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Abstract. In this article we consider Selmer groups and fine Selmer groups
of abelian varieties over a number field K. Following a classical approach
of Monsky for Iwasawa modules from ideal class groups, we give suffi-
cient conditions for the Iwasawa μ-invariants of the fine Selmer groups
and the μ-invariants of the Selmer groups to be bounded as one runs over
the Zp-extensions of K. Moreover, we describe a criterion for the bound-
edness of Iwasawa λ-invariants of Selmer groups and fine Selmer groups
over multiple Zp-extensions which generalises a criterion of Monsky from
dimension 2 to arbitrary dimension.

Mathematics Subject Classification. 11R23.

Keywords. Boundedness of Iwasawa invariants, generalised Iwasawa in-
variants, abelian varieties, Selmer groups, fine Selmer groups, weak Leopoldt
conjecture.

1. Introduction

Classical Iwasawa theory is concerned with the growth of class numbers in Zp-
extensions of number fields. To be more precise, let K∞/K be a Zp-extension,
with intermediate fields Kn, n ∈ N, and let hn denote the class number of Kn.
By a famous result of Iwasawa (see [11]), we have

vp(hn) = μ · pn + λ · n + ν (1)

for each sufficiently large n ∈ N. The so-called Iwasawa invariants μ ≥ 0, λ ≥ 0
and ν ∈ Z do not depend on n, but they do depend on the chosen Zp-extension
K∞ of K.

http://crossmark.crossref.org/dialog/?doi=10.1007/s00025-023-01920-8&domain=pdf
http://orcid.org/0000-0002-6794-8061


148 Page 2 of 42 S. Kleine and A. Matar Results Math

Having fixed K and p, Greenberg studied in [8] whether the Iwasawa
invariants are bounded as one runs over the Zp-extensions of K, and he was
able to obtain first partial results. A few years later, Monsky and independently
Babăıcev (see [1,26]) proved that the μ-invariants of the Zp-extensions of a
fixed number field K are indeed bounded.

On the other hand, the corresponding question for the λ-invariants is
still open. In [26, Theorem IV], Monsky obtained a necessary and sufficient
criterion for the boundedness of the λ-invariants of the Zp-extensions of K
which are contained in any fixed Z2

p-extension of K.
It is the main aim of this article to prove analogous results in a more

general context. To be more precise, fix K and p, and let A be an abelian
variety defined over K. We let X

(K∞)
A and Y

(K∞)
A denote the Pontryagin duals

of the Selmer group and the fine Selmer group of A over a Zp-extension K∞
of K (see Sect. 2.2 for the definitions). The investigation of the Selmer groups
(respectively, the fine Selmer groups) has been introduced into Iwasawa theory
by Mazur (respectively, Coates and Sujatha), see [6,24]. This is probably the
most vital branch of modern Iwasawa theory.

One can attach μ- and λ-invariants to each X
(K∞)
A and Y

(K∞)
A . Some

technical problems arise since these objects need not be torsion modules over
the Iwasawa algebra Λ = Zp[[T ]]. The following theorem is our first main result
(see also Theorem 3.20 below).

Theorem 1.1. Let K be a number field. Suppose that Y
(K∞)
A is Λ-torsion for

all but finitely many Zp-extensions K∞ of K. Then μ(Y (K∞)
A ) is bounded.

An analogous statement holds for the Selmer groups, provided that A
has good ordinary reduction at the primes of K above p, and that the inertia
subgroup of Gal(L∞/K) of every prime of K above p has Zp-rank at least
d − 1.

In [5], Cuoco and Monsky proved a generalisation of Iwasawa’s growth
formula (1) for multiple Zp-extensions: If Kn now denotes the nth layer in a
Zd

p-extension L∞/K, then

vp(hn) = m0 · pdn + l0 · npn(d−1) + O(pn(d−1)). (2)

We call the leading coefficients m0, l0 ≥ 0 of this asymptotic formula the
generalised Iwasawa invariants of the Zd

p-extension L∞/K.
In [26, Theorem IV], Monsky obtained the following criterion for the

boundedness of λ-invariants: If L∞/K is a Z2
p-extension, then the λ-invariants

of the Zp-extensions K∞ of K which are contained in L∞ are bounded if and
only if l0(L∞/K) = 0.

The definition of the l0-invariant of an Iwasawa module is a bit compli-
cated (see Sect. 2.2), and its meaning is mysterious. In this article we propose
the definition of a slightly modified invariant ̂l0, which coincides with the orig-
inal l0-invariant of Cuoco and Monsky in the case of Z2

p-extensions (more
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precisely, for Iwasawa modules over the Iwasawa algebra Λ2 = Zp[[T1, T2]]),
but may differ from l0 for Zd

p-extensions with d > 2. Using this invariant ̂l0,
we can generalise Monsky’s criterion to the setting of Zd

p-extensions. For the
sake of simplicity, we do not state here in the introduction the best possible
formulation of our result (see also Theorem 3.22 below):

Theorem 1.2. Let L∞/K be a Zd
p-extension, d ≥ 2, and suppose that Y

(K∞)
A

is Λ-torsion for each Zp-extension K∞ ⊆ L∞ of K. We assume that the de-
composition subgroup in Gal(L∞/K) of every prime of K above p is open, and
that Y

(K∞)
A does not contain any non-trivial pseudo-null Λd-submodules. Then

λ(Y (K∞)
A ) is bounded as one runs over the Zp-extensions K∞ ⊆ L∞ of K if

and only if ̂l0(Y
(L∞)
A ) = 0.

An analogous result holds for Selmer groups, provided that A has good
ordinary reduction at the primes of K above p, and that each of these primes
ramifies in L∞/K.

In [18] the first-named author constructed an example of an imaginary-
quadratic number field K such that λ(X(K∞)

A ) was unbounded as K∞ runs
over the Zp-extensions of K (here A was a suitable elliptic curve defined over
K). Since the composite of all Zp-extensions of K is a Z2

p-extension L∞ of

K, we may use Theorem 1.2 to deduce that l0(X
(L∞)
A ) > 0. To the authors’

knowledge, this yields the first known example of an Iwasawa module with a
non-trivial l0-invariant over an Iwasawa algebra of a Zd

p-extension with d > 1.
In the last section, we show how to derive examples of Zd

p-extensions L∞ of

K with arbitrarily large d and ̂l0(X
(L∞)
A ) > 0. (For more information on the

relations between the invariants l0 and ̂l0 we refer the reader to the definitions
in Sect. 2.2 and to the end of Sect. 3.3, where we prove several results relating
l0 and ̂l0, see for example Proposition 3.25).

Let us briefly describe the structure of the article. In Sect. 2 we introduce
the general background on Iwasawa modules, (generalised) Iwasawa invariants,
Selmer groups and fine Selmer groups, and we describe a topology on the
set of Zp-extensions of K which is due to Greenberg. Section 3 contains two
preliminary subsections where we prove auxiliary results on Iwasawa modules,
and the control theorems which we need. Section 3.3 is devoted to the proofs
of our main results.

In Sect. 4, we derive several applications. First, we study the relations
between the variation of μ- and λ-invariants, and the weak Leopoldt conjecture.
Finally, we construct examples of Iwasawa modules with non-trivial l0- and ̂l0-
invariant.
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2. Notation

2.1. General Notation

Fix a number field K and a prime number p, and let Σ be a finite set of primes
of K. For any (possibly infinite) algebraic extension N of K, we denote by
Σ(N) the set of primes w of N which divide some v ∈ Σ. Moreover, Σp(N)
will denote the subset of Σ(N) which consists of the primes above p (usually
our set Σ will contain all the primes of K above p).

We denote by GK = Gal(K/K) the absolute Galois group of K, i.e. K is
a fixed algebraic closure of K. Moreover, KΣ will denote the maximal algebraic
(non-necessarily abelian) extension of K which is unramified outside of Σ.

For any abelian group G, we denote by G[p∞] the subgroup of p-power
torsion elements of G.

2.2. Group Rings and Iwasawa Modules

For every Zd
p-extension K∞/K, d ∈ N, the completed group ring

Zp[[Gal(K∞/K)]] can be identified (non-canonically) with the ring

Λd := Zp[[T1, . . . , Td]]

of formal power series in d variables over Zp. In [5], Cuoco and Monsky in-
troduced, in this setting, the generalised Iwasawa invariants of any finitely
generated and torsion Λd-module, d > 1, as follows: To each such module M ,
one can attach an elementary torsion Λd-module of the form

EM =
s

⊕

i=1

Λd/(pmi) ⊕
t

⊕

j=1

Λd/(gnj

j ),

where all the exponents are natural numbers and the gj are irreducible ele-
ments of Λd which are coprime with p. Moreover, one has a Λd-module ho-
momorphism ϕ : M −→ EM , the kernel and cokernel of which are pseudo-null
over Λd, i.e. annihilated by two relatively prime elements of the unique fac-
torisation domain Λd. In fact, the kernel of any such homomorphism ϕ is the
maximal pseudo-null submodule of M , which we denote by M◦. The element
FM =

∏s
i=1 pmi · ∏t

j=1 g
nj

j is called the characteristic power series of M . It is
determined uniquely by M up to multiplication by units of Λd. In particular,
if EM = {0} (this happens if and only if M = M◦ is pseudo-null), then we set
FM = 1.

