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Abstract—With rapid increase of mobile computing and
wireless network linkage, the information exchange between
connected systems and within groups increases heavily. Ex-
changing confidential information within groups via unsecured
communication channels is a high security threat. In order to
prevent third parties from accessing this data, it is essential
to encrypt it. For this purpose, the group participants need
a common group key to enable encrypted broadcast messages.
But efficient key management of secured group communication
is a challenging task, if participants rely on low performance
hardware and small bandwidth. Especially, dynamically changing
group compositions generate large management overhead. For
coordination and distribution, we present the modular group
key management procedure CAKE that is centrally organized
and meets strict security requirements. The lightweight G-IKEv2
protocol in combination with the key exchange concept of CAKE
leads to an efficiently integrated solution. The hybrid approach
combines the advantages of the existing protocols with the
objective to reduce the computation and communication effort.
It is shown that the procedure is more suitable for changing
MANET groups than the existing ones. Moreover, the exchanged
group key can be used for any services which provides a wide
range of applications.
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I. INTRODUCTION

In today’s interconnected world, the wireless network lin-
kage is growing rapidly. More and more devices are connected,
especially in mobile and resource-constrained networks. Co-
ming from fixed line networks, unicast communication have
been predominant so far. During the last decade, we have
witnessed the rise of new low power network technologies,
such as ZigBee, IEET 802.15.4, Bluetooth, LoRa, SigFox,
4/5 G, just to name a few. Most of these have in common,
that the bandwidth is limited and needs to be managed wisely,
while the amount of information explodes with new scenarios
in the context of IoT or Smart X. In order to meet the requi-
rements in constrained environments, group communication is
becoming more important for information exchange, as the
benefits are reduced network overhead, computation power,
and energy consumption. Efficiency is achieved by transmitting
data packets only once, simultaneously to all group members.
However, when it comes to security and privacy multicast
lacks efficiency. Major challenges arise from the necessary
management of the multicast group (in the following referred
as communication group), which needs to be secured as well
as the actual communication within the group.

In order to exchange confidential data within a group in
a secure manner there exist methods to manage group keys,

so called Group Key Management Protocols (GKMP). These
protocols enable the secure access as well as the secure and
efficient exchange of relevant information, such as group keys.
Group keys are used for the encrypted communication within a
group. Typically, all Group Members (GM) posses a symmetric
key which is used to encrypt and decrypt the exchanged data.
After all, it does not matter which service is using the GKMP
infrastructure as underlying security technology.

Different areas of application do have distinct requirements
to be covered by a group key management concept. Con-
sequently, no existing concept could be applied universally
to all areas. Depending on the dynamics of the group com-
position and changes, the calculation of cryptographic keys
for the group communication, and the numbers of transmitted
messages it could be demanding for the GMs concerning
computation power, network bandwidth and energy consump-
tion. As a consequence, existing solutions for secured group
communication do not fulfill the requirements for mid-sized
and large networks in resource-constrained environments. Ex-
emplary use cases as in Figure 1, where an efficient and secure
group communication is needed, are Internet of Things (IoT)
networks, saftey-critical system networks, Wireless Sensor
Networks (WSN), and Mobile AdHoc Networks (MANET) for
public authority communication.

Figure 1: Secure and Efficient Group Communication in a
Vehicular AdHoc Network (VANET)

The paper at hand proposes a mechanism to optimize
the distribution and updating procedure of keys and thus
aims on improving the general security properties in group
communication in constrained environments. The contribution
of this paper is the combination of an efficient networking
protocol for group key management with a tree-based key
update mechanism and a cryptographic key distribution sche-
me. The centralized Group-IKEv2 (G-IKEv2 [3], [2]) protocol



is used for communication and initial key exchange with a
key server. Thereon, the mechanism called Central Authorized
Key Extension (CAKE [4]) is used to realize encrypted group
communication. It utilizes the idea of Secure Lock [15] for
compressing secured information into a single cipher and
enhances its performance by the combination with a logical
key hierarchy (LKH [19]) and new concepts for managing
keys.

The remainder of this paper is structured as follows. In
Section II a scenario illustrating the need of this hybrid
approach as well as the requirements is given. Section III
introduces related work on secure group communication and
evaluates security as well as efficiency regarding the given
scenario with a special focus on the Logical Key Hierar-
chy (LKH). Afterwards, Section IV describes the concept
of our hybrid system combining the light-weight G-IKEv2
protocol and Central Authorized Key Extension, called CAKE.
Finally, Section V evaluates the findings and compares with
the well-established LKH, before Section VI summarizes and
concludes this paper.

II. SCENARIO AND REQUIREMENTS

This work aims at concepting a highly efficient, but secure
group key management scheme to facilitate secure group com-
munication. The motivation is mainly found by the manifold
use of constrained devices in a wide range of applications such
as civil, industrial or military use cases. A prominent example
for a civil application is car-to-car communication (see Figu-
re 1), mainly revealing highly dynamic group formations and
wireless network limitations. In contrast, in home automation
scenarios (think of smoke detectors on battery) or military
applications such as head-mounted units limitations in terms
of availability of power, main memoy and storage, CPU and
network datarates prevail.

