four times to the target 

speed of 5.6 Gsps. The distortion caused by amplitude truncation by NCO and DAC is therefore low. 

More severe amplitude truncation is caused by addition of high number of GNSS signal channels to 

common broadband signal, which is analyzed in section 6.4.  

3.1.3.3 Spurious Components Due to Periodic Jitter 

The next source of the spurious components in the generated signal is the periodicity of values in the 

accumulator given by the size N of the accumulator and the value of the frequency control word f. If 

for the given f an integer value k exists so that kf  = 2N, then each period of the waveform stored in 

the look-up table will be generated as the same sequence of sample values. 

As an example, let f = 2 and N = 3. Then the phase values in accumulator will be (0, 2, 4, 6), (0, 2, 4, 

6) and so forth. After four clock cycles, the accumulator will reach the zero value again. Now let f = 

3. Then the phase values in the accumulator will be (0, 3, 6), (1, 4, 7), (2, 5), (0, 3, 6) and so forth. The 

zero value in accumulator will be reached after three periods of the waveform in the lookup table. This 

will create a spurious signal with frequency fspur, which evaluates to the third of the target output 

frequency fout = 3/8fclk.  



3 GNSS Signal Simulation Theory 

40 

 

The general location of the spurious components caused by the periodic jitter is given by 

 𝑓𝑠𝑝𝑢𝑟 = 𝑘
gcd (∆𝑓 , 2𝑁)

2𝑁
𝑓𝑐𝑙𝑘 , 𝑘 ∈ ℤ, 

(3-20) 

where gcd() denotes the greatest common divisor of two integer numbers. 

Let the broadband GNSS signal generation defined in section 5.5 serve again as an example. The 

gcd(f L1 , 2
N ) = 8, and the gcd(f L1 , 2

N ) = 1. The frequency of the spurs is very low and the first 

dozens of the spurs are placed very close above 0 Hz. They can be easily removed by a highpass filter. 

The GNSS signals generated by a simulator nevertheless vary in frequency due to the Doppler Effect. 

The Doppler frequency shift ranges from ca. -10 kHz to 10 kHz for low dynamic scenarios. The 

frequency control word of the NCO contains a different value for each Doppler setting. Each 

frequency control word value causes different spurs due to periodic jitter.  

In this NCO, only the Doppler frequency value fD = -8082 Hz for L1 IF features so high gcd(f L1+ fD , 

2N ) = 8,388,608 that any of the first ten spurs is located above 1 MHz and therefore close to the lowest 

defined IF GNSS frequencies. The first ten spurs of this Doppler frequency are depicted in Figure 3-7. 

In case of the E5ab signal generation, none of the Doppler frequencies within the 10 kHz range cause 

any of the first ten spurs to occur close to the defined IF GNSS band.  

 

Figure 3-7 Example of spurious products caused by periodic jitter of NCO (fclk = 1.4 Gsps, L1 spurs:  fD =  

-8082 Hz , k - order of the spur) 
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3.1.3.4 Performance of Direct Digital Synthesis Systems 

The previous analysis of the phase truncation spurs and periodic jitter spurs showed, that the spectral 

characteristic of a DDS system are dependent on the values of the NCO variables. A change of the 

desired output frequency fout and therefore of the frequency control word f has following effects. The 

amplitude of the desired output signal changes its magnitude with the sin(x)/x characteristic, as 

showed in Figure 3-4. The reason is the ZOH circuit in the DAC. The next effect is that the different 

frequency control word causes the spurious components to occur at different frequencies and with 

different amplitudes. These two effects combined, i.e. amplitude of desired signal changes and spurs 

change, cause change in the relative difference between the desired signal and spurs, which causes a 

change of the spurious-free dynamic range (SFDR) of the system.  

The spectral purity and sideband noise are the major drawbacks of the DDS systems. The main 

sources of spurious signals are the phase truncation, amplitude truncation, periodic jitter spurs and the 

DAC non-linearities (ZOH circuit effect, quantization error and timing jitter). The description of these 

sources of spurious signals was given in previous sections. The stability of the output frequency is 

actually slightly better than the clock frequency since some integration of the timing jitter occurs over 

several clock pulses.  

The other limitation of the DDS systems is the available bandwidth. With respect to the Nyquist 

theorem and practicability for filter application, the signal lowpass bandwidth is two and a half to four 

times lower than the clock frequency. The issue is on one hand the speed of the digital signal 

generation NCO depending on the speed of the underlying hardware. The bandwidth of the DDS 

system is also dependent on the performance of the DAC. There are only a few DACs on the market 

with speed exceeding 1 GHz. Earlier, the main difficulty was considered to be the accuracy of the 

high-speed DAC rather than the inherent non-linearities of the DAC [43]. In the digital part of the 

DAC and the whole DDS system, it is possible to predict the exact nature of the spurs and quantify the 

effects for deterministic signals. GNSS signals are varying in Doppler, in number of channels in sight 

and in their relative power. As a result, a high number of scenarios of occurrence of spurs must be 

considered. In the analog part of the DAC the accurate quantification and prediction is not feasible 

[42].  

3.2 GNSS Signal Simulation 

The computational tasks included in digital part of a general GNSS signal simulator can be grouped to 

three basic modules. The simulation definition part computes an epoch based description of the user 

scenario, the signal definition module computes the signal parameters for each channel and the signal 

generation module generates the digital signal described by the signal parameters. Detailed description 

of signal simulator architecture is given in Chapter 4. The description of tasks of the simulation 

definition part is given in this section.  

The user input of a simulator comprises description of satellite positions in form of almanac and 

ephemerides, input of simulation start time and duration, receiver position, speed and trajectory 

together with optional settings of features of the propagation channel. The description of satellite 

orbits and user position and time need to be processed to satellite-to-receiver range and to pseudorange 

length. 
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3.2.1 Receiver Position Computation 

The receiver position is input to a simulator typically in form of geodetic coordinates in the WGS-84 

ellipsoid. The geodetic coordinates are given by longitude  in grades, latitude  in grades and height 

h in meters above ellipsoid. The relationship between Cartesian ECEF coordinates and the geodetic 

coordinates is visualized in Figure 3-8. The following transformation procedure is based on [44]. 

 

Figure 3-8 Relationship between Cartesian coordinates [x, y, z] and geodetic coordinates [h], [44]  

The geodetic longitude is an angle between the x-axis and the projection of the meridian to the 

equatorial plane. The relationship between geodetic latitude and the Cartesian coordinate system is 

more complex. The distance from P to P’, which is the length of the normal to the meridian ellipse, 

gives the height h. Prolonging the normal from P’ to the crossing Q with the z-axis, we get the vector 

with length N. The angle between this vector and the equatorial plane gives the latitude  The distance 

N is important for definition of the transformation of the geodetic coordinates to Cartesian coordinates 

and it is calculated as 

 𝑁 =
𝑎

√1 − 𝑒2 sin2 𝜙
. (3-21) 

The Cartesian coordinates [x, y, z] are computed from geodetic coordinates by 

 [
𝑥
𝑦
𝑧

] = [

(𝑁 + ℎ) cos 𝜙 cos 𝜆

(𝑁 + ℎ) cos 𝜙 sin 𝜆

(𝑁(1 − 𝑒2) + ℎ) sin 𝜙

]. (3-22) 

The inverse transformation from Cartesian coordinates to the geodetic coordinates follows an iterative 

scheme. First, the longitude is computed in a closed form easily by 

 tan 𝜆 =
𝑦

𝑥
. (3-23) 

The geodetic latitude and the height over ellipsoid are computed iteratively in the following manner. 

First, the equation for the height is built. The equation (3-22) for x and y can be combined to the 

following relationship 
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 √𝑥2 + 𝑦2 = (𝑁 + ℎ) cos 𝜙. 
(3-24) 

The equation can be also obtained from geometric description of the right triangle created from vector 

QP and z-axis. The height is then given by 

 ℎ =
√𝑥2 + 𝑦2

cos 𝜙
− 𝑁. 

(3-25) 

Second, the equation for latitude is built from equation for coordinate z in (3-22) by division of each 

side of the equation by the respective left side and right side terms from (3-24) as 

 
𝑧

√𝑥2 + 𝑦2
= (1 − 𝑒2

𝑁

𝑁 + ℎ
) tan 𝜙. (3-26) 

The latitude is then computed from the equivalent expression as 

 
tan 𝜙 =

𝑧

√𝑥2 + 𝑦2(1 − 𝑒2 𝑁
𝑁 + ℎ

)
. (3-27) 

The iterative computation scheme starts with setting h = 0 and evaluation of (3-27). The next loop of 

the iteration evaluates the height h by (3-25) and the latitude  by (3-27). This step is repeated, till the 

improvement of the values is lower than a given threshold.  

For height h significantly lower than N the value quickly converges. For large h or  close to /2 other 

procedures are recommended [45].  

3.2.2 Satellite Position Computation 

The orbit description in form of almanac and ephemerides needs to be reprocessed to earth-centered 

and earth fixed (ECEF) coordinates. The almanac describes the satellite orbit as Keplerian orbit 

elements. The six Keplerian orbit elements a, e, , , i, and m describe the orbit ellipse and position 

of the satellite at the time of ephemeris toe, as depicted in Figure 3-9. The axes X of the ECEF 

coordinate system are based in the center of Earth C. The axis X points towards the intersection 

between meridian 0° (Greenwich meridian) and the equator. The axis Z crosses the geographical north 

pole of the Earth (equivalent to the Earth spin axis). The axis Y is orthogonal to axes X and Z and 

forms a right-handed coordinate system.  

The ellipse of the satellite orbit is defined by semimajor axis a, and eccentricity e. The satellite orbit 

forms an orbit plane, which crosses the equator plane at so called nodal line. The point K at the nodal 

line crossed by the satellite S on the way from the southern half space to the northern half space 

separated by equatorial plane is called ascending node. The angle between the axis X and the 

connection between ascending node K and the Earth center is called right ascension of the ascending 

node .  

The earth is place in one of the foci of the ellipse. The endpoint on the major axis closer to the Earth 

center C is called perigee and denoted P in the figure. The angle between K and the perigee P is called 
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argument of perigee . It increases counterclockwise perceived from the positive axis Z. The angle 

between the equatorial plane and the orbit plane is called inclination i.  

 

Figure 3-9 Kerplerian orbit elements of satellite S at the orbit around Earth center C 

The angle between argument of perigee P and the satellite position is called true anomaly and denoted 

f in Figure 3-9. The position of the satellite in the orbit at the time of ephemeris toe is nevertheless 

given in the almanac by the mean anomaly m. The mean motion correction m is given in almanac to 

describe the satellite position. In the GPS data message, following ephemerides are transmitted [47]: 

Parameter Meaning, [units] 

toe Reference time of ephemeris as GPS time of week 

√𝒂 Square root of semimajor axis in [m] 

e Orbit eccentricity 

i Inclination angle (at toe) in [semi-circles] 

 Right ascension of the ascending node  in [semi-circles] 

 Argument of perigee (at  toe) in [semi-circles] 

m Mean anomaly (at  toe) in [semi-circles] 

∆𝐢 Rate of change of inclination angle in [semi-circles/s] 

∆𝛀 Rate of change of right ascension of the ascending node in [semi-circles/s] 

m Mean motion correction in [semi-circles/s] 

m Rate of mean motion difference from computed value [semi-circles/s2] 

Cus, Cuc Amplitude of sine and cosine correction to argument of latitude in [rad] 

Crc, Crs Amplitude of sine and cosine correction to orbital radius in [rad] 

Cic, Cis Amplitude of sine and cosine correction to inclination angle in [rad] 

Table 3-1 GPS ephemeris parameters  
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The position of satellite S in ECEF coordinate system at time t is computed from the almanac data in a 

sequence of equation. First, the time epoch from time of ephemeris is set as tk = t - toe. The mean 

anomaly at time tk is computed as 

 𝑚𝑘 = 𝑚 + (√
𝜇

𝑎3
+ ∆𝑚 + 0.5𝛿∆𝑚𝑡𝑘) 𝑡𝑘 , 𝜇 = 398600.5 × 108𝑚3/𝑠3. (3-28) 

The eccentric anomaly is then computed iteratively from the mean anomaly as follows 

 𝑚𝑘 = 𝐸𝑘 + 𝑒 sin 𝐸𝑘 . (3-29) 

The true anomaly is then evaluated from equations 

 sin 𝑓𝑘 =
√1 − 𝑒2 sin 𝐸𝑘

1 − 𝑒 cos 𝐸𝑘
 and cos 𝑓𝑘 =

cos 𝐸𝑘 − 𝑒

1 − 𝑒 cos 𝐸𝑘
. 

(3-30) 

Both equations are necessary, so as to compute the true anomaly in the correct quadrant. The argument 

of latitude is evaluated as k = fk + . The corrected argument of latitude is computed as 

 u𝑘 = ϕ𝑘 + 𝐶𝑢𝑠 sin(2𝜙𝑘) + 𝐶𝑢𝑐 cos(2𝜙𝑘). 
(3-31) 

The corrected radius is computed as 

 r𝑘 = 𝑎(1 − 𝑒 cos 𝐸𝑘) + 𝐶𝑟𝑠 sin(2𝜙𝑘) + 𝐶𝑟𝑐 cos(2𝜙𝑘), (3-32) 

And the corrected inclination is given by 

 i𝑘 = 𝑖 + Δ𝑖𝑡𝑘 + 𝐶𝑖𝑠 sin(2𝜙𝑘) + 𝐶𝑖𝑐 cos(2𝜙𝑘). (3-33) 

The corrected right ascension of the ascending node at tk is computed as 

 Ω𝑘 = Ω + (ΔΩ − ΔΩe)𝑡𝑘 + ΔΩe𝑡𝑜𝑒 , (3-34) 

Where e denotes the rotation rate of the Earth. The value is set for GPS [47] to be 7.2921151467 × 

10-5 rad/s, which is equal to WGS-84 value used for navigation. The ECEF coordinates of the satellite 

S are then computed as 

 𝑥𝑠 = 𝑟𝑘 cos 𝑢𝑘 cos Ω𝑘 − 𝑟𝑘 sin 𝑢𝑘 cos 𝑖𝑘 sin Ω𝑘 , 

𝑦𝑠 = 𝑟𝑘 cos 𝑢𝑘 sin Ω𝑘 + 𝑟𝑘 sin 𝑢𝑘 cos 𝑖𝑘 cos Ω𝑘 , 

𝑧𝑠 = 𝑟𝑘 sin 𝑢𝑘 sin 𝑖𝑘 . 

(3-35) 

3.2.3 Pseudorange Computation 

The satellite position at a given time is computed from the input satellite orbit description. The true 

receiver time is set by the user. The transmission time ttr for the signal received at a given time trec is 
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not known. In order to calculate the range and pseudorange between the satellite and the receiver 

position, the transmission time ttr must be calculated. The true range is the distance between the 

satellite position at time ttr and the receiver position at time trec. The calculation of transmission time ttr 

can be solved by the iterative method. 

First, the starting transmission time in the first iteration ttr,0 can be set to be equal to the receiver time 

trec. Then the position of the satellite psat expressed in ECEF coordinates is evaluated for the receiver 

time from the orbit description and 

 𝑝𝑠𝑎𝑡(𝑡𝑡𝑟,0) = 𝑝𝑠𝑎𝑡(𝑡𝑟𝑒𝑐) (3-36) 

The range between the satellite position psat and receiver position prec is calculated as 

 𝑟0 = |𝑝𝑠𝑎𝑡(𝑡𝑡𝑟,0) − 𝑝𝑟𝑒𝑐(𝑡𝑟𝑒𝑐)|, (3-37) 

Or equivalently as 

 𝑟0 = √
(𝑥

𝑠𝑎𝑡
(𝑡𝑡𝑟,0) − 𝑥𝑟𝑒𝑐(𝑡𝑟𝑒𝑐))

2
+ (𝑦

𝑠𝑎𝑡
(𝑡𝑡𝑟,0) − 𝑦

𝑟𝑒𝑐
(𝑡𝑟𝑒𝑐))

2

+(𝑧
𝑠𝑎𝑡

(𝑡𝑡𝑟,0) − 𝑧𝑟𝑒𝑐(𝑡𝑟𝑒𝑐))
2

.
 

(3-38) 

The computed range is adjusted by the travel time error rtravel in [m], so as to get the real travel time 

of the signal in meters as 

 𝜌0 = 𝑟0 + 𝛿𝑟𝑡𝑟𝑎𝑣𝑒𝑙 . (3-39) 

The travel time error is calculated as ionospheric and tropospheric error for given ttr,0 and trec between 

satellite position psat(ttr,0) and receiver position prec(trec) using the respective ionospheric and 

tropospheric models. 

The next iteration of the computation starts with the approximated transmitting time calculated from 

the traveling time of the signal as 

 𝑡𝑡𝑟,1 = 𝑡𝑟𝑒𝑐 −
𝜌0

𝑐
, (3-40) 

where c denotes the speed of light in vacuum. The new transmitting time value is then applied to the 

equation (3-37) in the next iteration to compute the range as 

 𝑟1 = |𝑝𝑠𝑎𝑡(𝑡𝑡𝑟,1) − 𝑝𝑟𝑒𝑐(𝑡𝑟𝑒𝑐)|. (3-41) 

The value of the transmission time is refined in each iteration till the difference between the last and 

the current range becomes less than a defined threshold. The computation is finished when the 

following condition holds: 
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 𝑟𝑑𝑖𝑓𝑓,𝑚𝑎𝑥 ≥ |𝑟𝑖 − 𝑟𝑖−1|. (3-42) 

During the iterative computation of the transmission time, the satellite position at ttr is either computed 

from the orbit description with the method described in previous section or interpolated between two 

analytically computed satellite position values. 

With addition of receiver clock error trec, the satellite clock error tsat, and the travel time error 

ttravel  =  rtravel/c, the pseudorange between the satellite and the receiver can be calculated as 

 𝜌 = 𝑟 + (𝛿𝑡𝑟𝑒𝑐 − 𝛿𝑡𝑠𝑎𝑡 + 𝛿𝑡𝑡𝑟𝑎𝑣𝑒𝑙)𝑐. (3-43) 

In this computation method the relativistic effect is neglected.  

3.2.4 Azimuth and Elevation 

The azimuth and elevation of each satellite serves for computation of atmospheric signal delays. For 

application of elevation mask and any more complex multipath modelling scheme, the azimuth and 

elevation of satellites relative to receiver position are also necessary. The elevation angle  and 

azimuth  are defined as angles in local coordinate frame [E, N, U] of the receiver P as depicted in 

Figure 3-10. 

Such a coordinate frame is called a local-level system or east-north-up (ENU) system. So as to get the 

expected azimuth relative to the north direction and elevation angle relative to the zenith direction,  

one axis points to the north, one upwards and the third is perpendicular to the two so as to form a right 

hand coordinate system. The transformation between the ECEF coordinates and the ENU coordinates 

is actually a transformation between two Cartesian coordinate systems. When two such systems have 

the same origin and are both right-handed, the transformation is just a series of three rotations around 

x-axis, y-axis and z-axis.  
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Figure 3-10 Azimuth () and elevation angle () of a satellite S in the local coordinate system of receiver P 

Let the positive rotation around axis a be defined as counterclockwise when looking toward the origin 

from the positive end of the axis a. The rotation of vector pA around x-axis by angle  is then defined 

by rotation matrix R1 as follows 

 𝑝𝐵 = 𝑹𝟏(𝜃)𝑝𝐴, 𝑹𝟏(𝜃) = [
1 0 0
0 cos 𝜃 sin 𝜃
0 −sin 𝜃 cos 𝜃

]. (3-44) 

The rotation around y-axis by angle  is then defined by rotation matrix R2 as follows 

 𝑝𝐵 = 𝑹𝟐(𝜃)𝑝⃗𝐴, 𝑹𝟐(𝜃) = [
cos 𝜃 0 − sin 𝜃

0 1 0
sin 𝜃 0 cos 𝜃

]. (3-45) 

The rotation around z-axis by angle  is then defined by rotation matrix R3 as follows 

 𝑝𝐵 = 𝑹𝟑(𝜃)𝑝𝐴, 𝑹𝟑(𝜃) = [
cos 𝜃 sin 𝜃 0

−sin 𝜃 cos 𝜃 0
0 0 1

]. (3-46) 

In order to determine the transformation from ECEF to ENU, we have to find out the rotation angles 

that would bring the axes into coincidence. For this procedure, the transformation of the position of the 

receiver in Cartesian coordinates need to be transformed to geodetic coordinates [ h] with 

procedure described in previous section  When we start the procedure with the rotation about the x-

axis, we will need to rotate by an angle (+ 90°). The x-axis is now directed in the same way as the 

east axis in the ENU system. Then the next rotation is done around the z-axis by an angle (90° - ). 

There are also alternative series of rotations with the same result. The ECEF and ENU coordinate 

systems do not have the same origin, therefore the rotation must be preceded by a subtraction of the 

vector connecting the origins of the systems from the point to be transformed.  
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In the ENU coordinate system the elevation angle  and azimuth  described in Figure 3-10 are 

computed easily. Elevation angle is given by 

 tan 𝛾 =
𝑈

√𝐸2 + 𝑁2
. (3-47) 

Azimuth is given by  

 tan 𝛼 =
𝐸

𝑁
. 

(3-48) 

3.2.5 Clock Error 

The key payload of a GNSS satellite is the precise atomic clock. It controls all onboard timing 

operations and the broadcast signal generation. Despite the effort to deploy a highly stable clock, 

correction data is needed to compute precise position solution. In GPS NAV message the clock 

correction fields can hold a deviation as large as 1 ms [46], which translates to a 300-km pseudorange 

error.  

The satellite clock error tsat is the effective code phase offset of a satellite referenced to the phase 

center of the antenna with respect to GPS system time at the time of data transmission. The clock error 

is described in the data message of the GNSS signal service and defined in ICD [47]. In the GPS NAV 

message, three coefficients for the polynomial defining the clock offset are broadcasted. This 

estimated correction accounts for the deterministic clock error characteristics of bias, drift and aging 

together with the group delay bias and mean differential group delay. The coefficients do not account 

for the relativistic effects, which must be computed internally. The clock offset is given by the 

function 

 𝑡 = 𝑡𝑠𝑎𝑡 − 𝛿𝑡𝑠𝑎𝑡 . (3-49) 

The parameter t stands for GPS system time, tsat is effective code phase time at message transmission 

time and tsat is the code phase time offset. All three parameters are expressed in seconds. 

The code phase time offset is computed using the coefficients and the age of the coefficients in the 

message as 

 𝛿𝑡𝑠𝑎𝑡 = 𝑎𝑓0 + 𝑎𝑓1(𝑡 − 𝑡𝑜𝑐) + 𝑎𝑓2(𝑡 − 𝑡𝑜𝑐)2 + 𝛿𝑡𝑟𝑒𝑙 , (3-50) 

Where af0, af1 and af2 are the coefficients of the second-order polynomial. Parameter toc is the clock 

data reference time in seconds. In the equation additionally the trel is applied. It stands for the 

relativistic correction term expressed in seconds. The term is given by 
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 𝛿𝑡𝑟𝑒𝑙 = 𝐹𝑒√𝐴 sin 𝐸, 
(3-51) 

Where e, A and E stand for eccentricity, semimajor axis and eccentric anomaly of the orbit of the 

satellite, while F is a constant with value of -4.4428 × 10-10 computed from Earth’s gravitational 

parameter  and speed of light c as 

 𝐹 =
−2√𝜇

𝑐2
. 

(3-52) 

The equations (3-49) and (3-50) are interdependent and cannot be evaluated separately. In the ICD, the 

recommendation is given to set t to the value of tsat. Then the equation (3-50) can be solved and the 

clock error value can be applied to the pseudorange calculation given by (3-43).  

In a simulator, different model can be taken for broadcasted and true simulated clock error. The NavX-

NCS simulator by IFEN GmbH generates the clock error with second-order polynomial as defined in 

(3-50) and optionally adds residual satellite clock errors. The broadcasted clock error is dithered by 

three different random processes describing the stability of a frequency standard in the time in the 

form of the Allan deviation. The random processes are given by the parameters for the phase white 

noise, frequency white noise and frequency random walk. The procedure of derivation of the true 

clock error from the broadcast data have disadvantage of abrupt change of clock behavior in case of 

broadcast clock parameter update [48]. 

3.2.6 Multipath Signal 

Multipath effect is a significant contributor to the measurement error in GNSS receiver. It occurs, 

when the signal incoming to receiver is mixed with reflected or diffracted replicas of the satellite 

signals. Since the reflected and diffracted signal path is always longer than the direct path, the 

reflections are delayed relative to the direct signal arrival. Multipath signal is thus a signal composed 

of a direct signal called line-of-sight (LOS signal) and a number of delayed reflections of the direct 

signal. Mathematically it can be described as 
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 (3-53) 

In the equation, N is number of multipath reflections, C(t) stands for the spreading code with data bits, 

A0(t) is the amplitude attenuation of the direct path and An(t) are the amplitude attenuations of the 

multipath returns. Symbol 0 stands for the carrier phase of the direct path and n is the carrier phase 

of each multipath return. The propagation delay of the direct path is given by0, the n is the 

propagation delay of each multipath return, f is carrier frequency of the direct path and the fn is the 

received frequency of each multipath return.  

The parameters in (3-53) vary in time due to the motion of satellites, receiver and objects in the 

surrounding that act as reflectors. For sake of readability, this variation is not explicitly expressed in 

the equation. As well as the later reflections, the LOS signal can be attenuated by shadowing or even 

not visible, so that the first coming signal is already a reflection.  
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Improvements in the GNSS system and addition of augmentation solutions have reduced many 

sources of system errors and improved modelling of global propagation errors. These improvements 

left multipath and shadowing be in many cases the dominant contributor to the measurement error. 

When the delay of the reflections relative to the LOS signal is larger than twice the chip length, 

receiver can easily separate the LOS signal and reflection correlation peaks. As long as the LOS signal 

is tracked, the multipath has in this case little effect on the receiver measurement precision. When the 

multipath is caused by near-by objects or when reflecting at distant object with grazing angle of 

incidence, reflections with short delays can occur. Such reflections distort the correlation function 

between the composite signal and the replica and introduce errors in code and carrier measurements 

and results in range errors of up to a chip length equivalent.   