One then defines the generalised Iwasawa invariants of M as follows.
First, m0(M) =

∑s
i=1 mi. The definition of the second invariant is more

involved. Recall that Λd has been identified with the completed group ring
Zp[[Gal(K∞/K)]]. We write FM = pm0(M) · GM , and we consider the image
GM of GM in the quotient ring Λd/pΛd. We let l0(M) be the sum of the valua-
tions vp(GM ), where p runs over the primes of Λd/pΛd of the form γ − 1, with
γ ∈ Gal(K∞/K) not a pth power (since Λd/pΛd is again a unique factorisation
domain, this sum is in fact finite). Note that l0(M) = λ(M) if d = 1.
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In this paper, we will also use an alternative definition of the l0-invariant,
which might be more appropriate for Λd-modules, d > 2, than the classical
l0-invariant (this is motivated by some results in Sect. 3). To this purpose, we
assume that d ≥ 2, and we again write the characteristic power series FM ∈ Λd

of a finitely generated Λd-module M as FM = pm0(M) · GM , i.e. p � GM . Now
we define

̂l0(M) =
∑

p

vp(GM ),

where GM ∈ Ωd := Λd/pΛd, and where now p runs over the prime ideals of Ωd

which are minimal over (GM ) and contained in a prime ideal of the form

P = (σ1 − 1, . . . , σd−1 − 1),

where σ1, . . . , σd−1 ∈ Gal(K∞/K) generate a subgroup which is isomorphic to
Zd−1

p . Note that this coincides with the original definition of l0 in the case d = 2
since the prime ideals of Ω2 of the form (γ − 1) have height 1. It is important
to restrict to minimal primes in the case d > 2 in order to guarantee that the
sum ̂l0(M) is finite.

In the special case of a Zp-extension, one has a more precise structure
theory (see [11]). In this case, we usually abbreviate Λ1 to Λ. In fact, to any
(non-necessarily torsion) finitely generated Λ1-module M , we can attach an
elementary Λ1-module of the form

EM = Λr ⊕
s

⊕

i=1

Λ/(pmi) ⊕
t

⊕

j=1

Λ/(gnj

j ),

where the gj are now so-called distinguished polynomials, i.e. they are monic
polynomials, and each coefficient besides the leading one is divisible by p. We
let μ(M) =

∑s
i=1 mi (i.e. μ(M) = m0(M) in the case of finitely generated and

torsion Λ1-modules) and λ(M) =
∑t

j=1 deg(gnj

j ). Using the fact that the gj

are distinguished, it is easy to see that λ(M) = l0(M) for finitely generated
torsion Λ1-modules. Again, one defines the characteristic power series FM ∈ Λ
of M (which now differs from a polynomial only by some unit in Λ×) to be the
product of the powers of p and the distinguished polynomials g

nj

j occuring in
the definition of EM .

Using the Weierstraß Preparation Theorem (see [32, Theorem 7.3]), we
can define Iwasawa invariants of any non-zero element f ∈ Λ, as follows: f can
be written uniquely as

f = u · pm · g,

where u ∈ Λ×, m ∈ N, and g ∈ Λ is a distinguished polynomial. Then we let
μ(F ) := m and λ(f) := deg(g). Under this point of view, the Iwasawa invari-
ants of a finitely generated Λ-module M are just the Iwasawa invariants of the
associated characteristic power series FM ∈ Λ of M .
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We conclude the current subsection with some remarks on Fitting ideals.
For a general summary on the properties of Fitting ideals, we refer to [32,
Section 13.6], [28, Chapter 3] and [13, Appendix A]. In this article, we will
restrict to the zero-th Fitting ideals of Iwasawa modules.

Let M be a finitely generated Λd-module, d ∈ N. Recall the definition of
the Fitting ideal FΛd

(M): Take a presentation

Λq
d

ρ−→ Λl
d −→ M, (3)

and let A be a q × l-matrix with entries in Λd which describes the map ρ. If
M is torsion, then we must have q ≥ l. Then we let FΛd

(M) be the ideal of
Λd generated by all the l-minors of A if M is torsion, and we define it to be
the zero ideal if q < l. We summarise all the facts on the Fitting ideal which
we will need in the following

Proposition 2.1. Let M be a finitely generated Λd-module, and let Ann(M) ⊆ Λd

denote its annihilator ideal. Then the following statements hold.
(1) The definition of FΛd

(M) does not depend on the choice of the presenta-
tion (3) of M .

(2) If M can be generated over Λd by l elements, then

Ann(M)l ⊆ FΛd
(M) ⊆ Ann(M).

In particular, if M is not a torsion Λd-module, then FΛd
(M) = (0).

(3) Suppose that M is Λd-torsion. Let M◦ ⊆ M be the maximal pseudo-null
Λd-submodule, and let EM be an elementary Λd-module which is pseudo-
isomorphic to M . If M can be generated over Λd by l elements, then

Ann(M◦)Ann(EM ) ⊆ Ann(M)

and

Ann(M◦)lAnn(EM )l ⊆ FΛd
(M).

(4) If i < d and π : Λd −→ Λi denotes a surjective ring homomorphism, then

FΛi
(M/ ker(π)) = π(FΛd

(M)).

(5) Suppose that M is Λd-torsion. Then we can write

FΛd
(M) = (FM ) · JM ,

where the ideal JM of Λd is not contained in any height one prime ideal
of Λd.

(6) Now suppose that d = 1, and that M is torsion. Then

FΛ1(M) = (FM ) · FΛ1(M
◦).

Proof. The first statement follows from [7, Corollary 20.4], and (2) is [7, Propo-
sition 20.7].

The first statement in (3) follows from the exact sequence

0 −→ M◦ −→ M −→ EM ,
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and the second part of (3) follows by combining the first part with (2).
Assertion (4) follows from [13, Lemma A.6]. Now we turn to the proof of

(5). Choose a presentation as in (3) and let A be the corresponding matrix. We
will show that the greatest common divisor of the l × l-minors of A is equal
to FM ; this proves the assertion.

To this purpose, we will argue prime-by-prime. Let g be an irreducible
element of Λd (which may or may not divide the characteristic power series
FM of M). In the following, we localise at g. Note that (Λd)(g) is a flat Λd-
module and that N(g)

∼= N ⊗Λd
(Λd)(g) for any finitely generated Λ-module N .

Therefore we obtain from the exact sequence

0 −→ M◦ −→ M −→ EM −→ C −→ 0,

with EM elementary and C pseudo-null over Λd, an exact sequence

0 −→ (M◦)(g) −→ M(g) −→ (EM )(g) −→ C(g)

of finitely generated (Λd)(g)-modules. Since both M◦ and C are pseudo-null
over Λd, there exists an element h which is coprime with g and annihilates both
M◦ and C. Since h is a unit in (Λd)(g), we may conclude that both (M◦)(g)

and C(g) are zero.
We therefore obtain an isomorphism

M(g)
∼= (EM )(g).

Note that (Λd)(g) is a discrete valuation ring with maximal ideal (g). Writing

EM =
s

⊕

i=1

Λd/(fi)

with fi ∈ Λd (here fi may be equal to p), we obtain that

M(g)
∼=

s
⊕

i=1

(Λd)(g)/(fi). (4)

In particular, M(g) = 0 if each fi is coprime with g.
On the other hand, it follows from the presentation (3) that we have an

exact sequence

(Λd)
q
(g)

ρ−→ (Λd)l
(g) −→ M(g) −→ 0.

Let A be the matrix representing the map ρ. Then F(Λd)(g)(M(g)) is the ideal
generated by the images of the l × l-minors of A under the natural map
Λd −→ (Λd)(g).

It follows from [2, Theorem 2.9.6] that the greatest common divisor of
the l × l-minors of the matrix A (considered as a matrix over the principal
ideal domain (Λd)(g)) is equal to the product of the first l principal divisors of
M(g). In view of (4), we may conclude that

v(g)(F(Λd)(g)) = vg(FM ).



148 Page 8 of 42 S. Kleine and A. Matar Results Math

This concludes the proof of (5).
Now suppose that d = 1. The theory of Fitting ideals over Λ := Λ1 is

better understood. One of the reasons is that a finitely generated torsion Λ-
module M has projective dimension 1 if and only if it does not contain any non-
trivial pseudo-null (i.e. finite) Λ-submodules (see e.g. [29, Proposition 5.3.19]).
We therefore may proceed as follows.

We start from the usual exact sequence

0 −→ M◦ −→ M −→ ẼM −→ 0,

where ẼM ⊆ EM . Since EM does not contain any non-trivial finite Λ-submod-
ules, the submodule ẼM has projective dimension at most 1. Therefore we can
use [28, Chapter 3, Theorem 22] in order to deduce from the exact sequence
that

FΛ(M) = FΛ(ẼM ) · FΛ(M◦).

Moreover, since ẼM has projective dimension at most one, it follows from [13,
Lemma A.7] that FΛ(ẼM ) equals the characteristic ideal of ẼM . As ẼM is
pseudo-isomorphic to EM and M , we may conclude that

FΛ(ẼM ) = (FM ).

This concludes the proof of the proposition. �

2.3. Selmer Groups and Fine Selmer Groups

Fix a number field K, a prime number p, and let A be an abelian variety
defined over K. Also fix a finite set Σ of primes of K which contains the
primes above p and the set Σbr(A) of primes where A has bad reduction. If
p = 2, then we assume that K is totally imaginary. For any number field L
and a prime w of L, we denote by Lw the completion of L at w.

Let K∞ be a Zd
p-extension of K, d ≥ 1, with intermediate fields Kn (i.e.,

Gal(Kn/K) is isomorphic to (Z/pnZ)d for every n ∈ N). Then we define the
Selmer group of A over Kn as

SelA(Kn) := ker

⎛

⎝H1(KΣ/Kn, A[p∞]) −→
∏

v∈Σ(Kn)

H1(Kn,v, A)[p∞]

⎞

⎠ ,

where KΣ is defined as in Sect. 2.1 (note that K∞ ⊆ KΣ because Σ contains
the primes above p by assumption). This definition does not depend on the
choice of Σ, as long as Σ contains Σp(K) and Σram(A) (see [25, Corollary 6.6]).

