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Singular value decomposition in extended double
precision arithmetic

Christian Reinsch1 ·Mathias Richter2

Abstract
A well-known and successful algorithm to compute the singular value decompo-
sition (SVD) of a matrix was published by Golub and Reinsch (Numer. Math.
14:403–420, 1970), together with an implementation in Algol. We give an updated
implementation in extended double precision arithmetic in the C programming lan-
guage. Extended double precision is native for Intel x86 processors and provides
improved accuracy at full hardware speed. The complete program for computing the
SVD is listed. Additionally, a comprehensive explanation of the original algorithm
of Golub and Reinsch (Numer. Math. 14:403–420, 1970) is given at an elementary
level without referring to the more general results of Francis (Comput. J. 4:265–271,
1961, 1962).

Keywords Singular value decomposition · Extended precision arithmetic ·
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1 Introduction

The IEEE floating point standard, chiefly designed by William Kahan, recommends
that hardware implementations should provide an extended precision data format.
This is put into effect for x86-64 processors, which provide a native 80-bit extended
double precision data format. Higher precisions will be provided in the future [4, p.
43]. In 80-bit extended double precision data format, the significand comprises 64
bits and thus 11 bits more than does the standard IEEE double precision format. In the
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C programming language, the type specifier long double is reserved for declara-
tion of extended double precision variables. Some compilers, like the GNU compiler,
Clang, and Intel’s C/C++ compiler, implement long double using 80-bit exten-
dend double precision numbers on x86-architectures. Extended double precision thus
becomes easily available for computations and should be used, as it offers improved
accuracy at full computational speed. We give a C implementation of the singular
value decomposition (SVD) in extended double precision arithmetic. The program
ist based on the algorithm published by Golub and Reinsch in [3].

Let A ∈ R
m,n a real m × n matrix, let � := min{m, n}. It is well known that

A = U�V T (1)

where U ∈ R
m,m, � ∈ R

m,n, and V ∈ R
n,n such that

UT U = Im, V T V = In and �i,i = σi, i = 1, . . . , �,

all other elements of � being zero. The numbers σ1, . . . , σ� are the non-negative
square roots of the � largest eigenvalues of AT A. We shall assume that

σ1 ≥ σ2 ≥ . . . ≥ σ� ≥ 0.

The computation of U , V , and � splits into two parts. The first part is a reduction
of A to a bidiagonal matrix. The second part is an implicit application of the QR
algorithm (with shifts) to this bidiagonal matrix. We describe bidiagonalization in
Section 2. Section 3 is a reminder about the QR algorithm for tridiagonal symmet-
ric matrices and gives an elementary explanation of Francis’ method to use implicit
shifts. Section 4 explains how QR steps can implicitly be performed on a bidiagonal
matrix. Section 5 gives details on how to compute the shift parameter reliably and
Section 6 gives a stopping criterion for the QR iteration. Section 7 outlines how to
arrange for computations in extended precision and in Section 8, a complete C func-
tion for computing the SVD is given. Test cases are investigated in Section 9 and we
conclude in Section 10.

2 Bidiagonalization

A = (ai,j ) is a real matrix with m rows i = 0, . . . , m − 1, counting down from top
to bottom, and with n columns j = 0, . . . , n − 1, counting across from left to right.

With the pair of rows 0 and i = 1, . . . , m− 1 we do the plane rotations from left

a0,j = cos ·a0,j + sin ·ai,j , ai,j = − sin ·a0,j + cos ·ai,j , j = 0, . . . , n − 1

overwriting the old with the new values.1 We choose cos and sin as follows: let p :=
a0,0, q := ai,0, r := ±√

p2 + q2 with same sign as p, cos = p/r and sin = q/r .
(cos = 1, sin = 0 if q = 0). Then ai,0 gets eliminated, i.e., its new value is 0. Note
that plane rotations from left leave the sum of squares in a column invariant. Thus
while ai,0 gets annihilated, a20,0 gets bigger. Indeed, the erasing is more some sort of

1P T
i A with the orthogonal m×m matrix P T

i =
(

cos sin
− sin cos

)
in rows/columns 0 and i

1138 Numerical Algorithms (2023) 93:1137–1155



collecting. After i = m − 1, a20,0 is positive unless A has a zero column. In the same
way we do with the pair of columns 1 and j = 2, . . . , n − 1 plane rotations from
right

ai,1 = ai,1 · cos + ai,j · sin, ai,j = −ai,1 · sin + ai,j · cos, i = 0, . . . , m − 1

again overwriting the old with the new values.2 Thus we do not only generate zeros
in the leftmost column but also zeros in the top row after the first two entries, which
here are called d0 and e1. Plane rotations from right leave the sum of squares in a row
invariant, thus d2

0 + e21 > 0 unless there is a zero row.
Such plane rotations either from left or from right in order to erase a selected

matrix entry are called Givens rotations. Together, we have the main step number
one. More such main steps follow, all a repetition of the first one, but each time with
another column and another row less.