Even more sever measurement error can occur, when the LOS signal is obstructed or shadowed. 

Shadowing is excess attenuation of the direct path causing LOS signal to be weaker than the multipath 

reflections. This situation can occur in both indoor and outdoor scenarios.  
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4 Simulation of Multipath GNSS Signal 

Multipath is a significant propagation error influencing the precision of satellite to receiver range 

measurement. Algorithms for effective mitigation are still being developed and sensitivity of receivers 

to this error examined. The multipath signal generation is therefore an important simulator capability. 

All other simulated errors and effects can be expressed in terms of basic signal parameters – phase, 

frequency and amplitude of carrier and code. The multipath effect is an exception, as the multipath 

signal reflections are independent signal channels with their own phase, frequency and amplitude 

relative to the line-of-sight signal parameters. 

Various models of the multipath exist with various level of simplification of the general multipath 

description given in section 3.2.6. The traditional approaches characterizing multipath focus on the 

security relevant outdoor scenarios, especially the airborne applications (e.g. [49]). Later, the land 

mobile applications spread and multipath has grown in relevance. In GNSS positioning, the extension 

of signal reception to indoor scenarios stressed the need for multipath mitigation solutions.  

This development was caused by increase in sensitivity of GNSS receivers. In the mid-2000s, the 

sensitivity of commercial GPS chips improved by 25 dB or more. Starting with the SiRF Star IV 

chipset generation from CSR, signals as weak as -193 dBW could be tracked [50]. Contribution to this 

development was also made by the Assisted-GPS. This service makes it possible to download the 

ephemeris data in advance over the cell-phone channel instead of reading them from the GNSS 

message. The acquisition of the signal is then possible with lower C/N0.and acquisition time is 

shortened [46]. Thanks to these solutions and numerous other technologies, the way for extension of 

focus of multipath mitigation from harsh outdoor environment, urban canyons and tree foliage, 

towards indoor environment was paved. 

It needs to be mentioned that in a realistic indoor scenario not only effects caused by propagation in 

the indoor environment need to be taken into account, but the effects happening outdoors before the 

signal enters the building must be taken into account as well. In the outdoor environment the effects 

are in general multipath propagation, obscuration and diffraction by near and far objects. In indoor 

environment the power loss at wall transmission and multipath reflection on indoor objects are the key 

obstacles for precise position fix. Therefore a realistic simulation of GNSS in indoor environment 

should represent all these significant sources of signal impairments. 

Numerous commercial simulators from middle to top-end solutions feature the generation of multipath 

effect. The overview is given in Table 2-2 in Chapter 2 GNSS Signal Simulators. The simplest 

approach offered e.g. by older Spirent simulators is the manual allocation of individual signal channels 

to individual multipath reflections, where the user needs to generate multipath parameters on his own. 

Such an attitude allowed users to describe any specific case of multipath, e.g. the typical airborne 

reflections from the wings and ground reflections during landing.  It is nevertheless unpractical for the 

user in land mobile applications, such as a cell phone usage. The tests required to verify the 

positioning performance of the handset should include a wide set of different environments. The 

variability of the environment in time due to user’s dynamics would need many short tests for each 

site.  

Higher level solutions offer a statistical multipath model for outdoor environment. For Spirent devices 

the solution published in [51] applied the wideband Land Mobile Satellite model [52]. Furthermore, 
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the deployed Spirent simulator offered a simulation of signal impairments caused by environment 

using an obscuration mask. An obscuration mask describes a user defined environment in form of a 

mask of azimuth and elevation bins. The bins state where is placed which type of obscuration. 

Reflections are automatically generated and allocated to signal channels before the signal generation 

starts. For the whole simulation period, a single static setting of channels is applied. 

Another solution or refinement to other multipath simulation methods arises for the user by the use of 

antenna gain pattern modeling. This feature is available in most GNSS simulators. The gain pattern 

attenuates all signals including echoes and is independent of user dynamics. It is suitable for 

simulation of the effect of head shading or effect of car roof over a receiver. 

The support for multipath simulation in commercial simulators is focused on outdoor environment. 

Such support is less suitable for indoor environment, because there the multipath effects evince 

significant differences to outdoor environment. In buildings, the obstacles causing reflection are 

numerous, very variable and they are placed in low distance to the receiver. Both the signals 

penetrating the obstacles and the reflections reach the receiver. The result is a high and dynamic 

number of different reflections with dynamic behavior even for a static receiver caused only by the 

satellite motion. This can hardly be covered by the solutions for outdoor environment. A static set of 

reflections for whole simulation period would be a clear disadvantage. Also the limited number of 

channels in commercial hardware simulators limits the number of reflections more or less 

significantly. The environment mask applied for initialization of reflection rays does not account well 

for dynamics of indoor environment. 

The work described in this chapter was a part of a larger project focused on Indoor positioning (called 

INDOOR in this text). In the framework of the project, theoretical models and measurement 

campaigns were performed for the characterization of the GNSS signal in indoor environment and 

development of positioning solutions [53].  

The objective of this chapter is the combination and parametrization of the models and measurement 

results obtained within the project so as to implement a realistic high-speed indoor GNSS signal 

simulation in the institute’s own DIF signal generator introduced in [26]. The simulated indoor signal 

is compared to a real scenario to evaluate its performance. 

4.1 The Model Chain for Characterization of Indoor Environment 

A satellite signal propagates from a satellite into a building through different environments. The 

environment where multipath occurs can be divided into three types. The first is the outdoor 

environment with far reflectors and obstacle shadowing. The second is the propagation through 

building walls that attenuates the signal significantly. The third is indoors, where the near obstacles 

cause numerous reflections.  

A realistic characterization of the indoor GNSS signal for signal simulation should take these effects 

into account. For this purpose, a combination of multiple models to a model chain is proposed. It 

represents the three environment types as depicted in Figure 4-1  

The outdoor environment is described with the modified narrowband Land Mobile Satellite (LMS) 

model [54], already implemented in the institute’s own DIF signal generator. The transmission 

through walls is modeled using the results from [55] developed within the INDOOR project. The 

characteristics of reflections in indoor environment are given by satellite-to-indoor channel model 
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developed within the INDOOR project and introduced in [56]. It is a modified version of the Saleh-

Valenzuela model proposed in [57].  

R

Outdoor: Modified LMS Model

Indoor: 

Channel 

Model

Wall Transmission 

Model

 

Figure 4-1 Model chain for characterization of the satellite-to-indoor channel 

4.1.1 Modified Land Mobile Satellite Model 

The description of the outdoor environment is realized by the narrowband Land Mobile Satellite 

(LMS) model developed at the German Aerospace Agency [54]. The model describes signal fading 

due to multipath for L-band frequencies. A narrowband version [54] and a wideband version [52] of 

this model exist, the narrowband version was chosen by the authors of the institute’s own DIF 

generator. It is a two-state model classifying every epoch as a line-of-sight (LOS) state or a non-LOS 

state respective to each satellite. These two states are switching according to a Markov process. In 

LOS states, the fading is described by a Rician process, in non-LOS by a Rayleigh process. 

The LMS model is combined with the computation of phase rotations of the fading signal by means of 

the Jakes function, introduced in [58]. The scheme of the concept is given in Figure 4-2. The resulting 

model, here called modified LMS model, had been proposed and deployed in the institute’s own DIF 

generator by its authors.  

 

Figure 4-2 Modified LMS model for outdoor environment 

4.1.2 Wall Transmission Model 

To characterize the transmission of the signal from outdoor environment into indoor environment, the 

results of characterization and measurements of transmission of GNSS signal through walls presented 
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in [55] were adapted. The model computes simplified geometrical propagation through architecture, 

considering walls to have standard thickness and the materials to be homogeneous and isotropic. The 

model is based on the reflection and refraction features of an electromagnetic signal at an interface 

between two media. Simple description is given in Figure 4-3. The signal approaching the interface, 

sin, is partially reflected as signal sr, and partially transmitted and refracted as signal st. Both the 

reflected and the transmitted signals are influenced by factors describing the nature of the materials. 

These factors arepermittivity , permeability and propagation speedof signal in medium . The 

important consequence of the effect is the attenuation of the transmitted and reflected signal in 

comparison to the original signal. 

For description of the attenuation the reflection coefficient and the transmission coefficient  are 

used. The coefficients are defined by the ratio of the amplitudes of the reflected or transmitted waves 

and the incident wave. Their values depend on the angle of incidence and on the materials and surface 

of the media at the interface. An example of a material with permittivity εr = 3 is shown in Figure 4-4.  

 

 

 

Figure 4-3 Reflection and refraction of a signal at an interface of two media 

The polarization state of the incident wave also influences these coefficients. The influence of 

polarization state is significant especially for the reflection coefficient; the transmission coefficient is 

influenced only marginally [55]. 

 

Figure 4-4 Reflection (red) and transmission coefficient (green) at an interface between vacuum and a 

material with εr = 3 for vertical polarization [55] 
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For the characterization of the transmission of the signal into indoor environment a simplification of 

the geometrical transmission is proposed. The role of this model, as depicted in Figure 4-1, is to 

describe the influence of wall transmission on signal propagating to the receiver on the direct line. The 

reflections on outer building walls are reflected back to outdoor environment (blue). Reflections at an 

inner wall (green) that might propagate to the receiver are possible, but typically weaker than the LOS 

signal. Although such reflections can come to the receiver through walls and other obstacles different 

from line of sight, the model chain simplifies the situation and regards them to be reflections of the 

LOS signal (red). These are covered by the indoor channel model. The reflections of the signal in the 

room with the receiver (violet) are also covered by the indoor channel model. 

As a result only the LOS signal is taken into account by geometrical wall transmission modeling and 

no reflections are considered at this step of the model chain. The effect of polarization is neglected, 

because in case of transmission it is minor as it was mentioned before. 

In implementation of the model chain, a simplified description of the test site building needs to be 

constructed. The values of the transmission coefficient and reflection coefficient measured in [55] are 

used. The building walls are regarded to have the same parameters as in the measurement and the 

values are used without modification. For model of the test site building used later in this work the 

values listed in Table 4-1 were used.  

The building is modelled as a structure of rectangular rooms with one outdoor wall made from the 

defined materials. An example of such a model building with its ground plan and side profile in 

depicted in Figure 4-5. It is a simplification of an office building with brick walls, glass windows and 

concrete ceilings. The roof is expected to be flat.  

L1 signal at 

1575.42 MHz 

Transmission 

coefficient  

Attenuation inside 

medium 

Dry wall 0.5788 0.995 

Glass 0.5789 0.9867 

Lumber 0.7554 0.7621 

Bricks 0.6547 0.4624 

Concrete 0.5964 0.1849 

Table 4-1 Transmission and attenuation factors for L1, incidence angle 0° 

For each satellite elevation and azimuth pair, the number of crossed walls and respective attenuation 

together with loss through partial reflection are computed as follows: 

 



Ww

wmwmw AI )()(0 )(   (4-1) 

The value W stands for all crossed walls in term of the material, m(w) is material of the wall, 0 is 

normalized attenuation function as depicted in Figure 4-4 based on the incidence angle at wall Iw, m(v) 

is the transmitted part of the signal and Am(w) is the attenuation of the wall material. 
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Figure 4-5 Example of a building model – side profile with elevation angles and ground plan with azimuth 

4.1.3 Indoor Channel Model  

The last element of the chain is the indoor channel model based on Saleh-Valenzuela model for indoor 

GNSS signals published in [56]. This model characterizes statistically the indoor part of the satellite-

to-indoor channel for satellite navigation purposes. The main theoretical reference for the model is the 

work of Saleh and Valenzuela [55]. The modified indoor channel model adapted the original schema 

to the satellite-to-indoor channel according to an analysis of field measurements. 

The model describes the coming signal as a set of clusters (i.e. packages) of signal rays. The clusters 

differ in arrival time and number of comprised rays. The rays in the clusters have different amplitudes, 

time spacing and span over different time periods. Indeed, the subsequent clusters are attenuated in 

amplitude in contrast to the first one, and also the amplitudes of rays within single cluster decay with 

time at a different rate. The model proposes that both of these decaying patterns, namely that 

associated to a particular cluster and that within the cluster, follow an exponential function of time. 

These exponential decaying patterns are controlled by two time constants:  for the cluster arrival 

decay time and  for the ray arrival decay time. The idea of reflections organized in clusters is 

visualized in Figure 4-6. 

 

Figure 4-6 Indoor model - power decay profile [56] 

The amplitude of each cluster and its rays decays exponentially by the order of exp(-1/) and exp(-

1/). The phase associated with each arrival is expected to be a statistically independent and uniformly 

distributed within [0, 2). 
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Figure 4-7 Mean number of clusters and rays [56] 

As examined in [56] the parameters of the model ,   and number of in each cluster show 

dependency on azimuth and elevation. The mean values for number of clusters and rays are given in 

Figure 4-7.  

The indoor channel model does describe the number and character of the reflections, but it does not 

comment on time behaviour of the reflections. The static allocation of chosen rays to limited set of 

channel for the whole simulation period does not account for the variable character of multipath well, 

as it was mentioned in [51]. In indoor environment the variability is even stronger and influences 

majority of tracked signals.  

Therefore in this work a computation of a set of new reflections on a regular basis in order of seconds 

with polynomial interpolation between the successive values is proposed. The objective of this 

approach is to ensure variability of the reflections in time with smooth course over the simulation 

period so as to approach the features of real multipath effect.  

The issue of this approach is the way, how the rays are ordered for interpolation. Examples of two 

following epochs of a simulation are depicted in Figure 4-8.  In this work the rays are sorted in clusters 

and then the cluster are sorted according to time delay. This approach is evaluated in the section 4.5 

Comparison of Simulation and Field Test. 

 

Figure 4-8 Epoch 1 of the simulation, 34 reflections - left, epoch 2 of the simulation, 29 reflections 

4.2 Implementation in DIF Signal Simulator 

The GNSS DIF signal simulator used for multipath generation was developed at the Institute ISTA of 

Universität der Bundeswehr München [26]. The DIF simulator is a software tool running optimized 

for operation on an Intel CPU running with a speed below real time. Advantages for usage as a 

platform for implementation of the multipath module are the high volume CPU memory and general 
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flexibility of CPU programming. It can therefore generate unlimited number of channels and is 

suitable for alternative signal generation algorithms. 

The computation demand of a generation of multipath signal with many reflections is generally high 

and number of channel of simulators is always limited. For the multipath model chain proposed in this 

work a special multipath signal generation algorithm was developed. The idea of this algorithm is to 

exploit the nature of a CPU platform and similarity of multipath reflections with the original LOS 

signal. On Intel Core 2 Quad CPU, it improves the speed by one third in comparison to the 

independent channel generation. The algorithm and its performance is described in [58]. 

This algorithm generates multipath rays from the original signal by time shift, phase shift and 

attenuation. It introduces some simplification with respect to equation (3-51), as no Doppler frequency 

difference between the original signal and a reflection is admitted. The reduction to no Doppler 

difference is in case of indoor environment acceptable, as the reflection rays are generated at near 

objects, which are static, and the user speed is typically very low.   

Another simplification is given by the fact, that the time shift is rounded to whole number of samples 

and therefore code and carrier skew in multipath channels is introduced and the possible code phase of 

the channels is limited to number of samples per chip. With low sample rate and high number of 

reflections, it is probable that several multipath channels fall into the same code phase bin and receiver 

can compute higher correlation value for this code phase than for LOS signal with higher power than 

any single reflection. 

4.3 Field Test Verification Scenario 

A field test was performed to verify the applicability of the proposed model chain. The test was 

located at the campus of Universität der Bundeswehr München. The south wing of the building 42 

served as the test site. The ground plan is depicted in Figure 4-9. 

 

Figure 4-9 Test site at the campus of Universität der Bundeswehr München 

The building is a simple office building with only one floor made of bricks walls, concrete ceilings 

and gable end roof. The measurement was done on 11 January 2011 with the duration of 20 minutes. 

The plot of satellite position is depicted in Figure 4-10. Two identical receivers were used for the 

measurement. The chipset of both receivers was the low-cost high-sensitivity SiRF Star III receiver 

used often in cell phones and other consumer handheld devices. It was integrated in the Garmin 20x 

navigation device. One of the receivers was used as the primary test receiver at the test site. The other 

one was located at a nearby outdoor location with a clear view of the sky to facilitate comparable 

measurements. 
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Figure 4-10 Circular view of the test site with satellite positions during the test 

The signal attenuation at the test location was measured by differencing the test receiver carrier-to-

noise density ratio data with that from the reference station receiver of similar type. This operation is 

shown in the following equation: 

 𝐹 =  
𝐶𝑟𝑒𝑓

𝑁0𝑟𝑒𝑓
 – 

𝐶𝑟𝑜𝑣𝑒𝑟

𝑁0𝑟𝑜𝑣𝑒𝑟
  [𝑑𝐵] (4-2) 

Where F is fading in dB, C/N0(ref) is carrier to noise density ratio for the reference receiver in dB and 

C/N0(rover) is carrier to noise density ratio for the test location receiver expressed in dB. This provides a 

good measure of the amount of signal fading at the test location. 

From the eight satellites in view only six that were observed by the receiver for a longer period are 

included in the fading comparison. The fading values are depicted in Figure 4-11. The graphs display 

the well-known interference behavior associated with multipath and slowly changing mutual carrier 

phases [60]. Only in case of the PRN 19 the effect is less obvious. The reason for this is probably the 

high elevation of the satellite and the fact that the building has only one floor and therefore there is 

just little possibility for high elevation signals to reflect. 

 

Figure 4-11 Signal fading measured at the test site 
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For the evaluation of the multipath effect on pseudorange measurements and resulting position 

precision the comparison of measured data and known position obtained from geodetical measurement 

was done. Figure 4-12 shows horizontal and vertical error measured during the campaign. The first 

minutes were necessary to warm up and then the position error remains quite smooth. The 

pseudorange measurement and comparison of residuals was not possible, as the used receiver is 

limited to NMEA output where pseudorange measurements are not included. 

 

 

Figure 4-12 Horizontal and vertical error measured at the test site 

4.4 Simulated Verification Scenario 

The DIF simulator was set up to simulate the same period as the field test. The GPS constellation was 

described by a SP3 orbit file for the day of the field test. The epoch length for multipath description 

was set to 1 second. Ionospheric delay, tropospheric delay, noise and clock error were simulated to 

keep consistency with the field test. 

The environment for the outdoor modified LMS model was set to suburban. The model of the test site 

building depicted in Figure 4-13 is a simplification of the architecture of the building wing. All the 

observed satellites were simulated.  

 

Figure 4-13 Model of the test site building at the campus of Universität der Bundeswehr München 

The front end and antenna description of the DIF simulator was set to describe a general patch antenna 

and front end of a low-cost chipset. The simulated data were received by a software receiver accepting 

IF sample file input.  

4.5 Comparison of Simulation and Field Test 

The receiver performance at the test site and the receiver reaction to the simulated signal were 

compared. The comparison of the fading F as defined in (4-2) is presented in Figure 4-14 for the six 

SVs in sight. The RMS and the standard deviation (1 ) of the fading values are listed in each graph.  
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The RMS of the fading values shows good correspondence in case of PRN 18 (simulated scenario 

RMS = 4 dB, field test RMS = 5 dB). In case of the other PRNs, the simulation modeled deeper fading 

than what occurred during the test. The PRNs 3, 6, 19 and 22 all penetrated to the receiver through the 

ceiling. This shows that the assumption for the concrete roof expected higher attenuation than the 

value measured at the test site. The simulation of propagation of the signal from PRN 18 through two 

walls estimated the situation better. PRN 24 had a low elevation between 18 and 28 degrees. In the 

field test, it was tracked first when it crossed 25 degrees, roughly at the point where it crossed only 

one wall and once the roof. The simulation receiver was able to track the signal penetrating three 

walls, then for two walls and ceiling the signal was too weak and again for wall and ceiling the 

tracking was successful. In the field test, probably the tree shadowing behind the building prevented 

the receiver from tracking the weak signal. Then again the simulation of much stronger attenuation in 

the roof is probably the reason for mismatching RMS and later the start of tracking at a higher 

elevation. 

The standard deviation shows for all PRNs reasonable correspondence between simulated and field 

data. The course of the fading shows for the simulation the sinusoidal pattern typical for multipath, but 

with much higher frequency. It shows that the interval for multipath epochs of one second is too short 

for the static scenario and it would need an adjustment. 

The horizontal and vertical error values are compared in Figure 4-15. The position solution from the 

simulated data was computed without smoothing. Therefore, the variance cannot be reliably 

compared. For the horizontal error, the RMS values show good correspondence. In case of vertical 

error, the difference is higher. The addition of the PRN 24 to position computation improved the 

precision thanks to a better geometry in case of field test as well as in case of simulation, where the 

inclusion after loss came about five minutes later. 

 

Figure 4-14 Fading comparison between simulation and field test 
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Figure 4-15 Horizontal and vertical error - comparison between simulation and field test 

The comparison of the field test and simulation showed that the model chain provides fading and 

position error effects similar in magnitude to the field data. The deeper attenuation in case of satellites 

with high elevation shows the dependence of the model chain on a fitting building model. The fading 

data exhibited a good correspondence also in variation. The sinusoidal effect typical for multipath was 

reproduced. A comparison with [51] shows the strength of this attitude for simulation of signal in 

indoor environment where almost all satellites are influenced by multipath. Nevertheless the realistic 

frequency is an open topic. The evaluation of the positioning data was limited by the features of the 

used receiver. A test campaign with raw data output including pseudoranges followed by position 

computation with the means of the same algorithm for field and simulated data could deliver a closer 

look to the delay characteristics of the model chain. 
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5 GNSS Signal Simulator Architecture 

5.1 Evolution of GNSS Signal Simulator Design 

Fifteen years ago and earlier, GNSS simulators were built based on prevalently analog architecture [2]. 

Each signal channel was generated separately by modulating an analog IF carrier. The modulation 

data, i.e. PRN codes, navigation message and Doppler values were computed in the digital part of the 

simulator and given over to the analog part. This principle is depicted in Figure 5-1. For contemporary 

GNSS simulators, such architecture is not in use any more.  

 

Figure 5-1 Architecture of an analog signal simulator 

Nowadays, digital simulator architecture as sketched in Figure 5-2 is being used. The modulation data 

are generated in digital form similar to the earlier analog architecture. The difference is the 

deployment of the generation of the IF signal carrier and its modulation in digital form. Channels of 

the signal service are also digitally mixed and bandpass filtered. Thereafter, the digital signal is 

converted to analog form.  

 

Figure 5-2 Architecture of a digital single-frequency signal simulator 
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Advantages of this approach in contrast to the analog architecture are high quality of signal, low 

performance loss due to aging, high predictability, high precision of frequency, high frequency 

resolution and no inter-channel or inter-frequency biases [2]. 

Disadvantages are the relatively small bandwidth, limited available relative signal power range among 

channels and spurious frequencies problem. The spurious free dynamic range (SFDR) has to conform 

to the SFDR published in the interface control document (ICD) of a GNSS system. For GPS L1, L2 

and L5 signals up to generation III, the in-band spurious transmissions are defined to be at or below -

40 dBc [47], [61] and [62]. For Galileo E1OS, this value not given in the current version of the ICD 

[63], it will be probably published in a later stage of the system deployment. 

5.2 Digital Part of GNSS Signal Simulator 

The functional structure of the digital part of a GNSS signal simulator consists of three basic modules 

module as depicted in Figure 5-3. The simulation definition part computes an epoch-based description 

of the user scenario; the signal definition module computes the signal parameters for each channel and 

the signal generation module generates the final digital signal. For comparison, an abstract simulator 

model with focus on simulator specification can be found in [6]. 

The first module takes user input in form of almanac, ephemerides, simulation start time and duration, 

receiver position, speed and trajectory together with additional settings of propagation channel. This 

module computes raw description for each epoch of the received signal as a set of pseudoranges, 

signal power, additional attenuation, delays and clock errors. Epoch length is set according to user 

dynamics to be simulated starting at the order of seconds and decreasing for flight or missile scenarios 

with high acceleration and jitter dynamics to a millisecond. 

The second module calculates precise signal definition static over a short microepoch of signal. The 

length of the microepoch can be in order of milliseconds and must be even shorter for highly dynamic 

environments. The output of this module is a description of every signal channel with carrier phase 

and frequency, code phase and frequency, amplitude and PRN sequences. Description of all 

impairments and effects computed in simulation definition is finally expressed in terms of basic signal 

parameters – phase, frequency and amplitude of carrier and code. Multipath effect is an exception. The 

multipath signal reflections are generated as independent signal channels with their own phase, 

frequency and amplitude derived from the line-of-sight signal channel. 

The third module performs signal generation. The digital carrier is generated at the given intermediate 

frequency. The baseband signal is computed and modulated onto the carrier. The individual channels 

are added together and further adjusted – filtered, upconverted, mixed with noise or attenuated.  

The simulation definition module has the lowest computational load as it outputs data only for each 

epoch; signal definition module has higher load as microepochs are much shorter. The computational 

load of both modules varies according to implemented error models. The signal samples generation 

module carries out the highest workload due to MHz-order speed for PRN generation and MHz-to-

GHz-order speed for final signal generation. To reach real-time performance, the key bottleneck is the 

speed of the signal generation module.  
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Figure 5-3 Functional structure of a digital part of a signal simulator  

The features and limits of the performance are given by the chosen platform for deployment of the 

digital signal generation module. Although manufacturers do not publish the architecture and 

hardware their products are based on, it is well known, that field programmable gate arrays (FPGA) 

and digital signal processors (DSP) are used for digital signal generation. In experimental and non-

real-time simulators, CPUs are used. The application-specific integrated circuits (ASIC) are the 

traditional choice in real-time software radio. 

A dedicated ASIC circuitry would offer very low price per piece, low power consumption and high 

speed, but with the low number of simulators being sold, the costs for an ASIC design are too high. 

Therefore, an off-the-shelf processing engine are used.  

