
Extracting State Machines from Feedforward Neural
Networks

Sebastian Seidel
Bundeswehr University Munich -

Computer Science Department
Neubiberg, Germany 85577
sebastian.seidel@unibw.de

Uwe M. Borghoff
Bundeswehr University Munich -

Computer Science Department
Neubiberg, Germany 85577

uwe.borghoff@unibw.de

Abstract—Artificial neural networks (ANNs) are a category
of AI models based on the principles of connectionism that have
recently been successfully used to solve problems that were not
solvable with classic AI approaches in the past. The aim of
this paper is to introduce a method to extract state machines
from Feedforward Neural Networks (FNN) at a specific point of
training to provide an approach in Inter-cognitive communication
for better understanding the logical decision processes that are
simulated by a FNN’s calculations. This method is directly fitted
to be used with FNNs that calculate decisions over continuous
input data, where the future situation is based on the recent
situation and the decisions that are made in the present. Based
on the extraction from FNN’s, themselves being a basis for many
other neural network types, our method is supposed to deepen
the link between connectionist’s models and symbolic models,
thus improving the usability of artificial neural networks data
processing in the environment of symbolic human concepts.

I. INTRODUCTION

Artificial neural networks have seen a renaissance in the
past few years, when they were used to solve a variety of
problems that cannot be formally described well and are
therefore not well suited to be solved by classic AI approaches
[4]. This became possible because of the improved hardware
available nowadays and the vast amount of data available for
training. But one major problem still remains. It is often very
hard to verify or even understand the decision processes on
which the results computed by artificial neural networks are
based. We want to address that problem by providing equiva-
lent state machines for FNNs which operate over continuous
input data. Those state machines can be analyzed instead of
those neural networks, thus providing a Representation-sharing
transfer type for Inter-cognitive information transfer between
FNNs as artificial cognitive systems and humans as natural
cognitive systems according to the definition in [1]. We choose
FNNs, because they are the basic structure for a big variety
of commonly used artificial neural networks like Recurrent
Neural Networks or Convolutional Neural Networks [6]. We
also restrict our method to continuous input data, because with
this type of input a future situation is based on its predecessor.
This is comparable to state machines, were a future state de-
pends on its predecessor in contrast to, e.g. decision trees. With
this approach we want to provide a link between commonly
used connectionists’ and symbolic AI models by creating a
transformational hybrid system as they are described in [3],
that transforms FNNs into equivalent state machines. Our aim
is to improve human understanding of decision processes in

artificial Neural Networks, particularly when they show an
exceptional behavior, by providing a CogInfoCom Interface for
developers designing and training FNNs [2]. Such an interface
can afterwards be used by Domain Experts that evaluate ANNs
to enhance approaches for ANN training like the one described
in [11]. This approach is visualized in Figure 1.

Fig. 1. The basic idea of extracting state machines from FNN snapshots
in training time, when the FNN shows an exceptional good or bad decision
behavior.

The paper is structured in five sections. In Section II, an
overview of related work is given. In Section III, we describe
the problems related with the extraction of state machines from
FNNs. In Section IV, we introduce our approach and discuss
limitations. Section V concludes our paper.

II. RELATED WORK

In this section we will introduce the filler/role principle
of Smolensky’s Integrated Connectionist/Symbolic Cognitive
Architecture that serves as inspiration for our method. We will
further provide a short description of our approach to extract
symbolic characteristics from FNNs, something we need to
define our states and transitions.

A. The filler/role principle

According to Smolensky it is possible to establish a con-
nection between connectionists AI and symbolic AI [8]. He
states with the filler/role principle that the complete meaning
of a symbol like a letter in a word is defined by its filler,
a picture or placeholder, and its role or, in other words, its
context. In the case of a letter in a word this is its position in
that word compared to those of all other letters. Both can be
combined in a distributed representation [7], [9].
We also use the idea of distributed representations for filler
and context to identify states in FNNs.