Let us assume for the moment that m ≥ n. Then, with n − 1 such main steps
we can reduce the matrix A to bidiagonal form B. Ignoring the trivial (zero) rows
i = n, . . . , m − 1, one has

B =

⎡

⎢⎢⎢⎢⎢⎢
⎣

d0 e1
d1 e2

· ·
· ·

dn−2 en−1
dn−1

⎤

⎥⎥⎥⎥⎥⎥
⎦

(2)

With e0 := 0 each column of B has the same form. The remaining B is quadratic
with det(B) = d0 · · · dn−1 and det(BTB) = d2

0 · · · d2
n−1.

If required, we accumulate all plane rotations from left in UT and all plane rota-
tions from right in V . These are orthogonal matrices of orderm and n. It is helpful for
understanding the coming steps to extend the m×n matrix A to the right by the m×m

unit matrix Im and down by the n×n unit matrix In. With these two extensions we
have a working area with m+n rows/columns of length m+n. At the beginning it is

(
A Im

In

)

where A = UBV T . After the plane rotations from left and right it is
(

B UT

V

)

All steps of the second part of the algorithm (to be described below) follow this
scheme of applying plane rotations from left and right to further reduce B to diagonal
form � while updating UT and V .

The case m < n had been omitted in the Algol program published in [3], but
is included now. It is best to consider AT and to apply the algorithm to the n×m

2A Qj with the orthogonal n×n matrix Qj =
(
cos − sin
sin cos

)
in rows/columns 1 and j
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matrix AT . Anyway, as described in Section 7, a copy of A in extended precision
format is needed. At the moment this copy is created, one may as well copy AT . The
C function given in Section 8 does so and then computes V T instead of UT and U

instead of V . It is easy to take this swap into account when returning the matrices U

and V . Therefore, we may continue to assume m ≥ n in the following.
The present version of the SVD uses exclusively plane rotations. All Householder

reflections from the version of 1967 [3] have been replaced, although they need only
half the number of multiplications. But plane rotations will be needed in the second
part of the algorithm and can all be done by calling two functions, viz.

PREPARE() to compute the desired values cos and sin for the next plane rotation,
ROTATE() to apply this plane rotation to a pair of BLA-vectors x[ ], y[ ] (defined
by equidistant storage in memory, for example matrix rows, columns, diagonals,
or single elements).

As said above, the second part of the algorithm will consist in applying further
plane rotations from left and right to B with the goal to reduceB to a diagonal matrix.
When ej = 0 occurs for some index j > 0 (iteration indices are dropped), then the
matrix B can be split into two bidiagonal submatrices of order j (rows 0, . . . , j − 1
of B) and n − j (rows j, . . . , n − 1 of B), which may be diagonalized indepen-
dently of each other. At any time, the second part of the algorithm will iteratively
diagonalize the southernmost remaining bidiagonal submatrix of B with non vanish-
ing off-diagonal elements. The position of this submatrix is described by two indices
� and k, both in the range 0, . . . , n − 1, defining three diagonal blocks of B, as
illustrated in (3):

(3)

Here, � = 0 means an empty first block, and k = n−1 means an empty third block.
The third ”bidiagonal” block in fact already is a diagonal matrix and can be ignored
for all further computations, |dk+1|, . . . , |dn−1| are singular values. The middle block
with lower row index � and upper row index k is characterized by non vanishing off-
diagonal elements e�+1, . . . , ek and can be diagonalized independently of the upper
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bidiagonal block (rows 0, . . . , �−1 ofB).3 The elements e1, . . . , e�−1 may be zero or
not. After each iteration step taken in the second part, k and � are updated by scanning
for zero elements ej . When k = � = 0, then B is completely diagonalized. When
� = k > 0, then ek = 0, |dk| is a singular value and the trivial 1×1 matrix (ek) may be
split off the middle block in (3), thus k will be decremented by 1. When � < k, then
one continues to operate on the bidiagonal submatrix of B in rows �, . . . , k, which
will be denoted by

B�,k =

⎡

⎢⎢⎢⎢⎢⎢
⎣

d� e�+1
d�+1 e�+2

· ·
· ·

dk−1 ek

dk

⎤

⎥⎥⎥⎥⎥⎥
⎦

. (4)

In practice, zero tests must be replaced by tests |ej | ≤ tol. A proper choice of tol

will be discussed in Section 6.

3 Symmetric QR steps with shifts

This section is a reminder about one of the most successful algorithms of Linear
Algebra, the QR iteration for the diagonalization of matrices. Heinz Rutishauser
invented it in 1961 (then in the form of an equivalent LR iteration). The name comes
from the basic iteration step for the matrix to be diagonalized, which is here X =:
X(0):

X(i) =: Q(i)R(i) and R(i)Q(i) =: X(i+1), Q(i) orthogonal, R(i) upper triangular.

