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Abstract
This paper introduces QPDO, a primal-dual method for convex quadratic programs 
which builds upon and weaves together the proximal point algorithm and a damped 
semismooth Newton method. The outer proximal regularization yields a numerically 
stable method, and we interpret the proximal operator as the unconstrained minimi-
zation of the primal-dual proximal augmented Lagrangian function. This allows the 
inner Newton scheme to exploit sparse symmetric linear solvers and multi-rank fac-
torization updates. Moreover, the linear systems are always solvable independently 
from the problem data and exact linesearch can be performed. The proposed method 
can handle degenerate problems, provides a mechanism for infeasibility detection, 
and can exploit warm starting, while requiring only convexity. We present details of 
our open-source C implementation and report on numerical results against state-of-
the-art solvers. QPDO proves to be a simple, robust, and efficient numerical method 
for convex quadratic programming.

Keywords  Semismooth Newton method · Proximal point method · Regularized 
primal-dual method · Convex quadratic programming

1  Introduction

Quadratic programs (QPs) are one of the fundamental problems in optimization. In 
this paper, we consider linearly constrained convex QPs, in the form:

with � ∈ ℝ
n . � ∈ ℝ

n×n and � ∈ ℝ
n define the objective function, whereas the con-

straints are encoded by � ∈ ℝ
m×n and �, � ∈ ℝ

m
 . We assume (i) � is symmetric 

(1)min
�

1

2
�⊤�� + �⊤�, s.t. � ≤ �� ≤ �,
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positive semidefinite, i.e., � ⪰ 0 , and (ii) � and � satisfy � ≤ � , � < +∞ , and � > −∞ 
component-wise; cf. [33, 59]. We will refer to the nonempty, closed and convex set

as the constraint set. Note that (1) represents a general convex QP, in that it accomo-
dates also equality constraints and bounds. We denote N the sum of the number of 
nonzero entries in � and � , i.e., N∶=nnz(�) + nnz(�).

1.1 � Background

Optimization problems in the form (1) appear in a variety of applications and are 
of interest in engineering, statistics, finance and many other fields. QPs often arise 
as sub-problems in methods for general nonlinear programming [10, 31, 44], and 
greatly vary in terms of problem size and structure.

Convex QPs have been studied since the 1950s [22] and several numerical meth-
ods have been developed since then. These differ in how they balance the number of 
iterations and the cost (e.g., run time) per iteration.

Active-set methods for QPs originated from extending the simplex method for 
linear programs (LPs) [64]. These methods select a set of binding constraints and 
iteratively adapt it, seeking the set of active constraints at the solution. Active-set 
algorithms can be easily warm started and can lead to finite convergence. More-
over, by adding and dropping constraints from the set of binding ones, factoriza-
tion updates can be adopted for solving successive linear systems. However, these 
methods may require many iterations to identify the correct set of active constraints. 
Modern solvers based on active-set methods are qpOASES [20] and NASOQ [13].

First-order methods iteratively compute an optimal solution using only first-order 
information about the cost function [46, 49]. As these methods consist of compu-
tationally cheap and simple steps, they are well suited to applications with limited 
computing resources [59]. However, first-order algorithms usually require many 
iterations to achieve accurate solutions and may suffer from ill-conditioning of the 
problem data. Several acceleration schemes have been proposed to improve their 
behaviour [1, 62]. The open-source solver OSQP [59] offers an implementation 
based on ADMM [9].

Interior-point methods move the problem constraints to the objective function 
via barrier functions and solve a sequence of parametric sub-problems [10, Chap. 
11], [44, Sect. 16.6]. Although not easily warm started, the polynomial complexity 
makes interior-point methods appealing for large scale problems [29]. They usually 
require few but rather demanding iterations [31, 44]. Interior-point methods are cur-
rently the default algorithms in the commercial solvers GUROBI [32] and MOSEK 
[43]. Recent developments are found in the regularized method IP-PMM [51].

Semismooth Newton methods apply a nonsmooth version of Newton’s method to 
the KKT conditions of the original problem [52, 53]. In the strictly convex case, i.e., 
with � ≻ 0 , this approach performs very well as long as the underlying linear sys-
tems are nonsingular. Regularized, or stabilized, semismooth Newton-type methods, 
such as QPALM [33, 34] and FBstab [37], overcome these drawbacks.

C∶={� ∈ ℝ
m ∶ � ≤ � ≤ �}
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The augmented Lagrangian framework [7, 14, 44], semismooth Newton methods 
[25, 53], and proximal techniques [48, 56] are undergoing a revival, as their seam-
less combination exhibits valuable properties and provides useful features, such as 
regularization and numerical stability [6, 33, 37]. These ideas form the basis for our 
approach.

1.2 � Approach

In this work we present a numerical method for solving general QPs. The proposed 
algorithm is based on the proximal point algorithm and a semismooth Newton 
method for solving the sub-problems, which are always solvable for any choice of 
problem data. We therefore impose no restrictions such as strict convexity of the 
cost function or linear independence of the constraints. As such, our algorithm gath-
ers together the benefits of fully regularized primal-dual methods and semismooth 
Newton methods with active-set structure. Our algorithm can exploit warm starting 
to reduce the number of iterations, as well as factorization caching and multi-rank 
update techniques for efficiency, and it can obtain accurate solutions.

Our approach, dubbed QPDO from “Quadratic Primal-Dual Optimizer”, is 
inspired by and shares many characteristics with algorithms that have already been 
proposed, in particular with QPALM [33] and FBstab [37]. On the other hand, they 
differ on some key aspects. QPALM relates to the proximal method of multipliers 
[33, Rem. 2], which in turn is associated to the classical (primal) augmented Lagran-
gian function [55]. Instead, FBstab and QPDO apply the proximal point method, 
yielding exact primal-dual regularization. A more detailed comparison is deferred to 
Sect. 5. However, FBstab reformulates the sub-problem via the (penalized) Fischer-
Burmeister NCP function [11, 21], and adopts the squared residual norm as a merit 
function for the inner iterative loop; this prevents the use of symmetric sparse linear 
solvers. Instead, QPDO adopts the minimum NCP function, which leads to symmet-
ric linear systems with active-set structure. Then, we show the primal-dual proximal 
augmented Lagrangian function, introduced in [27, 54] and [17], is a suitable merit 
function for the proximal sub-problem, which allows us to perform an exact line-
search in a fully primal-dual regularized context. Indeed, we believe, the main con-
tribution of this work consists in recognizing this link, exploiting it to bridge the gap 
between previously proposed methods, and developing a robust and efficient algo-
rithm that possesses their advantages but does not suffer from their disadvantages.

