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Abstract

In this study, structural, mechanical, and chemical changes of one-sided ther-

mally loaded carbon fiber reinforced polymers (CFRPs) are investigated. The

aim is to test and reliably predict residual strength and delamination depth by

using infrared spectroscopy. CFRP of different thicknesses (HexPly® 8552/

IM7) were irradiated at varying heat fluxes over various time intervals. The

inhomogeneously distributed matrix degradation was analyzed by means of

attenuated total reflection Fourier transform infrared spectroscopy with a

depth resolution of 0.2 mm. Residual interlaminar shear strength (ILSS) was

determined and microfocused computed X-ray tomography was used to mea-

sure the delamination depth. Principal component analyses were performed to

show which information in the infrared spectra is affected by thermal loading.

Furthermore, the combination of spectra taken at different depths of the CFRP

can be used to develop partial least squares regression models to predict ILSS

and delamination depth. Despite an inhomogenous distribution of thermal

damage, precise predictions of ILSS and delamination depth with models con-

sidering varying sample thicknesses and heat fluxes were achieved.
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1 | INTRODUCTION

The application of carbon fiber reinforced polymers
(CFRPs) is common practice in aerospace industry.
CFRPs have the advantage of a higher strength-to-weight
ratio compared to metal structures.[1] Conversely, CFRPs

are less thermally stable. For example, thermal damage of
CFRP occurs after uncontrolled heat development during
repairs with hot-curing adhesives or overheating of elec-
tronic components. Thermally damaged CFRPs on only one
side are especially difficult to characterize due to
inhomogeneously distributed damage.[2–4] Consequently,
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the knowledge about thermally induced degradation mech-
anisms and phenomena as well as their influence on resid-
ual strength is mandatory if CFRP shall be used despite
thermal damage. Furthermore, the ability to predict ther-
mal damage and residual strength directly on the damaged
structure at an aircraft is desirable.

Thermal damage and the accompanying degradation
phenomena can be characterized in different ways:

Micro attenuated total reflection Fourier transform
infrared spectroscopy (ATR-FTIR) allows the degradation
of the polymer matrix after thermal loading to be
observed.[5–8] In the case of inhomogeneous thermal
loading, measuring along a ground incline plane allows
the distribution of matrix degradation inside the CFRP to
be determined.[9] Hand-held spectrometers, which can be
directly used on damaged aircraft structures, are espe-
cially attractive for the analysis of thermally damaged
CFRP.[10,11] Furthermore, interlaminar shear strength
(ILSS) testing is a convenient mechanical testing method
due to its sensitive response to delaminations.[12–14]

Lastly, the depth of delaminations can be resolved by
means of microfocused computed X-ray tomography
(μCT) with a good resolution in the micrometer scale.
However, μCT cannot presently be used directly on dam-
aged aircraft CFRP due to its complex device setup.[12,15]

In order to analyze thermally induced structural damage
directly, other nondestructive testing methods such as
ultrasonic testing, laser shearography, or infrared ther-
mography are available but with the limitations of a reso-
lution in the millimeter-scale.[16,17] Here, only ultrasonic
testing and infrared thermography allow the determina-
tion of delamination depths.

Damage investigations undertaken by Vetter et al.
showed the coherence between decreasing non-
delaminated thickness and decreasing residual ILSS of
CFRP after one-sided thermal loading.[18] A reliable esti-
mation of residual strength is only possible if the CFRP is
penetrated with delaminations less than 50% of its sam-
ple thickness. Without an exact localization of the delam-
ination depth within the CFRP, no statement about
residual strength and a further usage of a structure is pos-
sible. This often leads to a complete replacement, which
can be expensive and time intensive.[18] Therefore, an
ability to reliably predict the residual strength after ther-
mal loading is preferable, especially directly on the dam-
aged aircraft.

Earlier investigations have shown that infrared spectros-
copy in combination with multivariate regression methods
like, for example, partial least squares regression (PLS),
principal component regression, or artificial neural net-
works are powerful tools to predict residual strength of iso-
thermally treated CFRP.[19–23] Wolfrum et al. established a
PLS model for predicting ILSS after one-sided thermal

loading at one heat-flux by using front or back side spec-
tra.[24] Furthermore, classification models exist based on lin-
ear discriminant analysis that can predict if thermally
induced delaminations are present or not.[25]

Ideally, PLS models are independent of influence
parameters like, for example, sample thickness or heat
flux. Unfortunately, modeling with increasing complexity
of these parameters usually is accompanied with a
decreasing prediction quality. Eibl discussed this diffi-
culty for isothermally treated CFRP.[22] Here, the usage
of spectra from one depth such as surface spectra to pre-
dict volume properties (e.g. ILSS) by means of PLS regres-
sion is possible because thermal damage is evenly
distributed inside the CFRP. However, using only spectra
from one depth to predict volume properties of one-sided
thermally loaded CFRP includes a certain error rate due
to the inhomogenous distribution of the damage. There-
fore, the combination of spectra taken at different depths
of the CFRP is believed to indicate the inhomogenous
thermal damage inside the CFRP in PLS models and thus
provide a more reliable prediction of volume properties.
The aim of this work is to find the best combination of
spectra by establishing PLS models with varying number
and depths at which the spectra were taken as well as the
distance between them to achieve an improved predic-
tion quality and universal applicability.

2 | EXPERIMENTAL

2.1 | Material and thermal treatment

For this study, the commercially available CFRP
HexPly® 8552/IM7 by Hexcel Corporation was
used.[26] CFRP panels are produced with an unidirec-
tional lay-up and a sample thickness z of 4 and 8 mm.
These panels were sawed in samples with a size of
100 � 100 mm2 and were subsequently irradiated with
a conical heater of a cone calorimeter by Fire Testing
Technology ltd. under different conditions. The irradi-
ation times and heat for all samples are listed in
Table 1. The temperature was measured with type K
thermocouples laminated on the irradiated front side
(Tfs) and on the back side (Tbs).

