
Vol.:(0123456789)

Computational Optimization and Applications
https://doi.org/10.1007/s10589-021-00342-y

1 3

On a primal‑dual Newton proximal method for convex
quadratic programs

Alberto De Marchi1 

Received: 12 December 2020 / Accepted: 1 December 2021
© The Author(s) 2022

Abstract
This paper introduces QPDO, a primal-dual method for convex quadratic programs
which builds upon and weaves together the proximal point algorithm and a damped
semismooth Newton method. The outer proximal regularization yields a numerically
stable method, and we interpret the proximal operator as the unconstrained minimi-
zation of the primal-dual proximal augmented Lagrangian function. This allows the
inner Newton scheme to exploit sparse symmetric linear solvers and multi-rank fac-
torization updates. Moreover, the linear systems are always solvable independently
from the problem data and exact linesearch can be performed. The proposed method
can handle degenerate problems, provides a mechanism for infeasibility detection,
and can exploit warm starting, while requiring only convexity. We present details of
our open-source C implementation and report on numerical results against state-of-
the-art solvers. QPDO proves to be a simple, robust, and efficient numerical method
for convex quadratic programming.

Keywords  Semismooth Newton method · Proximal point method · Regularized
primal-dual method · Convex quadratic programming

1  Introduction

Quadratic programs (QPs) are one of the fundamental problems in optimization. In
this paper, we consider linearly constrained convex QPs, in the form:

with � ∈ ℝ
n . � ∈ ℝ

n×n and � ∈ ℝ
n define the objective function, whereas the con-

straints are encoded by � ∈ ℝ
m×n and �, � ∈ ℝ

m
 . We assume (i) � is symmetric

(1)min
�

1

2
�⊤�� + �⊤�, s.t. � ≤ �� ≤ �,

 *	 Alberto De Marchi
	 alberto.demarchi@unibw.de

1	 Universität der Bundeswehr München, 85577 Neubiberg/Munich, Germany

http://orcid.org/0000-0002-3545-6898
http://crossmark.crossref.org/dialog/?doi=10.1007/s10589-021-00342-y&domain=pdf

	 A. De Marchi

1 3

positive semidefinite, i.e., � ⪰ 0 , and (ii) � and � satisfy � ≤ � , � < +∞ , and � > −∞
component-wise; cf. [33, 59]. We will refer to the nonempty, closed and convex set

as the constraint set. Note that (1) represents a general convex QP, in that it accomo-
dates also equality constraints and bounds. We denote N the sum of the number of
nonzero entries in � and � , i.e., N∶=nnz(�) + nnz(�).

1.1 � Background

Optimization problems in the form (1) appear in a variety of applications and are
of interest in engineering, statistics, finance and many other fields. QPs often arise
as sub-problems in methods for general nonlinear programming [10, 31, 44], and
greatly vary in terms of problem size and structure.

Convex QPs have been studied since the 1950s [22] and several numerical meth-
ods have been developed since then. These differ in how they balance the number of
iterations and the cost (e.g., run time) per iteration.

Active-set methods for QPs originated from extending the simplex method for
linear programs (LPs) [64]. These methods select a set of binding constraints and
iteratively adapt it, seeking the set of active constraints at the solution. Active-set
algorithms can be easily warm started and can lead to finite convergence. More-
over, by adding and dropping constraints from the set of binding ones, factoriza-
tion updates can be adopted for solving successive linear systems. However, these
methods may require many iterations to identify the correct set of active constraints.
Modern solvers based on active-set methods are qpOASES [20] and NASOQ [13].

First-order methods iteratively compute an optimal solution using only first-order
information about the cost function [46, 49]. As these methods consist of compu-
tationally cheap and simple steps, they are well suited to applications with limited
computing resources [59]. However, first-order algorithms usually require many
iterations to achieve accurate solutions and may suffer from ill-conditioning of the
problem data. Several acceleration schemes have been proposed to improve their
behaviour [1, 62]. The open-source solver OSQP [59] offers an implementation
based on ADMM [9].

Interior-point methods move the problem constraints to the objective function
via barrier functions and solve a sequence of parametric sub-problems [10, Chap.
11], [44, Sect. 16.6]. Although not easily warm started, the polynomial complexity
makes interior-point methods appealing for large scale problems [29]. They usually
require few but rather demanding iterations [31, 44]. Interior-point methods are cur-
rently the default algorithms in the commercial solvers GUROBI [32] and MOSEK
[43]. Recent developments are found in the regularized method IP-PMM [51].

Semismooth Newton methods apply a nonsmooth version of Newton’s method to
the KKT conditions of the original problem [52, 53]. In the strictly convex case, i.e.,
with � ≻ 0 , this approach performs very well as long as the underlying linear sys-
tems are nonsingular. Regularized, or stabilized, semismooth Newton-type methods,
such as QPALM [33, 34] and FBstab [37], overcome these drawbacks.

C∶={� ∈ ℝ
m ∶ � ≤ � ≤ �}

1 3

On a primal‑dual Newton proximal method for convex quadratic…

The augmented Lagrangian framework [7, 14, 44], semismooth Newton methods
[25, 53], and proximal techniques [48, 56] are undergoing a revival, as their seam-
less combination exhibits valuable properties and provides useful features, such as
regularization and numerical stability [6, 33, 37]. These ideas form the basis for our
approach.

1.2 � Approach

In this work we present a numerical method for solving general QPs. The proposed
algorithm is based on the proximal point algorithm and a semismooth Newton
method for solving the sub-problems, which are always solvable for any choice of
problem data. We therefore impose no restrictions such as strict convexity of the
cost function or linear independence of the constraints. As such, our algorithm gath-
ers together the benefits of fully regularized primal-dual methods and semismooth
Newton methods with active-set structure. Our algorithm can exploit warm starting
to reduce the number of iterations, as well as factorization caching and multi-rank
update techniques for efficiency, and it can obtain accurate solutions.

Our approach, dubbed QPDO from “Quadratic Primal-Dual Optimizer”, is
inspired by and shares many characteristics with algorithms that have already been
proposed, in particular with QPALM [33] and FBstab [37]. On the other hand, they
differ on some key aspects. QPALM relates to the proximal method of multipliers
[33, Rem. 2], which in turn is associated to the classical (primal) augmented Lagran-
gian function [55]. Instead, FBstab and QPDO apply the proximal point method,
yielding exact primal-dual regularization. A more detailed comparison is deferred to
Sect. 5. However, FBstab reformulates the sub-problem via the (penalized) Fischer-
Burmeister NCP function [11, 21], and adopts the squared residual norm as a merit
function for the inner iterative loop; this prevents the use of symmetric sparse linear
solvers. Instead, QPDO adopts the minimum NCP function, which leads to symmet-
ric linear systems with active-set structure. Then, we show the primal-dual proximal
augmented Lagrangian function, introduced in [27, 54] and [17], is a suitable merit
function for the proximal sub-problem, which allows us to perform an exact line-
search in a fully primal-dual regularized context. Indeed, we believe, the main con-
tribution of this work consists in recognizing this link, exploiting it to bridge the gap
between previously proposed methods, and developing a robust and efficient algo-
rithm that possesses their advantages but does not suffer from their disadvantages.

Notation ℕ , ℤ , ℝ , ℝ+ , and ℝ++ denote the sets of natural, integer, real, non-nega-
tive real, and positive real numbers, respectively. We denote ℝ ∶= ℝ ∪ {−∞,∞} the
extended real line. The identity matrix and the vector of ones of size n are denoted
by �n and �n , respectively. We may omit subscripts whenever clear from the context.
[a, b], (a, b), [a, b), and (a, b] stand for closed, open, and half-open intervals, respec-
tively, with end points a and b. [a; b], (a; b), [a; b), and (a; b] stand for discrete
intervals, e.g., [a;b] = [a, b] ∩ ℤ . Given a vector � ∈ ℝ

n , �⊤ and �i denote its trans-
pose and its i-th component, respectively. We adopt the norms ‖�‖ = ‖�‖2∶=

√
�⊤�

and ‖�‖∞∶=maxi∈[1;n] ��i� . Given a set S, |S| denotes its cardinality. In ℝn , the
relations <, ≤ , = , ≥ , and > are understood component-wise. Given a nonempty

	 A. De Marchi

1 3

closed convex set C ⊆ ℝ
n , we denote �C ∶ ℝ

n
→ ℝ ∪ {+∞} its characteristic func-

tion, namely �C(�) = 0 if � ∈ C and �C(�) = +∞ otherwise, distC ∶ ℝ
n
→ ℝ its

distance, namely � ↦ min�∈C‖� − �‖ , and its projection ΠC ∶ ℝ
n
→ ℝ

n , namely
� ↦ argmin�∈C‖� − �‖ . Thus, it holds distC(�) = ‖ΠC(�) − �‖.

The algorithm is described with a nested structure, whose outer iterations are
indexed by k ∈ ℕ . Given an arbitrary vector � , �k denotes that � depends on k, and
analogously for matrices. We denote y the dual variable associated with the con-
straints in problem (1). A primal-dual pair (�, �) will be denoted v, and we will refer
interchangeably to it as a vector or to its components � and y. An optimal solution to
(1) will be denoted (�⋆, �⋆) , or �⋆ . Optimal solutions of proximal sub-problems will
be denoted using an appropriate subscript, according to the iteration. For example,
(�⋆

k
, �⋆

k
) , and �⋆

k
 , denote the solution to the proximal sub-problem corresponding to

the k-th outer iteration.
Outline The rest of the paper is organized as follows. Sections 2 and 3 develop

and present our method in detail. In particular, in Sect. 3.1 we establish our key
result, which relates the proximal operator and the primal-dual proximal augmented
Lagrangian function. Our algorithmic framework is outlined in Section 4 and the
convergence properties are analyzed in Sect. 4.1, while Sect. 5 contrasts QPDO with
similar methods. We present details of our implementation in Sect. 6 and report on
numerical experience in Sect. 7.

2 � Outer loop: inexact proximal point method

Our method solves (1) using the proximal point algorithm with inexact evaluation
of the proximal operator. The latter is evaluated by means of a semismooth New-
ton-type method, which constitutes an inner iterative procedure further investigated
in Sect. 3. Here we focus on the outer loop corresponding to the proximal point
algorithm, which has been extensively studied in the literature [56]. We recall some
important results and refer to [38, 40, 45, 55] for more details.