Notation ℕ , ℤ , ℝ , ℝ+ , and ℝ++ denote the sets of natural, integer, real, non-nega-
tive real, and positive real numbers, respectively. We denote ℝ ∶= ℝ ∪ {−∞,∞} the 
extended real line. The identity matrix and the vector of ones of size n are denoted 
by �n and �n , respectively. We may omit subscripts whenever clear from the context. 
[a, b], (a, b), [a, b), and (a, b] stand for closed, open, and half-open intervals, respec-
tively, with end points a and b. [a; b], (a; b), [a; b), and (a; b] stand for discrete 
intervals, e.g., [a;b] = [a, b] ∩ ℤ . Given a vector � ∈ ℝ

n , �⊤ and �i denote its trans-
pose and its i-th component, respectively. We adopt the norms ‖�‖ = ‖�‖2∶=

√
�⊤� 

and ‖�‖∞∶=maxi∈[1;n] ��i� . Given a set S, |S| denotes its cardinality. In ℝn , the 
relations <, ≤ , = , ≥ , and > are understood component-wise. Given a nonempty 
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closed convex set C ⊆ ℝ
n , we denote �C ∶ ℝ

n
→ ℝ ∪ {+∞} its characteristic func-

tion, namely �C(�) = 0 if � ∈ C and �C(�) = +∞ otherwise, distC ∶ ℝ
n
→ ℝ its 

distance, namely � ↦ min�∈C‖� − �‖ , and its projection ΠC ∶ ℝ
n
→ ℝ

n , namely 
� ↦ argmin�∈C‖� − �‖ . Thus, it holds distC(�) = ‖ΠC(�) − �‖.

The algorithm is described with a nested structure, whose outer iterations are 
indexed by k ∈ ℕ . Given an arbitrary vector � , �k denotes that � depends on k, and 
analogously for matrices. We denote y the dual variable associated with the con-
straints in problem (1). A primal-dual pair (�, �) will be denoted v, and we will refer 
interchangeably to it as a vector or to its components � and y. An optimal solution to 
(1) will be denoted (�⋆, �⋆) , or �⋆ . Optimal solutions of proximal sub-problems will 
be denoted using an appropriate subscript, according to the iteration. For example, 
(�⋆

k
, �⋆

k
) , and �⋆

k
 , denote the solution to the proximal sub-problem corresponding to 

the k-th outer iteration.
Outline The rest of the paper is organized as follows. Sections 2 and 3 develop 

and present our method in detail. In particular, in Sect.  3.1 we establish our key 
result, which relates the proximal operator and the primal-dual proximal augmented 
Lagrangian function. Our algorithmic framework is outlined in Section  4 and the 
convergence properties are analyzed in Sect. 4.1, while Sect. 5 contrasts QPDO with 
similar methods. We present details of our implementation in Sect. 6 and report on 
numerical experience in Sect. 7.

2 � Outer loop: inexact proximal point method

Our method solves (1) using the proximal point algorithm with inexact evaluation 
of the proximal operator. The latter is evaluated by means of a semismooth New-
ton-type method, which constitutes an inner iterative procedure further investigated 
in Sect.  3. Here we focus on the outer loop corresponding to the proximal point 
algorithm, which has been extensively studied in the literature [56]. We recall some 
important results and refer to [38, 40, 45, 55] for more details.

2.1 � Optimality conditions

Problem (1) can be equivalently expressed as

where

are the objective function and the characteristic function of the constraint set C , 
respectively. The necessary and sufficient first-order optimality conditions of (2), 
and hence (1), read

(2)min
�

f (�) + g(��),

f (�)∶=
1

2
�⊤�� + �⊤� and g(�)∶=𝜒C(�)
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where �g∗ denotes the (set-valued) conjugate subdifferential of g [45]. For all 
i ∈ [1;m] , (�g∗(�))i = �i if �i < 0 , (�g∗(�))i = [�i, �i] if �i = 0 , and (�g∗(�))i = �i if 
�i > 0 . We will refer to T ∶ ℝ

�
⇉ ℝ

� , �∶=n + m , as the KKT operator for (1). How-
ever, noticing that, for any 𝛼 > 0 , the conditions � = ΠC(� + ��) and � ∈ �g∗(�) are 
equivalent [57, Sect. 23], conditions in (3) can be reformulated. Choosing � = 1 , we 
define the (outer) residual � ∶ ℝ

�
→ ℝ

� and equivalently express (3) as

This reformulation can be obtained also by employing the minimum NCP function 
[60] and rearranging to obtain the projection operator ΠC . The residual � is analo-
gous to the natural residual function � investigated in [47]. Since it is an error bound 
for problem (1), i.e., distT−1(�)(�) = O(‖�(�)‖) [47, Thm 18], � is a suitable optimal-
ity measure and its norm can be adopted as a stopping criterion. Although equiva-
lent, (3) is considered here only as a theoretical tool for developing the proposed 
method, whereas the outer residual � in (4) serves as a computationally practical 
optimality criterion.

2.2 � Proximal point algorithm

The proximal point algorithm [56] finds zeros of maximal monotone operators 
by recursively applying their proximal operator. Since T  is a maximal monotone 
operator [45, 55], the proximal point algorithm converges to an element �⋆ of the 
set of primal-dual solutions T−1(�) , if any exists [40, 56]. Starting from an initial 
guess �0 , it generates a sequence {�k} of primal-dual pairs by recursively applying 
the proximal operator Pk:

where {�k} is a sequence of non-increasing positive definite matrices, namely, 
�k ≻ 0 and �k − �k+1 ⪰ 0 for all k ∈ ℕ . The matrices �k control the primal-dual 
proximal regularization and, similarly to exact penalty methods, these are not 
required to vanish [55, 56]. Since T  is maximal monotone, Pk is well defined and 
single valued for all � ∈ domT = ℝ

� [40]. Thus, from (5), evaluating Pk at �k is 
equivalent to finding the unique � ∈ ℝ

� that satisfies

This is guaranteed to have a unique solution and to satisfy certain useful regularity 
properties; see Sect. 3 below. As a result, we can construct a fast inner solver for 
these sub-problems based on the semismooth Newton method.

(3)� ∈ T(�)∶=

(
�� + � + �⊤�

−�� + 𝜕g∗(�)

)
,

(4)� = �(�)∶=

(
�� + � + �⊤�

�� − ΠC(�� + �)

)
.

(5)�k+1 = Pk(�k), Pk∶=(� + �−1
k
T)−1,

(6)� ∈ Tk(�)∶=T(�) + �k(� − �k).
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2.3 � Early termination

The proximal point algorithm tolerates errors, namely the inexact evaluation of Pk 
[56]. Criterion (Ar) in [38] provides conditions for the design of convergent inex-
act proximal point algorithms [38, Thm 2.1]. Let �⋆

k
∶=Pk(�k) denote the unique 

proximal sub-problem solution and �k+1 ≈ �⋆
k
 the actual recurrence update. The 

aforementioned criterion requires

where r ≥ 0 and {ek} is a summable sequence of nonnegative inner tolerances, 
i.e., ek ≥ 0 for all k and 

∑∞

k=0
ek < +∞ . However, since �⋆

k
 is effectively unknown, 

this criterion is impractical. Instead, in Algorithm 1 it is required that �k+1 satisfy 
‖�k(�k+1)‖∞ ≤ �k . Here, �k denotes the residual for the k-th sub-problem, and is 
defined in (14). In Sect. 4.1 we will show that this criterion is a simple and viable 
substitute, which retains the significance of (Ar).

2.4 � Warm starting

If a solution �⋆ exists, the (outer) sequence {�k} generated by (5) converges, by 
the global convergence of the proximal point algorithm [56]. Then, Pk(�k) and �k 
are arbitrarily close to each other for sufficiently large k [37, Sect. 4]. This sup-
ports the idea of warm starting the inner solver with the current outer estimate 
�k , that is, setting � ← �k in Algorithm  2. In practice, for large k, only one or 
few Newton-type inner iterations are needed to find an approximate sub-problem 
solution �k+1.