2.2 | Analytical methods

Micro ATR-FTIR spectroscopy was performed with a
Bruker Tensor 27 spectrometer equipped with a Harrick
ATR cell using a silicon crystal (diameter = 100 μm). For
a depth-resolved analysis of matrix degradation, three
spectra per depth were taken along a ground incline
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TABLE 1 List of all tested CFRP samples and the associated heat flux, sample thickness (z), and irradiation time

Sample
thickness
z (mm)

Heat
flux
(kW/m2)

Irradiation
time (s)

ILSSτ
(N/mm2)

Delamination
depth zd (mm)

Front side
temperature
Tfs (�C)

Back side
temperature
Tbs (�C)

4 No thermal loading 104 ± 5.2 0 - -

15 60 109 ± 4.7 0 91 59

180 108 ± 3.5 0 221 189

300 105 ± 4.0 0 279 247

600 85.6 ± 6.1 0 318 282

900 70.0 ± 8.5 2.83 318 278

1800 60.6 ± 9.6 3.04 318 276

30 60 106 ± 4.4 0 197 140

120 95.1 ± 6.6 0 311 248

180 44.5 ± 7.8 3.83 392 240

220 34.6 ± 6.0 4* 480 250

240 28.1 ± 5.9 4* 487 242

50 15 105 ± 5.2 0 202 108

30 104 ± 5.2 0 261 165

50 101 ± 5.0 0 330 227

55 93.6 ± 4.7 0 343 241

60 90.0 ± 4.5 0 361 258

65 79.4 ± 4.0 0.47 375 273

70 63.9 ± 3.2 1.48 392 285

75 55.4 ± 2.8 2.16 412 295

80 41.1 ± 2.1 3.59 437 307

8 No thermal loading 101 ± 2.9 0 - -

15 60 104 ± 1.0 0 117 57

180 106 ± 0.5 0 189 133

300 102 ± 1.5 0 235 181

600 91.7 ± 1.8 0 296 246

900 79.7 ± 7.9 1.68 315 262

1800 55.7 ± 4.9 6.45 325 265

2700 50.7 ± 8.3 6.31 326 263

30 120 104 ± 7.9 0 256 149

240 84.3 ± 8.2 1.26 356 241

360 43.5 ± 3.7 6.21 475 286

420 33.0 ± 8.1 6.87 490 291

480 25.1 ± 3.4 8* 500 292

50 60 106 ± 0.3 0 306 128

90 98.2 ± 3.6 0.19 360 179

100 96.2 ± 0.7 0.54 378 192

120 80.3 ± 1.3 1.61 419 220

140 69.5 ± 6.6 2.49 484 248

160 58.1 ± 1.7 4.45 502 269

Note: Additionally, the ILSS (τ), delamination depth (zd), front side temperature (Tfs), and back side temperature (Tbs) are listed.
Abbreviations: CFRPs, carbon fiber reinforced polymers; ILSS, interlaminar shear strength.
*When zd = z, delaminations penetrate through the whole CFRP.

4140 VETTER ET AL.



plane with a defined step size between the measuring
points resulting in a depth-resolution of 0.2 mm.

Delaminations were observed by means of the
microfocused μCT system V-TOME XL 300 by GE Sens-
ing & Inspection Technologies using a 300 kV microfocus
X-ray source. For specimens with the dimension
8 mm � 8 mm � z mm, a resolution of 7.1 μm was
obtained. The delamination depth zd was determined by
measuring the non-delaminated thickness znd (distance
between deepest delamination and back side, see
Figure 1) and subtracting it from the sample thickness z.
An estimation of the uncertainty was about six voxels
(= 42.6 μm) was expected.

ILSS testing was performed according to DIN EN
2563.[27] Thin specimens (z = 4 mm) have the dimen-
sions 40 mm � 20 mm � 4 mm and were tested on a
Zwick/Roell Z020. The distance between the supports
was scaled up to 20 mm and the radii of the loading nose
and supports to 5 mm. Thick specimens (z = 8 mm) were
tested on a Zwick/Roell Zmart.Pro with specimen dimen-
sions of 80 mm � 40 mm � 8 mm. Here, the distance of
the supports was 40 mm and the radii of the loading nose
and supports are 10 mm. Each mentioned ILSS τ is the
mean of minimum three single values.

2.3 | Multivariate data analysis

Spectra for multivariate data analysis were pretreated by
calculating the first derivative according to Savitzky–
Golay (second polynomial order, 13 points) followed by
standard normal variate transformation.[28] The relevant
spectral range was limited from 1800 to 900 cm�1. Data
pretreatment as well as principal component analysis
(PCA) and PLS regression were performed with the soft-
ware The Unscrambler® X Version 10.5.1 by CAMO

Software AS. Both PCA and PLS were performed with
mean centered date. For both, seven principal compo-
nents or factors respectively were calculated by using the
Nipals algorithm.

For evaluating the quality of the models, two parame-
ters were mainly used: The root mean square error of the
calibration (RMSEC) and the coefficient of determination
R2, which describes the amount of the total variance of
the dependent variable (ILSS, delamination depth)
explained by the independent variables (spectral data).
Furthermore, the explained variance and the BIAS,
which is the mean of all residuals, were used for a further
characterization of the model quality. Cross validation
(CV) was calculated by leaving out randomly one
object.[28]