Encrypted communication among a set of more than two
group members is common to all scenarios. Thus, it seems
desirable to share one cryptographic key among the group
members in order to encrypt message transfers. Unfortunately,
the management of such a key becomes costly quickly due
to the dynamics withing a group (i. e. members joining or
leaving the group rather frequently). Changing the crypto-
graphic material upon every single group management action
seems unavoidable, which motivates working towards other
than naive approaches. Analyzing diverse application areas
leads to a set of requirements that can be organized into
mostly two categories – security requirements and scenario-
driven non-functional requirements.

Security requirements

Forward Secrecy: Whenever a group member leaves the
group or is expelled, the member in question must not
be able to have access to a valid group key.

Backward Secrecy: Whenever a new group member joins a
group, the member in question must not be able to have
access to a formerly valid group key before joining.

Key Independence: Having access to one key must not yield
the possibility to deduce another member’s key.

Collision Free: Additionally, specific to group communicati-
on, there must not be a subset of group members that

can deduce another member’s key(s) by combining their
knowledge.

Minimal Trust: A certain trust relationship will be found
mandatory, but it shall be subject to minimize.

“CIA:” – Confidentiality, Integrity and Authenticity must be
granted any time, also implying the avoidance of man-in-
the-middle attacks or data injections.

Scenario-driven non-functional requirements

Low Datarates: The amount of transmitted data shall be
minimal in order to facilitate network limited applications.

No 1-to-n Effect: Limited impact of a single membership
change on all the other group members is mandatory,
meaning not suffering from the 1-affects-n phenomenon,
if a single membership change in the group affects all the
other group members.

Minimal Delay: The delay imposed by the use of both ma-
nagement actions and cryptographic operations must be
minimal.

Minimal amount of key changes and exchanges: The
amount of management actions such as exchanging
(new) keys shall be limited to a necessary minimum (not
implying anything about the total amount of keys in
general).

Low calculation complexity: Especially in scenarios expo-
sing CPU limitations, a low complexity of cryptographic
calculations is vital, while keeping up the maximally
possible security level at the same time.

Compatibility: Clients not capable or not willing to support
fancy optimizations should not be excluded from the com-
munication. This is why a potential fall-back to simple
(and standardized) mechanism should be supported.

Scenario-driven functional requirements

Based on the scenario, this yield in the following re-
quirements for the group operations to be supported while
complying the security requirements:

Join: One or more participants accede to an existing group.
(Backward Secrecy)

Leave: One or more group members quit the group member-
ship. (Forward Secrecy)

Re-Keying: Updateing the group key using an efficient pro-
cedure. (Prevent statistical analysis)

Merge: A common key can be efficiently provided to several
groups by re-keying. (Backward Secrecy)

Split: A group is divided into several subgroups. (Forward
Secrecy)

III. RELATED WORK

Secure group communication is an extensively studied area
and resulted in a couple of standardization activities (most
recently a new standardization group for group key distribution
was formed within the IETF1).

Rafaeli et al. [5] survey a set of approaches for secure group
key distribution (GKD). According to their analysis, there are
three different types of GKDs: centralized, decentralized and
distributed GKD protocols. Most of the protocols considered

1https://datatracker.ietf.org/wg/mls - Started in February 2018



are rather Cryptographic Key Schemes (CKS) than networking
protocols, but some of them are included in Group Key Ma-
nagement Protocols. The paper at hand offers the integration
of an optimized Cryptographic Key Schemes into a centralized
management protocol. Thus, the following section is divided
in Group Key Management Protocols for communication and
Cryptographic Key Schemes to manage the group key. To
our knowledge, none of the approaches provides an efficient
and integrated solution, especially with focus on low resource
requirements. This is one of the reasons why the Internet En-
gineering Task Force (IETF) started a standardization process
for group key distribution in February 2018 [6].

A. Group Key Management Protocols

A high-level definition of Group Key Management Proto-
cols (GKMP) and their corresponding architecture is given by
the IETF standard body in RFC 2093 [7] and RFC 2094 [8].
The development of actual GKMPs builds on top of these
specifications and usually goes hand in hand with the de-
velopment of a peer-to-peer key exchange protocol and its
corresponding architecture. The Internet Security Association
and Key Management Protocol (ISAKMP, RFC 2408 [9]), and
Group Domain of Interpretation (GDOI, RFC 6407 [10]) have
been the first instantiations. The requirements and design of
these protocols were derived from multicast architectures of
network vendors. Both, peer-to-peer key exchange and Group
Key Management were revised for the sake of stronger security
properties and better performance, resulting in Internet Key
Exchange v2 (IKEv2, RFC 7296 [3]) and the currently pro-
posed G-IKEv2 [2] for groups. As G-IKEv2 offers a reduced
networking overhead and includes a structure for distributing
hierarchical keying information, we build the design of our
solution on top of G-IKEv2 and the latest architecture from
RFC 4046 [11].