9th IEEE International Conference on Cognitive Infocommunications (CogInfoCom 2018) • August 22-44, 2018 • Budapest, Hungary

978-1-5386-7094-1/18/$31.00 ©2018 IEEE 000011

B. Extracting characteristics from Feedforward Neural Net-
works

The second basis for the method described in this paper
is our approach to extract decision trees from FNNs. The
key element to accomplish this extractions is the extraction
of characteristics that are combined to receive the single
categories forming a FNNs output. As a result, for a given
FNN with given output categories, one can determine which
characteristics have to be or must not be present to receive
a specific classification category as output. Further, one can
determine all input activation vectors that cause the presence
of a specific characteristic. The overall result is that for each
possible output all valid input activation vectors that lead to
that output can be determined [12]. We use this result to define
the states of our extracted state machines. This idea is based
on the approach to to define classes for ANN inputs [10].

III. STATEMENT OF THE PROBLEM

In this section, we will point out the primary challenges
we have to cope with when extracting state machines from a
FNN and the questions that result from these challenges.
In contrast to the decision trees we extracted from FNNs [12],
state machines do not only receive information from the
outside world but additionally have access to information about
their internal state. Therefore, we have to extract the following
information from a FNN to create an equivalent state machine:

• The states a system can have and how these states are
characterized.

• The transitions between those states consisting of their
starting state, their target state, and the signal or
command that causes the transition.

By answering these two questions we can generate the com-
plete graph describing the state machine. To achieve that goal
we make use of the input signals of the FNN and their
corresponding output activation vectors. With those inputs
and corresponding outputs we define the states of the state
machine. After defining all possible states we search for all
directed connections and their triggering signals which, when
combined, define the transitions between the states. Finally, we
have to review whether all generated transitions are usable or
whether some of them can never be triggered by valid input
activation vectors. When this is done we propose that the
extracted state machine simulates the FNN’s behavior under
the condition that this network is only fed with valid input
signal vectors.

IV. THE PROPOSED METHOD

In this section, our method to extract a state machine from a
FNN will be presented. First we describe how to generate the
states. Second we evaluate what the characteristic activation
combinations belonging to the specific states are. Third we
generate all possible transitions that can potentially connect
the states of the state machine. Fourth all transition that can
never be triggered by valid input data are eliminated. The result
is a state machine, which shows a behaviour equivalent the the
behaviour of the original FNN.
When extracting state machines we always extract Moore
machines, because in Moore machines the output symbols are

only dependent on the state they are in. This way, we can treat
a Moore machine’s state as directly connected to the output
signals. In other words, if a system reaches a new state, this
state is defined by the produced output. We demonstrate our
technique to extract a Moore machine from a FNN using an
example agent for a small task and specify the single steps in
the process.
For this example we assume an agent being implemented with
the help of a small FNN. Its neurons can be either active or
inactive. The agent should be able to walk along a corridor
with several doors. It cannot turn, just walk straight forward,
and recognizes only the door closest to it. The doors can be
closed or open, and if they are closed, they can additionally be
locked. An open door is never locked. The FNN has two output
neurons, enabling the agent to choose from four possible
actions with the following activation combinations:

relevant
output-
neuron

activation
’unlock
door’

activation
’open
door’

activation
’close
door’

activation
’step

forward’
neuron ’X’ 0 0 1 1
neuron ’Y’ 0 1 0 1

The agent is supposed to walk along the corridor. When
it finds a door in front of it the agent can walk trough, if the
door is open. If the door is closed, it first has to open this door.
If the door is locked, the agent has to unlock the door befor
it can open the door. When the agent passed a door and the
door, now behind him, is still open, the agent has to close the
door before continuing to walk along the corridor. The basis
of the agent’s decisions is the information the FNN receives
with its three input-neurons. These neurons have the following
activation combinations:

encoded information neuron
’A’

neuron
’B’

neuron
’C’

’door in front of agent’ 1 * *
’door behind agent’ 0 * *

’door is open’ * 1 1
’door is closed’ * 0 *
’door is locked’ * 0 0

’door is unlocked’ * * 1

Fig. 2. An example for a FNN that fulfills all requirements to realize the
example agent from Section IV.

