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Source Camera Identification (SCI) is vital in digital forensics, yet its most prominent approach, Sensor Pattern 
Noise (SPN), faces new challenges in the era of modern devices and vast media datasets. This paper introduces 
the Source Camera Target Model (SCTM) to classify SCI approaches and formally defines three core problem 
classes: Verification, Identification, and Exploration. For each, we outline key evaluation metrics tailored to 
practical use cases. Applying this framework, we critically assess recognized SCI methods and their alignment 
with contemporary needs. Our findings expose significant gaps in scalability, efficiency, and relevance to modern 
imaging pipelines, challenging the notion of SPN as a gold standard. Finally, we provide a roadmap for advancing 
SCI research to address these limitations and adapt to evolving technological landscapes.

1. Introduction

Linking a media file to its origin is an important task in digital 
forensics and is referred to as Source Camera Identification (SCI) which 
has received considerable attention (Geradts et al., 2001; Sencar et al., 
2022). For example, if illicit media content such as Child Sexual Abuse 
Material (CSAM) is found during an examination, a major responsibility 
is to track the file back to the camera (and subsequently to its owner) 
used to record it.

Currently, the most accepted approach to solving the SCI problem 
is the Sensor Pattern Noise (SPN) approach due to Lukas et al. (2006). 
Their concept is based on the Photo Response Non-Uniformity (PRNU), 
i.e. a non-uniformity of the pixels introduced by a camera sensor to 
the recorded media file and serving as a unique fingerprint of a single 
device. The key advantage of the SPN approach is its outstanding clas-
sification performance, which is therefore considered the gold standard 
for SCI. However, since the introduction of the SPN approach in 2006 
the use of devices has changed fundamentally; but, the use of SPN within 
digital forensics remains unchanged.

As a consequence, the contemporary challenges of SCI are not suffi-
ciently analyzed by the digital forensics community in the scope of SPN. 
First, the SPN approach is designed for verification rather than identifica-
tion, hence requires an origin assertion, and thus knowledge about the 
source to be validated. If little or no prior knowledge of the capturing 
device is given, the technical performance is not well understood. Sec-
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ond, with the daily use of smartphones, almost everyone has become 
an everyday photographer and film producer, leading to an enormous 
amount of media files to be screened during an examination (Junkle-
witz et al., 2021), a demand for which the SPN approach is not well 
prepared.

Even worse, more and more sophisticated software features are being 
introduced into today’s digital cameras, but the impact on the capabil-
ities of the SPN approach is unknown. For instance, Google’s current 
Pixel smartphone series makes use of multi-frame super-resolution as 
described by Wronski et al. (2019), i.e. it merges several RAW frames 
into one single image. Consequently, such sophisticated features consti-
tute a challenge to the commonly applied SPN approach for SCI, as it 
leads to a misalignment of pixels, as shown in Fig. 1. Furthermore, Ar-
tificial Intelligence-based imaging is already common for smartphones, 
but is also introduced to Digital single-lens reflex cameras (DSLR), e.g. 
to suppress unavoidable noise and lens blur (Canon, 2023). Last but not 
least, the simplification that a digital camera has one sensor is outdated, 
too (e.g. the iPhone 15 Pro contains four sensors (Apple, 2023)).

Consequently, first publications report that the SPN approach fails 
for certain cameras and acquisition modes or struggles in the scope of 
new media file formats (Iuliani et al., 2021; Baracchi et al., 2021; Al 
Shaya et al., 2018). This means that the digital forensics domain faces 
tremendous challenges in the realm of SCI. Therefore, the main objective 
of this paper is to shed light on the field of SCI in the era of contemporary 
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Fig. 1. Misalignment of pixels due to multi-frame usage, as shown by Wronski et al. (2019). 

devices and the increasing volume of media files. Our main contribu-
tions are threefold:

• We first propose an adopted model to classify Source Camera Iden-
tification (SCI). We call it Source Camera Target Model (SCTM). It is 
based on the classical distinction between Source Camera Identifica-
tion and Source Model Identification, but the SCTM is more specific 
and incorporates contemporary features such as software-influenced 
digital imaging.

• We provide a formal definition of the problem classes Verification, 
Identification and Exploration in the scope of Source Camera Foren-
sics (SCF). For each problem class, we derive the most important 
evaluation metrics and illustrate them with appropriate use cases.

• We assess the recognized literature in Source Camera Forensics 
(SCF) and present and discuss the results. In total, we evaluate 100 
publications with respect to our SCTM. Our findings indicate that 
while ten articles on the SPN approach provide the necessary eval-
uation metrics for Verification, the datasets used for evaluation are 
entirely obsolete and observational research questions the transfer-
ability to contemporary media files. Additionally, we demonstrate 
that there is little research on efficiency aspects and on the camera 
software. Overall, there is a paucity of consideration given to the 
underlying use cases.

The rest of the paper is organized as follows: In Section 2 we intro-
duce some basic aspects of camera identification techniques and discuss 
related work. The next Section 3 introduces our SCTM to structure the 
camera identification problem. In Section 4 we introduce the relevant 
problem classes of camera identification, that is Verification, Identifica-
tion and Exploration followed by our literature evaluation in Section 5. 
Finally, Section 6 concludes our paper and points to future research.

2. Background and related work

In this section we provide a brief introduction to common camera 
identification techniques, starting with the SPN approach due to its dom-
inance in the field of SCI, as proposed and enhanced by Lukas et al. 
(2006) and Goljan et al. (2009), respectively. Then we move on to other 
approaches with a focus on technical diversity rather than complete-
ness. Finally, we introduce the Identification Granularity Model (IGM) 
due to Kirchner and Gloe (2015) which is minimalistic, but the only 
model proposed for a systematic classification of SCI approaches so far.

2.1. Sensor Pattern Noise approach

The basic idea of the Sensor Pattern Noise (SPN) approach, as pro-
posed by Lukas et al. (2006), is that a digital camera that captured an 
image can be identified by the noise an imaging sensor introduced to 
the image by pixel non-uniformity (PNU). This PNU is due to “differ-
ent sensitivity of pixels to light caused by the inhomogenity of silicon 
wafers and imperfections during the sensor manufacturing process”, and 
as such unique per sensor. Subsequently, based on their observations, 
Lukas et al. (2006) provide an approach to identify the source camera 
of an image following their scheme to approximate the PNU.