B. Cryptographic Key Schemes

Centralized Cryptographic Key Schemes (CKS) comprise a
central control authority to manage the group key and to coor-
dinate the cryptographic procedures, often based on a GKMP.
In contrast, decentralized techniques share the management
of the keys between several instances [12], [13]. Thereby,
the generation and distribution of group keys is realized by
cooperative instances, which are typical hierarchically ordered.
In addition, distributed key agreement procedures delegate
the key generation process to not only an individual group
member, but to a group of members.

One example is the Group-Diffie-Hellman Key Ex-
change [14], but others exist [5]. All members of a group
are organized in a virtual topology, typically into a ring,
hierarchies on basis of trees, or just unstructured. In all
these schemes, every member of a group shares a common
Transport-Encryption-Key (TEK).

Another approach is dividing groups into subgroup with
individual TEKs. A master within every subgroup takes care
of the communication and keys, which allows avoiding 1-to-n
effects while re-keying [12]. The downside is requiring repeti-
tive conversions of encrypted messages between the subgroups.
Within the subgroups, these approaches use key management
techniques of the three shown categories why out of scope of
this work.

Despite their structured nature, centralized CKS can further
be categorized into one of the three subcategories:

● Pairwise keys: Transmission of the group key by the
central instance via individual subscriber communication

● Broadcast secret: Transmission of the group key via
broadcast instead of individual secured connections

● Hierarchical structure: Coordination of participants in a
tree structure with corresponding cryptographic subkeys

The first and most widely recognized CKS ever is defined
in the GKMP, which belongs to the category of the pairwise
keys. The central server shares an individual secret key with
each group member, which is called the Key-Encryption-
Key (KEK). For a common TEK of a group, the server
generates these. Subsequently, the server sends the group key
to each participant individually encrypted using the KEK.
Upon change of the group constellation, the entire group is
re-created, leading to high management and communication
overheads.

An example for the broadcast secret is the Secure
Lock (SL) [15], [16] that enables the creation of a group or a re-
keying action using a single broadcast message. The SL sche-
me is based on the Chinese Remainder Theorem (CRT) [17],
[18], which uses the properties of congruence to encrypt.
However, the reduction of communication overhead is obtained
by more complex calculations compared to GKMP so that this
approach only renders feasible in special scenarios.

A compromise are schemes building on hierarchi-
cal structure. A well-known approach is Logical-Key-
Hierarchy (LKH) [19], [20], which is integrated into GDOI
and G-IKEv2. The KEK’s and the group participants are
maintained in a binary tree. Each node in the tree represents a
KEK that is known to the underlying nodes. Maintaining the
associated keys of the tree structure increases the management
effort, especially the calculation and distribution of internal
keys. This approach offers a moderate advantage only in case
of repetitive leavings of group members. Since this operation
does not take place in every secured group, this is unnecessary
effort.

Focusing on the motivation for this paper, a centralized
scheme with common TEK renders mandatory, especially in
order to control and authorize individual members of a group.
In this paper, a combination of the advantages of GKMP, SL
and LKH as CAKE [21] with an integration into G-IKEv2 is
proposed, allowing for efficient key management.

IV. CONCEPT

Targeting highly efficient and encrypted group commu-
nication, this paper proposes the combination of lightweight
G-IKEv2 ([2]) for the key exchange and Central Authorized
Key Extension (CAKE) [4] for the group key management.
CAKE’s key management is centrally organized and requires
a trustworthy Group Controller (GC). The GC is responsible
for the generation, administration and distribution of the keys
and thus requires more computational power than any other
(lightweight) group member.

The remainder of this section is organized into subsections
inspired by group management operations and patterns:



(A) Client-Server communication based on G-IKEv2
(B) Member Registration on the GC
(C) Group and Group Key Creation
(D) Re-Key of the group
(E) Join of member(s) to a secured group
(F) Leave / Exclude of member(s) from a secured group
(G) Tree Management and Key Addressing
(H) Merging and splitting groups

A. Client-Server communication based on G-IKEv2

G-IKEv2 [2] is used to secure the transmission of crypto-
graphic material for CAKE as it has already proven suitable
for constrained devices [1]. G-IKEv2 already supports the esta-
blishment of a confidential and authenticated 1-to-1 channel
between a client and the GC. It also offers the distribution of
Group Transmission Encryption Keys (GTEK) and Group Key
Encryption Keys (GKEK) and thus only requires additional
support for CAKE. To communicate securely in a group,
every group member has to possess a GTEK used for the
communication in the group and a GKEK used to distribute the
GTEKs securely. Figure 2 gives an overview about G-IKEv2:

1) Key Exchange: A G-IKEv2 key exchange can be divided
into two phases:

a) Establishing an Initial Security Associati-
on (IKE SA INIT): The first two messages from
the client to the GC and back establish a Security
Association (SA) and thus a secure channel between
the client and the server (Phase À: Initialization).

b) Exchanging keys (GSA AUTH): Given the secured
communication path, the client identifies and authen-
ticates itself and in turn receives transport and key
encryption keys (GTEK and GKEK) from the server.
The Group Security Association (GSA) Policy inclu-
des the security parameters (algorithms, lifetime, etc.),
while the actual keys are transported within the Key
Download (KD) Payload (Phase Á: Group Lifetime).