The equivalent FNN might look like the example pictured
in Figure 2. We assume this represents the neural network at a

S. Seidel and U. M. Borghoff • Extracting State Machines from Feedforward Neural Networks

000012

promising point of its training were it computes correct results
significantly often.

A. Generating the states

Now we can start with the extraction of the corresponding
Moore machine by extracting its states from the FNN, which
realizes the function fFNN by deriving specific output activation
vectors from specific input activation vectors. We generate the
states according to the following description:

Step 1) We consider Ok = (o1, ..., on) as a possible out-
put vector with o1, ..., on being the activations of the n
ordered neurons in the output layer, representing the order
in (o1, ..., on). Determine the set of all corresponding input
vectors Ik = {Is = (i1, ..., im) | fFNN(Is) = Ok} with i1, ..., im
being the activations of the n ordered neurons in the output
layer, representing the order in (i1, ..., im). This is done exactly
the same way as it was done for the characteristics we extracted
for our decision trees [12]. The definition for the resulting
states is statek = Ik. They are representing the categorized
combinations of activations in the output-layer.

Fig. 3. The assumed state-output-combinations for the FNN in the example
from Section IV.

The categorized activation combinations are of interest to
us because they are encoding the output of the Moore machine
we want to extract. Remember that the output symbol in a
Moore machine only depends on the state the Moore machine
is in. Therefore, we have the same number of states as we
have different output symbols. The output symbols themselves
are represented by the mentioned activation combinations of
the output-layer. To be precise, each specific state is directly
connected to exactly one specific output symbol. The second
important trait of states is that each single one is defined by
a set or combination of characteristics that can change over
time [5]. That leads us to the statement that the following
traits are true for states:

• Each specific state is connected to exactly one spe-
cific output symbol defined by a definite pattern of
activations in the output layer.

• Each state of a system is connected to a defined num-
ber of specific sets or combinations of characteristics
that system can have.

As a result each valid pattern of activations in the output layer
presenting a state is directly connected to a number of specific
sets or combinations of characteristics the system can have.
That is why we are searching for the matching combinations
described in step 1). Let us assume that our analysis provides
the following results for our example FNN. Those results
lead to the combinations of states with outputs presented in
Figure 3. It is important to note that the system can actually
be in any of those states because the artificial neural network

has a valid output combination matched to each one of these
input activation vectors building that states.

neuron
’A’

neuron
’B’

neuron
’C’

neuron
’X’

neuron
’Y’

1 0 0 ⇒ 0 0
1 0 1 ⇒ 0 1
0 1 1 ⇒ 1 0
0 0 0 ⇒ 1 1
0 0 1 ⇒ 1 1
1 1 1 ⇒ 1 1

B. Finding the characteristic activation combinations of each
state

In our next step, we try to reduce the information overhead
in the input activation vectors that form the states of our future
Moore machine. Therefore, we are searching for input neuron
activation combinations that are typical for a specific state.
These activation combinations cannot be found in any input
activation vector that does not exclusively belong to that state.
As a direct result, an input activation vector can be identified
as part of a specific state by just using these input-neuron
activations because they can only be found in this state. All
other activations of such an activation vector are irrelevant for
the assignment of the activation vector to the state and can
be treated as random valid activations. We will always try to
reduce activation vectors to activation combinations as small as
possible and therefore searching for a minimum of joint neuron
activations to identify all sets of relevant neuron activations for
a state. With this method, we also identify all combinations of
characteristics that define this state by eliminating information
and characteristics that are not considered for that state.
In our example, we can use that method to optimize the
characterization of the fourth state presented in Figure 3.
The activation vector (1, 1, 1) cannot be reduced. The only
activation it shares with any of the other activation vectors
is the third, which is the same activation as in (0, 0, 1). But
the last active neuron having the activation 1 is also true
for activation vectors in the second and third state shown
in Figure 3. Therefore the activation combination (1, 1, 1) is
one complete valid combination for the fourth state. On the
other hand, the activation vectors (0, 0, 0) and (0, 0, 1) can be
reduced. They share the joint activation combination (0, 0) for
their first and second neuron. This activation combination for
those two neurons is not present in the activation vector of
any other state. When the first two neurons of an activation
vector have the activation value ’0’ the activation value of
the third neuron holds no additional information regarding the
membership of this activation value to a specific state. This
vector is always part of the fourth state, because that combina-
tion cannot occur in any other state and all possible activation
combinations for the other neurons are valid combinations in
the fourth state combined with the activation values (0, 0) for
the first two neurons. Consequently, the following activation
value combinations are defining characteristics for the fourth
state:

Remember our definition that a door, which is open, always
has to be unlocked, too. The reduction described for our
example is additionally visualized in of Figure 4. There you

9th IEEE International Conference on Cognitive Infocommunications (CogInfoCom 2018) • August 22-44, 2018 • Budapest, Hungary

000013

activation combination neuron
’A’

neuron
’B’

neuron
’C’

’door closed & behind’ 0 0 *
’door open & front’ 1 1 1

can see the complete reduction process for the fourth state
presented in Figure 3. As a result, we frame our second step
to extract a Moore machine:

Step 2) The value(ix) is the activation value of a spe-
cific input activation ix in (i1, ..., im), statek = {Is = (i1, ..., im),
valuesi = {vi} is the set of all valid values for input activations
and a, b ∈ {1, ... , m}. Reduce the required characteristics to
completely describe a state by applying the following rules
step by step to all sets T = {Is} with |T| = |{vi}|:
If ∀a (∀vi (∃Is (value(ia) = vi))) ∧ ∀b (∃vi (∀Is (value(ib) =
vi))) then set for all ia (value(ia) = ’*’). ∃ix ∈ Is ∈ T |
x 6= a ∧ x 6= b→ delete T. We define cR = number of indices
b in the vectors in set R. For all R ∈ {T} with cR = max{cT}
combine all Is ∈ R to one vector and for all Is ∈ R delete all
other T with ∃Is ∈ T.
Repeat this procedure until no sets T are left.

Fig. 4. Reducing the information overhead in activation vectors by identifying
activation combinations that are characteristic for specific states.

C. Generating all possible transitions

The next step is to find at least one transition for each
possible state, leading from that state to another possible state.
To accomplish this goal we need to take a closer look at
the differences between the specific states. Because states are
defined by their sets of characteristics, which are represented
by input activation vectors, the similarity of two states is
encoded in those sets of vectors. For example in Figure 3,
the difference between the first and the second state is just
the one single activation value of input neuron ’C’, which can
be either active (’1’) or inactive (’0’). Therefore it requires
only the single input value from ’C’ switching from inactive
to active to change from the first to the second state. We will
call them similiar with vectorial distance 1 [7]. In our method
we are only looking for transitions from one state to its most
similar state. The vectorial similarity of two states is bound
to the similarity of that pair of activation vectors, one of each
state, that have the closest vectorial distance. If there are two
states with the same similarity to a third state we establish
transitions from both of them.
We are looking for this distance because the input for a
FNN operating over continous input data, if not manipulated,
changes gradually if time steps small enough are used for the
input update. The consequence is that an input activation vector
will always switch to the vectorial closest input activation vec-
tor it reaches with its changed activations. As an experiment,
imagine to reduce the time for input actualization until only

one valid activation value per time step is changed for only one
valid step of change. The input vector will only change one
activation value step by step, until it reached the next vectorial
closest activation vector of another state it can reach with that
sequence of changes. At this point, the whole system is in the
next state. This leads us to the third step for the extraction of
Moore machines.