The step from X(i) to X(i+1) is a similarity transformation: X(i+1) = Q(i)T X(i)Q(i).
All X(i) have the same eigenvalues. The absolute values of these invariant eigenval-
ues, arranged in decreasing order, play a decisive role in analyzing the asympotic
behavior of the sequence X(i). The QR iteration will be applied to the symmetric
tridiagonal matrix

X := BTB,

where B is initially given by (2) and more generally by (4), but in this section it
is considered in its own right. To describe a single QR step applied to a tridiagonal
symmetric matrix, the iteration index (i) is dropped. Let

X = X(i) =

⎡

⎢⎢⎢⎢⎢⎢
⎣

δ0 ε1
ε1 δ1 ε2

· · ·
· · ·

εn−2 δn−2 εn−1
εn−1 δn−1

⎤

⎥⎥⎥⎥⎥⎥
⎦

and X = X(i+1).

3Formally, k is defined as the lowest row index such that ek+1 = . . . = en−1 = 0 (initially k = n − 1) and
� is defined as the highest row index with � ≤ k and e� = 0. Since e0 = 0, � must exist for any k.
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As a consequence of the tridiagonal form, each QR step is rather special:

(1) Q is a product of n − 1 rotations Qj in plane (j −1, j), j = 1, . . . , n − 1, to
eliminate εj ,

(2) X stays symmetric and tridiagonal (the minor steps are X → QT
j XQj ).

(3) The number of operations per step is only O(n) rather than O(n3).
(4) The eigenvalues of X are real and non-negative.
(5) Also the upper triangular matrix R has only three non-trivial diagonals, see

Fig. 1.

The basic iteration step for the QR algorithm with shifts is described as

X − sI =: QR and RQ + sI =: X,

where Q and R are orthogonal and upper triangular, respectively, but not the same as
above, depending on the value of s. As before, one has X = QT XQ. The value s is
called the shift. It should be chosen close to one of the eigenvalues of X. The closer
the shift is to such an eigenvalue, the smaller is some diagonal element of R (in most
cases the last one) and the smaller is the (last) row and column of X. Good shifts
make Rutishauser’s LR or QR iteration so successful. In [5] Wilkinson proved global
convergence of the sequence X(i) to a diagonal matrix for two different strategies
to choose a shift. The convergence rate usually is cubic, i.e., for sufficiently small η

follows from |εn−1| ≤ η that the next iteration will reduce |εn−1| to O(|εn−1|3). We
devote Section 5 to Wilkinson’s idea and proposals for the shift.

The factorization X − sI = QR and the recombination QR + sI = X may
be combined to what is known as a QR step with implicit shift. This was found
by Francis [1] in a much more general setting, but shall be explained here on an
elementary level. Assume that no off-diagonal element of X vanishes, i.e., εj �= 0 for
j = 1, . . . , n−1. In this case, the orthogonal matrix Q is unique up to a scaling of its
columns by ±1. The matrix Q can always be written as a product of n − 1 rotations
Qj in plane (j −1, j), j = 1, . . . , n − 1. The first rotation QT

1 is to be chosen such
that (schematically, just noting the upper 2 × 2-minors)

QT
1 (X − sI ) =

(
cos sin

− sin cos

)
·
(

δ0 − s ε1
ε1 δ1 − s

)
=

( ∗ ∗
0 ∗

)
,

Fig. 1 X = BTB before elimination and R after elimination
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which is achieved by

cos = δ0 − s
√

(δ0 − s)2 + ε21

, sin = ε1√
(δ0 − s)2 + ε21

(5)

(or the negatives of these values). Since ε1 �= 0, there cannot be a zero division in (5)
and moreover sin �= 0. It is known that

X = QT
n−1 · · ·

(
QT

i · · · QT
1 · A · Q1 · · · Qi

)

︸ ︷︷ ︸
=: Xi

· · · Qn−1. (6)

is tridiagonal, but the matrices Xi , i = 1, . . . , n − 2, deviate from the tridiagonal
form. Schematically, one has

X1 = QT
1 XQ1 =

⎛

⎜⎜⎜⎜⎜⎜
⎝

∗ ε′
1 β2

ε′
1 ∗ ∗

β2 ∗ ∗ ε3
ε3 ∗ ∗

∗ ∗ ∗
∗ ∗

⎞

⎟⎟⎟⎟⎟⎟
⎠

The extra element β2 is called bulge element. It is defined by β2 = sin·ε2 with
sin from (5), so that β2 �= 0. Now choose a rotation Q̃T

2 in plane (1, 2), such that
multiplication of X1 from the left with Q̃T

2 eliminates β2 in position (2, 0). This is
achieved by the choice

cos = ε′
1√

(ε′
1)

2 + β2
2

, sin = β2√
(ε′

1)
2 + β2

2

. (7)

Schematically, one gets

X̃2 = Q̃T
2 X1Q̃2 =

⎛

⎜⎜⎜⎜⎜⎜
⎝

∗ ∗
∗ ∗ ε′

2 β3
ε′
2 ∗ ∗

β3 ∗ ∗ ∗
∗ ∗ ∗

∗ ∗

⎞

⎟⎟⎟⎟⎟⎟
⎠

.