3 | RESULTS AND DISCUSSION

3.1 | Degradation phenomena after one-
sided thermal loading

3.1.1 | Structural damage and influence on
residual strength

μCT is a well-accepted method to analyze structural dam-
age inside CFRP. Figure 1 shows cross sections of CFRP
samples with a thickness of 8 mm irradiated at 50 kW/
m2 for 60, 90, and 160 s. As shown in Figure 1, after an
irradiation time of 90 s, delaminations occur near the
irradiated surface. With further increasing irradiation
time, delaminations penetrate deeper inside the CFRP as
depicted for CFRP after thermal treatment for 160 s (also
see Table 1). A characteristic parameter for structural
damage inside the CFRP is the delamination depth zd.
Figure 2 shows the delamination depth for 4 and 8 mm
thick specimens at different irradiation times irradiated
at 50 kW/m2. It is shown, that for thin specimens, delam-
inations migrate faster inside the CFRP than for thick
ones, which is dominantly caused by the lower heat
capacity and therefore higher temperatures occurring for
thinner specimens.[29] For example, Tfs and Tbs for 4 mm
thick CFRP irradiated for 60 s at 50 kW/m2 were signifi-
cantly higher than for 8 mm thick CFRP irradiated at the
same heat flux and irradiation time (4 mm/8 mm:
Tfs = 361�C/306�C, Tbs = 258�C/128�C; see Table 1). As
the development of delaminations is inter alia dependent
on temperature, structural damage occurs faster for thin-
ner specimens.[18]

Furthermore, Figure 2 shows the ILSS for 4 and
8 mm thick specimens irradiated at 50 kW/m2. Also,
residual strength for thinner CFRP decreases faster than
for thick CFRP. Comparing the courses of delamination

FIGURE 1 Three computed X-ray tomography-cross sections

of carbon fiber reinforced polymers specimens irradiated at 50 kW/

m2 over different time intervals and with a thickness of 8 mm. The

non-delaminated thickness znd is marked. Dotted arrows indicate

the irradiated surface
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depth and residual ILSS, ILSS noticeably decreases with
increasing delamination depth. The same behavior can
be observed for 4 and 8 mm thick specimens irradiated at
15 and 30 kW/m2. For these lower heat fluxes, however,
a longer irradiation time was necessary to induce delami-
nations and cause a loss in residual strength (see
Table 1).[18]

3.1.2 | Matrix degradation

The irradiation-induced matrix degradation must also be
taken into account to characterize thermal damage of
CFRP. For this kind of damage, ATR-FTIR-spectroscopy
is an appropriate detection method. Spectrum (1) in
Figure 3 corresponds to the unloaded 8552/IM7. Besides
epoxy resin, 8552/IM7 contains thermoplastic poly-
ethersulfone (PES).[9] Both components can be found in
the spectrum: the bands at 1510 and 1610 cm�1 corre-
spond to the C C stretching vibrations of the aromatic
ring structure in the epoxy resin, whereas the bands at
1486 and 1586 cm�1 are characteristic for PES. Further-
more, the band at 1150 cm�1 can be assigned to the sym-
metric stretching vibration of the SO2-group in PES.[6,30]

The wavenumber range between 1650 and 1760 cm�1

can be assigned to C O stretching vibrations of oxidized
surface species. Figure 3 depicts spectra of surfaces of
CFRP after thermal treatment at 50 kW/m2 for 60 and
120 s. It can be shown, that broad bands between 1650
and 1760 cm�1 arise with increasing thermal loading due
to the presence of oxygen on the surface which, in combi-
nation with temperature, causes thermo-oxidative degra-
dation of the epoxy resin.[31,32] Due to the limited
diffusion of oxygen into the CFRP, this thermo-oxidative

reaction occurs only close to the irradiated surface (max.
penetration depth �100 μm).[33] Furthermore, with increas-
ing thermal loading, the intensity of the 1510 cm�1 band,
which is characteristic for the less thermally stable epoxy
resin, decreases while the band for the more stable PES at
1486 cm�1 remains constant. Therefore, the intensity ratio
of the bands at 1510 and 1486 cm�1 is characteristic of
matrix degradation caused by thermal loading and can be
denoted as a damage quantity.[9]

This ratio is calculated from spectra measured along a
ground incline plane to generate depth profiles of matrix
degradation for one-sided thermally treated CFRP. Figure 4
shows depth profiles for CFRP with a thickness of 8 mm
irradiated at 50 kW/m2 for (A) 60, (B) 120, and (C) 160 s,
respectively. In the early stage of irradiation (60 s), no
matrix degradation can be observed in the specimens. A
decrease of I1510 cm

�1/I1486 cm
�1 can be recognized close to

the irradiated surface (0 mm) for specimens irradiated for
120 s. After 160 s, the specimen surface was strongly dam-
aged and a gradient of matrix degradation through the
CFRP was clearly visible.

Additionally, the delamination depth measured with
μCT is marked by vertical dotted lines. These lines cross
the gradients of matrix degradation at a value of �0.71
for I1510 cm-1/I1486 cm-1 for 120 and 160 s. This value cor-
responds to the calculated threshold value of 0.74 ± 0.05,
below which the formation of delaminations in 8552/IM7
occurs.[18] The threshold value is indicated by the hori-
zontal line in Figure 4. Interestingly, the horizontal and
vertical lines cross where the drop of the I1510 cm-1/
I1486 cm-1 curves start when approaching the front side of
the sample. It is concluded, that above these depths,

FIGURE 2 Interlaminar shear strength (ILSS) τ and the

delamination depth zd vs. the irradiation time for 4 and 8 mm thick

carbon fiber reinforced polymers irradiated at 50 kW/m2 FIGURE 3 Attenuated total reflection Fourier transform

infrared-spectra from the surface of 8 mm thick 8552/IM7 carbon

fiber reinforced polymers specimens without thermal loading (1),

after an irradiation at 50 kW/m2 for 60 s (2) and 120 s (3)
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delaminations are responsible for reduced heat conduc-
tion toward the back side of the sample and cause pro-
nounced matrix degradation.[34]

3.2 | PCA of IR spectra

The application of multivariate data analysis in the form
of PCA allows for the exploration of spectral data (FTIR)
patterns.[28,35] In a PCA, multidimensional data like, for
example, spectra from different samples are reduced to
fewer dimensions by calculating new latent variables

called principal components (PCs) or factors. They are
the axes of a new coordinate system displaying the maxi-
mum variance in the spectral data. A score plot shows
the samples transferred as scores into the new coordinate
system. The measure of how strong single variables
(e.g. wavenumbers of spectra) influence the position of a
score in the PC coordinate system can be seen in a load-
ing plot. A detailed description of the calculation of a
PCA can be found in ref. [28].