Step 3) S = {state | state = {Is = (i1, ..., im)} is
the set of all states and E = {edgeij} is the set of
edges between all statesi ∈ S and all statesj ∈ S.
Additionally, C = {connectionhk = (edgehc, ... , edgedk)
| connectionhk = min{||stateh - statec|| + ... + ||stated -
statek||}} is the set of all direct or indirect connections with
the shortest euclidian distance from stateh to statek. Create
all transitions made possible by the activation vectors of the
states, using the following algorithm:
∀(statei, statej ∈ S) @(connectionij ∈ C) calculate
the shortest euclidian distance between the activation
vectors in statei and statej with ∃Ir ∈ statei ∧
∃It ∈ statej ∧ (||statei - statej|| = ||Ir - It|| = min{||Iu - Iv||
| u, v ∈ {1, ... , m}}). Add edgespq and edgesqp with
||statep - stateq|| = min{||statei - statej||} as new transition
to the Moore machine and update E and C. For statep the
relevant vector is Ir ∈ statep = (ip1 , ... , ipm), for stateq it is
it ∈ stateq = (iq1 , ... , iqm). Calculate the symbols for those
transitions with symbolpq = {iqz | iqz 6= ipz} where iqz is
a single input activation and z ∈ {1, ... , m}. Repeat this
process until every state is at least connected to one other
state.
Additionally, each state has internal transitions which lead to
itself. They are at least needed if the FNN can receive the
same input activation vector two times in a row.

For our example, the resulting transitions and symbols
connecting the extracted states are pictured in Figure 5.

Fig. 5. The first iteration of possible transitions between the states and their
triggering symbols, consisting of changing neuron activations.

D. Eliminating all transitions that are not based on valid input
activation vectors

At this point, we covered all possible transitions the FNN
implements to reach every other state from a random starting
state with as few changes in the input vector as possible.

S. Seidel and U. M. Borghoff • Extracting State Machines from Feedforward Neural Networks

000014

There can be transitions among them that are possible if only
the vectorial distances are considered but cannot be triggered
by a valid, non-manipulated sequence of input vectors. We
consider it a valid successor input activation vector when a
vector has only a minimum of changes in its input activations
compared to its predecessor’s input activations combined with
the changes the FNN itself causes by its output activations.
The reason for the requirement of minimum changes is the
continuous input data we assume for our method. Therefore,
the input describing a situation or system can only undergo
small changes in a sufficiently short period of time. So, a valid
successor input activation vector represents the characteristics
its predecessor had combined with the changes the outside
world and the FNN’s output can cause in a small time period.
To identify those transitions that should never be activated, we
calculate those new input vectors that can be reached. They
can be determined by applying the state’s outputs to the input
activation vectors that form the respective state. This forms the
components that have to be part of all valid successor activation
vectors. For example, in our extracted Moore machine the
state defined by the vector (1, 0, 1) creates the output (0, 1),
which causes the system to open the next door. Therefore,
the next valid input activation vector has to incorporate 1 as
second activation, because this is the encoding of the next door
being open. That again forces all outgoing transitions from that
state to incorporate a 1 as second activation, too, because in
(1, 0, 1) it is encoded that the door is closed, which has to be
changed. As a result, all outgoing transitions not matching this
requirement can be deleted. They will never be triggered by
valid, not-manipulated input data. The complete elimination for
our example is displayed in Figure 6. All activations changing
in a transition from one state to another state are colored in
this figure, while all unchanged activations are grey, defining
the context in which those changes happen. The combination
of both represents the symbol triggering the transition.
The following two aspects are important when dealing with
more complex ANNs. First, the change in the input activations
that an output causes can effect several activations over a
number of timesteps, for example, if a door is opened in
realtime, the input consists of a 1024x768 picture, and the
input refresh rate is a millisecond. The decisive changes and
resulting components for the outgoing transitions are those that
appear, based on the actual output, in the next millisecond.
Second, it is important that we view the output’s effects as
components we have to take into account when calculating the
new activations and not pure activations themselves. In more
complex ANNs a number of those components might occur at
the same timestep and superimpose each other to form those
activations the valid successor vectors have to incorporate.
If the input activation vectors are not directly encoding se-
mantic values but pictures, sound waves, or other data, the
calculation of the new activations that have to be incorpo-
rated by the successor vector can be done with the help
of a simulation. With the help of a suitable interface the
responsible programm receives the description of the recent
states corresponding situations (input activation vectors) and
the output, applies the output to those situations, and evaluates
the resulting successor situations. These are then translated
back into the valid successor activation vectors and with them
the related valid transition symbols. A suitable simulation for
a game’s FNN would be the game itself or for machine control
the corresponding training programm for the FNN.