The bulge β2 moved down one position along the diagonal to become β3 = sin·ε3
with the value sin defined in (7). Since β2 �= 0, one has sin �= 0 again and therefore
β3 �= 0. Continuing this way chasing down the bulge along the diagonal, one arrives
at

X̃n−2 = Q̃T
n−2X̃n−3Q̃n−2 =

⎛

⎜⎜⎜⎜⎜⎜
⎝

∗ ∗
∗ ∗ ∗

∗ ∗ ∗
∗ ∗ ∗ βn−1

∗ ∗ ∗
βn−1 ∗ ∗

⎞

⎟⎟⎟⎟⎟⎟
⎠
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again with βn−1 �= 0. A last rotation Q̃T
n−1 in plane (n−2, n−1) is chosen such

that multiplication of X̃n−2 from the left with Q̃T
n−1 eliminates βn−1 in position (n−

1, n−3). Then X̃n−1 = Q̃T
n−1X̃n−2Q̃n−1 is tridiagonal again. Because all bulges are

non-zero, all rotations Q̃i , i = 2, . . . , n − 1, are uniquely determined (up to phase
factors, i.e., up to multiplications by ±1). This means that once Q1 is set, the need to
chase down the bulge until it disappears and to re-establish the tridiagonal form of

X̃n−1 = Q̃T
n−1 · · · Q̃T

2 · QT
1 · X · Q1 · Q̃2 · · · Q̃n−1 (8)

uniquely determines Q̃2, . . . , Q̃n−1 (up to phase factors). But tridiagonal form will
also be established by using the rotations Q2, . . . , Qn−1 as in (6). The conclusion is
that Q̃i = Qi , i = 2, . . . , n − 1 (up to phase factors). The choice of Q1 according
to (5) — which is the only place where the shift explicitly enters the computation —
and the choice of Q̃2, . . . , Q̃n−1 such as to chase down the bulge, will make (8) an
implementation of the QR step.

Thus, the symmetric QR step with shift for the matrix X = BTB can be done as
follows:

(1) Choose a good shift s.
(2) Choose QT

1 according to (5) and compute X1 = QT
1 XQ1.

(3) Choose rotations Q̃j in plane (j −1, j) in order to chase down the bulge and
successively build Xj := Q̃T

j Xj−1Q̃j , j = 2, . . . , n − 1. X := Xn−1 is the
next matrix X.

4 Implicit QR steps on bidiagonal matrix

The QR iteration could explicitly be applied to the matrix X = BTB with B = B�,k

from (4) — the double index of B�,k will be dropped now. The non-trivial diagonal
and off-diagonal entries of X then are

Xj,j = d2
j + e2j , (j = �, . . . , k) and

Xj−1,j = Xj,j−1 = dj−1ej , (j = � + 1, . . . , k).
(9)

However, for reasons of economy and accuracy, one should avoid dealing with BTB.
Rather, it is preferable to work with B alone. In fact it is possible to do the sim-
ilarity transformations on X with two-sided plane rotations, viz. B → P T

j B Qj ,

j = �, . . . , k − 1, where all matrices Qj and P T
j are Givens rotations. To be precise,

assume that

dj−1 �= 0 and ej �= 0 for j = � + 1, . . . , k, (10)

— according to (9) this means that X has no vanishing off-diagonal elements — and
choose Q� as if performing the first minor step of one QR iteration step (with shift)
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for X. From (5) and (9) it can be seen that this means to choose Q� as a rotation in
the plane (�, � + 1) with

cos = d2
� − s

√
(d2

� − s)2 + (d�e�+1)2
, sin = d�e�+1√

(d2
� − s)2 + (d�e�+1)2

(11)

(or the negatives of these values), depending on the shift parameter s. Multiplying B

with Q� from the right gives (schematically)

B ′
�+1 := BQ� = B ·

(
cos − sin
sin cos

)
=

⎛

⎜⎜⎜⎜
⎝

d ′
� ∗

b′
�+1 ∗ e�+2

∗ ∗
∗ ∗

∗

⎞

⎟⎟⎟⎟
⎠
. (12)

B ′
�+1 is no longer an upper bidiagonal matrix because of the bulge element b′

�+1 =
sin·d�+1. The bulge element cannot vanish, since sin �= 0 and d�+1 �= 0, see (10). To
eliminate b′

�+1, multiply B ′
�+1 from the left by a rotation P T

� in the plane (�, � + 1).
Up to a phase factor, this rotation must be given by

cos = d ′
�√

(d ′
�)

2 + (b′
�+1)

2
, sin = b′

�+1√
(d ′

�)
2 + (b′

�+1)
2
,

such that (schematically)

B�+1 := P T
� · B ′

�+1 =
(

cos sin
− sin cos

)
· B ′

�+1 =

⎛

⎜⎜⎜⎜
⎝

∗ ∗ b�+1
0 ∗ ∗

d�+2 ∗
∗ ∗

∗

⎞

⎟⎟⎟⎟
⎠
. (13)

The bulge has moved and becomes b�+1 = sin·e�+2. Since b′
�+1 �= 0, also b�+1 �= 0.