2.1 � Optimality conditions

Problem (1) can be equivalently expressed as

where

are the objective function and the characteristic function of the constraint set C ,
respectively. The necessary and sufficient first-order optimality conditions of (2),
and hence (1), read

(2)min
�

f (�) + g(��),

f (�)∶=
1

2
�⊤�� + �⊤� and g(�)∶=𝜒C(�)

1 3

On a primal‑dual Newton proximal method for convex quadratic…

where �g∗ denotes the (set-valued) conjugate subdifferential of g [45]. For all
i ∈ [1;m] , (�g∗(�))i = �i if �i < 0 , (�g∗(�))i = [�i, �i] if �i = 0 , and (�g∗(�))i = �i if
�i > 0 . We will refer to T ∶ ℝ

�
⇉ ℝ

� , �∶=n + m , as the KKT operator for (1). How-
ever, noticing that, for any 𝛼 > 0 , the conditions � = ΠC(� + ��) and � ∈ �g∗(�) are
equivalent [57, Sect. 23], conditions in (3) can be reformulated. Choosing � = 1 , we
define the (outer) residual � ∶ ℝ

�
→ ℝ

� and equivalently express (3) as

This reformulation can be obtained also by employing the minimum NCP function
[60] and rearranging to obtain the projection operator ΠC . The residual � is analo-
gous to the natural residual function � investigated in [47]. Since it is an error bound
for problem (1), i.e., distT−1(�)(�) = O(‖�(�)‖) [47, Thm 18], � is a suitable optimal-
ity measure and its norm can be adopted as a stopping criterion. Although equiva-
lent, (3) is considered here only as a theoretical tool for developing the proposed
method, whereas the outer residual � in (4) serves as a computationally practical
optimality criterion.

2.2 � Proximal point algorithm

The proximal point algorithm [56] finds zeros of maximal monotone operators
by recursively applying their proximal operator. Since T is a maximal monotone
operator [45, 55], the proximal point algorithm converges to an element �⋆ of the
set of primal-dual solutions T−1(�) , if any exists [40, 56]. Starting from an initial
guess �0 , it generates a sequence {�k} of primal-dual pairs by recursively applying
the proximal operator Pk:

where {�k} is a sequence of non-increasing positive definite matrices, namely,
�k ≻ 0 and �k − �k+1 ⪰ 0 for all k ∈ ℕ . The matrices �k control the primal-dual
proximal regularization and, similarly to exact penalty methods, these are not
required to vanish [55, 56]. Since T is maximal monotone, Pk is well defined and
single valued for all � ∈ domT = ℝ

� [40]. Thus, from (5), evaluating Pk at �k is
equivalent to finding the unique � ∈ ℝ

� that satisfies

This is guaranteed to have a unique solution and to satisfy certain useful regularity
properties; see Sect. 3 below. As a result, we can construct a fast inner solver for
these sub-problems based on the semismooth Newton method.

(3)� ∈ T(�)∶=

(
�� + � + �⊤�

−�� + 𝜕g∗(�)

)
,

(4)� = �(�)∶=

(
�� + � + �⊤�

�� − ΠC(�� + �)

)
.

(5)�k+1 = Pk(�k), Pk∶=(� + �−1
k
T)−1,

(6)� ∈ Tk(�)∶=T(�) + �k(� − �k).

	 A. De Marchi

1 3

2.3 � Early termination

The proximal point algorithm tolerates errors, namely the inexact evaluation of Pk
[56]. Criterion (Ar) in [38] provides conditions for the design of convergent inex-
act proximal point algorithms [38, Thm 2.1]. Let �⋆

k
∶=Pk(�k) denote the unique

proximal sub-problem solution and �k+1 ≈ �⋆
k
 the actual recurrence update. The

aforementioned criterion requires

where r ≥ 0 and {ek} is a summable sequence of nonnegative inner tolerances,
i.e., ek ≥ 0 for all k and

∑∞

k=0
ek < +∞ . However, since �⋆

k
 is effectively unknown,

this criterion is impractical. Instead, in Algorithm 1 it is required that �k+1 satisfy
‖�k(�k+1)‖∞ ≤ �k . Here, �k denotes the residual for the k-th sub-problem, and is
defined in (14). In Sect. 4.1 we will show that this criterion is a simple and viable
substitute, which retains the significance of (Ar).

2.4 � Warm starting

If a solution �⋆ exists, the (outer) sequence {�k} generated by (5) converges, by
the global convergence of the proximal point algorithm [56]. Then, Pk(�k) and �k
are arbitrarily close to each other for sufficiently large k [37, Sect. 4]. This sup-
ports the idea of warm starting the inner solver with the current outer estimate
�k , that is, setting � ← �k in Algorithm 2. In practice, for large k, only one or
few Newton-type inner iterations are needed to find an approximate sub-problem
solution �k+1.

2.5 � Primal and dual infeasibility

Infeasibility detection in convex programming has been studied in [4, 5]. Certify-
ing primal infeasibility of (1) amounts to finding a vector � ∈ ℝ

m such that

Similarly, it can be shown that a vector � ∈ ℝ
n satisfying

is a certificate of dual infeasibility for (1) [4, Prop. 3.1].

(7)‖�k+1 − �⋆
k
‖ ≤ ek min

�
1, ‖�k+1 − �k‖r

�
,

(8)
�⊤� = �,

∑
i ∈ [1;m]

�i ∈ ℝ

�i max(�i, 0) +
∑

i ∈ [1;m]

�i ∈ ℝ

�i min(�i, 0) < 0.

(9)�� = �, �⊤� < 0, (��)i

⎧⎪⎨⎪⎩

= 0 �i, �i ∈ ℝ,

≥ 0 �i ∈ ℝ,�i = +∞,

≤ 0 �i = −∞,�i ∈ ℝ,

i ∈ [1;m],

1 3

On a primal‑dual Newton proximal method for convex quadratic…

3 � Inner loop: semismooth Newton method

In this section we focus on solving (6) via a semismooth Newton method. For the
sake of clarity, and without loss of generality, we consider

for some parameters �k,�k ∈ ℝ++.

3.1 � Merit function

We now derive the simple yet fundamental result that is the key to developing our
method. This provides the NCP reformulation of the proximal sub-problem with
a suitable merit function. The former yields symmetric active-set linear systems,
while the latter leads to exact linesearch.

Let us express (6) in the form

Similarly to (4), for any given 𝛼 > 0 , this can be rewritten as

where we denote

The second condition in (11) can be expressed as � = �k − ΠC(�k) − �� . Then, we
substitute y with [�k − ΠC(�k)]∕� in the first condition in (11), and multiply the sec-
ond one by (� − �k)∕� . Hence, for any positive � ≠ �k , (11) is equivalent to

namely their unique solutions coincide. Now, we observe that the right-hand side of
(12) is the gradient of the function

By construction, this is a continuously differentiable function whose gradient van-
ishes at the unique solution of the proximal sub-problem. Furthermore, for any
� ∈ (0,�k) , it is strictly convex and hence admits a unique minimizer that must coin-
cide with the unique proximal point. Therefore, (13) is a suitable merit function for

�k∶=blockdiag(�k�n,�k�m).

(10)� ∈

(
�� + � + �⊤� + 𝜎k(� − �k)

−�� + 𝜇k(� − �k) + 𝜕g∗(�)

)
.

(11)� =

(
�� + � + �⊤� + 𝜎k(� − �k)

�� + 𝜇k(�k − �) − ΠC(�k)

)
,

�k∶=�� + �k(�k − �) + ��.

(12)� =

(
�� + � +

1

𝛼
�⊤[�k − ΠC(�k)] + 𝜎k(� − �k)

𝛼−𝜇k

𝛼
[�k − ΠC(�k)] + (𝜇k − 𝛼)�

)
,

(13)f (�) +
1

2�
dist2

C
(�k) +

�k
2
‖� − �k‖2 +

�k − �

2
‖�‖2.

	 A. De Marchi

1 3

the sub-problem. The particular choice �∶=�k∕2 inherits all these properties and
leads to the inner optimality conditions

with �k ∶ ℝ
�
→ ℝ

� the inner residual, and the associated merit function

In fact, Mk ∶ ℝ
�
→ ℝ is the primal-dual proximal augmented Lagrangian function

[17, 27, 54]; see Appendix A for a detailed derivation. This underlines once again
the strong relationship between the proximal point algorithm and the augmented
Lagrangian framework, pioneered in [55]. On the one hand, by (15), the dual regu-
larization parameter �k controls the constraint penalization [23, Sect. 3.2]. On the
other hand, it provides an “interpretation of the augmented Lagrangian method as an
adaptive constraint regularization process” [3, Sect. 2].

The inner residual �k in (14) is piecewise affine, hence strongly semismooth on
ℝ

� [36, 52]. In fact, given �k bounded away from zero and the unique, bounded,
and nonsingular matrix �k defined by

we have the identity ∇Mk(⋅) = �k�k(⋅) . Effectively, ‖�k(⋅)‖ can be employed as stop-
ping criterion in place of ‖∇Mk(⋅)‖ . We prefer the former, since �k corresponds to a
perturbation of the outer residual � ; cf. (4).

The availability of a suitable merit function allows us to adopt a damped New-
ton-type method and design a linesearch globalization strategy, in contrast with
[25, 37, 50]. Since Mk is continuously differentiable and piecewise quadratic, an
exact linesearch procedure can be carried out, which yields finite convergence
[61].

Finally, we highlight that the method asymptotically reduces to a sequence of
regularized semismooth Newton steps applied to the original, unperturbed opti-
mality system, in the vein of [2]. This closely relates to the concept of exact regu-
larization [24]. In fact, the proximal primal-dual regularization is exact; see The-
orem 1 and compare with [3, Thm 1].

Proposition 1  Let k ∈ ℕ be arbitrary.

	 (i)	 Suppose �⋆
k
 solves (14) for �k∶=�⋆k and for some �k ≥ 0 and 𝜇k > 0 . Then, �⋆

k

solves (4).
	 (ii)	 Alternatively, suppose �⋆

k
 solves (14) for �k∶=�⋆k  , �k∶=0 , and for some 𝜇k > 0 .

Then, �⋆
k
 solves (4).

(14)� = �k(�)∶=

(
�� + � + �⊤� + 𝜎k(� − �k)

�� + 𝜇k(�k − �) − ΠC(�� + 𝜇k(�k − �∕2))

)
,

(15)Mk(�)∶=f (�) +
1

�k

dist2
C
(�� + �k(�k − �∕2)) +

�k
2
‖� − �k‖2 +

�k

4
‖�‖2.