PCA was applied on the depth-resolved spectral data
belonging to 8 mm thick CFRP specimens irradiated for
60, 120, and 160 s at 50 kW/m2 as shown in Figure 4. The

FIGURE 4 Intensity ratio of the

bands at 1510 and 1486 cm�1 plotted

against the sample depth of 8 mm thick

carbon fiber reinforced polymers

(0 mm = irradiated surface) irradiated at

50 kW/m2 for (A) 60 s, (B) 120 s and

(C) 160 s. The horizontal dotted line

indicates the threshold value of matrix

degradation, below whose delaminations

develop[17]; the vertical dotted lines

mark the delamination depth measured

with computed X-ray tomography

FIGURE 5 Score plot of a principal component analysis calculated by using spectra of different depths of 8 mm thick carbon fiber

reinforced polymers samples irradiated at 50 kW/m2 for (A) 60 s, (B) 120 s, and (C) 160 s (arrows mark increasing thermal damage; dotted

ellipse marks strong thermal damage between 0 and 0.7 mm with exposed fiber-bundles). The data points are assigned to four different

depth ranges
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resulting score plots for PC 1 and PC 2 are shown in
Figure 5. The data points were organized in four groups
belonging to different depth ranges inside the specimens
(0–2 mm, 2–4 mm, 4–6 mm, and 6–8 mm). For the spec-
tra taken after 60 s of irradiation, the score plot shows
data points lying close together. After an irradiation of
120 s, data points were more spread out (see Figure 5(B)).
It is noticeable that the data points with a sample depth
between 2 and 8 mm lie close together, whereas only the
data points in the range of 0–2 mm (black dots in
Figure 5(B)) were separated. Regarding Figure 4(B),
in this depth range pronounced matrix degradation and
delaminations were observed, whereas thermal degrada-
tion was not pronounced between 2 and 8 mm. The load-
ings, which mainly influence and separate the scores
along PC 1 and thus regarding thermal loading, are domi-
nated by the wavenumbers around 1510 cm�1 (negative
load on PC 1) for intact CFRP and around 1150 and
1486 cm�1 (positive load on PC 1) for thermally damaged
CFRP. Therefore, it is shown that PCA separates data
regarding thermal damage and according to Section 3.1.2,
where these two bands are discussed to be characteristic
for thermal loading.

The score plot for CFRP treated at 160 s in Figure 5
(C) shows an even more pronounced separation of the
data. The data points corresponding to spectra indicating
strong matrix degradation and delaminations (0–4 mm,
black dots and gray triangles) were most separated. The
data are distributed along PC 1 according to the separa-
tion at 120 s. Further, a strong separation of the data
points is recognized along PC 2 for samples taken in a
depth range between 0 and 0.7 mm (see ellipse in
Figure 5(C)), where thermal degradation of the matrix
already leads to the exposure of fiber bundles.

In summary, it is shown that the application of PCA
allows the separation of spectral data regarding thermal
loading, where strongly delaminated and non-delaminated
areas of the CFRP can be identified. Considering the influ-
ence of delaminations on residual strength (see Sec-
tion 3.1.1), the use of infrared spectroscopy in combination
with multivariate data analysis should allow the prediction
of residual strength.

3.3 | Prediction of the residual ILSS
using multivariate data analysis

Due to the sensitivity of the IR spectra regarding thermally
induced structural damage (see Section 3.1.2), the IR spectra
can be used for the prediction of mechanical properties
(ILSS) and structural damage (delamination depth). PLS
regression proved to be an appropriate multivariate calibra-
tion tool.[10,21–24] For PLS, separate PCAs of spectral and

response (e.g. ILSS) data are calculated while simulta-
neously maximizing the covariance between those data.
The calculated loadings can be used to create a linear
regression equation. The response parameter of an
unknown sample can be predicted with this equation by
using spectral data. A detailed description of the calculation
of a PLS can be found in ref. [28].

In the following chapters, different PLS models are
shown and discussed with view on their prediction qual-
ity. With the aim of finding a preferably universally appli-
cable PLS model, models were built for different
parameter settings (PS). Therefore, four groups of data
with different parameter settings are introduced (see
Table 2): The simplest PS-1 contains spectra of CFRP
with a thickness of 8 mm irradiated at 50 kW/m2. This
parameter setting mainly serves as reference because only
one heat flux and one specimen thickness are considered.
To investigate the influence of the heat flux, PS-2 is intro-
duced containing 8 mm thick CFRP irradiated at 15, 30,
and 50 kW/m2. PS-3 includes 4 and 8 mm thick speci-
mens irradiated at 50 kW/m2 and was used for observing
the influence of varying sample thickness. Finally, PS-4
involves the whole data set, i.e. 4 and 8 mm thick CFRP
irradiated at 15, 30, and 50 kW/m2. All abbreviations as
well as the corresponding RMSECV and R2 (Cross Vali-
dation) of the different models are listed in Table 2 for
the prediction of both ILSS and the standardized delami-
nation depth zd/z.

