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Abstract
Let ℓ and p be two distinct prime numbers. We study ℓ-isogeny graphs of ordinary elliptic

urves defined over a finite field of characteristic p, together with a level structure. Firstly, we
how that as the level varies over all p-powers, the graphs form an Iwasawa-theoretic abelian

p-tower, which can be regarded as a graph-theoretical analogue of the Igusa tower of modular
urves. Secondly, we study the structure of the crater of these graphs, generalizing previous results
n volcano graphs. Finally, we solve an inverse problem of graphs arising from the crater of ℓ-
sogeny graphs with level structures, partially generalizing a recent result of Bambury, Campagna
nd Pazuki.
2024 The Author(s). Published by Elsevier GmbH. This is an open access article under the CC
Y-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

SC: primary 05C25; 11G20; secondary 11R23; 14G17; 14K02

eywords: Isogeny graphs; Iwasawa theory for graphs; Inverse problem for graphs

1. Introduction

Let p be a fixed prime number. Let X be a finite connected graph (in this article, we
allow multiple edges and loops in a graph). In a series of articles, [20,21,27] Vallières and

cGown–Vallières studied Iwasawa theory of the so-called abelian p-towers of graphs
bove X (see Definition 3.1; note that we have replaced the prime ℓ in the aforementioned
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works by p in this article). Let (Xn)n≥0 be such a tower and write κn for the number of
panning trees of Xn . Then there exist integers µ, λ and ν such that

ordp(κn) = µpn
+ λn + ν

or n ≫ 0. This can be regraded as the graph-theoretic analogue of the seminal formula
f Iwasawa on class groups of sub-extensions inside a Zp-extension of a number field
roved in [13].

As discussed in [12,19], Iwasawa theory of number fields draws strong analogies with
ts function field counterpart in which one studies towers of Galois coverings of curves.
ne important example of such towers is the Igusa tower of modular curves initially

tudied in [11]; see also [10,14,19]. Roughly speaking, an Igusa tower consists of

X0 ← X1 ← · · · ← Xn ← Xn+1 ← · · ·

here Xn is the modular curve classifying isomorphism classes of (E, P), where E is
n elliptic curve over a finite field of characteristic p and P is a point on E of order pn .

The first goal of this article is to construct an explicit Zp-tower of graph coverings
rising from isogeny graphs of ordinary elliptic curves defined over a finite field k, whose
haracteristic is p. This gives a graph theoretical analogue of Igusa towers. Let ℓ be a
rime number distinct from p and let m ≥ 0, N ≥ 1 be integers. We define in Section 2.1
he ℓ-isogeny graph Gm

N whose vertices consist of k-isomorphism classes of pairs (E, P),
here E is an ordinary elliptic curve defined over k and P is a point of E(k) of order

N pm , and edges between two vertices are defined by ℓ-isogenies. When N = 1 and
m = 0, this recovers the volcano graphs studied in [2,15,26]. The graphs Gm

N can be
regarded as an enhancement of the volcano graphs via the addition of a Γ1(N pm)-level
structure. Similar (but slightly different) graphs have been studied in [9]. See in particular
Sections 2 and 3 in op. cit.

A priori, Gm
N is a directed graph. We shall write G̃m

N for the undirected graph obtained
from Gm

N by ignoring the directions of the edges. The first main result of the present
article is the following:

Theorem A (Corollary 3.7). Let E be an elliptic curve representing a non-isolated vertex
of G̃0

1 (i.e., a vertex whose degree is strictly positive). Let G̃m
N denote the connected

component of G̃m
N containing a vertex arising from E. Then there exists an integer m0

such that the graphs
(
G̃m0+r

N

)
r≥0

form an abelian p-tower in the sense of Vallières and
McGown–Vallières.

In Appendix, we explain how to realize such a tower of graph coverings as voltage
graphs when N = 1. This may be of independent interest since voltage assignments are
used to define Iwasawa invariants of abelian p-towers in [20,21,27].

The integer m0 featured in Theorem A depends on the variation of the number of
connected components in Gm

N as m increases. We show in Proposition 3.3 that when m
is sufficiently large, the number of components in G̃m

N stabilizes. Such stabilization is
necessary to ensure that the coverings G̃m+r

N /G̃m
N are Galois.

In the case of volcano graphs, each vertex is assigned a “level”, depending on the

endomorphism ring of the elliptic curve attached to the vertex. The level zero vertices
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form the “crater” of a volcano graph. In [2, Proposition 3.14], Bambury–Campagna–
Pazuki gave a complete description of all possible craters. One may extend the concept
of “levels” and “craters” to Gm

N in a natural manner (see Definition 2.9). In Section 4,
we give a detailed description of the crater of Gm

N ; see in particular Remark 4.21
and Proposition 4.24. Several explicit examples are given throughout the section. The
introduction of Γ1(N pm)-level structure has the advantage that we may avoid working
with loops if we assume either N or m is sufficiently large (see Lemma 2.11). While
many of our results are direct analogues of those given in [2], the absence of loops
allows us to simplify some of the proofs.

In Section 5, we define the so-called “abstract tectonic craters”, which are graphs that
have the same geometry as a connected component of the crater that we describe in
Section 4 (see Definition 5.1). We prove a result on the inverse problem for such graphs.

Theorem B (Theorem 5.2). Let G be an abstract tectonic crater. There exist infinitely
many pairs of distinct primes p and ℓ, and nonnegative integers N such that one of the
connected components of the crater of the ℓ-isogeny graph G1

N is isomorphic to G.

This can be regarded as a partial generalization of results in [2], where the inverse
problem for volcano graphs over Fp without level structure has been studied. The inverse
problem without level structure is false when k ̸= Fp because of connectedness issue (see
5.1 of op. cit. for a detailed discussion). In the present paper, we consider connected
omponents separately allowing us to avoid this issue. Furthermore, we have the liberty
o increase the level N to simplify the structure of the graphs being studied. In particular,
e do not recover results of [2] since the level is fixed to be 1 in the aforementioned
ork.

utlook

In the setting of number fields, questions on distributions of Iwasawa invariants
ttached to cyclotomic Zp-extensions of imaginary quadratic fields have initially been
tudied in [8]. More recently, similar questions on abelian number fields have been
tudied in [6]. In [7], questions on distributions of Iwasawa invariants attached to abelian

p-towers of graphs were studied. Unlike the setting of number fields, the notion of
yclotomic extensions does not exist in the context of graphs. The towers given by
heorem A could potentially be a candidate of substitution for cyclotomic extensions. We
lan to study how the Iwasawa invariants vary as ℓ and/or p vary. Techniques developed
n [22] could potentially be adopted in this setting.

It may also be interesting to seek arithmetic interpretation of the p-adic zeta functions
attached the towers given by Theorem A. One might naively hope that they could be
related to p-adic zeta functions of modular curves over k originating from the Iwasawa
theory of function fields. Results in [18,25] tell us that the latter are closely related to
supersingular isogeny graphs. However, we would not be able to construct abelian p-
towers for supersingular isogeny graphs in the manner presented in this article because
of the lack of p-power torsions on supersingular elliptic curves over finite fields of

characteristic p. This suggests that fundamentally new ideas are required to establish
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links between abelian p-towers of ordinary isogeny graphs with objects from function
eld Iwasawa theory.

In a different direction, we plan to study the following inverse problem further general-
zing Theorem B: Given a volcano graph G with a tectonic crater (see Definition 5.1), can

we find primes p and ℓ, a finite field k of characteristic p and an integer N such that G is
connected component of Gm

N for some non-negative integer m? The additional difficulty
n solving this question compared to Theorem B is that a volcano of depth d > 0 (i.e a

volcano not only consisting of a crater) does not leave any room for choosing the prime
ℓ, whereas our proof of Theorem B depends crucially on using Tchebotarev’s Theorem
to choose ℓ. One could hope to resolve this problem by choosing the imaginary quadratic
field K appropriately — similar to the techniques employed to solve the inverse volcano
problem for N = 1 and m = 0 in [2].

Finally, we mention that several works on isogeny graphs with level structures
ave been released in recent years; see [1,3,9,17,24,28]. In a different vein, Pengo–
allières [23] developed a general theory of graph coverings indexed by natural numbers
f a given finite graph using Mahler measures. More specifically, given a finite graph

X , they study a collection of graph coverings {Xn}n≥1 of X , where Xn/X is a Galois
covering whose Galois group is isomorphic to Z/nZ. It seems natural to study how
isogeny graphs with level structures might fit in this framework.

2. The definition of isogeny graphs and basic properties

Throughout this article, a graph X may be directed or undirected. We write V (X ) for
he set of vertices of X and E(X ) for the set of edges of X . We shall say that v ∈ V (X )
dmits an edge in X if there exists e ∈ E(X ) such that v is one of the end-points of e.

