
Modeling and Verifying Dynamic Architectures
with FACTum Studio

Habtom Kahsay Gidey1, Alexander Collins2, and Diego Marmsoler2

1 Universität der Bundeswehr München
2 Technische Universität München

Abstract. With the emergence of ambient and adaptive computing, dy-
namic architectures have become increasingly important. Dynamic archi-
tectures describe an evolving state space of systems over time. In such
architectures, components can appear or disappear, and connections be-
tween them can change over time. Due to the evolving state space of
such architectures, verification is challenging. To address this problem,
we developed FACTum Studio, a tool that combines model checking and
interactive theorem proving to support the verification of dynamic archi-
tectures. To this end, a dynamic architecture is first specified in terms of
component types and architecture configurations. Next, each component
type is verified against asserted contracts using nuXmv. Then, the com-
position of the contracts is verified using Isabelle/HOL. In this paper,
we discuss the tool’s extended features with an example of an encrypted
messaging system. It is developed with Eclipse and active on Github.

Keywords: Dynamic Architectures, Model Checking, Interactive The-
orem Proving, FACTum, Eclipse/EMF, Xtext

1 Introduction

Software systems that enact self-adaptation, learning, and complex reasoning
are inherently dynamic [7,9,21]. They autonomously change their structure and
composition at run time [5,20]. Such systems can be specified in two steps:
First, a set of component types is specified using state machines [18,10]. Next,
the composition of components is specified using architectural assertions [4,13].

The dynamic nature of such systems leads to a dynamically evolving state
space, which makes their verification difficult. Sometimes, we lack even upper
bounds on the active number of components, and so verification requires reason-
ing over an unbounded state space. In FACTum [14,17], we address this problem
by splitting the verification process into two steps. To verify a property for the
overall architecture, we first identify suitable contracts for the component types
and verify them against their implementation using model checking. In a second
step, we apply interactive theorem proving (ITP) to combine these verified con-
tracts to derive the overall system property. The restricted state space of single
component types enables automatic verification techniques and allows fast feed-
back on the satisfaction of contracts. On the other hand, the expressiveness of



ITP allows us to reason about potentially unbounded numbers of components
when verifying overall system properties.

In a previous work [16], we presented a preliminary version of FACTum
Studio, an Eclipse-based modeling application supporting the specification of
Architectural Design Patterns and their verification in Isabelle/HOL. With this
paper, we introduce an extended version, adding the following features: (i) Sup-
port for graphical modeling of component behavior using annotated state ma-
chines. (ii) Corresponding code generation for the nuXmv model checker.

2 Background

We approach the development of FACTum Studio following the FACTum frame-
work [17,14]. Fig. 1 illustrates the essential parts of the implemented framework.
It depicts the process of architecture specification, including the creation of the-
ories and models for verification. It also shows where ITP and model checking
tools are utilized.

Architectural
Constraints

Architectural
Guarantee

Specification

Model

nuXmv

Specification

Isabelle/HOL

Assumptions

Theorems

Verification

Model Checking

ITP

State machine

Contracts

Component Type

Fig. 1: Verifying Dynamic Architectures in FACTum Studio.
In our previous paper [16] we reported the first release of FACTum Studio.

We discussed its basic features, introducing the graphical and textual language
that supports architectural pattern specifications. These core features facilitate
the specification and representation of abstract data types, component types,
and architectural assertions in terms of constraints and guarantees.

3 FACTum Studio 2

The second release of FACTum Studio adds the following new features: (i) tex-
tual and graphical modeling of behavior for components in terms of state ma-
chines, (ii) specification of contracts for component types in terms of LTL-
formulæ, (iii) generation of models for the nuXmv model checker from com-
ponent behaviors, (iv) generation of specifications for nuXmv from component
type contracts, and (v) generation of additional assumptions for Isabelle locales

2



from contracts. Moreover, the new release contains additional feature enhance-
ments and bug fixes.

Example 1 (Secure Messaging System). Fig. 2 shows an architectural diagram
consisting of the key elements of the messaging protocol. The architecture rep-
resents a simple encrypted message exchange system between a sender and a
receiver. Messages are encrypted with a key by the sender and decrypted with
the same key on the receiving end. However, the nodes are restricted to for-
warding the messages and cannot read messages in the middle. The Encrypt
component type has an input port and output port which connects to a Node
component type. The Node component type also contains ports which connect
it to the Encrypt and Decrypt component types. Similarly, the Decrypt com-
ponent type has ports connecting it to a Node component type. The Node com-
ponent type represents an arbitrary number of dynamic nodes. They can join
and leave the network at any time dynamically. A message moves through the
active nodes until it reaches its destination. The full textual specification of the
running example is provided in the project repository in GitHub [8].