To eliminate b�+1, multiply from the right with a rotation Q̃�+1 like in (12), but now
in the plane (�+1, �+2). Because of b�+1 �= 0, this rotation must have a component
sin �= 0. The multiplication results in

B ′
�+2 := B�+1Q̃�+1 =

⎛

⎜⎜⎜⎜⎜⎜
⎝

∗ ∗ 0
∗ ∗

b′
�+2 ∗ e�+3

∗ ∗
∗ ∗

∗

⎞

⎟⎟⎟⎟⎟⎟
⎠

with b′
�+2 = sin·d�+2 �= 0. To eliminate the bulge b′

�+2, multiply from the left by a
rotation P T

�+2 in the plane (� + 1, � + 2). Since b′
�+2 �= 0, this rotation once more is
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uniquely determined (up to a phase factor) with sin �= 0. One gets

B�+2 := P T
�+1 · B ′

�+2 =

⎛

⎜⎜⎜⎜⎜⎜
⎝

∗ ∗
∗ ∗ b�+2
0 ∗ ∗

d�+3 ∗
∗ ∗

∗

⎞

⎟⎟⎟⎟⎟⎟
⎠

with b�+2 = sin·e�+3 �= 0. Continuing this way the bulge initially introduced by
multiplication with Q� is chased down in knight’s moves until it disappears. This
is illustrated in Fig. 2, where the bulge at different moments in the computation
is notated as x, x′, x′′, and x′′′. All moves in north-eastern direction are effected
by plane rotations from left and all moves in south-western direction are effected
by plane rotations from right. The rotations Q̃�+1, . . . , Q̃k−1 from the right and
P T

� , . . . , P T
k−1 from the left are all uniquely determined (up to phase factors) once

Q� is chosen. In the end, with

Q̃ := Q� · Q̃�+1 · · · Q̃k−1 and P := P� · . . . · Pk−1

the matrix P T BQ̃ =: B is bidiagonal again. Therefore

(B)T B = Q̃T BTBQ̃ = Q̃T XQ̃

is a tridiagonal matrix again. The first rotation Q� was explicitly chosen as needed to
perform a step of the QR iteration. It was seen in Section 3, that this and the fact that
Q̃T XQ̃ is tridiagonal are enough to conclude that Q̃T XQ̃ is the result of a full QR
step performed on X.

The conclusion is that one step of the QR iteration (with shift s) for X = BT B

can be done implicitly as follows

(1) Depending on the chosen shift s set Q� as in (11), and multiply B from the right
with Q�.

Fig. 2 Chasing the bulge

d e x

d e x’’

x’ d e

x’’’ d

j-2 j-1

j-1 j

j j+1

j+1
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(2) Multiply with further rotations Q̃�+1, . . . , Q̃k−1 and P T
� , . . . , P T

k−1 to chase
down the bulge until it disappears.

The above arguments depend on (10), but a violation of these conditions even is an
advantage, since then savings are possible. In case |ek| ≤ tol, |dk| is accepted as a
singular value and k is decremented by 1. In case |ei | ≤ tol for some � ≤ i < k, ei is
neglected and the matrix B is split in two bidiagonal matrices which are diagonalized
separately. The saving on di = 0 is almost as obvious: one can chase this zero to the
right with plane rotations P̂ T

i+1, . . . , P̂
T
k from left in rows i and j = i + 1, . . . , k, so

that the matrix B gets a zero row:

⎡

⎢⎢⎢⎢⎢⎢
⎣

∗ ∗
∗ ∗
0 ei+1

∗ ∗
∗ ∗

∗

⎤

⎥⎥⎥⎥⎥⎥
⎦

P̂ T
i+1·−→

⎡

⎢⎢⎢⎢⎢⎢
⎣

∗ ∗
∗ ∗
0 0 x

∗ ∗
∗ ∗

∗

⎤

⎥⎥⎥⎥⎥⎥
⎦

P̂ T
i+2·−→

· · · P̂ T
k−1·−→

⎡

⎢⎢⎢⎢⎢⎢
⎣

∗ ∗
∗ ∗
0 · · · 0 x′

∗ ∗
∗ ∗

∗

⎤

⎥⎥⎥⎥⎥⎥
⎦

P̂ T
k ·−→

⎡

⎢⎢⎢⎢⎢⎢
⎣

∗ ∗
∗ ∗
0 · · 0

∗ ∗
∗ ∗

∗

⎤

⎥⎥⎥⎥⎥⎥
⎦

.