Eventually, to enable the results of the SPN approach to be used as 
admissible evidence in court, Goljan et al. (2009) conducted a large scale 
evaluation of their refined SPN approach on more than a million JPEG 
images.1 Based on their evaluation that included almost 7,000 devices 
from 150 digital camera models, they found an incredible False Accep-
tance Rate (FAR) of below 2.4 ⋅ 10−5 and a False Negative Rate (FNR) of 
less than 0.0238. With these remarkable results, they established the SPN 
approach as the gold standard in digital forensics to determine whether 
an image was captured with a given camera.

2.2. Feature-based Source Camera Identification

Even older than the SPN approach is the Feature-Based SCI which 
was first proposed by Kharrazi et al. (2004) in 2004 who extracted in-
formation from Color Filter Arrays (CFA), the demosaicing algorithm 
and color processing. Later, the set of features to extract was extended, 
i.e. by Gloe (2012) to up to 80 features, including additionally, e.g. 
wavelet statistics and measures of sharpness. After extraction, these fea-
tures were used in both works to learn a Support Vector Machine (SVM) 
to attribute a probable source model, e.g. with an accuracy of just above 
90% (Gloe, 2012), to the images examined.

Interestingly, the feature-based SCI aims to detect the source among 
a known set of cameras, when it is contained, rather than providing 
evidence that is admissible in court. Therefore, the Feature-Based SCI 
and SPN approach differ significantly, not only in their capabilities but 
also in their objectives.

2.3. Deep learning based Source Camera Identification

In contrast, rather new types of SCI approaches are data-driven and 
based on Convolutional Neural Networks (CNNs) which learn features 
that characterize a camera device or model directly from the given 
images instead of relying on scientifically established principles. For ex-
ample, the approach of Bondi et al. (2016) combines a CNN for feature 
extraction with an SVM for classification. To be more precise, the CNN is 
trained on non-saturated patches of the training images to learn relevant 
features to extract, which are the input for the SVMs that attributes a 
camera model to the test images based on a concluding majority voting. 
Overall, they achieve a classification accuracy of over 93% for models 
from the Dresden Image Database (DIDB). Interestingly, the CNN can be 
used to extract features from images of unknown camera models which 
avoids costly re-training, as only the SVMs must be adapted to new cam-
era models. However, Liu et al. (2021) indicate, that the accuracy may 
be lower than what has been reported.

Over time, many different schemes of CNN-learning have been pro-
posed (Castillo Camacho and Wang, 2021) which, despite the model 
itself, differentiate mostly by patch selection and pre-processing. For 
example Rafi et al. (2019), who achieve a classification accuracy for 
models of over 99% on the DIDB, focus on data augmentation which 
includes e.g. compression, gamma correction, cropping and flipping of 

1 Taken from Flickr.com.
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Fig. 2.Model of Source Camera Identification due to Kirchner and Gloe (2015).

the patches with the best characteristics for training and apply Empir-
ical Mode Decomposition to remove random high-frequency noise. In 
contrast, Liu et al. (2021) emphasize data diversity due to representa-
tive patch selection (i.e. edge and textural patches) and use a residual 
prediction module which can be seen as pre-processing with an adap-
tive denoising filter. They report a classification accuracy for models of 
over 98% on the DIDB.

To sum up, just like feature-based SCI deep learning based methods 
are rather used to attribute a known camera model to an image instead 
of proving the origination from a particular device.

2.4. Metadata based Source Camera Identification

However, the most basic form of SCI is the manual analysis of Exif 
tags, such as the Make and the Model fields (Orozco et al., 2013), which 
is obviously easily subverted. In contrast, the more profound approach 
of Kee et al. (2011) from 2011 considers, e.g. the structure of the Exif 
headers, and consequently finds that 99% of manufacturers of digital 
cameras had a unique signature, but only 62% of individual cameras, 
based on 2.2 million images.2

Although these results are unsatisfactory for many use cases of SCI, 
the lightweight nature of the approach motivated Mullan et al. (2019) 
to study the implications of smartphone photography on the approach. 
In conclusion, they found a disappointing classification accuracy of only 
0.65 for the source model. However, they were able to classify the oper-
ating system version with an accuracy of 0.82, just by counting how 
many Exif tags were set in certain areas of a JPEG’s header. Conse-
quently, their results demonstrate that there is more to identify beyond 
the common Make, Model and Device identification targets.

However, metadata is perceived as being unreliable due to the ease 
of tampering. Nevertheless, some results (Klier and Baier, 2024) suggest 
that they may still be of benefit to an investigation by helping investi-
gators to prioritize.

2.5. The Identification Granularity Model

The first proposed abstract order of the source identification prob-
lem, due to Kirchner and Gloe (2015) is shown in Fig. 2 which names the 
Device, Model, Make and Type as attributable in a source identification 
task. These classes are ordered from left to right by increasing identi-
fication granularity, as Kirchner and Gloe (2015) point out, hence, we 
will refer to this model as Identification Granularity Model (IGM).

Undoubtedly, the identification of a specific device is fundamen-
tal (Geradts et al., 2001), and is intuitively perceived as the goal to strive 
for (Kirchner and Gloe, 2015) due to its status as the most granular iden-
tification class. However, Kirchner and Gloe (2015) show that there is 
also digital forensic value in the identification of the other classes pre-
sented. For instance, when higher identification granularity is hardly 

2 Downloaded from Flickr.

Fig. 3. Illustration of the IGM extended by software due to Mullan et al. (2019).

achievable due to lacking prior information or for pre-processing steps 
to reduce the amount of resource consumption.