3.3.1 | PLS with spectra taken at the surface
of the CFRP

First, spectra for modeling were taken at the irradiated
surface of 8 mm thick CFRP specimens after thermal
loading at 50 kW/m2 for different time intervals (PS-1).
Figure 6(A) contrasts the calculated and the measured
ILSS. The PLS model shows an RMSEC of 0.4 N/mm2

and a corresponding R2 of 0.999 as well as an RMSECV
of 2.1 N/mm2 and a corresponding R2 of 0.987. Thus, a
good prediction quality can be achieved for CFRP with
one thickness irradiated at one heat flux. With increasing
complexity of the sample parameters (PS-1 à PS-2/PS-3
à PS-4), the RMSE increases and R2 decreases. Varying
only one parameter, i.e. adding either a sample thickness
or additional heat fluxes downgrade the prediction qual-
ity (see Table 2), the deterioration is approximately simi-
lar for PS-2 and PS-3 (PS-2 RMSECV: 8.3 N/mm2; PS-3
RMSECV: 8.5 N/mm2). The maximum variation of sam-
ple parameters regarded in this work includes CFRP irra-
diated at 15, 30, and 50 kW/m2 for different irradiation
times and with thicknesses of 4 and 8 mm (PS-4),
i.e. both sample thickness and heat flux are varied. ILSS
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calculated with this PLS model is shown in Figure 6(B).
An R2 (calibration) of 0.916 and an RMSEC of 7 N/mm2

a as well as an R2 (CV) of 0.833 and an RMSECV of
9.9 N/mm2, which corresponds to an error of about 10%,
were obtained. As the RMSE and R2 for the calibration
are optimistic because spectra are used simultaneously
for calculating the model and RMSE and R2, in the fol-
lowing chapters, RMSE and R2 only for cross validation
are used for getting a more realistic assessment of the
models.

Further, the standardized delamination depth zd/z was
predicted by using surface spectra. R2 for the prediction of
the delamination depth (see Table 2) decreased from 0.925
for PS-1 over 0.869 (PS-2) and 0.817 (PS-3) down to 0.786
for PS-4. Here, the variation of the sample thickness (PS-3)
led to a more pronounced deterioration of the prediction
quality than the variation of the heat flux (PS-2). Analo-
gously, the RMSECV increased from 0.05 (PS-1) to 0.17 (PS-
4), which is an error of 17%. Comparing the RMSECV and
R2 for the prediction of the delamination depth and ILSS,
PLS models predicting ILSS show a better prediction quality
than models predicting the delamination depth. An expla-
nation for this can be the detection limit of the μCT due to
the maximum resolution of 7.1 μm for detecting all delami-
nations. This means that smallest delaminations are not
detected and therefore structural damage cannot be consid-
ered thoroughly. However, ILSS can be affected by a ther-
mally induced weakening of the fiber-matrix-adhesion and
therefore displays structural thermal damage more globally.

Additionally, PLS models were established by using
single back side spectra (see Table 2). It is shown, for
example, that the RMSECV of a PLS model established
with CFRP specimens with PS-4 is 9.8 when using back
side spectra and 9.9 when using spectra from the irradi-
ated surface. Despite a better spectra quality of the back
side spectra due to not exposed fiber bundles at the sur-
face, no improvement in the prediction quality was
achieved. This lack of improvement can be explained by
the lower variance of the spectral data concerning ther-
mal loading at the back side of the CFRP (see Figure 4).

Summarizing, it is shown, that with increasing com-
plexity of the parameter settings, the prediction quality
decreases for models built with single surface spectra,
which is why this model should only be used for one
sample thickness and one heat flux to get a reliable
prediction.

3.3.2 | Combination of spectra taken at the
front and back side of the CFRP

A possible way to improve the prediction quality is to
take spectra at different depths of the CFRP and combineT
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them for PLS to predict ILSS and delamination depth.
The simplest way to accomplish this would be to combine
the front and back side spectra. R2 and RMSECV for the
PLS models built for PS-1 to PS-4 are depicted in
Figure 7. It is shown that the combination of front and
back side spectra leads to a better prediction quality com-
pared with models just using single surface spectra for
the prediction of both ILSS and delamination depth.
For example, the RMSECV for the predicted ILSS or
delamination depth zd/z for PS-4 decreases from 9.9 or
0.17 for PLS models taking only the surface spectra into
account and to 6.3 or 0.11, respectively, for PLS models
considering front and back side spectra. Furthermore, the

prediction quality decreases less with increasing com-
plexity of parameter settings for the models using
combined spectra than for those using single spectra.
Also, models predicting ILSS show a better prediction
quality (lower RMSECV and higher R2) than models
predicting the delamination depth due to more thorough
consideration of structural damage by ILSS (see Sec-
tion 3.3.1). However, it is noticeable, that the prediction
quality for the parameter setting PS-3 is especially lower
for the prediction of ILSS than for PS-2, i.e. models
established by combining spectra from two sides lose
more prediction quality with increasing variation of heat
flux than of sample thickness.

FIGURE 6 Measured vs. predicted interlaminar shear strength values determined with partial least squares-models using IR spectra

taken at the irradiated surface of: (A) 8 mm thick CFRP samples treated at 50 kW/m2 (PS-1) 0(B) 4 and 8 mm thick CFRP after an

irradiation at 15, 30, and 50 kW/m2 (PS-4) (calibration data are depicted, RMSE and R2 are given for calibration (C) and cross validation

[CV]). CFRPs, carbon fiber reinforced polymers; PS, parameter setting; RMSE, root mean square error

FIGURE 7 R2 and root mean square

error cross validation of partial least

squares models built by only taking the

irradiated surface spectra and by

combining spectra taken at the irradiated

surface and the back side of carbon fiber

reinforced polymers with different

parameter settings for the prediction of

interlaminar shear strength (A) and the

depth of delaminations (B) (PS-1 to PS-4:

see Table 2). PS, parameter setting
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3.3.3 | Combination of spectra taken at
different depths close to the irradiated surface
of the CFRP

Due to the improvement of the prediction quality by
combining front and back side spectra, a further way to
enhance the prediction quality is to combine spectra from
different depths, i.e. spectra taken not only at the surface
but also taken inside the CFRP. Due to the combination
of spectra from different depths to predict ILSS and
delamination depth by PLS, inhomogenously distributed
thermal damage inside the CFRP (see Figure 4) can be
incorporated in the model. Therefore, CFRP layers with a
defined thickness Δz have to be removed mechanically,
e.g. by grinding or milling. A constant Δz of 0.2 mm is
chosen. A first spectrum was recorded at the irradiated
surface. After the first grinding process, the next spec-
trum was taken 0.2 mm deeper and so on down to the
deepest required spectrum (dependent on the total num-
ber of combined spectra). The recorded spectra were
pretreated separately and subsequently combined by
stringing them together. Figure 8 shows the juxtaposition
of spectra and the different strong pronounced matrix
degradation dependent on the sample depth. Regarding
the intensities for the band at 1510 cm�1, which is char-
acteristic for the less thermally stable epoxy resin, it can
be seen that spectra taken in deeper areas of the speci-
men show a higher intensity (cf. Figure 4).