.1. Defining ordinary isogeny graphs

Let p be an odd prime. We fix a second prime number ℓ ̸= p and N ≥ 1 an integer
oprime to pℓ. Further, we fix a finite field k of characteristic p. We fix once and for all
set of representatives of k-isomorphism classes of elliptic curves defined over k, which

we denote by E . Note that a k-isomorphism of two curves over k can be realized over
the unique quadratic extension k ′ of k as long as the j-invariant is different from 0 and
728.

We introduce the main object of interest of the present article:

efinition 2.1.

(i) Let E and E ′ be elliptic curves defined over k. Let P ∈ E(k) and P ′ ∈ E ′(k) be
points of order N pm . We say that (E, P) and (E ′, P ′) are equivalent if there is a
k-isomorphism of elliptic curves φ : E → E ′ with φ(P) = P ′.

(ii) Let E and E ′ be elliptic curves defined over k. Let φ and φ′ be isogenies from E
to E ′ defined over k. We say that φ and φ′ are equivalent if ker(φ) = ker(φ′).

(iii) For an integer m ≥ 1, we define a directed graph Gm
N whose vertices are the

equivalence classes of tuples (E, P) given by (i). There is a directed edge from
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(E, P) to (E ′, P ′) if and only if there is an ℓ-isogeny φ : E → E ′ such that
φ(P) = P ′, with each equivalence class of such isogenies gives rise to exactly one
edge.

By an abuse of notation, if v ∈ V (Gm
N ), we shall take any one representative of the

quivalence class and simply write (E, P). If φ gives rise to an edge from (E, P) to
E ′, P ′), we shall write φ(E, P), (E ′, P ′) and (φ(E), φ(P)) interchangeably.

Remark 2.2. Let E ∈ E and α ∈ Aut(E). By definition, (E, αP) and (E, P) give rise
o the same vertex in Gm

N .
In the cases where j(E) = 0 or j(E) = 1728, the group Aut(E) is strictly larger than
±1}. Assume that this is the case and let E ′ be an elliptic curve with Aut(E ′) = {±1}

such that there is an ℓ-isogeny φ : E → E ′. Let α ∈ Aut(E) \ {±1}. Then (E, P) and
(E, αP) define the same vertex in Gm

N , whereas (E ′, φ(P)) and (E ′, φ(αP)) give rise to
two distinct vertices. The isogenies φ and φ ◦α are not equivalent, resulting in two edges
from (E, P) = (E, αP) to (E ′, φ(P)) and (E ′, φ(αP)), respectively. ♢

Remark 2.3. If E is an ordinary elliptic curve over Fp, there exists an imaginary
uadratic field K and an order O in K such that End(E) = O. Note that p is split

in K . Thus, if E is defined over k, then all of its endomorphisms are defined over k. ♢

Remark 2.4. Let (E, P) ∈ V (Gm
N ). If φ : E → E ′ is an ℓ-isogeny that maps P to P ′,

then the dual isogeny maps P ′ to the point ℓP on ℓE , where ℓE denotes the image of
the multiplication-by-ℓ map on E . The curve ℓE is isomorphic to E . Let α be such an
isomorphism. Then (ℓE, ℓP) is equivalent to (E, α(ℓP)), which we explain below.

Let End(E) = O and K = End(E) ⊗ Q. By Deuring’s lifting theorem (see [16,
Chapter 13, Theorem 14]), there exists a lift E of E over a finite extension L of K
and a prime ideal p above p such that E (mod p′) = E for some ideal p′ above p in
the ring of integers of L and that End(E) = End(E) = O. Then P admits a unique
lift P ∈ E[Npm] ∼= E[N pm], where p is an ideal above p in O that is coprime to
′. (The isomorphism follows from the theory of formal groups when O = OK ; see
or example [5, Chapters I and II]. As every CM elliptic curve is isogenous to one
ith complex multiplication by OK , this result easily carries over to general CM elliptic

urves.)
To determine α(ℓP), it suffices to consider α̃(ℓP), where α̃ : ℓE → E is a lift of α.

Furthermore, we may even base change to C. We have E(C) = C/Λ for some lattice Λ
n C. Then, we may realize ℓE(C) as C/ 1

ℓ
Λ and

α̃ : ℓE(C)→ E(C)

x +
1
ℓ
Λ ↦→ ℓx + Λ.

Furthermore, we have

[ℓ] : E(C)→ ℓE(C)

x + Λ ↦→ x +
1
ℓ
Λ.

If we write P = x + Λ, then α̃(ℓP) = ℓP. Thus α((ℓE, ℓP)) = (E, ℓP) as claimed. ♢
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It follows from Remark 2.4 that if φ is an isogeny that induces an edge from (E, P)
to (E ′, P ′) in Gm

N , then the dual isogeny φ̂ gives an edge from (E ′, P ′) to (E, ℓP).

Remark 2.5. Each curve E/Fp
admits ℓ + 1 isogenies that are of degree ℓ. Let

φ1, . . . , φℓ+1 denote these isogenies. Note that φi (E) may not be defined over k. As
the vertices in Gm

N are defined by elliptic curves over k, not all φi will necessarily result
in an edge in Gm

N . In general, the number of edges between E and E ′ is exactly the
multiplicity of j(E ′) as a root of the modular polynomial Φℓ( j(E), Y ). ♢

If there is an ℓ-isogeny between two elliptic curves E and E ′, then End(E) ⊗ Q =
End(E ′)⊗Q. Thus, End(E) and End(E ′) are orders in the same imaginary quadratic field.
In particular, to each connected component of Gm

N , we may attach a unique imaginary
quadratic field. This allows us to give the following definition:

Definition 2.6. Let Gm
N be a connected component of Gm

N . Let (E, P) be any vertex in
Gm

N . We call End(E)⊗Q the CM field of Gm
N .

2.2. Coverings of ordinary isogeny graphs

The goal of this section is to show that as N and m vary, the graphs introduced in the
previous section give rise to coverings of graphs. Let r,m, N , N ′ be nonnegative integers
such that N ′|N . There is a natural projection

πN pm+r /N ′ pm : V (Gm+r
N )→ V (Gm

N ′ )

given by (E, P) ↦→ (E, N pr

N ′ P). Further, if φ is an ℓ-isogeny such that φ(E, P) =
(E ′, P ′), we have φ ◦πN pm+r /N ′ pm (E, P) = πN pm+r /N ′ pm (E ′, P ′). Therefore, πN pm+r /N ′ pm

extends to a map on the whole graph. By an abuse of notation, we shall write

πN pm+r /N ′ pm :Gm+r
N → Gm

N ′

for this map.
Let Gm+r

N be a fixed connected component of Gm+r
N and let Gm

N ′ be the unique
connected component of Gm

N ′ that contains πN pm+r /N ′ pm (Gm+r
N ).

Lemma 2.7. The map πN pm+r /N ′ pm induces a covering of connected graphs Gm+r
N /Gm

N ′ .

Proof. To simplify notation, we write G for Gm+r
N and H for Gm

N ′ . Further, we write π
for πN pm+r /N ′ pm . We first show that π (V (G)) = V (H).

Let u = (E, P) ∈ V (G) and let v = (E ′, Q) ∈ V (H). Our goal is to find a preimage
of v in V (G) under π . Let w = (E, P0) = π ((E, P)). As H is connected, there exists a
path C from w to v. Let n be the length of C and write φ1, φ2, . . . φn for the isogenies
corresponding the edges of C . The composition Φ = φn ◦ · · · ◦ φ1 is an isogeny from E
to E ′ with Φ( N pr

N ′ P) = Q.
Let v′ = (E ′,Φ(P)) ∈ Gm+r

N . The isogenies φ′i s induce a path from u to v′. Therefore,
v′ belongs to V (G). Furthermore, it is clear from definition that π (v′) = v. This proves
ur claim above.
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As for edges, there is a one-one correspondence between the edges for which (E, P) ∈
V (G) is the target (resp. source) and the ℓ-isogenies for which E is the codomain (resp.
omain). The same can be said for π (E, P) = (E, N pr

N ′ P). Thus, it follows that π is
ocally an isomorphism of graphs, which concludes the proof of the lemma. □

Suppose that N = N ′ and r = 1. Since E is defined over Fp and E is ordinary, the
over Gm+1

N → Gm
N is of degree p. We will be interested in the tower of covers of the

orm

Gm
N ← Gm+1

N ← Gm+2
N ← · · · .

.3. Horizontal and vertical edges

In this section, we are interested in counting edges in and out of a vertex in Gm
N .

large part of our discussion therein has been inspired by the work of Bambury–
ampagna–Pazuki [2].

efinition 2.8. Suppose that φ : E → E ′ is an ℓ-isogeny, and write O = End(E) and
O′ = End(E ′). Recall that O and O′ are rings in the same imaginary quadratic field.
There are three cases that may arise:

(1) [O : O′] = 1. In this case, we say that φ is horizontal.
(2) [O : O′] = ℓ. In this case, we say that φ is descending.
(3) [O′ : O] = ℓ. In this case, we say that φ is ascending. We say that φ is vertical if

it is either descending or ascending.