The IGM, which is sometimes perceived as a hierarchy, is implic-
itly (Gloe, 2012; Mullan et al., 2020; Gloe and Böhme, 2010; Kee et al., 
2011; Mullan et al., 2020) or explicitly (Mullan et al., 2019; Marra et 
al., 2017; Bernacki, 2020) present in many publications, but not an im-
portant part of the respective research. However, recently Mullan et al. 
(2019) directly addressed the IGM, as they found that their metadata-
based approach (for details see Section 2.4) to source identification on 
iPhones identified the software stack rather than the actual device which 
could not be mapped to the commonly used identification classes of the 
IGM.

Therefore, to be able to illustrate their findings, Mullan et al. (2019) 
added a vertical layer to the IGM to represent software aspects, as shown 
in Fig. 3. Arguably, they connected the whole software stack, beginning 
with the operating system (i.e. iOS) and continuing through to photo 
sharing platforms (i.e. Flickr) and the Model. This is somewhat perplex-
ing, given that neither the operating system nor any application is linked 
to a specific model. Nevertheless, their primary objective was not the 
IGM, but rather the necessity to present their results which highlights 
the imperative for a considered amendment of the IGM in order to ac-
commodate the evolving landscape of digital imagery.

3. The Source Camera Target Model

We propose the Source Camera Target Model (SCTM), which is 
shown in Fig. 4, and we discuss each facet of our model which is 
more specific than the IGM and incorporates contemporary features of 
software-influenced digital imaging.

3.1. Area of interest

In this paper, our focus is solely on Source Camera Forensics (SCF). We 
differentiate this concept from any form of “Type” recognition, which is 
depicted in the IGM but is not within the scope of our study (indicated by 
the black dashed frame). Additionally, we examine the software stack, 
beginning with the operating system and its imaging routines, and ex-
tending to the actual application that can capture media until the media 
file is saved for the first time. Therefore, we consider apps that took pho-
tos or record videos, while excluding any post-processing of previously 
recorded media files from our research scope. For the time being, we re-
frain from differentiating the software stack, for example, into firmware, 
operating system, and applications, due to the uncertainty of the depen-
dencies involved.

Forensic Science International: Digital Investigation 52 (2025) 301858 

3 



S. Klier and H. Baier 

Fig. 4. The proposed Source Camera Target Model (SCTM). (For interpretation 
of the colors in the figure(s), the reader is referred to the web version of this 
article.)

3.2. The source camera targets

Nonetheless, the dark blue boxes represent our valid objectives for 
SCF, which are primarily based on the conventional categorization of 
“Make”, “Model” and “Device”. Furthermore, we adhere to the verti-
cal separation of hardware and software, as suggested by Mullan et al. 
(2019). However, we enhance the model in the following manner:

1. We introduce a Physical Model and a Virtual Model whereas the first 
is analogous to the classical “Model” and the latter is referring to 
the software stack only (as defined in Section 3.1).

2. We rename the “Device” to Physical Device for the sake of clarity.
3. The Configured Device is a novel concept that combines the Physical 

Device and the Virtual Model, resulting in the device with which the 
user actually interacts.

4. We use the term Brand to refer to the “Make” which better captures 
the commonly intended meaning.

About granularity and uniqueness However, a clear order by granular-
ity over the hardware and the software layer, as proposed by Kirchner 
and Gloe (2015) and Mullan et al. (2019) is unattainable, because hard-
ware and software layer are coupled, but only loosely. On the one hand, 
not every operating system is available for every model, e.g. an iOS ver-
sion is only available for certain iPhones. However, on the other hand, 
each iPhone model can be used with several versions of iOS, each of 
the combinations representing a new Virtual Model. Therefore, it is un-
certain whether the Physical Model or this basic Virtual Model is more 
frequent to exist.

Even worse, the Virtual Model exists in a spectrum of granularity, 
since the complete software stack that is involved in the generation of 
the media file is considered. For example, the combination of iOS 17.1 
with the native “Camera” app will be significantly more common than 
the combination of iOS 17.1 with “Kik Messaging & Chat App” 16.14.2 
for recording media files. Therefore, we abandon a rigid order based on 
granularity and instead highlight only the unique identification targets 
(see the targets with a red frame), specifically the Physical Device and 
the Configured Device.

About volatility Furthermore, the software layer introduces an unseen 
time dependency, due to its volatility through regular and asserted up-
dates. For example, major iOS versions are released every year, but 
sub-versions and updates to the “Camera” app are released more fre-
quently. Hence, the identification of the Virtual Model or the Configured 
Device also provides a valuable reference to the period of time in which 
a media file was produced.

About the brand When we refer to the “Make” or “Manufacturer” of a 
device, we typically mean the brand the device was released under, such 
as “Apple” or “Canon”. Consequently, we utilize the more precise and 
particular term. Moreover, there is not a single manufacturer producing 
a smartphone. Rather, there is an assembler, who combines components 
from numerous manufacturers, each of which may engage with differ-
ent brands. Therefore, the actual manufacturer or even the assembler of 

Table 1
Grouped SCF problem classes with their characteristics and crucial evalua-
tion metrics.

Verification Identification Exploration 
Media Files (|𝑀|) ≥ 1 ≥ 1 ≥ 1
Cameras (|𝐶|) = 1 > 1 = 0

Eval. Metrics FAR, FPR 
FRR, FNR 

TPR, REC, SEN 
PPV, PREC 

COMP 
HOM 

Perf. Requ. -
Time: extraction, look up 
Storage: reference 

scalability 
to |𝑀|

certain camera components could also be an identification target. How-
ever, for the time being, we exclude these targets from our model, as 
their forensic significance is limited.

4. Problem classes of Source Camera Forensics

Besides the target for SCF, the specific use case greatly influences 
the requirements and considerations involved. Instead of providing a 
descriptive list of use cases to categorize existing approaches, we will 
adopt a formal approach that allows us to identify problem classes with-
out blind spots and subsequently consolidate the use cases of source 
camera forensics.

4.1. Formal derivation of problem classes

In the context of Source Camera Forensics (SCF), our objective is to 
examine a set of media files, denoted as 𝑀 , in conjunction with a set of 
potential source cameras, denoted as 𝐶 . To reveal all relevant problem 
classes, we generate the permutations when the number of elements 
in 𝑀 or 𝐶 is 0, 1, or > 1. However, we exclude permutations where 
|𝑀| = 0, as an investigation cannot be carried out without any media 
files. Subsequently, we group the permutations according to the size 
of the camera set 𝐶 , which signifies prior knowledge of the case and, 
consequently, determines the class of the problem.