Fig. 2: Running Example - Secure Messaging, Architecture Diagram.

4 Specification of Dynamic Architectures

In FACTum, specifications usually begin by describing essential architectural
elements such as data types and component types. In the following, we use text
boxes with a light bulb icon to highlight the new features with FACTum Studio
2.

4.1 Specifying Datatypes

In FACTum Studio, data types are specified using algebraic specification tech-
niques [22,4].

 In FACTum Studio 2 we extended the specification of data types by al-
lowing the user to map FACTum sorts to nuXmv data types and FAC-
Tum operations to nuXmv operations.

Example 2 (Data Types for Secure Messaging System). Fig. 3 shows a data type
specification for our example. It declares a data type Numbers and its mapping

3



to nuXmv data type defined in DTMap. The specification of data types’ operations
is enhanced in the new release to include several possibilities, such as ranges of
numbers.

Fig. 3: Datatype Specification Fig. 4: Component Type Specification

4.2 Component Types

Component types are specified using architecture diagrams. Figure 2, for exam-
ple, shows an architecture diagram for our running example.

 FACTum Studio 2 adds support for the textual or graphical behavior
specification of component types using state machines.

Example 3 (Behavior for Encrypt Component Type). In Fig. 4 we show an ex-
ample of the textual description of the Encrypt component type. It describes
the component’s two ports, the input port rcvMsg and the output port sndEnc.
The Behaviour code block describes the specification of the component type’s
behavior. It contains a description of states, wait and encrypt. It defines an
initial state wait where its initial value is set to rcvMsg. It also defines the
wait and encrypt state transitions as a start and end of the transition behav-
ior, respectively. Fig. 5 shows the behavior specified graphically. The graphical
representations are also editable with text annotations.

Fig. 5: Graphical Behavior Specification with State Machines.

4



4.3 Architecture Specification

In FACTum Studio, architectural configurations are specified using architectural
assertions: LTL-formulæ expressed over the architecture. In FACTum Studio 2,
the architecture specification did not change much [16].

Example 4 (Architecture Specification for Secure Messaging System). In Fig. 6,
we have the architectural constraints set over sets of component instances. The
formulæ enc and dec assert a property that requires a unique decryption and a
unique encryption components set active at any time point. The con predicate
specifies the connection property of components within the architecture.

Fig. 6: Architectural Constraints Fig. 7: Architectural Guarantees

5 Verification using Model Checking and ITP

In FACTum, architectures are verified in two steps: First, we specify the archi-
tectural guarantees and establish suitable contracts. Contracts are then verified
against described behaviors of component types using model checking. Secondly,
the verified contracts are combined with the architectural specifications to verify
the overall architecture using interactive theorem proving.

Example 5 (Guarantee for Secure Messaging System). In Fig. 7, the architectural
guarantee g ensures a property that when a message msg is sent by the sender
it will eventually be delivered to the receiver and cannot be read in between.

 FACTum Studio 2 now supports the specification of contracts for com-
ponent types using LTL-formulæ over their ports.

5.1 Verifying Component Types

As discussed in Sec. 1, FACTum Studio automatically verifies individual imple-
mentations of component types using the model checker nuXmv. To this end,
we first identify suitable contracts for each type of component. Contracts specify
behaviors of component types expressed as behavior trace assertions [15].

5



Fig. 8: Contract for the Encrypt Component Type.

Example 6 (Contracts for component types). In Fig. 7, a suitable contract for
the encryption component type is specified as c. The contract describes the de-
sired property for encrypting and forwarding every message. It asserts a liveness
property so that, eventually, every input is encrypted.

Then, FACTum Studio can be used to generate nuXmv code for each component
type. The corresponding algorithm is shown in Algorithm 1. It describes the
mapping process followed during the model transformations.

 FACTum Studio 2 now supports the generation of nuXmv code.