Moreover, we define the fine Selmer group of A over Kn as

SelA,0(Kn) := ker

⎛

⎝H1(KΣ/Kn, A[p∞]) −→
∏

v∈Σ(Kn)

H1(Kn,v, A[p∞])

⎞

⎠ .
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This definition does not depend on the set Σ, for it can be seen that for any
finite set Σ containing the primes above p and the set Σbr(A) we have an exact
sequence

0 −→ SelA,0(Kn) −→ SelA(Kn) −→
∏

v|p
H1(Kn,v, A[p∞]).

Now let

X
(Kn)
A = SelA(Kn)∨

and

Y
(Kn)
A = SelA,0(Kn)∨

be the Pontryagin duals. Finally, we define

X
(K∞)
A = lim←−

n

X
(Kn)
A

and

Y
(K∞)
A = lim←−

n

Y
(Kn)
A ,

where the projective limits are taken with respect to the dual of the restric-
tion maps from cohomology. It is well-known that both X

(K∞)
A and Y

(K∞)
A

are finitely generated Λd-modules (as in the previous subsection, we identify
Zp[[Gal(K∞/K)]] with Λd).

2.4. A Topology on the Set of Zp -Extensions of K

For any Zd
p-extension L∞ of a number field K, we let E⊆L∞(K) denote the set

of Zp-extensions of K which are contained in L∞. In the following we assume
that d ≥ 2, so that the set E⊆L∞(K) is infinite. It follows from [8, p. 208] that
this set is compact with respect to the following topology (which we will call
Greenberg’s topology). A basis of this topology is given by the following sets:
For any K∞ ∈ E⊆L∞(K) and every n ∈ N, we define

E(K∞, n) =
{

K̃∞ ∈ E⊆L∞(K)
∣

∣

∣ [(K̃∞ ∩ K∞) : K] ≥ pn
}

.

In other words, E(K∞, n) contains the Zp-extensions of K which are subex-
tensions of L∞ and which coincide with K∞ at least up to the nth layer. Two
Zp-extensions of K are close with respect to Greenberg’s topology if they have
a large intersection, i.e. if they share a large number of common layers.

For any K∞ ∈ E⊆L∞(K), the restriction map Gal(L∞/K) � Gal(K∞/K)
on the Galois groups induces a canonical surjection

πK∞ : Λd = Zp[[T1, . . . , Td]] � Λ1 = Zp[[S]],

and the kernel of this map is the ideal of Λd generated by the elements

σ1 − 1, . . . , σd−1 − 1,
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where σ1, . . . , σd−1 are topological generators of the subgroup

Gal(L∞/K∞) ⊆ Gal(L∞/K)

fixing K∞. For every finitely generated Λd-module M , the quotient

MK∞ := M/(σ1 − 1, . . . , σd−1 − 1)M (5)

is a finitely generated Zp[[S]]-module.
Now we focus on the case d = 2. Fix topological generators σ1 and σ2 of

G := Gal(L∞/K) ∼= Z2
p. For any Zp-extension K∞ ∈ E⊆L∞(K), let σK∞ be a

topological generator of Gal(K∞/K) ∼= Zp. We consider the surjective map

πK∞ : Gal(L∞/K) −→ Gal(K∞/K).

Then

πK∞(σ1) = σa1
K∞ , πK∞(σ2) = σa2

K∞

for suitable a1, a2 ∈ Zp, and not both of a1 and a2 are divisible by p (since
πK∞ is surjective). In fact, K∞ ∈ E⊆L∞(K) may be identified with the class
[a1 : a2] of the pair (a1, a2) in a projective space, since the topological generator
of Gal(K∞/K) is unique only up to raising to a power with a unit exponent.
Note that the tuple [a1 : a2] uniquely determines the kernel Gal(L∞/K∞) of
πK∞ . Therefore the set E⊆L∞(K) can be identified with the projective one-
dimensional space P1(Zp) over Zp.

More generally, if L∞/K is a Zd
p-extension with d ≥ 2 arbitrary and

K∞ ⊆ L∞ is a Zp-extension of K, then the images of a fixed set of topo-
logical generators σ1, . . . , σd of Gal(L∞/K) ∼= Zd

p under the map πK∞ are of
the form

σa1
K∞ , . . . , σad

K∞ ,

where a1, . . . , ad ∈ Zp are not all divisible by p. As in the special case d = 2,
we can identify K∞ with the element [a1 : · · · : ad] ∈ Pd−1(Zp).

Let Ti = σi−1 for each i ∈ {1, . . . , d}. Moreover, we will use the notation

TK∞ = σK∞ − 1.

Then the restriction map

πK∞ : Λd � Λ1

maps Ti to (TK∞+1)ai−1, respectively. In [26], Monsky usually denotes the im-
age of an element f ∈ Λd under πK∞ by fa, where a = [a1 : · · · : ad] ∈ Pd−1(Zp)
corresponds to the Zp-extension K∞ of K, as above.

In particular, if the topological generators σ1, . . . , σd of Gal(L∞/K) have
been chosen such that σ1, . . . , σd−1 generate the subgroup Gal(L∞/K∞) fixing
K∞, then the kernel of πK∞ is generated by T1, . . . , Td−1, i.e. with this choice of
topological generators of Gal(L∞/K), the Zp-extension K∞ of K corresponds
to

a = [0 : · · · : 0 : 1] ∈ Pd−1(Zp).
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Therefore

MK∞ = M/(ker(πK∞) · M)

for every finitely generated Λd-module M , where MK∞ is defined as in (5).

Remark 2.2. Choosing a different topological generator of Gal(K∞/K) ∼= Zp

does not change the Iwasawa invariants of an element of Zp[[Gal(K∞/K)]] ∼= Λ1.
In particular, such a change of variables does not affect the μ- or λ-invariant
of a quotient module MK∞ .

Using the above notation, the Zp-extensions K̃∞ ∈ E(K∞, n), n ∈ N, cor-
respond to surjections πK̃∞ that map the topological generators of Gal(L∞/K∞)
to elements in Gal(K̃∞/K)pn

. Recall that in the above, K∞ ∈ E⊆L∞(K) has
been identified with [a1 : · · · : ad] ∈ Pd−1(Zp). Then the Zp-extensions K̃∞ in
the neighbourhood E(K∞, n) of K∞ correspond to elements [b1 : · · · : bd] ∈ Pd−1

(Zp) such that

bi ≡ ai (mod pn)

for every i.

3. Analogues of Monsky’s Boundedness Results

In [26], Monsky proved that the μ-invariants of the Zp-extensions of a number
field K are bounded, and he obtained sufficient criteria for the λ-invariants to
be bounded as one runs over the Zp-extensions of K which are contained in
some fixed Z2

p-extension of K.
In this section, we prove analogues of Monsky’s results in the setting

of fine Selmer groups and Selmer groups. The module-theoretic results from
[26, Sections 2 and 3] carry over immediately; we therefore state these results
without proof in the first subsection. One of these results is then generalised
from the d = 2 case to arbitrary d ≥ 2. The second subsection contains the
control theorems which we need, and in the final subsection we focus on the
remaining parts of Monsky’s proof, which have to be adapted to the Selmer
group setting.

3.1. Auxiliary Results on Iwasawa Modules Over Zd
p -Extensions

Fix a Zd
p-extension L∞/K. As in Sect. 2.4, we write E⊆L∞(K) for the set

of Zp-extensions of K which are contained in L∞. Let M be a finitely gen-
erated torsion Λd-module (as usual, we identify Zp[[Gal(L∞/K)]] with Λd),
and let FM be the characteristic power series of M . We recall that for every
K∞ ∈ E⊆L∞(K), the quotient MK∞ = M/(ker(πK∞) · M) (see Sect. 2.4) is a
finitely generated, but not necessarily torsion, Zp[[Gal(K∞/K)]]-module.
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Lemma 3.1. There exist non-trivial elements σ1, . . . , σl ∈ Gal(L∞/K) such that
for every Zp-extension K∞ ∈ E⊆L∞(K) of K such that σi|K∞ �= 1 for each i,
the quotient MK∞ is a torsion Λ1-module and satisfies

μ(MK∞) = m0(M).
Proof. This is [26, Theorem 3.2]. �

In the next lemma we restrict to the case d = 2.
Lemma 3.2. Let L∞/K be a Z2

p-extension, let K∞ ∈ E⊆L∞(K) correspond to
a = [a1 : a2] ∈ P1(Zp) (as in Sect. 2.4), and let πK∞ = πa : Λ2 −→ Λ1 be
the canonical surjection induced by the restriction map on the Galois groups.
Choose a topological generator σ of Gal(L∞/K∞), and let T = σ − 1. We as-
sume that MK∞ = M/(ker(πK∞) · M) is a torsion Λ-module, and we write
FM = pm0(M) · GM , where p � GM .