If φ gives rise to e ∈ E(Gm
N ), we shall use the same terminology introduced above to

describe e.

Definition 2.9. Let (E, P) be a vertex in Gm
N and write End(E) = Z + f OK , where

f ∈ Z.

(i) We call vℓ( f ) the level of E . Note that this is well-defined (i.e., vℓ( f ) is independent
of the choice of f ) and it only depends on the curve E , not on the point P .

(ii) The subgraph of Gm
N generated by the set of vertices of level zero is called the

crater (i.e., the maximal subgraph of Gm
N containing all the level zero vertices).

We write C(Gm
N ) for the crater of Gm

N .
(iii) Let Gm

N be a connected component of Gm
N . We define the depth of Gm

N to be the
maximal integer d such that there is a vertex of level d in Gm

N .
(iv) If Gm

N is as above, the crater of Gm
N is defined to be the intersection of C(Gm

N ) and
Gm

N . It will be denoted by C(Gm
N ).

Suppose that N = 1 and m = 0. The vertices of G0
1 consist of isomorphism classes

f elliptic curves (with P taken as the identity element). Furthermore, if φ induces an
dge e from E to E ′, then the dual isogeny φ̂ of φ induces an edge ê from E ′ to E . Let
G denote the undirected graph whose set of vertices is given by V (G0

1) and the set of
edges is given by those in E(G0

1)/ ∼, where ∼ is the equivalence relation identifying e
with ê. The concepts introduced in Definitions 2.8 and 2.9 carry over to G naturally. The
structure of G can be described explicitly as follows.
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Lemma 2.10. Let G be a connected component of G. Suppose that it is of depth d with
CM field K and that it contains no vertex E with j(E) ∈ {0, 1728}. Then the following
statements hold.

(i) Let v be a vertex of C(G). It admits 1+
(

DK
ℓ

)
horizontal edges and no ascending

edges. If d > 0, it admits ℓ −
(

DK
ℓ

)
descending edges. If d = 0, it admits no

descending edge.
(ii) Let 1 ≤ n ≤ d and let v be a vertex in G of level n. Then v admits one ascending

edge. If n < d, then v admits ℓ − 1 descending edges. If d = n, then v admits no
descending edges.

Proof. This follows directly from [2, Proposition 3.17]. □

This in turn allows us to describe the structure of Gm
N when N pm is sufficiently large.

Lemma 2.11. Let Gm
N be a connected component of Gm

N . Let d be the depth of Gm
N .

Assume that Gm
N does not contain a vertex of the form (E, P) with j(E) ∈ {0, 1728}. Let

K be the CM field of Gm
N .

(i) If ℓ splits in K and d = 0, each vertex in Gm
N admits 4 edges for N or m sufficiently

large.
(ii) Suppose that d > 0 and that ℓ splits in K . If N or m is sufficiently large, each

vertex in C(Gm
N ) admits ℓ+ 3 edges in Gm

N . For 1 ≤ n ≤ d − 1, each vertex of level
n admits ℓ+ 1 edges. Each vertex of level d admits 1 edge.

(iii) Suppose that ℓ ramifies in K . If d = 0, each vertex in Gm
N admits 2 edges for N or

m sufficiently large.
(iv) Suppose that ℓ ramifies in K and that d > 0. Each vertex in C(Gm

N ) admits ℓ + 2
edges in Gm

N for N or m large enough.
(v) Suppose that ℓ is inert in K . If d = 0, then each vertex in C(Gm

N ) is isolated. If
d > 0, then each vertex in C(Gm

N ) admits ℓ+ 1 edges in Gm
N .

Proof. Assume that v = (E, P) is a vertex in C(Gm
N ). Let us first assume that ℓ splits in

K , Lemma 2.10(i) tells us that v admits two horizontal isogenies φ1 and φ2 connecting
E, P) to (E ′, P ′) and (E ′′, P ′′), respectively. The dual isogenies φ̂1 and φ̂2 give rise to
dges going from (E ′, 1

ℓ
P ′) and (E ′′, 1

ℓ
P ′′) to (E, P) (note that ℓ ∤ N p implies that 1

ℓ
P ′

nd 1
ℓ

P ′′ are well-defined). For m or N large enough, the four vertices (E ′, P ′), (E ′′, P ′′),
(E ′, 1

ℓ
P ′) and (E ′′, 1

ℓ
P ′′) are pairwise distinct. This proves part (i) of the lemma.

Now suppose that d > 0. By Lemma 2.10(ii) v admits ℓ − 1 descending edges and
no ascending edges. Together with the 4 edges arising from the 4 horizontal isogenies,
we deduce that v admits (ℓ− 1)+ 4 = ℓ− 3 edges.

The other cases can be proved similarly. □

We consider the cases where j(E) ∈ {0, 1728} separately.

emma 2.12. Let E be an elliptic curve with j(E) = 0. Let Gm
N be a connected

omponent of Gm containing a vertex of the form v = (E, P).
N
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(i) If ℓ = 3, then each vertex in C(Gm
N ) admits 5 edges in Gm

N for N or m sufficiently
large.

(ii) If ℓ ≡ 1 (mod 3) and d = 0, then each vertex in C(Gm
N ) admits 4 edges in Gm

N for
N or m sufficiently large.

(iii) If ℓ ≡ 1 (mod 3) and d > 0, then each vertex in C(Gm
N ) admits ℓ+ 3 edges in Gm

N .
(iv) If ℓ ≡ 2 (mod 3) and d = 0, then each vertex in C(Gm

N ) is isolated.
(v) If ℓ ≡ 2 (mod 3) and d > 0, then each vertex in C(Gm

N ) admits ℓ+ 1 edges in Gm
N .

roof. The proof is essentially the same proof as that Lemma 2.11 upon replacing
emma 2.10 by [2, Proposition 3.19]. □

emma 2.13. Let E be an elliptic curve with j(E) = 1728. Let Gm
N be a connected

component of Gm
N containing a vertex of the form v = (E, P).

(i) If ℓ = 2, then each vertex in C(Gm
N ) admits 4 edges in Gm

N for N or m sufficiently
large.

(ii) If ℓ ≡ 1 (mod 4) and d = 0, then each vertex in C(Gm
N ) admits 4 edges in Gm

N for
N or m sufficiently large.

(iii) If ℓ ≡ 1 (mod 4) and d > 0, then each vertex in C(Gm
N ) admits ℓ+ 3 edges in Gm

N .
(iv) If ℓ ≡ 2 (mod 4) and d = 0, then each vertex in C(Gm

N ) is isolated.
(v) If ℓ ≡ 2 (mod 4) and d > 0, then each vertex in C(Gm

N ) admits ℓ+ 1 edges in Gm
N .

roof. This follows again from the same proof as that of Lemma 2.11 upon employ-
ng [2, Proposition 3.20]. □

. Abelian p-towers

The main goal of this section is to prove Theorem A. Throughout, the notation
ntroduced in Section 2 continues to be in force. We begin by recalling the definition
f an abelian p-tower from [27, Definition 4.1]:

efinition 3.1. An abelian p-tower of undirected graphs above a graph X is a sequence
of covers

X = X0 ← X1 ← X2 ← · · · ← Xn ← · · ·

such that for each n ≥ 0, the cover Xn/X is abelian with Galois group isomorphic to
/pnZ.

We are interested in the case where Xn are connected for all n. If X0 admits more
han one connected component, the Galois group of Xn/X may potentially be a direct
roduct of two or more groups, which we would like to avoid.

efinition 3.2. The undirected graph obtained by ignoring directions of the edges in
Gm

N is denoted by G̃m
N . Similarly if Gm

N is a connected component of Gm
N , we define G̃m

N
imilarly.

We shall take X to be a single connected component G̃m0
N , where m0 is a sufficiently

arge integer that will be given in Section 3.1.
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3.1. Connected components

The goal of this section is to study the number of connected components of Gm
N as m

varies.

Proposition 3.3. Assume that none of the connected components of G0
1 is a single

vertex without any edges. There exists an integer m0 such that the number of connected
components in Gm

N is the same as Gm0
N for all m ≥ m0.

Proof. Let sm
N be the number of connected components in Gm

N . It follows from
Lemma 2.7 that πN pm+1/N pm : Gm+1

N → Gm
N is a graph covering. Thus, sm+1

N ≥ sm
N .