Now B can be split in two bidiagonal matrices to be diagonalized separately. In case
|di | ≤ tol, the effect is the following. Multiplication with P̂ T

i+1 annihilates ei+1
and creates new elements xi+1 in position (i, i +2) and ηi+1 in position (i +1, i).
Multiplication with P̂ T

i+2 annihilates xi+1 (in row i) and creates new elements xi+2

in position (i, i+3) and ηi+2 in position (i+2, i). Multiplication with P̂ T
k annihilates

xk−1 (in row i) and creates ηk in position (k, i). The result is a matrix of the form (all
modified elements are overlined)

B =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

d� e�+1
· ·

· ·
· ei

d̄i 0
ηi+1 d̄i+1 ēi+2

· · ·
· · ·
· · ēk

ηk d̄k

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

.

By the orthogonality of plane rotations

d̄2
i + η2i+1 + . . . + η2k = d2

i ≤ tol2,
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which shows that all elements d̄i , ηi+1, . . . , ηk have a magnitude less than or equal
tol and can be neglected. B can again be split in two bidiagonal matrices. The case
of a vanishing or negligible diagonal element di is called cancellation.

5 Choosing a shift

The way shifts are chosen is an essential and characteristic part of the SVD. The shift
has only one purpose: to decrease |ek|, the last off-diagonal entry in the current iter-
ation matrix B = B�,k (again, the double index (�, k) will be dropped). Remember,
that a good shift is close to one of the eigenvalues of the matrix BTB, which are the
squares of the singular values. The non-trivial elements in the last two columns of B

are ⎛

⎝
ek−1 0
dk−1 ek

0 dk

⎞

⎠ =:
⎛

⎝
g 0
y h

0 z

⎞

⎠

One may assume that g, y, h and z are all non-zero, otherwise B would have been
split. One of the simplest and most effective choices for the shift is the last diag-
onal element of BTB, which is h2 + z2, one of the Wilkinson shifts, also known
as Rayleigh shift. An alternative, used in the original SVD of 1967, is to choose
one eigenvalue of the last 2×2 diagonal block of BTB. This choice was originally
designed for the cases where one needs a pair of conjugate complex shifts. However,
if one needs just one shift, it is mandatory to select the eigenvalue which is closer to
h2+z2 because the other one could be far away. (Indeed this had been done in [3],
but not been pointed out sufficiently.) Then the shift s comes from the quadratic

det

(
g2+y2−s hy

hy h2+z2−s

)
= 0.

We want the root s which is closer to h2+z2, i.e., the root t := h2 + z2 − s closest to
zero of the quadratic

t2 + (g2+y2−h2−z2) t − h2y2 = 0.

It is good numerical practice to first compute the larger root t1 and then the smaller
one t2 from t1t2 = −h2y2. As h and y are non-zero one can form

f := (g2 + y2 − h2 − z2)/(2hy) = [(y − z)(y + z) + (g − h)(g + h)]/(2hy).

Let w = √
f 2 + 1, then t has the roots hy (−f ± w). If f > 0, then yh(−f − w) is

the one with bigger modulus and t = yh/(f + w) is the one with smaller modulus.
If f < 0, then yh(−f + w) is the one with bigger modulus and yh/(f − w) is the
one with smaller modulus. The shift to be chosen thus is

s = z2 + h2 − hy/(f + w) or s = z2 + h2 − hy/(f − w),

for f > 0 or f < 0, respectively. The only place where the shift enters into the
computation of the implicit QR step is (11). Evidently the values for cos and sin in
(11) do not change if d2

� − s is replaced by d� − s/d� and if d�e�+1 is replaced by
e�+1. This fact will be used in the program of Section 8.
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For this second choice of shift (called shift strategy (b) in [5]), Wilkinson proved
global convergence with a guaranteed quadratic convergence rate. Almost always
convergence is cubic, as confirmed by the test cases examined in Section 9. One
therefore expects s → z2 from h → 0 and y bounded. After convergence, k is
decremented until with enough QR steps k = 0 is reached.

6 Test for convergence

When |ek| ≤ tol, then |dk| is accepted as new singular value and k is decremented
by 1. When |ei | ≤ tol for some i < k, then the matrix B is split in two parts and the
singular values of both parts are computed separately, as said above. The cancellation
case |di | ≤ tol was considered in Section 4. It remains to choose the tolerance tol.
Here, we repeat the proposal from [3] to choose

tol = ‖B‖∞ · εmach (14)

with εmach the machine precision and B the initial bidiagonal matrix from (2).

7 Extended precision arithmetic

On the preceding pages all algorithmical aspects of computing the real matrices A,
U , V , � and B have been described without mentioning their common data type.
Now we are specific. We assume that a user keeps A stored as a variable in standard
IEEE double floating point format and wants to get U , V , and � also as variables
in double format. We call the corresponding variables external and use lower case
letters to notate them. We perform the SVD computation inside a C function SVD in
long double extended precision format. This function needs internal copies of
data type long double of the external variables. The internal variables shall be
denoted by upper case letters. We thus have

matrix external variable internal variable

A a A
U u P or Q
V v Q or P
� d D
B – D, E

where the dash in the last line means that B is only computed internally. Its diagonal
is stored in D (which will be overwritten by the singular values on the diagonal of �)
and its superdiagonal is stored in E. Explanations for the internal variables P and Q
will be given in a moment.