Then

λ(MK∞) = λ((GM )a)

is unbounded in any neighbourhood of K∞ if and only if the image GM ∈ Λ2/pΛ2

of GM is divisible by T .
Proof. See [26, Theorem 3.3]. �

Monsky’s Lemma 3.2 can be generalised to Zd
p-extensions, d ≥ 2 arbitrary

(see Lemma 3.5 below). In order to prove this generalisation, we first prove
two auxiliary lemmas.
Lemma 3.3. Let L∞/K be a Zd

p-extension, d ≥ 2, and identify Zp[[Gal(L∞/K)]]
with Λd.Let M be a finitely generated and torsion Λd-module.Let K∞ ∈ E⊆L∞(K)
correspond to a = [a1 : · · · : ad] ∈ Pd−1(Zp), and let

πK∞ = πa : Λd −→ Λ

be the canonical surjective map induced by the restriction map on the Galois
groups. If MK∞ = M/(ker(πK∞) · M) is a torsion Λ-module, then there exists
a neighbourhood E(K∞, n) such that for all K ′

∞ ∈ E(K∞, n), MK′∞ is a torsion
Λ-module.
Proof. It follows from Proposition 2.1(4) that the Fitting ideal of the quotient
MK∞ in Λ ∼= Λd/ ker(πK∞) is given by the image of FΛd

(M) under πK∞ . By
hypothesis, there exists an element F �= 0 in the annihilator ideal of MK∞ . If
MK∞ can be generated as a Λ-module by l elements, then H ′ := F l is contained
in the Fitting ideal of MK∞ by Proposition 2.1(2). Since

πK∞ : FΛd
(M) −→FΛ(MK∞)

is surjective, we can choose a pre-image H ∈ FΛd
(M) of H ′ under the map

πK∞ . In particular, H ′ = πK∞(H) is non-zero. By the Weierstrass Preparation
Theorem, we may assume that H ′ = px · G for some distinguished polynomial
G.
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Let m ∈ N be large enough such that m > x and pm > deg(G), and
choose n = 2m. Since

(T + 1)pn − 1 ≡ 0 mod (pm, T pm

),

we may conclude that

πK̃∞(H) ≡ H ′ mod (pm, T pm

)

is non-zero for each K̃∞ ∈ E(K∞, n) (we identify each quotient

Λd/ ker(πK̃∞) ∼= Zp[[Gal(K̃∞/K)]]

with Λ = Zp[[T ]], and therefore this congruence makes sense as a statement in
Λ). Since πK̃∞(H) is contained in FΛ(MK̃∞) ⊆ AnnΛ(MK̃∞), this proves the
lemma. �

Lemma 3.4. Let G ∈ Λd be such that the coset G of G in the quotient alge-
bra Ωd = Λd/pΛd = Fp[[T1, . . . , Td]] is non-trivial (i.e., p � G), and recall that
d ≥ 2. Then λ(Ga) is unbounded in any neighbourhood of [0 : · · · : 0 : 1] if and
only if G ∈ (T1, . . . , Td−1) (recall that Ga = πa(G)).

Proof. Let K∞ = L
〈T1+1,...,Td−1+1〉
∞ . Then

G ∈ (T1, . . . , Td−1) if and only if πK∞(G) ≡ 0 (mod p).

Suppose first that G �∈ (T1, . . . , Td−1), and recall that

Zp[[Gal(K∞/K)]] ∼= Λ = Zp[[T ]].

Then πa(G) = G(0, . . . , 0, T ) is not divisible by p, i.e. G(0, . . . , 0, T ) does not
vanish identically. Let r be its T -order. It is then easy to see that λ(Ga) ≤ r
on any sufficiently small neighbourhood of [0 : · · · : 0 : 1].

Now suppose that G ∈ (T1, . . . , Td−1) and let U be a neighbourhood of
K∞ as in Lemma 3.3, which we identify with a neighbourhood of [0 : · · · : 0 : 1].
Choose a = [pj1 : · · · : pjd−1 : 1] ∈ U , with ji large for all i. Since

(T + 1)pj − 1 ≡ T pj

(mod p)

for every j ∈ N, it follows that πa(Ti) ∈ (p, T pji ) for each i ∈ {1, . . . , d − 1}.
Since G is a Λd-linear combination of p and T1, . . . , Td−1 by assumption, it
follows that

Ga = πa(G) ∈ (p, T pj

),

where j = min(j1, . . . , jd−1). In particular, if Ga �= 0 in Ωd, then λ(Ga) ≥ j.
It remains to prove that Ga �= 0 for a = [pj1 : · · · : pjd−1 : 1] and arbitrar-

ily large ji. We prove this claim via induction on d ≥ 2. Let first d = 2, and
let m > 0 be given (we look for some j ≥ m for which our claim holds true).
We may write

G(T1, T2) = T t
1 · (F1 + F2),
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where F1 is divisible by T1 and F2 ∈ Fp[[T2]]\{0} (i.e. we are factoring out T t
1 ,

the largest power of T1 dividing G in the unique factorisation domain Ωd).
If F1 = 0, then clearly Ga �= 0 for any a = (pj , 1). Now assume that

F1 �= 0, and let s be the largest power of T dividing (F2)[0:1], so that

(F2)[0:1] = c · T s + higher order terms,

with c �= 0. Note that (F2)[0:1] = F2 in the ring Fp[[T2]]. Let j ≥ m be ar-
bitrary such that pj > s, and let a = [pj : 1]. Since T1 divides F1, the ex-
ponent of T in every term in (F1)a ∈ Fp[[T ]] is larger than s. Moreover,
since F2 ∈ Fp[[T2]] ⊆ Fp[[T1, T2]] does not depend on the variable T1, we have
(F2)a = (F2)[0:1]. Therefore

(F1)a + (F2)a = (F1)a + (F2)[0:1] = cT s + higher order terms,

and thus Ga �= 0. This proves our claim for d = 2.
Now suppose that the claim holds for all i < d, and let m > 0 be given.

As in the base step, we may write

G(T1, . . . , Td) = T t
1 · (F1 + F2),

where F1 is divisible by T1 and F2 ∈ Fp[[T2, . . . , Td]]\{0}. By the inductive
step, we have (F2)a �= 0 for a = [pj2 : · · · : pjd−1 : 1] ∈ Pd−2(Zp) if all ji ≥ m
are sufficiently large.

If F1 = 0, then we let b = [pj1 : · · · : pjd−1 : 1] ∈ Pd−1(Zp) for any j1. In
this case we clearly have Gb �= 0, and we are done. Otherwise we have F1 �= 0.
Let s be the largest power of T dividing (F2)a, so that

(F2)a = c · T s + higher order terms,

with c �= 0. Now choose j1 ≥ min(j2, . . . , jd−1) large enough such that pj1 > s.
Let b = [pj1 : · · · : pjd−1 : 1]. Since T1 divides F1, the exponent of T in each
term of (F1)b is larger than s. Therefore

(F1)b + (F2)b = (F1)b + (F2)a = c · T s + higher order terms.

It follows that Gb �= 0, which completes the proof. �

Lemma 3.5. Let L∞/K be a Zd
p-extension, d ≥ 2, and identify Zp[[Gal(L∞/K)]]

with Λd. Let FM be the characteristic power series of the finitely generated tor-
sion Λd-module M , and write FM = pm0(M) · GM with p � GM .

Let K∞ ∈ E⊆L∞(K) correspond to a = [a1 : · · · : ad] ∈ Pd−1(Zp), and let

πK∞ = πa : Λd −→ Λ

be the canonical surjective map induced by the restriction map on the Galois
groups. We assume that MK∞ = M/(ker(πK∞) · M) is a torsion Λ-module.

(a) If πK∞(GM ) ≡ 0 (mod p), then λ(MK∞) is unbounded in any neighbour-
hood of K∞.
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(b) Suppose that there exists an element H ∈ Λd such that ps · H annihi-
lates the maximal pseudo-null submodule M◦ of M for a sufficiently large
s ∈ N, and such that πK∞(H) �≡ 0 (mod p).
Then the reverse conclusion also holds, i.e. if πK∞(GM ) �≡ 0 (mod p),
then λ(MK∞) is bounded in a sufficiently small neighbourhood of K∞.

Remark 3.6. If d = 2, then the additional assumption on the maximal pseudo-
null submodule in Lemma 3.5 is always satisfied (cf. also the proof of [26,
Theorem 3.3]).

Remark 3.7. In Lemmas 3.2 and 3.5 there is a statement that λ(MK∞) is
unbounded (or bounded) in a neighbourhood of K∞. Implicit in this statement
is the fact that there is a neighbourhood of E(K∞, n) such that MK′∞ is a
torsion Λ-module for all K ′

∞ ∈ E(K∞, n). This is true by Lemma 3.3.

Proof of lemma 3.5. Without loss of generality, we may choose the topological
generators of Gal(L∞/K) ∼= Zd

p such that a = [0 : · · · : 0 : 1] (see also Sect. 2.4).
As in [26], we work with the zero-th Fitting ideal FΛd

(M) of M . Recall from
Proposition 2.1(4) that

FΛ1(Ma) = πa(FΛd
(M)).

Suppose first that GM ∈ (T1, . . . , Td−1). Assume that Ma is a torsion Λ-
module. Since (GM ) divides FΛd

(M), the ideal ((GM )a) of Λ divides FΛd
(M)a

= FΛ1(Ma). Therefore λ((GM )a) ≤ λ(Ma). It follows from Lemma 3.4 that
λ((GM )a) and consequently also λ(Ma) are unbounded in any neighbourhood
U of [0 : · · · : 0 : 1] in which Ma is a torsion Λ-module for each a ∈ U . Such a
neighbourhood exists by Lemma 3.3.