Finally, we assign names to each of the groups according to their 
purpose and present our problem classes in Table 1. We classify them 
into three categories:

• Verification whether a specific camera was used to capture one or 
more media files;

• Identification of a source camera from a collection of relevant cam-
eras; and

• Exploration when there is no prior knowledge of relevant cameras

Typically, every examination of SCF begins with a collection of me-
dia files and ends when a link between the digital evidence and a suspect 
is established, e.g. through the successful verification of the source cam-
era. However, the specific path and the problem classes involved in an 
investigation or examination vary depending on the particular case. In 
Fig. 5, we present a visual representation of the relationships between 
these problem classes, which are defined by the available knowledge of 
the case and their intersections. Now we will provide a detailed discus-
sion of these relationships.

4.2. Verification

We start our explanation with the problem class of Verification due to 
the inclusion of the most classic scenario of SCFs as introduced by Ger-
adts et al. (2001) which involves a single media file (𝑀𝑥) and a single 
camera (𝐶𝑦), and the main objective is to obtain a highly accurate yes 
or no answer to the exemplary question:

Has media file 𝑀𝑥 been captured with camera 𝐶𝑦?
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Fig. 5. Proposed scheme of SCF, starting with a set of media files and (optionally) 
case relevant cameras, available case knowledge determines the appropriate 
problem classes, endpoint of the investigation is when a connection to a sus-
pect is established.

Thus, the Verification problem class is characterized by a hypothe-
sis, that is “H = media file 𝑀𝑥 has been captured with camera 𝐶𝑦.” 
which must be refuted or verified, hence the name. Consequently, this 
problem class is particularly well-suited for examinations and less so 
for investigations. In particular, Verification requires a high degree of 
prior knowledge of the case, and thus is only applicable when a specific 
camera is suspected to be the source, although that camera need not be 
available for examination.

Performance evaluation The main objective of this problem class is to 
determine scientifically, with a known level of certainty, whether a cam-
era is the source of a specific media file or not. This means that in a 
court setting, the assessment of the media file 𝑀𝑥 , as the product of 𝐶𝑦, 
must stand for itself. Therefore, this requirement is similar to the sci-
entific attribution of a fingerprint found on a crime scene to a specific 
individual. Consequently, certainty in this case is characterized by the 
likelihood that the hypothesis has been falsely accepted, as measured 
by the False Acceptance Rate (FAR) and the False Positive Rate (FPR) 
or refuted which is measured by False Rejection Rate (FRR) and False 
Negative Rate (FNR).

However, even in cases where there is a multitude of media files in-
volved, the speed at which the files are processed is not a significant 
concern. One reason for this is that a hypothesis must be proven, for 
which one media file is sufficient. For instance, a murder is investigated 
and the case involves thousands of media files showing the perspec-
tive of the murderer. While the murderer cannot be identified from the 
footage, the investigators have a suspect and seized their smartphone. 
Consequently, it is effectual for now, to prove that the most convicting 
media file was captured with the suspect’s smartphone. Hence, reduc-
ing the examination effort to one comparison per hypothesis, making 
performance considerations superfluous.

4.3. Identification

Unlike the Verification problem class, the Identification problem class 
is driven by findings and, hence, is investigative in nature. In this case, 
the investigators aim to determine the source camera of the media files 
based on a known set of relevant cameras 𝐶 , which is a well-known clas-
sification problem in digital forensics (Goljan et al., 2009). Therefore, 
the main objective of Identification are large camera sets under the as-
sumption that the set of cameras, although large in size, are based on a 
considerable amount of prior knowledge. Otherwise, the case is better 
served by either Exploration or Verification, as shown in Fig. 5.

Consequently, in the current stage of an investigation, it is consid-
ered successful if the number of potential source cameras is minimized 
to a small number or if it can be ruled out that the source camera is 
known, thereby increasing the case knowledge. Consequently, investi-
gators, for example, inquire:

Which cameras in 𝐶 have probably captured the media file 𝑀𝑥?

As a result, the answers obtained are valuable for an investigation, 
but cannot be utilized as evidence for a conviction. Therefore, to firmly 
connect, e.g. 𝑀𝑥 to the suspect, some form of verification has to be ap-
plied subsequently. Certainly, this division into two distinct problems, 
namely Identification and Verification, is in stark contrast to previous re-
search that assumes that an Identification must yield a definitive and 
certain result by itself. A comprehensive examination of this matter will 
be presented in Section 5.3.

Performance evaluation Consequently, the greatest concern in this prob-
lem class must be that the source camera is known but not identified, 
which can prevent or at least hamper an investigation. Therefore, we 
mainly evaluate the true-positives (TPs) in relation to the false-negatives 
(FNs), hence, with a metric such as True Positive Rate (TPR), also called 
Recall (REC) or Sensitivity (SEN). Additionally, efficiency must be en-
sured, hence, the relation between false-positives (FPs) and TPs has to 
be favorable, which e.g. is measured by the Positive Predictive Value 
(PPV) or by Precision (PREC).

Lastly, in this specific problem class, there are demands on runtime 
and storage efficiency because of the numerous cameras and look-ups 
required. Therefore, any approach addressing this problem category 
should consider: (i) the runtime efficiency of the extraction phase, as 
well as, (ii) the runtime efficiency of the look up and (iii) the storage 
efficiency of the camera references. However, the actual constraints for 
each of the aspects, depend on the investigated case.

4.4. Exploration

Eventually, the Exploration problem class is characterized by a lack of 
prior case knowledge in terms of involved cameras and mostly relevant 
to large sets of media files. To illustrate, investigators have confiscated 
a server that had been utilized by a collective to disseminate CSAM, of 
which some is likely self-produced. Hence, they first and foremost may 
ask the question:

Which media files of 𝑀 have probably been captured with the same 
camera?