2) Re-Keying (GSA REKEY): Whenever a GTEK or
GKEK loses validity (e. g. being outdated), a re-keying
action is triggered by the server (GSA REKEY), which
is close to equal to the GSA AUTH phase (Phase Â:
Group Key Refresh).

B. Member Registration on the GC

Each participant Pi registers with CAKE by negotia-
ting an individual key pair (Keyi) with the GC during an
IKE SA INIT exchange (À). The initial exchange is done
with a Diffie-Hellman key exchange, which by design lacks
authenticity. A second message GSA AUTH (Á) is used
to authenticate both, the client and the GC. Note, that the
GSA AUTH can be used to directly join a group as part of
the registration process (see Section IV-E).

C. Group and Group Key Creation

On request, the GC randomly generates a GTEK and
GKEK. According to G-IKEv2, the GC manages cryptographic
material and algorithms for every group. They are stored in the
TEK SA and KEK SA databases (see Figure 2).

The GC may decide to create a new group with the new
group key and members already registered and authenticated
by building a GSA REKEY payload as follows:

1) The GC constructs a CRT congruency in analogy to
the SL scheme, so-called Lock MX. Therefore, it uses
the individual mi and Keyi from all participants of the
specified group to calculate the Lock MX to encrypt the
GKEK (see CRT calculation [17], [18]).

2) The GTEK is encrypted with the GKEK. For the sake of
efficiency and security [22], XOR-operations are used for
bitwise encryption of the new key tuple with a hashed
GKEK. However, any encryption method specified by G-
IKEv2 is supported.

3) The keys are embedded into a CAKE_PRIME GSA Poli-
cy (including the new KEK_MANAGEMENT_ALGORITHM
called CAKE) and a CAKE_PRIME KD payload. They
are distributed using a single GSA REKEY broadcast
message.

A participant Pi can only “open” the Lock MX, if she
possesses a value mi that was included during the creation of
the lock. In consequence, only intended recipients (i. e. group
members) are able to read the GKEK and GTEK by solving
the CRT.

D. Re-Key of the group

In case the GT EK needs to be renewed, a re-keying action
is carried out. The GC generates the keys GKEKnew and
GT EKnew, which will be encrypted using the GKEKcurrent ,
embedded into the KD and broadcasted with a GSA REKEY
message. In order to grant forward and backward secrecy, a
re-keying action is also carried out every time a member joins
or leaves the group.

E. Join of new member(s) to a secured group

If a new participant Pi+1 wishes to join the group, she
sends a GSA AUTH request including the group ID Idg she
wishes to join. The GC authenticates Pi+1 and generates an
inhomogeneous prime number mi+1 for a CRT congruency for
Pi+1. Additionally, a new GSA policy and KD payload called
CAKE_PRIME is added, holding mi+1. The use of CAKE is
communicated with a new KEK_MANAGEMENT_ALGORITHM
called CAKE within the GSA Policy (see Section 4.5.1.1 in [2]).
The GC also generates GKEKnew and GT EKnew and embeds
the information and keys into an GSA AUTH sent to the new
group member via unicast.

Additionally, a re-key is triggered for any of the
former group members. The re-key includes the KD
(GKEKnew,GT EKnew) encrypted with the GKEKCurrent . Swit-
ching from GT EKold to GT EKnew enables the enlarged group
(former group plus joined members) to communicate securely.
As long as the GT EKold and GKEKold are still secure the
GT EKnew and GKEKnew should be generated by hashing the
old once. So the keys do not need to be distributed over the
network. Only a tiny information message is necessary.

A mass entry of more than one new participant is equivalent
to the process as described before, whereas the GT EKnew
is send to every new member individually. Alternatively, the
new participants can be combined together via a CRT to
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Figure 2: G-IKEv2 exchange with CAKE features

transmit the GKEKnew so that only one message is necessary
instead of multiple individual ones. Unfortunately, the latter is
only possible if the joining clients are already authenticated.
In both cases, two GSA REKEY messages are broadcasted,
one holding the Lock MX for the new clients and one with
(GKEKnew,GT EKnew) encrypted with the GKEKCurrent for
the former group members. Thus, an arbitrary number of
new members joining a group requires a constant number of
messages and thus scales efficiently with the amount of new
members.

F. Leave / Exclude of a member from a secured group

Withdrawal of a member from a group can be initiated
by the participant herself or be determined by the GC as
exclusion. In any case, the presently known GT EKCurrent and
GKEKCurrent cannot be used, as the expelled participant is in
possession of them. To reduce the effort, CAKE uses a reduced
CRT system and a ternary tree structure, which is managed by
the GC.