Closest to a dedicated ASIC is a field-programmable gate array (FPGA). It is an integrated circuit 

designed for configuration by a customer or a manufacturer after production. Because of this feature, it 

is called field-programmable. The FPGA configuration is carried out with a hardware description 

language. An FPGA consists of logic cells connected to an array of programmable logic blocks. A 

system of reconfigurable interconnects allows the blocks to be connected according to a user-defined 

design. A typical logical cell consists of two 3-input look-up tables, full adder, flip-flop and 

interconnects to other cells. After filling of the lookup tables, setting operation mode and configuration 

of interconnects, any logical and arithmetical function can be implemented. This feature of FPGA can 

be simply proved by the fact that it is possible to configure an FPGA to act as a general 

microprocessor. An example of such a microprocessor software for FPGA is MicroBlaze from Xilinx 

[64]. Traditionally, FPGAs have been reserved for low-volume applications. The reason was that the 

higher price that companies pay in hardware costs per unit for a FPGA is more affordable than the 

development resources spent on design and production of a dedicated ASIC. Recently, the cost and 

performance dynamics of FPGAs developed an affordable low-cost segment. Development of ASICs 

faces growing costs of design. This situation have broadened the range of products, where applications 

of FPGA are viable. 
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The other engine dedicated for digital signal processing tasks and applicable in a simulator 

architecture is the digital signal processor (DSP). It is a specialized microprocessor with an 

architecture optimized for the digital signal processing. It succeeds over a general-purpose 

microprocessor for digital signal operation, because it generally tends to provide a lower-cost solution 

with better performance, lower latency, and no requirements for specialized cooling or large batteries. 

It is based on Harvard architecture or Modified von-Neumann architecture with separate program and 

data memories [42]. The architecture excludes memory management unit and virtual memory and 

memory protection, works with fixed-point arithmetic and use single-instruction multiple-data (SIMD) 

operations, defined according to Flynn’s taxonomy [65], and multiply-accumulate instructions 

extensively. DSP is even more flexible than a FPGA, as it can be reprogrammed even with high-level 

programming language like C. The flexibility however comes in some cases at the cost of efficiency. 

Applications with several simple computations that could be performed in parallel may need to be 

broken into sets of sequential computations based on number of multiplier and accumulators on the 

DSP. Even though there is a set of parallel units like multiply-and-accumulate for the SIMD operation, 

this number is fixed and may not be optimal for the particular task to be performed.   

Despite of the general architecture without focus on digital signal processing, general microprocessors 

(CPUs) are used as a signal generating engine for experimental DIF simulators [25], [45], [4], [26]. 

Also manufacturers of commercial non-real-time DIF simulators with replay functionality use CPUs, 

e.g. NavSys [19]. Deployment of CPUs for a real-time simulator is nevertheless limited by non-real-

time operating systems and low performance for digital signal processing in contrast to their overall 

high computing performance, high price and high power consumption. 

The development on the field of CPUs tends to add more and more previously DSP specific features to 

saturate the growing need for processing of multimedia content by a general computer [66]. Therefore, 

the focus of a CPU moves from traditional data manipulation to inclusion of focus on mathematical 

calculation specific to digital signal processing.  

5.3 Multi-frequency GNSS Signal Simulator Architecture 

The choice of an appropriate architecture is especially important when high performance is needed. As 

described in section 2.1.3, this is the case for the multi-frequency multi-service simulators that strive 

to be able to simulate the full scale of current and planned GNSS signal services simultaneously with 

realistic multipath. The overview of performance of recent market products is given in section 2.3 in 

Table 2-1 and Table 2-2. The scope of the current and planned GNSS signals and the indoor 

applications with heavy multipath pose nevertheless a considerable challenge on the architecture 

performance. 

The current and planned GNSS signal services are transmitted in the reserved frequency bands placed 

in the frequencies designed for radio navigation satellite systems (RNSS) - in frequency range 960 – 

1,300 MHz - and aeronautical radio navigation systems (ARNS) - in frequency range 1,559 – 1,610 

MHz. An overview of the the GNSS frequency bands is given in Figure 5-4. The span of these 

frequency bands limits the deployment of common front ends in design of multi-frequency receivers 

and simulators. The synchronization of multiple front ends poses nevertheless a design challenge. 

In the architecture of a conventional multi-frequency GNSS simulator, the frequency bands are 

generated separately. After generation of digital signal samples, the conversion of separate frequency 
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bands to analog signals follows. Thereafter, the final analog signals with different frequencies are 

mixed together. The concept is depicted in Figure 5-5. 

 

Figure 5-4 GNSS frequency plan for GPS, Galileo, QZSS, GLONASS and Compass/Beidou 

The signal bands generated together in digital form comprise more services wherever the frequencies 

are close enough. The target is to reduce the number of separated signal generation and conversion 

paths. E1 and L1 are always generated together. E5a is combined with L5. In broadband designs, E5 is 

generated in full bandwidth and combined with L2. Moreover, the proximity of L1 with G1 and B3 

with E6 makes their common generation possible as well. 

The high costs of multifrequency multiservice simulators are partly caused by the costs of multiple 

high-performance digital signal generation engines (FPGAs or DSPs). Another factor is the costs of 

the hardware for synchronized upconversion and mixing of the separate signal bands. Therefore, the 

number of simultaneously generated carriers is an important feature of the simulator that has a great 

influence on the price of the simulator product, because of the costly hardware for the synchronized 

analog upconversion and mixing. 

 

Figure 5-5 Architecture of a conventional multi-frequency GNSS signal simulator 
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5.4 GPU-Based Broadband GNSS Signal Simulator Architecture 

This thesis introduces a concept of a broadband GNSS signal simulator that generates the full GNSS 

bandwidth of 446 MHz as one digital and after conversion analog signal band. It uses only one single 

digital-to-analog converter and one upconverter. The synchronized analog upconversion of separate 

bands and synchronized mixing can be omitted. The signal generation module must generate the 

digital signal with high sample rate. With Shannon-Nyquist theorem in mind, the sample rate must 

exceed 892 Msps. 

It is not possible to reach such a high signal generation speed for multiple GNSS services and 

sufficient number of channels with current FPGAs, DSPs or CPUs. Also the outlook for the near 

future shows, that the development towards faster processor technology is about to reach its limits 

below 4 GHz of clock speed. Further development progresses in the direction of parallel 

multiprocessor technology.  

A special processor segment with the focus on massively parallel processing are the graphic 

processing units (GPU). These parallel processors with hundreds of cores are very cheap thanks to 

mass-market production for video and gaming industry. A high-end graphic card for gaming with the 

newest GPU technology, the GTX Titan X, costs about 1,000 EUR. It can be connected in assemblies 

of two or four units in one computer. Besides the usage for computer graphic generation and 

processing, a GPU can also be used for general computer processing tasks.  

This thesis proposes the usage of the computing power of a GPU for the Digital Signal Generation 

module of the broadband GNSS signal simulator. The concept of the architecture is depicted in Figure 

5-6. The generation of the single broadband signal comprising multiple GNSS carriers is executed on a 

pair of GPUs with high sample rate.  The high-bandwidth signal is then converted to analog using a 

single broadband DAC. The analog signal is then upconverted to the GNSS frequency band without 

any loss of synchronization among the individual signal bands. The objective is the development of 

algorithms and evaluation of the concept of this alternative broadband architecture of a real-time 

GNSS signal simulator.  

In contrast to state-of-the-art FPGA and DSP based architectures, the nature of the GPU-based 

computation is massive parallel single-instruction, multiple data (SIMD) processing with limited 

shared memory resources and limited pipelining.  

The Simulation Definition module and the Signal Definition module are realized using a CPU. The 

conventional architecture also computes the Simulation Definition by means of software on a control 

computer. This was the case for the old analog architecture (Figure 5-1), newer digital architecture 

(Figure 5-2) and remains like this also in case of contemporary multi-frequency multiservice simulator 

architecture (Figure 5-5). The low-speed parts of Signal Definition module are probably also 

computed in this way in most conventional architectures. The high-speed parts are probably 

implemented on the used signal generation engine. Nevertheless, the delimitation of the low-speed and 

high-speed tasks and other details about the architecture are a part of manufacturer’s unpublished 

expertise. 
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Figure 5-6 Broadband GPU-based GNSS signal simulator architecture 

The concept of broadband GPU-based signal generation makes it possible to omit the costly analog 

parts for synchronized separate up-conversion and mixing of the separated analog signals. Moreover, 

such a digital signal generation architecture for the broadband GNSS signal offers higher scalability 

than the separated digital and analog engines for dedicated frequency bands. The signal generating 

computing power can be freely allocated to satellite signal channels and multipath signal channels of 

any GNSS service of choice. Another important degree of freedom in contrast to the conventional 

architecture is the fully free assignation of the central frequencies and frequency bands in the one 

common broadband signal. 

For the realization of this architecture concept, the low-cost mass-market paradigm of GPU computing 

was paired with a low-cost computer system backbone. A gaming class PC-system with a gaming 

class motherboard and other components is used. The objective is to prove the low-cost aspirations of 

the whole simulator system. 

The proposed architecture implies also several drawbacks. The current availability of high-quality 

broadband DAC circuitry is limited to handful of products. The DAC is needed in a bundle with a 

platform connected with high-speed interface to the computer system.  

Another issue is the availability and costs of a high-quality broadband upconverter. The quality of 

these components must be taken into account and even compensated for in digital signal generation. 

The objectives of the development work in this thesis arise from the features of the architecture. They 

are handled in following chapter as follows: 

Chapter 5 Precision Analysis of Digital GNSS Signal, 

 Analysis of the quality of the generated digital signal and discussion of tradeoff between 

performance and quality.  

Chapter 6 Digital Signal Generation 

 Development of massive parallel algorithms for GNSS signal generation on a GPU 

 Development of parallelized streaming concept of generated signal over gaming level PC to a 

DAC converter 

 Achievement of real-time throughput of the signal with bandwidth of whole GNSS frequency 

span through whole system 

 Optimization of the performance so as to achieve the real-time performance for as high 

number of GNSS signals and channels as possible  

Chapter 7 Digital-to-Analog Conversion and Up-Conversion 
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 Research of market-ready solutions for broadband DAC conversion for gaming level PC-

system  

 Deployment of chosen DAC board and optimization of the performance 

 Research of market-ready broadband up-conversion solutions 

5.5 Test System 

For the development, implementation and verification a test system was built up. The features of the 

chosen PC system, and its components inclusive GPU influenced the final version of the algorithms 

and solutions proposed in this work. The hardware and software parameters of the platform determine 

the optimal implementation strategy and determine the performance and precision of the signal 

generation. As an example, data types, library functions, memory management and data transfer 

procedures can serve.  

The Test System is a high-end gaming PC depicted together with all components in Figure 5-7 on the 

left side. It is based on a top gaming-level mainboard ASUS Rampage IV. The mainboard 

accommodates two PCIe x16 v.3.0 slots, two PCIe x16 v. 3.0 slots with x8 performance and two PCIe 

x1 v. 3.0 slots. When all four x16 slots are utilized, the second PCIe x16 slots degrades its 

performance to PCIe x8.  

The PC-system features Intel Core i7-4930K 3.4 GHz processor with six cores built using 22-nm 

technology with 1.86 × 109 transistors. It comprises 256 KB L2 cache per core and 12 MB L3 cache. 

In the PC-system, the memory Corsair Dominator Platinum Series DDR3-2133 CL9 with 32 GB size 

and peak transfer rate of 17,066 MB/s is placed. The system runs Windows 7 with Microsoft Visual 

C++ 2012. Two graphic cards Nvidia GeForce GTX TITAN Black are included in the system. 

Detailed features of the GPU are given in the next section. The summary of the key components of the 

Test System is given in Table 5-1.  

Component Product 

Mainboard ASUS Rampage IV Black Edition, Intel X79 Mainboard, RoG - Socket 2011 

Memory Corsair Dominator Platinum Series DDR3-2133, CL9 – 32 GB  

Processor Intel Core i7-4930K 3.4 GHz (Ivy Bridge E) Socket 2011  

GPU 2 × GeForce GTX Titan Black, 6,144 MB DDR5 

Table 5-1 Test system components 

Beside the standard PC components, a DAC system compatible with one of the mainboard output 

interfaces is needed. This interface must offer a very high data transfer speed close to the memory 

transfer speed of 17,066 Msps. The generated digital signal samples must be transferred through this 

interface with a speed exceeding the given sample rate to reach real-time operation. The minimum 

sample rate to generate the whole GNSS bandwidth was defined as 892 Msps in previous section. In 

practice, the sample rate must be higher, ranging from the maximum represented frequency multiplied 

by 2.5 and 4.5 as explained in section 3.1.3. Therefore, throughput of at least 1.115 Gsps is needed. 

With common resolution of 2 bytes per sample, this results in need for throughput exceeding 2.230 

GB/s. With respect to need for high quality signal and features of available DACs, the sample rate of 

1.400 Gsps and respective data throughput of 2,800 MB/s was chosen for implementation. 
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The PCIe v. 3.0 x16 interface with throughput of 15,754 MB/s offers enough capacity and therefore it 

is a clear candidate for the digital signal samples transfer connection. The alternatives of USB v. 3.0 

(625 MB/s) or SATA v. 3.0 (675 MB/s) lie far below this performance. 

Availability of a broadband digital-to-analog converter for the PCIe interface was examined. For the 

verification of individual signal service bands in low sample rate modus, the narrow band PCIe DAC 

converter ICS1572A from General Electrics was deployed. For broadband signal generation, a high-

performance PCIe DAC converter FMC230 PC820 from the company 4DSP was purchased. The 

details are given in Chapter 7. 

 

 

 

 

Figure 5-7 Test System with 2x GPU - left, GeForce GTX TITAN Black - top right, mainboard ASUS 

Rampage IV Black Edition – bottom right 

For evaluation of real-time ability, data throughput and signal generation performance, the particular 

configuration settings of the GNSS signal simulator must be defined. Two configurations are 

considered in this thesis:  

 Single Service configuration: 22.856 Msps sample rate (SR), 5.115 MHz IF, GPS L1 C/A, 12 

satellite channels 

 Broadband configuration: 1,400 Msps SR, 427 MHz BW, civil signals for GPS and Galileo: 

L1 C/A for GPS and E1 OS and E5ab for Galileo, 12 satellite channels per service 

The Single Service configuration represents the minimum signal simulator configuration. The simplest 

conventional simulators described in Chapter 2 GNSS Signal Simulators feature similar abilities. The 

Broadband configuration represents the maximum performance in terms of bandwidth and sample 

rate. The objective is to include generation of as many GNSS services with all satellite channels in 

view and multipath channels as possible. 

5.6 GPU Architecture and CUDA Interface 

The GPU GeForce GTX Titan Black by Nvidia depicted in Figure 5-7 top right was chosen for 

deployment. The GPU chip was manufactured with 28 nm process and thus offering good power 
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efficiency. The internal architecture of the GPU is depicted in Figure 4-8. The features relevant for this 

work are listed as follows: 

 Architecture Kepler GK110 with CUDA computing capability (CC) 3.5  

 6,144 MB DDR5 GPU memory with 336 GB/s (called device memory in Nvidia 

documentation) – shared among all multiprocessors 

 1,536 KB of L2 cache 

 PCIe v. 3.0 x16 interface to host computer 

 15 multiprocessors (Kepler GK 110 multiprocessor is called SMX) 

The internal structure of the multiprocessor SMX is depicted in Figure 5-9. The features relevant for 

this work are listed as follows: 

 192 single precision processing cores performing integer and floating point operations 

 8 double precision units on GeForce graphic cards [69], 64 on Tesla and Quadro (Figure 5-9) 

 32 special function units (SFU) – goniometric, logarithmic and inverse functions performed in 

a single clock cycle 

 32 load/store units 

 48 KB of shared memory – shared across all cores of one SMX 

 16 KB of L1 cache  

 65,536 of 4B-registers (with 1,024 in one block of threads:  max. 64 registers per thread) 

 GPU clock speed of 889 MHz 

 

Figure 5-8 Architecture of Nvidia GPU GeForce GTX Titan Black with 15 SMXs, shared L2 cache and six 

memory controllers [67] 
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Full summary of the features of the GPU can be found in the documentation of the manufacturer. 

Technical details about the architecture are given in the whitepaper Kepler GK110 [67]. 

The registers are the fastest memory of the GPU. Each register is assigned to a single thread only. All 

threads operating on one multiprocessor share access to the so-called shared memory. A warp of 

threads can fetch data in just one clock cycle. The size of 48 KB is nevertheless very limited. All 

multiprocessors share the main GPU memory with sufficient capacity of 6 GB, but the access speed is 

much lower than in case of the shared memory. Around 400 - 800 clock cycles are needed to start the 

data transfer from the GPU memory. Additionally, the SMX features the texture memory with 48 KB, 

which is read‐only for the duration of one kernel run. Access speed is similar to shared memory. 

 

Figure 5-9 Architecture of a multiprocessor SMX from Kepler GK110 C.C. 3.5 series with 192 single‐

precision cores, 64 double‐precision units (DP Unit), 32 special function units (SFU), and 32 load/store 

units (LD/ST) [67] 

For the programming of the GPU a special library with multithreading access pattern is needed. There 

are general programming interfaces for parallel programming, for example OpenCL [68]. A program 

based on such a general interface can exploit just a fraction of the performance that could be reached 

by an architecture specific library. For the analogic task of GNSS signal acquisition and tracking, this 

observation was published in [32]. The GPU manufacturer Nvidia developed for the general purpose 

programming of GPUs the Computing Unified Device Architecture (CUDA) interface. In this work, 
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the CUDA C extension of C/C++ was used for programming of the GPU. The first algorithms were 

tested using CUDA version 2.1. The latest were benchmarked with CUDA version 6.0 described in 

detail in [69].   

CUDA introduces a special threading concept for easy parallel programming of Nvidia GPUs with 

hundreds of cores. CUDA C extends standard C by allowing the programmer to define C functions, 

called kernels. These, when called, are executed N times in parallel by N different CUDA threads, as 

opposed to only once in regular C functions. The CUDA threading concept outlined in Figure 5-10 

suggests deployment of many threads, in the order of thousands. The threads are organized in multiple 

blocks of threads in a so-called grid. There should be several hundreds of threads placed in one block. 

The threads are sorted in groups of 32 threads, so called warps. Each of the blocks of threads is 

executed by one multiprocessor of the GPU. Threads in each warp are run in parallel on the 

multiprocessor cores in SIMD pattern. For multiple threads, a single instruction is scheduled to 

multiple cores of the multiprocessor simultaneously.  

Each SMX uses four instruction schedulers (so called warp scheduler, see Figure 5-9). The instruction 

scheduler issues one instruction for whole warp of threads (ea. 32) each two clock cycles. In the first 

clock cycle, the instruction is executed in parallel for the first half of the warp (ea. 16).  

 

Figure 5-10 CUDA threading concept [69] 

In the second cycle, the second half of the warp is executed. The instruction can be scheduled either 

for 16 processing cores or for 16 load/store units (LD/ST in Figure 5-9) or for 8 special function units 

(SFU in Figure 5-9). With four schedulers, always four groups of processor units are occupied at a 

time (e.g. 16 single precision sores, 8 SFUs, 16 double units and 16 single precision cores). One 

multiprocessor can hold up to 1,024 threads at once, computing always the four warps in parallel that 

are ready for computation. It is convenient to use high number of threads to cover the waiting time for 

loading data from GPU main memory. Nevertheless, the limiting factor for the number of threads 
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residing on a multiprocessor is the number of registers. Each multiprocessor features 64 × 1,024 of 4 

B-registers, thus with maximal number of threads per block being 1,024, each thread can use only up 

to 64 registers without employment of the much slower GPU memory. 

Each multiprocessor includes 48 KB of fast shared memory accessible from all residing threads. The 

shared memory is organized to 32 banks, which can be accessed by 32 threads in parallel. The pattern 

how the threads access the shared memory is very important for high throughput of the parallelized 

program. It is an essential criterion of a good algorithm for GPU to introduce an effective shared 

memory access concept that uses the parallel access to the 32 banks as much as possible and that 

avoids bank conflicts. 

The GPU memory and L2 cache is shared by all multiprocessors and it is accessed through 

multiprocessors’ own L1 caches (16 KB). The access to the main memory is slow; it takes 400-800 

clock cycles. To speed up the access, the GPU memory accesses should be coalesced to chunks of 32 

following 4B-numbers.  To use up the computing power of the cores of the GPU, the memory access 

must be carefully designed with architecture and memory hierarchy in mind.  



6 Precision Analysis of Digital GNSS Signal 

77 

 

6 Precision Analysis of Digital GNSS Signal 

The quality of the output signal of a GNSS signal simulator is a key performance parameter. Design of 

the simulator has to fulfill the defined requirements for signal quality and real-time performance for 

required ranges of settings. A common basis for definition of the quality of the signal produced by a 

simulator was proposed by Tetewski in [6]. 

The relationship between the parameters of the design of both digital and analog parts of the signal 

simulator and the quality of the output signal is not straightforward. It is an important task in 

development stage of a GNSS signal simulator to analyze this relationship so as not only to reach the 

desired output quality, but outweigh the performance and costs of the components as well. 

This chapter focuses on the quality of the generated digital signal. The digital signal quality results 

from numerical precision of key variables of the signal generation process. This numerical precision 

can be expressed as the number of bits and the numerical format of the variable. The speed of digital 

signal generation is influenced by the numerical precision influences to a great extent. The task of 

specification of numerical precision is demanding as the influence on speed and precision oppose each 

other. This effect is easily noticeable in case of the representation of a signal sample: high bits-per-

sample resolution lowers the sample-per-second throughput through a given bandwidth of a digital 

interface and vice versa.   

In this chapter, the key variables of the signal generation process are described in detail and their 

influence on the signal quality and generation speed is evaluated. For each variable, the parameters 

influencing its range of values are listed and the equation for the numerical precision of the parameter 

is given. The application on the Test System simulator architecture is presented and the numerical 

precision for its settings is listed together with analysis and measurements of the influence on the 

quality of the generated signal.  

6.1 Test System Configuration 

The key variables of the signal generation are to some extent conform to the used hardware. The 

reason is that the scope of available data types, core functions and their speed and precision are 

dependent on the hardware parameters of the platform. The Test System as defined in section 4.5 is 

considered for this analysis. The Single Service configuration and Broadband configuration are 

applicable as defined. Additionally, L1 Services configuration is defined as follows: 

 L1 Services configuration: Single frequency L1-based GNSS simulator with services GPS L1 

C/A, P (Y), L1C and Galileo E1 OS and 12 satellite channels per service 

The native and broadly supported data type of the GPU in the Test System is single-precision (32 bits) 

floating-point number (abbreviated as float further on). The float is also the native data type on the 

older GPUs by Nvidia and GPUs by Nvidia’s competitor AMD. GPUs are designed for fast processing 

of raster graphic. The human perception sensitivity for information about each visual point - color and 

brightness - is mostly exponential with limited resolution, similar to a shorter exponentially 

represented data type. On the other hand, the human sight features very high sharpness and needs high 

refresh rate of visual input to perceive a movement as continuous. As a result, high number of points 

and high data throughput are needed, which makes shorter data types advantageous. 
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The float-based arithmetic outperforms on GPU integer based operations. In contrast to it, CPUs are 

optimized for integer operations and DPS for fixed point arithmetic. The conventional implementation 

for digital signal generation is fixed point integer based arithmetic. Therefore, two implementations 

are considered and compared in the following sections – the float-based and the fixed-point 32-bit 

integer based solutions (shortcut as “fixed point” in this text). 

The CPU and GPU arithmetic is restricted to a handful of data types that can be effectively input in 

execution of all instructions. The other data types need to be converted to designed data types for 

specific instructions. The chosen GPU architecture can operate on signed and unsigned integer with 

83% performance compared to float and on double (64 bit) floating point numbers and long (64 bit) 

integers with 33% performance. Additionally, the 64-bit data types consume twice as much of the very 

limited shared memory. Operations on longer data types need to be implemented by multiple 

operations using 64-bit variables. The 8-bit and 24-bit variables can be addressed, but need to be 

converted to 32 bits before any operation can be executed. The overview of performance of individual 

instructions on supported data types is given in [69]. 

Three signal simulator variables play key role in the performance. With respect to section 4.5, these 

are time from the beginning of the simulation in the Signal Definition module, the variable holding 

each signal sample in the Digital Signal Generation module and the variables holding NCO parameters 

in Signal Samples Generation module. 

6.2 Time from the Beginning of the Simulation 

Each epoch of the signal is defined by its precise time from a demarcated starting point. This starting 

point might be e.g. the beginning of the simulation or the start of the actual GPS week. Professional 

GPS receivers use typically the day of week and additional variable for week number and day of week, 

or split the time into an integer part and a decimal part [45].  

The time epoch variable in the simulator follows similar patterns. It is used to compute the entire 

signal parameters and signal level for each epoch and its precision influences the precision of all 

dependent computations. In order to simulate the point position with precision in order of the 

millimeter we have to know time with the precision of 0.01 nanosecond. The precision of the variables 

in terms of number of bits must therefore be carefully chosen. 

The precision of positioning in terms of meters translates into signal precision in terms of signal phase. 

The relationship between both depends on the carrier frequency used for the signal generation. In the 

digital part of a simulator, the maximal carrier frequency is the designed intermediate frequency (IF) 

plus the maximal Doppler to be simulated. The time epoch expressed as carrier phase comprises the 

number of full cycles and decimal part. The number of bits Nt needed for representation of time epoch 

expressed in cycles is then computed as  

 𝑁𝑡 = ⌈𝑙𝑜𝑔2(𝑡𝑓)⌉ + 𝑁𝜑 (6-1) 

where t is time from the beginning of the simulation, f is carrier frequency with maximal Doppler and 

N are designed bits for carrier phase resolution. 

The simulation duration in a simulator system can be just several seconds for tests of tracking and 

acquisition. For tests of time-to-first-fix, several minutes are needed. Duration of several hours might 
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be necessary for positioning tests and a week serves as a reasonable maximum for very long tests, e.g. 

for signal monitoring scenarios.  

The intermediate frequency, in this text referred to as IF, is specific to every simulation system. The IF 

of 4.092 MHz is the very minimum, sufficient for single service L1 C/A scenarios. Maximum would 

be direct application of RF frequency with full bandwidth, if ideal DACs and filters were available. 

Figure 6-1 illustrates the relationship between simulation duration and variable resolution for these 

carrier frequencies. 