Now suppose that we are in the setting of assertion (b), and that λ(Ma)
is unbounded in any neighbourhood of [0 : · · · : 0 : 1]. Suppose that M is
generated by l elements as a Λd-module. Then Proposition 2.1(3) implies that

pl·m0(M)+ls · H l · Gl
M ∈ FΛd

(M),

so plm0(M)+lsH l
a(GM )l

a ∈ FΛ1(Ma). It follows that λ(Ma) ≤ λ(H l
a · (GM )l

a).
Since H is not contained in the prime ideal (T1, . . . , Td−1) of Ωd, it follows
from Lemma 3.4 that GM ∈ (T1, . . . , Td−1). �
Remark 3.8. It follows from the proof of Lemma 3.5 that in the statement
of Lemmas 3.5 and 3.2 unbounded in any neighbourhood may be replaced by
unbounded in some neighbourhood, i.e. these statements are equivalent.

Remark 3.9. The additional hypothesis on the existence of H in assertion (b)
is also necessary, as the following example shows which we take from [17].

Suppose that d = 3 and M = Λ3/(T1, T2 + p). Then M is a pseudo-null
Λ3-module, and therefore FM = GM = 1, i.e. GM is not contained in (T1, T2).
However, we have seen in [17, Example 6.3] that λ(Ma) is unbounded in a
neighbourhood of [0 : 0 : 1]. Each annihilator H of M◦ = M is contained in
the ideal (p, T1, T2) of Λ3.
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It will be one of our tasks in the next section to derive natural hypothe-
ses which are sufficient for the existence of the element H in Lemma 3.5 (of
course, it will be sufficient if M does not contain any non-trivial pseudo-null
submodules, i.e. M◦ = {0}, but we try to do better, so also Remark 3.23 be-
low).

3.2. Control Theorems

For the remainder of this section, we fix a number field K and an abelian
variety A of dimension g defined over K. If p = 2, then we assume that K
is totally imaginary. Let Σ be a finite set of primes of K which contains the
primes above p and the primes where A has bad reduction.

Lemma 3.10. Let G ∼= Zd
p and let M be a discrete G-module that is cofinitely

generated over Zp. Let m = corankZp
(M). Then H1(G,M) and H2(G,M) are

cofinitely generated over Zp with

corankZp
(H1(G,M)) ≤ md

and

corankZp
(H2(G,M)) ≤ md(d − 1)/2.

Proof. First we prove the result for H1(G,M) by induction on d. For d = 1 we
have that H1(G,M) = M/(σ − 1)M where σ is a topological generator of G.
Therefore corankZp

(H1(G,M)) ≤ m. Now assume that the result is true for
d − 1. Let H be a subgroup of G that is isomorphic to Zd−1

p with G/H ∼= Zp.
The desired result then follows from the Hochschild-Serre spectral sequence
Hi(G/H,Hj(H,M)) ⇒ Hi+j(G,M).

Now we prove the result for H2(G,M) by induction on d. Since cdp(Zp) =
1, the result is true for d = 1. Now assume that the result is true for d − 1.
Let H be a subgroup of G that is isomorphic to Zd−1

p with G/H ∼= Zp. By
the Hochschild-Serre spectral sequence Hi(G/H,Hj(H,M)) ⇒ Hi+j(G,M),
it will suffice to show that

corankZp
(H2(G/H,H0(H,M)) + corankZp

(H1(G/H,H1(H,M))

+ corankZp
(H0(G/H,H2(H,M)) ≤ md(d − 1)/2.

The first term is zero because cdp(G/H) = 1. Using the result just proven
for the first cohomology group we get that corankZp

(H1(G/H,H1(H,M)) ≤
m(d−1). By the induction hypothesis we get corankZp

(H0(G/H,H2(H,M)) ≤
m(d− 1)(d− 2)/2. Therefore, as desired, the sum is at most md(d− 1)/2. �

Now we can prove a control theorem for fine Selmer groups.

Lemma 3.11. Let A be an abelian variety of dimension g defined over K. Let
L∞/K be a Zd

p-extension (d ≥ 2), K∞ ∈ E⊆L∞(K) and write Y = Y
(L∞)
A for

brevity. Consider the dual of the restriction map

f∨ : YK∞ −→ Y
(K∞)
A .
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We have
(a) cokerf∨ is a finitely generated Zp-module with

rankZp
(cokerf∨) ≤ 2g(d − 1)

(b) Let mp =
∑

v|p mv where the sum runs over the primes of K above p

and mv is defined to be zero if v splits completely in K∞ and equal to
the number of primes of K∞ above v otherwise. Then ker f∨ is a finitely
generated torsion Λ-module with

λ(ker f∨) ≤ 2 g(d − 1)mp + g(d − 1)(d − 2).

Proof Let Γ∞ = Gal(L∞/K∞) and consider the following canonical commu-
tative diagram:

0 SelA,0(K∞) H1(KΣ/K∞, A[p∞])
⊕

w∈Σ(K∞) H1(K∞,w, A[p∞])

0 SelA,0(L∞)Γ∞ H1(LΣ/L∞, A[p∞])Γ∞
(

⊕

w∈Σ(L∞) H1(L∞,w, A[p∞])
)Γ∞

f

ρ0

f ′ f ′′

By the snake lemma we have an exact sequence

0 −→ ker f −→ ker f ′ −→ ker f ′′ ∩ img ρ0 −→ cokerf −→ cokerf ′. (6)

According to the inflation-restriction exact sequence and Lemma 3.10 we have
that

corankZp
(ker f ′) = corankZp

(H1(Γ∞, A(L∞)[p∞])) ≤ 2g(d − 1).

Therefore from the exact sequence (6),

corankZp
(ker f) ≤ corankZp

(ker f ′) ≤ 2g(d − 1).

This proves (a).
By the inflation-restriction sequence and Shapiro’s lemma it follows that

we can write ker f ′′ = ⊕v∈Σ(K)Bv where Bv = ⊕w|vH1(Γ∞,w, A(L∞,w)[p∞]).
In the definition of Bv the sum runs over all primes w of K∞ above v. For each
such w we have also written w for a fixed prime of L∞ so that Γ∞,w denotes
the corresponding decomposition group.

Assume that v ∈ Σ(K) splits completely in K∞/K. Then for any prime
w of L∞ above v we have that H0(Γ∞,w, A(L∞,w)[p∞]) = A(Kv)[p∞] is finite.
Therefore by [19, Lemma 6.2] we have that H1(Γ∞,w, A(L∞,w)[p∞]) is finite
and this order does not depend on the prime w of L∞ above v. It follows that
pn annihilates Bv for some n.

Now assume that v ∈ Σ(K) does not split completely in K∞/K. If v
does not lie above p, then any prime w of K∞ above v splits completely in
L∞/K∞ so in this case Bv = 0. Now suppose that v ∈ Σp(K) and let w be
a prime of L∞ above v. According to Lemma 3.10 H1(Γ∞,w, A(L∞,w)[p∞]) is
cofinitely generated over Zp with corank at most 2 g(d− 1). It follows that Bv

is cofinitely generated over Zp with corankZp
(Bv) ≤ 2g(d − 1)mv. Putting all
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of this together, we get that the Pontryagin dual of ker f ′′ is Λ-torsion with
λ-invariant at most 2g(d − 1)mp.

By the inflation-restriction sequence cokerf ′ injects into H2(Γ∞, A[p∞]).
So by Lemma 3.10 we have

corankZp
(cokerf ′) ≤ corankZp

(H2(Γ∞, A[p∞])) ≤ 2g(d − 1)(d − 2)/2.

It therefore follows from the exact sequence (6) and the above observa-
tions that ker f∨ is a finitely generated torsion Λ-module with

λ(ker f∨) ≤ 2g(d − 1)mp + 2g(d − 1)(d − 2)/2.

This completes the proof. �

Corollary 3.12. Let K∞ be as in Lemma 3.11, then we have

(a) rankΛ(YK∞) = rankΛ(Y (K∞)
A )

(b) Let Σs(K) be the set of all primes v ∈ Σ(K) that split completely in
L∞/K. If rankΛ(YK∞) = rankΛ(Y (K∞)

A ) = 0, then
(i) μ(YK∞) ≥ μ(Y (K∞)

A ) with equality if no prime v ∈ Σ(K) \ Σs(K)
splits completely in K∞/K.

(ii) If no prime v ∈ Σp(K) splits completely in K∞/K, then there exists
a neighbourhood E(K∞, n) such that

• for all K ′
∞ ∈ E(K∞, n) we have

rankΛ(YK′∞) = rankΛ(Y (K′
∞)

A ) = 0,

• |λ(YK′∞) − λ(Y (K′
∞)

A )| is bounded as K ′
∞ runs over E(K∞, n).

Proof. Statement (a) follows directly from Lemma 3.11. Now assume that
both YK∞ and Y

(K∞)
A are Λ-torsion. From Lemma 3.11 we see that μ(YK∞) ≥

μ(Y (K∞)
A ). The proof reveals that μ(ker f∨) = 0 if no prime v ∈ Σ(K)\Σs(K)

splits completely in K∞/K. This proves (b)-i.
Now assume that no prime v ∈ Σp(K) splits completely in K∞/K. Then

we can choose a neighbourhood E(K∞, n) such that for any K ′
∞ ∈ E(K∞, n) we

have #Σp(K ′
∞) = #Σp(K∞). By Lemma 3.3 we can reduce our neighbourhood

if necessary so that for all K ′
∞ ∈ E(K∞, n) we have rankΛ(Y (K′

∞)
A ) = 0. Then

(b)-ii follows from Lemma 3.11. �

In fact, the cokernels of f∨ can be bounded in a more general setting
(this will prove useful below).

Corollary 3.13. Let L∞/K be a Zd
p-extension, and let K∞ ⊆ L∞ be a Zi

p-

extension of K, i ≥ 1. We write Y = Y
(L∞)
A and H = Gal(L∞/K∞) for brevity.