2.5 � Primal and dual infeasibility

Infeasibility detection in convex programming has been studied in [4, 5]. Certify-
ing primal infeasibility of (1) amounts to finding a vector � ∈ ℝ

m such that

Similarly, it can be shown that a vector � ∈ ℝ
n satisfying

is a certificate of dual infeasibility for (1) [4, Prop. 3.1].

(7)‖�k+1 − �⋆
k
‖ ≤ ek min

�
1, ‖�k+1 − �k‖r

�
,

(8)
�⊤� = �,

∑
i ∈ [1;m]

�i ∈ ℝ

�i max(�i, 0) +
∑

i ∈ [1;m]

�i ∈ ℝ

�i min(�i, 0) < 0.

(9)�� = �, �⊤� < 0, (��)i

⎧⎪⎨⎪⎩

= 0 �i, �i ∈ ℝ,

≥ 0 �i ∈ ℝ,�i = +∞,

≤ 0 �i = −∞,�i ∈ ℝ,

i ∈ [1;m],
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3 � Inner loop: semismooth Newton method

In this section we focus on solving (6) via a semismooth Newton method. For the 
sake of clarity, and without loss of generality, we consider

for some parameters �k,�k ∈ ℝ++.

3.1 � Merit function

We now derive the simple yet fundamental result that is the key to developing our 
method. This provides the NCP reformulation of the proximal sub-problem with 
a suitable merit function. The former yields symmetric active-set linear systems, 
while the latter leads to exact linesearch.

Let us express (6) in the form

Similarly to (4), for any given 𝛼 > 0 , this can be rewritten as

where we denote

The second condition in (11) can be expressed as � = �k − ΠC(�k) − �� . Then, we 
substitute y with [�k − ΠC(�k)]∕� in the first condition in (11), and multiply the sec-
ond one by (� − �k)∕� . Hence, for any positive � ≠ �k , (11) is equivalent to

namely their unique solutions coincide. Now, we observe that the right-hand side of 
(12) is the gradient of the function

By construction, this is a continuously differentiable function whose gradient van-
ishes at the unique solution of the proximal sub-problem. Furthermore, for any 
� ∈ (0,�k) , it is strictly convex and hence admits a unique minimizer that must coin-
cide with the unique proximal point. Therefore, (13) is a suitable merit function for 

�k∶=blockdiag(�k�n,�k�m).

(10)� ∈

(
�� + � + �⊤� + 𝜎k(� − �k)

−�� + 𝜇k(� − �k) + 𝜕g∗(�)

)
.

(11)� =

(
�� + � + �⊤� + 𝜎k(� − �k)

�� + 𝜇k(�k − �) − ΠC(�k)

)
,

�k∶=�� + �k(�k − �) + ��.

(12)� =

(
�� + � +

1

𝛼
�⊤[�k − ΠC(�k)] + 𝜎k(� − �k)

𝛼−𝜇k

𝛼
[�k − ΠC(�k)] + (𝜇k − 𝛼)�

)
,

(13)f (�) +
1

2�
dist2

C
(�k) +

�k
2
‖� − �k‖2 +

�k − �

2
‖�‖2.
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the sub-problem. The particular choice �∶=�k∕2 inherits all these properties and 
leads to the inner optimality conditions

with �k ∶ ℝ
�
→ ℝ

� the inner residual, and the associated merit function

In fact, Mk ∶ ℝ
�
→ ℝ is the primal-dual proximal augmented Lagrangian function 

[17, 27, 54]; see Appendix A for a detailed derivation. This underlines once again 
the strong relationship between the proximal point algorithm and the augmented 
Lagrangian framework, pioneered in [55]. On the one hand, by (15), the dual regu-
larization parameter �k controls the constraint penalization [23, Sect. 3.2]. On the 
other hand, it provides an “interpretation of the augmented Lagrangian method as an 
adaptive constraint regularization process” [3, Sect. 2].

The inner residual �k in (14) is piecewise affine, hence strongly semismooth on 
ℝ

� [36, 52]. In fact, given �k bounded away from zero and the unique, bounded, 
and nonsingular matrix �k defined by

we have the identity ∇Mk(⋅) = �k�k(⋅) . Effectively, ‖�k(⋅)‖ can be employed as stop-
ping criterion in place of ‖∇Mk(⋅)‖ . We prefer the former, since �k corresponds to a 
perturbation of the outer residual � ; cf. (4).

The availability of a suitable merit function allows us to adopt a damped New-
ton-type method and design a linesearch globalization strategy, in contrast with 
[25, 37, 50]. Since Mk is continuously differentiable and piecewise quadratic, an 
exact linesearch procedure can be carried out, which yields finite convergence 
[61].

Finally, we highlight that the method asymptotically reduces to a sequence of 
regularized semismooth Newton steps applied to the original, unperturbed opti-
mality system, in the vein of [2]. This closely relates to the concept of exact regu-
larization [24]. In fact, the proximal primal-dual regularization is exact; see The-
orem 1 and compare with [3, Thm 1].

Proposition 1  Let k ∈ ℕ be arbitrary. 

	 (i)	 Suppose �⋆
k
 solves (14) for �k∶=�⋆k  and for some �k ≥ 0 and 𝜇k > 0 . Then, �⋆

k
 

solves (4).
	 (ii)	 Alternatively, suppose �⋆

k
 solves (14) for �k∶=�⋆k  , �k∶=0 , and for some 𝜇k > 0 . 

Then, �⋆
k
 solves (4).

(14)� = �k(�)∶=

(
�� + � + �⊤� + 𝜎k(� − �k)

�� + 𝜇k(�k − �) − ΠC(�� + 𝜇k(�k − �∕2))

)
,

(15)Mk(�)∶=f (�) +
1

�k

dist2
C
(�� + �k(�k − �∕2)) +

�k
2
‖� − �k‖2 +

�k

4
‖�‖2.

(16)�k∶=

[
�

2

𝜇k

�⊤

� − �

]
,
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	 (iii)	 Conversely, suppose �⋆ solves (4). Then, �⋆ solves (14) for �k∶=�⋆ and for any 
�k ≥ 0 and 𝜇k > 0.

Proof  The proof is immediate by direct comparison of (4) and (14). 	�  ◻

Subproblem (14) is equivalent to the unconstrained minimization of the primal-
dual augmented Lagrangian function Mk , given in (15). However, by introducing 
the auxiliary variable � ∈ ℝ

m , we can rewrite subproblem (14) as the equivalent yet 
smoother problem

that is a primal-dual proximal regularization of (1). Indeed, it is always feasible and 
strictly convex and the constraints satisfy the linear independence constraint qualifi-
cation (LICQ). This shows that each outer iteration is associated to a regularized QP, 
which can be effectively solved by Newton-type methods.