The resulting fourth step to extract a Moore machine from
an FNN, removing all transitions that can never be triggered,
includes therefore the following tasks:

Step 4) Compute all valid successor input activation
vectors Isn+1 in timestep n+1 for all input activation vectors Isn
| fFNN(Isn) = Okn forming the recent state in timestep n. This
is done by applying the function fnext(Isn) : Isn x Okn → Isn+1

to all Isn in the recent state.
Evaluate all valid transition symbols by evaluating the
activations defining their changes and contexts. This is done
by comparing the activations of the vectors Isn forming the
recent state with the activations of those valid successor
vector Isn+1 , which has the shortest euclidian distance to the
respective vector. Isn+1 must include all activation changes in
the symbol and for all other activations those activations in
Isn .
Delete all transitions whose symbols were not evaluated.

Fig. 6. The extracted Moore machine with all transitions that can never be
triggered by valid inputs marked red.

After all transitions that cannot be triggered are removed,
the extracted Moore machine matches the behavior simulated
by the original FNN provided that it is only fed with valid,
not manipulated input data.
One form of manipulation can be to cut a sequence of input
activation vectors out of the input stream. That would be the
equivalent of jumping from one state to another one. But
we have to keep in mind that those jumps can occur if the
FNN receives that type of manipulated data. This is because
the network simulates the behaviors like the extracted Moore
machine but it still works according to the mechanics of
artificial neural networks.
Although the Moore machine is now completely extracted,
the overall evaluation can still be difficult for bigger Moore
machines with complex activation vectors. Therefore, the states
and transition symbols should be tagged with appropriate
names. This tagging has to done manually, because the ANN
and Moore machine can assign activation vectors to input and
output signals, but both have no information how those signal
combinations (symbols) are named in a human language. The
states can be simply named after the actions their respective
output causes. They are formed by a series of input data
connected to their activation vectors, e.g., pictures that all
trigger this output. E.g., in our Moore machine (0, 1) is ’open

9th IEEE International Conference on Cognitive Infocommunications (CogInfoCom 2018) • August 22-44, 2018 • Budapest, Hungary

000015

door’ or (1, 1) is ’step forward’. The transitions can be named
after the situational change its changing activations correspond
to, completed by the contextual information its unchanging
activations encode, e.g., the part where two pictures differ.
In our Moore machine (0, 1, 1) is named ’looking away from
door’. The completely extracted and tagged Moore machine
for our example is depicted in Figure 7.

Fig. 7. The final Moore machine extracted from the example artificial neural
network pictured in Figure 2.

E. Shortcomings of the proposed method

Our approach to extract Moore machines from FNNs uses
the same principle to receive all possible input activation
vectors for given classifications and their output vectors as
the method to extract decision trees from FNNs that we
presented [12], which, at the moment, restricts us to FNNs.
Therefore, besides being restricted to the chosen models, our
approach has the following limitations:

restriction considered
improvements

possible related
problems

only ’active’ &
’inactive’ are

valid activation
values

incorporating
real-valued

activations &
still search for

thresholds

computational
overhead might

become
extremely large

arithmetical &
logical

operations
required

incorporating
tensor-based

filler/role
multiplication

limitations
regarding the

neural network
models that can

be processed

To overcome these restrictions and largely avoid the related
possible problems is still left for future work.