(16)�k∶=

[
�

2

𝜇k

�⊤

� − �

]
,

1 3

On a primal‑dual Newton proximal method for convex quadratic…

	 (iii)	 Conversely, suppose �⋆ solves (4). Then, �⋆ solves (14) for �k∶=�⋆ and for any
�k ≥ 0 and 𝜇k > 0.

Proof  The proof is immediate by direct comparison of (4) and (14). 	� ◻

Subproblem (14) is equivalent to the unconstrained minimization of the primal-
dual augmented Lagrangian function Mk , given in (15). However, by introducing
the auxiliary variable � ∈ ℝ

m , we can rewrite subproblem (14) as the equivalent yet
smoother problem

that is a primal-dual proximal regularization of (1). Indeed, it is always feasible and
strictly convex and the constraints satisfy the linear independence constraint qualifi-
cation (LICQ). This shows that each outer iteration is associated to a regularized QP,
which can be effectively solved by Newton-type methods.

3.2 � Search direction

A semismooth Newton direction �� = (��, ��) at � = (�, �) solves

where

is an element of the generalized Jacobian [57, Sect. 23] of �k at v. In turn, the diago-
nal matrix �k(�) with entries

is an element of the generalized Jacobian of ΠC at �k . Owing to (20), (18) can be
rewritten in symmetric form, similar to those arising in active-set methods [35]. To
this end, we notice that, if �ii

k
(�) = 1 , the corresponding inner residual in (14) sim-

plifies into �n+i
k

(�) = −�k�
i∕2 , and the linear equation in (18) gives ��i = −�i . This

yields the crucial observation that, by (20), �k(�)�� = −�k(�)� for all � ∈ ℝ
� . Then,

an equivalent yet symmetric linear system is obtained, whose solution is the search
direction �� at v:

(17)
min
�,�

1

2
�⊤�� + �⊤� +

𝜎k
2
‖� − �k‖2 + 1

2𝜇k

‖� − 𝜇k�k‖2

s.t. � ≤ �� + � ≤ �,

(18)�k(�)�� = −�k(�),

(19)�k(�) =

[
� + 𝜎k� �⊤

(� − �k(�))� − 𝜇k(� − �k(�)∕2)

]

(20)�ii
k
(�)∶=

{
1 if �i < �i

k
< �i

0 otherwise
, i = 1,… ,m,

(21)
[

� + 𝜎k� �⊤(� − �k(�))

(� − �k(�))� − 𝜇k(� − �k(�)∕2)

](
𝛿�
𝛿�

)
=

(
�⊤�k(�)�

�

)
− �k(�).

	 A. De Marchi

1 3

The active-set structure introduced by �k allows us to obtain a symmetric linear
system and adopt multi-rank factorization updates [15, 26] while maintaining struc-
ture and sparsity of the coefficient matrix [13, 59]. The linear system in (21) always
admits a unique solution, since the coefficient matrix is symmetric quasi-definite
[63], independent of the problem data.

3.3 � Exact linesearch

Given a primal-dual pair v and a search direction �� , we seek a stepsize 𝜏 > 0
to effectively update v to � + � �� in Algorithm 2. Similarly to Mk , the function
�k ∶ � ↦ Mk(� + ���) is continuously differentiable, piecewise quadratic, and
strictly convex. Thus, the optimal stepsize �∶=argmint∈ℝ�k(t) is found as the
unique zero of � ′

k
 , i.e., � �

k
(�) = 0 . Since � ′

k
 is a piecewise linear, strictly monotone

increasing function, the exact linesearch procedure amounts to solving a piecewise
linear equation of the form

with respect to � ∈ ℝ . Here, the coefficients are given by

 whose derivation is reported in Appendix B. Thanks to its peculiar structure, (22)
can be solved efficiently and exactly (up to numerical precision), e.g., by sorting and
linear interpolation, cf. [33, Alg. 2].

We underline that the stepsize � is unique and strictly positive, since Mk is strictly
convex and �� is a descent direction for Mk at v. This follows from the observation
that

since 𝜕2Mk(�) ∋ �k�k(�) ≻ 0.

4 � Algorithm and convergence

Our Quadratic Primal-Dual Optimizer (QPDO), which weaves together the proxi-
mal point algorithm and a semismooth Newton method, is outlined in Algorithms
1 and 2. We highlight the nested structure for clarity of presentation. Effectively,

(22)0 = �k� + �k +
2

�k

��k

[
�k + ���k − ΠC

(
�k + ���k

)]

(23a)𝛼k ∶= 𝛿�⊤(� + 𝜎k�)𝛿� + 𝜇k𝛿�
⊤𝛿�∕2,

(23b)𝛽k ∶= 𝛿�⊤[�� + � + 𝜎k(� − �k)] + 𝜇k𝛿�
⊤�∕2,

(23c)�k ∶=�� + �k

(
�k − �∕2

)
,

(23d)��k ∶=��� − �k��∕2,

𝜓 �
k
(0) = 𝛿�⊤∇Mk(�) = 𝛿�⊤�k�k(�) = −𝛿�⊤�k�k(�)𝛿� < 0,

1 3

On a primal‑dual Newton proximal method for convex quadratic…

Algorithm 1 corresponds to the proximal point algorithm, as discussed in Sect. 2.
The proximal operator, Pk , is evaluated in Algorithm 2 by solving a sub-problem via
the semismooth Newton method, as detailed in Sect. 3. We denote � and �k the outer
and inner residuals defined in (4,14), respectively, and v a primal-dual pair (�, �) .
Infeasibility detection, parameters update, and linear solvers are detailed in Sect. 6.

Algorithm 1 QPDO: Quadratic Primal-Dual Optimizer

input: � , � , � , � , �
parameters: 𝜖 > 0 , �0 ≥ 0 , �� ∈ [0, 1) , 0 < 𝜎min ≤ 𝜎0 , 0 < 𝜇min ≤ 𝜇0

guess: �0 ∈ ℝ
n , �0 ∈ ℝ

m

for k = 0, 1, 2,… do
 if ‖�(�

k
)‖∞ ≤ � then

 return �
k

 end if
 find �

k+1 such that ‖�
k
(�

k+1)‖∞ ≤ �
k
 by invoking Algorithm 2

 check for primal-dual infeasibility with ��
k
∶=�

k+1 − �
k

 choose parameters �
k+1 ∈ [�min, �k] and �

k+1 ∈ [�min,�k
]

 set �
k+1 ← ���k

end for

Algorithm 2 Inner loop: semismooth Newton method

� ← �
k

repeat
 get the search direction �� ∈ ℝ

� by solving the linear system (21)
 get the stepsize � ∈ ℝ++ by solving the piecewise linear equation (22)
 set � ← � + � ��

until ‖�
k
(�)‖∞ ≤ �

k

�
k+1 ← �

4.1 � Convergence analysis

This section discusses the convergence of QPDO as outlined in Algorithm 1 and 2.
We show that the proposed algorithm either generates a sequence of iterates {�k}
that in the limit satisfy the optimality conditions (4), when problem (1) is solvable,
or provides a certificate of primal and/or dual infeasibility otherwise. Our analysis
relies on well-established results for Newton and proximal point methods; in par-
ticular, we refer to [38, 56, 61].

First, we focus on the inner loop, described in Algorithm 2 and detailed in Sect. 3.

Lemma 1  Consider an arbitrary but fixed outer iteration, indexed by k ∈ ℕ , and
suppose �k ≥ 0 . Then, the procedure in Algorithm 2 is well defined and terminates
after finitely many steps.

	 A. De Marchi

1 3

Proof  The search direction �� exists and is unique, since linear system (21) is
always solvable. Similarly, there exists a unique, positive optimal stepsize � which
solves (22). Thus, all steps of Algorithm 2 are well-defined. Since Mk is continu-
ously differentiable, strictly convex, and piecewise quadratic, the semismooth New-
ton method with exact linesearch exhibits finite convergence [61, Thm 3]. Thus,
∇Mk(�) = � after finitely many iterations. Then, by ∇Mk(⋅) = �k�k(⋅) with �k
nonsingular, it reaches �k(�) = � . Hence, for any �k ≥ 0 , the inner stopping criterion
‖�k(�)‖∞ ≤ �k is eventually satisfied, and the inner loop terminates. 	� ◻

Notice that, with �k = 0 , Algorithm 2 returns the unique (proximal) point
�⋆
k
∶=Pk(�k).
Let us consider now the outer loop, sketched in Algorithm 1. Recall that, by con-

struction, the regularization parameters are positive and non-increasing. The outer
loop consists of inexact proximal point iterations [56], hence global and local con-
vergence properties can be derived based on [38, Prop. 1.2]. The following result
shows that criterion (Ar) [38] holds.

Lemma 2  Let T−1(�) be nonempty, any �0 ∈ ℝ
� be given, and the sequence {�k} be

generated by Algorithm 1. Then, there exists a summable sequence {ek} ⊆ ℝ+ such
that

Proof  By �0 ∈ ℝ+ and �� ∈ [0, 1) , the sequence {𝜀k} ⊆ ℝ+ is summable, since ∑
k∈ℕ 𝜀k =

∑
k∈ℕ 𝜅

k
𝜀
𝜀0 = 𝜀0∕(1 − 𝜅𝜀) < +∞ . By the inner stopping condition, for all

k ∈ ℕ it holds ‖�k(�k+1)‖ ≤ �k . Morever, since Mk is �k-strongly convex, we have
that, for some 𝜂̃k > 0 , it is

for all � ∈ ℝ
� . By the boundedness of �k away from zero, matrix �k is bounded and

there exists a constant 𝜂 > 0 such that the bound ‖� − �⋆
k
‖ ≤ 𝜂‖�k(�)‖ holds for all

k ∈ ℕ and � ∈ ℝ
� . Thus, in particular, for all k ∈ ℕ it is

Let ek∶=��k , and the proof is complete. 	� ◻

Notice that we choose r = 0 in (Ar) , particularly in (7), for the sake of simplicity,
although this may prevent faster convergence; see [38, Thm 2.1]. Relying on the
inexact proximal point algorithm, the following result states that Algorithm 1 con-
verges to a solution, if one exists.

Theorem 1  Let T−1(�) be nonempty, any �0 ∈ ℝ
� be given, and the sequence {�k} be

generated by Algorithm 1. Then, the sequence {�k} is well defined and converges to a
solution �⋆ ∈ T

−1(�).

‖�k+1 − �⋆
k
‖ ≤ ek ∀k ∈ ℕ.