As the precision limit for carrier phase, the thermal noise of a phase lock loop (PLL) of target receiver 

design was considered for the figure. For the Test System specification the maximal signal-to-noise 

ratio (C/N0) reaches 68 dB/Hz in the test receiver, which according to [46] results in 0.0002 cycle for 

given settings. The digital representation with 13 bit offers even 0.000122 cycle precision. 

From the figure it is clear, that to represent 1 hour, 47 bits are total minimum, and for 1 week at least 

55 bits are necessary. In case of CPU and GPU based systems, the 32-bit formats (float, fixed point 

unsigned integer) are therefore insufficient for most of simulator scenarios. On the other hand, the 64-

bit format (unsigned integer) would be enough even for one week of samples with RF frequency. 

 

Figure 6-1 Resolution of time epoch with respect to simulation duration 

The Test System simulator considered in this thesis defines the time epoch as time from the beginning 

of the simulation and limits the possible simulation duration. The chosen resolution is 54 bits (the 

number of resolution carrying bits from the 64 total) with double floating-point data type. For the 

broadband scenario with the carrier phase resolution of 13 bits, the chosen double data type limits the 

simulation duration to 36 minutes only. Unsigned long integer (with 64 bits) is for longer scenarios 

necessary; up to 625 hours could be represented. 

6.3 Signal Samples 

The next key variable of the signal generation process is the variable holding the generated digital 

signal sample. A GNSS receiver uses usually a low number of bits (2 - 4) to represent the received 
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signal buried in noise. In a GNSS simulator, the required number of bits has to account for the 

amplitude resolution of individual signal channels (one channel is used per satellite and frequency 

band), relative signal power of the channels and the total number of channels represented in the digital 

signal.  

The power levels of the simulated signal samples can vary largely. Especially for testing of highly 

sensitive receivers, the ideal simulator should generate signal channels with weakest power that can be 

tracked together with strong LOS signal channels or even with pseudolite signal channels. 

In a signal simulator, a signal channel is generated with digital signal synthesis technique using a 

numerically controlled oscillator (NCO) technique. The digital signal synthesis is described in Chapter 

7. Considering the schema of an NCO given in Figure 3-5, the output signal sample of individual 

signal channels has amplitude resolution given by the phase-to-amplitude converter output resolution 

with P bits. The number of satellite channels added to one sample stream influences the number of bits 

needed for each sample in a straightforward manner. Each duplication of the number of satellite 

channels adds one bit needed to hold the full resolution. The bit resolution for representation of a 

certain number of signal channels can be calculated as 

 2𝑌−1 < 𝑥 ≤ 2𝑌, (6-2) 

where x is the number of channels and Y is the resolution in bits. The next factor influencing the 

required number of bits is the relative amplitude among the signal channels. If the noise is included in 

the sample stream, as it is the case in DIF simulator system, the ratio between signal and noise 

amplitude needs to be considered as well. With power difference between two channels being z dB, D 

bits are needed in the sample variable to account for the relative signal power. Number of bits D is 

given by 

 2𝐷−1 < 10
𝑧

20 ≤ 2𝐷 . 
(6-3) 

The number of bits NS required to hold the full resolution of the final sample can then be computed as 

 𝑁𝑆 = 𝑌 + 𝐷 + 𝑃, (6-4) 

where Y is number of bits to represent the number of channels, D is number of bits to represent the 

relative channel power and P is number of bits to hold the amplitude of each channel even at lowest 

possible signal power level. 

In case of GNSS signals, the PAC of an NCO is an implementation of sine or cosine function. 

Typically, the phase-to-amplitude converter is implemented as a lookup table. The Nvidia GPUs 

nevertheless include multiple special function units (SFUs), which compute goniometric functions of 

float numbers in a single processor clock cycle. CUDA accesses these units with __cosf and __sinf 

functions, which deliver output resolution of 21.19 bits [70]. The number of SFUs is only one sixth of 

the number of float processing cores placed on a GPU, therefore also an implementation using look up 

table could be considered. A lookup table needs 2M × P bits of memory space and very fast access. The 

fast memory of the GPU consists of registers (64 per thread) and shared memory with only 48 KB 

needed for generated samples and PRN sequences. Therefore, the usage of SFU is the better solution 

offering additionally very high precision in contrast to lookup tables with typically 256 items.  
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In contrast to amplitude resolution in DDS systems with lookup table, the PAC resolution of 21.19 is 

very high. Nevertheless, limited number of bits used to represent the amplitude of the synthesized 

signal is usually not the major source of the errors in a DDS system [42]. This resolution is therefore 

reduced to 13 bits in this work. Table 6-1 enumerates the typical number of channels for the categories 

of Test System configurations and gives bit resolution needed for a sample variable. 

Test System configuration # Channels Bits (Y) 

Single Service: L1 C/A 12 4 

L1 Services: Single frequency, multiple services: L1 C/A, 

P(Y), L1C, E1OS 
72 (12, 12, 24, 24) 7 

Broadband: civil GPS and Galileo on L1, L2 and L5 168 (12 × (5 + 2 + 6)) 8 

Table 6-1 Bit resolution accounting for the number of signal channels 

Maximum received power of a satellite signal on the Earth surface is defined by the ICD of the 

respective GNSS service. Minimum power is given by the sensitivity of the “best” receiver to be 

tested by the simulator. For DIF signal generation, the noise needs to be included in the samples. The 

noise power is the strongest component to be considered in this case. For analog signal generation, the 

noise can easily be added later. Hence, it does not need to be considered in digital signal generation. 

Table 6-2 enumerates three DIF and three RF scenarios with the minimum and maximum power of the 

signal. For DIF scenarios, the noise floor for bandwidth of 2 MHz is considered as maximum.  

Scenario Pmin [dBW] Pmax [dBW] dB diff Bits (D) 

DIF, max.: extremely high sensitivity  -205 -140 (noise) 65 11 

DIF, commercial chip sensitivity  -190 -140 50 9 

DIF, ICD - maximum -160 -140 20 4 

RF, extremely high sensitivity -205 -150 (ICD) 55 9 

RF, commercial chip sensitivity  -190 -150 40 7 

RF, ICD - maximum -160 -150 10 2 

Table 6-2 Bit resolution accounting for the relative power of signal channels 

For final resolution of the sample variable, the designed number of bits accounting for the power 

difference, number of channels and carrier phase resolution need to be added as given in (6-4). An 

ideal DIF simulator would generate noise together with the weakest signal that can be tracked. It 

would be able to generate all signal channel in view from all existing and planned services together 

with heavy multipath. The sample amplitude would be used without reduction even for the weakest 

signal. Such an ideal GPU-based DIF simulator would therefore allocate 11 bits for power difference, 

9 bits for channel number and 22 for PAC output resolution. This would result in a variable with 42 

bits that would fit a double-precision integer or double-precision floating-point data type.  

To use the GPU native data type float, the resolution must be reduced. When RF scenario is 

considered, the 24 bits of mantisa can be split among relative power, number of channels and carrier 

resolution as 5 + 8 + 11 = 24. For Single Service scenario in DIF with 12 channels, the float data type 

is sufficient. The bits are allocated as 7 + 4 + 12 = 23, so that the noise, 12 channels and reasonable 

carrier resolution can be represented. In the Test System simulator, the signal sample can be 
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configured as float or double data type. Test measurements for Single Service scenario with float and 

double samples are presented in the final section of this chapter. 

On the Test System, the signal generation with double samples in much slower than with float. The 

double data type based operations have much lower throughput than float based. The shared memory 

can hold just half of the number of samples. The performance of generation of samples with double 

precision was measured to be just about 30% of the performance of the solution with float samples.  

6.4 NCO Variables 

In the Signal Definition module of the simulator as defined in section 4.1, for each microepoch of the 

signal to be generated, the starting code phase, carrier phase and frequency are calculated. In the 

Signal Generation module, these values are used to initiate the NCOs in the signal synthesis process. 

In this work, one NCO is applied for carrier wave and one for PRN code generation of each signal 

channel. Numerical precision of the NCO variables influences the precision of the generated samples 

and has strong impact on the overall speed of the signal generation. Careful choice of numerical 

precision is therefore necessary. The design of format and precision of NCO variables is influenced by 

the magnitude of and relationship between IF, SR, fc, PRN code length and the minimum resolution of 

the Doppler frequency.  

Notation of NCO parameters as defined in Figure 3-5 is used in this chapter, so that N denotes number 

of bits designed for phase increment and accumulator, M denotes bit resolution of the PAC input and P 

denotes bit resolution of the PAC output. Furthermore, C denotes the code phase and denotes the 

carrier phase. Code phase and carrier phase increment of two successively generated samples are 

referred to as C and  respectively.  

In a general NCO with fixed point variables, the relationship between the number of bits for frequency 

control word and resolution (i.e. minimal step) of output frequency depends on sample rate. The 

resolution of the output frequency f is then given by 

 ∆𝑓 =
𝑓𝑆𝑅

2𝑁
, 

(6-5) 

where N is number of bits of the frequency control word, f is resolution of output frequency and fSR is 

the sample rate. The desired frequency resolution for carrier NCO is equal to the desired Doppler 

frequency resolution of the simulator. It is designed according to desired dynamics range of the 

simulator capabilities. The frequency resolution is generally expected to reach at least the sub-Hz 

level.  

Two NCO designs are considered and compared in this work – the fixed-point 32-bit integer based 

solutions (shortcut as “fixed point” in this text) and the float-based solution. The fixed-point NCO is a 

direct implementation of the conventional NCO model. The carrier NCO uses carrier phase increment 

and accumulator in unsigned integer format with 32 significant bits. All 32 bits serve for storage of 

decimal part of the fixed-point number. The code NCO uses code phase increment and accumulator in 

unsigned long integer with 64 significant bits. 16 bits hold the integer number of chips and 48 bits 

hold the code phase.  

The signal generation algorithm using the NCOs was designed for operation of the GPU. The detailed 

description of the algorithm for the specific GNSS signal services is given in Chapter 7 Digital Signal 
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Generation. The following short summary depicts the features relevant for NCO precision analysis. 

The GPU signal generation algorithm employs dozens of threads. Conventional digital signal synthesis 

uses a single NCO to compute successive samples of a signal waveform in serial. The number of 

threads employed in the GPU based algorithm is x = n × 32 where n ∈ [1, 32]. Factor n is adjusted 

according to the overall load of the computation. Each thread features its own NCO. The carrier phase 

increment of the NCO in one thread is given by 

 ∆𝜑𝑖   =  𝑥∆𝜑, (6-6) 

Where x is number of threads applied for the signal channel,i is the carrier phase increment of 

thread i and  is the carrier phase increment of NCO when operating in serial.  

The PRN spreading codes are stored in the shared memory of the GPU multiprocessor. The size of the 

memory is limited to 48 KB. Computed samples occupy 40 KB. In the remaining 8 KB, only short 

parts of the PRN sequences of up to 12 satellites can be stored. The size of these parts is set to 64 

chips. After generation of all respective samples, the new parts of PRN codes are loaded from the 

GPU memory. 

The carrier NCO uses the full length of the 32-bit variable for the decimal part of the phase expressed 

in cycles. The automatic overflow is exploited as modulo 1 operation to keep the phase in cycles < 1. 

The code phase and message bit phase are hold by other variables; therefore the information about full 

number of cycles can be discarded. 

This setting of the carrier NCO results in resolution of the carrier phase f = 0.0053 Hz for the Single 

Service configuration with SR = 22.856 Msps. For the Broadband configuration with SR = 1 Gsps, the 

resolution of the carrier phase f = 0.23 Hz. 

The fixed-point code NCO is implemented as 64-bit NCO with 16 integer bits and 48 fractional bits. A 

good quality simulator should keep full control of the ratio between code and carrier frequency. The 

frequency set in the carrier NCO should be therefore precisely represented in the code NCO. The ratio 

between code and carrier frequency is varies among GNSS services. The value of 1,540 for L1 C/A 

signal with high carrier rate and low code rate is considered in this work as upper limit. This results in 

the need for additional 11 bits for the code NCO resolution and sums up to number of fractional bits > 

43. 

This setting of the code NCO results in resolution of the code phase of 8.12 × 10-8 chips/s for the 

Single Service configuration. Assuming chip length of 293 m (L1 C/A), it corresponds to range-rate 

resolution of 2.3 × 10-5 m/s. For the Broadband configuration with SR = 1 Gsps, the resolution of the 

code phase is 3.55 × 10-6 chips/s resulting in 0.001 m/s range-rate resolution for L1 C/A service. The 

summary of the design of the NCO variables for algorithm with 64 threads is given in Table 6-3.  

The maximum value of each NCO variable is listed in third column of the table. In a serial algorithm, 

the maximum value of would be limited by SR/IF ratio given by Nyquist theorem to values < 0.5. 

With multiple threads, ∈ (0, 1). The maximum value of C = 2.8645 is given by 64 threads setting 

and L1 C/A chip rate relation to the sample rate given by the Single Service configuration. The 

maximum value of the code NCO accumulator do not cross the maximum of 64 chips, because the 

algorithm stops the generation procedure before the end of the last chip of the PRN part stored in the 

shared memory. 
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NCO 

variable 
Unit 

Maximum 

value 
Integer bits  

 Fractional 

bits 

f – Single 

Service [Hz] 

f – Broad-

band [Hz] 

 cycle 0.9999 0 32 0.0053 0.23  

 cycle 0.9999 0 32 0.0053 0.23  

C chip 2.8645 16 48 8.12 × 10-8   3.55 × 10-6  

C chip 63.9999 16 48 8.12 × 10-8   3.55 × 10-6  

Table 6-3 Code and carrier NCO in fixed-point algorithm with 64 threads per satellite channel 

In float-based NCO design, the carrier NCO phase increment and accumulator are implemented as 

single-precision floating-point variables with 24 significant bits. The accumulation operation must be 

supplemented by truncation of integer part to limit the loss of resolution of the fractional part to 1 bit 

only. In case of high SR to IF ratio, the float-based carrier phase increment is a small decimal number 

with multiple leading zeros. In the float format, exponent moves the window of mantisa to low 

fractional bits of the number. With fewer bits, higher resolution can be reached, as leading zeros are 

omitted. The precision of float-based accumulator oscillates between the resolution of the carrier phase 

increment and the resolution of the mantisa. The decrease in resolution down to mantisa bits occurs at 

the moment when integer part of the accumulator value is > 0 and modulo operation follows. The 

equation of minimal frequency step is not as straightforward as for the fixed-point NCO given by 

equation (6-5). The frequency step depends on the magnitude of the value in the accumulator. The 

maximum value of carrier phase increment and accumulator value are summarized in Table 6-4 for the 

Single Service scenario run with 64 threads. The carrier increment for step of 64 threads is calculated 

in double precision and converted to float after modulo 1 operation. The truncated integer number of 

cycles in marked in the table by brackets. The frequency step of the float-based carrier NCO oscillates 

between 0.68 Hz and 2.72 Hz. The maximum value of code phase increment and accumulator value 

are given in the lower part of Table 6-4 with respect to the Single Service scenario run with 64 threads. 

The frequency step of the float-based code NCO oscillates between 5.45 Hz and 87 Hz. This 

resolution of the NCO is insufficient for the needs of precise frequency representation and code/ 

carrier skew. 

NCO 

Variable 
Unit Max. value Integer bits 

Fractional 

bits 
f 

 cycle (14).3255 0 24 0.68 Hz 

 cycle 1.3254 1 23 2.72 Hz 

C chip 2.8645 2 22 5.45 Hz 

C chip 66.8635 7 17 87 Hz 

Table 6-4 Float-based code and carrier NCO in Single Service scenario with 64 threads per channel 

For comparison, an implementation using double precision floating-point based NCO for code and 

carrier was evaluated. The frequency step values for Single Service scenario with 64 threads are listed 

in Table 6-5.  

The frequency step of the accumulator of the carrier NCO oscillates between 1.27 × 10-9 Hz and 4.06 × 

10-8 Hz. The frequency step of the accumulator of the code NCO fluctuates between 5.08 × 10-9 Hz 
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and 1.62 × 10-7 Hz. Assuming a C/A-code chip length of 293.05 m, the lowest frequency step 

corresponds to a range-rate resolution of 0.000047466 m/s. The resolution of double-based NCO is 

sufficient for GNSS signal simulation. 

NCO 

Variable 
Unit Max. value Integer bits 

Fractional 

bits 
f 

 cycle (14).3255 0 53 1.27 × 10-9 Hz 

 cycle 16.7395 5 48 4.06 × 10-8 Hz 

C chip 2.8645 2 51 5.08 × 10-9 Hz 

C chip 66.8635 7 46 1.62 × 10-7 Hz 

Table 6-5 Double-based code and carrier NCO in Single Service scenario with 64 threads per channel 

The fixed-point based, float-based and double-based NCOs differ significantly in the frequency 

resolution. The float-based implementation does not offer sufficient resolution even for a scenario with 

low sample. Especially frequency step of the code NCO is too high. The 64-bit fixed-point based 

implementation offers good resolution for the Single Service scenario. The resolution for Broadband 

scenario is sufficient for scenarios without heavy dynamics. The double based NCO offers highest 

number of significant bits and results in the best frequency resolution. Nevertheless, floating point 

based truncation and oscillation of the resolutions results in irregularities in the generated signal. 

The theoretical performance of the signal generation algorithm in terms of speed was evaluated.  All 

three NCO implementations – fixed point, float and double were taken into account. The performance 

is calculated in cycles of GPU clocks needed for computation of one signal sample of one signal 

channel of L1 C/A in Single Service configuration. Each NCO algorithm was evaluated in terms of 

enumeration of all arithmetic operations per sample and the throughput of each operation in terms of 

parallel operations per clock cycle. The computation is based on CUDA operation throughput 

published in [69]. Table 6-6 lists the performance for older version of GPU with CC 2.1 and the GPU 

with CC 3.5, which is deployed in the Test System. The table shows, that the float NCO algorithm 

outperforms the other NCO designs. At older GPU architecture with CC 2.1., the fixed point NCO is 

slower by 41 % and the double NCO is slower even by 146%. On the Kepler GK110 GPU architecture 

with CC 3.5, the gap between float NCO and other designs is significantly smaller. The fixed-point 

NCO is by 32% slowed. The double based NCO is by 36% slower. The performance of double NCO 

on Kepler GPU is high enough to consider the implementation of the double NCO for high dynamic 

scenarios. 

NCO design 
Cuda CC 2.1 

[clock cycles] 

Cuda CC 3.5 

[clock cycles] 

64-bit (code) and 32-bit (carrier) fixed point  0.8229  0.1531 

32-bit floating point - float 0.5833  0.1156  

64-bit floating point - double 1.4375  0.1573  

Table 6-6 Number of clock cycles for generation of 1 signal sample of 1 satellite channel of GPS L1 C/A by 

one multiprocessor of the GPU 

Nevertheless the throughput of arithmetic operations is not the only factor influencing the final signal 

generation speed. Other important factors are the transfer of data between GPU main memory and the 
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shared memory, level of parallelization among multiprocessors and data transfer from GPU to CPU. 

These factors can in case of high load (high sample rate, many channels) overweight the generation 

speed in terms of number of clock cycles per sample. 

6.5 Test Measurements 

The quality of the generated signal was tested for the Single Service scenario. The generated digital 

was verified with the software GNSS receiver developed at ISTA [71]. The receiver features an DIF 

input interface to process sample files in post-processing modus. The Test System simulator was 

configured to quantify and store the generated signal samples in the receiver specific format. Four test 

scenarios with duration of 15 s were chosen for the test measurements. The description and features of 

the scenarios are listed in Table 6-7.  

The first scenario is a field test measurement with the test receiver under open sky conditions. The 

second scenario is a simulation with float samples and fixed-point NCO. The third scenario is a 

simulation with double samples and fixed-point NCO. The fourth scenario is a simulation using float 

samples and float NCO. The receiver was set to process all the scenarios with the same signal 

processing settings and integration time Tint of 0.02 s.  

No. # sats C/N0 NCO Sample Tint [s] 

1 -- 38.5 -- -- 0.02 

2 12 53 fixed point float 0.02 

3 12 53.5 fixed point double 0.02 

4 12 54.7 float float 0.02 

Table 6-7 Settings of the test scenarios 

The precision of the tracking loop output is evaluated in terms of the root mean square (RMS) of the 

tracking loop error. The C/N0 of each scenario is different. Therefore, the tracking look error cannot be 

compared among the scenarios. The measured error is compared with the theoretical thermal error for 

the given C/N0. The thermal error for delay lock loop (DLL) is given by [46]: 
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where tDLL is RMS of the DLL error in chips, Bn is loop noise bandwidth in Herz, Bfe is double-sided 

front-end bandwidth in Herz, TC is chip length in seconds, Rc is chipping rate in chips/s, Tint stands for 

integration time in seconds, D is early-to-late correlator spacing in chips. For the DIF test scenario 

with correlator spacing D = 1 and Bfe = 10.23 MHz, the first equation applies. 

The thermal error for phase lock loop (PLL) is given by [46]: 
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where tPLL is RMS of PLL tracking loop error expressed in cycles and Bn is loop noise bandwidth in 

Herz. The thermal error for phase lock loop (PLL) is given by [46]: 
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where tFLL is RMS of FLL tracking loop error expressed in Hz, factor F = 1 for high C/N0 and F = 2 

near tracking threshold. The test receiver noise bandwidth settings of DLL Bn = 0.5 Hz, PLL Bn=10 Hz 

and FLL Bn =1 Hz were used in the computation of the thermal error. 

An example of the tracking loop error measured by the test receiver is depicted in Figure 6-2, where 

eDLL, ePLL and eFLL are the tracking loop error of DLL, PLL and FLL respectively. On the left, the error 

loop output for a chosen satellite from scenario No. 2 is presented. On the right, output for a chosen 

satellite from scenario No. 4 is given.  

The RMS value of the tracking loop error is computed from the output data without the initiation 

period of 5 s. Table 6-8 compares the RMS error of DLL, PLL and FLL of each scenario with the 

theoretical RMS thermal error for the respective C/N0. 

No. tDLL DLL 
Ratio 

DLL 
tPLL PLL 

Ratio 

PLL 
tFLL FLL 

Ratio 

FLL 

Unit [chip] [chip]  [cycle] [cycle]  [Hz] [Hz]  

1 0.0061 0.0420 6.9232 0.0060 0.0154 2.5674 0.6024 1.8396 3.0539 

2 0.0011 0.0075 6.6527 0.0011 0.0020 1.8075 0.1127 0.5151 4.5708 

3 0.0011 0.0080 7.5676 0.0011 0.0023 2.1259 0.1064 0.5371 5.0482 

4 0.0009 0.0180 19.5006 0.0009 0.0033 3.6092 0.0927 0.4403 4.7516 

Table 6-8 Theoretical thermal error RMS (t) and measured RMS error of the tracking loops ()  

Regarding the DLL error, both fixed point NCO scenarios deliver better precision than the float based 

NCO scenario. The PLL and FLL show also higher error for float NCO, but the difference is smaller. 

This confirms the analysis for NCO design presented in Table 6-4 that described the insufficiency of 

the resolution resulting in low code phase precision and frequency step. The field test scenario delivers 

higher absolute tracking loop error.  Nevertheless, the ratio in comparison to the thermal error is better 

for DLL and FLL. The reason is probably the limited resolution of the receiver, as the receiver is 

optimized for lower C/N0 than the value used in the simulation scenarios. 
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No significant difference is observable between scenarios No. 2 and No. 3, i.e. between double and 

float data types for sample representation. The Single Service scenario, the design of float samples left 

12 bits for amplitude resolution. When double is used for the samples, the full resolution of the PAC 

with 21 bits is used and tracking could be even more precise. The measurements show no significant 

difference. The reason might be that the resolution of the replica in the test receiver is also limited to a 

single-precision data type and by lookup table resolution for performance reasons.  

 

Figure 6-2 Scenario 2 - float samples, fixed point NCO – left, scenario 4 - float samples, float NCO - right 

This chapter analyzed the influence of the resolution of the digital signal generation on the quality of 

the generated signal and on the limitations posed on signal generation scenario settings. Three key 

variables were chosen for the analysis. 

The analysis was applied on the Test System, which is specific due to software implementation for 

GPU and CPU, where possible data types are very limited and their choice has tremendous influence 

on instruction throughput and is a key factor to empower real time capability of multiservice 

broadband signal generation. 

The chances and limitations for GNSS signal generation were evaluated for the three variables and 

showed that the test system is able to generate high quality signal not only for minimal L1 C/A 

scenario, but for a Broadband configuration with extremely high sampling rate and multiple GPS and 

Galileo frequencies and services as well.  For the Single Service scenario the range of user settings can 

be very flexible including high relative channel power differences and noise generation. For the 

Broadband scenario, the user settings are more limited, but still sufficient for standard configurations. 
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7 Digital Signal Generation 

In this chapter, the concepts and algorithms for parallelization of the signal generation on a GPU based 

simulator architecture are described. Implementation of the algorithms and performance measurements 

on the Test System are given. The chapter proceeds from common concepts for single service 

generation, over algorithms specific to the implemented GNSS signal services, to parallelization of 

generation of multiple signal services and data transfer. 

The task performed by the digital signal generation module of a simulator is to compute the digital 

GNSS signal arriving at the receiver antenna from the satellites in sight. The signal is a sum of signals 

of the available GNSS signal services. It can be described as  

 𝑆(𝑡) = ∑ 𝑆𝑖(𝑡)

𝑘

𝑖=0

, 𝑆𝑖 ∈ {𝐿1 𝐶/𝐴, 𝐸1 𝑂𝑆, 𝐸5𝑎𝑏, … }, 
(7-1) 

where k is number of available signal services and S(t) is the compound GNSS signal. The GNSS 

signal services differ in number of signal components, modulation schema, PRN codes, amplitude and 

frequencies of code, carrier and data.  

In the framework of this thesis, three signal services were chosen for design, implementation and 

testing. These are GPS L1 C/A, Galileo E1 OS and Galileo E5ab. GPS L1 C/A was chosen for being 

most common service used by GNSS receivers. Galileo E1 OS was chosen for being placed in the 

same frequency band to enable tests with single frequency multiple services scenario. Galileo E5ab 

occupies the lowest frequencies of the GNSS signal spectrum. Successful simultaneous generation of 

L1 and E5 can demonstrate the full GNSS broadband generation performance. Additionally, it is the 

most complex signal in terms of signal components can serve as demonstration of the upper limit on 

single signal generation performance of the system. 