Algorithm 1 nuXmv code generation

Require: pattern
1: for all component types do
2: for all states do
3: add state to enum
4: end for
5: for all state machine variables

do
6: encode as variable with sort
7: end for
8: for all input ports and output

ports do
9: encode as variable with sort

10: create noVal port as boolean
11: end for
12: encode initialization of variables

13: encode state machines in assign-
ment style

14: encode transitions of noVal out-
put ports in assignment style

15: for all contracts do
16: encode as LTLSpec
17: end for
18: end for

5.2 Verifying the Architecture

As a final step, FACTum Studio generates Isabelle/HOL and nuXmv code for
architecture verification. It transforms the specified architectural assertions to
corresponding Isabelle/HOL assumptions and theories. Similarly, the state ma-
chines and contracts of individual components are transformed into correspond-
ing nuXmv models and specifications, see Fig. 1. At this stage, FACTum Studio
checks the state machine models of individual component types against their
contracts. Next, it combines the verified contracts with the Isabelle/HOL theo-
rems generated from the architectural guarantee. Using ITP, we can then sketch

6



Isabelle/HOL proof interactively to finalize the verification of dynamic architec-
tures.

 FACTum Studio 2 now also exports component contracts as assumptions
for the corresponding Isabelle locale.

Example 7. The complete generated Isabelle/HOL theory and the proof for the
running example are provided in the code repository [8].

6 Related Work

The first category and a significant number of related works are tools such as
AutoFocus, RoboChart, VerCor, and others using languages DynAlloy, Dynamic
Wright [1,6,19]. These tools use automated verification with model checking or
an analyzer such as the Alloy Analyzer. The tools in this category do not provide
support for ITP based dynamic architecture verification.

The second category of tools provides support for model transformations
of architecture specifications to proof assistants. These tools are very few in
number and would include the previous version of FACTum Studio, Reo, and
STeP [2,3,11,12,16].

However, to the best of our knowledge, the new FACTum Studio is the
only tool to use a combined approach of both ITP and model checking for the
verification of dynamically adapting, component-based systems.

7 Conclusion and Outlook

Verification of dynamic architecture specifications for software-intensive systems
requires a combined approach to address the varying nature of challenges in the
domain. In this paper, with the implementation of new features in FACTum
Studio, we have described how to approach and address the state-space scala-
bility problem of dynamic architecture verification by using model checking and
ITP. First, we demonstrated how individual architectural elements and their dy-
namic properties are specified and verified using a model checker. We then used
individually checked contracts to verify assured compositional constraints using
ITP.

Since ITP requires a steep learning curve, in the next versions of FACTum
Studio, we plan to implement some form of automatic proof generation from
specified guarantees. Moreover, we also plan to support the hierarchical spec-
ification of component types and their configurations. That can enable users
to import, use, or extend already specified and verified dynamic architecture
patterns.

Acknowledgments: Parts of the work on which we report in this paper were
funded by the German Federal Ministry of Economics and Technology (BMWi)
under grant no. 0325811A.

7



References
1. Aravantinos, V., Voss, S., Teufl, S., Hölzl, F., Schätz, B.: AutoFOCUS 3: Tooling

concepts for seamless, model-based development of embedded systems. In: CEUR
Workshop Proceedings. vol. 1508, pp. 19–26. CEUR-WS.org (2015)

2. Arbab, F.: Reo: a channel-based coordination model for component composition.
Mathematical structures in computer science 14(03), 329–366 (2004)

3. Baier, C., Sirjani, M., Arbab, F., Rutten, J.: Modeling component connectors in reo
by constraint automata. Science of computer programming 61(2), 75–113 (2006)

4. Broy, M.: A model of dynamic systems. In: Bensalem, S., Lakhneck, Y., Legay, A.
(eds.) From Programs to Systems. The Systems Perspective in Computing, Lecture
Notes in Computer Science, vol. 8415, pp. 39–53. Springer Berlin Heidelberg (2014)

5. Bruni, R., Bucchiarone, A., Gnesi, S., Melgratti, H.: Modelling dynamic software
architectures using typed graph grammars. Electronic Notes in Theoretical Com-
puter Science 213(1), 39–53 (2008)

6. Bucchiarone, A., Galeotti, J.P.: Dynamic software architectures verification using
DynAlloy. Electronic Communications of the EASST 10 (2008)

7. Gerostathopoulos, I., Skoda, D., Plasil, F., Bures, T., Knauss, A.: Architectural
homeostasis in self-adaptive software-intensive cyber-physical systems. In: Euro-
pean Conference on Software Architecture. pp. 113–128. Springer (2016)