Then the cokernel of the natural map

f∨ : YH −→ Y
(K∞)
A

is a finitely generated Zp-module of rank at most 2g(d − i).
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Proof. The proof of the first part of Lemma 3.11, using Lemma 3.10, goes
through without changes. �

Now we turn to a control theorem for Selmer groups.

Lemma 3.14. Let A be an abelian variety of dimension g defined over K. Let
L∞/K be a Zd

p-extension (d ≥ 2), K∞ ∈ E⊆L∞(K) and write X = X
(L∞)
A .

Assume that A has good ordinary reduction at the primes of K above p, and
that each v ∈ Σp(K) is ramified in L∞/K. We define r to be zero if each
v ∈ Σp(K) is ramified in K∞/K and equal to one otherwise. Consider the
dual of the restriction map

f∨ : XK∞ −→ X
(K∞)
A .

We have
(a) cokerf∨ is a finitely generated Zp-module with

rankZp
(cokerf∨) ≤ 2gr(d − 1).

(b) Let mp =
∑

v|p mv where the sum runs over the primes of K above p

and mv is defined to be zero if either v splits completely or ramifies in
K∞/K, and equal to the number primes of K∞ above v otherwise. Then
ker f∨ is a finitely generated torsion Λ-module with

λ(ker f∨) ≤ gdmp + gr(d − 1)(d − 2).

Proof. We proceed as in the proof of Lemma 3.11. Let Γ∞ = Gal(L∞/K∞)
and consider the following canonical commutative diagram:

0 SelA(K∞) H1(KΣ/K∞, A[p∞])
⊕

v∈Σ(K∞) H1(K∞,v, A)[p∞]

0 SelA(L∞)Γ∞ H1(LΣ/L∞, A[p∞])Γ∞ (
⊕

v∈Σ(L∞) H1(L∞,w, A)[p∞])Γ∞

f

ρ0

f ′
f ′′

By the snake lemma we have an exact sequence

0 −→ ker f −→ ker f ′ −→ ker f ′′ ∩ img ρ0 −→ cokerf −→ cokerf ′. (7)

If every prime v ∈ Σp(K) ramifies in K∞/K, then by [9, Prop. 3.2(ii)] we
have that A(K∞)[p∞] is finite. Therefore by [19, Lemma 6.2] H1(Γ∞, A(L∞)
[p∞]) is finite. From this observation and Lemma 3.10 we conclude that

corankZp
(ker f ′) = corankZp

(H1(Γ∞, A(L∞)[p∞])) ≤ 2gr(d − 1).

Therefore from the exact sequence (7),

corankZp
(ker f) ≤ corankZp

(ker f ′) ≤ 2gr(d − 1).

This proves (a).
Now we deal with (b). We can write ker f ′′ = ⊕v∈Σ(K)Bv where Bv =

⊕w|v ker f ′′
w and f ′′

w : H1(K∞,w, A)[p∞] −→ H1(L∞,w, A)[p∞] is the restriction
map. In the definition of Bv the sum runs over all primes w of K∞ above v.
For each such w we have also written w for a fixed prime of L∞.
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First, assume that v ∈ Σ(K) does not lie above p. Let w be a prime of
K∞ above v and fix a prime of L∞ above it which we also denote by w. Since
A(K∞,w) ⊗ Qp/Zp = 0 and A(L∞,w) ⊗ Qp/Zp = 0 we have isomorphisms

H1(K∞,w, A)[p∞] ∼= H1(K∞,w, A[p∞]),

H1(L∞,w, A)[p∞] ∼= H1(L∞,w, A[p∞]).

It follows that ker f ′′
w

∼= H1(Γ∞,w, A(L∞,w)[p∞]). Therefore the same observa-
tions as those in the proof of Lemma 3.11 apply to Bv.

Now let v ∈ Σp(K) and let w be a prime of K∞ above v and fix a prime
of L∞ above it which we also denote by w. Let

κK∞,w : A(K∞,w) ⊗ Qp/Zp ↪→ H1(K∞,w, A[p∞]),

κL∞,w : A(L∞,w) ⊗ Qp/Zp ↪→ H1(L∞,w, A[p∞])

be the Kummer maps. Then the map f ′′
w is

f ′′
w : H1(K∞,w, A[p∞])/ img κK∞,w −→ H1(L∞,w, A[p∞])/ img κL∞,w

Now let Cw = F(m̄)[p∞] where m̄ is the maximal ideal of K̄v and F is
the formal group over OKv

attached to the Néron model of A over OKv
. The

inclusion Cw ⊆ A[p∞] induces maps

λK∞,w : H1(K∞,w, Cw) −→ H1(K∞,w, A[p∞]),

λL∞,w : H1(L∞,w, Cw) −→ H1(L∞,w, A[p∞]).

Since v ramifies in L∞/K, the extension L∞,w/Kv is deeply ramified in the
sense of [4]. Therefore by [4, Proposition 4.3] and the discussion proceeding it
we have img κL∞,w

= img λL∞,w
and img κK∞,w

⊆ img λK∞,w
. Therefore f ′′

w

can be viewed as the composition of the following maps:

aw : H1(K∞,w, A[p∞])/ img κK∞,w
−→ H1(K∞,w, A[p∞])/ img λK∞,w

,

bw : H1(K∞,w, A[p∞])/ img λK∞,w
−→ H1(L∞,w, A[p∞])/ img λL∞,w

.

We will now determine corankZp
(ker aw) and corankZp

(ker bw).
First we deal with ker bw. Let Ã be the reduction of A over the residue

field of an algebraic closure K̄w of Kw. The exact sequence

0 −→ Cw −→ A[p∞] −→ Ã[p∞] −→ 0

induces an exact sequence

0 −→ img λK∞,w
−→ H1(K∞,w, A[p∞]) −→ H1(K∞,w, Ã[p∞])

Similarly, we have an exact sequence

0 −→ img λL∞,w
−→ H1(L∞,w, A[p∞]) −→ H1(L∞,w, Ã[p∞])

It follows that ker bw is a subgroup of H1(Gal(L∞,w/K∞,w), Ã(l∞,w)[p∞])
where l∞,w is the residue field of L∞,w. If either v splits completely or ramifies
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in K∞/K, then H0(Gal(L∞,w/K∞,w), Ã(l∞w
)[p∞]) = Ã(k∞,w)[p∞] is finite

(here k∞,w is the residue field of K∞,w). Therefore by [19, Lemma 6.2]

H1(Gal(L∞,w/K∞,w), Ã(l∞,w)[p∞])

is finite, whence ker bw is finite. On the other hand when w does not split
completely in K∞/K we have by Lemma 3.10

corankZp
(ker bw) ≤ corankZp

(H1(Gal(L∞,w/K∞,w), Ã(l∞,w)[p∞])) ≤ g(d − 1).

Now we deal with ker aw = img λK∞,w
/ img κK∞,w

. Let L be finite ex-
tension of Kv contained in K∞,w. First we note that Tate local duality [29,
Theorem 7.2.6] together with the Weil pairing yields a non-degenerate pairing

〈 , 〉 : H2(L, Tp(Cw)) × H0(L, Ãt[p∞]) −→ Qp/Zp,

where Tp(Cw) is the p-adic Tate module of Cw and At is the dual abelian va-
riety. If L′/L is a finite extension, let res : H2(L, Tp(Cw)) −→ H2(L′, Tp(Cw))
be the restriction map and cor : H0(L′, Ãt[p∞]) −→ H0(L, Ãt[p∞]) be the
corestriction (norm) map. For a ∈ H2(L, Tp(Cw)) and b ∈ H0(L′, Ãt[p∞]) a
property of Tate local duality gives 〈res a, b〉 = 〈a, cor b〉. As above, we have
maps

κL : A(L) ⊗ Qp/Zp ↪→ H1(L,A[p∞]),

λL : H1(L,Cw) −→ H1(L,A[p∞]).

Recall that for any Hausdorff abelian locally compact topological group
M , we denote by M∨ its Pontryagin dual. Taking into account [4, Proposition
4.5], the proof of [4, Proposition 4.6] shows that we have an isomorphism

θL : img λL/ img κL
∼= Ãt(kL)[p∞]∨,

where kL is the residue field of L. Taking into account the property of Tate
local duality above and the description of the map θL we have an isomorphism

img λK∞,w
/ img κK∞,w

∼= lim−→ img λL/ img κL
∼= (lim←− Ãt(kL)[p∞])∨.

The limits are taken over all finite extensions L/Kv inside K∞,w/Kv; the direct
limits are taken with respect to restriction and inverse limits are taken with
respect to corestriction.

If either v splits completely or ramifies in K∞/K, then Ã(k∞,w)[p∞]
is finite. Then from the above img λK∞,w

/ img κK∞,w
∼= (lim←− Ãt(kL)[p∞])∨

is finite, so ker aw is finite in this case. Since for any L as above we have
Ãt(kL)[p] ∼= (Z/pZ)i with i ≤ g, therefore in the general case we have

corankZp
(ker aw) = corankZp

((lim←− Ãt(kL)[p∞])∨) ≤ g.

We have f ′′
w = bw ◦ aw, so we have an exact sequence

0 −→ ker aw −→ ker f ′′
w −→ ker bw.

Therefore corankZp
(ker f ′′

w) ≤ corankZp
(ker aw) + corankZp

(ker bw). From this
and the above observations we see that if v either splits completely or ramifies
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in K∞/K, then ker f ′′
w is finite. The order of this group does not depend on the

prime w of L∞ above v. It follows that in this case Bv is annihilated by some
power of p. Otherwise when v does not split completely or ramify in K∞/K
the above observations show that we have corankZp

(Bv) ≤ g(d−1)mv +gmv =
gdmv.