3.2 � Search direction

A semismooth Newton direction �� = (��, ��) at � = (�, �) solves

where

is an element of the generalized Jacobian [57, Sect. 23] of �k at v. In turn, the diago-
nal matrix �k(�) with entries

is an element of the generalized Jacobian of ΠC at �k . Owing to (20), (18) can be 
rewritten in symmetric form, similar to those arising in active-set methods [35]. To 
this end, we notice that, if �ii

k
(�) = 1 , the corresponding inner residual in (14) sim-

plifies into �n+i
k

(�) = −�k�
i∕2 , and the linear equation in (18) gives ��i = −�i . This 

yields the crucial observation that, by (20), �k(�)�� = −�k(�)� for all � ∈ ℝ
� . Then, 

an equivalent yet symmetric linear system is obtained, whose solution is the search 
direction �� at v:

(17)
min
�,�

1

2
�⊤�� + �⊤� +

𝜎k
2
‖� − �k‖2 + 1

2𝜇k

‖� − 𝜇k�k‖2

s.t. � ≤ �� + � ≤ �,

(18)�k(�)�� = −�k(�),

(19)�k(�) =

[
� + 𝜎k� �⊤

(� − �k(�))� − 𝜇k(� − �k(�)∕2)

]

(20)�ii
k
(�)∶=

{
1 if �i < �i

k
< �i

0 otherwise
, i = 1,… ,m,

(21)
[

� + 𝜎k� �⊤(� − �k(�))

(� − �k(�))� − 𝜇k(� − �k(�)∕2)

](
𝛿�
𝛿�

)
=

(
�⊤�k(�)�

�

)
− �k(�).
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The active-set structure introduced by �k allows us to obtain a symmetric linear 
system and adopt multi-rank factorization updates [15, 26] while maintaining struc-
ture and sparsity of the coefficient matrix [13, 59]. The linear system in (21) always 
admits a unique solution, since the coefficient matrix is symmetric quasi-definite 
[63], independent of the problem data.

3.3 � Exact linesearch

Given a primal-dual pair v and a search direction �� , we seek a stepsize 𝜏 > 0 
to effectively update v to � + � �� in Algorithm  2. Similarly to Mk , the function 
�k ∶ � ↦ Mk(� + ���) is continuously differentiable, piecewise quadratic, and 
strictly convex. Thus, the optimal stepsize �∶=argmint∈ℝ�k(t) is found as the 
unique zero of � ′

k
 , i.e., � �

k
(�) = 0 . Since � ′

k
 is a piecewise linear, strictly monotone 

increasing function, the exact linesearch procedure amounts to solving a piecewise 
linear equation of the form

with respect to � ∈ ℝ . Here, the coefficients are given by 

 whose derivation is reported in Appendix B. Thanks to its peculiar structure, (22) 
can be solved efficiently and exactly (up to numerical precision), e.g., by sorting and 
linear interpolation, cf. [33, Alg. 2].

We underline that the stepsize � is unique and strictly positive, since Mk is strictly 
convex and �� is a descent direction for Mk at v. This follows from the observation 
that

since 𝜕2Mk(�) ∋ �k�k(�) ≻ 0.

4 � Algorithm and convergence

Our Quadratic Primal-Dual Optimizer (QPDO), which weaves together the proxi-
mal point algorithm and a semismooth Newton method, is outlined in Algorithms 
1 and 2. We highlight the nested structure for clarity of presentation. Effectively, 

(22)0 = �k� + �k +
2

�k

��k

[
�k + ���k − ΠC

(
�k + ���k

)]

(23a)𝛼k ∶= 𝛿�⊤(� + 𝜎k�)𝛿� + 𝜇k𝛿�
⊤𝛿�∕2,

(23b)𝛽k ∶= 𝛿�⊤[�� + � + 𝜎k(� − �k)] + 𝜇k𝛿�
⊤�∕2,

(23c)�k ∶=�� + �k

(
�k − �∕2

)
,

(23d)��k ∶=��� − �k��∕2,

𝜓 �
k
(0) = 𝛿�⊤∇Mk(�) = 𝛿�⊤�k�k(�) = −𝛿�⊤�k�k(�)𝛿� < 0,
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Algorithm 1 corresponds to the proximal point algorithm, as discussed in Sect. 2. 
The proximal operator, Pk , is evaluated in Algorithm 2 by solving a sub-problem via 
the semismooth Newton method, as detailed in Sect. 3. We denote � and �k the outer 
and inner residuals defined in (4,14), respectively, and v a primal-dual pair (�, �) . 
Infeasibility detection, parameters update, and linear solvers are detailed in Sect. 6.

Algorithm 1 QPDO: Quadratic Primal-Dual Optimizer

input: � , � , � , � , �
parameters: 𝜖 > 0 , �0 ≥ 0 , �� ∈ [0, 1) , 0 < 𝜎min ≤ 𝜎0 , 0 < 𝜇min ≤ 𝜇0

guess: �0 ∈ ℝ
n , �0 ∈ ℝ

m

for k = 0, 1, 2,… do
      if ‖�(�

k
)‖∞ ≤ � then

         return �
k

      end if
      find �

k+1 such that ‖�
k
(�

k+1)‖∞ ≤ �
k
 by invoking Algorithm 2

      check for primal-dual infeasibility with ��
k
∶=�

k+1 − �
k

      choose parameters �
k+1 ∈ [�min, �k] and �

k+1 ∈ [�min,�k
]

      set �
k+1 ← ���k

end for

Algorithm 2 Inner loop: semismooth Newton method

� ← �
k

repeat
      get the search direction �� ∈ ℝ

� by solving the linear system (21)
      get the stepsize � ∈ ℝ++ by solving the piecewise linear equation (22)
      set � ← � + � ��

until ‖�
k
(�)‖∞ ≤ �

k

�
k+1 ← �

4.1 � Convergence analysis

This section discusses the convergence of QPDO as outlined in Algorithm 1 and 2. 
We show that the proposed algorithm either generates a sequence of iterates {�k} 
that in the limit satisfy the optimality conditions (4), when problem (1) is solvable, 
or provides a certificate of primal and/or dual infeasibility otherwise. Our analysis 
relies on well-established results for Newton and proximal point methods; in par-
ticular, we refer to [38, 56, 61].

First, we focus on the inner loop, described in Algorithm 2 and detailed in Sect. 3.

Lemma 1  Consider an arbitrary but fixed outer iteration, indexed by k ∈ ℕ , and 
suppose �k ≥ 0 . Then, the procedure in Algorithm 2 is well defined and terminates 
after finitely many steps.
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Proof  The search direction �� exists and is unique, since linear system (21) is 
always solvable. Similarly, there exists a unique, positive optimal stepsize � which 
solves (22). Thus, all steps of Algorithm 2 are well-defined. Since Mk is continu-
ously differentiable, strictly convex, and piecewise quadratic, the semismooth New-
ton method with exact linesearch exhibits finite convergence [61, Thm 3]. Thus, 
∇Mk(�) = � after finitely many iterations. Then, by ∇Mk(⋅) = �k�k(⋅) with �k 
nonsingular, it reaches �k(�) = � . Hence, for any �k ≥ 0 , the inner stopping criterion 
‖�k(�)‖∞ ≤ �k is eventually satisfied, and the inner loop terminates. 	�  ◻

Notice that, with �k = 0 , Algorithm  2 returns the unique (proximal) point 
�⋆
k
∶=Pk(�k).
Let us consider now the outer loop, sketched in Algorithm 1. Recall that, by con-

struction, the regularization parameters are positive and non-increasing. The outer 
loop consists of inexact proximal point iterations [56], hence global and local con-
vergence properties can be derived based on [38, Prop. 1.2]. The following result 
shows that criterion (Ar) [38] holds.