When SVD is called, at first the C library function malloc is invoked to dynam-
ically allocate memory for the internal variables. Then matrix A is copied from a to
A, if m ≥ n. If, however, m < n, then AT is copied to A, as announced in Section 2.
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With

ma := max{m, n}, mi := min{m, n},
A can always be considered a ma×mi matrix. All rotations from left will be accumu-
lated in P (of dimension ma × ma) and all rotations from right will be accumulated
in Q (of dimension mi × mi). As seen in Section 2, at the end of the computation,
P holds UT and Q holds V , if m ≥ n. If, however, m < n, then Q holds U and
P holds V T . Of course, P and Q must be initialized as identity matrices before the
accumulations can start.

As already said in the introduction, on the Intel x86 architecture all arithmetic
operations are done in 64 bit precision with full hardware speed. Also, the exponent
of long double has 15 bits and thus four more bits than are provided for double.
Therefore, there will be no problems with exponent overflow or underflow when
squaring elements ai,j of A.

At the end of the computation in function SVD, the internal variables are rounded
to double format and copied to the external variables a, u, v, and d. This is the
moment to copy singular values in descending order from D to d. Columns / rows of
P and Q must be copied in corresponding order. Finally the allocated memory for the
internal variables must be freed (the 64 bit precision results get lost).

8 C program

An implementation of the SVD in the C programming language is available from
the web page https://www.unibw.de/eit mathematik/forschung/eprecsvd as the na59
package.

In the header file SVD.h one may switch on or off computations in extended
double precision and choose between Rayleigh shifts (corresponding to shift strategy
(a) in [5]) and Wilkinson shifts (shift strategy (b) in [5]).

The file SVD.c contains an implementation of the SVD algorithm. All constants
of data type long double are marked by a suffix W. The printf statements are
included for testing only and can be omitted. At the end of SVD a function testSVD
is called, which is implemented in SVDtestFunc.c. Its purpose is to test whether
the fundamental identities UT U = Im, V T V = In and AV = U� (nearly) hold.
The calling of this function can also be omitted, of course.

The file SVDtest2.c contains an implementation of all the test cases discussed
in the following section.

9 Test results

Computations were carried out on an Intel processor i7-9850H, programs were com-
piled with the GNU compiler, version 10.2.0. The results obtained by computations
in extended double precision arithmetic are noted as Ũ , Ṽ and �̃. These results were
rounded to standard double precision format to give Û , V̂ and �̂. The singular values
on the diagonal of �̂ are noted as σ̂k .
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When exact singular values are known, they are rounded to standard double preci-
sion format and noted as σk . In the cases where exact singular values are not known,
numerical approximations were computed via an implementation of the SVD in 256-
bit arithmetic, based on the GNU MPFR multiple precision library. The singular
values obtained from a multiple precision computation were then rounded to stan-
dard double precision format and taken as substitutes for the unknown exact singular
values. The abbreviation μ(A) = max|ai,j | for a matrix A = (ai,j ) is used below.

A first example is taken from [3]. It is the matrix

A =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

22 10 2 3 7
14 7 10 0 8
−1 13 −1 −11 3
−3 −2 13 −2 4
9 8 1 −2 4
9 1 −7 5 −1
2 −6 6 5 1
4 5 0 −2 2

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

(15)

with exactly known singular values

σ1 = √
1248, σ2 = 20, σ3 = √

384, σ4 = σ5 = 0.

After a total of 6 QR iteration steps, the singular values σ̂k from Table 1 were found.
A value of 0 in the second column of Table 1 means that both, exact and computed

singular values, are identical after rounding to standard double precision format. The
accuracy of the achieved decomposition is characterized by

μ(ŨT Ũ − Im) = 3.2510−19, μ(Ṽ T Ṽ − In) = 3.2510−19

and

μ(AṼ − Ũ �̃) = 1.7310−18.

These fundamental identities were checked before the results were rounded to
standard double precision by calling the function testSVD from within function
SVD.

A second example is the 10 × 7 Hilbert matrix A defined by

ai,j = 1

i + j − 1
, i = 1, . . . , 10, j = 1, . . . , 7. (16)

Table 1 Singular values for example matrix (15)

σ̂k |σ̂k − σk |

3.5327043465311391e+01 0

2.0000000000000000e+01 0

1.9595917942265423e+01 0

4.3368086899420177e−19 4.33681e−19

3.2526065174565133e−19 3.25261e−19
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Table 2 Singular values for example matrix (16)

σ̂k |σ̂k − σk |

1.7034227893692420e+00 0

3.0386188435519512e−01 0

2.7332449735275176e−02 0

1.5763395495700157e−03 2.1684e−19

6.0439432539595851e−05 6.77626e−21

1.4835194053530775e−06 3.49401e−20

2.0211192654283165e−08 2.72738e−20

In this case, exact singular values are not known and substitutes for them were
obtained from a computation in 256-bit arithmetic, as described above. After a total
of 8 QR iteration steps, the results given in Table 2 were found.