By the inflation-restriction sequence cokerf ′ injects into H2(Γ∞, A[p∞]).
So as in the proof of (a) using [9, Prop. 3.2(ii)] and Lemma 3.10 we have

corankZp
(cokerf ′) ≤ corankZp

(H2(Γ∞, A[p∞])) ≤ 2gr(d − 1)(d − 2)/2.

It therefore follows from the exact sequence (7) and the above observa-
tions that ker f∨ is a finitely generated torsion Λ-module with

λ(ker f∨) ≤ gdmp + 2gr(d − 1)(d − 2)/2.

This completes the proof. �

Corollary 3.15. With the same setup and conditions as in Lemma 3.14, we
have

(a) rankΛ(XK∞) = rankΛ(X(K∞)
A ).

(b) Let Σs(K) be the set of all primes v ∈ Σ(K) that split completely in
L∞/K. If rankΛ(XK∞) = rankΛ(X(K∞)

A ) = 0, then
(i) μ(XK∞) ≥ μ(X(K∞)

A ) with equality if no prime v ∈ Σ(K) \ Σs(K)
splits completely in K∞/K.

(ii) If no prime v ∈ Σp(K) splits completely in K∞/K, then there exists
a neighbourhood E(K∞, n) such that

• for all K ′
∞ ∈ E(K∞, n) we have

rankΛ(XK′∞) = rankΛ(X(K′
∞)

A ) = 0

• |λ(XK′∞) − λ(X(K′
∞)

A )| is bounded as K ′
∞ runs over E(K∞, n).

Proof. The proof is identical to that of Corollary 3.12 using Lemma 3.14. �

Again, we can prove a generalisation of the result for the coranks of f∨.

Corollary 3.16. Let L∞/K be a Zd
p-extension, and let K∞ ⊆ L∞ be a Zi

p-

extension of K, for some i ≥ 1. We write X = X
(L∞)
A and H = Gal(L∞/K∞)

for brevity. Suppose that A has good ordinary reduction at the primes of K
above p, and that each v ∈ Σp(K) is ramified in L∞. We define r to be zero if
the inertia subgroup of each v ∈ Σp(K) is open in Gal(K∞/K), and equal to
one otherwise.

Then the cokernel of the natural map

f∨ : XH −→ X
(K∞)
A

is finitely generated over Zp and of rank at most 2gr(d − i).
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Proof. We proceed as in the proof of Lemma 3.14(a). Note that in the case
r = 0 the result [9, Prop. 3.2(ii)] can be applied; in the case r = 1 we use
Lemma 3.10 instead. �

For later use, we also state the following

Lemma 3.17. Let Z denote either X or Y . If Z = X, we assume that A has
good ordinary reduction at the prime of K above p, and that each v ∈ Σp(K) is
ramified in L∞/K. Let L∞/K be a Zd

p-extension, and suppose that there exists

a Zp-extension K∞ ⊆ L∞ of K such that Z
(K∞)
A is Λ-torsion. Then Z

(L∞)
A is

a Λd-torsion module.

Proof. We let Z = Z
(L∞)
A . By [22, Lemma 4.7], it will suffice to show that

ZK∞ is Λ-torsion. The result now follows from Lemmas 3.11 or 3.14. �

3.3. The Main Results

Now we turn to the proofs of analogues of Monsky’s Theorems I, II, III and
IV from [26]. Since the results hold for Selmer groups as well as for fine Selmer
groups, we introduce the following notational convention. In the following, Z
will stand both for X and for Y (this enables us to formulate the results for
Selmer groups and for fine Selmer groups simultaneously).

Lemma 3.18. Let L∞/K be a Zd
p-extension, d ≥ 2. We assume that Z

(L∞)
A is

a torsion Λd-module. If Z = X, we assume that A has good ordinary reduction
at the primes of K above p, and that each v ∈ Σp(K) is ramified in L∞/K.

Then Z
(K∞)
A is a Λ-torsion module and μ(Z(K∞)

A ) ≤ m0(Z
(L∞)
A ) for all

elements K∞ ∈ E⊆L∞(K) which are not contained in a finite number of Zd−1
p -

subextensions of L∞/K.

Proof. Choose σ1, . . . , σl as in Lemma 3.1 (applied to M =Y
(L∞)
A or M =X

(L∞)
A ),

let K∞ ∈ E⊆L∞(K), and let

γ : Gal(L∞/K) � Gal(K∞/K)

be the corresponding restriction homomorphism. Then γ(σi) = 1 if and only
if K∞ is contained in the fixed field of σi. Therefore the condition γ(σi) �= 1
for all i holds for all Zp-extensions of K which are not contained in one of the
Zd−1

p -extensions L〈σ1〉
∞ , . . . ,L

〈σl〉∞ of K. The statement of the lemma follows by
combining this observation with Corollaries 3.12 and 3.15. �

Remark 3.19. Let Σ be any finite set of primes of K which contains the primes
above p and the primes where A has bad reduction. If p = 2, then we assume K

to be totally imaginary. It follows from [22, Lemma 7.1] that Y
(L∞)
A is a torsion

Λd-module if and only if H2(KΣ/L∞, A[p∞]) = 0 (here we recall from Sect. 2.1
that KΣ denotes the maximal algebraic extension of K which is unramified
outside of Σ). The validity of either statement is known as the weak Leopoldt
conjecture for A over L∞. No example is known where this conjecture fails.
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On the other hand, by a conjecture of Mazur (see [24, p. 104]), X
(Kc

∞)
A should

be a torsion Λ-module if A has good ordinary reduction at the primes above
p (here Kc

∞ denotes the cyclotomic Zp-extension of K). This is known to be
true for abelian K, by the work of Kato and Rohrlich (see [12,30]). It can
be deduced from Lemma 3.17 that in this case, X

(L∞)
A is Λd-torsion for each

Zd
p-extension L∞ of K which contains Kc

∞.

Theorem 3.20. Let L∞ be a Zd
p-extension of K, d ≥ 2. We assume that Z

(K∞)
A

is Λ-torsion for all but finitely many K∞ ∈ E⊆L∞(K). If Z = X, we assume
that A has good ordinary reduction at the primes of K above p, and that the
inertia subgroup of each v ∈ Σp(K) has Zp-rank at least d − 1.

Then μ(Z(K∞)
A ) is bounded on E⊆L∞(K).

Proof. The assertion is proved via induction. For the fine Selmer groups,
it follows from Lemma 3.17 that Y

(L∞)
A is a torsion Λd-module. Therefore

Lemma 3.18 implies that the μ(Y (K∞)
A ) are bounded (by m0(Y

(L∞)
A )) for all

Zp-extensions of K which are not contained in a finite number of Zd−1
p -

extensions of K. Again, Lemma 3.17 implies that for each of these Zd−1
p -

extensions L∞/K, the Iwasawa module Y
(L∞)
A is torsion over Λd−1. By the

inductive hypothesis, the μ-invariants of the Y
(K∞)
A are bounded as K∞ runs

over the Zp-extensions contained in any of these Zd−1
p -extensions L∞/K.

For the Selmer groups, the same proof goes through (note that in any
given Z2

p-extension of K inside of L∞, every prime v ∈ Σp will ramify in view
of our condition on the inertia subgroups. This is needed for the first inductive
step). �

Now we turn to the study of l0-invariants. Since we do not want to restrict
to the case d = 2 (as in Monsky’s paper), we consider the invariants ̂l0 which
have been introduced in Sect. 2.2. Recall that for any finitely generated Λd-
module M , M◦ ⊆ M denotes the maximal pseudo-null submodule. We also
recall that each statement that the λ-invariant is bounded or unbounded in a
neighbourhood U ⊆ E⊆L∞(K) always involves that ZK̃∞ is Λ-torsion for each
K̃∞ ∈ U , see also Remark 3.7.

Lemma 3.21. Let L∞/K be a Zd
p-extension for some d ≥ 2, let K∞ ∈ E⊆L∞(K)

be such that no prime v ∈ Σp(K) splits completely in K∞/K, and let

πK∞ : Zp[[Gal(L∞/K)]] −→ Zp[[Gal(K∞/K)]]

be the canonical restriction map. We assume that Z
(L∞)
A is Λd-torsion.

Write Z = Z
(L∞)
A for brevity, let FZ be the characteristic power series of

Z and write FZ = pm0(Z) · GZ , with p � GZ .

(i) Then λ(Z(K̃∞)
A ) is unbounded in any neighbourhood of K∞ if the image

of GZ under πK∞ is divisible by p.
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(ii) On the other hand, suppose that πK∞(GZ) is not divisible by p, and that
there exists an element H ∈ Λd such that ps · H annihilates Z◦ for some
s ∈ N, and such that πK∞(H) is also coprime with p.
Then λ(Z(K̃∞)

A ) is bounded in a sufficiently small neighbourhood of K∞.

We stress that the additional assumption in (ii) is automatically satisfied
in the case d = 2, see Remark 3.6.