Lemma 2  Let T−1(�) be nonempty, any �0 ∈ ℝ
� be given, and the sequence {�k} be 

generated by Algorithm 1. Then, there exists a summable sequence {ek} ⊆ ℝ+ such 
that

Proof  By �0 ∈ ℝ+ and �� ∈ [0, 1) , the sequence {𝜀k} ⊆ ℝ+ is summable, since ∑
k∈ℕ 𝜀k =

∑
k∈ℕ 𝜅

k
𝜀
𝜀0 = 𝜀0∕(1 − 𝜅𝜀) < +∞ . By the inner stopping condition, for all 

k ∈ ℕ it holds ‖�k(�k+1)‖ ≤ �k . Morever, since Mk is �k-strongly convex, we have 
that, for some 𝜂̃k > 0 , it is

for all � ∈ ℝ
� . By the boundedness of �k away from zero, matrix �k is bounded and 

there exists a constant 𝜂 > 0 such that the bound ‖� − �⋆
k
‖ ≤ 𝜂‖�k(�)‖ holds for all 

k ∈ ℕ and � ∈ ℝ
� . Thus, in particular, for all k ∈ ℕ it is

Let ek∶=��k , and the proof is complete. 	�  ◻

Notice that we choose r = 0 in (Ar) , particularly in (7), for the sake of simplicity, 
although this may prevent faster convergence; see [38, Thm 2.1]. Relying on the 
inexact proximal point algorithm, the following result states that Algorithm 1 con-
verges to a solution, if one exists.

Theorem 1  Let T−1(�) be nonempty, any �0 ∈ ℝ
� be given, and the sequence {�k} be 

generated by Algorithm 1. Then, the sequence {�k} is well defined and converges to a 
solution �⋆ ∈ T

−1(�).

‖�k+1 − �⋆
k
‖ ≤ ek ∀k ∈ ℕ.

𝜂̃k‖� − �⋆
k
‖ ≤ ‖∇M(�) − ∇M(�⋆

k
)‖ = ‖∇M(�)‖ = ‖�k �k(�)‖

‖�k+1 − �⋆
k
‖ ≤ 𝜂‖�k(�k+1)‖ ≤ 𝜂𝜀k.
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Proof  The error bound condition, namely criterion (Ar) , is enforced by costruction; 
cf. Lemma 2. It remains to show that there exists a, 𝜀 > 0 such that for all � ∈ ℝ

� , 
‖�‖ ≤ � , it holds distT−1(�)(�) ≤ a‖�‖ for all � ∈ T

−1(�) . Since problem (3) is a poly-
hedral variational inequality, this property holds globally [19, Sect. 3D]. Hence, we 
can invoke [38, Prop. 1.2] to conclude that ‖�k − �⋆‖ → 0 . 	�  ◻

Finally, Theorem 2 guarantees that Algorithm 1 terminates if the original problem 
(1) does not admit any solution. This allows our method to detect infeasibility and to 
return a certificate.

Theorem  2  Suppose problem (1) is primal and/or dual infeasible, i.e., T−1(�) is 
empty. Let any �0 ∈ ℝ

� be given, the sequence {�k} be generated by Algorithm 1, 
and define ��k∶=�k+1 − �k . Then, the sequence {��k} admits a limit �� , i.e., 
��k → �� . Moreover, 

	 (i)	 if �� ≠ � , then problem (1) is primal infeasible and �� satisfies the primal 
infeasibility condition (8);

	 (ii)	 if �� ≠ � , then problem (1) is dual infeasible and �� satisfies the dual infea-
sibility condition (9).

Proof  Lemma 5.1 in [4] ensures that ��k → �� , since Algorithm 1 is an instance of 
the proximal point algorithm. If T−1(�) = � , then �� ≠ � , and this gives certificates 
of primal and/or dual infeasibility according to [4, Thm 5.1]. 	�  ◻

5 � Relationship with similar methods

Our approach is inspired by and shares many features with other recently developed 
methods. This section elaborates upon their relationship with QPDO.

FBstab [37] “synergistically combines the proximal point algorithm with a pri-
mal-dual semismooth Newton-type method” to solve convex QPs. By adopting the 
Fischer-Burmeister [11, 21] NCP function, FBstab does not depend on an estimate 
of the active set, which may result in a more regular behavior than QPDO. In con-
trast, adopting the minimum NCP function, QPDO can exploit factorization updates, 
perform exact linesearch by solving a piecewise linear equation, and handle simulta-
neously bilateral constraints.

QPALM is a “proximal augmented Lagrangian based solver for convex QPs” 
[33]; recent advancements allow to handle nonconvex QPs as well [34]. Given a pri-
mal-dual estimate � , the exact, unique resolvent update �△ of QPALM [33, Eq. 6], 
with � = blockdiag(�−1�,�−1�) , is given by 

(24a)�△ = argmin�∈ℝn �(�),



	 A. De Marchi 

1 3

 In  (24a), � is given by [33, Eq. 8]

and closely resembles Mk in (15). Since  (24a) yields ∇�(�△) = � , combining with  
(24b) and rearranging give 

 Conditions Eqs. (25) and (14) differ only in the argument of ΠC , where the term 
−��∕2 is missing in  (25b). This underlines the primal-dual nature of QPDO. A 
comparative investigation into how QPDO copes with changes in the active set [35] 
and controls the quality of both primal and dual variables during iterations [2, 28] is 
a topic for future work.

OSQP is a “solver for convex quadratic programs based on the alternating direc-
tion method of multipliers” [59]. Rearranging from [59, Alg.  1], with parameters 
� = 1 , � = �−1 , and given primal-dual estimate (�, �) and constraint estimate � , the 
(unique) primal-auxiliary update (�◊, �◊) satisfies 

 Then, the constraint and dual updates are given by �◊ = ΠC

(
� + ��◊

)
 and 

�◊ = �◊ + �−1
(
� − �◊

)
 , respectively. Although conditions (26) resemble (14), 

an auxiliary variable � substitutes the dual variable y and the projection in (14) is 
replaced by the constraint estimate � . This makes sub-problem (26) a linear system 
and results in a first-order method.

6 � Implementation details

QPDO has been implemented in C and provides a MATLAB interface. It can solve 
QPs of the form (1) and makes no assumptions about the problem data other than 
convexity; it is available online at

https://​github.​com/​aldma/​qpdo.
This section discusses some relevant aspects of the program, such as the linear 

solver, parameters update rules, infeasibility detection, and problem scaling.

(24b)�△ = � + �−1
[
��△ − ΠC

(
��△ + ��

)]
.

�(�)∶=f (�) +
1

2�
dist2

C

�
�� + ��

�
+

�

2
‖� − �‖2

(25a)� = ��△ + � + �⊤�△ + 𝜎
(
�△ − �

)
,

(25b)� = ��△ + �
(
� − �△

)
− ΠC

(
��△ + ��

)
.