Figure 3 illustrates CAKE’s tree structure with level A
(the root) representing the GKEK and GTEK. Every node
represents a pair of keys (mt and keyt ) known by the underlying
participants. The actual group members with their personal
secrets mi and keyi are mapped to the leaf nodes of the tree.
The designation mX of a node defines a specific mi for the
CRT system.

All pair of keys on the path from the root to the parti-
cipant must be known by the participant. The tree structure
enables efficiency, but its creation can be deferred and only be
initialized if necessary. This allows the tree being set up and
distributed during a period of low network load. Considering
the state of the art, nearly any tree-based scheme ignores this
issue and excludes the costs for the tree setup in the evaluation.

Due to their flat structure, trees with more than two
subnodes are better suited for larger groups than binary trees.
In most scenarios (rarely more than 60 participants and hard

to imagine more than 300 [23]), the ternary tree structure is
ideal with regard to the size of the tree.

G. Tree Management and Key Addressing

In order to differentiate between different keys, an efficient
addressing scheme is mandatory. This applies to every key, not
just the keys in the tree. The ID of every key pair is defined as
an 8x2 bits address. This address space allows a maximum tree
depth of 8 and 2,187 group members in a group with 3,280
key pairs in the tree. The IDs are starting from 00 at the root
key pair on the top. Every parent has the children 01, 10 and
11. The unused bits are padded with 00. This allows a unique
identification of the position of every key within the tree.

Temporary keys can be derived easily like the keys for
re-keying actions. These key pairs not yet included in the
tree structure obtain the ID starting with 11. After a client
is authenticated with the GC, it has its own secret mi and
keyi (see Section IV-E), distributed with an address within or
outside the tree. This support the re-balancing if the tree if
necessary by the GC.

In order to take full advantage, the CAKE protocol for the
distribution of keys requires the implementation of the followi-
ng messages: I.) Downloading key pairs on the path to the root
from the GC - CAKE Download Array II.) Re-Addressing of
keys - CAKE Update Array III.) Receiving updates of key
pairs - CAKE Readress Array IV.) Re-Keying upon removal
of group members - CAKE Leave Array

This is similar to the payloads already defined in G-
IKEv2 for LKH Download Type (see Section 4.8.3 in [2]).
According to this, these four CAKE Download Types and three
substructures are defined as array elements. This support the
compatibility. As shown above, any message can be distributed
securely as broadcast. Furthermore, the information of all
download types are structured as an array to differentiate
between the elements. Each elements of the arrays is indexed
with the identity of the key pair in the tree. Using the unique
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Figure 3: Ternary tree structure to manage the keys and to reduce the calculation effort by withdrawal.
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Figure 4: Exemplary CAKE Structures for G-IKEv2

tree IDs, the nodes can detect if they are affected by the action
or not by comparing address prefixes.

The CAKE Download Array can be embedded in
GSA AUTH or GSA REKEY message. It holds multiple
keys, transported within a Key-Substructure (see Figure 4a).
Therefor, a CRT for mi and keyi is built using the key pairs
of the child nodes in the tree. The substructure includes
the address of the key pair and the CRTs themselves. For
efficiency, the tree has to be distributed bottom up as other
tree based group key management schemes. If a client is in
possession of one key pair, then he is able to solve the Lock
MX to obtain the information.

For the re-addressing of the keys, we use the CA-
KE Update Array embedded in a GSA REKEY message.
Due to the message type, the receiver knows, that there have
been distributed keys before. Thus, these keys need to be
updated in the client’s CAKE SA.

To change the ID of a key pair, the CAKE Readress Array
is used. With this message, a key pair obtains a new position in
the tree. Furthermore, it can be used to include nodes to the tree
or to re-arrange subtrees (e. g. when the tree is re-balanced).
The readdress information is holding in tuples (Idold ,Idnew).
If a key on his path to the root receives re-addressing, it needs
to update all keys on its path further down the tree.

When a node leaves or has to be excluded, a new root key
pair has to be created. It is used to encrypt the GTEK which is
embedded in a KD Payload. This information is communicated
with the CAKE Leave Array message. A leaving node is

in possession of all key pairs on the path to the root (see
Figure 3: node mD32, dark, binary address: 00-01-11-10). All
these marked key pairs can not be used for further security
operations. Instead, all mX located next to a marked node on
the same level are used (see hatched nodes in Figure 3). This
is done for the entire tree along the path to all key pairs, the
leaving client is in possession of. The updated key pairs are
embedded in a Keys-Substructure (see Figure 4a) which in turn
is embedded in the CAKE LEAVE ARRAY (see Figure 4b).
The operation allows excluding multiple nodes with only one
message.

Please note that the GC may choose to distribute only the
root key pair with a short and tiny message. The other keys on
the path are updated later with CAKE Update Array instead
of one large CAKE Leave Array.

H. Merging and splitting groups

To merge two or more existing groups, it requires a renewal
of several keys. The new common GT EKnew will be spread
based on the currently used individual GKEKs of the merging
groups. It is mandatory to send one message per group to
create a merged group.