𝜂̃k‖� − �⋆
k
‖ ≤ ‖∇M(�) − ∇M(�⋆

k
)‖ = ‖∇M(�)‖ = ‖�k �k(�)‖

‖�k+1 − �⋆
k
‖ ≤ 𝜂‖�k(�k+1)‖ ≤ 𝜂𝜀k.

1 3

On a primal‑dual Newton proximal method for convex quadratic…

Proof  The error bound condition, namely criterion (Ar) , is enforced by costruction;
cf. Lemma 2. It remains to show that there exists a, 𝜀 > 0 such that for all � ∈ ℝ

� ,
‖�‖ ≤ � , it holds distT−1(�)(�) ≤ a‖�‖ for all � ∈ T

−1(�) . Since problem (3) is a poly-
hedral variational inequality, this property holds globally [19, Sect. 3D]. Hence, we
can invoke [38, Prop. 1.2] to conclude that ‖�k − �⋆‖ → 0 . 	� ◻

Finally, Theorem 2 guarantees that Algorithm 1 terminates if the original problem
(1) does not admit any solution. This allows our method to detect infeasibility and to
return a certificate.

Theorem 2  Suppose problem (1) is primal and/or dual infeasible, i.e., T−1(�) is
empty. Let any �0 ∈ ℝ

� be given, the sequence {�k} be generated by Algorithm 1,
and define ��k∶=�k+1 − �k . Then, the sequence {��k} admits a limit �� , i.e.,
��k → �� . Moreover,

	 (i)	 if �� ≠ � , then problem (1) is primal infeasible and �� satisfies the primal
infeasibility condition (8);

	 (ii)	 if �� ≠ � , then problem (1) is dual infeasible and �� satisfies the dual infea-
sibility condition (9).

Proof  Lemma 5.1 in [4] ensures that ��k → �� , since Algorithm 1 is an instance of
the proximal point algorithm. If T−1(�) = � , then �� ≠ � , and this gives certificates
of primal and/or dual infeasibility according to [4, Thm 5.1]. 	� ◻

5 � Relationship with similar methods

Our approach is inspired by and shares many features with other recently developed
methods. This section elaborates upon their relationship with QPDO.

FBstab [37] “synergistically combines the proximal point algorithm with a pri-
mal-dual semismooth Newton-type method” to solve convex QPs. By adopting the
Fischer-Burmeister [11, 21] NCP function, FBstab does not depend on an estimate
of the active set, which may result in a more regular behavior than QPDO. In con-
trast, adopting the minimum NCP function, QPDO can exploit factorization updates,
perform exact linesearch by solving a piecewise linear equation, and handle simulta-
neously bilateral constraints.

QPALM is a “proximal augmented Lagrangian based solver for convex QPs”
[33]; recent advancements allow to handle nonconvex QPs as well [34]. Given a pri-
mal-dual estimate � , the exact, unique resolvent update �△ of QPALM [33, Eq. 6],
with � = blockdiag(�−1�,�−1�) , is given by

(24a)�△ = argmin�∈ℝn �(�),

	 A. De Marchi

1 3

 In (24a), � is given by [33, Eq. 8]

and closely resembles Mk in (15). Since (24a) yields ∇�(�△) = � , combining with
(24b) and rearranging give

 Conditions Eqs. (25) and (14) differ only in the argument of ΠC , where the term
−��∕2 is missing in (25b). This underlines the primal-dual nature of QPDO. A
comparative investigation into how QPDO copes with changes in the active set [35]
and controls the quality of both primal and dual variables during iterations [2, 28] is
a topic for future work.

OSQP is a “solver for convex quadratic programs based on the alternating direc-
tion method of multipliers” [59]. Rearranging from [59, Alg. 1], with parameters
� = 1 , � = �−1 , and given primal-dual estimate (�, �) and constraint estimate � , the
(unique) primal-auxiliary update (�◊, �◊) satisfies

 Then, the constraint and dual updates are given by �◊ = ΠC

(
� + ��◊

)
 and

�◊ = �◊ + �−1
(
� − �◊

)
 , respectively. Although conditions (26) resemble (14),

an auxiliary variable � substitutes the dual variable y and the projection in (14) is
replaced by the constraint estimate � . This makes sub-problem (26) a linear system
and results in a first-order method.

6 � Implementation details

QPDO has been implemented in C and provides a MATLAB interface. It can solve
QPs of the form (1) and makes no assumptions about the problem data other than
convexity; it is available online at

https://​github.​com/​aldma/​qpdo.
This section discusses some relevant aspects of the program, such as the linear

solver, parameters update rules, infeasibility detection, and problem scaling.

(24b)�△ = � + �−1
[
��△ − ΠC

(
��△ + ��

)]
.

�(�)∶=f (�) +
1

2�
dist2

C

�
�� + ��

�
+

�

2
‖� − �‖2

(25a)� = ��△ + � + �⊤�△ + 𝜎
(
�△ − �

)
,

(25b)� = ��△ + �
(
� − �△

)
− ΠC

(
��△ + ��

)
.

(26a)� = ��◊ + � + �⊤�◊ + 𝜎(�◊ − �),

(26b)� = ��◊ + �(� − �◊) − �.

https://github.com/aldma/qpdo

1 3

On a primal‑dual Newton proximal method for convex quadratic…

6.1 � Linear solver

The linear system (21) is solved with CHOLMOD [12], using a sparse Cholesky
factorization. This linear solver is analogous to the one adopted in QPALM [33], for
the sake of comparison. Let (�dual

k
, �

prim

k
) partition the inner residual �k in (14). Then,

formally solving for �� in (21), we obtain the expression (omitting subscripts and
arguments)

where the second and third lines are due to the binary structure of � . Substituting �
and rearranging, we obtain a linear system for ��:

which has a symmetric, positive definite coefficient matrix and can be solved by
CHOLMOD [12]. On the one hand, this approach allows multi-rank factorization
updates [15], thus avoiding the need for a full re-factorization at every inner itera-
tion. On the other hand, sparsity pattern may be lost and significant fill-in may arise
due to the matrix-matrix product �⊤� . For this reason, the current implementation
may benefit from directly solving (21) via sparse symmetric linear solvers, possibly
with multi-rank factorization updates. To better exploit the data sparsity pattern and
the capabilities of the proposed method, we plan to add other linear solvers in future
versions.

6.2 � Parameters selection

Solving convex QPs via the proximal point algorithm imposes mild restrictions
on the sequence of primal-dual regularization parameters {�k} . As mentioned
in Sect. 2.2, there are no additional requirements other than being non-increas-
ing and positive definite. However, similarly to forcing sequences in augmented
Lagrangian methods [14], the sequence of regularization parameters greatly
affects the behaviour of QPDO, and a careful tuning can positively impact the
performance. For instance, although faster convergence rates can be expected
if �k → � [38], numerical stability and machine precision should be taken into
account. Following [34, Sect. 5.3] and [59, Sect. 5.2], our implementation consid-
ers only diagonal matrices of the form �k = blockdiag(�k�, diag(�k)) , and we refer
to the effect of �k and �k as primal and dual regularization, respectively.

The dual regularization parameter �k proves critical for the practical perfor-
mance of the method since it strikes the balance between the number of inner and
outer iterations, seeking easy-to-solve sub-problems, effective warm starting, and
rapid constraints satisfaction. Therefore, we carefully initialize and update �k ,
guided by the interpretation as a constraint penalization offered by the augmented

�� = �−1(� − �∕2)−1
[
(� − �)��� + �prim

]

= �−1(� + �)
[
(� − �)��� + �prim

]

= �−1(� − �)��� + �−1(� + �)�prim,

[
� + 𝜎� + 𝜇−1�⊤(� − �)�

]
𝛿� = �⊤�� − 𝜇−1�⊤(� − �)�prim − �dual,

	 A. De Marchi

1 3

Lagrangian framework; cf. Sect. 3.1. In our implementation, we consider a vector
�k to gain a finer control over the constraint penalization [14]. Given a (primal)
initial guess �0 ∈ ℝ

n , we initialize as in [8, Sect. 12.4]:

where 𝜇max
0

≥ 𝜇min
0

> 0 and �� ≥ 0 . Then, following [34, Sect. 5.3], we monitor the
primal residual �prim(�)∶=�� − ΠC(�� + �) from (4) and update the dual regulariza-
tion parameter �k accordingly. If |� i

prim
(vk+1)| > max

(
𝜃𝜇|� iprim(�k)|, 𝜀opt

)
 , we set

where �� ∈ (0, 1) , 𝜇min > 0 , and �� ≥ 0 . Otherwise, we set �i
k+1

= �
i
k
 . These rules

adapt the constraint penalization on the current residual, seeking a uniform, steady
progression towards feasibility, while making sure the sequences {�i

k
} , i ∈ [1;m] , are

non-increasing and bounded away from zero. In our implementation, the default val-
ues are �min

0
= 10−3 , �max

0
= 103 , �� = 0.1 , �min = 10−9 , �� = 10−2 and �� = 0.25.

The primal regularization turns out to be less crucial with respect to the dual
counterpart. For this reason, it is associated to a scalar value and tuned indepen-
dently from the residual. Starting from 𝜎0 > 0 , we apply

where 𝜎min > 0 and �� ∈ [0, 1] . In our implementation the default values are
�0 = 10−3 , �min = 10−7 , and �� = 0.1.

Early termination The inner tolerance �k also affects the performance of QPDO,
since it balances sub-problem accuracy and early termination. In Algorithm 1, these
aspects relate to the parameters �0 and �� , which drive {�k} to zero. However, finite
precision should also be taken into account. In fact, although the semismooth New-
ton method converges in finitely many iterations, the solution provided is exact up to
round-off errors and numerical precision. Therefore, we deviate from Algorithm 1 in
this respect and employ the update rule

where 0 ≤ �min ≤ �opt . In our implementation, the default values are �0 = 1 , �� = 0.1 ,
�min = 0.1�opt , and �opt = 10−6.