The chosen GPS and Galileo signals are modulated with BPSK and BOC schemes. They use CDMA 

multiplexing method. Each satellite channel of a service is assigned a specific spreading code 

sequence with length of thousands of bits. This sequence is typically called PRN code and the bits of 

the spreading code sequence are called chips.  

The signal of the widely spread signal service GPS L1 C/A is modulated with BPSK technique with 

PRN code rate 1.023 MHz. The spreading code contains 1023 chips. The signal level at receiver 

antenna at time point t is given by 

 𝑆𝐿1𝐶/𝐴(𝑡) = ∑ 𝐷𝑝(𝑡 − 𝜏𝑝)𝐶𝑝(𝑡 − 𝜏𝑝)𝐴𝑝(𝑡 − 𝜏𝑝) cos (2𝜋𝑓𝑝(𝑡 − 𝜏𝑝) + 𝜙𝑝(𝑡 − 𝜏𝑝)) ,

𝑚

𝑝=1

 (7-2) 

where t is arrival time of the signal at the receiver antenna, m is number of satellite channels, p is 

signal travel time,  Dp is the data bit,  Cp is the PRN chip, Ap is amplitude, p is carrier phase and fp is 

the carrier frequency. The equations of the E1 OS and E5ab signal services are given in the respective 

sections below. 

The GNSS digital signal generation task can be decomposed from data point of view to generation of 

samples of individual signal channels and addition of these samples. The schema of the task 

decomposition is given in Figure 7-1. Samples of m satellite channels are generated and added to the 
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sample stream of the whole signal service. The samples of one signal service are added to sample 

stream of the compounded multi-service signal.  

 

Figure 7-1 Digital signal generation from data point of view 

The nature of CPU as well as GPU architecture is data oriented. An effective algorithm designed for 

execution on such a processing architecture needs to work on big data sets to reach maximal 

performance. In this work, generation, addition and transfer of samples process successively long 

sequences of samples called batches. First, all channels of one batch are computed and added, as 

outlined in Figure 7-1.  Then, each complete batch is transferred from GPU over CPU to DAC as a 

whole and in time order to emulate continuous service. The size of a batch is given by the length of the 

signal microepoch, for which signal parameters are computed and used as being constant. These 

constant signal parameters for one microepoch are called fixed parameters in this text. The 

microepoch refers to the definition given in the section 5.2.  

7.1 Generation of a Single Signal Service 

With respect to the architecture of the GPU and the features of CUDA interface, the design of the 

single service digital signal generation was split into five key parallelization concepts: 

1. Parallelization among Multiprocessors and their Cores of a GPU 

2. Memory Concept for Modulation Data: PRN Codes  

3. Memory Concept for Signal Samples 

4. Single Service Signal Generation Loop 

5. Memory Concept for Message Bits and Secondary PRN Codes 

6. Quantization and Coding of Samples 

7. Computation of Signal Samples 

These concepts are described on example of the GPS L1 C/A service. The particular modifications for 

the Galileo E1 OS and E5ab services are given in the respective sections below. 
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7.1.1 Parallelization among GPU Multiprocessors and their Cores   

For the design of parallel execution of the single service signal generation among multiprocessors of 

the GPU, three objectives were set. First, the algorithm should parallelize the generation of a single 

service as well as multiple GNSS signal services among the multiprocessors. Second, the algorithm 

must be flexible with respect to the number of multiprocessors, to be applicable for different GPUs 

with typically two up to sixteen multiprocessors. Third, the algorithm should minimize data transfer 

between the multiprocessor and minimize the need to synchronize the execution on the 

multiprocessors. 

The parallelization algorithm for generation of samples of one signal service signal was designed to 

fulfill these objectives. The schema of the algorithm is given in Figure 7-2. In the figure, x stands for 

the number of multiprocessors. Each of x successive sample batches of the signal service is generated 

on one multiprocessor in parallel the other batches. In CUDA, the kernel (i.e. CUDA specific parallel 

function described in section 5.6) is configured to generate one batch of the signal service. It is 

launched x-times to be on x multiprocessors in parallel using the CUDA threading concept with x 

blocks of threads.  

 

Figure 7-2 Parallelization of signal generation among multiprocessors (SMXs) 

As a result, each of x batches of samples is generated on one multiprocessor. Practical tests with GPU 

Nvidia GeForce GT 460 with two multiprocessors proved the setting of number of block of threads 

equal to number of multiprocessors on the GPU to be nearly optimal. The setting of twice as many 

blocks where one multiprocessor generates two batches gave the best results. Higher number of 

batches per multiprocessor did not bring any additional improvement.  

The algorithm for parallelization of the computation of the signal of a single signal service was 

designed in concord with the CUDA threading concept described in detail in section 4.6. The 

assignment of the threads in one block to the computation of the individual signal samples is depicted 

in Figure 7-3. One block of threads comprises m × (32 × p) threads, where m is number of satellite 

channels and p is number of warps.  Each channel is generated using p warps, i.e. p × 32 threads. Each 

thread generates the sample si then the sample s(i+32p), sample s(i+64p) and so forth. For batch size of b 

samples, one thread generates b/(32p) samples of one satellite channel. Immediately after the 

generation of the sample of the respective channel, the thread adds the sample to the signal service 

sample using a special CUDA operation for atomic addition.  
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In this way, each thread holds the data of a single signal channel in its registers. This data comprise the 

fixed parameters of the signal channel, the code and carrier NCO and other modulation specific 

auxiliary data. The frequency control word of the NCO is set to be 32p times the multiple of the carrier 

or code phase increment of the respective satellite channel. Further details about the NCO variables 

were given in section 6.4. 

 

Figure 7-3 Parallel computation of a batch with one block of threads 

7.1.2 Memory Concept for Modulation Data: PRN Codes 

The challenge specific to GNSS signal generation is the concept for placement of the relatively long 

PRN sequences. The PRN codes for GPS L1 C/A signal service comprise 1,023 chips. The PRN codes 

for E1 OS service comprise 4,092 chips for data a 4,092 for pilot component. The PRN codes for E5ab 

comprise 10,230 chips for each of the four components. Secondary codes have lower frequency, for 

generation of one batch of samples only one or two following secondary chips are needed. 

At the time of generation of each sample, the respective chip must be retrieved. In case of Single 

Service configuration defined in section 5.5, just 22-23 samples are generated for one chip. In case of 

Broadband configuration, 977 samples are generated per chip. Per batch, ca. 4,654 and 104 chips are 

needed for L1 C/A signal generation for the two configurations respectively. The number of registers 

per thread (64 on CC 3.5) is too small to hold this number of chips along with other data without 

regular reload from main GPU memory (also called global memory below). The access to the GPU 

main memory is costly; it takes 400-800 clock cycles. 

In this work, the placement of parts of PRN sequences for the generated satellite channels to the 

shared memory is proposed. It is not possible to place whole PRN sequences to the shared memory, as 

even in case of shortest GPS L1 C/A codes and 12 channels, the chips would fill whole space leaving 

no capacity for generated samples. Therefore, a part of PRN sequence (called PRN part further on) of 

every channel is preloaded to the shared memory. The size of this part for each channel is set to k × 32 

chips. Figure 7-4 shows the proposed occupancy of the shared memory. 

Ideally, the k should be set equal to number of warps per satellite channel. Then all threads are 

employed in order to load the chips from the main GPU memory, which improves the performance. 

The procedure of loading the sequences is visualized in Figure 7-5. The choice of the value of k 

balance the occupation of the shared memory between samples and PRN parts. The higher the number 
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of samples stored in the shared memory, the lower the number of copies to GPU main memory 

resulting in higher generation speed. On the other hand, the higher the number of chips in PRN part, 

the lower the number of reloads from the main GPU memory. For the Broadband configuration with 

SR = 1.4 Gsps, the best results on the Test system were reached with k = 2 for L1 C/A, k = 1 for E1 

OS and k = 2 for E5ab. 

 

Figure 7-4 Occupancy of shared memory of a multiprocessor – L1 C/A generation 

In the similar work presented in [38], usage of texture cache for PRN codes is proposed. Also in the 

CUDA Programming Guide [69], the suitability of this cache for such computation patterns is stressed. 

The cache should be used for data that are preferably read-only and are repetitively used in the kernel. 

At older Nvidia GPU architecture, the texture cache could be used only with special texture objects 

and texture access patterns. At CUDA CC 3.5 (Kepler GK 110) architecture, the texture cache can be 

directly allocated for general arrays of variables.  

The size of texture cache in CC 3.5 is 48 KB. The L1 C/A codes fit there completely, longer codes and 

multicomponent signals would need a reload of data.  For example, for generation of 12 channels of 

E1 OS B+C signal with length 4092 chips and 4 B per sample, 383.625 KB would be needed. Even if 

only 1 B per sample were used, a regular reload of data from GPU main memory would be necessary. 

 

Figure 7-5 Loading of PRN sequences to shared memory 
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The usage of texture memory for PRNs of L1 C/A signal was tested. The load of the PRN sequences 

from the device memory to the texture cache was invoked by using special CUDA keyword const 

__restrict__. The load operation could also be enforced with a special function. The performance of 

the signal generation was tested and yielded following results. 

The kernel run time was measured by CUDA Visual Profiler. The mean run time of a kernel was 

computed as an arithmetic mean from generation of 3,200 kernels. The mean run time for one run of 

the kernel using texture memory and generating 12 channels using 2 blocks of threads with 102,400 

samples was measured as 690 s. The mean run time of kernel using shared memory was 490 s for 

the same settings. In showed, that in contrast to the expectation, the speed of the kernel with texture 

cache is significantly lower. Additionally, a kernel with PRNs codes in device memory was 

implemented for comparison. The speed of this kernel with the same settings was 660 s.  

These results and the fact, that the cache is too small for any signal with more complex coding than L1 

C/A motivated the decision to stick to shared memory and to deprecate the usage of texture cache in 

this work.  

7.1.3 Memory Management Concept for Signal Samples 

The generated signal samples are stored in the shared memory of the multiprocessor. The shared 

memory is organized to 32 banks and each thread of one warp can access one number on one of these 

banks in parallel. For optimal usage of the shared memory, the samples of the final signal service are 

ordered sequentially in the shared memory and aligned to 32, as depicted in Figure 7-4. In this way, a 

warp generates 32 successive samples and accesses the respective samples on the 32 banks of the 

shared memory in parallel. The samples are generated as single precision floating point numbers. 

Discussion of this choice was given in section 6.3. The shared memory is optimized for single 

precision numbers, access to double or single byte numbers is less efficient. A sequence of 10,240 

samples, called subbatch further on, is stored in the shared memory. It occupies 40,960 B of space, 

8,192 B of space is left for PRN codes and modulation data.   

When the generation of a subbatch of samples with all satellite channels is finished, all threads are 

synchronized. Then the generated signal samples are copied from the shared memory to the GPU main 

memory. For this task, all the warps of threads are reassigned to transfer the samples of the signal 

service to the main memory in sequential order. This assignment of threads to copy of samples is 

depicted in Figure 7-6.  

 

Figure 7-6 Parallelization of transfer of signal samples from shared to GPU memory 
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The synchronization operation is necessary to secure that the generation of all channels is finished by 

all threads before the copy. The employment of all threads in the copy process improves the 

throughput of the operation. 

7.1.4 Memory Concept for Message Data and Secondary PRN Codes 

In contrast to the primary PRN codes, the rate of secondary PRN codes and the rate of message data is 

by about three order of magnitude lower. Within one sample batch with 102,400 samples, only one or 

two symbols are needed within the Test System configurations. The minimum number of samples per 

message data bit is 91,424 samples for E1 OS with data rate = 250 symbols per second when Single 

Service configuration with SR = 22.856 MHz would be used. The maximum number is 28 million 

samples in case of L1 C/A (data rate = 50 symbols per second) when Broadband configuration with 

SR = 1.4 Gsps is used. Therefore, to load longer sequences of message data or whole secondary codes 

by a kernel to the multiprocessor memory is not necessary. 

The relevant secondary PRN chips and message data are overgiven to the kernel as a part of fixed 

parameters. They are hold in registers of each thread. The algorithm for generation of the samples 

proceeds in steps of batch, subbatch and PRN part, which are not aligned to the length of a message 

symbol or secondary chip. The sample, where the next message symbol or secondary chip starts is 

called sample with bit flip further on. The number of this sample within a batch is nSampleIn-

SubbWithBitFlip and it is overgiven to the kernel in as a part of fixed parameters. 

First, a simple algorithm for message bit modulation was proposed. It serves for comparison with a 

design of a high performance solution. The algorithm places for each sample an if-clause testing of bit 

flip occurrence into the sample generation loop. The if-clause then overwrites the actual bit with the 

next bit. 

This algorithm would increase the number of clock cycles needed to compute one sample by 1/32. 

This number is given throughput by the throughput of the comparison operation being 32 operations 

per clock cycle on CC 3.5 [69]. This value applies only when the result is identical for whole warp, 

which is the case almost all the time. The exception is when the bit flip occurs. Then the execution of 

the warp is split to two parts with identical results within each of them. 

Thereafter, the idea to run the loop over PRN part only to the bit flip was evaluated. The samples of 

one PRN part are generated only up to the bit flip. Thereafter, a test of the art of end of the loop is 

needed. In case of positive outcome, the message bit value is changed to the following bit and an 

additional loop that finishes generating the samples in the actual PRN part is run.  

This algorithm causes additionally one min() operation and one if-clause per PRN part. Number of 

samples in PRN part (nSamplesInPrnPart) are for typical 64 chips in PRN part and Single Service 

scenario (SR = 22.856 Msps) 1,429 samples, for Broadband scenario (SR = 1.4 Gsps) these are 87,585 

samples. Therefore the number of clock cycles for generation of one sample is increased by 2/1,429 

and 2/87,585 respectively. Performance of both algorithms was measured on the Test System. Using 

this algorithm, the speed of L1 C/A generation in Single Service scenario increased in contrast to the 

straightforward implementation by about 10%. 
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7.1.5 Single Service Signal Generation Loop 

The memory concepts and parallelization concept among multiprocessors and their cores were 

described in previous sections. These concepts sum up to a signal service generation algorithm, which 

consists of a generation loop with several levels. 

The upper level loop runs on the host computer. It generates the batches of samples in a successive 

manner. One kernel function per signal service is invoked and it is executed (x × y)-times on the GPU. 

In other words, the kernel is run by x blocks of y threads to generate x successive batches of samples. 

Each block is executed one multiprocessor. One block of threads comprises y = m × 32p threads, 

where each 32p threads generate one of m satellite channels. 

The part of the algorithm executed in the kernel is given in CUDA C in simplified manner as follows: 

for (nSubbatch=0;nSubbatch<NUM_SUBBATCHES_IN_BATCH;nSubbatch++) 

{ 

  for (nPrnPartInSubbatch=0;…<ceil(NUM_SAMPLES_IN_SUBBATCH/(nSamplesInPrnPart)); …++) 

  { 

  syncthreads(); 

loadPrnParts(…); 

 _syncthreads(); 

for (nSubsample=nSatThreadId+(nPrnPartInSubbatch*nSamplesInPrnPart; 

nSubsample<nEndSample;nSubsample+=nThreadsPerSat)  

  atomicAdd(psSubbatch+nSubsample,computeSample(…)); 

 if (nEndSample==nSampleInSubbWithBitFlip){ 

  fBit=fBitNext; 

  nEndSample=min(nSubbatchLength,nSamplesInPrnPart*(nPrnPartInSubbatch+1); 

  for (;nSubsample<nEndSample;… ) 

   psSubbatch[nSubsample]+= computeSample(…);} 

  } 

__syncthreads(); 

addToSampleStreamAndQuantify();      

__syncthreads(); 

} 

In the kernel, three lower level loops are executed. The top most loop in the kernel runs once for each 

subbatch with number nSubbatch of the batch to be generated. In this loop, the samples of the 

respective channel are generated and then all threads run at the multiprocessor are synchronized 

(function __syncthreads). The quantization and copy of subbatch to the main GPU memory follows 

(function addToSampleStreamAndQuantify). Before the generation of the next subbatch, the threads 

are synchronized again, to make sure that all the samples are copied before being overwritten by the 

next subbatch.   

At the beginning of the next lower loop, PRN parts with order number nPrnPartInSubbatch 

comprising k × 32 chips are loaded from the GPU memory to the shared memory (function 

loadPrnParts). When only one warp per channel is used, no synchronization is needed. Otherwise, 

the completion of the reload of parts of the PRN part as well as the completion of the generation of 

samples of the preceding PRN part by the other warps generating the same channel must be secured by 

synchronization. 

The lowest loop generates samples within one PRN part. The number of the thread within the warps 

generating one satellite channel nSatThreadId is used to compute the sample nSubsample of the 
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channel within the subbatch to be generated. Each thread then continues with step of nThreadsPerSat 

= 32p samples parallel to other threads in the block to generate the next (32p)-th sample of its assigned 

satellite channel. The thread then adds the sample to the subbatch of the signal service in the shared 

memory psSubbatch with the CUDA atomic operation atomicAdd. The lowest loop runs up to the 

nEndSample, which is the minimum from the end of PRN part, end of subbatch, and the bit flip. 

When bit flip occurs, the actual bit and secondary chip is changed and the loop continues until the end 

of the PRN part of end of the subbatch. 

7.1.6 Quantization and Coding of Samples 

The samples are generated in single precision floating type. Each DAC and a receiver specific IF file 

interface uses a specific input data format. The generated samples need to be quantified and coded for 

each implemented interface. For maximal performance, the quantization of the samples was 

parallelized and executed on the GPU. This accelerated the quantification in contrast to CPU 

significantly. Even higher improvement of the total generation speed was reached by the fact, that the 

transfer of already quantized and therefore shorter samples from GPU to the host computer is faster. 

The interface document of the PCIe-DAC board ICS-1572 used in the Test System defines the sample 

format to be integer 16-bit number in two’s complement format. This format is equivalent to the 

signed short integer data type in C++ and CUDA C. The quantization operation was implemented on 

the GPU as follows: 

(short int)rintf(fQuantCoef*psSubbatch[nSubsample]) 

Float to short conversion is done using type-cast operation (short int). The throughput of this type-

cast operation is 32 operations per clock cycle for CC 3.5 [69]. The rintf() operation maps to a 

single instruction, but nominal throughput in operations per clock cycle is not published in CUDA 

documentation [69].   

Even though CUDA offers native functions for rounded conversions of many data types, e.g. 

__float2half_rn, or __float2ll_rn, no similar function for conversion from short to float data type 

is included in CUDA 6.0 and CC 3.5. 

For the correct quantification, the amplitude of the signal must be normed to range [-1,1]. Therefore, 

the maximal amplitude is calculated for each signal service. The quantification coefficient is then set 

as follows: 

fQuantCoef= (float)((1<<15)-1)/fMaxAmp  

7.1.7 Computation of Signal Waveform 

The algorithm for signal generation performed by each thread strives to minimize the number of 

instructions for the sample computation to improve the total performance.  

The signal generation equation is defined in (7-6) for L1 C/A. For Galileo E1 OS and E5ab, 

modulation equations are given in sections 7.3 and 7.4 respectively. Modulation of all CDMA based 

GNSS signals comprises message bits, PRN codes and sinusoidal carrier wave. The digital signal is 

generated with direct digital synthesis (DDS) technique using numerically controlled oscillators 
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(NCO), as explained in section 3.1.3. In section 6.4, the requirements on numerical precision of the 

NCO variables were analyzed. The choice of  64-bit fixed point variables for code phase and code 

phase increment and 32-bit fixed point variables  for carrier phase and carrier phase increment was 

explained. 

The key issue of the signal synthesis is the design of the NCOs for the computation of code and carrier 

phase and amplitude, as each operation within the NCOs is executed for each sample. The usage of a 

single NCO holding code phase was considered. Conversion of code phase to carrier phase is 

necessary for every sample. The conversion on Test System GPU is costly. It needs a division of a 64-

bit number, which takes multiple clock cycles. Alternatively, conversion to single precision number 

with throughput of 8 operations per cycle (ops/cycle) and truncation of integer part with two bit shifts 

with 32 ops/cycle could be used. A separate carrier NCO needs only one accumulation (160 ops/cycle) 

and one shift operation (32 ops/cycle) per sample. It occupies two additional 4 B registers, which is 

acceptable on Kepler GK110 GPU architecture (64 registers per thread).  

The PRN parts are stored in the shared memory. The actual message bit and secondary chip are held in 

registers and the inner loop runs just up to the end of the PRN part or up to the bit or secondary chip 

flip.  

For the phase to amplitude conversion, a look-up table is a standard technique used in digital signal 

synthesis. As explained in section 6.3, the look-up table is inconvenient for implementation on a GPU. 

The Nvidia GPUs include multiple special function units (SFUs), which compute goniometric 

functions of float numbers in a single processor clock cycle. CUDA accesses these units with __cosf 

and __sinf functions, which deliver output resolution of 21.19 bits [70]. The Kepler GK110 

multiprocessor comprises 32 SFUs. Another advantage of SFU utilization in contrast to a lookup table 

is the fact, that the other single-precision and double-precision cores can be employed for the other 

mathematical operations in sample generation (accumulation, bit shift, type conversion, 

multiplication) in parallel to carrier wave computation on SFUs.  

After the evaluation of the NCOs, the code, data and carrier amplitude are represented as single 

precision floating-point numbers. They are multiplied to get the final sample value and then added to 

sum of all channels in the shared memory. Each multiplication is done in one float operation with 

throughput of 192 ops/cycle. A single multiply-and-add operation was considered for the last 

multiplication operation and addition to signal service in shared memory. The multiply-and-add 

operation offers the same throughput as a separated multiply or a separated add operation. However, 

an atomic operation is needed for the addition to the signal service in shared memory. A slower 

alternative would be the storage of separate channels and later addition after synchronization of 

threads. In CUDA, specific atomic add operation with high throughput in available, but no atomic 

multiple-and-add.  

This general concept for signal sample computation was adjusted for each signal service according to 

number of components and modulation schema. The specific implementation for each signal service is 

given in following sections. 

7.2 GPS L1 C/A Generation 

The full description of GPS L1 C/A signal is published in the interface control document (ICD) of the 

service provider [47]. The signal uses binary phase shift keying (BSPK) modulation with one signal 

component carrying message data. Each satellite channel uses own PRN sequence with the length of 
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1,023 chips. The signal modulation equation is given by (7-2). The common signal service generation 

concepts were explained in previous sections. The kernel for L1 C/A generation is based on these 

concepts. The algorithm for computation of a sample in subbatch number nSubsample and its atomic 

addition to psSubbatch in shared memory is given in CUDA C as follows: 

atomicAdd((psSubbatch+nSubsample),       

 __cosf(__uint2float_rn(unCarrierPhasePerThread) * (PIx2div2upto32) ) 

 *psPrnPart[ulCodePhaseInPrnPartPerThread>>CODE_PHASE_RESOLUTION] 

 *fSigAmpFactor*fBit); 

 

ulCodePhaseInPrnPartPerThread+=ulCodePhaseDeltaPerThread; 

unCarrierPhasePerThread+=unCarrierPhaseDeltaPerThread;  

The value in carrier phase accumulator unCarrierPhasePerThread is converted from a fixed-point 32-

bit number of cycles with 32 fractional bits to a float number (CUDA function __uint2float_rn) and 

then to radians (PIx2div2upto32 = 2 / 232). The cosine CUDA function __cosf is applied. The code 

phase accumulator is a fixed-point 64-bit number with CODE_PHASE_RESOLUTION (= 48) fractional bits. 

The fractional part is truncated by bit shift operation (>>). Carrier wave amplitude, code chip, signal 

amplitude fSigAmpFactor and message bit fBit are multiplied to the final sample. The code and 

carrier accumulator value is increased by code and carrier phase increments 

ulCodePhaseDeltaPerThread and unCarrierPhaseDeltaPerThread respectively. 

The performance of the L1 C/A generation was measured on the Test System with benchmarking 

configuration of IF = 30.69 MHz and SR = 130 Msps. The signal generation speed in Msps for 2-12 

satellite channels is depicted in Figure 7-7. A single GPU was deployed in the Test System. For 12 

satellite channels, the generation speed of 2,900 Msps was reached.  

 

Figure 7-7 Signal generation performance of L1 C/A kernel with fixed-point NCOs using 1 GPU 

As the figure shows, the speed of the signal service generation increases for lower number of channels. 

Naturally, the lower computational load of generation of fewer channel results in higher generation 

speed. The increase in speed for fewer channels is nevertheless not proportional. The reason is that 

significant time is consumed by operations that are independent of number of channels. These are the 
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transfer of samples from multiprocessor to the main GPU memory and the transfer of samples from 

GPU to the host computer memory. The overhead time for kernel and data copy invocations is also 

independent of the number of channels. Furthermore, the higher speed enforces a more frequent reload 

of PRN parts, which causes a minor slow-down for low number of channels. This issue could be easily 

solved by variable length of PRN parts dependent on the number of channels. 

The benchmark values in Figure 7-7 show that the increase in speed for decreasing number of 

channels is not smooth. The generation of 11 and 12 channels takes almost the same time. The 

generation of 10 channels is by ca. 800 Msps faster that generation of 11 channels. The reason is that 

the maximum number of threads per multiprocessor is limited by 1024 and the threads operate in 

groups of 32 (warps) that execute always the same instruction. In the proposed algorithm, each thread 

is assigned to a single channel. Therefore the maximum number of warps p that can be employed on 

one multiprocessor for a generation of a given number of channels m is limited by 32pm < 1024. The 

numbers of warps and threads per satellite used for the signal generation of all three GNSS signal 

services are given in Table 7-1.  

# satellite 

channels 
2 3 4 5 6 7 8 9 10 11 12 

# warps 

(i.e. 32 threads) 
16 10 6 6 5 4 4 3 3 2 2 

# threads 1024 960 768 960 960 896 1024 864 960 704 768 

Table 7-1 Number of warps and threads per satellite channel operating of a single multiprocessor  

For the purposes of analysis of precision of digital GNSS signal given in Chapter 6, an alternative L1 

C/A kernel with float-based NCOs was implemented. As explained in Chapter 6, it is applicable only 

for Single Service configuration. Using the same benchmarking configuration, the generation of 12 

satellite channels was by 100 Msps, i.e. 3.4%, faster. For lower number of satellite channels, the 

difference between fixed-point and float-based implementation was decreasing. 