(26a)� = ��◊ + � + �⊤�◊ + 𝜎(�◊ − �),

(26b)� = ��◊ + �(� − �◊) − �.

https://github.com/aldma/qpdo
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6.1 � Linear solver

The linear system (21) is solved with CHOLMOD [12], using a sparse Cholesky 
factorization. This linear solver is analogous to the one adopted in QPALM [33], for 
the sake of comparison. Let (�dual

k
, �

prim

k
) partition the inner residual �k in (14). Then, 

formally solving for �� in (21), we obtain the expression (omitting subscripts and 
arguments)

where the second and third lines are due to the binary structure of � . Substituting � 
and rearranging, we obtain a linear system for ��:

which has a symmetric, positive definite coefficient matrix and can be solved by 
CHOLMOD [12]. On the one hand, this approach allows multi-rank factorization 
updates [15], thus avoiding the need for a full re-factorization at every inner itera-
tion. On the other hand, sparsity pattern may be lost and significant fill-in may arise 
due to the matrix-matrix product �⊤� . For this reason, the current implementation 
may benefit from directly solving (21) via sparse symmetric linear solvers, possibly 
with multi-rank factorization updates. To better exploit the data sparsity pattern and 
the capabilities of the proposed method, we plan to add other linear solvers in future 
versions.

6.2 � Parameters selection

Solving convex QPs via the proximal point algorithm imposes mild restrictions 
on the sequence of primal-dual regularization parameters {�k} . As mentioned 
in Sect.  2.2, there are no additional requirements other than being non-increas-
ing and positive definite. However, similarly to forcing sequences in augmented 
Lagrangian methods [14], the sequence of regularization parameters greatly 
affects the behaviour of QPDO, and a careful tuning can positively impact the 
performance. For instance, although faster convergence rates can be expected 
if �k → � [38], numerical stability and machine precision should be taken into 
account. Following [34, Sect. 5.3] and [59, Sect. 5.2], our implementation consid-
ers only diagonal matrices of the form �k = blockdiag(�k�, diag(�k)) , and we refer 
to the effect of �k and �k as primal and dual regularization, respectively.

The dual regularization parameter �k proves critical for the practical perfor-
mance of the method since it strikes the balance between the number of inner and 
outer iterations, seeking easy-to-solve sub-problems, effective warm starting, and 
rapid constraints satisfaction. Therefore, we carefully initialize and update �k , 
guided by the interpretation as a constraint penalization offered by the augmented 

�� = �−1(� − �∕2)−1
[
(� − �)��� + �prim

]

= �−1(� + �)
[
(� − �)��� + �prim

]

= �−1(� − �)��� + �−1(� + �)�prim,

[
� + 𝜎� + 𝜇−1�⊤(� − �)�

]
𝛿� = �⊤�� − 𝜇−1�⊤(� − �)�prim − �dual,
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Lagrangian framework; cf. Sect. 3.1. In our implementation, we consider a vector 
�k to gain a finer control over the constraint penalization [14]. Given a (primal) 
initial guess �0 ∈ ℝ

n , we initialize as in [8, Sect. 12.4]:

where 𝜇max
0

≥ 𝜇min
0

> 0 and �� ≥ 0 . Then, following [34, Sect. 5.3], we monitor the 
primal residual �prim(�)∶=�� − ΠC(�� + �) from (4) and update the dual regulariza-
tion parameter �k accordingly. If |� i

prim
(vk+1)| > max

(
𝜃𝜇|� iprim(�k)|, 𝜀opt

)
 , we set

where �� ∈ (0, 1) , 𝜇min > 0 , and �� ≥ 0 . Otherwise, we set �i
k+1

= �
i
k
 . These rules 

adapt the constraint penalization on the current residual, seeking a uniform, steady 
progression towards feasibility, while making sure the sequences {�i

k
} , i ∈ [1;m] , are 

non-increasing and bounded away from zero. In our implementation, the default val-
ues are �min

0
= 10−3 , �max

0
= 103 , �� = 0.1 , �min = 10−9 , �� = 10−2 and �� = 0.25.

The primal regularization turns out to be less crucial with respect to the dual 
counterpart. For this reason, it is associated to a scalar value and tuned indepen-
dently from the residual. Starting from 𝜎0 > 0 , we apply

where 𝜎min > 0 and �� ∈ [0, 1] . In our implementation the default values are 
�0 = 10−3 , �min = 10−7 , and �� = 0.1.

Early termination The inner tolerance �k also affects the performance of QPDO, 
since it balances sub-problem accuracy and early termination. In Algorithm 1, these 
aspects relate to the parameters �0 and �� , which drive {�k} to zero. However, finite 
precision should also be taken into account. In fact, although the semismooth New-
ton method converges in finitely many iterations, the solution provided is exact up to 
round-off errors and numerical precision. Therefore, we deviate from Algorithm 1 in 
this respect and employ the update rule

where 0 ≤ �min ≤ �opt . In our implementation, the default values are �0 = 1 , �� = 0.1 , 
�min = 0.1�opt , and �opt = 10−6.

6.3 � Infeasibility detection

A routine for detecting primal and dual infeasibility of (1) is included in Algo-
rithm 1. This allows the algorithm to terminate with either a primal-dual solution 

�0∶=��0 − ΠC(��0),

�
i
0
∶=Π[

�min
0

,�max
0

]
(
��

max(1, (�i
0
)2∕2)

max(1, |f (�0)|)

)
, i ∈ [1;m],

�
i
k+1

= Π[�min,�
i
k]

�
��

‖�prim(�k+1)‖∞
�� i

prim
(�k+1)�

�
i
k

�
,

�k+1 = max(�min, ���k),

�k+1 = max(�min, ���k),
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or a certificate of primal or dual infeasibility, for some given tolerances. We adopt 
the mechanism developed in [4, Sect. 5.2], which holds whenever the proximal point 
algorithm is employed to solve the KKT conditions (3). Problem (1) is declared pri-
mal or dual infeasible based on the conditions given in Sect.  2.5 and the vectors 
��k∶=�k+1 − �k and ��k∶=�k+1 − �k , k ≥ 0 . As in [34], we deem the problem primal 
infeasible if ��k ≠ � and the following two conditions hold 

 where 𝜀pinf > 0 is some tolerance level. The problem is considered dual infeasible if 
��k ≠ � and the following conditions hold 

 where 𝜀dinf > 0 is some tolerance level. In case of primal and/or dual infeasibility, 
we return the vectors ��k and ��k as certificates of primal and infeasibility, respec-
tively. In our implementation, the default values are �pinf = �dinf = 10−6 . The reader 
may refer to [59, Sect. 3.4], [33, Sect. V.C], and [37, Sect. 4.1], and [51, Sect. 4] for 
analogous applications.

6.4 � Preconditioning

Preconditioning, or scaling, the problem may alleviate ill-conditioning and miti-
gate numerical issues, especially when the problem data span across many orders 
of magnitude. In our implementation, we closely follow [34, Sect.  5.2] and scale 
the problem data by performing the Ruiz’s equilibration procedure [58] on the con-
straint matrix � . This procedure iteratively scales the rows and columns of a matrix 
in order to make their infinity norms approach one. By default, QPDO performs 
10 scaling iterations. Slightly different routines are adopted, e.g., in [59, Sect. 5.1] 
and [51, Sect. 5.1.2]. Note that, by default, if the problem is initially scaled, the ter-
mination conditions for optimality and infeasibility refer to the original, unscaled, 
problem.