It remains to show that this sequence stabilizes when m is sufficiently large.
Suppose that m ≥ 1. Since E is ordinary at p and p ∤ N , we have the group

isomorphisms

Aut(E[pm N ]) ∼= (O/NO)× × (Z/pmZ)×,

where O is an order in an imaginary quadratic field. Therefore, the order of [ℓ] (the
multiplication by ℓ map) in Aut(E[pm N ]) is equal to the multiplicative order of ℓ in the
group (Z/N pmZ)×. Thus, there exist integers m0 and c such that this order is given by
cpm−m0 for all m ≥ m0. For all such m, we have

ℓcpm−m0
≡ 1 (mod N pm).

In particular, ℓc
≡ 1 (mod N pm0 ). It follows that

ℓc pm−m0 ≡ pm−m0 (mod N pm). (3.1)

Let v0 = (E, P0) ∈ V (Gm0
N ) and let v = (E, P) ∈ V (Gm

N ) be a pre-image of v0 under
πN pm/N pm0 , where m ≥ m0. Consider the set

C :=
{
(E, ℓcn P) : n ∈ Z≥0

}
.

By (3.1), all elements of C are sent to v0 under πN pm/N pm0 . Furthermore, the fact that the
order of [ℓ] in Aut(E[pm N ]) equals cpm−m0 implies that C contains exactly the pm−m0

elements. In particular, C is precisely the pre-image of v0 in Gm
N . By our assumption on

G0
1, E admits an ℓ-isogeny. Thus, as we have seen in Remark 2.4, all vertices in C lie in

the same connected component of Gm
N as v. This implies that the number of connected

components stabilizes and concludes the proof. □

Remark 3.4. Assume that there is an isolated vertex E in G1
N . Then for all m ≥ 1 and

all P ∈ E[N pm], the vertex (E, P) ∈ Gm
N is also isolated. In particular, as we pass from

Gm
N to Gm+1

N , the number of connected components arising from E is multiplied by p.
Therefore, the number of connected components in Gm

N is unbounded as m →∞.
Let E ′ be the set of k equivalence classes of ordinary elliptic curves over k that are not

isolated in G0
1, i.e. E ′ only contains isomorphism classes of curves admitting a degree ℓ

isogeny to a curve defined over k. Let H m
N ⊂ Gm

N be the subgraph on the vertices of the
form (E, P) with E ∈ E ′. Then the proof of Proposition 3.3 shows that the number of
connected components of H m

N is constant for m ≥ m0.
In particular, if m ≥ m0 and Gm

N is a connected component of H m
N , then H m+r

N admits
a unique connected component whose image under π m+r m is Gm . ♢
N p /N p N



A. Lei and K. Müller / Expo. Math. 42 (2024) 125589 11

R

3

α

v

Definition 3.5. Given an integer N ≥ 1, we write m0 to be the integer given by
emark 3.4.

.2. Galois covers and abelian p-towers

We now prove a proposition regarding the cover Gm+r
N /Gm

N , which will imply
Theorem A stated in the introduction. We shall work with undirected graphs, following
works on Iwasawa theory of graphs in the literature, in particular [7,20,21,27].

Proposition 3.6. Let H m
N and m0 be defined as in Remark 3.4. Let Gm

N be a connected
component of H m

N and fix m ≥ max(m0, 1). Let Gm+r
N be the connected component of

H m+r
N that maps onto Gm

N via πN pm+r /N pm . Then G̃m+r
N /G̃m

N is a Galois graph covering
whose Galois group is isomorphic to Z/prZ.

Proof. Let U ⊂ (Z/N pm+rZ)× be the subgroup consisting of elements that are congruent
to 1 modulo N pm . Note that U ∼= Z/prZ as abelian groups.

Let π = πN pm+r /N pm . We define an action of U on V (Gm+r
N ) by

a · (E, P) = (E, a P).

As π (E, P) = π (E, a P). It follows from the proof of Proposition 3.3 that (E, a P) and
(E, P) lie in the same connected component of Gm+r

N . In particular, the action defined
above restricts to an action of U on V (Gm+r

N ).
This action extends to a graph homomorphism of G̃m+r

N . Indeed, let (E, P) and (E ′, P ′)
be adjacent vertices in G̃m+r

N , connected by an edge e. Without loss of generality, we can
assume that e is induced by an ℓ-isogeny φ : E → E ′ such that φ(P) = P ′. Then the same
isogeny induces an edge between (E, a P) and (E ′, a P ′) since φ(a P) = aφ(P) = a P ′.

Let Deck(G̃m+r
N /G̃m

N ) denote the group of deck transformations of the graph covering
π : G̃m+r

N → G̃m
N , whose degree equals pr . Recall that Aut(E) ∈ {{±1}, µ6, µ4}. Let K

be the CM field of Gm
N . Let p be a prime above p in K . Then α ̸≡ 1 (mod p2) for every

∈ Aut(E) that is not the identity. In particular, (E, P) and (E, a P) are two distinct
ertices. Thus, the action of U on G̃m+r

N induces an injective group homomorphism

U ↪→ Deck(G̃m+r
N /G̃m

N ).

To show that π is a Galois cover whose Galois group is isomorphic to Z/prZ, it remains
to show that this injective group homomorphism is surjective.

Let ψ be a deck transformation and let (E, P) ∈ V (G̃m+r
N ). We write ψ(P) for the

point of order pm+r N such that ψ(E, P) = (E, ψ(P)). As π (E, P) = π (ψ((E, P))), we
have

P − ψ(P) ∈ E[pr ].

In particular, ψ(P) = a P for some a ∈ U . Therefore, ψ((E, P)) = a · (E, P).
It remains to show that

′ ′ ′ ′
ψ(E , P ) = a · (E , P ) (3.2)
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for all (E ′, P ′) ∈ V (G̃m+r
N ). Let us first consider the case (E ′, P ′) is a vertex that is

adjacent to (E, P). Suppose that there is a degree ℓ isogeny φ : E → E ′ with φ(P) = P ′.
As ψ is a deck transformation, we have the following commutative diagram

(E, P)
φ →→

ψ

↓↓

(E ′, P ′)

ψ

↓↓
(E, ψ(P))

φ →→ (E ′, ψ(P ′)).

Therefore,

ψ(E ′, P ′) = (E ′, φ(ψ(P))) = (E ′, φ(a P)) = (E ′, aφ(P)) = (E ′, a P ′) = a(E ′, P ′).

Assume now that there is an isogeny φ : E ′→ E of degree ℓ. Then

φ(a P ′) = a P = ψ(P) = φ(ψ(P ′)).

As φ is injective on E ′[N pm+r ] it follows that a P ′ = ψ(P ′). So in both cases we have
shown that ψ((E ′, P ′)) = a(E ′, P ′).

As G̃m+r
N is connected, we deduce that (3.2) holds for all (E ′, P ′) as required. □

Proposition 3.6 implies immediately Theorem A stated in the introduction:

Corollary 3.7. The graph coverings

G̃m0
N ← G̃m0+1

N ← · · ·

is an abelian p-tower in the sense of Definition 3.1.

4. The structure of the crater

The goal of this section is to study the connected components of the crater C(Gm
N ) for

any given N and m. The CM field of this chosen connected component will be denoted
by K throughout.

We consider two separate cases. Namely, when ℓ is non-split in K and when ℓ is split
in K . The split case turns out to be more delicate than the non-split case.

4.1. The non-split case

We first study the case where ℓ is non-split in K . This can be divided further into two
sub-cases, namely either ℓ is inert or ramified in K .

Lemma 4.1. Let C0 be a connected component of C(Gm
N ).

(i) If ℓ is inert in K , then C0 consists of a single vertex, without any edges.
(ii) If ℓ is ramified in K , then C0 is either a single vertex with a loop or it is a directed

cycle, i.e., there exists an integer s ≥ 1 such that C0 consists of s vertices {v1, . . . vs}
with edges going from vi to vi+1 for 1 ≤ i ≤ s − 1 and an edge from vs to v1.
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Proof. If there is an edge between two vertices of level zero, it has to be induced by a
horizontal isogeny. Part (i) follows immediately from [2, Corollary 3.13].

We now prove part (ii). Let (E, P) ∈ V (C0). We set O = End(E). Let L be the ideal
of O above ℓ (i.e. ℓO = L2). Note that L2 is a principal ideal.

If L itself is principal, then there exists an element x ∈ O such that E/E[L] = x E ∼=
E . Let h be the order of x in (O/Npm)×/O×, where we have written O× for its natural
image in (O/Npm)× and p is an ideal of O lying above p.1 If h = 1, then C0 consists
of a single vertex (E, P) together with a loop. If h > 1, then C0 is a directed cycle
of length h, with vertices given by (E, x i P), i = 0, 2, . . . , h − 1, and edges given by
(E, P)→ (E, x P)→ · · · → (E, xh−1 P)→ (E, P).