The calculation of a predicted value (e.g. ILSS τ) with
a PLS model using spectra taken at different depths was
done according to the following regression Equation (1).

The spectral intensities I were strung together and multi-
plied with the regression coefficients b. In (1), i is the
number of the spectrum (imax = number of combined
spectra), j is the number of the variable in the respective
spectrum, and b0 is a constant value, which is defined
together with the regression coefficients in the calibration
of the model.

τ¼ b0þ I1,1 I1,2 � � � I2,1 I2,2 � � � Ii,j
� �

� b1,1 b1,2 � � �b2,1 b2,2 � � �bi,j
� �T ð1Þ

Below, RMSECV and R2 are discussed for PLS models
established with a varying number of combined spectra
and for different parameter settings. Figure 9(A) shows
the R2 and RMSECV for the calibrated PLS model for
predicting ILSS. For PS-1, all PLS models show good pre-
diction quality due to no variation in the sample parame-
ters. With increasing complexity of the parameter
settings (from PS-1 to PS-4), RMSECV increases and R2

decreases for the PLS model built with one spectrum (see
Section 3.3.1). For PLS models established with two com-
bined spectra with a distance of 0.2 mm, however, a
decrease for the RMSECV of about 40% was observed for
PS-4 compared with the RMSECV calculated with the
PLS done with single surface spectra. With increasing
number of combined spectra, the RMSECV value further
decreases about 50% for four combined spectra (see also
Table 2).

Regarding the prediction of the delamination depth
with combined spectra (see Figure 9(B)), an improvement

FIGURE 8 Illustration of the combination of spectra taken in different depths exemplarily shown for 8 mm thick carbon fiber

reinforced polymers irradiated for 120 s at 50 kW/m2
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of the prediction quality can also be achieved with an
increasing number of combined spectra. But as already
mentioned for the PLS models established by using single
surface spectra, models for the prediction of ILSS show a
better prediction quality than models predicting the
delamination depth due to limited resolution of the μCT
(see Section 3.3.1). Therefore, in the following discussion,
the focus lies on the prediction of ILSS.

The regression coefficients, b, give insight as to how
strong the predicted value is influenced by different spec-
tral regions. Analyzing the regression coefficients of the
PLS model can help to understand why ILSS can be
predicted by using IR spectra and why the prediction
quality can be increased by combining spectra. Figure 10

depicts the regression coefficients for the PLS model cre-
ated by combining four spectra for PS-4. It is shown that
the regression coefficients especially around 1525 cm�1

(wavenumber after pretreatment, corresponds to the
band at 1510 cm�1) show a high influence. As discussed
for Figure 3 (Section 3.1.2), the band at 1510 cm�1

decreases with increasing thermal loading. This means
that if there is a high intensity at 1510 cm�1, which is
accompanied by no or low thermal loading, a high ILSS
value is calculated due to the strong influence of this
spectral region on the calculation of the ILSS. In contrast,
for a low intensity at 1510 cm�1 associated with strong
thermal damage, subsequently a lower ILSS value is cal-
culated. Furthermore, the high influence of the bands at

FIGURE 9 R2 and root mean square error cross validation of partial least squares-models built by combining no, 2, 3, or 4 spectra taken

in different depths with a constant step size of 0.2 mm starting at the irradiated surface of carbon fiber reinforced polymers with different

parameter settings for the prediction of interlaminar shear strength (A) and the depth of delamination (B) (PS-1 to PS-4: see Table 2)

FIGURE 10 Regression coefficients for factor one of the partial least squares-model with four combined spectra taken at the irradiated

surface and in the depths 0.2, 0.4, and 0.6 mm of PS-4 carbon fiber reinforced polymers samples used for the prediction of the residual

interlaminar shear strength
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1510 cm�1 is given for all four combined spectra. This
means that spectra from different depths corresponding
to different strong thermal damage are used and there-
fore the inhomogenous distribution of thermal damage
inside the CFRP (see Figure 8) is considered for calculat-
ing the ILSS. Having the highest regression coefficients
for the spectral area around 1525 cm�1 is also ascertained
for the combination of two or three spectra. But as shown
in Figure 9, with increasing number of combined spectra, a
better prediction quality can be achieved, which can be
explained by the consideration of the thermal loading at
four different depths and therefore the best reproduction of
the inhomogenously distributed thermal damage. Further-
more, the stronger influence of the regression coefficients
for the spectra of the irradiated surface (spectrum 1) com-
pared to the ones of the other spectra taken in deeper areas
can be assigned to additional thermo-oxidative degradation.
This degradation occurs due to the oxidative atmosphere at
the surface, which leads to a more pronounced matrix deg-
radation than in the absence of oxygen (see Section 3.1.2).[7]

The thermo-oxidation can also be seen at the more pro-
nounced signals around 1650 cm�1 for the surface spectrum
(1) compared with spectra (2) to (4) in Figure 10.

Additionally, further parameters for assessing the pre-
diction quality were considered. The explained variance
(see Table 3) provides information about how much of
the variance of the ILSS can be explained per factor,
i.e. the higher the explained variance the better. It is
shown that the explained variance for PLS models with
combined spectra is higher than for the PLS model using
only single surface spectra. The models with combined
spectra no longer show any increase of the explained var-
iance from factor five, while the explained variance of the
model with the single surface spectra increases up to a
factor of seven. Consequently, models with combined

spectra need less factors to describe the variance than a
model solely based on single surface spectra.