Again, we concentrate solely on investigative approaches here, which 
means that investigators must keep in mind that the results of Explo-
ration are not intended to be a proof. Therefore, similarly to the Identifi-
cation problem class a Exploration is not the end of an investigation, but 
rather the start.

Performance evaluation Therefore, when faced with such a set of me-
dia files, our primary focus should be to ensure that related evidence 
remains together. For instance, one perpetrator in the given CSAM case 
sexually abused three children on three different occasions, but cap-
tured all the assaults with the same camera. However, the perpetrator 
can only be identified while abusing one of the children. If all three 
assaults are grouped together, the investigation can further verify that 
the three assaults were committed by the same perpetrator. However, 
if these media files are separated, investigators can only attribute one 
assault to this perpetrator, leaving two cases unsolved. Vice versa, if me-
dia files are grouped together that do not belong together, this reduces 
the efficiency of the approach, as more media files than necessary have 
to be investigated further, but evidence will not be missed.

Thus, the performance evaluation resembles that of the Identification
problem class, but in the context of clustering. Therefore, the metrics to 
consider are Completeness (COMP) (Rosenberg and Hirschberg, 2007) 
and Homogeneity (HOM) (Rosenberg and Hirschberg, 2007), which are 
the counter-parts of the TPR and PPV, respectively. Furthermore, the 
ability to scale with the number of media files is crucial in this particular 
problem class.
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Fig. 6. Selected publications illustrated as count per year. 

5. Evaluation of recognized source camera forensic approaches

This section starts with an evaluation of recognized research papers 
in terms of fundamental statistics. We then assess our proposed SCTM 
with respect to the derived problem classes from Section 4. Finally we 
turn to the objective of determining whether there is a gold standard in 
the scope of SCI.

5.1. Considered corpora of research

In order to conduct our assessment of SCF, we have considered re-
search that is currently influential within the field. To this end, we have 
taken into account seminal works that have been incorporated into the 
most recent literature reviews on the topic, as well as the most relevant 
journal and conference proceedings. To be more precise, we consider 
every SCF research paper referenced in the works of Nwokeji et al. 
(2024), Sencar et al. (2022), Akbari et al. (2022b), Castillo Camacho 
and Wang (2021) and Bernacki (2020), as well, as publications from 
Elsevier’s “Forensic Sciences International: Digital Investigation” from 
2019 until September 2024, hence, also include publications from the 
DFRWS conferences. However, we excluded any research that focused 
exclusively on post-processed media files, authentication, anti-forensics, 
or is unpublished.

We provide our complete data basis of our upcoming analysis.3 In 
addition, Table A.3 in the Appendix shows an excerpt of all articles that 
were successfully classified into one of the problem classes or if the main 
objective is to provide theoretical understanding, to which we refer as 
Observational.

5.1.1. Fundamental statistics
In total, we selected and classified 100 research papers, for which 

we show a chronology in Fig. 6 that illustrates the publication year of 
research that is influential for SCF today. Overall, 75 research papers 
address images, 20 videos and 4 both, which demonstrates a clear imbal-
ance in favor of images. While images are easier to use for research due 
to their smaller size and greater availability, this finding is still alarming 
because videos are just as easy to capture as images and have become 
an integral part of many people’s daily lives.

Furthermore, we find that recognized research mostly aims at the 
Physical Device, as shown in Fig. 7, which is not surprising due to its 
high forensic value as a unique target. However, no research has yet 
been conducted on the Configured Device which is the second unique 
target and is newly proposed as a legit target, which is therefore also not 

3 https://data.mendeley.com/datasets/8tzx9dwryc/2.

Fig. 7. Publications per Source Camera Target. (Due to papers aiming at several 
source camera targets, the total exceeds the amount of considered papers.)

surprising. However, the equally new Virtual Model has been researched 
once, namely by the work of Mullan et al. (2019) which we discussed 
in Section 2. This is also the only work that has focused on a purely 
software-defined target, which indicates a research gap in this area.

5.1.2. Types of approaches
Subsequently, the methods employed were classified in accordance 

with the methodology outlined in Section 2, and the correlation between 
these and the publication year is illustrated in Fig. 8. Accordingly, we 
differentiate between papers that utilize diverse types of SPN-, feature-, 
metadata- and CNN-based approaches, or a combination thereof. It is 
noteworthy that mixed and metadata approaches have received almost 
no attention in the literature. In contrast, the SPN approach is the most 
prevalent method in terms of the volume of recognized research. Fur-
thermore, the SPN approach has been the subject of ongoing research 
since its inception in 2006, with a notable increase in activity in recent 
years (2022-2024 is probably too recent to be recognized in literature 
reviews). Despite the continued research into feature-based and CNN-
based approaches, there is no discernible increase in activity over time. 
However, CNN-based approaches are still in their infancy.

5.1.3. Used data sets
Also, we elaborated which data sets have been used in the consid-

ered corpora of research to evaluate the approaches which is of utmost 
importance in SCF. Hence, Fig. 9 illustrates the correlation between 
the publication year and the data set employed. On the one hand, we 
have published forensic data sets, such as the DIDB (Gloe and Böhme, 
2010), VISION (Shullani et al., 2017), Video-ACID (Hosler et al., 2019) 
and SOCRatES (Galdi et al., 2019), whereas more are available, such 
as the Qatar University Forensic Video Database (QUFVD) (Akbari et 
al., 2022a) or New York University Abu Dhabi - Mixed Media Dataset 
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Fig. 8. Publications per mean and year in percentage of grand total. Colored by 
allocation over time.

(NYUAD-MMD) (Taspinar et al., 2020) which, however, have been used 
twice or less and are summarized in the “other” category.