V. CONCLUSION

In this paper we described a method to extract Moore
machines from FNNs, based on the idea of calculating cor-
responding input activation vectors for given characteristics
in the output and consequently for given output vectors. The
resulting Moore machine works according to symbolic rules
but simulates the FNNs behavior under completly valid input
data. Considering the fact that Moore machines are one of
the most common symbolic AI and automation models and
that FNNs are the basis for many types of artificial neural
networks, this approach offers a useful option for a better

understanding of specific artificial neural networks continuous-
input-data-based decision processes with the help of symbolic
analysis. Especially when a FFN shows an exceptional good
or bad overall performance or always fails to solve only one
specific situation correctly, it might be usefull to extract the
corresponding Moore machine and evaluate the succesfully
trained behavior or a missbehavior with established symbolic
analysis methods.
The given shortcomings may have a significant impact on the
practicability of our proposed method, but they can be solved
despite these solutions may come at the cost of increased
computational overhead. To avoid that increase in computa-
tional overhead will be one of the major challanges when
improving our approach in the future, when we will implement
our method in a small tool to create a usable CogInfoCom
Interface [2] and test it with a set of FNNs.
Nevertheless, we think our approach provides a good en-
hancement for the idea of extracting symbolic models from
artificial neural networks as a method to connect artificial
neural networks and classic, symbol-based AI models.

ACKNOWLEDGMENT

The authors would like to thank Wolfgang Hommel,
Michael Grabatin, Michael Steinke and Franz Schmalhofer for
polishing our paper, helping us to identify potential drawbacks
and their open-minded discussions regarding our ideas. We
highly appreciate their support.

REFERENCES

[1] Péter Baranyi, Ádám Csapó, Definition and Synergies of Cognitive
Infocommunications Hungary: Obuda University - Acta Polytechnica
Hungarica, vol. 9, no.1, pp.67-83, 2012.

[2] Péter Baranyi, Ádám Csapó, CogInfoCom Channels and Related Defin-
tions Revised IEEE 10th Jubilee International Symposium on Intelligent
Systems and Informatics, pp.73-78, 2012.

[3] Kenneth McGarry, Stefan Wermter, John MacIntyre, Hybrid Neural
Systems: From Simple Coupling to Fully Integrated Neural Networks
Neural Computing Surveys, vol. 2, pp.62-93, 1999.

[4] Ian Goodfellow, Yoshua Bengio and Aaron Courville, Deep Learning
Cambridge, Massachusetts: The MIT Press, 2017.

[5] Stuart Russel, Peter Norvig, Artificial Intelligence: A Modern Approach
- Third Edition Upper Saddle River, New Jersey: Pearson Education,
Inc., 2010.

[6] Fjodor van Veen, The Neural Network Zoo Utrecht, Nether-
lands: The Asimov Institute, 2016. https://www.asimovinstitute.org/
neural-network-zoo/

[7] Paul Smolensky, Géraldine Legendre, The harmonic Mind - Volume
1: cognitive architecture Cambridge, Massachusetts: The MIT Press,
2011.

[8] Paul Smolensky, Connectionist AI, Symbolic AI, and the Brain - Artifi-
cial Intelligence Review Heidelberg, Germany: Springer-Verlag GmbH,
1987.

[9] Paul Smolensky, Symbolic functions from neural computation London,
England: The Royal Society Publishing, 2012.

[10] Karen Simonyan, Andrea Vedaldi, Andrew Zisserman Deep Inside
Convolutional Networks: Visualising Image Classification Models and
Saliency Maps Cornell University Library - arXiv:1312.6034, 2014.

[11] Aline Dobrovsky, Uwe M. Borghoff, Marko Hofmann, Applying and
Augmenting Deep Reinforcement Learning in Serious Games through
Interaction Periodica Polytechnica Electrical Engineering and Com-
puter Science, v.61, no.2, pp.198-208, 2017.

[12] Sebastian Seidel, Sonja Schimmler, Uwe M. Borghoff, Understanding
neural network decisions by creating equivalent symbolic AI models
to be published at: London, England: Intelligent Systems Conference,
2018.

S. Seidel and U. M. Borghoff • Extracting State Machines from Feedforward Neural Networks

000016