6.3 � Infeasibility detection

A routine for detecting primal and dual infeasibility of (1) is included in Algo-
rithm 1. This allows the algorithm to terminate with either a primal-dual solution

�0∶=��0 − ΠC(��0),

�
i
0
∶=Π[

�min
0

,�max
0

]
(
��

max(1, (�i
0
)2∕2)

max(1, |f (�0)|)

)
, i ∈ [1;m],

�
i
k+1

= Π[�min,�
i
k]

�
��

‖�prim(�k+1)‖∞
�� i

prim
(�k+1)�

�
i
k

�
,

�k+1 = max(�min, ���k),

�k+1 = max(�min, ���k),

1 3

On a primal‑dual Newton proximal method for convex quadratic…

or a certificate of primal or dual infeasibility, for some given tolerances. We adopt
the mechanism developed in [4, Sect. 5.2], which holds whenever the proximal point
algorithm is employed to solve the KKT conditions (3). Problem (1) is declared pri-
mal or dual infeasible based on the conditions given in Sect. 2.5 and the vectors
��k∶=�k+1 − �k and ��k∶=�k+1 − �k , k ≥ 0 . As in [34], we deem the problem primal
infeasible if ��k ≠ � and the following two conditions hold

 where 𝜀pinf > 0 is some tolerance level. The problem is considered dual infeasible if
��k ≠ � and the following conditions hold

 where 𝜀dinf > 0 is some tolerance level. In case of primal and/or dual infeasibility,
we return the vectors ��k and ��k as certificates of primal and infeasibility, respec-
tively. In our implementation, the default values are �pinf = �dinf = 10−6 . The reader
may refer to [59, Sect. 3.4], [33, Sect. V.C], and [37, Sect. 4.1], and [51, Sect. 4] for
analogous applications.

6.4 � Preconditioning

Preconditioning, or scaling, the problem may alleviate ill-conditioning and miti-
gate numerical issues, especially when the problem data span across many orders
of magnitude. In our implementation, we closely follow [34, Sect. 5.2] and scale
the problem data by performing the Ruiz’s equilibration procedure [58] on the con-
straint matrix � . This procedure iteratively scales the rows and columns of a matrix
in order to make their infinity norms approach one. By default, QPDO performs
10 scaling iterations. Slightly different routines are adopted, e.g., in [59, Sect. 5.1]
and [51, Sect. 5.1.2]. Note that, by default, if the problem is initially scaled, the ter-
mination conditions for optimality and infeasibility refer to the original, unscaled,
problem.

(27a)‖�⊤𝛥�k‖∞ ≤ 𝜀pinf‖𝛥�k‖∞,

(27b)�⊤ max(�k, �) + �⊤ min(�k, �) ≤ −𝜀pinf‖𝛥�k‖∞,

(28a)‖���k‖∞ ≤ �dinf‖��k‖∞,

(28b)�⊤𝛥�k ≤ −𝜀dinf‖𝛥�k‖∞,

(28c)(���k)
i

⎧⎪⎨⎪⎩

∈ [−�dinf, �dinf]‖��k‖∞ �i, �i ∈ ℝ,

≥ −�dinf‖��k‖∞ �i = +∞,

≤ �dinf‖��k‖∞ �i = −∞,

, i ∈ [1;m],

	 A. De Marchi

1 3

7 � Numerical results

We discuss details of our open-source C implementation of QPDO and present
computational results on random problems and the Maros-Mészáros set [39]. We
test and compare QPDO against the open-source, full-fledged solvers OSQP [59]
and QPALM [33, 34], and the commercial interior-point solver MOSEK [43].
Indeed, “the construction of appropriate software is by no means trivial and we
wish to make a thorough job of it” [14]; we plan to improve our current imple-
mentation, in particular the linear solver discussed in Sect. 6.1, and to report
comprehensive numerical results in due time.

7.1 � Setup

We consider the tolerance �opt = 10−5 , and set the tolerances for all the solvers
accordingly. In addition, we set the maximum run time of each solver to 100 s
and no limit on the maximum number of iterations. We leave all the other settings
to the internal defaults. It is worth mentioning that, since no initial guess is pro-
vided, QPDO, OSQP, and QPALM start with �0 = �.

In general it is hard to compare the solution accuracy because the solvers may
verify different termination criteria. While QPDO, QPALM and OSQP monitor the
residual � in (4) and check the condition ‖�(�⋆)‖∞ ≤ 𝜀opt , MOSEK satisfies the com-
plementarity slackness with different metrics and scalings. Therefore, we decided
not to include checks on ‖�(�⋆)‖∞ . Instead, we deem optimal a primal-dual pair �⋆
if it is returned by a solver declaring success, otherwise we consider it a failure.

All the experiments were carried out on a desktop running Ubuntu 16.04 LTS
with Intel Core i7-8700, 3.20 GHz, and 16 GB RAM. The code for all the numer-
ical examples is available online at [16].

Metrics Let S, P, and ts,p denote the set of solvers, the set of problems, and the
time required for solver s ∈ S to return a solution for problem p ∈ P . The shifted
geometric mean (sgm) t̂s of the run times for solver s ∈ S on P is defined by

with the shift tshift = 1 s [41]. Here, when solver s fails to solve problem p, ts,p is set
to the time limit. We also adopt performance profiles [18] to compare the solver tim-
ings. These plot the function f r

s
∶ ℝ → [0, 1] , s ∈ S , defined by

Considering ts,p = +∞ when solver s fails on problem p, f r
s
(�) is the fraction of

problems solved by solver s within � times the best timing. Note that, although we
cannot necessarily assess the performance of one solver relative to another with

t̂s∶= exp

(
1

|P|
∑
p∈P

ln
(
ts,p + tshift

))
− tshift

f r
s
(�)∶=

|{p ∈ P ∶ ts,p ≤ � tmin
p

}|
|P| , tmin

p
∶=min

s∈S
ts,p.

1 3

On a primal‑dual Newton proximal method for convex quadratic…

performance profiles, they still represent a tool for evaluating and comparing the
performance of a solver with respect to the best one [30].

However, performance profiles do not provide the percentage of problems that
can be solved (for some given tolerance �opt ) within a given time t. Thus, on the
vein of data profiles [42, Sect. 2.2], we plot the function f a

s
∶ ℝ → [0, 1] , s ∈ S ,

defined by

Considering ts,p = +∞ when solver s fails on problem p, f a
s
(t) is the fraction of prob-

lems solved by solver s within the time t. Note that, in contrast to f r
s
 , the time profile

t ↦ f a
s
(t) is independent from other solvers and displayed with the actual timings of

s.

7.2 � Random problems

We considered QPs in the form (1) with randomly generated problem data. In
each problem instance, the number of variables is n = ⌈10a⌉ , with a uniformly
distributed, and ranges between 102 and 103 , i.e., a ∼ U(2, 3) . The number of con-
straints is m = ⌈b n⌉ , with b ∼ U(2, 5) . The linear cost is normally distributed,
i.e., �i ∼ N(0, 1) . The cost matrix is � = ��⊤ + 𝛼�n , where � ∈ ℝ

n×n has 10%
nonzero entries �ij ∼ N(0, 1) , and � = 10−6 . The constraint matrix � ∈ ℝ

m×n con-
tains 10% nonzero entries �ij ∼ N(0, 1) . The bounds are uniformly distributed, i.e.,
�i ∼ U(−1, 0) and �i ∼ U(0, 1) . We also investigated equality-constrained QPs. For
these problems, m = ⌈n∕b⌉ , with b ∼ U(2, 5) , and � = � = ��̃ , where �̃i ∼ N(0, 1) .
We generated 500 instances of each problem class.

Results Computational results are summarized in Table 1 and shown in Figs. 1,
2. Both performance and time profiles suggest that, for random QPs, QPALM
exhibits the best performance, with OSQP slightly slower and QPDO third. For
equality-constrained QPs, instead, OSQP performs best with QPALM and QPDO
slightly behind. MOSEK is generally slower than the other solvers and, for random

f a
s
(t)∶=

|{p ∈ P ∶ ts,p ≤ t}|
|P| .

1 2 4 8 16
0

0.2

0.4

0.6

0.8

1

Performance ratio

Fr
ac

ti
on

of
pr

ob
le
m
s
so
lv
ed

Random QPs

1 2 4 8 16
0

0.2

0.4

0.6

0.8

1

Performance ratio

Random Eq. QPs

QPDO
QPALM
OSQP
MOSEK

Fig. 1   Comparison on random problems with performance profiles

	 A. De Marchi

1 3

QPs, it often declares success with a solution that does not satisfy the condition
‖�(�⋆)‖∞ ≤ 𝜀opt.

7.3 � Maros‑Mészáros problems

We considered the Maros-Mészáros test set [39] of hard QPs and selected those with
n ≤ 103 , due to the limitations mentioned in Sect. 6.1. This yields 73 problems, with
2 ≤ n ≤ 1000 , 3 ≤ m ≤ 1750 , and the number of nonzeros 6 ≤ N ≤ 22292.

Results Computational results are summarized in Tables 1, 2 and shown in
Figs. 3, 4. On this test set, QPDO demonstrates its robustness, solving all the
problems. OSQP is very fast for some problems but has a high failure rate; it fails
on 5 of the 20 problems reported in Table 2. As a first-order method, OSQP builds
upon computationally cheap iterations, but it may take many to cope with ill-
conditioning and the relatively high accuracy requirements. QPALM is still com-
petitive but fails on the VALUES problem, due to linear algebra issues. MOSEK
seems to perform better than the other solvers on the larger problems, but it often
does not satisfy the condition ‖�(�⋆)‖∞ ≤ 𝜀opt , and fails on many problems. Over-
all, this proves QPDO is both reliable and effective.

0.001 0.01 0.1 1
0

0.2

0.4

0.6

0.8

1

Run time [s]

Fr
ac

ti
on

of
pr

ob
le
m
s
so
lv
ed

Random QPs

0.001 0.01 0.1 1
0

0.2

0.4

0.6

0.8

1

Run time [s]

Random Eq. QPs

QPDO
QPALM
OSQP
MOSEK

Fig. 2   Comparison on random problems with time profiles

1 10 100 1,000 10,000
0

0.2

0.4

0.6

0.8

1

Performance ratio

Fr
ac

ti
on

of
pr

ob
le
m
s
so
lv
ed

QPDO
QPALM
OSQP
MOSEK

Fig. 3   Comparison on Maros-Mészáros problems with performance profiles

1 3

On a primal‑dual Newton proximal method for convex quadratic…

7.4 � Degenerate and infeasible problems

Consider the following parameterized QP, adapted from [37, Sect. 5.4]:

By varying a, b and c, we can create degenerate or infeasible test problems.
First, we consider the degenerate problem obtained by setting a = 0 , b = 3 , and

c = 0 . This problem admits primal solutions �⋆ ∈ {(1, 𝛼) ∣ 1 ≤ 𝛼 ≤ 3} . Running
with default settings, QPDO signals optimality after 6 proximal iterations and 14
Newton iterations, and returns � = (1.0, 1.0) , � = (0.0,−2.0, 0.0) , with residual
‖�(�)‖∞ = 1.0 ⋅ 10−7.