On the other hand, we have a conglomerate of heterogeneous data 
sets, either they have been created by the authors of the publications 
and are not published (“own”) or by downloading images from Flickr4
whereas each publication uses a different data set. However, these data 
sets are reproducible when their references have been published and 
under the condition that the images are still accessible. Furthermore, 
while “Flickr” may allow access to media files from up-to-date cameras, 
it does only provide JPEGs in their native state

The first published forensic image data set from 2010, namely the 
DIDB, is still prevalently used. Although, eleven publications since 2019 
use the DIDB additionally to a more recent data set, three publica-
tions (Bharathiraja et al., 2023; Liu et al., 2021; Yang et al., 2019) use 
solely the DIDB for their evaluations. The next most used data set is 
VISION which publication dates back to 2017. Over all used published 
data sets the newest incorporated Apple Smartphones are the iPhone 
8 (Akbari et al., 2022a; Hadwiger and Riess, 2021; Tian et al., 2019; Al 
Shaya et al., 2018) and XS max (Akbari et al., 2022a) which have been 
released 2017 and 2018, respectively. Hence, no available data set can 
be seen as contemporary.

Moreover, the scale and heterogeneity of the data sets employed are 
constrained. To illustrate, the DIDB is one of the most comprehensive 
data sets, comprising approximately 15,000 images captured by 68 digi-
tal cameras of 24 models. While the creation of such data sets represents 
a significant undertaking, it represents a mere fraction of the total num-
ber of cameras and models in circulation, as well as media files that 
may need to be examined. However, this issue can be circumvented by 
utilizing a data set downloaded from Flickr, though this approach has 
the limitation of only providing images in their native state and lacking 
ground truth information.

4 https://www.flickr.com/.

Fig. 9. Data set types used per publication year in percentage of data sets used 
per year. Colored per data set type and usage over time. Blank cells indicate the 
period preceding publication.

It is notable that, despite the availability of published data sets, the 
use of evaluation with ‘own’ data sets has declined, but persists without 
clear justification from the authors.

5.2. Problem classes and research

We examine the alignment of the SCF research with our proposed 
SCTM and problem classes, subsequently discussing the implications for 
each problem class.

5.2.1. Alignment
Next, we assess the alignment of the considered approaches with the 

problem classes we proposed in Section 4 based on the respective eval-
uation metrics. Overall, from 100 research papers, only 15 evaluation 
results align with the problem classes of SCF and 80 approaches meet 
the requirement of no problem class, as shown in Fig. 10. Additionally, 
seven papers are a special case due to their solely observational nature, 
hence, do not conduct an evaluation.

Specifically, most of the 80 misaligned approaches report the FPR 
along with the TPR, which is inconsistent with our proposed require-
ments of both Verification (FPR, FNR) and Identification (TPR, Specificity 
(SPEC)). Nevertheless, this finding does not invalidate the approaches 
themselves, as they are potentially applicable to both problem classes. 
Rather, it demonstrates that the majority of research does not suffi-
ciently consider the implications of the actual use case.

Similarly, clustering research primarily reports the Accuracy (ACC) 
of their approaches, which may be interesting for benchmarking, but 
is not sufficient for forensic use cases due to the lack of differentiation 
between different types of error, which can make a significant differ-
ence, as argued in Section 4. In conclusion, only one approach (López 
et al., 2020) reports the necessary metrics to qualify for the Exploration
problem class.

5.2.2. Verification approaches
Overall, ten papers (see Table 2) provide the metrics necessary to 

evaluate an approach of the Verification problem class. These include, 
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Table 2
A summary of works that meet the requirements of the specified problem class.
Paper Target(s) Means Media Type Data Set(s) 
VERIFICATION (10 classified, 31 candidates) 
Lukas et al. (2006) PHYSICAL DEVICE SPN IMAGES own 
Chen et al. (2008) PHYSICAL DEVICE SPN IMAGES own, Flickr 
Amerini et al. (2009) PHYSICAL DEVICE SPN IMAGES own 
Goljan et al. (2009) PHYSICAL DEVICE SPN IMAGES Flickr 
Lawgaly and Khelifi (2016) PHYSICAL DEVICE SPN IMAGES DIDB, own 
Ferrara and Beslay (2020) PHYSICAL DEVICE SPN VIDEOS VISION 
Mandelli et al. (2020) PHYSICAL DEVICE SPN VIDEOS VISION 
Lawgaly et al. (2021) PHYSICAL DEVICE SPN VIDEOS Video-ACID 
Yang et al. (2021) PHYSICAL DEVICE SPN VIDEOS VISION 
Ferrara et al. (2022) PHYSICAL DEVICE SPN VIDEOS VISION 
IDENTIFICATION (6 classified, 11 candidates) 
Valsesia et al. (2015) PHYSICAL DEVICE SPN IMAGES Flickr 
Akbari et al. (2022a) PHYSICAL DEVICE, 

PHYSICAL MODEL CNN VIDEOS QUFVD 
Bharathiraja et al. (2023) PHYSICAL DEVICE CNN IMAGES DIDB 
Anmol and Sitara (2024) PHYSICAL DEVICE, 

PHYSICAL MODEL FEATURES VIDEOS VISION, SOCRatES, 
QUFVD 

EXPLORATION (1 classified, 5 candidates) 

López et al. (2020) PHYSICAL MODEL, 
BRAND METADATA VIDEOS VISION, 

Video-ACID 

Fig. 10. Publications satisfying the requirements for the respective problem 
class. (Due to papers aligning with more than one problem class, the total ex-
ceeds the amount of considered papers.)

the most well-known and fundamental papers on the SPN approach, 
namely the work of Lukas et al. (2006) and Goljan et al. (2009). It is 
noteworthy that each work utilizes some form of SPN approach, targets 
the physical device and that images and videos are addressed in an equal 
number of research papers.

Undoubtedly, a substantial body of research has been conducted on 
the SPN approach, including very large image sets, e.g. Goljan et al. 
(2009) found astonishingly low FAR and FNR on the basis of more than a 
million images from almost 7000 individual digital cameras of 150 mod-
els. Therefore, the Verification of a Physical Device using the SPN method 
has been a subject of thorough investigation in the past. However, the 
most recent study on image Verification dates back to 2016 (Lawgaly 
and Khelifi, 2016) and employs only the DIDB along with an unpub-
lished data set.

However, the studies carried out on the Verification of video files 
are typically more current, with their publication dates spanning from 
2020 to 2022, and utilize exclusively published data sets, specifically 
VISION (Shullani et al., 2017) and Video-ACID (Hosler et al., 2019). 
However, even those data sets are many years behind the current camera 
market, as discussed in Section 5.1.3. Furthermore, the data sets used 

are considerably smaller than the large-scale test of Goljan et al. (2009) 
for images, as, e.g. the VISION data set contains only 35 devices of 29 
models.