The float-based implementation could be deployed in scenarios with a single frequency band and very 

high number of channels (e.g. multi-channel multipath modelling). Neither this option nor the 

multipath modelling has been included in the Test system so far. 

In the Test system with Broadband configuration, the L1 C/A is generated with IF = 411.42 MHz and 

SR = 1.4 Gsps. With such high SR and IF, the generation is faster by ca. 70 Msps. The reason for the 

improvement is the lower number of bit flip events and lower number of PRN parts reload events per 

sample.  

The generated L1 C/A signal was verified in Single Service configuration using the GNSS receiver 

SX-NSR by IFEN GmbH. No noise was added to the signal and the receiver measured C/N0 = 75.51 

dB-Hz. The power spectrum density of the signal measured by the receiver is given in Figure 7-8. The 

acquisition output for the PRN 1 with Doppler frequency of 1,251 Hz is given in Figure 7-9. The 

output of the tracking loops was analyzed and results are given in section 6.5. 
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Figure 7-8 Power spectrum density of the L1 C/A signal 

 

Figure 7-9 Acquisition of the L1 C/A signal 

7.3 Galileo E1 OS Generation 

The E1 OS signal is defined in the interface control document [63] of the Galileo service provider. The 

signal is modulated with CBOC (6, 1, 1/11) modulation scheme. It carries I/NAV navigation message. 

The signal comprises two baseband components: E1-B component is assigned to data message and E1-

C component serves as a pilot. The chip rate of both components is 1.023 MHz, data rate of E1-B 

component is 250 symbols/s. PRN codes of E1-B has one layer with length of 4,092 chips and the 

code sequence length is equal to one data symbol. PRN codes of E1-C are two-layered. The primary 

code is 4,092 chips long and the code sequence length is equal to one secondary code chip. The 
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secondary code sequence is 25 chips long and common for all satellite channels. The Galileo E1 OS 

signal SE1OS(t) is defined as follows: 

 

𝑆𝐸1𝑂𝑆(𝑡) = ∑ √2𝑃𝐸5 (𝑡)𝑠𝐸1,𝑚(𝑡) cos(2𝜋𝑓𝐸5 𝑡) ,

𝑚

𝑝=1

 

𝑠𝐸1,𝑚(𝑡) =
1

√2
(𝑒𝐸1−𝐵,𝑚(𝑡)𝑆𝑠𝑐,𝐵(𝑡) − 𝑒𝐸1−𝐶,𝑚(𝑡)𝑆𝑠𝑐,𝐶(𝑡)), 

𝑒𝐸1−𝐵,𝑚(𝑡) = 𝐶𝐸1−𝐵,𝑚(𝑡)𝐷𝐸1−𝐵,𝑚(𝑡),  

𝑒𝐸1−𝐶,𝑚(𝑡) = 𝐶𝐸1−𝐶,𝑚(𝑡)𝐶2𝐸1−𝐶,𝑚(𝑡), 

(7-3) 

where Ssc,B(t) and Ssc,C(t) are subcarriers of E1-B and E1-C components common to all satellite 

channels. Variables eE1-B,m and eE1-C,m(t) are binary non-return-to-zero (NRZ) modulated combinations 

of code and navigation data message of satellite channel m. The symbol sE1,m(t) denotes the (unit mean 

power) baseband signal. 

The subcarrier functions Ssc,B(t) and Ssc,C(t) are defined by equations 

 
𝑆𝑠𝑐,𝐵(𝑡) = 𝛼 sgn(sin(2𝜋𝑅𝑠,𝑎𝑡)) + 𝛽 sgn(sin(2𝜋𝑅𝑠,𝑏𝑡)), 

𝑆𝑠𝑐,𝐶(𝑡) = 𝛼 sgn(sin(2𝜋𝑅𝑠,𝑎𝑡)) − 𝛽 sgn(sin(2𝜋𝑅𝑠,𝑏𝑡)), 

(7-4) 

where Rs,a and Rs,b denote sub-carrier rates equal to 1.023 MHz and 6.138 MHz respectively. The 

parameters  and  are defined as follows: 

 𝛼 = √
10

11
, 𝛽 = √

1

11
. 

(7-5) 

The subcarrier pattern is applied to every PRN code chip. One period of the subcarrier functions 

Ssc,B(t) and Ssc,C(t) is visualized in Figure 7-10. 

 

Figure 7-10 One period of the sub-carrier Ssc,B (left), and Ssc,C (right), [63] 

Resulting from the subcarrier structure for pilot a data, the maximum amplitude is as follows: 
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 𝐴 =
1

√2
( (α + β) − (−α − β)) = 1.3483 (7-6) 

The algorithm for E1 OS generation follows the pattern of L1 C/A signal generation in all common 

topics. For the length of PRN parts 32 chips per signal channel component were chosen. 64 chips 

would also fit into the shared memory of the GPU, but 32 chips give for high SR (> 1 Gsps) slightly 

better performance. The PRN parts of data and pilot components are stored separately in one float 

number per chip format. 

The E1 OS CBOC modulation differs from L1 C/A BPSK modulation in usage of the subcarrier 

pattern. Possible concepts for computation of the subcarrier pattern were examined. From the equation 

for E1 OS signal computation given in [63], the equation for subcarrier of both components as given in 

(7-4) was extracted. Two possible strategies of computation of value of this expression for each signal 

sample were proposed.  

First, the value of the subcarrier can be computed analytically for each sample according to (7-4). In 

general, the analytical operations are more effective on the GPU than to access some memory 

representation (e.g. lookup table) of the function. This was the case for the carrier wave computation. 

The E1 OS subcarrier formula nevertheless contains the sgn operation, which is not intrinsic to the 

GPU architecture. It would need to be implemented as x/abs(x), where function abs(x) is compiled on 

GPU to multiple operations. In total, 7 single instruction operations (additions and multiplications) and 

two sgn functions would be necessary to calculate the formula on the GPU used in the Test System. 

The second strategy is to evaluate the periodical subcarrier function using a lookup table. Values of 

this periodical subcarrier function are then interpreted as a subcarrier code with 12 values per signal 

component. One bank (32 values with parallel access) of shared memory is assigned to the subcarrier 

codes (24 float values). The data is loaded from GPU main memory at the beginning of the kernel run. 

The subcarrier code phase is computed from PRN code phase. The phase computation together with 

the load of the subcarrier code from the shared memory costs only 5 single instruction operations per 

sample. As a result, this strategy was chosen for implementation in the Test System simulator. 

The storage of subcarrier codes in registers was considered. It was evaluated as inefficient, because 24 

additional registers per thread would shrink the number of threads per multiprocessor below the 

optimum. In the implementation with shared memory, the kernel uses 47 registers per thread. There 

are 65,536 registers on each multiprocessor in total, which results in 64 registers per thread when 

maximum number of threads per multiprocessor (1,024 threads) is employed. The constant cache with 

8 KB was also considered, but the variables stored in this cache must be accessed independently of the 

thread number, which is not the case. 

The algorithm for E1 OS signal generation is given in CUDA C as follows: 

atomicAdd((psSubbatch+nSubsample), 

(fSigAmpFactor 

*__cosf(__uint2float_rn(unCarrierPhasePerThread) * PIx2div2upto32) 

* 

((psSubCarrData[(int)((double)(ulCodePhaseInPrnPartPerThread<< 

(64-CODE_PHASE_RESOLUTION)>>(64-CODE_PHASE_RESOLUTION))* 

SUBCARR_LENGTH_div2uptoCodeRes)] 

*psPrnPartD[ulCodePhaseInPrnPartPerThread>>CODE_PHASE_RESOLUTION] 

*fSymbol)        
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- 

(psSubCarrPilot[(int)((double)(ulCodePhaseInPrnPartPerThread<< 

(64-CODE_PHASE_RESOLUTION)>>(64-CODE_PHASE_RESOLUTION))*  

SUBCARR_LENGTH_div2uptoCodeRes)] 

*psPrnPartP[ulCodePhaseInPrnPartPerThread>>CODE_PHASE_RESOLUTION] 

*fChipSecPilot)))); 

 

ulCodePhaseInPrnPartPerThread+=ulCodePhaseDeltaPerThread; 

unCarrierPhasePerThread+=unCarrierPhaseDeltaPerThread;  

 

In all common topics, the variables and concepts are identical to L1 C/A generation algorithm given in 

the previous section. The subcarrier code is stored in shared memory as psSubCarrData and 

psSubCarrPilot. The subcarrier code phase is calculated from code phase by truncation of integer 

part by bit-shift operations (>>, <<), type conversion, conversion to subcarrier phase 

(SUBCARR_LENGTH_div2uptoCodeRes = 12 / 248) and truncation of fractional part. 

The instruction throughput of the algorithm was evaluated using the instruction throughput data of 

CUDA operations published in [69]. In this document, the number or operations per clock cycles per 

multiprocessor is listed for the majority of common arithmetic operations. For the used operations, 

where the number is not known (e.g. atomicAdd), an estimation was used. The throughput of the 

algorithm evaluated to ca. 1.01 clock cycles per sample of one satellite channel on one multiprocessor 

with assumption of sequential execution of operations. 

The assumption of sequential execution is nevertheless a simplification. Different instructions can be 

launched by warp schedulers of a multiprocessor in parallel. For example, 32 load/store operations can 

run parallel to 96 arithmetic float operations. Furthermore, the parallel launch depends on the 

availability of data and data locality. For example, if the PRN chips used for 32 successive samples of 

one warp are placed on the same shared memory bank, a bank conflict occurs and the load/store 

operation must be split and launched in two successive steps. 

7.3.1 Performance and Verification    

The performance of the E1 OS signal generation using the described algorithm was measured on the 

Test System with benchmarking configuration of IF = 30.69 MHz and SR = 130 Msps. No noise was 

added to the signal and the receiver measured C/N0 = 75.51 dB/Hz. The generation speed in Msps for 

2 to 12 satellite channels is given in Figure 7-11. For 12 satellite channels, the generation speed of 

1,770 Msps was reached with a single GPU. Using the Broadband configuration of the Test System, 

the generation speed increased by ca. 10 Msps.  

The number of threads per channels was the same as in case of L1 C/A (Table 7-1). The effect of steep 

increase in speed for number of satellites that fit the limitations of number of threads is visible in the 

performance graph in Figure 7-11, especially for 8 and 4 channels. In comparison to the L1 C/A signal 

generation, the generation speed is just about 60% for a high number of channels. The additional pilot 

PRN code and subcarrier on both components increase the computational load significantly. For a low 

number of satellites the difference is about 6%. This demonstrates that the occupancy of the processor 

and data transfer play an important role.  
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For the verification, the GNSS receiver SX-NSR and the GNSS signal simulator NAV-NCS from 

IFEN GmbH were used. The generated E1 OS signal was processed by the receiver. The response was 

compared to the response to the signal generated by the commercial signal simulator and processed 

using the similar settings. 

 

Figure 7-11 Signal generation performance of E1 OS kernel using 1 GPU 

The two verification scenarios are listed in Table 7-2. In the scenario no. 1, the RF E1 OS signal was 

generated with the NAV-NCS simulator and simultaneously received by the SX-NSR receiver. In the 

scenario no. 2, the DIF E1 OS was generated by the Test System simulator. The generated DIF data 

were processed by the SX-NSR receiver with matching settings.  

No. Scenario # sats 
C/N0 

[dB/Hz] 

TInt 

[s] 

1 NAV-NCS 12 50 0.004 

2 TestSystem_E1OS 12 50 0.004 

Table 7-2: Definition and settings of E1 OS verification scenarios 

The RMS error of the tracking loop was measured by the receiver. For DLL, PLL and FLL, it is 

indicated in Table 7-3. For comparison, theoretical thermal error RMS was computed for the given 

C/N0 based on (6-6), (6-7) and (6-8) for DLL, PLL and FLL respectively. The comparison of both 

shows similar results for DLL and FLL. In case of PLL, the in contrast to the commercial simulator.  

The power spectrum density of the E1 OS signal simulated in the Single band scenario was measured 

by the receiver SX-NSR and it is given in Figure 7-12. The low bandwidth is visible on the 

deformation of the side loops of the spectrum. The acquisition output for the E1 OS signal is given in 

Figure 7-13. It depicts the signal generated without noise, therefore a high correlation value can be 

observed in the figure. 
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No. tDLL DLL 
Ratio 

DLL 
tPLL PLL 

Ratio 

PLL 
tFLL FLL 

Ratio 

FLL 

Unit [chip] [chip] 
 

[cycle] [cycle] 
 

[Hz] [Hz] 
 

1 0.0007 0.0023 3.38 0.0019 0.1093 56.05 0.9770 7.2752 7.45 

2 0.0007 0.0027 3.89 0.0019 0.0072 3.69 0.9770 7.7756 7.96 

Table 7-3: Theoretical thermal error RMS (t) versus measured RMS error of the tracking loops () 

 

Figure 7-12 Power spectrum density of the E1 OS signal 

 

Figure 7-13 Acquisition of the E1 OS signal 
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7.4 Galileo E5ab Generation 

The Galileo E5ab signal defined in Galileo Interface Control Document [63] uses AltBOC (15, 10) 

modulation. It consists of four signal components E5a-I, E5a-Q, E5b-I and E5b-Q. The E5a and E5b 

signals can also be received separately as BPSK(10) each with central frequency higher and lower by 

15.345 MHz relative to the E5 central frequency 1,191.795 MHz. The signal modulation is given by 

equation  

 𝑆𝐸5(𝑡) = √2𝑃𝐸5[𝑠𝐸5−𝐼(𝑡) cos(2𝜋𝑓𝐸5𝑡) − 𝑠𝐸5−𝑄(𝑡) sin(2𝜋𝑓𝐸5𝑡)], 
(7-7) 

where PE5 is signal power,  sE5-I and sE5-Q are in-phase and quadrature components of the baseband 

signal respectively and fE5 is the central frequency. The baseband signal sE5(t) is defined as 

 𝑠𝐸5(𝑡) = 𝑠𝐸5−𝐼(𝑡) + 𝑗𝑠𝐸5−𝑄(𝑡). (7-8) 

The PRN code and data are combined to binary NRZ modulated functions eE5a-I, eE5b-I, eE5a-Q,and eE5b-Q. 

Definition of these functions is given by 

 

𝑒𝐸5𝑎−𝐼(𝑡) = ∑ [𝑐𝐸5𝑎−𝐼,|𝑖|𝐿𝐸5𝑎−𝐼
𝑑𝐸5𝑎−𝐼,|𝑖|𝐷𝐶𝐸5𝑎−𝐼

𝑟𝑒𝑐𝑡𝑇𝐶,𝐸5𝑎−𝐼
(𝑡 − 𝑖𝑇𝐶,𝐸5𝑎−𝐼)]

+∞

𝑖=−∞

, 

𝑒𝐸5𝑎−𝑄(𝑡) = ∑ [𝑐𝐸5𝑎−𝑄,|𝑖|𝐿𝐸5𝑎−𝑄
𝑟𝑒𝑐𝑡𝑇𝐶,𝐸5𝑎−𝑄

(𝑡 − 𝑖𝑇𝐶,𝐸5𝑎−𝑄)]+∞
𝑖=−∞ , 

𝑒𝐸5𝑏−𝐼(𝑡) = ∑ [𝑐𝐸5𝑏−𝐼,|𝑖|𝐿𝐸5𝑏−𝐼
𝑑𝐸5𝑏−𝐼,|𝑖|𝐷𝐶𝐸5𝑏−𝐼

𝑟𝑒𝑐𝑡𝑇𝐶,𝐸5𝑏−𝐼
(𝑡 − 𝑖𝑇𝐶,𝐸5𝑏−𝐼)]

+∞

𝑖=−∞

, 

𝑒𝐸5𝑏−𝑄(𝑡) = ∑ [𝑐𝐸5𝑏−𝑄,|𝑖|𝐿𝐸5𝑏−𝑄
𝑟𝑒𝑐𝑡𝑇𝐶,𝐸5𝑏−𝑄

(𝑡 − 𝑖𝑇𝐶,𝐸5𝑏−𝑄)]

+∞

𝑖=−∞

. 

(7-9) 

Let Y-Z denote the signal component a-I, a-Q, b-I and b-Q respectively. Then in (7-9), symbol CE5Y-Z 

denotes the ranging PRN code, dE5Y-Z denotes the data message and TC, E5Y-Z denotes the chip length of 

1 / (1.23 × 106) in seconds. 

Ranging code CE5Y-Z is a layered code composed of primary code with length of 10,230 chips and 

secondary code with length of 20, 100, 4, 100 chips for E5a-I, E5a-Q, E5b-I and E5b-Q signal 

components respectively. Both primary and secondary code are both defined in 0, 1 format in the ICD. 

They are combined using XOR operation and translated with 0, 1 = +1.0, -1.0 NRZ modulation to the 

final CE5Y-Z ranging code. In this work, CPE5Y-Z(t) denotes the primary code sequence and  CSE5Y-Z(t) 

denotes the secondary code sequence for the respective signal component.  

The AltBOC modulation is given in the ICD using two alternative definitions. The first definition is 

analytical, the sE5(t) baseband modulation function is expressed as combination of two subcarrier 

functions scE5-S and scE5-P. The second definition expresses sE5(t) as a 8-PSK modulation given by 

 𝑠𝐸5(𝑡) = 𝑒𝑥𝑝 (𝑗
𝜋

4
𝑘(𝑡)) = cos (

𝜋

4
𝑘(𝑡)) + jsin (

𝜋

4
𝑘(𝑡)) , 𝑘(𝑡) ∈ {1, … ,8}. (7-10) 

The value of function k(t) is given by the value of the quadruple (eE5aI, eE5bI, eE5aQ, eE5bQ) and by the 

value of the variable iTs. This variable expresses the time t so that it is partitioned into equal intervals 
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of length Ts,E5 and then sub-divided in 8 equal sub-periods. The the index iTs of the actual sub-period is 

given by [63] 

 𝑖𝑇𝑠(𝑡) = 𝑖𝑛𝑡𝑒𝑔𝑒𝑟 𝑝𝑎𝑟𝑡 [
8

𝑇𝑠,𝐸5
(𝑡 𝑚𝑜𝑑𝑢𝑙𝑜 𝑇𝑠,𝐸5)] , 𝑖𝑇𝑠(𝑡) ∈ {0, … ,7} 

(7-11) 

The relationship between the sub-carrier interval Ts,E5, the chip length TC,E5 and the index iTs is 

visualized in Figure 7-14. The values of k(t) are indicated for the case when quadruple (eE5a-I, eE5b-I, 

eE5a-Q, eE5b-Q) = (-1,-1,-1,-1). The values of the discrete function k(t) and are given in ICD by a matrix 

with dimensions 8 × 16. This matrix will be called k-lookup table further on. 

 

Figure 7-14 Relationship between E5 sub-carrier interval period and chip length 

Closer examination of the k-lookup reveals an interesting relationship. When quadruple (eE5a-I, eE5b-I, 

eE5a-Q, eE5b-Q) with NRZ level values +1.0,-1.0 is translated to 1, 0 format, it can be interpreted as a 

digital number with four digits. The order of these digital quadruple values is equivalent to digitally 

expressed zero-based order number of the quadruple seen as index to k-lookup. For better explanation, 

let us take as an example the quadruple (-1, -1, -1, +1). The translation according to the given pattern 

evaluates to (0, 0, 0,1 ), which can be understood as the binary expressed number 1 (i.e. 0001). In this 

work, this kind of representation of a quadruple of binary values related to E5a-I, E5b-I, E5a-Q and 

E5b-Q signal components is called bit-combined format. 

The procedure of processing of PRN codes and symbols for the E5 modulation as given in the ICD can 

be expressed using the bit-combined format. The schema of the procedure is depicted in Figure 7-15. 

The pair X-Y denotes the components E5a-I, E5a-Q, E5b-I and E5b-Q. The quadruple (eE5a-I, eE5b-I, 

eE5a-Q, eE5b-Q) = 0, 1, 1, 0 serves as an example in the figure. Primary and secondary codes are 

combined using XOR operation and then converted to NRZ format. Code and data symbols are 

combined to eX-Y quadruples. These can be then interpreted as binary values and combined to binary 

numbers. The quadruple 0, 1, 1, 0 evaluates to the zero based number 9 that can be used as index to 

the k-lookup table. 

 

Figure 7-15 Processing of E5 PRN codes and modulation data as defined in Galileo ICD 
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7.4.1 Concept for PRN Sequences and Data Bits 

The algorithm for the parallelized generation of E5 signal was designed. The algorithm follows the 

common concepts introduced in the previous sections, with the exception of the data format of the 

PRN chips and application of the bit and secondary chip. The design of this part of the algorithm is 

given in this section. 

The procedure for representation and processing of PRN sequences and data bits in the E5 generation 

is the key part of the whole algorithm. It enables the comparatively high generation speed of four 

components of E5 signal in contrast to E1 OS and L1 C/A. The concept of the data processing is 

depicted in Figure 7-16. It differs from the procedure described in ICD and depicted in Figure 7-15 

significantly. The example of the quadruple (eE5a-I, eE5b-I, eE5a-Q, eE5b-Q) = 0, 1, 1, 0, identical to Figure 

7-15, is used in Figure 7-16. It demonstrates that both procedures result in the same index value. 

The concept of the data processing depicted in Figure 7-16 processes the chips of all four primary 

PRN sequences as well as the chips of secondary PRN sequences and data bits in the bit-combined 

format. The combination of primary chip, secondary chip and data symbol to eX-Y is done in following 

steps.  

First, the secondary code and symbols are expressed in NRZ format and then multiplied to a combined 

value. Then they are converted from 1/-1 to 1/0 format and transferred to the GPU as a part of the 

fixed parameters. Then, the kernel running on the GPU loads the PRN parts of primary code in bit 

combined format from the GPU main memory to the shared memory. Within this operation, the PRN 

parts are multiplied with this combined value of secondary code and data symbol to retrieve the eX-Y 

quadruple. When the end of each secondary chip is reached (this event is called secondary chip flip 

further on), the actual secondary chip and symbol combination is subtracted from the eX-Y value. In this 

way, the primary PRN code is extracted and it is then combined with the following secondary chip and 

data symbol combination.  

 

Figure 7-16 Algorithm of processing of E5 PRN codes and modulation data for parallelized operation 

For the computation of the individual signal samples, this eX-Y value is used as the index to the k-

lookup table to generate the AltBOC modulation value. The algorithm for the modulation is described 

in detail in the next section. 
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This concept is implemented so that the primary PRN sequences for E5a-I, E5b-I, E5a-Q and E5b-Q 

signal components are hold in a single vector of unsigned integer numbers with 10,230 items. In n-th 

integer number of the vector, the last 4 bits represent in 0/1 format the n-th chip of each of the four 

sequences. When the most significant bit is numbered by 31 and the least significant bit is numbered 

by 0, then the four last bits express the chips of the PRN codes of the signal components as follows: 

bit 28 - E5a-I, bit 29 - E5b-I, bit 30 - E5a-Q and bit 31 - E5b-Q.  

The application of secondary chip and data symbol is defined in the ICD as multiplication of numbers 

expressed in -1/1 representation. This operation is equivalent to the logical operation NXOR applied to 

numbers in 0/1 representation. NXOR stands for the logical complement of the exclusive OR 

operation, also called XNOR is the literature. For the representation of the quadruple (eE5a-I, eE5b-I, eE5a-

Q, eE5b-Q), the 0/1 representation is very effective, because the quadruple can be stored in integer 

number as last four bits in 0/1 format and can be used directly as the index into the k-lookup table. 

The NXOR operation on the bit-combined format of variables was implemented using logical bitwise 

operations. These operations execute a logical operation on each bit of the variable individually and 

they are compiled in many cases to a single instruction. In C/C++ and in CUDA C, the bitwise XOR is 

denoted as “^” and bitwise NOT in is denoted as “~”. For integer variables A and B, interpreted as 

vectors of n bits with last m bits used for logical values, the following equality holds: 

 

For each (i > n - m): A [i] NXOR B [i] 

is equal to 

~ (A ^ B) – X, where X [0], .., X [n - m] = 1 and X [n – m + 1], …., X [ n - 1] = 0. 

(7-12) 

Based on this equation, the combination of PRN sequences loaded from the GPU main memory to the 

shared memory with the secondary chip and data bit quadruples can be calculated as 

ps_e_PrnPartBitCombi[I] = (~(nSecChipsAndSymbolsBitCombi ^ 

pdPrnPartBitCombi[I])) - LEADING_28_ONES_n; 

where pdPrnPartBitCombi is a vector of PRN parts in bit-combined format, where in each integer 

variable the last four bits are dedicated to chips of E5a-I, E5b-I, E5a-Q and E5b-Q signal components 

respectively. nSecChipsAndSymbolsBitCombi is the combined secondary chip and data symbol in bit-

combined format. LEADING_28_ONES_n stands for a number with 28 leading ones and 4 zeros 

equivalent to variable X in (7-12). 

When the end of a secondary chip is reached, the previous secondary chip and data bit combination is 

subtracted from the PRN sequences and the following one is applied. This operation can be expressed 

as  

ps_e_PrnPartBitCombi[I] = ps_e_PrnPartBitCombi[I] NXOR nSecChipsAndSymbolsBitCombi 

NXOR nSecChipsAndSymbolsBitCombiNext 

where the respective variables are defined as before. Variable nSecChipsAndSymbolsBitCombiNext 

stands for the following secondary chip and data symbol combination of the four signal components in 

bit-combined format. 

The A NXOR B NXOR C operation is equal to A XOR B XOR C operation, where leading zeros 

evaluate to zero (0 XOR 0 XOR 0 = 0). Therefore, the operation can be expressed in a simplified way 

using bitwise C/C++ operators as  

ps_e_PrnPartBitCombi[I] = ps_e_PrnPartBitCombi[I] ^ nSecChipsAndSymbolsBitCombi ^ 

nSecChipsAndSymbolsBitCombiNext 
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This expression is then applied in the E5 generation algorithm. 