(27a)‖�⊤𝛥�k‖∞ ≤ 𝜀pinf‖𝛥�k‖∞,

(27b)�⊤ max(�k, �) + �⊤ min(�k, �) ≤ −𝜀pinf‖𝛥�k‖∞,

(28a)‖���k‖∞ ≤ �dinf‖��k‖∞,

(28b)�⊤𝛥�k ≤ −𝜀dinf‖𝛥�k‖∞,

(28c)(���k)
i

⎧⎪⎨⎪⎩

∈ [−�dinf, �dinf]‖��k‖∞ �i, �i ∈ ℝ,

≥ −�dinf‖��k‖∞ �i = +∞,

≤ �dinf‖��k‖∞ �i = −∞,

, i ∈ [1;m],
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7 � Numerical results

We discuss details of our open-source C implementation of QPDO and present 
computational results on random problems and the Maros-Mészáros set [39]. We 
test and compare QPDO against the open-source, full-fledged solvers OSQP [59] 
and QPALM [33, 34], and the commercial interior-point solver MOSEK [43]. 
Indeed, “the construction of appropriate software is by no means trivial and we 
wish to make a thorough job of it” [14]; we plan to improve our current imple-
mentation, in particular the linear solver discussed in Sect.  6.1, and to report 
comprehensive numerical results in due time.

7.1 � Setup

We consider the tolerance �opt = 10−5 , and set the tolerances for all the solvers 
accordingly. In addition, we set the maximum run time of each solver to 100  s 
and no limit on the maximum number of iterations. We leave all the other settings 
to the internal defaults. It is worth mentioning that, since no initial guess is pro-
vided, QPDO, OSQP, and QPALM start with �0 = �.

In general it is hard to compare the solution accuracy because the solvers may 
verify different termination criteria. While QPDO, QPALM and OSQP monitor the 
residual � in (4) and check the condition ‖�(�⋆)‖∞ ≤ 𝜀opt , MOSEK satisfies the com-
plementarity slackness with different metrics and scalings. Therefore, we decided 
not to include checks on ‖�(�⋆)‖∞ . Instead, we deem optimal a primal-dual pair �⋆ 
if it is returned by a solver declaring success, otherwise we consider it a failure.

All the experiments were carried out on a desktop running Ubuntu 16.04 LTS 
with Intel Core i7-8700, 3.20 GHz, and 16 GB RAM. The code for all the numer-
ical examples is available online at [16].

Metrics Let S, P, and ts,p denote the set of solvers, the set of problems, and the 
time required for solver s ∈ S to return a solution for problem p ∈ P . The shifted 
geometric mean (sgm) t̂s of the run times for solver s ∈ S on P is defined by

with the shift tshift = 1 s [41]. Here, when solver s fails to solve problem p, ts,p is set 
to the time limit. We also adopt performance profiles [18] to compare the solver tim-
ings. These plot the function f r

s
∶ ℝ → [0, 1] , s ∈ S , defined by

Considering ts,p = +∞ when solver s fails on problem p, f r
s
(�) is the fraction of 

problems solved by solver s within � times the best timing. Note that, although we 
cannot necessarily assess the performance of one solver relative to another with 

t̂s∶= exp

(
1

|P|
∑
p∈P

ln
(
ts,p + tshift

))
− tshift

f r
s
(�)∶=

|{p ∈ P ∶ ts,p ≤ � tmin
p

}|
|P| , tmin

p
∶=min

s∈S
ts,p.
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performance profiles, they still represent a tool for evaluating and comparing the 
performance of a solver with respect to the best one [30].

However, performance profiles do not provide the percentage of problems that 
can be solved (for some given tolerance �opt ) within a given time t. Thus, on the 
vein of data profiles [42, Sect. 2.2], we plot the function f a

s
∶ ℝ → [0, 1] , s ∈ S , 

defined by

Considering ts,p = +∞ when solver s fails on problem p, f a
s
(t) is the fraction of prob-

lems solved by solver s within the time t. Note that, in contrast to f r
s
 , the time profile 

t ↦ f a
s
(t) is independent from other solvers and displayed with the actual timings of 

s.

7.2 � Random problems

We considered QPs in the form (1) with randomly generated problem data. In 
each problem instance, the number of variables is n = ⌈10a⌉ , with a uniformly 
distributed, and ranges between 102 and 103 , i.e., a ∼ U(2, 3) . The number of con-
straints is m = ⌈b n⌉ , with b ∼ U(2, 5) . The linear cost is normally distributed, 
i.e., �i ∼ N(0, 1) . The cost matrix is � = ��⊤ + 𝛼�n , where � ∈ ℝ

n×n has 10% 
nonzero entries �ij ∼ N(0, 1) , and � = 10−6 . The constraint matrix � ∈ ℝ

m×n con-
tains 10% nonzero entries �ij ∼ N(0, 1) . The bounds are uniformly distributed, i.e., 
�i ∼ U(−1, 0) and �i ∼ U(0, 1) . We also investigated equality-constrained QPs. For 
these problems, m = ⌈n∕b⌉ , with b ∼ U(2, 5) , and � = � = ��̃ , where �̃i ∼ N(0, 1) . 
We generated 500 instances of each problem class.

Results Computational results are summarized in Table 1 and shown in Figs. 1, 
2. Both performance and time profiles suggest that, for random QPs, QPALM 
exhibits the best performance, with OSQP slightly slower and QPDO third. For 
equality-constrained QPs, instead, OSQP performs best with QPALM and QPDO 
slightly behind. MOSEK is generally slower than the other solvers and, for random 

f a
s
(t)∶=

|{p ∈ P ∶ ts,p ≤ t}|
|P| .
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Fig. 1   Comparison on random problems with performance profiles
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QPs, it often declares success with a solution that does not satisfy the condition 
‖�(�⋆)‖∞ ≤ 𝜀opt.

7.3 � Maros‑Mészáros problems

We considered the Maros-Mészáros test set [39] of hard QPs and selected those with 
n ≤ 103 , due to the limitations mentioned in Sect. 6.1. This yields 73 problems, with 
2 ≤ n ≤ 1000 , 3 ≤ m ≤ 1750 , and the number of nonzeros 6 ≤ N ≤ 22292.

Results Computational results are summarized in Tables  1, 2 and shown in 
Figs.  3, 4. On this test set, QPDO demonstrates its robustness, solving all the 
problems. OSQP is very fast for some problems but has a high failure rate; it fails 
on 5 of the 20 problems reported in Table 2. As a first-order method, OSQP builds 
upon computationally cheap iterations, but it may take many to cope with ill-
conditioning and the relatively high accuracy requirements. QPALM is still com-
petitive but fails on the VALUES problem, due to linear algebra issues. MOSEK 
seems to perform better than the other solvers on the larger problems, but it often 
does not satisfy the condition ‖�(�⋆)‖∞ ≤ 𝜀opt , and fails on many problems. Over-
all, this proves QPDO is both reliable and effective.
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7.4 � Degenerate and infeasible problems

Consider the following parameterized QP, adapted from [37, Sect. 5.4]:

By varying a, b and c, we can create degenerate or infeasible test problems.
First, we consider the degenerate problem obtained by setting a = 0 , b = 3 , and 

c = 0 . This problem admits primal solutions �⋆ ∈ {(1, 𝛼) ∣ 1 ≤ 𝛼 ≤ 3} . Running 
with default settings, QPDO signals optimality after 6 proximal iterations and 14 
Newton iterations, and returns � = (1.0, 1.0) , � = (0.0,−2.0, 0.0) , with residual 
‖�(�)‖∞ = 1.0 ⋅ 10−7.