If L is not principal, the curve E ′ := E/E[L] is not isomorphic to E . There is an
ℓ-isogeny φ : E → E ′ and a dual isogeny φ̂ : E ′ → E ′/E ′[L] ∼= E . Let h be the order
of ℓ in (O/Npm)×/O×. Then C0 is a directed cycle of length 2h, with vertices given by
(E, ℓi P) and (E ′, φ(ℓi P)), i = 1, . . . , h; the edges are given by (E, ℓi P)→ (E ′, φ(ℓi P))
and (E ′, φ(ℓi P))→ (E, ℓi+1 P). □

Remark 4.2. In the inert case, while C0 consists of a single vertex, there may be edges
in Gm

N connecting it to other vertices in C(Gm
N ) via edges arising from vertical isogenies.

Let v = (E, P) ∈ V (C0) and assume that v admits an edge in Gm
N . Let Gm

N ⊂ Gm
N be

the connected component containing v. Then all the vertices of the form (E, ℓt P), t ∈ Z,
lie in Gm

N , as we have seen in Remark 2.4. Suppose that v′ ̸= v is any vertex in C(Gm
N ).

We claim that v′ is of the form (E, ℓt P).
Indeed, as E admits no horizontal isogeny, a level zero vertex of Gm

N is of the form
(E, P ′) for some P ′. Thus, there is an endomorphism of E of ℓ power degree that maps
P to P ′. As ℓ is inert, the only ℓ power degree endomorphisms are given by powers of
[ℓ]. Thus, P ′ = ℓt P for some t as claimed. ♢

Remark 4.3. If v ∈ C0 and L is ramified or split in K , then all level zero vertices that
lie in the same connected component of Gm

N as v are also elements of V (C0). ♢

4.2. Classification of vertices and edges in the split case

From now on, we assume that ℓ splits in K . Let v1 = (E, P) be a fixed level zero
vertex in Gm

N and let O = End(E). The ideal ℓO splits into two distinct ideals L and L.
e continue to write C0 for the connected component of C(Gm

N ) containing v1.
Note that all level zero vertices connected to v1 are connected through horizontal

sogenies. Further, E admits exactly two horizontal isogenies, namely E → E/E[L] and
E → E/E[L]. Thus, all elements of V (C0) arise from the curves of the form E/E[LaL

b
].

n particular, all these curves have complex multiplication by the same ring O. An edge
etween two such vertices arises from either L or L.

It follows from Lemma 2.11 that when either m or N is sufficiently large, there are
two edges E(C0) with v1 as the source and two edges with v1 as the target. We see that

1 The choice of p depends on the choice of a CM lift E of E over some finite abelian extension L/K
together with a prime ideal p′ above p in OL such that E (mod p′) = E . As the integer h does not depend
on the choice of p, we suppress this choice here.
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L induces precisely one of the former and one of the latter, whereas the other two edges
are induced by L.

The following lemma studies equalities in V (C0).

Lemma 4.4. Let vi = (Ei , Pi ) ∈ V (C0), i = 1, 2. Suppose that

(E1/E1[LaL
b
], P1 + E1[LaL

b
]) = (E1/E1[LdL

e
], P1 + E1[LdL

e
])

as elements of V (C0) for some nonnegative integers a, b, d and e. Then

(E2/E2[LaL
b
], P2 + E2[LaL

b
]) = (E2/E2[LdL

e
], P2 + E2[LdL

e
])

as elements of V (C0).

Proof. Let i ∈ {1, 2} and α, β be nonnegative integers. We write φα,β,i : Ei →

Ei/Ei [LαL
β
] for the isogeny given by the natural projection. Let us write v3 =

φa,b,1(v1) = φd,e,1(v1). We define φα,β,3 similarly.
Since v1 and v2 are level zero vertices lying in the same connected component of

(Gm
N ), there is a path in C0 connecting v1 to v2. Thus, upon propagating along this path,

we may assume that there is an edge in E(C0) connecting v1 to v2. In this case, this edge
s induced by φ1,0,1 or φ0,1,1. Thus it suffices to prove the lemma for these two cases.

Suppose that φ1,0,1 induces an edge from v1 to v2. Then one can check directly from
efinition that

φa,b,2(v2) = φa+1,b,1(v1) = φ1,0,3 ◦ φa,b,1(v1) = φ1,0,3(v3).

imilarly,

φd,e,2(v2) = φd+1,e,1(v1) = φ1,0,3 ◦ φd,e,1(v1) = φ1,0,3(v3).

his proves the desired equality. The other case can be treated in the same manner. □

efinition 4.5.

(i) We call an edge in C0 blue if it is induced by the isogeny given by L and we call
it green if it is induced by L.

(ii) We call a path in C0 blue if it only consists of blue edges, we call it green if it
only consists of green edges.

(iii) Let h1 (resp. h2) be the minimal length of a closed blue (resp. green) path starting
at v1 in C0 without backtracks.

Note that all edges in C0 are either blue or green (but not both). If we repeatedly
pply L to v1, we will eventually obtain v1. Indeed, there exists a nonnegative integer n

such that Ln is a principal ideal γO, say. As ℓ ∤ N p, there exists an integer n′ such that
γ n′ P = P . By a similar argument to the one presented in Remark 2.4, there is a blue
ath of length nn′ sending v1 to itself. This tells us that h1 is finite. The same holds for

h2.
If (E ′, P ′) lies on a blue (resp. green) path originating from v1, then E ′ = E/E[Fa],

P ′ = P + E[Fa] for some integer a and F = L (resp. L). It can happen that these two
classes of vertices coincide. We study this phenomenon in the following proposition.
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Proposition 4.6. There are positive integers s | h1 and t | h2 and a positive integer c
oprime to h2/t such that

(E/E[Ls], P + E[Ls]) = (E/E[L
ct

], P + E[L
ct

])

as elements of V (C0). Suppose that (s, t, c) is such a tuple with s minimal. If (s ′, t ′, c′)
s another tuple such that

(E/E[Ls′ ], P + E[Ls′ ]) = (E/E[L
c′t ′

], P + E[L
c′t ′

]),

hen there exists d ∈ Z such that s ′ = ds and t ′ = dt. In particular, the minimality of s
mplies the minimality of t .

roof. Let S be the set of all tuples (s1, t1, c1) such that s1 | h1, t1 | h2 and

(E/E[Ls1 ], P + E[Ls1 ]) = (E/E[L
c1t1 ], P + E[L

c1t1 ]).

ote that S is non-empty since it contains (h1, h2, 1).
Let (s, t, c) ∈ S such that s is minimal. It follows from Lemma 4.4 that h1/s = h2/t .

t implies that t is also minimal. Let (s ′, t ′, c′) ∈ S and write s ′′ = gcd(s ′, s). There are
onnegative integers a1, a2 such that s ′′ ≡ a1s + a2s ′ (mod h1). Lemma 4.4 implies that

(E/E[Ls′′ ], P + E[Ls′′ ]) = (E/E[La1s+a2s′ ], P + E[La1s+a2s′ ])

= (E/E[L
a1ct+a2c′t ′

], P + E[L
a1ct+a2c′t ′

]).

s s is minimal, we see that s ′′ = s and s ′ = ds for some integer d . It follows that
′
= h2s ′/h1 = dh2s/h1 = dt as required. □

From now on, we shall always write s and t for the minimal integers given by
roposition 4.6.

efinition 4.7. We call a vertex v ∈ V (C0) central if there exists some positive integer
α and a blue path of length αs connecting v1 to v.

Remark 4.8. Suppose that v is a central vertex. Then Proposition 4.6 tells us that there
s a nonnegative integer α′ such that there is a green path of length α′t connecting v1

to v. In other words, we may give an equivalent definition central vertices using green
paths.

Definition 4.9. Let v and v′ be any two central vertices connected through a blue path
of length s. We call the s − 1 vertices on this path that are different from v and v′ blue
primary vertices. We define green primary vertices similarly for a green path of length
t between two central vertices.

Remark 4.10. The blue primary vertices introduced in Definition 4.9 only exist if s > 1.
Similarly, the green primary ones only exist if t > 1. ♢

To illustrate, suppose that h1 = 12 and s = 4. Then we have a directed cycle
v1 → v2 → · · · → v12 → v1 of length 12 passing through v1, consisting of blue
edges. The vertices v1, v5, v9 are central, whereas the rest of the vertices on the cycle are
blue primary.
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We prove in the following lemma that central vertices and blue primary vertices are
in fact mutually exclusive.

Lemma 4.11. The blue primary vertices and green primary vertices are not central.

Proof. We only consider blue primary vertices; the other case can be proved in a similar
manner. Let v be a blue primary vertex. By definition, it lies on a blue path of length s
from one central vertex to another, say w. In particular, there is a blue path of length a
oing from v to w, where 1 ≤ a ≤ s − 1.