A group split is done by re-addressing the sub-keys within
the key tree and building Lock MX in the amount of divivded
subgroups including the new keys. The number of messages
may be as small as one, but depends heavily on the previous
tree structure. As every leave operation, it is coherent with a
high effort and will be analyzed in detail in further studies.

Please note that the usage of the Delete Payload message
as specified in [2] is not resistant to malicious attacks of
internal group members. In the cryptographic community, this
problem is referred to as Post Compromise Security, which is
an unresolved unresolved problem. So CAKE avoids the usage
of this message and the process has to be authorised through
the group controller.

V. EVALUATION

Having a sound concept at hand, this section evaluates
CAKE under the following three aspects: Firstly, a (theoretical)



Table I: Comparison of CAKE with LKH and traditional GKMP (represented by G-IKEv2), with special regards on cryptographic
overhead. The keys are defined for AES with 16 Byte keys.

Register/Join Mass Join2 Key Download/Update2 Tree Operation Leave2

Networking (in Bytes) KD Payload1: 12 Byte

GKMP
KEK: 16
TEK: 16
Key: 16

p Messages with:
KEK: 16
TEK: 16

n Messages with:
KEK: 16
TEK: 16

undefined
n−1 Messages with:
KEK: 16
TEK: 16

LKH
KEK: 16
TEK: 16
Key: 16

p Messages with:
KEK: 16
TEK: 16

1 Message with3:
Hdr: (4+(n−1)∗12)
Keys: (n−1)∗16

same as Key
Download

1 Message with3:
Hdr: 4+ log2(n)∗8+∑

log2(n)−1
i=1 i∗8

Keys: ∑
log2(n)−1
i=1 i∗16

CAKE

KEK: 16
TEK: 16
Prime: 17
Key: 16

1 Message with:
Hdr: 16
TEK: 16
KEK5:∣CRT(p)∣

1 Message with3:
Hdr: 4+n∗12
Keys5: (log3(n)−1)∗ ∣CRT(3)∣
Primes: (log3(n)−1)∗3∗17

1 Message with3:
Hdr: (4+8)
Key5: ∣CRT(3)∣
Primes: 3∗17

1 Message with:
Hdr: 12+ log3(n2

)∗8
TEK: 16
KEK5: ∣CRT(log3(n2

))∣

Computation

GKMP4,7 GC: OK(1)
Cl: OK(1)

GC: OK(p)
Cl: OK(1)

GC: OK(n)
Cl: OK(1)

undefined GC: OK(n−1)
Cl: OK(1)

LKH4,7 see GKMP GC: OK(p)
Cl: OK(1)

GC: OK(2log2(n)+1
)

Cl: OK(log2(n)+1)
same as Key
Download

GC: OK((log2(n)+ log2(n−1)))
Cl: OK(log2(n))

CAKE6,7 see GKMP

GC: OL(p)
GC: OK(1)
Cl: OL(p)
Cl: OK(1)

GC: OL(3∗ n−1
2 )

GC: OK(1)
Cl: OL(3∗ log3(n))
Cl: OK(1)

GC: OL(3)
GC: OK(1)
Cl: OL(3)
Cl: OK(1)

GC: OL(log3(n2
))

GC: OK(1)
Cl: OL(log3(n2

))

Cl: OK(1)

1 Required for every Key distributed with G-IKEv2 2 n being Group Members, p number of members joining or leaving 3 KEK and TEK is carried as in GKMP
4 GC performs encrypt and Client performs decrypt 5

∣CRT(i)∣: size of CRT with i elements in Bytes 6 OL: Complexity of creating/solving Lock MX.
7 OK : Complexity of encryption/decryption of keys.

comparison of the computational complexity as well as networ-
king load of CAKE, LKH and traditional GKMPs is carried
out. Secondly, an implementation of CAKE for RIOT OS
proofs both its lightweight nature and its applicability in
constrained scenarios. Given the result, the section will close
by evaluating CAKE against the requirements as stated in
Section II.

A. Comparison with LKH and GKMP

Existing concepts for managing group keys are traditional
GKMP systems (represented by G-IKEv2) and LKH. Table I
contains the comparison of CAKE with these two concepts
regarding the networking and computation overhead. On the
one side, it is indisputable that as no client leaves the group
the traditional GKMP approach performs optimal. On the other
side, LKH and CAKE perform far better in terms of quantity of
messages and computations when Forward Secrecy is required
at the moment clients leave. This is a major benefit of these
two concepts.

Although CAKE requires a pair of keys (mi and keyi) to
be sent when distributing the tree, it can outperform the LKH
mechanism introduced in G-IKEv2. The amount of key headers
is equal in both systems. Unfortunately, LKH tree entries need
to be transported multiple times decreasing its efficiency. Using
a CRT system, CAKE offers the distribution of keys using a
single message. Beside this, the message can be send to a later
point of time, when network load is low. Although, the size
of the resulting Lock MX increases linearly (see Table II), it
still decreases the necessary protocol information heavily.