Furthermore, the bias is regarded, which is defined as
the mean of all residuals (difference between predicted
ILSS and measured ILSS). In general, for a good calibra-
tion, the bias lies very close to zero. Table 3 further pre-
sents the bias for all factors of PLS models with varying
numbers of combined spectra. It is shown that the bias
for the model with no combined spectra is notably higher
compared to the models with combined spectra. Further-
more, with increasing number of combined spectra, the
bias lies closer to zero, which shows that the combination
of more spectra leads to a better calibration. The unusu-
ally high bias for factor six and seven of the models with
three and four combined spectra can be explained by
increasing consideration of the spectral noise and not
important spectral information anymore in the model,
i.e. the best prediction of ILSS by using three or four com-
bined spectra can be achieved by using five factors.

Finally, it was investigated whether the improvement of
the prediction quality results only from the combination of
any multiple spectra and therefore from an expanded data
set or by combining spectral data at different depths. There-
fore, different PLS models were established using different
measured spectra at only one depth (irradiated surface
[0 mm]). Additionally, one measured spectrum was strung
together several times and a mathematically calculated ran-
dom noise (sum of the spectral intensity ±10% of the inten-
sity) was added to each spectrum. Table 4 shows both
RMSECV and R2 for PLS models of spectra taken at the irra-
diated surface of CFRP specimens (PS-4) with varying num-
ber of combinations. Despite increasing number of
combined spectra, no significant improvement in the predic-
tion quality was achieved. Therefore, a sole combination of
spectra does not enhance the prediction quality. This

TABLE 3 Explained variance and bias for each factor of the PLS-model built by combining spectral data taken at the irradiated surface

and in different depths with a step size of 0.2 mm of CFRP (PS-4) for the prediction of the residual ILSS (comb. = combination)

Explained variance (%) Bias

No
comb.

Comb. of
two spectra

Comb. of
three spectra

Comb. of
four spectra

No
comb.

Comb. of
two spectra

Comb. of
three spectra

Comb. of
four spectra

Factor 1 68.1 73.2 65.5 74.7 0.58 0.10 0.01 0.02

Factor 2 71.0 87.4 77.8 82.0 0.09 �0.21 0.01 0.00

Factor 3 79.6 91.0 87.4 87.7 �0.09 0.24 �0.03 0.00

Factor 4 83.4 92.8 90.5 92.9 �0.16 �0.01 �0.01 0.00

Factor 5 85.8 94.6 94.7 95.6 0.87 �0.02 0.00 0.00

Factor 6 90.0 95.5 95.6 96.9 �0.06 0.01 0.08 0.01

Factor 7 91.6 96.6 96.8 97.4 0.04 0.06 0.15 0.02

Abbreviations: CFRPs, carbon fiber reinforced polymers; ILSS, interlaminar shear strength.
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improvement results from the combination of spectra taken
at different depths and the accompanying improved consid-
eration of the inhomogeneously distributed thermal damage
inside the specimens.

3.3.4 | Influence of the depth of the
combined spectra on the prediction quality

Due to the inhomogenously distributed thermal damage
inside the CFRP, the influence of the depth, where the

spectra were recorded, as well as the step size into
the depth between the combined spectra was investi-
gated. Table 2 lists all RMSECV and R2 for the prediction
of ILSS and the standardized delamination depth. In the
following section, the prediction of ILSS of PS-4 CFRP
specimens will be discussed. For the influence of step size
and depth of recorded spectra on the prediction of the
delamination depth, a comparable behavior was found
(see Table 2).

At first, the step size between the spectra was varied.
Figure 11(A) shows the RMSECV for PLS models

TABLE 4 RMSECV and R2 of PLS models using various numbers of combined spectra from the irradiated surface established for CFRP

(PS-4) to predict ILSS

Number of
combined spectra

Depth of taken
spectra [mm] Type of spectra

RMSECV
ILSS [N/mm2] R2 ILSS

1 0/�/�/� measured 9.9 0.833

2 0/0/�/� measured 9.1 0.865

0/0/�/� random noise 9.8 0.845

3 0/0/0/� measured 12.0 0.749

0/0/0/� random noise 9.0 0.867

4 0/0/0/0 random noise 9.3 0.855

Note: The combined spectra are either measured at different spots on the surface or a random noise is added mathematically.
Abbreviations: CFRPs, carbon fiber reinforced polymers; ILSS, interlaminar shear strength; RMSECV, root mean square error cross validation.

FIGURE 11 Root mean square error cross validation of partial least squares models for the prediction of interlaminar shear strength

built by taking one spectrum or combining 2, 3, or 4 spectra taken (A) in different depths with a varying step size Δz starting at the irradiated

surface and (B) in varying depth but with a constant step size between the spectra of 0.2 mm of PS-4 carbon fiber reinforced polymers
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established by combining different numbers of spectra
for three different step sizes Δz (0.2, 1.0, and 2.0 mm) into
the depth starting with the spectrum at z = 0 mm. This
means, for example, that spectra were taken at a depth of
0, 1, and 2 mm for the combination of three spectra with
Δz = 1.0 mm. As expected, the RMSECV decreases with
increasing number of combined spectra. However, no
trend was apparent for increasing step size, i.e. for a con-
stant Δz between the spectra, the distance between the
gathered spectra seems to be secondary. This can be
explained by two contrary effects: small Δz are more sen-
sitive toward thermal loading due to the steeper slope
occurring close to the irradiated surface. Conversely, big-
ger Δz values are more representative for the total dam-
age distribution inside the specimens. Due to no
apparent trend for changing step sizes, it seems that both
explanations can be weighted equally. Consequently, for
practical application, Δz should be chosen as small as
possible to avoid the mechanical removal of a high
amount of CFRP, which reduces the sample thickness
and therefore causes a higher effort to repair.