Suppose that v is central. Since both w and v are central, it follows from Proposi-
ion 4.6 that there is a blue path of length a′s going from w to v for some nonnegative
nteger a′. Consequently, we obtain a closed blue path from v to itself of length a+ a′s.

By Lemma 4.4, there is a closed blue path of length a + a′s from v1 to itself.
roposition 4.6 says that s divides a + a′s. But this contradicts that 1 ≤ a ≤ s − 1.
hus, v is not central. □

emark 4.12. Lemma 4.11 tells us that there are in total h1/s central vertices, equally
istributing along a closed blue path of length h1 passing through v1. Furthermore,
emark 4.8 tells us that we may equally count h2/t central vertices on a closed green
ath of length h2 passing through v1. In particular, we have the equality

h1

s
=

h2

t
.

♢

Lemma 4.13. There are h1
s · (s−1) blue primary vertices and h2

t · (t−1) green primary
vertices, respectively.

Proof. We only prove the statement on blue primary vertices. The closed blue path of
length h1 gives rise to h1/s blue paths of length s, each of which connecting two central
vertices. Each of these paths in turn gives rise to s − 1 blue primary vertices. Thus,
h1 · (s − 1) is an upper bound on the total number of blue primary vertices.
s
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We deduce from the previous paragraph that the total number of blue and central
ertices is bounded above by

h1

s
+

h1

s
· (s − 1) = h1.

ll these vertices are connected through blue edges and lie on a closed blue path (without
acktracks) through v1. The minimal number of edges needed to draw a closed blue path
s h1. Therefore, this upper bound is in fact optimal. Thus, there are exactly h1

s · (s − 1)
lue primary vertices. □

emma 4.14. There is no vertex that is simultaneously blue primary and green primary.

Proof. Suppose that v is a vertex that is both blue primary and green primary. There
xist central vertices w and w′ such that w is connected to v through a blue path of length
≤ a ≤ s − 1 and w′ is connected to v through a green path of length 1 ≤ a′ ≤ t − 1.
Since both w and w′ are central, they are connected through a green path of length
′′t for some nonnegative integer a′′. It follows that the isogenies induced by La and by

L
a′+ta′′

coincide on v. But 0 < a < s and 0 < a′ < t , which contradicts Proposition 4.6.
hus, such v does not exist. □

Suppose that both s and t are strictly greater than 1. Let v be a blue primary vertex.
t follows from Lemma 4.11 that v is not central. Consequently, there is a green path of
ength t from v to some blue primary vertex v′. We shall study the vertices appearing on
uch a path.

efinition 4.15. Excluding the end-points, we call the vertices lying on a green path
inking two blue primary vertices green secondary vertices. We define blue secondary
ertices in a similar manner.

By Lemma 4.13, there are h1 − h1/s blue primary vertices. A green path connecting
wo blue primary vertices has length t (following from Lemma 4.4 and Proposition 4.6).
hus, the number of green secondary vertices is bounded above by(

h1 −
h1

s

)
(t − 1) =

h1

s
(s − 1)(t − 1).

Similarly, the number of blue secondary vertices is bounded above by(
h2 −

h2

t

)
(s − 1) =

h2

t
(s − 1)(t − 1).

These two upper bounds are equal to each other since h1/s = h2/t by Remark 4.12.

emma 4.16. There are exactly h1
s (s−1)(t−1) = h2

t (s−1)(t−1) blue/green secondary
ertices.

roof. Take any two central vertices linked by a blue path of length s. This gives
− 1 blue primary vertices lying on a blue path of length s − 2. Through each of these
ertices, there exists a green cycle of minimal length, i.e., a cycle of length h obtained
2



18 A. Lei and K. Müller / Expo. Math. 42 (2024) 125589

o
t

L

P
v

v

c
L

L
s

P

w

i

c
w

L

P

a

by repeatedly applying L. Let us call them C1, . . . ,Cs−1. These cycles are disjoint by
construction.

Let v = (E ′, P ′) be one of the chosen blue primary vertices. Then E ′ ∼= E/E[Lα] for
some nonnegative integer α. Proposition 4.6 tells us that after applying L

t
to v, we obtain

a primary blue vertex. Therefore, each cycle Ci contains h2/t blue primary vertices. In
particular, the rest of the vertices on Ci are green secondary since they lie on a green
path linking two blue primary vertices. This results in h2−h2/t green secondary vertices
n Ci . Thus, this gives in total at least (s − 1)(h2 − h2/t) green secondary vertices. But
his is exactly the upper bound, hence the equality holds. □

emma 4.17. A blue/green secondary vertex is not central.

roof. Let v be a blue secondary vertex. Let v′ be a green primary vertex connected to
through a blue path of length 1 ≤ a ≤ s − 1. Let w be a central vertex connected to
′ through a green path of length 1 ≤ a′ ≤ t − 1. If v is also central, then v and w are
onnected through a blue path of length a′′s. This implies that the isogenies induced by
aL

a′
and La′′s coincide on v, which is impossible by Proposition 4.6. □

By a similar argument, one can show:

emma 4.18. A blue secondary vertex is not a green primary vertex. And a green
econdary one is not blue primary.

roof. Let v be a blue secondary vertex and let v′ be a green primary vertex connected
to v through a blue path of length 1 ≤ a ≤ s− 1. Let w be a central vertex connected to
v′ via a green path of length 1 ≤ a′ ≤ t − 1. If v is a green primary vertex, then v and

are connected through a green path of length bt + a′′ with 1 ≤ a′′ ≤ t − 1. Thus, the
sogeny induced by LaL

a′
and the one induced by L

bt+a′′
coincide, which is impossible

by Proposition 4.6. □

Lemma 4.19. A blue secondary vertex is not blue primary.

Proof. Let v be a blue secondary vertex. Let w and w′ be green primary vertices
onnected through a green path of length s passing through v. If v is blue primary, then

and w′ are central, which contradicts Lemma 4.11. □

emma 4.20. Each blue secondary vertex is a green secondary vertex, and vice versa.

roof. Let v be a blue secondary vertex. Let v′ be a green primary vertex such that there
is a blue path of length 1 ≤ a ≤ s − 1 from v to v′. Let w be a central vertex such that
there is a green path of length 1 ≤ a′ ≤ t − 1 form v′ to w. Let w′ be the blue vertex at
the end of a blue path of length s(h1/s − 1)+ (s − a) starting at w.

There is also a green path of length t(h2/t − 1) + (t − a′). The end point v′′ of this
path is a green secondary vertex. Putting these together, we have a path starting at v with
+ s(h /s − 1)+ s − a = h blue and h green edges. Thus, v′′ = v′. □
1 1 2
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Remark 4.21. To conclude, we may classify the vertices in C0 as follows.

• We have h1/s = h2/t central vertices, which include v1;

• The central vertices can be equally distributed along a blue closed path of length
h1 containing v1 (the distance between two consecutive central vertices is s). The
non-central vertices on this path are blue primary. There are h1(s−1)

s such vertices;

• The central vertices can also be found along a green closed path of length h1

containing v1. The non-central vertices on this path are green primary. There are
h2(t−1)

t such vertices;

• The rest of the vertices are blue secondary, which can be found on a blue path
between two primary green vertices. There are

h1(s − 1)(t − 1)
s

=
h2(s − 1)(t − 1)

t

such vertices;

• We may reverse the roles of blue and green in the previous bullet point, resulting
in the same vertices.

• In total, there are stΩ vertices, where Ω = h1
s =

h2
t is the number of central

vertices. ♢

Example 4.22. Suppose that h1 = h2 = 6, s = t = 2 and c = 1. We have the
following graph. The “solid” cycles are obtained from repeatedly applying L and L to

1, respectively. This gives us the central vertices v1, v2 and v3 (coloured in orange), the
lue primary vertices are v4, v5 and v6, and the green primary vertices are v7, v8 and v9.
he “dotted” cycles are the ones obtained from applying L and L to the primary vertices.
he secondary vertices are v10, v11 and v12 (coloured in black).

v1

v2

v3

v4

v5

v6

v7

v8

v9

v10

v11

v12

Example 4.23. Suppose h = 12, h = 6, s = 4, t = 2 and c = 1.
1 2
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v13

v14

v15

v16

v17 v18

v19

v20

v21

v22

v23

v24

The central vertices are v1, v2 and v3, which are once again coloured orange. There
are 9 blue primary vertices (v4 to v12), 3 green primary ones (v13 to v15) and 9 secondary
vertices (v16 to v24).

4.3. A special case

In this section, still assuming ℓ is a split prime, we specialize to the case where N = 1
and the ideals of O above ℓ are principal. In this case, we can describe the structure of
C0 more precisely and give a less combinatorial proof.