Second, we consider a primal infeasible QP by setting a = 1 , b = 3 and c = 0 .
QPDO signals primal infeasibility after 3 proximal iteration and 8 Newton itera-
tions, and returns the certificate �� = (6.6,−6.6,−6.6) ⋅ 104.

Finally, we consider a dual infeasible QP by setting a = 0 , b = +∞ and c = −1 .
For such problem, (0, 1) is a direction of unbounded descent. QPDO signals dual

min
�

1

2
�⊤

�
10

00

�
� +

�
1

c

�⊤

�

s.t.

⎛⎜⎜⎝

−∞

1

1

⎞⎟⎟⎠
≤

⎡⎢⎢⎣

aa

10

01

⎤⎥⎥⎦
� ≤

⎛⎜⎜⎝

0

3

b

⎞⎟⎟⎠
.

Table 1   Comparison on different problem classes with run times, as shifted geometric means (sgm), and
failure rates

QPDO QPALM OSQP MOSEK

Random QPs Run times (sgm) [s] 0.136 0.099 0.116 0.229
Failure rates [ %] 0 0 0 0

Random Eq. QPs Run times (sgm) [s] 0.065 0.058 0.044 0.210
Failure rates [ %] 0 0 0 2.400

Maros-Mészáros Run times (sgm) [s] 0.074 0.119 2.993 1.594
Failure rates [ %] 0 1.370 23.288 20.548

0.00001 0.0001 0.001 0.01 0.1 1 10 100
0

0.2

0.4

0.6

0.8

1

Run time [s]

Fr
ac

ti
on

of
pr

ob
le
m
s
so
lv
ed

QPDO
QPALM
OSQP
MOSEK

Fig. 4   Comparison on Maros-Mészáros problems with time profiles

	 A. De Marchi

1 3

infeasibility after 5 proximal iterations and 12 Newton iterations, and returns the
certificate �� = (1.1 ⋅ 10−5, 1.0 ⋅ 107).

8 � Conclusions

This paper presented a primal-dual Newton-type proximal method for convex
quadratic programs. We build upon a simple yet crucial result: a suitable merit
function for the proximal sub-problem is found in the proximal primal-dual aug-
mented Lagrangian function. This allows us to effectively weave the proximal
point method together with semismooth Newton, yielding structured symmetric
linear systems, exact linesearch, and the possibility to apply sparse multi-rank
factorization updates. Requiring only convexity, the method is simple and easily
warm started, can exploit sparsity, is robust to early termination, and can detect
infeasibility. We have implemented our method QPDO in a general-purpose
solver, written in open-source C code. We benchmarked it against state-of-the-art

Table 2   Comparison on the larger Maros-Mészáros problems ( N ≥ 5000 ) with KKT residual and run
time for QPDO, QPALM, and MOSEK

Problem n m N Residual ‖�(�)‖∞ Run time [s]

QPDO QPALM MOSEK QPDO QPALM MOSEK

CVXQP1M 1000 1500 9466 1.7·10−6 4.4·10−6 1.0·10−1 2·10−1 2·10−1 1·10−1

CVXQP2M 1000 1250 8717 2.7·10−6 6.2·10−6 5.3·10−1 2·10−1 3·10−1 2·10−1

CVXQP3M 1000 1750 10215 2.0·10−6 1.1·10−6 6.7·10−1 3·10−1 3·10−1 2·10−1

DUAL1 85 86 7201 8.0·10−6 5.9·10−7 1.4·10−6 2·10−3 1·10−3 4·10−3

DUAL2 96 97 9112 2.6·10−6 2.6·10−6 5.3·10−8 1·10−3 9·10−4 6·10−3

DUAL3 111 112 12327 1.3·10−6 9.7·10−7 4.4·10−4 2·10−3 1·10−3 9·10−3

DUAL4 75 76 5673 2.6·10−6 3.6·10−6 8.4·10−5 1·10−3 7·10−4 5·10−3

KSIP 20 1001 18871 2.9·10−6 3.5·10−6 9.2·10−6 6·10−3 6·10−3 10·10−3

PRIMAL1 325 86 6140 6.9·10−7 3.6·10−8 4.8·10−9 2·10−2 9·10−3 1·10−2

PRIMAL2 649 97 8691 3.9·10−7 2.6·10−6 1.0·10−6 5·10−2 3·10−2 7·10−3

PRIMAL3 745 112 22292 2.0·10−7 7.4·10−6 2.1·10−6 2·10−1 8·10−2 2·10−2

PRIMALC8 520 511 5182 1.6·10−7 2.5·10−7 8.2·10−8 4·10−2 2·10−2 4·10−3

QETAMACR​ 688 1088 11613 1.7·10−6 1.3·10−6 2.3·10−3 7·10−1 2·10−1 3·10−2

QFFFFF80 854 1378 10635 9.8·10−7 8.6·10−7 1.5·10−1 6·10−1 5·10−1 7·10−2

QFORPLAN 421 582 6112 4.0·10−6 8.2·10−7 7.4·106 7·10−1 3·10−1 3·10−2

QGROW15 645 945 7227 7.4·10−6 4.0·10−7 7.4·10−2 9·10−2 2·10−1 3·10−2

QGROW22 946 1386 10837 3.7·10−7 3.1·10−6 9.5·10−2 2·10−1 3·10−1 4·10−2

QSCFXM2 914 1574 8285 4.0·10−6 6.2·10−6 4.6·10−1 4·10−1 3·10−1 4·10−2

QSTAIR 467 817 6287 5.0·10−6 9.8·10−7 4.5 6·10−2 10·10−2 2·10−2

VALUES 202 203 7846 1.4·10−6 NaN NaN 1·10−2 1·102 4·10−4

1 3

On a primal‑dual Newton proximal method for convex quadratic…

QP solvers, comparing run times and failure rates. QPDO proved reliable, effec-
tive, and competitive.

Appendix A: Primal‑dual proximal augmented Lagrangian function

We show that the merit function M in (15) for the sub-problem (14) is indeed the
primal-dual proximal augmented Lagrangian function, proposed and investigated
in [17, 27, 54]. Let us reformulate (1) as the equivalent problem

where � ∈ ℝ
n and � ∈ ℝ

m are decision variables. The Lagrangian Lz , the augmented
Lagrangian Lz

�
 , and the primal-dual augmented Lagrangian Mz

�
 functions for (29)

are given by

for some given parameter 𝜇 > 0 and dual estimate � ∈ ℝ
m ; cf. [7, 14] and [27, 54].

Introducing a primal proximal regularization, we define

for some given parameter 𝜎 > 0 and primal estimate � ∈ ℝ
n . In the context of pri-

mal-dual augmented Lagrangian methods, the function Mz
�,�

 is to be jointly mini-
mized with respect to � , � , and y [27, 54]. Following [17], we consider the explicit
minimization over the auxiliary variable � . The minimizer �� of Mz

�,�
 in (30) is

readily obtained as

Considering Mz
�,�

 on the manifold defined by �� in (31), we get the primal-dual
proximal augmented Lagrangian function M�,� . This yields

(29)min
�,�

f (�) + g(�) s.t. �� = �,

L
z(�, �, �)∶=f (�) + g(�) + �⊤(�� − �),

L
z
𝜇
(�, �, �)∶=Lz(�, �, �) +

1

2𝜇
‖�� − �‖2,

M
z
𝜇
(�, �, �, �)∶=Lz

𝜇
(�, �, �) +

1

2𝜇
‖� − �� + 𝜇(� − �)‖2,

(30)M
z
�,�

(�, �, �, �, �)∶=Mz
�
(�, �, �, �) +

�

2
‖� − �‖2

(31)

�𝜇(�, �, �)∶=argmin�M
z
𝜇,𝜎

(�, �, �, �, �)

= argmin�

�
g(�) + �⊤(�� − �) +

1

2𝜇
‖�� − �‖2 + 1

2𝜇
‖� − �� + 𝜇(� − �)‖2

�

= argmin�

�
g(�) +

1

2𝜇
‖�� − � + 𝜇�‖2 + 1

2𝜇
‖� − �� + 𝜇(� − �)‖2

�

= argmin�

�
g(�) +

1

𝜇
‖� − �� − 𝜇(� − �∕2)‖2 + 𝜇

4
‖�‖2 − 𝜇

2
‖�‖2

�

= ΠC

�
�� + 𝜇(� − �∕2)

�
.

	 A. De Marchi

1 3

which matches Mk in (15), up to the constant term −�‖�‖2∕2.

Appendix B: Exact linesearch coefficients

We prove that the right-hand side of (22) coincides with � �
k
(�) for all � ∈ ℝ , with the

coefficients given in (23). Let �k∶=�� + �k(�k − �∕2) and ��k∶=��� − �k�∕2 ; cf.
(23). Then, from (15), we have

Supplementary Information  The online version contains supplementary material available at https://​doi.​
org/​10.​1007/​s10589-​021-​00342-y.

Acknowledgements  This work would not have been possible without the support and enthusiasm of my
supervisor, Matthias Gerdts. The author would like to thank Axel Dreves, whose comments on an early
draft greatly improved the presentation. The two anonymous reviewers are thanked for critically reading
the manuscript and providing comments.

Funding  Open Access funding enabled and organized by Projekt DEAL. Not applicable.

Availability of data and material  The datasets used, generated, and analyzed during the current study, as
well as the associated code for execution and analysis, are available at https://​doi.​org/​10.​5281/​zenodo.​
47567​20.

Code availability  The C code implementation of the solver is openly available on GitHub at https://​
github.​com/​aldma/​qpdo.

Declaration 

Competing interests  The author declares that he has no conflict of interest.