5.2.3. Identification approaches
Conversely, only four papers (see Table 2) align with the Identifica-

tion problem class, although once more, one half addresses images and 
the other half addresses videos. However, there is diversity in terms of 
the targets addressed and the means employed, and the publications are 
considerably more recent than those of Verification, dating back to 2023 
and 2024 for images and videos, respectively.

Although published recently, Bharathiraja et al. (2023) evaluate 
their approach solely on the DIDB from 2010. Furthermore, the issue 
of efficiency has only been addressed by Valsesia et al. (2015) and Ak-
bari et al. (2022a), who have presented at least some efficiency metrics, 
including processing time per frame or video and RAM usage. However, 
among the unclassified papers, there are eleven approaches that take 
efficiency issues into account and are evaluated at least to one Identifi-
cation metric, hence, are a candidate.

5.2.4. Exploration approaches
Even less research falls into our Exploration problem class, specifi-

cally only the work of López et al. (2020) (see Table 2) which addresses 
videos applies. However, they did not evaluate scalability or runtime 
efficiency, which would be the primary strengths of a metadata-based 
approach.

However, there are other clustering approaches that may be appli-
cable for Exploration, but, they report heterogeneously divergent evalu-
ations metrics, such as the TPR (Caldelli et al., 2010), FPR (Amerini et 
al., 2014), FRR (Tomioka and Kitazawa, 2011), or the Adjusted Rand 
Index (ARI) (Marra et al., 2017), although only the latter is a dedicated 
clustering metric. Arguably, the HOM and COMP we expect to evalu-
ate are relatively new, having been published in 2007 (Rosenberg and 
Hirschberg, 2007), and may not yet have been widely adopted in the 
field of digital forensics. In total, however, only five papers would be 
candidates for Exploration.

5.3. Do we have a gold standard?

Firstly, there cannot be a single gold standard for SCF, given the con-
siderable divergence in use cases across the field, as previously discussed 
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in Section 4. Although this may seem apparent, it is not reflected in the 
corpus of existing literature on the subject.

For example, every approach for Identification and Exploration from 
Table 2 is more concerned of false-positives, e.g. measured in the form of 
PPV or HOM, than of false-negatives which is more reasonable when the 
use case is considered (see Section 4). Moreover, two out of four Iden-
tification approaches and nine of the eleven candidates seek to achieve 
a favorable FAR or FPR. This phenomenon may be attributed to the in-
fluence of the seminal works by Lukas et al. (2006) and Goljan et al. 
(2009). As a result, although the problem classes Identification or Explo-
ration are targeted, the approaches try to overcome the bar set by the 
SPN approach. Hence, this may impede the development of approaches 
tailored to the specific use case. Therefore, the question nowadays must 
be:

“Do we have a gold standard for Verification, Identification and Explo-
ration?”

5.3.1. Verification
Metaphorically a gold standard describes something that sets the 

highest standard of quality or performance. Undoubtedly, the SPN ap-
proach with the evaluation results discussed in Section 2 can be seen as 
such for the Verification of images and, hence, monopolizes the whole 
problem class (see Table 2). Nevertheless, the outcomes for videos are 
not as favorable as those for images and are not derived from similarly 
expansive data sets.

However, in-depth research conducted on camera hardware, shows 
that not just a sensor’s wafer imperfections, as initially proposed 
by Lukas et al. (2006), contributes to the SPN, but also e.g. the dark cur-
rent and the lens optical system (Matthews et al., 2019, 2020). While 
these findings do not invalidate the approach as a gold standard in and 
of themselves, they represent a potential flaw and indicate a lack of 
comprehension at the hardware level.

In light of the above, it is unsurprising that the transition from digital 
cameras with CCD sensors to CMOS sensors occurred without significant 
controversy, in stark contrast to the potential for debate surrounding this 
technological shift. For example, Lawgaly and Khelifi (2016) identify 
which cameras in their data set utilize CCD or CMOS sensors, yet do not 
address this issue in their evaluation. Furthermore, Goljan et al. (2009) 
present no statistics on this issue, despite the fact that some of the au-
thors of their earlier work (Chen et al., 2008) suspected that the CMOS 
sensor was the reason for the significantly inferior results of the respec-
tive camera. Additionally, the most widely used data set (see Fig. 9), is 
the DIDB, which contains exclusively digital cameras with CCD sensors.

Moreover, there is research available that provides insight into spe-
cific topics, namely new data formats such as HEIF5 (Baracchi et al., 
2021), the impact of compression (Chuang et al., 2011), HDR capturing 
mode (Al Shaya et al., 2018), pixel-binning (Taspinar et al., 2021) and 
smartphone cameras (Iuliani et al., 2021; Baracchi et al., 2021). In sum-
mary, they all show that each of the technologies studied is a significant 
hurdle for the SPN approach.

Consequently, first works demonstrate that images are falsely at-
tributed to smartphones (Baracchi et al., 2021; Albisani et al., 2021; 
Al Shaya et al., 2018). Moreover, in 2021 Iuliani et al. (2021) analyzed 
nearly 25,000 images from 486 devices belonging to 45 smartphone 
models and 114 devices belonging to 25 digital camera models,6 demon-
strating that the considered models exhibited an FPR in the range of 
[0,0.992], contingent on the selected resolution. In Fig. 11 we show the 
individually reported FPR (in %), due to Iuliani et al. (2021), in a box 
plot. Only 24 models show a FPR in the accustomed domain of below 
10−5 (Goljan et al., 2009), the median is at 3.0 ⋅ 10−3 which is more 
than a hundred times higher than what is generally considered to be ne-
glectable. Moreover, the upper quartile is at 0.1 and twelve models, are 

5 This is the default for iPhones since iOS 11 (Apple, 2024).
6 Downloaded from Flickr.

Fig. 11. FPR (in %), as individually reported by Iuliani et al. (2021) for the SPN 
approach. Median is at 0.3%.

even beyond this upper fence, making the approach practically unusable 
on certain devices.