Proposition 4.24. Let E be an elliptic curve of level zero and P a point on E of order
pm . Let O be the endomorphism ring of E. Assume that the two ideals above ℓ in O
are principal ideals L = (x) and L = (x). Let C0 be the connected component of C(Gm

1 )
ontaining (E, P). Let V (C0) = {v1, . . . , vu}. Assume that C0 does not contain any loops.
hen C satisfies one of the following conditions.
0
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(1) For every 1 ≤ i ≤ u, there is an edge from vi to vi+1 (here we consider the indices
modulo u). Furthermore, there exists r ∈ {1, 2, . . . , u} such that there is an edge
from vi to vi+r for 1 ≤ i ≤ u.

(2) We have lcm(h1, h2) = u, where h1 and h2 are given as in Definition 4.5. Let
ti = u/hi . Then there is an integer r that is coprime to u such that for 1 ≤ i ≤ u
the targets of the edges whose source is vi are given by vi+t1 and vi+r t2 , respectively.

emark 4.25. The order of x (resp. x) in (O/pm)×/O× is equal to h1 (resp. h2). Here,
e have denoted the image of O× in (O/pm)× by the same symbol as before. Suppose

that h1 ≥ h2.
We will see in the proof that case (1) occurs when h2|h1. In this case, u = h1 and

he blue edges form the directed cycle v1 → v2 → · · · → vu → v1. The edges from vi
o vi+r are green. Furthermore, the central vertices are of the form v1+αr , α ∈ Z. There
re no secondary vertices.

Still assuming h1 ≥ h2, if h2 ∤ h1, then case (2) occurs. The edges of the form
i → vi+t1 are blue, whereas those of the form vi → vi+r t2 are green. The central
ertices are of the form v1+αr t1t2 , α ∈ Z. ♢

emark 4.26. We have seen in the proof of Lemma 2.11 that when m is sufficiently
arge, the hypothesis that C0 does not admit any loops holds. ♢

roof. Let K = O ⊗ Q. Note that Aut(E[pm]) ∼= (Z/pmZ)×. In particular, the group
f automorphisms is cyclic. Let E be a CM lift of E over K ( j(O)) and let p be a prime

ideal above p in O such that E[pm] reduces to E[pm] modulo some fixed ideal above p
in the ring of integers of K ( j(O)). There is a natural isomorphism

Aut(E[pm]) ∼= (O/pm)×.

The two horizontal degree ℓ isogenies of E act on the pm-torsion points by [x] and
[x], respectively. As we have discussed in Remark 4.25, h1 (resp. h2) is the order of
x (resp. x) as an element in (O/pm)×/O×. Without loss of generality, we assume that
h1 ≥ h2.

We first consider the case h2 | h1. As (O/pm)× is a cyclic group, there exists an integer
such that the cosets O×x and O×xr in O/pm coincide. Note that gcd(h1, r ) = h1/h2.
Consider the closed blue path

C : v1 → · · · → vh1 → v1

btained by repeatedly applying [x] to (E, P). If we apply [x] to vi , we obtain a closed
green path of the form vi → vi+r → vi+2r → · · · → vi . In particular, we see that C
ontains all vertices of C0 and so u = h1 and C0 is described as in (1).

We now consider the case where h2 does not divide h1. Then there exist integers
1, t2 > 1 such that h1t1 = h2t2 = lcm(h1, h2). Let

z = gcd(h1, h2) = h1/t2 = h2/t1.

e see that both x t2 and x t1 have order z as elements in the cyclic group (O/pm)×/O×.
Thus, there exists an integer r coprime to z such that the cosets O×x t1 and O×xr t2

coincide in (O/pm)×.
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As [x] and [x] commute, each path in C0 is given by [xa xb] for some integers a
and b. Thus, the number of vertices in C0 is given by the cardinality of the subgroup U
generated by x and x in (O/pm)×/O×. Let

Φ :Z/h1Z× Z/h2Z→ U,

be the surjective group homomorphism given by (a, b) ↦→ xa xb. By the definition of
, the kernel of Φ is generated by (r t2,−t1), which generates a cyclic subgroup of
/h1Z× Z/h2Z of order z. It follows that there are in total u = h1h2/z = lcm(h1, h2)
ertices in C0.

By adding a multiple of z to r if necessary, we may assume that r is coprime to u.
onsider the group homomorphism

Θ :Z/h1Z× Z/h2Z→ Z/uZ, (a, b) ↦→ at1 + brt2.

ince t1 and r t2 are coprime integers, Θ is surjective and the kernel is generated by
r t2,−t1). Let (E, P) = v1. We enumerate the vertices of C0 so that vΘ((a,b)) = [xa xb]v1.

It then follows that [x] (resp. [x]) induces a blue (resp. green) edge from vi to vi+t1 (resp.
vi+r t2 ) as described in (2). □

Remark 4.27.

• If x and x act trivially on E[p], then the order of x and x in Aut(E[pm]) will
always be a p-power. In this case C0 is described by (1).
• If m = 1 and C0 is described by (2), then C0 is described by (2) for all m ≥ 1.
• If m = 2 and the structure of C0 is described by (1), then C0 is described by (1) for

all m ≥ 2. ♢

Example 4.28. Let K = Q(
√
−5) and p = 3. We consider an elliptic curve E

with complex multiplication by OK = Z[
√
−5]. The two prime ideals above 3 are

(3, 1 +
√
−5) and (3, 1 −

√
−5). We take p = (3, 1 +

√
5). Let ℓ = 409. Then the

two ideals above (409) in OK are (2 + 9
√
−5) and (2 − 9

√
−5). Let x = 2 + 9

√
−5.

Then

x ≡ x ≡ 2 (mod (3, 1+
√
−5)2).

It can be checked that 2 is indeed a generator of (OK /(3, 1+
√
−5)2)×. It follows that the

orders of x and x in (OK /(3, 1+
√
−5)m)×/{±1} are 3m−1. Thus, the graph C0 obtained

from E (mod p) is described by case (1) of Proposition 4.24 with u = 3m−1. ♢

Example 4.29. Let K = Q(
√
−10) and p = 13. We consider again an elliptic curve

E with complex multiplication by OK = Z + Z
√
−10. The two ideals over 13 are

(13, 4 +
√
−10) and (13, 4 −

√
−10). Let p = (13, 4 +

√
−10). Let ℓ = 11. The two

deals over (11) are given by (1+
√
−10) and (1−

√
−10). Let x = 1+

√
−10. Then

x ≡ −3 (mod (13, 4+
√
−10))

and

x ≡ 5 (mod (13, 4+
√
−10)).
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The order of −3 in (OK /(13, 4 +
√
−10))×/{±1} is 3, while the order of 5 is 2. It

follows that for m = 1, the graph C0 obtained from E (mod p) is described by case (2)
of Proposition 4.24 with u = 6, h1 = 3 and h2 = 2. ♢

We conclude this section with a number of illustrations of several graphs given by
roposition 4.24.

ase (1) with u = 5

Since we have assumed that there is no loop, we have h1, h2 > 1. Thus, in order for
ase (1) to occur, we must have h1 = h2 = 5. Every vertex is central and we have the
omplete graph K5 (after ignoring the directions). Depending on the value of r , we have
ne of the following two graphs.

v1

v2

v3 v4

v5

v1

v2

v3 v4

v5

Case (1) with u = 6

We have h1 = 6. We illustrate the cases where h2 = 3 and h2 = 2 below. When
h2 = 3, r can be either 2 or 4.

v1

v2

v3 v4

v5

v6 v1

v2

v3 v4

v5

v6 v1

v2

v3 v4

v5

v6

Case (1) with u = 12

Suppose that h = 12, h = 4 with r = 3. We have the following graph.
1 2
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If r = 9, then the directions of the green edges are reversed.

Case (2) with u = 6

Suppose that h1 = 3, h2 = 2 and r = 1. Then t1 = 2 and t2 = 3. We have the
following graph:

v1

v2

v3 v4

v5

v6

Case (2) with u = 12

Suppose that h1 = 4, h2 = 3 and r = 1. Then t1 = 3, t2 = 4, resulting in the following
raph:



A. Lei and K. Müller / Expo. Math. 42 (2024) 125589 25
v1

v2

v3

v4

v5

v6

v7

v8

v9

v10

v11

v12

5. An inverse problem for craters

The goal of this section is to prove Theorem B stated in the introduction. In particular,
we study an inverse problem for the graphs arising in Section 4.2. We first introduce
the following definition of graphs, which can be regarded as a partial generalization of
abstract volcano graphs introduced in [2, Definition 4.1].

Definition 5.1. Let r, s, t, c be nonnegative integers. We say that a directed graph is an
abstract tectonic crater of parameters (r, s, t, c) if it satisfies

(a) There are rst vertices;
(b) Each edge is assigned a colour — blue or green;
(c) At each vertex v, there is exactly one blue edge with v as the source, and exactly

one blue edge with v as the target, and similarly for green edges;
(d) Starting at each vertex, there is exactly one closed blue (resp. green) path without

backtracks of length rs (resp. rt);
(e) After every s (resp. ct) steps in the closed blue (resp. green) paths given in (d), the

two paths meet at a common vertex.