CAKE also reduces the demand for computational power
on the client-side. Instead of carrying out multiple decryption
operations (as for example LKH would do), the client has
to perform one single modulo and one decrypt operation
only. Nonetheless, this comes at the price of storing more
cryptographic material (mi,keyi) compared to LKH where only
keyi has to be stored for every node in the tree.

1) Network overhead of LKH: As LKH operates very
similar as CAKE, the following will comparing both over-
heads. LKH uses a binary tree and its G-IKEv2 extension can
currently handle a maximum number of 65,536 participants.
For comparison we assume a tree with 11 levels resulting
in a maximum of 2,048 participants. Removing one client
from the key will therefore result in 10 keys having to be
changed and distributed in the network (for better insights
to LKH in G-IKEv2 we recommend Appendix A of [2]).
This would result in 10 LKH UPDATE ARRAYs carrying
a total of ∑10

i=1 16∗ i+8∗ i+8 = 1,400 Bytes (16, being the
Key size, 8 being the LKH Keys header and 8 being the
LKH UPDATE ARRAY header). Please note that in the cur-
rent version of the G-IKEv2 extension for LKH, many keys are
transported multiple times which heavily decreases efficiency.
With some optimizations, the LKH Key Download could be
decreased to 464 Bytes and, thus, being slightly more efficient
than CAKE in terms of networking. However, this slightly
better efficiency comes with the cost of higher computation
overhead on the client, as in the worst case, 10 keys have
to be decrypted individually. Additionally, changing the tree
can currently not benefit from an address scheme as proposed
in CAKE, making this operation more expensive in terms of
networking and computation.

2) Unoptimized re-key networking overhead: Using the G-
IKEv2 protocol without any optimizations (such as CAKE
or LKH) would result in number of participants messages
including 80 Bytes overhead for KEK and TEK. Assuming the
current maximum of 2,187 participants, this would result in
2,187 messages. The IETF draft for G-IKEv2 [2] defines an
additional GSA INBAND REKEY message for such tasks.
Even without optimization, the new keys could be carried
out in a single broadcast message, encrypting the KEK with
every privately shared secret between client and server. The
GSA REKEY message would carry one KEK Key Download
Types (40 Bytes) for every participant and one TEK Key



Table II: Required time for Lock MX operations with i
elements. For comparison, the time to encrypt and decrypt the
key hierarchy of LKH with tree depth i is shown. The number
of clients is 3i for CAKE and 2i for LKH.

i Create
Lock MX

Solve
Lock MX

Size
Lock MX LKH Enc LKH Dec

1 280,082 µs 88 µs 41 Byte 125 µs 201 µs
2 572,785 µs 189 µs 84 Byte 188 µs 302 µs
3 822,851 µs 275 µs 124 Byte 250 µs 404 µs
4 1,130,065 µs 374 µs 165 Byte 312 µs 505 µs
5 1,377,708 µs 484 µs 206 Byte 374 µs 607 µs
6 1,539,600 µs 604 µs 247 Byte 437 µs 708 µs
7 1,909,062 µs 750 µs 288 Byte 499 µs 809 µs
8 2,231,764 µs 904 µs 328 Byte 562 µs 911 µs
9 2,544,507 µs 1,072 µs 369 Byte 624 µs 1,013 µs

10 2,751,188 µs 1,243 µs 410 Byte 686 µs 1,114 µs
11 3,134,233 µs 1,433 µs 451 Byte 749 µs 1,215 µs
12 3,387,458 µs 1,632 µs 492 Byte 811 µs 1,316 µs
13 3,705,136 µs 1,858 µs 533 Byte 874 µs 1,418 µs
14 3,974,770 µs 2,081 µs 573 Byte 935 µs 1,520 µs

Download Type (40 Bytes). For 2,187 participants, this would
result in a 2,187∗40+40 = 87,520 Bytes overhead.

B. Performance on constrained hardware

RIOT OS [24] is an open source operating system that
supports various hardware. Its minimal requirement of 1.5 KB
main memory illustrates its lightweight nature and is one of the
reasons we implemented CAKE on RIOT. Further, necessary
cryptographic libraries with importance for embedded systems
are available. The generation of an evaluation environment
with realistic conditions is achieved by using IOT-LAB [25].
It provides a huge amount of wireless nodes with minimal
capabilities regarding CPU and memory. The IOT-LAB M3
board comes with a 72 MHz CPU and 64 KB SRAM and
is used for the GC and all clients. The evaluation focuses
on the group management and the associated key distribution
processes.

1) Memory requirements: For the evaluation we created
a homogenous setup with a GC and a group of 14 clients
on IOT-LAB M3 nodes. Regarding the memory requirements,
the design principles of RIOT OS need to be considered,
as all memory is statically reserved, including the network
buffer. The required memory on the GC is defined through
the number of all necessary keys within the ternary tree
including the nodes. For each participant, the GC requires
a total of 2,900 Bytes of data being stored, consisting of
keys, IP addresses, and memory for CRT calculations and tree
operations. Subsequently, the required memory for the GC
is 40,600 Bytes in total, which is covered by the available
memory of 64 KB in our evaluation setup. The memory
requirements for participants of the group are lower. Each
client requires only 2,900 Byte per connection to a GC.