Furthermore, the depth at which the spectra were
taken was varied. Spectra are taken with a constant dis-
tance Δz into depth of 0.2 mm (see Section 3.3.3) but at
different depths z of 0, 1, 2, and 3 mm. This means, for
example, that spectra for a combination of three spectra
at a depth of 1 mm were taken at 1, 1.2, and 1.4 mm.
Figure 11(B) shows the RMSECV for PLS models
established for single spectra and for combined spectra of
a maximum of four spectra at different depths for the pre-
diction of ILSS. Using single spectra from the irradiated
surface (no combination), a high RMSECV was observed
for the PLS model using surface spectra. The PLS model
based on single spectra taken at a depth of 1 mm shows a
lower RMSECV. Compared with the surface model, dif-
ferent pronounced thermal damage can still be observed
at 1 mm but with the advantage of not having free fiber-
bundles on the sample surface after strong thermal load-
ing, which deteriorate the spectra quality and therefore

the prediction quality of a model. Furthermore, the
RMSECV increased again with increasing depth because
spectra at deeper areas of the CFRP showed less variation
regarding thermal loading due to lower thermal damage
occurring deeper inside the CFRP (see Figure 4). It is
shown, that for increasing number of combined spectra,
the RMSECV decreases. In addition, the differences
between the RMSECV values at different depths for each
number of combinations decrease for increasing number
of combined spectra. This means that with higher num-
bers of combined spectra, influences caused by the depth
at which the spectra were taken can be reduced.

Finally, the manner in which spectra are gathered at
specific depths and how it influences the model was
investigated. Table 5 lists RMSECV and R2 of PLS
models established with spectra taken at different depth
ranges. For the following example, a PLS model based
on two combined spectra at a depth range of 0–0.6 mm
contains spectra combined from 0 and 0.2 mm, from 0.2
and 0.4 mm, and from 0.4 and 0.6 mm, i.e. the depth of
the taken pairs of the spectra varies but the step size Δz
of 0.2 mm remains constant. It is shown, that by using
spectra at a range of depths, the prediction quality
decreases compared with models using spectra from
defined depths independent of the usage of combined or
not combined spectra. Furthermore, the prediction qual-
ity decreases with increasing depth range. However,
considering the general improvement of the prediction
quality for models using combined spectra, PLS models
using a preferably small depth range in combination
with a high number of combined spectra (e.g. three
combined spectra for a depth range of 0–0.6 mm) show
comparable prediction quality compared with using
models based on the combination of front and back side
spectra. Thus, it is not necessary to know the absolute
depth at which the spectra were taken for a higher num-
ber of combinations and whether all spectra were taken
with a constant step size and within a small depth
range.

TABLE 5 RMSECV and R2 of PLS models using various numbers of combined spectra taken in different depths with a step size of

Δz = 0.2 mm for only one specific depth (first spectrum taken at 0 mm) or for different depth ranges established for CFRP (PS-4) to

predict ILSS

No combination Combination of two spectra Combination of three spectra

RMSECV (N/mm2) R2 RMSECV (N/mm2) R2 RMSECV (N/mm2) R2

0 mm 9.93 0.833 5.82 0.948 4.81 0.959

0 to 0.6 mm 9.19 0.833 7.17 0.916 6.24 0.931

0 to 1 mm 9.39 0.826 7.22 0.912 6.55 0.925

0 to 2 mm 10.50 0.792 8.24 0.887 8.03 0.891

Abbreviations: CFRPs, carbon fiber reinforced polymers; ILSS, interlaminar shear strength; PLS, partial least squares; RMSECV, root mean square error cross
validation.
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4 | CONCLUSION

This study focuses on CFRP thermally damaged from one
side. Depth-resolved matrix degradation (FTIR) and the
development of delaminations (μCT) as well as the loss of
ILSS were investigated. The resulting spectral data were
analyzed with PCA regarding thermal loading. Further-
more, for predicting ILSS and delamination depth by means
of infrared spectroscopy, PLS regression was applied.

It is shown that the depth of delaminations and the
ILSS change with increasing thermal loading as delami-
nations penetrate deeper inside the CFRP and cause a
decrease of ILSS. Also, the depth profiles of matrix degra-
dation were generated by measuring with ATR-FTIR-
spectroscopy along a ground incline plane. Matrix degra-
dation occurs more pronounced near the irradiated sur-
face and with increasing irradiation time deeper inside
the CFRP.

Applying PCA on the spectral data showed that the
scores were separated according to increasing thermal
loading. This fact was further used to predict ILSS by
means of IR spectra and PLS regression. The combination
of spectra taken at different depths in the CFRP allowed
for the prediction of ILSS and delamination depth by
means of PLS regression even for complex parameter set-
tings. If both sides of a CFRP structure are accessible, the
simplest way of combining two spectra is taking the front
and back side spectrum. This combination leads to an
increase of the prediction quality compared with models
using single surface spectra. The advantage of this combi-
nation is that no mechanical removal of CFRP is neces-
sary to get spectra in different depths.

A further increase of the prediction quality can be
achieved by taking spectra close to the irradiated surface
and from different depths inside the specimens. Hereby,
it is shown that with increasing number of combined
spectra, the step size among the spectra and the depth at
which the spectra were taken have less influence on the
prediction quality when compared with models using sin-
gle spectra. Regarding how exactly spectra have to be
taken at one depth, it is shown that a reasonably good
prediction is possible if spectra are taken in a certain
depth range. However, the best prediction quality is
achieved by using the exact depth.

For a practical application of IR spectroscopy in com-
bination with multivariate data analysis to predict one-
sided thermally induced structural damage on aircraft
components in, e.g. repair processes, it is recommended
to take as much spectral data as possible but also less
spectral data as practically possible with a small step size
close to the irradiated surface. It is important to minimize
the mechanical removal because too much mechanical
removal of CFRP material is counterproductive as the

analysis area may potentially suffer from impaired
mechanical properties, which may necessitate repair or
replacement. Removing the CFRP close to the irradiated
surface is advantageous because, for strong thermal load-
ing, CFRP material must be removed anyway. In general,
if external influence parameters like, for example, the
sample thickness are known, models should be adjusted
because an increase in prediction quality can be achieved
and less combinations of the spectra and therefore less
mechanical removal of CFRP is required.
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