Concerning the fundamental identities, the results

μ(ŨT Ũ − Im) = 3.2510−19, μ(Ṽ T Ṽ − In) = 3.2510−19

and
μ(AṼ − Ũ�̃) = 1.0810−19

were obtained.
A third example is taken from [2]. Setting

B =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

5 −1 −1 6 4 0
−3 1 4 −7 −2 −3
1 3 −4 5 4 7
0 4 −1 1 4 5
4 2 3 1 6 −1
3 −3 −5 8 0 2
0 −1 −4 4 −1 3

−5 4 −3 −2 −1 7
3 4 −3 6 7 7

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

,

an 18 × 12 matrix is defined by

A =
[

B 2B
3B −B

]
. (17)

Since this matrix has rank 6, σ7 = . . . = σ12 = 0. Substitutes for the exact singular
values σ1, . . . , σ6 of A were obtained from a computation in 256-bit arithmetic, as
described above. After a total of 12 QR iteration steps, the results shown in Table 3
were found.

Again, the fundamental identities were checked, with the following results:

μ(ŨT Ũ − Im) = 5.4210−19, μ(Ṽ T Ṽ − In) = 6.5110−19

and
μ(AṼ − Ũ �̃) = 1.3910−17.
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Table 3 Singular values for example matrix (17)

σ̂k |σ̂k − σk |

7.2265903120085326e+01 0

4.9630339183086058e+01 0

4.4288698552845858e+01 0

3.6427417335191997e+01 0

3.0416324106579538e+01 0

2.5017401012828763e+01 0

2.0599841277224584e−18 2.05998e−18

1.8431436932253575e−18 1.84314e−18

1.8431436932253575e−18 1.84314e−18

1.8431436932253575e−18 1.84314e−18

1.3010426069826053e−18 1.30104e−18

1.0842021724855044e−18 1.08420e−18

A fourth example is taken from [3]. It is the 20 × 21 matrix defined by

ai,j =
⎧
⎨

⎩

0, if i > j

21 − i, if i = j,

−1, if i < j,

i = 1, . . . , 20, j = 1, . . . , 21, (18)

with exact singular values

σ21−k = √
k(k + 1), k = 1, . . . , 20.

The method converged after 39 QR iterations with the results shown in Table 4.

Table 4 Singular values for example matrix (18)

σ̂1, . . . , σ̂10 σ̂11, . . . , σ̂20

2.0493901531919196e+01 1.0488088481701515e+01

1.9493588689617926e+01 9.4868329805051381e+00

1.8493242008906929e+01 8.4852813742385695e+00

1.7492855684535900e+01 7.4833147735478827e+00

1.6492422502470642e+01 6.4807406984078604e+00

1.5491933384829668e+01 5.4772255750516612e+00

1.4491376746189438e+01 4.4721359549995796e+00

1.3490737563232042e+01 3.4641016151377544e+00

1.2489995996796797e+01 2.4494897427831779e+00

1.1489125293076057e+01 1.4142135623730951e+00
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In this example, all values |σk − σ̂k| were 0, i.e., computed and exact values
were identical, when both rounded to standard double precision. The fundamental
identities were checked with the following results:

μ(ŨT Ũ − Im) = 1.0810−18, μ(Ṽ T Ṽ − In) = 1.7310−18

and
μ(AṼ − Ũ �̃) = 1.7310−17.

A fifth example is again taken from [3]. It is the 30 × 30 matrix defined by

ai,j =
⎧
⎨

⎩

0, if i > j

1, if i = j,

−1, if i < j,

i = 1, . . . , 30, j = 1, . . . , 30. (19)

Substitutes for the exact singular values were computed numerically in multiple pre-
cision arithmetic. The method converged after 48 QR iterations. Again, all values
|σk − σ̂k| were 0, i.e., computed and exact values were identical, when both rounded
to double precision. The fundamental identities were checked with the following
results:

μ(ŨT Ũ − Im) = 9.7610−19, μ(Ṽ T Ṽ − In) = 6.5110−19

and
μ(AṼ − Ũ �̃) = 3.4710−18.

10 Conclusions

An implementation of the SVD in extended precision arithmetic substantially
improves the accuracy of the computed results. This improvement comes at no loss
in computational speed, when extended precision arithmetic is native, as for the x86
architecture. Only a minor programming effort is necessary to use the capabilities
of extended precision arithmetic and the same program also runs in standard double
precision arithmetic. So it is advantageous to use the updated program.

We have also given a full, elementary explanation of the algorithm of Golub and
Reinsch. In [3], not all details were fully explained on an elementary level.
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