2) Computational Costs for CRT: As the evaluation focuses
on constrained hardware, we concentrate on time measure-
ments for the cryptographic calculations. The most expensive
operation is the IKE SA INIT message, which is caused
by the necessary computation of the DH key exchange. The
measurements in our evaluation setup show computation times
on the IOT-LAB M3 nodes that are comparable with the times
on Arduino Due in [1]. Furthermore, most actions in CAKE

require only one single GSA REKEY message carrying G-
IKEv2 payloads (see [2]), which is beneficial in terms of
computation time.

The most interesting new feature of CAKE is the Lock
MX creation and solving on the GC and the clients in terms of
computational cost. Table II shows the measurement results for
the creation of the Lock MX with different tree depths as well
as the time to resolve it on client side. These results are especi-
ally notable regarding a mass entry (see Section IV-E), where i
represents the number of clients joining simultaneously. Along
with the number of elements in the CRT, the computation time
of new keys increases. Evidently, this is mainly caused by the
higher size of the Lock MX. On the other side, the clients
significantly benefit from the new method to receive keys. One
simple modulo operation is needed on client side resulting in
low computation time for solving the Lock MX even at its
maximum size of 14 elements.

For comparison, the costs for encrypting and decrypting
keys within an LKH tree are shown in Table II. It can be
seen that even though the AES implementation is highly
optimized, solving the Lock MX scales similar to decrypting
the keys within the LKH tree. However, lowering network load
with CAKE comes at the price of computational overhead
for creating the Lock MX, which scales worse than LKH.
Optimizing the Lock MX implementations will be part of
further studies.

C. Fulfillment of requirements

Resource-constrained environments necessitate functional
and non-functional requirements. The design of CAKE parti-
cularly focuses to meet these. Firstly, the ternary tree enables
a reduced number of keys needed to be stored and sent.
Additionally, through CAKE a re-keying is possible with one
single message and the per-packet overhead is reduced. Thus,
the requirements Low Datarates and No 1-to-n Effect are
fulfilled. When group changes happen, the evaluation shows
that CAKE requires only a minimum of messages to be sent.
For group leave actions the CRT is utilized and the calculation
complexity is reduced to only one modulo operation on client
side. So, Minimal Delay and Low calculation complexity
are achieved. The required Minimal amount of key changes
and exchanges is realized by combining the ternary tree
and the addressing scheme. This allows the minimization of
required actions in case of restructuring the tree. Moreover,
the Compatibility requirement is achieved by using the G-
IKEv2 protocol, which is currently being standardized. Any
client that is not capable of the newly introduced features
may participate in the group by utilizing standard re-keying
mechanism, while the CAKE-capable clients can still use the
optimized feature set. Additionally, through the use of G-
IKEv2, the Security Properties are met, as they are included
in the standardization and therefore well studied. From this
point of view, CAKE is an optimization of key calculation and
transport, leaving the security parameters as they are. Lastly,
the Minimal Trust requirement can be accomplished on a per-
scenario-basis throughout the various supported authentication
mechanisms of G-IKEv2.

Besides the practical applicability and its pros and cons
in comparison to especially LKH, reviewing the initial design



goals and requirements shows completeness. A detailed design
explanation and security assessment can be found in [4].

VI. CONCLUSION

In this paper, we presented the concept of an efficient
group-key-management protocol that meets the requirements
of resource-efficient procedures in many application scenarios
like MANET. It is based on the combination of the lightweight
G-IKEv2 [3] communication protocol in combination with
CAKE [4] for the key exchange and key management. CAKE
offers the possibility to exchange keys within a group and to
react efficiently to dynamic changes of the group with low
calculation effort and a low load on the network. Neverthe-
less, it enables confidential key distribution and compliance
with backward and forward security requirements for mobile
computing. The main objective to reduce the network load
to a minimum is achieved at the cost of additional storage
space for supplement cryptographic key material. The CRT-
based key hierarchy together with a ternary keys tree structure
reduce the data to be transferred especially during group
leave operations. The design of CAKE delegates computational
demanding cryptographic operations to the group controller,
relieving to potentially less powerful group members. In to-
day’s interconnected world, this middleware technology shows
advantageous in the area of secure group communication
among highly constrained group members.

In the current state of research, the inefficient addressing
scheme will be optimized in the next step. Apart from that,
the networking overhead of the LKH extension in G-IKEv2
can be also further improved. Thus, the optimization of both
in concerning scenarios is subject of future work, which will
allow for a more comprehensive and technical comparison
of LKH and CAKE. Beside further improvements of the
CAKE prototype, the basic concept and the implementation
is evaluated for building and solving the CRT System worth
investigating. Finally, a more detailed analysis of the solution
to post-compromise security is of great interest in the case of
merging and division of groups.
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