It can thus be concluded that the SPN approach, in the absence of 
an adversary, represents the current standard for Verification. But, the 
whole perception of the SPN approach to be impeccable relies on anti-
quated data sets, which are merely unpublished. Therefore, it is highly 
questionable whether the SPN approach can yield the same impressive 
results as in previous studies, in the wild today. Consequently, it no 
longer constitutes a gold standard and a match for a modern camera 
should not be regarded as compelling evidence without further compre-
hensive consideration.

5.3.2. Identification and exploration
Once more, the most significant issue is the use of outdated data sets, 

which raises questions about the continued achievability of the reported 
TPR and PPV of ≥ 0.90 and ≥ 0.98, as presented in the studies by Valsesia 
et al. (2015) and Bharathiraja et al. (2023), respectively. Notably, the 
results reported López et al. (2020) vary considerably depending on the 
data set utilized. For example, the TPR is 0.81 for the VISION data set 
and 0.55 for the newer QUFVD. Although our expectations are different 
and less rigorous, this result is nevertheless a cause for concern.

Finally, the body of research is limited, with regard to the Identifica-
tion and Exploration and the restricted scope and diversity of the data sets 
employed, raise questions about the applicability of these approaches on 
a larger scale today. Consequently, it can be concluded that this field of 
research is still in its infancy and that a standardized methodology still 
needs to be established.

6. Conclusion and future work

Overall, the SPN approach is widely perceived as the gold standard, 
but there are legitimate and profound concerns about the reliability of 
its results for modern media files. On the one hand, practitioners of 
digital forensics cannot expect robust assurances in this regard; on the 
other hand, research in this area is facing its greatest challenge since its 
inception in 2006, yet both disciplines are barely aware of the changed 
reality. Until we have up-to-date benchmarks based on agreed metrics 
and obvious constraints, we must be extremely cautious about applying 
the SPN approach in the wild.

Moreover, the investigative approaches to Source Camera Foren-
sics, namely Identification and Exploration, are largely overlooked de-
spite their relevance to law enforcement. Therefore, by distinguishing 
between different problem classes and clarifying the respective expec-
tations, we encourage research in these side-lined sub-disciplines by 
exempting them from the strict requirements that must be placed on ev-
idence to hold up in court. Consequently, only Verification approaches 
need to be applied.

However, SCF can no longer rest on the success of the SPN approach 
and needs extensive further research to catch up with the advances in 
digital imaging and its use. Therefore, research needs to be done on 
modern imaging pipelines, from hardware, as suggested by Matthews 
et al. (2019), to software and artifacts introduced by AI-based imaging. 
Certainly, we will use the leeway provided by these results to propose 
approaches tailored to the efficiency-driven problem classes Identifica-
tion and Exploration. However, there is a huge demand for large and 
constantly updated datasets that must be satisfied to eventually estab-
lish a gold standard for each of the common use cases in SCF.
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Table A.3
Excerpt of considered seminal works with the approach used, excluding unclassifiable works and sorted descending by date of publication.

Publication Year Target(s) Means Perf. Metrics Effic. Metrics Media 
Files Data Set PC

Ferrara et al. (2022) 2022 PHYS. 
DEVICE SPN FPR, FNR VID. VISION VER 

Akbari et al. (2022a) 2022 
PHYS. 
DEVICE, 
PHYS. 
MODEL 

CNN 
FPR, TPR, PPV, 
ACC, F1, 
conf. Matrix 

proc. time per patch, 
proc. time per frame, 
proc. time per video 

VID. QUFVD ID 

Lawgaly et al. (2021) 2021 PHYS. 
DEVICE SPN FPR, FNR, 

TPR, PCE VID. Video-ACID VER 

Baracchi et al. (2021) 2021 PHYS. 
DEVICE SPN FAR, TPR, 

ACC, PCE IMG: own OBS 

Iuliani et al. (2021) 2021 PHYS. 
DEVICE SPN FPR, PCE IMG: Flickr OBS 

Taspinar et al. (2021) 2021 PHYS. 
DEVICE SPN TPR, PCE BOTH NYUAD-MMD, 

SOCRatES OBS 

Yang et al. (2021) 2021 PHYS. 
DEVICE SPN FPR, FNR 

PCE 
proc. time per frame, 
proc. time per video VID. VISION VER 

Ferrara and Beslay (2020) 2020 PHYS. 
DEVICE SPN FPR, FNR, 

PCE VID. VISION VER 

López et al. (2020) 2020 
PHYS. 
MODEL, 
BRAND 

METAD. HOM, COMP, 
SIL, RI VID. VISION, 

ACID EXP 

Mandelli et al. (2020) 2020 PHYS. 
DEVICE SPN FPR, FNR, 

TAR, AUC proc. time per frame VID. VISION VER 

Al Shaya et al. (2018) 2018 PHYS. 
DEVICE SPN PCE IMG: HDR OBS 

Lawgaly and Khelifi (2016) 2016 PHYS. 
DEVICE SPN FAR, FPR, 

FNR, TAR CPU filtering time IMG: DIDB, 
own VER 

Valsesia et al. (2015) 2015 PHYS. 
DEVICE SPN REC, PREC data loaded from disk, 

RAM usage IMG: Flickr ID 

Chuang et al. (2011) 2011 PHYS. 
DEVICE SPN FAR, TDR, 

PCE VID. own OBS 

Amerini et al. (2009) 2009 PHYS. 
DEVICE SPN FAR, FRR IMG: own VER 

Goljan et al. (2009) 2009 PHYS. 
DEVICE SPN FAR, FRR, 

PCE IMG: Flickr OBS, 
VER 

Chen et al. (2008) 2008 PHYS. 
DEVICE SPN FAR, FRR IMG: own, 

Flickr VER 

Lukas et al. (2006) 2006 PHYS. 
DEVICE SPN FAR, FRR, 

PCE IMG: own OBS, 
VER 
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Appendix A. Considered works

This section presents an excerpt of considered seminal works with 
the approach used in Table A.3.

Appendix B. Supplementary material
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