Second, we consider a primal infeasible QP by setting a = 1 , b = 3 and c = 0 . 
QPDO signals primal infeasibility after 3 proximal iteration and 8 Newton itera-
tions, and returns the certificate �� = (6.6,−6.6,−6.6) ⋅ 104.

Finally, we consider a dual infeasible QP by setting a = 0 , b = +∞ and c = −1 . 
For such problem, (0, 1) is a direction of unbounded descent. QPDO signals dual 

min
�
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2
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Table 1   Comparison on different problem classes with run times, as shifted geometric means (sgm), and 
failure rates

QPDO QPALM OSQP MOSEK

Random QPs Run times (sgm) [s] 0.136 0.099 0.116 0.229
Failure rates [ %] 0 0 0 0

Random Eq. QPs Run times (sgm) [s] 0.065 0.058 0.044 0.210
Failure rates [ %] 0 0 0 2.400

Maros-Mészáros Run times (sgm) [s] 0.074 0.119 2.993 1.594
Failure rates [ %] 0 1.370 23.288 20.548
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Fig. 4   Comparison on Maros-Mészáros problems with time profiles
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infeasibility after 5 proximal iterations and 12 Newton iterations, and returns the 
certificate �� = (1.1 ⋅ 10−5, 1.0 ⋅ 107).

8 � Conclusions

This paper presented a primal-dual Newton-type proximal method for convex 
quadratic programs. We build upon a simple yet crucial result: a suitable merit 
function for the proximal sub-problem is found in the proximal primal-dual aug-
mented Lagrangian function. This allows us to effectively weave the proximal 
point method together with semismooth Newton, yielding structured symmetric 
linear systems, exact linesearch, and the possibility to apply sparse multi-rank 
factorization updates. Requiring only convexity, the method is simple and easily 
warm started, can exploit sparsity, is robust to early termination, and can detect 
infeasibility. We have implemented our method QPDO in a general-purpose 
solver, written in open-source C code. We benchmarked it against state-of-the-art 

Table 2   Comparison on the larger Maros-Mészáros problems ( N ≥ 5000 ) with KKT residual and run 
time for QPDO, QPALM, and MOSEK

Problem n m N Residual ‖�(�)‖∞ Run time [s]

QPDO QPALM MOSEK QPDO QPALM MOSEK

CVXQP1M 1000 1500 9466 1.7·10−6 4.4·10−6 1.0·10−1 2·10−1 2·10−1 1·10−1

CVXQP2M 1000 1250 8717 2.7·10−6 6.2·10−6 5.3·10−1 2·10−1 3·10−1 2·10−1

CVXQP3M 1000 1750 10215 2.0·10−6 1.1·10−6 6.7·10−1 3·10−1 3·10−1 2·10−1

DUAL1 85 86 7201 8.0·10−6 5.9·10−7 1.4·10−6 2·10−3 1·10−3 4·10−3

DUAL2 96 97 9112 2.6·10−6 2.6·10−6 5.3·10−8 1·10−3 9·10−4 6·10−3

DUAL3 111 112 12327 1.3·10−6 9.7·10−7 4.4·10−4 2·10−3 1·10−3 9·10−3

DUAL4 75 76 5673 2.6·10−6 3.6·10−6 8.4·10−5 1·10−3 7·10−4 5·10−3

KSIP 20 1001 18871 2.9·10−6 3.5·10−6 9.2·10−6 6·10−3 6·10−3 10·10−3

PRIMAL1 325 86 6140 6.9·10−7 3.6·10−8 4.8·10−9 2·10−2 9·10−3 1·10−2

PRIMAL2 649 97 8691 3.9·10−7 2.6·10−6 1.0·10−6 5·10−2 3·10−2 7·10−3

PRIMAL3 745 112 22292 2.0·10−7 7.4·10−6 2.1·10−6 2·10−1 8·10−2 2·10−2

PRIMALC8 520 511 5182 1.6·10−7 2.5·10−7 8.2·10−8 4·10−2 2·10−2 4·10−3

QETAMACR​ 688 1088 11613 1.7·10−6 1.3·10−6 2.3·10−3 7·10−1 2·10−1 3·10−2

QFFFFF80 854 1378 10635 9.8·10−7 8.6·10−7 1.5·10−1 6·10−1 5·10−1 7·10−2

QFORPLAN 421 582 6112 4.0·10−6 8.2·10−7 7.4·106 7·10−1 3·10−1 3·10−2

QGROW15 645 945 7227 7.4·10−6 4.0·10−7 7.4·10−2 9·10−2 2·10−1 3·10−2

QGROW22 946 1386 10837 3.7·10−7 3.1·10−6 9.5·10−2 2·10−1 3·10−1 4·10−2

QSCFXM2 914 1574 8285 4.0·10−6 6.2·10−6 4.6·10−1 4·10−1 3·10−1 4·10−2

QSTAIR 467 817 6287 5.0·10−6 9.8·10−7 4.5 6·10−2 10·10−2 2·10−2

VALUES 202 203 7846 1.4·10−6 NaN NaN 1·10−2 1·102 4·10−4
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QP solvers, comparing run times and failure rates. QPDO proved reliable, effec-
tive, and competitive.

Appendix A: Primal‑dual proximal augmented Lagrangian function

We show that the merit function M in (15) for the sub-problem (14) is indeed the 
primal-dual proximal augmented Lagrangian function, proposed and investigated 
in [17, 27, 54]. Let us reformulate (1) as the equivalent problem

where � ∈ ℝ
n and � ∈ ℝ

m are decision variables. The Lagrangian Lz , the augmented 
Lagrangian Lz

�
 , and the primal-dual augmented Lagrangian Mz

�
 functions for (29) 

are given by

for some given parameter 𝜇 > 0 and dual estimate � ∈ ℝ
m ; cf. [7, 14] and [27, 54]. 

Introducing a primal proximal regularization, we define

for some given parameter 𝜎 > 0 and primal estimate � ∈ ℝ
n . In the context of pri-

mal-dual augmented Lagrangian methods, the function Mz
�,�

 is to be jointly mini-
mized with respect to � , � , and y [27, 54]. Following [17], we consider the explicit 
minimization over the auxiliary variable � . The minimizer �� of Mz

�,�
 in (30) is 

readily obtained as

Considering Mz
�,�

 on the manifold defined by �� in (31), we get the primal-dual 
proximal augmented Lagrangian function M�,� . This yields

(29)min
�,�

f (�) + g(�) s.t. �� = �,

L
z(�, �, �)∶=f (�) + g(�) + �⊤(�� − �),

L
z
𝜇
(�, �, �)∶=Lz(�, �, �) +

1

2𝜇
‖�� − �‖2,

M
z
𝜇
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𝜇
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1
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z
�,�
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�
(�, �, �, �) +

�

2
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�𝜇(�, �, �)∶=argmin�M
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= argmin�
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which matches Mk in (15), up to the constant term −�‖�‖2∕2.

Appendix B: Exact linesearch coefficients

We prove that the right-hand side of (22) coincides with � �
k
(�) for all � ∈ ℝ , with the 

coefficients given in  (23). Let �k∶=�� + �k(�k − �∕2) and ��k∶=��� − �k�∕2 ; cf.  
(23). Then, from (15), we have
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