M�,�(�, �)∶=M
z

�,�(�, ��(�, �, �), �, �, �)

= f (�) +
1

�
‖��(�, �, �) − �� − �(� − �∕2)‖2 + �

4

‖�‖2 − �

2

‖�‖2 + �

2

‖� − �‖2

= f (�) +
1

�
dist

2

C

�
�� + �(� − �∕2)

�
+

�

2

‖� − �‖2 + �

4

‖�‖2 − �

2

‖�‖2,

𝜓 �(𝜏) = 𝛿�⊤∇M(� + 𝜏𝛿�)

=

�
𝛿�
𝛿�

�⊤ ⎛⎜⎜⎝

�(� + 𝜏𝛿�) + � +
2

𝜇
k

�⊤
�
�

k
+ 𝜏𝛿�

k

−ΠC

�
�

k
+ 𝜏𝛿�

k

��
+ 𝜎

k
(� + 𝜏𝛿� − �

k
)

−
�
�(� + 𝜏𝛿�) + 𝜇

k
(�

k
− � − 𝜏𝛿�) − ΠC

�
�

k
+ 𝜏𝛿�

k

��
⎞⎟⎟⎠

= 𝛿�⊤
�
�� + � + 𝜎

k
(� − �

k
)
�
+

𝜇
k

2

𝛿�⊤� + 𝜏𝛿�⊤
�
� + 𝜎

k
�
�
𝛿� + 𝜏

𝜇
k

2

𝛿�⊤𝛿�

+

�
2

𝜇
k

�𝛿� − 𝛿�

�⊤�
�

k
+ 𝜏𝛿�

k
− ΠC

�
�

k
+ 𝜏𝛿�

k

��

= 𝛼
k
𝜏 + 𝛽

k
+

2

𝜇
k

𝛿�⊤
k

�
�

k
+ 𝜏𝛿�

k
− ΠC

�
�

k
+ 𝜏𝛿�

k

��
.

https://doi.org/10.1007/s10589-021-00342-y
https://doi.org/10.1007/s10589-021-00342-y
https://doi.org/10.5281/zenodo.4756720
https://doi.org/10.5281/zenodo.4756720
https://github.com/aldma/qpdo
https://github.com/aldma/qpdo

1 3

On a primal‑dual Newton proximal method for convex quadratic…

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as
you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is
not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission
directly from the copyright holder. To view a copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​
ses/​by/4.​0/.

References

	 1.	 Ali, A., Wong, E., Kolter, J.Z.: A semismooth Newton method for fast, generic convex program-
ming. In: Proceedings of the 34th International Conference on Machine Learning (ICML), pp.
70–79. Sydney (2017). http://​proce​edings.​mlr.​press/​v70/​ali17a.​html

	 2.	 Armand, P., Omheni, R.: A globally and quadratically convergent primal-dual augmented Lagran-
gian algorithm for equality constrained optimization. Optim. Methods Softw. 32(1), 1–21 (2017).
https://​doi.​org/​10.​1080/​10556​788.​2015.​10254​01

	 3.	 Arreckx, S., Orban, D.: A regularized factorization-free method for equality-constrained optimiza-
tion. SIAM J. Optim. 28(2), 1613–1639 (2018). https://​doi.​org/​10.​1137/​16M10​88570

	 4.	 Banjac, G., Goulart, P., Stellato, B., Boyd, S.: Infeasibility detection in the alternating direction
method of multipliers for convex optimization. J. Optim. Theory Appl. 183(2), 490–519 (2019).
https://​doi.​org/​10.​1007/​s10957-​019-​01575-y

	 5.	 Banjac, G., Lygeros, J.: On the asymptotic behavior of the Douglas-Rachford and proximal-point
algorithms for convex optimization. Optim. Lett. 15(8), 2719–2732 (2021). https://​doi.​org/​10.​1007/​
s11590-​021-​01706-3

	 6.	 Bemporad, A.: A numerically stable solver for positive semidefinite quadratic programs based on
nonnegative least squares. IEEE Trans. Autom. Control 63(2), 525–531 (2018). https://​doi.​org/​10.​
1109/​TAC.​2017.​27359​38

	 7.	 Bertsekas, D.P.: Constrained Optimization and Lagrange Multiplier Methods. Athena Scientific,
Belmont (1996)

	 8.	 Birgin, E.G., Martínez, J.M.: Practical Augmented Lagrangian Methods for Constrained Optimiza-
tion. Society for Industrial and Applied Mathematics, Philadelphia, PA (2014)

	 9.	 Boyd, S., Parikh, N., Chu, E., Peleato, B., Eckstein, J.: Distributed optimization and statistical learn-
ing via the alternating direction method of multipliers. now (2011). https://​doi.​org/​10.​1561/​22000​
00016

	10.	 Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge University Press, Cambridge (2004)
	11.	 Chen, B., Chen, X., Kanzow, C.: A penalized Fischer-Burmeister NCP-function. Math. Program.

88(1), 211–216 (2000). https://​doi.​org/​10.​1007/​PL000​11375
	12.	 Chen, Y., Davis, T.A., Hager, W.W., Rajamanickam, S.: Algorithm 887: CHOLMOD, supernodal

sparse Cholesky factorization and update/downdate. ACM Trans. Math. Softw. 35(3), 1–14 (2008).
https://​doi.​org/​10.​1145/​13919​89.​13919​95

	13.	 Cheshmi, K., Kaufman, D.M., Kamil, S., Dehnavi, M.M.: NASOQ: numerically accurate sparsity-
oriented QP solver. ACM Trans. Graph. 39, 96 (2020)

	14.	 Conn, A.R., Gould, N.I.M., Toint, P.L.: A globally convergent augmented Lagrangian algorithm for
optimization with general constraints and simple bounds. SIAM J. Numer. Anal. 28(2), 545–572
(1991). https://​doi.​org/​10.​1137/​07280​30

	15.	 Davis, T.A., Hager, W.W.: Multiple-rank modifications of a sparse Cholesky factorization. SIAM J.
Matrix Anal. Appl. 22(4), 997–1013 (2001). https://​doi.​org/​10.​1137/​S0895​47989​93573​46

	16.	 De Marchi, A.: Benchmark examples for QPDO (2021). https://​doi.​org/​10.​5281/​zenodo.​47567​20
	17.	 Dhingra, N.K., Khong, S.Z., Jovanović, M.R.: The proximal augmented Lagrangian method for

nonsmooth composite optimization. IEEE Trans. Autom. Control 64(7), 2861–2868 (2019). https://​
doi.​org/​10.​1109/​TAC.​2018.​28675​89

	18.	 Dolan, E.D., Moré, J.J.: Benchmarking optimization software with performance profiles. Math. Pro-
gram. 91(2), 201–213 (2002). https://​doi.​org/​10.​1007/​s1010​70100​263

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://proceedings.mlr.press/v70/ali17a.html
https://doi.org/10.1080/10556788.2015.1025401
https://doi.org/10.1137/16M1088570
https://doi.org/10.1007/s10957-019-01575-y
https://doi.org/10.1007/s11590-021-01706-3
https://doi.org/10.1007/s11590-021-01706-3
https://doi.org/10.1109/TAC.2017.2735938
https://doi.org/10.1109/TAC.2017.2735938
https://doi.org/10.1561/2200000016
https://doi.org/10.1561/2200000016
https://doi.org/10.1007/PL00011375
https://doi.org/10.1145/1391989.1391995
https://doi.org/10.1137/0728030
https://doi.org/10.1137/S0895479899357346
https://doi.org/10.5281/zenodo.4756720
https://doi.org/10.1109/TAC.2018.2867589
https://doi.org/10.1109/TAC.2018.2867589
https://doi.org/10.1007/s101070100263

	 A. De Marchi

1 3

	19.	 Dontchev, A.L., Rockafellar, R.T.: Implicit Functions and Solution Mappings. Springer, Monogr.
Math (2009)

	20.	 Ferreau, H.J., Kirches, C., Potschka, A., Bock, H.G., Diehl, M.: qpOASES: a parametric active-set
algorithm for quadratic programming. Math. Program. Comput. 6(4), 327–363 (2014). https://​doi.​
org/​10.​1007/​s12532-​014-​0071-1

	21.	 Fischer, A.: A special Newton-type optimization method. Optimization 24, 269–284 (1992). https://​
doi.​org/​10.​1080/​02331​93920​88437​95

	22.	 Frank, M., Wolfe, P.: An algorithm for quadratic programming. Naval Res. Logist. Q. 3(1–2),
95–110 (1956). https://​doi.​org/​10.​1002/​nav.​38000​30109

	23.	 Friedlander, M.P., Orban, D.: A primal-dual regularized interior-point method for convex
quadratic programs. Math. Program. Comput. 4(1), 71–107 (2012). https://​doi.​org/​10.​1007/​
s12532-​012-​0035-2

	24.	 Friedlander, M.P., Tseng, P.: Exact regularization of convex programs. SIAM J. Optim. 18(4),
1326–1350 (2008). https://​doi.​org/​10.​1137/​06067​5320

	25.	 Gerdts, M., Kunkel, M.: A nonsmooth Newton’s method for discretized optimal control problems
with state and control constraints. J. Ind. Manag. Optim. 4(2), 247–270 (2008). https://​doi.​org/​10.​
3934/​jimo.​2008.4.​247

	26.	 Gill, P.E., Golub, G.H., Murray, W., Saunders, M.A.: Methods for modifying matrix factorizations.
Math. Comput. 28(126), 505–535 (1974)

	27.	 Gill, P.E., Robinson, D.P.: A primal-dual augmented Lagrangian. Comput. Optim. Appl. 51(1),
1–25 (2012). https://​doi.​org/​10.​1007/​s10589-​010-​9339-1

	28.	 Gill, P.E., Robinson, D.P.: A globally convergent stabilized SQP method. SIAM J. Optim. 23(4),
1983–2010 (2013). https://​doi.​org/​10.​1137/​12088​2913

	29.	 Gondzio, J.: Interior point methods 25 years later. Eur. J. Oper. Res. 218(3), 587–601 (2012). https://​
doi.​org/​10.​1016/j.​ejor.​2011.​09.​017

	30.	 Gould, N., Scott, J.: A note on performance profiles for benchmarking software. ACM Trans. Math.
Softw. (2016). https://​doi.​org/​10.​1145/​29500​48

	31.	 Gould, N..I..M., Orban, D., Toint, r.P..L.: Numerical methods for large-scale nonlinear optimization.
Acta Numer. 14, 299–361 (2005). https://​doi.​org/​10.​1017/​S0962​49290​40002​48

	32.	 Gurobi Optimization Inc.: Gurobi optimizer reference manual (2021). https://​www.​gurobi.​com/​
docum​entat​ion/9.​1/​refman/​refman.​html. Accessed from 6 May 2021

	33.	 Hermans, B., Themelis, A., Patrinos, P.: QPALM: a Newton-type proximal augmented Lagrangian
method for quadratic programs. In: IEEE 58th Conference on Decision and Control (CDC), pp.
4325–4330. Nice, France (2019). https://​doi.​org/​10.​1109/​CDC40​024.​2019.​90302​11

	34.	 Hermans, B., Themelis, A., Patrinos, P.: QPALM: A proximal augmented Lagrangian method for
nonconvex quadratic programs (2020)