7.4.2 Implementation of AltBOC Modulation  

For the parallel signal generation on GPU, the AltBOC modulation definition (7-11) with 8-PSK 

modulation and lookup table k(t) was chosen. The reason is that the k-lookup table is small enough to 

fit into the shared memory where a value can be retrieved in a single operation by a whole warp in 

parallel. The total number of operations to retrieve the k(t) value is dependent on the concept of the 

storage of the table in the shared memory. 

7.4.2.1 Memory Concept for Lookup Table k(t) 

The k-lookup comprises 128 items ordered as matrix with 8 rows and 16 columns. It is indexed with 

iTs index and eX-Y quadruple. The shared memory is ordered to 32 memory banks, where in one step 

just one number from each bank can be retrieved by a warp. Each warp generates 32 successive 

samples of a signal channel. The number of samples per sub-period of a sub-carrier interval depends 

on the sample rate. As visualized in Figure 7-14, there are twelve sub-periods in one chip and eight 

sub-period in a sub-carrier interval. During one chip period, the eX-Y value is constant and the twelve 

subcarrier values with iTs = 0, …, 7, 0, …, 3 or iTs = 4, …, 7, 0, …, 7 are successively retrieved from a 

single column of the k-lookup table.  

This sub-carrier modulation pattern implies two possible concepts for storage of k-lookup data in the 

shared memory. The first is to prolong of the k-lookup table to 12 rows by repetition of rows with iTs = 

0, …, 4, storing two columns of the table successively 1 one bank column of the shared memory. Eight 

bank columns are then needed for the storage of the whole table. The second concept is to store the k-

lookup in a straightforward manner with four k-lookup table columns on one bank column of the 

shared memory. The table occupied then four bank columns of the memory.  

For both concepts, the resulting access pattern was analyzed. The access of one warp of threads to the 

k-lookup stored in the straightforward manner is visualized in Figure 7-17 for low SR. The bank 

conflict can occur only when the threads at the end of a warp start generation of the next chip, and 

when the k-lookup column of the eX-Y quadruple in the following chip period is placed on the same 

memory banks. Supposing uniform distribution of eX-Y values, probability of the k-lookup columns of 

the eX-Y quadruple of the successive chips being placed on the same banks is 25%. 

The second criterion for bank conflict to occur is that iTs index to the table that is used by the first 

threads of the warp must be reached by the last threads of warp. The bank conflict can therefore occur, 

only when thread 0 and thread 31 are less than 8 sub-periods far apart. In other words, when the 

sample rate is lower than four times sub-period rate (32/8 × 12 × fC = 491.04 Msps).   

In case of k-lookup being stored in the prolonged manner, the bank conflict can occur only when 

thread 0 and thread 31 are less than 12 sub-periods far away, in other words when the sample rate is 

lower than four times sub-period rate (32/12 × 12 × fC = 327.36 Msps). Probability of eX-Y quadruples 

of following chip periods being stored on the same banks is 50%. For the Boadband configuration 

with SR = 1.4 Gsps, both concepts are free of bank conflicts. The concept of straightforward storage 

was chosen as it consumes less amount of shared memory. 
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Figure 7-17 The straightforward concept of storage of k-lookup in shared memory 

7.4.2.2 Concept for Computation of Sub-Carrier Phase 

The sub-carrier phase iTs is defined by (7-11) and it expresses time t partitioned into equal intervals 

Ts,E5 and then sub-divided to sub-periods. In the kernel, the time epoch is input in fixed parameters in 

form of the code phase from the beginning of the actual data bit. In the inner loop of the signal 

generation algorithm that generates samples of each PRN part, only the code phase within the primary 

code sequence is available. The iTs sub-period starts with 0 at each even code chip, as visualized in 

Figure 7-14. Therefore, for the even number of chips in primary code sequence as is the case for E5 

(10,230 chips), the code phase within primary code sequence is a sufficient base for computation of 

sub-carrier phase iTs. The sub-carrier phase can be retrieved as   

 𝑖𝑇𝑠(𝑡) = (𝐶𝑜𝑑𝑒𝑃ℎ(𝑡) ∗ 12)𝑚𝑜𝑑 8, 𝐶𝑜𝑑𝑒𝑃ℎ(𝑡) ∈ [0,10230), (7-13) 

where CodePh is primary code phase ranging from 0 to 10,230. The code phase variable in kernel is a 

64-bit long integer variable in fixed-point format with 16 integer and 48 fractional bits. To keep the 

coherence between code phase and sub-carrier phase, the subcarrier phase must have the same bit 

resolution as the code phase. Equivalent data type, the 64-bit long integer in fixed-point format with 

16 integer and 48 fractional bits was chosen for the subcarrier phase.  

The mod operation is available in CUDA C, but its instruction throughput for 64-bit numbers is not 

published in the documentation. Probably, it is compiled to multiple instructions. Therefore, it is not 

possible to compare it with other implementations of the sub-carrier phase computation on theoretical 

basis, only an execution measurement could evaluate the performance.  , but the operation can be in 

case of mod 2x on unsigned integer numbers implemented as two bit-shift operations. 

An alternative computation of mod operation is possible, when the second operand is equal to 2x for an 

integer x. Then, the operation can be executed as two bit-shift operations on unsigned integer numbers. 

The sub-carrier phase can be then computed from code phase as  

iTS=(int)((ulCodePhase * 12) << (64-CODE_PRECISION-3) >> (64-3)), 
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where iTS is the sub-carrier phase, ulCodePhase is the code phase in chips and CODE_PRECISION is the 

number of fractional bits of both phase variables. The algorithm comprises following operations: 

conversion from double to integer, 64-bit multiply and two 64-bit bit shifts. Note that for code phase > 

5,461 chips, ulCodePhase × 12 > 216 and therefore an overflow of the 64-bit fixed-point number with 

16 integer bits occur. The overflow in the multiplication causes an implicit mod 216 operation. Because 

the mod 8 operation follows, no information is lost by the overflow. 

Another way to retrieve the sub-carrier phase from code phase is to use a designed sub-carrier NCO. 

The variable ulSubcarrierPh holds the sub-carrier phase and increases with each sample by 

ulSubcarrierPhDelta. The data type of ulSubcarrierPh can be set to unsigned 64-bit long integer in 

fixed-point format with 3 integer and 61 fractional bits. This representation causes an overflow at 

value of 8 = 23 which is equivalent to mod 8 operation. Using this solution, iTs can be computed as 

follows: 

iTS=(int)(ulSubcarrierPh>>(64-3)); 

ulSubcarrierPh+= ulSubcarrierPhDelta; 

This implementation needs following operations: 64-bit add, conversion from double to integer and a 

single 64-bit bit shift. This solution uses the same operations as the previous one minus one 64-bit bit 

shift. Therefore, this solution was chosen for the evaluation of iTs in the inner loop of the E5 generation 

algorithm. 

7.4.2.3 Instruction Throughput for Carrier Wave and 8-PSK Computation 

For the evaluation of equation (7-10), an effective implementation of the sin and cos functions for 

AltBOC 8-PSK modulation is an important issue. Similarly, the evaluation of the carrier wave of the 

signal SE5 as defined in (7-7) needs to be effectively implemented. This issue was already discussed in 

section 7.2 GPS L1 C/A Generation. It was explained that usage of the SFU functions is more 

effective than usage of traditional lookup tables. For the special case of AltBOC 8-PSK modulation 

function, where sine and cosine functions use the same argument, the CUDA specific combined SFU 

function __sincosf was used. It computes both values in a single clock cycle on all available SFUs 

(32 SFUs per multiprocessor on Kepler architecture). The usage of a lookup table would be an 

alternative that is slower but still applicable. There are only eight modulation states represented in 

table k(t) and therefore the lookup table would be short enough to fit into the shared memory. 

The final E5 signal generation algorithm is given in CUDA C as  

__sincosf(__uint2float_rn(unCarrierPhasePerThread) * (PIx2div2upto32), &fCarrSin, 

&fCarrCos); 

 

__sincosf(psK_lookup_xPiDiv4 [8* 

ps_e_PrnPartBitCombi[(int)(ulCodePhaseInPrnPartPerThread>>CODE_PHASE_RESOLUTION)]+ 

(int) (ulSubcarrPhasePerThread>>(64-3))], &fKSin, &fKCos); 

 

atomicAdd((psSubbatch+nSubsample),(fSigAmpFactor*(fCarrCos*fKCos – fCarrSin* 

fKSin)); 

 

ulCodePhaseInPrnPartPerThread+=ulCodePhaseDeltaPerThread; 

unCarrierPhasePerThread+=unCarrierPhaseDeltaPerThread; 

ulSubcarrPhasePerThread+=ulSubcarrPhaseDeltaPerThread; 
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In all common parts, the variables and concepts are identical to L1 C/A and E1 OS generation 

algorithms given in the previous sections. At the beginning of the E5 sample computation, the 

amplitude of the carrier wave is calculated for in-phase components as fCarrCos and for quadrature 

components as fCarrSin. Then the AltBOC modulation value is computed. The k-lookup table is 

placed in the memory as vector psK_lookup_xPiDiv4 with 128 values, where the modulation states 

were already converted to phase value by × /4 operation. The combined primary code, secondary 

code and data symbol quadruples are retrieved in bit-combined format from vector 

ps_e_PrnPartBitCombi placed in the shared memory. This combined quadruple serves as index to 

the k-lookup vector. The second part of the index is retrieved from the subcarrier phase accumulator 

ulSubcarrPhasePerThread by mod 8 operation. Sine and cosine values of the modulation states are 

then combined with carrier wave to the final signal sample and added to the shared memory by an 

atomic operation. Code, carrier and subcarrier NCO compute the next phase value, in case of carrier 

and subcarrier, this step is accompanied by automatic mod 1 and mod 8 operation respectively. 

7.4.3 Performance and Verification 

The performance of E5 signal generation algorithm was measured on the Test System with the 

benchmarking configuration of IF = 30.69 MHz and SR = 130 Msps. The generation speed in Msps 

for 2-12 satellite channels is given in Figure 7-18.  For 12 satellite channels, the generation speed of 

1,630 Msps was reached with a single GPU. Using the Broadband configuration of the Test System, 

the speed of 1,892 Msps was reached. The higher chipping rate of E5 in contrast to E1 OS and L1 C/A 

is probably the reason, why in case of E5 the signal generation with Broadband configuration, 

significantly higher generation speed for high number of channels is measured than with the 

benchmarking configuration.  

The number of threads per channel as given in Table 7-1was employed for the generation. The 

convenient numbers of threads in case of 10, 8 and 4 satellites cause again a remarkable increase in 

generation speed. For a low number of satellites, the speed of E1 OS and E5ab is very similar showing 

the influence of the tasks independent of number of channels. 

 

Figure 7-18 Signal generation performance of E5ab kernel using 1 GPU 
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Comparison of the performance of E5ab generation to performance of E1 OS generation (Figure 7-11) 

and performance of L1 C/A generation (Figure 7-7) show interesting results. Considering Broadband 

configuration and 12 satellite channels, the L1 C/A signal with one signal component is generated with 

the speed of 2,970 Msps, the E1 OS with two components is generated with the speed of 1,769 Msps 

and E5 with four components is generated with the speed of 1,892 Msps. It shows, that the bit-

combined format and related algorithms granted the E5 generation an important speed up in contrast to 

the separated application of data and pilot codes together with the retrieval of subcarrier from shared 

memory, as it is the case for E1 OS. For the E1 OS modulation, these optimization strategies cannot be 

applied. This shows that E5 signal modulation features are more convenient for parallelized generation 

on a GPU. 

The generated E5 signal was verified using GNSS receiver SX-NSR by IFEN GmbH. The receiver 

processes the E5a and E5b signal services separately with 10.24 MHz bandwidth each. The response 

of the receiver to the signal generated with the Test System was compared to the response to the signal 

generated by GNSS signal simulator NAV-NCS. 

Four scenarios were tested and the settings are summarized in Table 7-4. In the NAV-NCS scenario, a 

full constellation with 12 satellites was simulated as RF and received simultaneously by E5a (scenario 

no. 1) and E5b (scenario no. 2) receiver modules. In the verification scenarios no. 3 and no. 4, one 

satellite channel with IF = 51.15 MHz was generated as DIF signal. As no noise was added and the the 

receiver measured C/N0 = 75.51 dB/Hz. The receiver modules E5a and E5b are used with identical 

settings for all scenarios.  

No. Name # sats IF [MHz] C/N0 [dB-Hz] Tint [s] 

1 NAV-NCS E5a 12 5.529 51.15 0.010 

2 NAV-NCS E5b 12 15.539 51.15 0.004 

3 E5a228.56MSs 1 35.805 75.71 0.010 

4 E5b228.56MSs 1 66.495 75.71 0.004 

Table 7-4 E5 verification scenarios 

The power spectrum density of the signal from scenario no. 3 is given in Figure 7-19 as measured by 

the receiver SX-NSR. The acquisition output for the E5a signal with zero Doppler frequency and zero 

code phase is given in Figure 7-20. The output of the tracking loops was closely observed and the 

RMS of the tracking loop error is given in Table 7-5. Additionally, the thermal loop error for the 

receiver settings was compared with the measured tracking loop error. 

No. tDLL DLL 
Ratio 

DLL 
tPLL PLL 

Ratio 

PLL 
tFLL FLL 

Ratio 

FLL 

Unit [chip] [chip] 
 

[cycle] [cycle] 
 

[Hz] [Hz] 
 

1 0.00139 0.03376 24.4 0.00171 0.00422 2.8 0.34177 1.43850 4.2 

2 0.00139 0.05773 41.6 0.00171 0.00445 2.6 0.34177 6.44617 18.9 

3 0.00008 0.0459 1635.3 0.00010 0.00032 3.2 0.0202 0.1881 9.3 

4 0.00008 0.1334 1628.2 0.00010 0.00111 11.0 0.0202 1.5542 76.9 

Table 7-5 Theoretical thermal error RMS (t) and measured RMS error of the tracking loops () 
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The results in the table show, that the thermal error decreases significantly for the high C/N0 of the 

verification scenario. The measured tracking loop error decreases only slightly. The reason is probably 

the limited precision of the receiver tracking loops. The SX-NSR is a CPU-based software receiver 

that probably generates the signal replica using a lookup table. The precision of the signal replica of 

the receiver in not published, but considering a lookup table with 256 items, the carrier phase precision 

would be limited to 0.00195 cycle. The DLL results are little worse for verification scenario, PLL and 

FLL results are slightly better. The generally worse results for E5b can be observed for both NAV-

NCS and verification scenarios.  

 

Figure 7-19 Power spectrum density of E5ab signal with respect to E5a frequency  

 

Figure 7-20 Acquisition plot of the E5a signal 
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7.5 Parallelization - Data Transfer, Multiple Services and GPUs 

7.5.1 Data Transfer between Host and GPU Memory 

From host computer memory to the GPU main memory, the signal parameters for each microepoch, 

called fixed parameters are transferred. From the GPU back to the host memory, the generated 

samples are copied. The data volume of the fixed parameters for one microepoch is very low in 

comparison to the volume of the generated signal samples. 

The fixed parameters for one microepoch are listed in Figure 5-3. They comprise for each satellite 

channel of each service a data volume of 32 bytes. For three services with 12 satellite channels each, 

the fixed parameters comprise a data volume of merely 1,152 bytes. It contrast to777 it, the batch of 

samples of one microepoch comprises a data volume of 204,800 bytes.  

With the older PCIe v. 2.0 x16 interface between GPU and host computer, the transfer of the generated 

samples was the bottleneck and upper limit for the whole GPU-based signal generation performance. 

In the Test System, a GPU with PCIe v. 3.0 x16 is deployed. The data transfer speed of 12.82 GB/s 

was measured. Even for the Broadband configuration with SR of 1.4 Gsps, i.e. 2.8 GB/s, this transfer 

speed is sufficient. 

The GPU architecture enables to run computations on GPU in parallel to the data transfer to host as 

well as in parallel to computations on the host computer. The transfer of signal samples from GPU to 

host computer can therefore run in parallel to the execution of the signal generation kernels on the 

GPU. According to the CUDA documentation, fully parallel run should be possible. 

The asynchronous concurrent execution between host computation, data transfer and GPU 

computation is enabled by the CUDA concept of so-called streams. A stream is a sequence of 

commands that execute in order. All host functions invocations and runs, all data transfer invocations 

and all device functions invocations are run in so-called default stream. When additional streams are 

specified, the GPU function runs and memory copies can be executed in these specific streams in 

parallel to other streams. In each stream, functions and data transfers run synchronously, which means 

that they are executed in order. If necessary, the streams must be explicitly synchronized. For 

concurrent run of kernels and memory copies, several rules restricting the parallelization apply [69].  

Considering these features, an algorithm to parallelize the execution of a kernel with the memory copy 

of signal samples and simultaneously with the host operation (fixed parameters computation and 

further processing of samples) was designed. The algorithm is designed for a variable number of 

streams. Each stream operates on separated data structures to avoid data access conflicts. In each 

stream, each kernel is executed is on all multiprocessors, by one or two block of threads on each, 

generating on batch of samples respectively. This concept of parallelization oven multiple 

multiprocessors was explained in section 7.1.1. The batches of samples computed by one kernel in one 

stream are called a batch set. In the following text, the number of blocks of threads is referred as 

nBlocks. The data structures playing role in the parallelization algorithm are:  

nBlocks – the kernel of each service is launched in nBlock blocks of threads. Each block is 

executed on a single multiprocessor. 

nStreams – number of CUDA streams 
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pdBatchSet[nStreams] – a vector in GPU main memory containing nStreams batch sets, each batch 

set includes nBlocks batches 

phBatchSet[nStreams] – the same as previous, but placed in the host memory  

pdFixedParsSet[nStreams] – a vector in device memory containing nStreams × nBlocks fixed 

parameters sets  

phFixedParsSet[nStreams] – the same as previous, but place in the host memory 

Streams[nStreams] - a vector of CUDA streams  

In each stream, at least one explicit synchronization operation must be included to synchronize CPU 

and GPU computation. The computation and copy of the next set of fixed parameters on the CPU must 

wait, until the previous set is processed. The processing of a generated batch set of samples must wait, 

until the generation and copy to CPU is finished.  

At first, Single Service configuration was considered for the parallelization. The algorithm for 

parallelized signal generation and data transfer is given in CUDA C as follows: 

nRuns = nBatchesToGenerate/(nStreams*nBatchesInSet) + 1; 

 

for (I=0;I<nRuns;I++) 

{ 

  if (I<nRuns-1) 

    for (J=0;J<nStreams;J++) 

      computeFixedParsSet(phFixedParsSet[J],&nVisSats); 

  

  for (J=0;J<nStreams;J++) 

  { 

    if (I<nRuns-1) 

      cudaMemcpyAsync(pdFixedParsSet[J],phFixedParsSet[J],Streams[J]);  

    if (I>0) 

      cudaMemcpyAsync(phBatchSet[J],pdBatchSet[J],Streams[J])  

  } 

 

  if (I<nRuns-1) 

    for (J=0;J<nStreams;J++) 

     { 

       ThreadsPerBlock[J]=nVisSats*THREADS_PER_SAT;  

       syncStream(Streams[J]); 

       kernelL1Ca<<<nBlocks,nThreadsPerBlock[J],Streams[J]>>> 

(pdBatchSet[J],pdFixedParsSet[J],pdPrnSeqsAll); 

     } 

   else  

for (J=0;J<nStreams;J++) 

   syncStream(Streams[J]); 

   if (I>0) 

     for (J=0;J<NUM_STREAMS;J++) 

       processBatchSet(phBatchSet[J]); 

} 
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In this code, nRuns is the number of runs of the main loop of the algorithm. The function 

computeFixedParsSet computes the fixed parameters for one batch set and returns the number of 

satellite channels in view. The copies of fixed parameters and the generated samples are invocated by 

function cudaMemcpyAsync to a given stream as asynchronous. This means, that the function returns 

immediately after invocation and does not wait, until the operation is finished. The number of threads 

in a block is given by the number of satellite channels and a constant parameter THREADS_PER_SAT 

prescribing the number of threads per satellite channel. The synchronization of threads in a stream is 

invocated by syncStream function. The kernel of the signal service to generate kernelL1Ca is 

launched for given number of threads in a given stream and it is always asynchronous. Its parameters 

are the pointers to already prepared data structures in the GPU main memory. Each generated batch set 

in CPU memory is then processed by processBatchSet. This function is a wrapper for a possible 

copy to DAC, storage at disc or any other further processing. 

An issue of the algorithm design was given by the location of the synchronization point in the loop. 

Several positions fulfill the objective to synchronize the CPU and GPU operations to get correct 

results. For a single service and single GPU scenario, two positions were tested using an older GPU 

(GeForce GT 430, 2 multiprocessors, PCIe v. 2.0. x16). The first was to place the synchronization 

point just before the kernel invocation. The second was to place it just after the kernel invocation. The 

first position resulted in overall generation speed that was by 22% faster than a test with the second 

position. The first position was therefore chosen for implementation. 

Furthermore, the placement of the function for processing of the generated batch was examined. |The 

loop order was nevertheless later changed to optimize the loop for the algorithm for generation of 

multiple signal services on multiple GPUs. 

The performance of the algorithm was examined using the CUDA Visual Profiler. The Profiler 

measures the run time of the kernel functions, memory copies and streams and visualize the data in a 

detailed program profile. The profile of the algorithm run for Single Service configuration on the Test 

System is depicted in Figure 7-21. Each run of the E1 OS kernel is visualized with a cyan beam and 

labeled as getE1Os, each memory copy between host and GPU is marked brown. The copy of fixed 

parameters are marked as MemCpy (HtoD) in the profile. The copies of generated samples are labeled 

as MemCpy (DtoH). The time for copy of fixed parameters set is very short, time to copy the samples 

much longer. The maximum time consuming operation is to run the kernel to generate the signal. 

There is a partial overlap between the kernels. The reason is that the start and the end of the run of the 

individual thread blocks on the individual multiprocessors is sequential. A block of the next kernel can 

start as soon as any block of the previous kernel has already finished.  

The assignment of the kernels and copies to individual streams in visualized in the last four lines of the 

profile. The test run was launched with four streams labeled as Stream 13, 14, 15 and 16 respectively. 
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Figure 7-21 Profile of the loop for E1 OS on 1 GPU 

In the timeline of the streams, it is visible that the copy of generated samples in one stream is fully 

overlapped by the execution of the kernel in the following stream. Sometimes, the scheduling of the 

kernel run on the GPU is done in a different order than as it was invocated. This rare event was 

captured in the second algorithm run in the profile in Figure 7-21. Even though the memory copy 

could also directly follow, as it had already been invocated before, the copy is scheduled first after the 

copies in all the other kernels. This irregularity happens in 1% of algorithm runs, so the influence on 

the total generation speed is insignificant. 

Data transfer and kernel run overlap in all but the last stream. After the copy in the last stream, there is 

a gap until the computation in the first stream begins. This gap resembles a synchronization of all 

streams. Nevertheless, the algorithm does not contain any such synchronization point. Each stream is 

synchronized independently by syncStream function. In the profile in the line labeled Runtime API, 

the invocations of all functions are indicated.  

One of the invocations of the kernel in the first stream was marked red and the kernel run was marked 

in the same way. This example shows that even though the kernel is invocated short after the last copy 

in the particular stream and the kernel could therefore start just after the kernel in the fourth stream, 

the start of the execution of the kernel is postponed as if a synchronization of all streams has been 

commanded. Neither CUDA documentation nor the Kepler architecture documentation deliver an 

explanation for this behavior. Various loop orders were tested to avoid this implicit synchronization, 

but without success. Usage of a higher number of streams was tested, to reduce the occurrence of this 

gap. But with more streams, many more irregularities is scheduling order of the kernel and memory 

copy runs occur and result in slowdown of overall performance. The best results were reached by the 

algorithm as described above and with employment of four streams. 
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7.5.2 Parallel Generation of Multiple GNSS Signal Services 

The algorithm was adapted for parallelized generation and addition of multiple signal services. In this 

adaptation, each signal service is generated by its own kernel. The generated subbatches of samples of 

each service are added to one common batch in the GPU main memory. The signal services are 

generated consecutively. One batch set of one signal service at a time is generated by one streams on 

the GPU. First after kernels of the service are executed in all streams, the generation of the next 

service begins. The corresponding batches of samples of all signal services are generated in the 

identical stream, to secure the sequential generation of signal services. In this way, the addition of 

subbatches to the batch in GPU memory can be done without any atomic operation, which improves 

the generation speed. 

An alternative concept would be to use a common kernel generating all signal services to one common 

subbatch in the shared memory. Such a solution could generate all services in parallel. However, it 

would need a more shared memory for the signal modulation data and PRN code than available. The 

occupation of registers by data of the NCOs of all the signal services would be so high, that the 

resulting number of threads could not fill the computational capacity of the multiprocessor. Another 

strategy would be to change the contents of the registers from service to service after each subbatch. 

This operation would nevertheless consume more time than the load of the samples of other services 

from the GPU main memory for the addition operation. 

The information about the signal service order in the successive generation algorithm is available in 

the kernel. The first service is therefore assigned to GPU memory without addition. The last service 

performs additionally the quantization routine. In this way, zeroing of the memory is omitted and 

performance is improved by ca. 0.1%. 

7.5.3 Parallel Generation on Multiple GPUs 

On modern PC systems dedicated for high performance computing and gaming, multiple identical 

graphic cards can be integrated. These GPUs are then connected over a bridge connector. In the 

context of Nvidia GPUs, this technology is called SLI. The Test System was equipped with two 

identical GPUs connected in SLI.  The signal generation algorithm was adapted for parallelized run on 

multiple GPUs. The target of the parallelization was to double the performance and design the 

algorithm to be linearly faster for any further GPUs added to the system. 

The generation of a single epoch of the GNSS signal is an independent task. The fixed parameter for 

the epoch serve as input, the signal samples are returned, and no interdependency with the generation 

of previous signal epoch exists. The parallelization is therefore based on generation of successive 

signal epoch by multiple GPUs in parallel. This means, that d-th of D devices in the system generates 

d-th successive epoch including all signal services. Input data is sent from CPU to each GPU and 

generated samples are sent back from GPU to CPU are ordered to the final signal stream. 