We now prove Theorem B.

Theorem 5.2. Let G be an abstract tectonic crater. There exist infinitely many pairs
of distinct primes p and ℓ, and nonnegative integers N such that one of the connected
components of the crater of the ℓ-isogeny graph G1 (over F ) is isomorphic to G.
N p
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Remark 5.3. We emphasize that an abstract tectonic crater can never describe a
connected component of G0

1. Indeed, each vertex v in an abstract tectonic admits 4 edges,
two with source v and to with target v. In G0

1 each vertex admits at most two vertices.
Thus, the level structure is crucial for the above result.

Proof. Let (Ω , s, t, c) be the parameters of G. We shall construct a C0 that is isomorphic
to G where the symbols Ω , s, t, c have the same significations as those assigned in
Remark 4.21.

Let K be an imaginary quadratic field different from Q(
√
−1) and Q(

√
−3). Let f

be an ideal coprime to 10 and let F = K (f) be the ray class field of conductor f. Then
there exists an elliptic curve E/F that has complex multiplication by OK and such that
K (Etors)/K is abelian (see [4, Lemma 2] or [5, Chapter II, 1.4]). Let L ′ = F(E[5]).

hen, the theory of complex multiplication tells us that Gal(L ′/K ) ∼= (OK /(5))×/{±1}.
Let p be a prime number such that

• p ̸= 5;
• p ≡ 1 (mod Ω );
• p is totally split in F .

hen E has good ordinary reduction at all the primes of F lying above p. We fix once
nd for all a prime p′|p of F . Let p be the unique prime of K lying below p′.

Choose two different prime numbers N ′ and M ′ that are coprime to 5pf and are split
n K , with N ′ ≡ 1 (mod s) and M ′ ≡ 1 (mod t). Let N (resp. M) be a prime ideal
f OK lying above N ′ (resp. M ′). Let L = F(E[5N ′M ′]). Define furthermore L1 =

F(E[5N ′M ′p]) and L2 = F(E[5N ′M ′p]). We have the following group isomorphisms

Gal(L1/L ′) ∼= (OK /N)×× (OK /N)×× (OK /M)×× (OK /M)×× (OK /p)×, (5.1)

nd

Gal(L2/L ′) ∼= (OK /N)×× (OK /N)×× (OK /M)×× (OK /M)×× (OK /p)×. (5.2)

Furthermore L1
⋂

L2 = L .
By Tchebotarev’s theorem, there exists a prime ideal L in OK such that

(i) L splits in L ′/K ;
(ii) L ̸= L;

(iii) The Frobenius of L in Gal(L1/L ′) gives rise to an element of the form (a, 1, 1, b, d)
on the right-hand side of (5.1), where ord(a) = s, ord(b) = t and ord(ds) = Ω ;

(iv) The Frobenius of L in Gal(L2/L ′) gives rise to an element of the form (a, 1, 1, b, d ′)
on the right-hand side of (5.2), with ord(d ′)t

= Ω and d ′ct
= ds (after identifying

O/p with O/p via complex conjugation).

Let σ (resp. τ ) be the Frobenius of L (resp. L) in Gal(L1/L). Note that τ gives an
element of the form (1, a, b, 1, d ′) on the right-hand side of (5.1).

Let H1 (resp. H2) be the cyclic subgroup of Gal(L1/L ′) generated by σ (resp. τ ). Let
Q be a primitive 5NM-torsion point on E. Then σ (resp. τ ) acts on Q via (a, 1, 1, 1, 1)
(resp. (1, 1, b, 1, 1)). The orbit of Q under the action of H1 (resp. H2) contains s (resp.
t) elements. As σ and τ fix E[5] by construction, −Q is not contained in either of these
orbits and the only point contained in both orbits is Q.
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Now, let P be a primitive 5NMp-torsion point in E such that pP = Q. By
the conditions (iii) and (iv), the orbit of P under the action of H1 contains sΩ
elements, whereas that under H2 contains tΩ elements. Again neither of these orbits
contains −P . Note that σ s is of the form (as, 1, 1, bs, ds), while τ ct is of the form
(1, act , bct , 1, d ′ct ) by construction, and both elements act on P via (1, 1, 1, ds). There-
fore, σ s(P) = τ ct (P) and the orbits of P under H1 and H2 intersect precisely in the set
{P, σ s P, σ 2s P, . . . , σ (Ω−1)s P}.

We have σ (P) = φ(P), where φ is the isogeny E → E/E[L] ∼= E and likewise for
τ (see [5, Chapter II, 1.3 and 1.4]). Let E = E (mod p′), ℓ be the rational prime below
L and N = 5N ′M ′. Then the connected component C0 containing (E, P (mod p′)) is
precisely the tectonic crater G. □

Remark 5.4. Let u = lcm(h1, h2) and suppose that there are u vertices in C0. Let
V = {v1, . . . , vu} be the set of vertices. After relabelling if necessary, we have blue
dges going from vi to vi+u/h1 and green edges from vi to vi+c·u/h2 for some c that is
oprime to u.

We have seen in Remark 4.21 that the total number of vertices is given by h2s = h1t .
hus, we have

u = lcm(h1, h2) = h2s = h1t.

his happens if the smallest subgroup of Aut(V ) containing H1 and H2 is cyclic (where
H1 and H2 are the subgroups defined in the proof of Theorem 5.2). If H has rank two,
he graph contains two blue directed cycles, as in Examples 4.22 and 4.23. ♢
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Appendix. Voltage assignment

The goal of this appendix is to describe the voltage assignment associated with the
tower (Gm

1 )m≥0. Let us recall the definition of a voltage assignment on a directed graph.

Definition A.1. Let X be a directed graph, (G, ·) an abelian group and n ≥ 1 an integer.
A G-valued voltage assignment on X is a function α : E(X )→ G.

To each voltage assignment, we define the derived graph X (G, α) whose vertices and
dges are given by V (X )×G and E(X )×G respectively. If (e, σ ) ∈ E(X )×G, it links
s, σ ) to (t, σ · α(e)), where e is an edge in X from s to t .

Note that X (G, α)→ X given by (x, σ ) ↦→ x is a graph covering.
Let X = G0

1. For each E ∈ E , we fix a group isomorphism

ΦE : E[p∞]→ Qp/Zp.

his is equivalent to fixing a Zp-basis of the p-adic Tate module Tp(E). More explicitly,
et tE be such a basis. Given P ∈ E[pm], we have ΦE (P) = a/pm

+ Zp for a unique
nteger a ∈ {0, 1, . . . , pm

− 1}.

ΦE (P) = atE , (A.1)

where tE denotes the image of tE in E[pm].
Let us write Zm =

1
pm Zp/Zp and Z∗m = Zm \ Zm−1, which we may identify

with (Z/pmZ)×. Then, we may identify the vertices of Gm
1 with G0

1 × Z∗m , given by
(E, P) ↦→ (E,ΦE (P)). Under (A.1), ΦE (P) is given by the image of a in (Z/pmZ)×.

Definition A.2. Let E1, E2 ∈ E . Suppose that there exists an ℓ-isogeny φ : E1 → E2.
For each equivalence class of degree ℓ-isogenies we fix one representative φ. We write
tφ ∈ Z×p to be the unique element such that

φ∗(tE1 ) = tφ · tE2 , (A.2)

where φ∗ : Tp(E1)→ Tp(E2) is the Zp-isomorphism induced by φ.

Let φ : E → E ′ be an ℓ-isogeny. This induces an edge e in G0
1. Consider the

corresponding edge from (E, P) to (E ′, P ′) in Gm
1 . Then, one can check that

ΦE (P)tφ = ΦE ′ (P ′).

Therefore, we may identify Gm
1 with the voltage graph X ((Z/pmZ)×, α), where α is the

voltage assignment α on Gm sending φ to t (mod pm).
1 φ
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Remark A.3. While our voltage assignment depends on a choice of basis for each
Tp(E) as E runs through E . This can be regarded as the analogue of picking a spanning
tree of G0

1 (when it is connected) as in [7, Theorem 2.11]. Indeed, suppose that G0
1 is

connected and T is a spanning tree. Since ℓ ̸= p, an ℓ-isogeny φ : E1 → E2 induces an
somorphism φ∗ : Tp(E1) → Tp(E2). Thus, once a basis is picked for one E ∈ E , this
asis can be propagated to all other curves in E along T . ♢

emark A.4. Since we have realized Gm
1 as a voltage graph arising from a voltage

ssignment on G0
1, this gives an alternative proof of Lemma 2.7 in the special case where

N = 1. ♢
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