	35.	 Hintermüller, M., Ito, K., Kunisch, K.: The primal-dual active set strategy as a semismooth Newton
method. SIAM J. Optim. 13(3), 865–888 (2002). https://​doi.​org/​10.​1137/​S1052​62340​13835​58

	36.	 Izmailov, A.F., Solodov, M.V.: Newton-Type Methods for Optimization and Variational Problems.
Springer, New York (2014). https://​doi.​org/​10.​1007/​978-3-​319-​04247-3

	37.	 Liao-McPherson, D., Kolmanovsky, I.: FBstab: a proximally stabilized semismooth algorithm for
convex quadratic programming. Automatica 113, 108801 (2020). https://​doi.​org/​10.​1016/j.​autom​
atica.​2019.​108801

	38.	 Luque, F.J.: Asymptotic convergence analysis of the proximal point algorithm. SIAM J. Control
Optim. 22(2), 277–293 (1984). https://​doi.​org/​10.​1137/​03220​19

	39.	 Maros, I., Mészáros, C.: A repository of convex quadratic programming problems. Optim. Methods
Softw. 11(1–4), 671–681 (1999). https://​doi.​org/​10.​1080/​10556​78990​88057​68

	40.	 Minty, G.J.: Monotone (nonlinear) operators in Hilbert space. Duke Math. J. 29(3), 341–346 (1962).
https://​doi.​org/​10.​1215/​S0012-​7094-​62-​02933-2

	41.	 Mittelmann, H.D.: Benchmarks for optimization software. http://​plato.​asu.​edu/​bench.​html. Accessed
from 19 Nov 2020

	42.	 Moré, J.J., Wild, S.M.: Benchmarking derivative-free optimization algorithms. SIAM J. Optim.
20(1), 172–191 (2009). https://​doi.​org/​10.​1137/​08072​4083

	43.	 MOSEK ApS: MOSEK optimization toolbox for MATLAB. Release 9.2.42 (2021). https://​docs.​
mosek.​com/9.​2/​toolb​ox/​index.​html. Accessed from 5 May 2021

	44.	 Nocedal, J., Wright, S.J.: Numerical Optimization, 2nd edn. Springer, New York, NY, USA (2006)

https://doi.org/10.1007/s12532-014-0071-1
https://doi.org/10.1007/s12532-014-0071-1
https://doi.org/10.1080/02331939208843795
https://doi.org/10.1080/02331939208843795
https://doi.org/10.1002/nav.3800030109
https://doi.org/10.1007/s12532-012-0035-2
https://doi.org/10.1007/s12532-012-0035-2
https://doi.org/10.1137/060675320
https://doi.org/10.3934/jimo.2008.4.247
https://doi.org/10.3934/jimo.2008.4.247
https://doi.org/10.1007/s10589-010-9339-1
https://doi.org/10.1137/120882913
https://doi.org/10.1016/j.ejor.2011.09.017
https://doi.org/10.1016/j.ejor.2011.09.017
https://doi.org/10.1145/2950048
https://doi.org/10.1017/S0962492904000248
https://www.gurobi.com/documentation/9.1/refman/refman.html
https://www.gurobi.com/documentation/9.1/refman/refman.html
https://doi.org/10.1109/CDC40024.2019.9030211
https://doi.org/10.1137/S1052623401383558
https://doi.org/10.1007/978-3-319-04247-3
https://doi.org/10.1016/j.automatica.2019.108801
https://doi.org/10.1016/j.automatica.2019.108801
https://doi.org/10.1137/0322019
https://doi.org/10.1080/10556789908805768
https://doi.org/10.1215/S0012-7094-62-02933-2
http://plato.asu.edu/bench.html
https://doi.org/10.1137/080724083
https://docs.mosek.com/9.2/toolbox/index.html
https://docs.mosek.com/9.2/toolbox/index.html

1 3

On a primal‑dual Newton proximal method for convex quadratic…

	45.	 O’Connor, D., Vandenberghe, L.: Primal-dual decomposition by operator splitting and applications
to image deblurring. SIAM J. Imaging Sci. 7(3), 1724–1754 (2014). https://​doi.​org/​10.​1137/​13094​
671X

	46.	 O’Donoghue, B., Chu, E., Parikh, N., Boyd, S.: Conic optimization via operator splitting and homo-
geneous self-dual embedding. J. Optim. Theory Appl. 169(3), 1042–1068 (2016). https://​doi.​org/​10.​
1007/​s10957-​016-​0892-3

	47.	 Pang, J.S.: Error bounds in mathematical programming. Math. Program. 79(1), 299–332 (1997).
https://​doi.​org/​10.​1007/​BF026​14322

	48.	 Parikh, N., Boyd, S.: Proximal algorithms. Found. Trends Optim. 1(3), 127–239 (2014). https://​doi.​
org/​10.​1561/​24000​00003

	49.	 Patrinos, P., Bemporad, A.: An accelerated dual gradient-projection algorithm for embedded linear
model predictive control. IEEE Trans. Autom. Control 59(1), 18–33 (2014). https://​doi.​org/​10.​1109/​
TAC.​2013.​22756​67

	50.	 Pieraccini, S., Gasparo, M.G., Pasquali, A.: Global Newton-type methods and semismooth refor-
mulations for NCP. Appl. Numer. Math. 44(3), 367–384 (2003). https://​doi.​org/​10.​1016/​S0168-​
9274(02)​00169-1

	51.	 Pougkakiotis, S., Gondzio, J.: An interior point-proximal method of multipliers for convex quadratic
programming. Comput. Optim. Appl. (2020). https://​doi.​org/​10.​1007/​s10589-​020-​00240-9

	52.	 Qi, L., Jiang, H.: Semismooth Karush-Kuhn-Tucker equations and convergence analysis of Newton
and quasi-Newton methods for solving these equations. Math. Oper. Res. 22(2), 301–325 (1997).
https://​doi.​org/​10.​1287/​moor.​22.2.​301

	53.	 Qi, L., Sun, J.: A nonsmooth version of Newton’s method. Math. Program. 58(1), 353–367 (1993).
https://​doi.​org/​10.​1007/​BF015​81275

	54.	 Robinson, D.P.: Primal-dual methods for nonlinear optimization. Ph.D. thesis, University of Califor-
nia, San Diego (2007)

	55.	 Rockafellar, R.T.: Augmented Lagrangians and applications of the proximal point algorithm in con-
vex programming. Math. Oper. Res. 1(2), 97–116 (1976). https://​doi.​org/​10.​1287/​moor.1.​2.​97

	56.	 Rockafellar, R.T.: Monotone operators and the proximal point algorithm. SIAM J. Control Optim.
14(5), 877–898 (1976). https://​doi.​org/​10.​1137/​03140​56

	57.	 Rockafellar, R.T.: Convex Analysis. Princeton University Press, Princeton, NJ (1997)
	58.	 Ruiz, D.: A scaling algorithm to equilibrate both rows and columns norms in matrices. Tech. Rep.

RAL-TR-2001-034, Rutherford Appleton Laboratory, Oxon, UK (2001)
	59.	 Stellato, B., Banjac, G., Goulart, P., Bemporad, A., Boyd, S.: OSQP: an operator splitting solver for

quadratic programs. Math. Program. Comput. (2020). https://​doi.​org/​10.​1007/​s12532-​020-​00179-2
	60.	 Sun, D., Qi, L.: On NCP-functions. Comput. Optim. Appl. 13(1), 201–220 (1999). https://​doi.​org/​

10.​1023/A:​10086​69226​453
	61.	 Sun, J.: On piecewise quadratic Newton and trust region problems. Math. Program. 76(3), 451–467

(1997). https://​doi.​org/​10.​1007/​BF026​14393
	62.	 Themelis, A., Patrinos, P.: SuperMann: a superlinearly convergent algorithm for finding fixed points

of nonexpansive operators. IEEE Trans. Autom. Control 64(12), 4875–4890 (2019). https://​doi.​org/​
10.​1109/​TAC.​2019.​29063​93

	63.	 Vanderbei, R.J.: Symmetric quasidefinite matrices. SIAM J. Optim. 5(1), 100–113 (1995). https://​
doi.​org/​10.​1137/​08050​05

	64.	 Wolfe, P.: The simplex method for quadratic programming. Econometrica 27(3), 382–398 (1959)

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published
maps and institutional affiliations.

https://doi.org/10.1137/13094671X
https://doi.org/10.1137/13094671X
https://doi.org/10.1007/s10957-016-0892-3
https://doi.org/10.1007/s10957-016-0892-3
https://doi.org/10.1007/BF02614322
https://doi.org/10.1561/2400000003
https://doi.org/10.1561/2400000003
https://doi.org/10.1109/TAC.2013.2275667
https://doi.org/10.1109/TAC.2013.2275667
https://doi.org/10.1016/S0168-9274(02)00169-1
https://doi.org/10.1016/S0168-9274(02)00169-1
https://doi.org/10.1007/s10589-020-00240-9
https://doi.org/10.1287/moor.22.2.301
https://doi.org/10.1007/BF01581275
https://doi.org/10.1287/moor.1.2.97
https://doi.org/10.1137/0314056
https://doi.org/10.1007/s12532-020-00179-2
https://doi.org/10.1023/A:1008669226453
https://doi.org/10.1023/A:1008669226453
https://doi.org/10.1007/BF02614393
https://doi.org/10.1109/TAC.2019.2906393
https://doi.org/10.1109/TAC.2019.2906393
https://doi.org/10.1137/0805005
https://doi.org/10.1137/0805005

	On a primal-dual Newton proximal method for convex quadratic programs
	Abstract
	1 Introduction
	1.1 Background
	1.2 Approach

	2 Outer loop: inexact proximal point method
	2.1 Optimality conditions
	2.2 Proximal point algorithm
	2.3 Early termination
	2.4 Warm starting
	2.5 Primal and dual infeasibility

	3 Inner loop: semismooth Newton method
	3.1 Merit function
	3.2 Search direction
	3.3 Exact linesearch

	4 Algorithm and convergence
	4.1 Convergence analysis

	5 Relationship with similar methods
	6 Implementation details
	6.1 Linear solver
	6.2 Parameters selection
	6.3 Infeasibility detection
	6.4 Preconditioning

	7 Numerical results
	7.1 Setup
	7.2 Random problems
	7.3 Maros-Mészáros problems
	7.4 Degenerate and infeasible problems

	8 Conclusions
	Acknowledgements
	References