7.5.4 Signal Generation Loop – Multiple Services, Multiple GPUs 

The signal generation loop for a single GPU and single service described in section 7.5.1 was 

redesigned to include the generation of multiple signal services on multiple devices in parallel. The 
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previous loop accounted for the limitations posed on parallel run in CC 2.1. With CUDA CC 3.5, 

some of these limitations were abrogated and it was possible to simplify the loop.  

In CUDA, the assignment of an operation to a GPU is enabled by the command cudaSetDevice. The 

command selects, on which GPU all following operations should be executed. The switch of GPUs is 

a costly operation that causes implicit synchronization of all threads.  

The algorithm is given in CUDA C as follows: 

nRuns = nBatchesToGenerate / (NUM_DEVICES *nStreams*nBatchesInSet) + 1 

 

for(I=0;I<nRuns;I++) 

for(D=0;D<NUM_DEVICES;D++) 

{  

  cudaSetDevice(D); 

  if(I<nRuns-1) 

  { 

    for (J=0;J<nStreams;J++)for(K=0;K<nServiceBands;K++) 

      computeFixedParsSet(pphFixedParsSet[D][J][K],&nVisSats); 

    for (J=0;J<nStreams;J++) 

      cudaMemcpyAsync(pphFixedParsSet[D][J],ppdFixedParsSet[D][J],Streams[D][J]); 

    for (J=0;J<nStreams;J++) 

      syncStream(D,J) 

      for(K=0;K<nServiceBands;K++) 

  *(pKernel[K]) <<<nBlocks,nThreadsPerBlock[J],Streams[D][J]>>>      

           (ppdBatchSet[D][J],ppdFixedParamsSet[D][J][K]); 

  } 

  else 

    for (J=0;J<nStreams;J++) syncStream(D,J); 

  if(I>0) 

    for (J=0;J<nStreams;J++) 

      processBatchSet(); 

  if(I<nRuns-1) 

    for (J=0;J<nStreams;J++)     

      cudaMemcpyAsync(ppdBatchSet[D][J],pphBatchSet[D][J],Streams[D][J]); 

} 

In this code, variables and functions are used in the same context as in section 7.5.1. Additionally, 

NUM_DEVICES is the number of GPUs in the system. pKernel[] is an array of pointers to the kernels of 

the individual services. nServiceBands is the number of signal services to be generated. The size of 

all data structures was multiplied by the number of GPUs. 

There is a single switch of the GPUs in the loop. It causes implicit synchronization of all threads; 

therefore, it was possible to remove the synchronization of streams from the loop. Optimal settings of 

the algorithm were examined for the Broadband configuration. For each GPU, 4 streams and 30 blocks 

of threads per kernel deliver the best results.  

The performance of the algorithm was examined using the CUDA Visual Profiler. The measured 

values can be imprecise, as the timestamps collection influences the execution of applications running 

on multiple GPUs in SLI configuration. Nevertheless, the distortion is consistent for each profiling, so 

the measured profiles can be used to compare different algorithm configurations.  
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The profile for Broadband configuration of the Test System generating L1 C/A, E1 OS and E5 signal 

services is depicted in Figure 7-22. It shows the timeline of the computation on the second of the two 

GPUs used. In the profile, cyan beams mark the E1 kernel, violet mark the E5 kernel and magenta 

stands for L1 C/A kernel.  

The invocation of the GPU switch was colored green in the profile. The gap thereafter indicates the 

invocations to the next GPU that are not included in this profile. The next series of invocations start 

with the copy of fixed parameters. One exemplifying invocation and execution of a copy of fixed 

parameters is marked red in the figure. The GPU switch forces all preceding operations to finish as it 

causes an implicit synchronization. This synchronization and the synchronization observed in single 

GPU single service loop described in section 7.5.1 coalesce. Therefore, both the profile in section 

7.5.1 and this profile visualize the same pattern of task execution.  

 

Figure 7-22 Profile of the algorithm for L1 C/A, E1 OS and E5 on the 2nd of 2 GPUs 

The sequence of tasks in the two algorithms differs in the position of the copy of samples to the host. 

In the single GPU loop, the best results are reached when the copy is placed before the following 

kernel. The placement after kernel gives slightly better results for more GPUs. Again, an irregularity 

in the scheduling order of the tasks can be observed in the figure.  
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7.5.5 Performance Measurements 

The performance of the multi-GPU multi-service signal generation algorithm was measured on the 

Test System. For all benchmarking scenarios, the Broadband configuration with settings of 30 blocks 

of threads, 4 streams and 102,400 samples in batch was used. 

The performance of the loop0 for parallel generation of multiple signal services was benchmarked for 

one and two GPUs in the system. The generation speed for 2 to 12 satellite channels is depicted in 

Figure 7-23. With 12 channels per service for L1 C/A, E1 OS and E5ab respectively, the speed of 764 

Msps was measured on a single GPU.  

For each signal service, the number of threads per channel was set as given in Table 7-1. The 

convenient numbers of threads in case of 10, 8 and 4 satellites cause again a steeper increase in 

generation speed. For a low number of satellites, the increase in speed is higher than in case of a single 

service generation. The reason is the threefold computational load in comparison to the time for 

transfer of samples from GPU to the host computer together with other tasks independent of the 

number of channels. 

The speed of generation of the three services on two GPUs with 12 channels each reached 1,507 Msps. 

It is twice as much as the speed on one graphic card. With lower number of channels, the increase in 

speed due to employment of the second GPU decreases. For two satellite channels per service, a 

speed-up by only 50% can be observed. With so few satellite channels, the computation time 

decreases below the data transfer time and these two do not fully overlap. With multiple GPUs in 

system, the computation run in parallel but the data transfer wait are serialized, because they use the 

shared PCIe backbone. Nevertheless, in case of high computing load due to many satellite channels 

the algorithm succeeds to linearly increase the performance when the second GPU was added to the 

system.  

 

Figure 7-23 Multi-frequency multi-service signal generation performance on 1 and 2 GPUs  
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8 Digital-to-Analog Conversion and Up-Conversion  

For the implementation of the broadband RF GNSS signal simulator architecture a broadband digital-

to-analog converter and up-converter modules are crucial. They have a strong impact on the quality of 

the final output analog signal. The precision of the generated broadband digital signal was analyzed in 

Chapter 6. The digital signal resolution was outweigh with the dynamic range and other simulation 

setting ranges as well as with the performance. Consequently, a GPU-based digital signal generation 

module with multi-GNSS broadband performance was designed and implemented, as described in 

Chapter 7. The subsequent objective of this work addressed in this chapter is to design compatible 

digital-to-analog converter and up-converter modules for the broadband architecture. These modules 

should preserve the performance and output signal quality to the highest possible degree. 

The objective of this work is to reach the bandwidth of 427 MHz and real-time capability for the 

Broadband configuration of the Test System simulator. Research of market-ready and customized 

components for the digital-to-analog converter was carried out. Chosen narrowband and broadband 

solutions were implemented in the Test System. The results are given in the following sections.  

A research on broadband up-converter module showed that no market-ready solutions are currently 

available. Nevertheless, the manufacturer National Instruments confirmed feasibility of a development 

of a tailored solution that would conform to the Broadband configuration specification. The proposed 

costs of about ten thousand euros would still fulfill the overall target of low-cost architecture, as in a 

higher volume order the price would decrease significantly. The deployment and benchmarking of an 

up-converter module is nevertheless out of the scope of this work. 

8.1 Broadband Digital-to-Analog Conversion 

A research on broadband digital-to-analog converter (DAC) with high conversion rate and high 

precision per sample was conducted. The DAC chip must be integrated on a platform that features a 

high-speed interface compatible with the Test System. First, the availability of a high bandwidth DAC 

chip was examined. As of October 2014, multiple broadband DAC chips were available on the market. 

The list of the products is summarized in Table 8-1.   

In the table, input data rate in Msps stands for the sample rate of the data entering the chip. Majority of 

the DACs comprise a module that up-samples the input data. The final rate at which the digital signal 

is converted to analog is called conversion rate. The DACs feature resolution of 14 or 16 bits per 

sample. This number is sufficient to represent the relative signal levels of GNSS signals channels, as 

closer explained in Chapter 5. The bandwidth exceeds the target GNSS signal span in all cases except 

the DAC MAX5891. This chip is deployed on the GE ICS-1572 platform that was chosen for the 

narrow-band solution.  

The spurious free dynamic range (SFDR) exceeds the GPS L1 C/A definition of 40 dBc [47] by at 

least 15 dBc. Nevertheless, the SFDR is given in the product documentation only for frequencies 

grouped around the middle of the DAC bandwidth. The spectral purity of the outer frequency bands of 

the spectrum would need a closer analysis.  
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Name Company 
Conversion 

rate [Gsps] 

Bits / 

sample 

Input data 

rate 

[Msps] 

BW 

[GHz] 

SFDR 

[dBc] 
Input interface 

AD9129 
Analog 

Devices 
5.7 14 1,425 1.4 65 

Dual LVDS, 

DHST 

DAC37J82 
Texas 

Instruments 
1.6 16 1,230 0.8 81 JESD204B 

MAX5879 
Maxim 

Integrated 
2.3 14 1,150 2.0 73 

Interleaved 

LVDS 

DAC5681 
Texas 

Instruments 
1.0 16 1,000 0.35 55 Parallel LVDS 

DAC1658D 

Integrated 

Device 

Technology 

2.0 16 1,000 1.0 -- JESD204B 

MAX5891 
Maxim 

Integrated 
0.6 16 600 -- 84 Parallel LVDS 

Table 8-1 Parameters of broadband DACs 

Company BittWare 4DSP Alpha Data 
General 

Electrics 

DAC AD9129 AD9129 DAC5681 MAX5891 

DAC module 3F230-FMC FMC230 XRM-DAC-D4-1G ICS-1572A 

Mezzanine module S5-PCIe-F  
PC820 

(RDMA) 

ADM-XRC-

7V1/VX330T-2 
-- 

Carrier card -- -- ADC-PCIE-XMC SPR418A 

PCIe version v. 3.0 x8 v. 3.0 x8 v. 3.0 x8 v. 1.0 x8 

Data rate – PCIe 

theory [GB/s] 
8.0 8.0 8.0 2.0 

Sample rate - PCIe 

theory [Gsps] 
4.0 4.0 4.0 1.0 

Specified sample rate  

[Gsps] 
1.4 1.4 1.0 0.5 

RDMA  sample rate  

[Gsps] 
-- 2.8 -- 1.0 

Table 8-2 Overview of parameters of PCIe DAC cards  
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As explained in Chapter 3, the PCIe bus was chosen for the interface between the digital signal 

generation module and the DAC module of simulator. Therefore as a next step, a research on PCIe 

cards comprising such a high-speed DAC was conducted. As of October 2014, just three products 

deploying the DACs listed above were available on the market. These PCIe cards are listed in Table 

8-2. The final PCIe card is actually a suite comprising a DAC module where the target chip is 

mounted, a mezzanine module implementing PCIe interface together with a FPGA and optionally also 

a separate carrier card with hardware connectors and cooling fans. 

A closer investigation revealed that the bandwidth of the DAC is not implemented throughout the 

circuitry up to the PCIe interface of the PCIe cards. For the transfer and input data rate specified in the 

Broadband configuration, a customization of the card is needed. For all three PCIe cards, the interface 

drivers would have to be reconfigured and an IP core for FPGA implementing the high transfer rate 

would need to be developed. In case of the Alpha Data card, also the filter bandwidth of the DAC set 

to 350 MHz would have to be adjusted. For comparison, the GE ICS-1572 card used for the narrow-

band solution is additionally listed in the table. 

8.2 Signal Conversion with Narrowband DAC Card ICS-1572  

For the verification of the concept of the simulator architecture, the narrowband DAC card ICS-1572 

by General Electrics was installed in the Test System. The card precedes the other products listed in 

Table 8-2 by about five years. The block diagram of the inner structure of the card is given in Figure 

8-1. The card features PCIe interface of version 1.0 with just a quarter of the data rate of other cards 

for the equal pin number x8. The data sheet specifies that the card should deliver up to 500 Msps 

conversion rate and output signals with frequency up to 250 MHz for each of the two integrated 

DACs. First, the performance of the continuous transfer of samples from CPU memory to the DAC 

was benchmarked. A spectrum analyzer was connected to assess the quality of the output signal. The 

results are given in Table 8-3. Successful data conversion is marked blue, violet stands for slight 

distortions in signal spectrum and red marks lack of continuous signal delivery. In case of usage of a 

single DAC, the speed up to 300 Msps can be reached without any distortion. With usage of both 

DACs, only 200 Msps can be converted continuously. 

SR [Msps] # 50 75 100 125 150 200 250 300 350 400 450 500 

Spectrum quality 2                         

Spectrum quality 1                         

Table 8-3 Performance of the ICS-1572 in continuous mode 

This measurement is in conflict with the specification. In the loop mode of generation, when data are 

once loaded to card memory and then converted in a loop, the card reached the specified sample rate 

of 500 Msps even for operation of both DAC channels. The result was discussed with the 

manufacturer.  

The measured performance was confirmed by the manufacturer as the maximal performance of the 

continuous streaming from the memory to the card. An alternative to the streaming from CPU memory 

exists. It is the Remote Direct Memory Access (RDMA) streaming directly from GPU to the DAC 

card. The RDMA capability of the card and the ability to reach the maximum performance of the 

deployed PCIe v. 1.0 x8 interface, i.e. 500 Msps for each of the two DACs, is documented in [73]. The 

measured performance published in the document is nevertheless related to the direction from the card 
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to a GPU. For the other direction, only the statement of the functionality of the RDMA is given 

without any measurements. 

 

Figure 8-1 Block diagram of the inner structure of the DAC card ICS-1572 [72] 

Then transfer of generated samples to the card was implemented in Test System. The generation loop 

specified in section 7.5.4 was enlarged by the transfer of samples from the host buffer to a special ICS-

1572 DMA buffer in the same memory. The measured performance of this transfer is listed in Table 

8-4. The conversion rates that were possible to reach in real-time are marked blue; the other ones are 

marked red. The performance of signal generation on GPU does not play a role in this case as the data 

transfer itself is limited by 96 Msps only. 
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Scenario: IF = 15.345 MHz, L1 C/A + E1 OS, 

12 channels 
Msps 

Configured sample rate 50 75 100 125 150 200 

Measured sample rate  62 90 96 94 94 94 

Table 8-4 Performance with transfer from GPU over CPU to CPU ICS buffer  

Thereafter a direct copy of the samples from GPU memory to the CPU ICS buffer of the card was 

implemented. The difficulty was to configure the CPU ICS-1572 buffer as non-pageable memory, so 

that the maximum transfer speed between GPU and host memory can be reached. This maximum 

speed was benchmarked 12.8 GB/s on the Test System as given in section 7.6.1. The CPU buffer is a 

DMA buffer that needs to be allocated by a specific library function of ICS-1572. Nevertheless, 

CUDA offers a function cudaHostRegister() that declares an already allocated memory to be non-

pageable. The direct transfer using this setting was implemented and reached transfer performance 

equivalent to performance available when CUDA based non-pageable allocation of CPU buffer is 

applied.  

The designed algorithm uses a different order of commands than the algorithm given in section 7.5.4. 

The general processBatch function was replaced by the pushSamplesToDacFromGpu function. This 

function combines synchronization of each CUDA stream (function syncStream) and copy of a batch 

of samples from GPU to host memory (cudaMemcpyAsync). This function includes also function for 

waiting until the previous batch was converted to analog (waitIcs) and copy of samples from host 

memory to the DAC card (icsPushBlock). The simplified description of the algorithm in CUDA C is 

given as follows: 

for (I=0;I<nRuns;I++) 

for (D=0;D<NUM_DEVICES;D++) 

{ 

  cudaSetDevice(D); 

  for (J=0;J<nStreams;J++)for(K=0;K<nServiceBands;K++) 

   computeFixedParsSet(pphFixedParsSet[D][J][K],&nVisSats); 

 

  for (J=0;J<nStreams;J++)     

    pIcs->pushSamplesToDac() 

    { 

      waitIcs() 

      cudaMemcpyAsync(ppdBatchSet[D][J],pphBatchSet[D][J],Streams[D][J]); 

      syncStream(Streams[D][J]); 

      icsPushBlock(); 

     } 

   

  for (J=0;J<nStreams;J++) 

      cudaMemcpyAsync(pphFixedParsSet[D][J],ppdFixedParsSet[D][J],Streams[D][J]); 

  for (J=0;J<nStreams;J++) for(K=0;K<nServiceBands;K++) 

     (*pKernel[K])<<<…>>>(…);   

 } 

In this code, variables and functions are used in the same context as in Chapter 7. The algorithm was 

optimized to utilize the relatively long time, when samples are transferred from host memory to the 

DAC card. When a copy of samples to CPU buffer is made directly from GPU, then the stream 
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synchronization must be placed between the copy of samples from CPU to host and the copy of 

samples from CPU to the DAC card. Simultaneously, the computation of fixed parameters and their 

application in a kernel must be interleaved by a synchronization to secure the usage of the correct set 

of fixed parameters. The number of synchronization events must be as low as possible, which means 

to use only one synchronization per stream per loop cycle. Multiple loop orders reach comparable 

performance. This algorithm groups clearly all activities of one loop run and offers therefore good 

readability.  

A scenario with a single L1 C/A kernel and three E1 OS kernels generating signal with SR of 300 

Msps and IF of 15.345 MHz was chosen for verification of the algorithm performance. The execution 

was examined using CUDA Visual Profiler. The profile of the execution order of the algorithm is 

depicted in Figure 8-2.  

 

Figure 8-2 Profile of the generation algorithm with DAC card ICS-1572, SR = 300 Msps, IF=15.345 MHz 

In the fourth CUDA stream in the figure (stream 16), computation of the last kernel is marked red. 

Between this computation and the following copy of samples from GPU to the host memory there is 

an offset, that is nonexistent in the other streams. Existence of this offset shows that the sample 

generation waits for the conversion of samples by the DAC card, as the copy can start first after the 

conversion of previous data.  

This indicates that a slightly higher performance in terms of higher conversion rate or higher number 

of satellite channels could be reached. 

In the row “Runtime API” containing the invocation of functions there is a gap of about 7 ms between 

the invocation of the kernels and invocation of the copy of the samples from GPU. The invocation and 

respective kernel run are marked red in the figure, the invocation of the copy from GPU to the host 

memory and respective execution are marked black. Obviously, the gap between the invocations is 

caused by waiting for the DAC card (function waitIcs) to convert the previous batch of samples. An 

interesting issue is the existence of an equivalent gap between executions of device computations in 

this time. Between the two invocations, there is the computation of fixed parameters (getFixedPars) 
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and waiting for the DAC card to finish the conversion of the previous batch. According to Nvidia 

documentation, the execution of the device code should start immediately, if there is no other device 

computation running, and it should be able to run in parallel to host code computation. This is, 

according to the profile, nevertheless not the case, the computation on GPU waits for the invocation of 

the next GPU code to start with the previously invocated kernels. Tests with higher SR nevertheless 

showed that the gap closes with higher computational load, so it is not an obstacle to reach the 

maximum performance. 

The performance of the algorithm was measured for four scenarios and it given in Table 8-5. The first 

scenario generates L1 C/A and one E1OS signal service with 12 satellite channels respectively. The 

second, third and fourth scenario add 2, 3 and 4 E1 OS services respectively with 12 channels each. 

All scenarios were run with IF = 15.345 MHz and SR set consecutively to 50, 75, 125, 150, …, 450 

Msps. The sample rate of the overall signal generation throughput with transfer to the DAC card ICS-

1572 and a single GPU in the Test System is given in the table. 

Scenario Measured SR [Msps] 

Set SR [Msps] 50 75 125 150 200 250 300 350 400 450 

L1 C/A + E1 OS, 12 channels 51 76 127 182 203 254 305 349 366 367 

L1 C/A + 3x E1 OS, 12 channels 51 76 127 154 203 254 305 349 366 366 

L1 C/A + 4x E1 OS, 12 channels 51 76 127 154 203 254 305 349 355  366 

L1 C/A+ 5x E1 OS, 12 channels 51 76 127 154 203 254 312 312 312 312 

Table 8-5 Signal generation performance with GPU to CPU ICS buffer transfer 

The results show that the maximum performance is limited to ca. 350 Msps. This rate in terms of Msps 

is in correspondence with general ICS-1572 performance measurements given in Table 8-3. Within 

this performance capacity, ca. five signal services with 12 channels could be generated in parallel. The 

spectrum of the generated signal was tested with a spectrum analyzer. The output is given in Figure 

8-3. 

 

Figure 8-3 Power spectrum of L1 C/A measured by spectrum analyzer 
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9 Summary and Conclusions 

In this thesis, a GPU-based broadband simulator architecture was proposed. The focus of this work 

was the design of parallelized algorithms for the digital signal generation part of the simulator. These 

were optimized for maximum performance on GPU. Implementation was done using consumer-level 

graphic cards and consumer-level PC-system. In this low-cost configuration, real-time performance 

was reached. Requirements on corresponding broadband DAC and upconverter are on the edge of 

abilities of market ready solutions. Availability of tailored solutions was nevertheless confirmed, 

which implies practicability of the proposed simulator architecture. For verification purposes, digital-

to-analog conversion was implemented in narrowband for separated single frequency GNSS bands.  

The features of the digital signal generated using the GPU platform was analyzed and conditions for 

sufficient precision were determined. The GPU architecture is optimized for 32-bit floating-point 

numbers. Broadband GNSS signal can reach sufficient precision when at least 64-bit numbers are 

used. This contradiction poses a challenge to the design of the signal generation algorithm in a way 

that would effectively exploit the computational power of the GPU. 

For the generation of GNSS signal services, parallel algorithms were designed and optimized for the 

GPU. The algorithms overcome the low size of the fast GPU memory in contrast to the size of PRN 

sequences and apply the parallelization concept with hundreds of threads to the generation of GNSS 

signal. In contrast to it, the GNSS signal comprises only handful of services with dozens of channels 

and it is generated by NCOs with sequential nature. The generation of GPS L1 C/A, Galileo E1 OS 

and Galileo E5ab services was implemented. For E5ab with four signal components, an innovative 

algorithm combining the PRN sequences bitwise was designed and it proved high performance. The 

generation speed exceeded the speed of generation of E1 OS with only two signal components. 

The transfer of generated samples from GPU to CPU was parallelized to the signal generation on GPU 

to 75%. In case of multiple GPUs, this is a maximum. In case of a single GPU, even though an 

algorithm for full parallelization was developed, an implicit full synchronization occurs in contrast to 

the CUDA programming documentation. In case of generation of multiple services, the full 

parallelization would improve the performance just by 7%.  

The digital signal generation algorithm was also adjusted for execution on multiple GPUs in parallel. 

For two GPUs and high number of satellite channels per service, the maximum performance 

improvement - to double the generation speed - was reached. As the data transfer takes up ca. 32% of 

the computation time, for four or more GPUs, the linear performance increase would occur only for 

higher computational load in terms of number of signal channels. 

Tor real-time generation of the broadband GNSS signal, the sample rate of 1,400 Msps was designed. 

The digital signal generation of 12 channels of GPS L1 C/A and Galileo E1 OS and E5ab respectively, 

reached even higher throughput. Nevertheless, a performance overhead is necessary for real-time 

operation including the data transfer to a DAC. 

For the broadband digital-to-analog conversion, DAC devices are already available on the market. 

However, a DAC platform with PCIe interface, necessary for connection to a mass-market PC, is a 

niche application with slow development progress. A tailored device was purchased and tested in the 

simulator system. 
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A broadband upconverter is also not an off-the-shelf component. It is possible to get a tailored 

solution, but the parameter of the broadband filters are nevertheless still below expectations. The trend 

toward broadband telecommunication will probably make also this topic solvable in the near future. 

To evaluate the capabilities of the broadband architecture, a comparison with commercial simulators 

can be done. The key figures of merit of market-ready simulators are listed in Chapter 2 GNSS Signal 

Simulators. 

The broadband architecture fits the category of real-time signal simulator. It can also be used for a DIF 

generator. The replay functionality would be possible with a fast storage medium (e.g. solid state drive 

- SSD) connected over the PCIe interface. This configuration was nevertheless not tested.  

The high-end commercial signal simulators offer the full scale of existing and planned GNSS services. 

In this work, services GPS L1 C/A, Galileo E1 OS and Galileo E5ab were implemented. Nevertheless, 

any other CDMA as well as FDMA based service could be added. The performance of the signal 

generation will be dependent on modulation features. As the experience with E1 OS and E5 shown, 

the number of signal components and the volume of modulation data can be outweighed by highly 

parallelized generation operations and a data-compressing storage pattern. This possibility depends on 

to which extent the modulation computation operation and storage pattern coincide with the specific 

features of the GPU architecture. 

In terms of number of signal channels, the high-end simulators offer up to 160 channels with 640 

multipath channels and 4 interference channels. With the chosen hardware, this simulator 

implementation can generate ca. 48 signal channels with the full bandwidth. This number can be 

increased by deployment of a professional-level GPU. The linear growth in performance measured 

with the second GPU indicates, that with higher number of GPUs (up to four can be integrated in one 

system), such a high number of channels can be reached. In addition, a deployment of a stronger PC-

system in terms of memory speed and processor performance would be an easy way for performance 

increase. 

The number of simultaneous carriers offered by the high-end simulators is 9-10. At the broadband 

architecture, the number of carriers can be as high as the number of channels. Within the given 

bandwidth of the single broad band, each channel can be generated with any chosen frequency. More 

limiting is the number of signal services generated in parallel. Each additional service causes overhead 

by the copy of generated signal from multiprocessor to the common signal in the GPU memory.  

Modeling of various signal impairments and additional precision enhancing services is an essential 

part of functionality of each commercial simulator. Each impairment effect except multipath can be 

modeled by configuration of basic signal parameters – phase, frequency and amplitude. It can be input 

to the digital GNSS signal generation module introduced in this work. The multipath reflections could 

be easily added to the signal generation module. Just an enlargement of the definition of signal 

channel by multipath channels would be necessary. No change to kernel design would be required, as 

multipath channels do not need any additional memory for PRN sequences. 
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