8. Gidey, H.K., Marmsoler, D.: FACTum Studio. https://habtom.github.io/
factum/ (2018)

9. Koza, J.R.: Genetic programming: on the programming of computers by means of
natural selection, vol. 1. MIT press (1992)

10. Li, C., Huang, L., Chen, L., Li, X., Luo, W.: Dynamic software architectures: formal
specification and verification with csp. In: Proceedings of the Fourth Asia-Pacific
Symposium on Internetware. p. 5. ACM (2012)

11. Li, Y., Sun, M.: Modeling and analysis of component connectors in Coq. In:
Fiadeiro, J.L., Liu, Z., Xue, J. (eds.) Formal Aspects of Component Software
- 10th International Symposium, FACS 2013, China. Lecture Notes in Com-
puter Science, vol. 8348, pp. 273–290. Springer (2013), https://doi.org/10.1007/
978-3-319-07602-7_17

12. Manna, Z., Sipma, H.B.: Deductive verification of hybrid systems using STeP. In:
International Workshop on Hybrid Systems: Computation and Control. pp. 305–
318. Springer (1998)

13. Marmsoler, D.: Towards a calculus for dynamic architectures. In: Hung, D.V.,
Kapur, D. (eds.) Theoretical Aspects of Computing - ICTAC 2017 - 14th Interna-
tional Colloquium, Proceedings. Lecture Notes in Computer Science, vol. 10580,
pp. 79–99. Springer (2017), https://doi.org/10.1007/978-3-319-67729-3

14. Marmsoler, D.: A framework for interactive verification of architectural design pat-
terns in Isabelle/HOL. In: International Conference on Formal Engineering Meth-
ods. pp. 251–269. Springer (2018)

15. Marmsoler, D.: Hierarchical specification and verification of architectural design
patterns. In: Fundamental Approaches to Software Engineering - 21th Interna-
tional Conference, FASE 2018, Held as Part of the European Joint Conferences
on Theory and Practice of Software, ETAPS 2018, Proceedings. Lecture Notes
in Computer Science, vol. 10802. Springer (2018), https://doi.org/10.1007/
978-3-319-89363-1

16. Marmsoler, D., Gidey, H.K.: FACTum Studio: a tool for the axiomatic specification
and verification of architectural design patterns. In: International Conference on
Formal Aspects of Component Software. pp. 279–287. Springer (2018)

8

https://habtom.github.io/factum/
https://habtom.github.io/factum/
https://doi.org/10.1007/978-3-319-07602-7_17
https://doi.org/10.1007/978-3-319-07602-7_17
https://doi.org/10.1007/978-3-319-67729-3
https://doi.org/10.1007/978-3-319-89363-1
https://doi.org/10.1007/978-3-319-89363-1


17. Marmsoler, D., Gidey, H.K.: Interactive verification of architectural design patterns
in FACTum. Formal Aspects of Computing (2019)

18. Marmsoler, D., Gleirscher, M.: Specifying properties of dynamic architectures us-
ing configuration traces. In: International Colloquium on Theoretical Aspects of
Computing, Lecture Notes in Computer Science, vol. 9965, pp. 235–254. Springer
(2016)

19. Miyazawa, A., Cavalcanti, A., Ribeiro, P., Li, W., Woodcock, J., Timmis, J.:
Robochart reference manual. Tech. rep., Technical report, University of York (2017)

20. Oquendo, F.: Dynamic software architectures: formally modelling structure and
behaviour with Pi-ADL. In: 2008 The Third International Conference on Software
Engineering advances. pp. 352–359. IEEE (2008)

21. Oreizy, P., Gorlick, M.M., Taylor, R.N., Heimhigner, D., Johnson, G., Medvidovic,
N., Quilici, A., Rosenblum, D.S., Wolf, A.L.: An architecture-based approach to
self-adaptive software. IEEE Intelligent Systems and Their Applications 14(3), 54–
62 (1999)

22. Wirsing, M.: Algebraic specification. In: van Leeuwen, J. (ed.) Handbook of Theo-
retical Computer Science (Vol. B), pp. 675–788. MIT Press, Cambridge, MA, USA
(1990), http://dl.acm.org/citation.cfm?id=114891.114904

9

http://dl.acm.org/citation.cfm?id=114891.114904

	Modeling and Verifying Dynamic Architectures with FACTum Studio