Proof. Let [a1 : · · · : ad−1] ∈ Pd−1(Zp) correspond to some fixed Zp-extension
K∞ ∈ E⊆L∞(K) of K. It follows from Lemma 3.5 that under our assumptions,
πK∞(FZ) ≡ 0(mod p) if and only if λ(ZK∞) is unbounded in any neighbour-
hood of [a1 : · · · : ad]. It follows from Corollary 3.12 or Corollary 3.15 that this
is in turn equivalent to λ(Z(K∞)

A ) being unbounded on any sufficiently small
neighbourhood of K∞. �

Theorem 3.22. Let L∞ be a Zd
p-extension of K, and suppose that the decom-

position subgroup in Gal(L∞/K) of each prime v above p is open.
Let Z = Z

(L∞)
A , and suppose that Z is a Λd-torsion module. For the first

part of the theorem, we assume that Z
(K∞)
A is a Λ-torsion module for each

Zp-extension K∞ ⊆ L∞ of K, and that the annihilator ideal of the maximal
pseudo-null submodule Z◦ of Z is not contained in any prime ideal of height at
most d − 1. If Z = X, then we also assume that A has good ordinary reduction
at the primes v ∈ Σp(K), and that each such prime ramifies in L∞.

Then the following statements are equivalent:

(i) the λ(Z(K∞)
A ) are bounded as K∞ runs over the elements from E⊆L∞(K),

(ii) ̂l0(Z) = 0.

Now suppose that Z
(K∞)
A is not Λ-torsion for some K∞ ∈ E⊆L∞(K). Then

both statements (i) and (ii) are wrong.

Proof. Suppose first that Z
(K∞)
A is Λ-torsion for each K∞. It follows from

Lemma 3.17 that Z is a torsion Λd-module. Let FZ = pm0(Z) · GZ be the char-
acteristic power series of Z, as usual. If

̂l0(FZ) = ̂l0(Z
(L∞)
A ) > 0,

then there exist generators σ1, . . . , σd of Gal(L∞/K) and a prime ideal p such
that

GZ ⊆ p ⊆ (p, σ1 − 1, . . . , σd−1 − 1).

Then the image of GZ under the map πK∞ is divisible by p, where

K∞ = L〈σ1,...,σd−1〉
∞ ∈ E⊆L∞(K).

In this case, we may deduce from the previous lemma that λ(Z(K̃∞)
A ) is un-

bounded as K̃∞ runs through the elements in a neighbourhood of K∞.



148 Page 26 of 42 S. Kleine and A. Matar Results Math

On the other hand, if ̂l0(FZ) = 0, then Lemma 3.21 implies that λ(Z(K∞)
A )

is locally bounded on E⊆L∞(K). Indeed, since the annihilator ideal of Z◦ is not
contained in any prime ideal of height at most d − 1, we can deduce the exis-
tence of the element H ∈ Λd needed in Lemma 3.21 for each K∞ ∈ E⊆L∞(K)
as follows (this extends an idea used by Monksy in the proof of [26, Theo-
rem 3.3]). Let

J∗ = {w ∈ Λd | ps · w ∈ Ann(Z◦) for some s ∈ N}.

Then multiplication by p is injective on the quotient Λd/J∗ by construction.
Therefore p is not contained in any minimal prime ideal p of J∗ by [21, Chap-
ter X, Proposition 2.9] and [7, Theorem 3.1,a.].

Now suppose that p is a minimal prime ideal of J∗ such that

J∗ ⊆ p ⊆ (p, T1, . . . , Td−1),

for any choice of variables T1, . . . , Td. Then p contains also the annihilator ideal
of Z◦, and therefore the height of p must be at least d by our general assump-
tion. But this implies that p = (p, T1, . . . , Td−1). Since we have seen above
that p cannot be contained in any minimal prime ideal of J∗, we can con-
clude that p can not be contained in the ideal (p, T1, . . . , Td−1), for any choice
of variables. By the definition of J∗, this proves the existence of an element
H ∈ Λd\(p, T1, . . . , Td−1) such that ps · H annihilates Z◦ for some sufficiently
large s ∈ N.

We have thus shown that if ̂l0(FZ) = 0, then λ(Z(K∞)
A ) is locally bounded

on E⊆L∞(K) for each K∞ ∈ E⊆L∞(K). Since this space is compact (see [8,
p. 208]), it follows that the λ-invariant is bounded globally on E⊆L∞(K).

Now we turn to the proof of the last statement of Theorem 3.22. Fix some
K∞ ∈ E⊆L∞(K) such that Z

(K∞)
A is not Λ-torsion. In view of Corollary 3.12(a),

respectively, Corollary 3.15(a) this is equivalent to ZK∞ not being Λ-torsion.
Now we use the notion of Fitting ideals. Let πK∞ be the canonical sur-

jection between the Iwasawa algebras. Proposition 2.1(5) implies that we can
write FΛd

(Z) = (FZ) · JZ , where the ideal JZ is not contained in any height
one prime ideal of Λd. Since FΛd

(Z) is contained in the annihilator ideal of Z
and as ZK∞ is not torsion as a Λ-module, we must have πK∞(FΛd

(Z)) = (0).
We show that this implies that πK∞(FZ) = 0. Indeed, suppose that this was
not true. It follows from the above that there exists some H ∈ Λd such that
ps · H ∈ Ann(Z◦) and πK∞(H) �= 0 (in fact, πK∞(H) is not divisible by p).
But then Proposition 2.1(3) implies that πK∞(FΛd

(Z)) �= (0).
Therefore πK∞(FZ) = 0. Writing FZ = pm0(Z) · GZ with GZ coprime with

p, it follows that πK∞(GZ) = 0. In particular, πK∞(GZ) is divisible by p, and
therefore ̂l0(FZ) > 0 from the definition.

On the other hand, it follows from [14, Lemma 4.23] that λ(πK̃∞(GZ))
is unbounded in a neighbourhood of K∞. Indeed, let n ∈ N be arbitrary. It
follows from Lemma 3.1 that we can find a Zp-extension K̃∞ in E(K∞, n)
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(i.e. the first n layers of K∞ and K̃∞ are equal) such that ZK̃∞ is a torsion
Λ-module and

μ(ZK̃∞) = m0(Z) = m0(FZ).

We claim that this implies that πK̃∞(GZ) is not divisible by p. Indeed, other-
wise

μ(πK̃∞(FZ)) > m0(Z);

but

(FZK̃∞
) · FΛ1((ZK̃∞)◦) = FΛ1(ZK̃∞) = (πK̃∞(FZ)) · πK̃∞(JZ) (8)

in view of Proposition 2.1. Since (ZK̃∞)◦ is a pseudo-null Λ1-module, the an-
nihilator ideal of this module is not contained in any prime ideal of height
one. In view of Proposition 2.1(2), the same holds true for the Fitting ideal
FΛ1((ZK̃∞)◦). Therefore the equality (8) implies that the characteristic power
series FZK̃∞

∈ Λ1 of ZK̃∞ is divisible by πK̃∞(FZ), and thus the above as-
sumption would contradict the fact that

μ(ZK̃∞) = m0(Z)

by the choice of K̃∞.
We have shown that πK̃∞(GZ) is not divisible by p. On the other hand,

πK∞(GZ) ≡ πK̃∞(GZ) (mod p, T pn

).

But πK∞(FZ) = 0 by the above. Therefore the degree of πK̃∞(GZ) must be at
least pn. This concludes the proof of the theorem. �

Remark 3.23.

(1) It follows from Remark 3.9 that the assumption on the annihilator ideal of
Z◦ is also necessary: In the module-theoretic example M = Λ3/(T1, T2 + p)
given there, the height of the annihilator ideal of M = M◦ is equal to
2 = d − 1.

(2) Of course the most important special case is the case where Z◦ = {0}.
However, this is a strong assumption, in particular for the fine Selmer
groups. In fact, by a well-known conjecture of Coates and Sujatha (see
[6, Conjecture B], which was formulated for an elliptic curve A = E),
Y

(L∞)
A = (Y (L∞)

A )◦ should be pseudo-null if L∞ is any multiple Zp-extension
which contains the cyclotomic Zp-extension Kcyc

∞ of K, provided that the
fine Selmer group of A over Kcyc

∞ is cofinitely generated over Zp. That’s
why we worked hard in order to extend the theorem to a more general
setting.
For Selmer groups, the case X◦ = {0} occurs a little more frequently (cf.
also [10] and the proof of Theorem 4.4).
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Now we prove a generalisation of the last assertion from Theorem 3.22
which will be used in the next section for the construction of Iwasawa modules
with non-trivial ̂l0-invariant.

Theorem 3.24. Let L∞/K be a Zd
p-extension and suppose that L∞ contains

a Zi
p-extension K∞ of K. For brevity, we let Z = Z

(L∞)
A . We assume that Z

is a torsion Λd-module. If Z = X, then we assume that A has good ordinary
reduction at p and that each v ∈ Σp(K) ramifies in L∞.

Suppose that Z
(K∞)
A is not torsion as a Λi-module, and that the annihi-

lator ideal of the maximal pseudo-null Λd-submodule Z◦ of Z is not contained
in any prime ideal of height at most d − i.

Then ̂l0(Z) > 0.

Proof. Let π : Λd −→ Λi be the canonical surjection induced by the restriction
map

Gal(L∞/K) � Gal(K∞/K),

and let Zπ = Z/(ker(π) · Z), as usual. It follows from Corollaries 3.13 and 3.16
that the cokernel of the natural map

f∨ : Zπ −→ Z
(K∞)
A

is cofinitely generated over Zp. In particular, the quotient Zπ is a non-torsion
Λi-module.

Therefore FΛi
(Zπ) = (0). On the other hand, it follows from Proposi-

tion 2.1(4) that

FΛi
(Zπ) = π(FΛd

(Z)).

We claim that this implies that π(FZ) = 0. Indeed, fix generators γ1, . . . ,
γd−i of Gal(L∞/K∞) and write Tj = γj − 1 for each such j. Then π(FZ) = 0
if and only if

FZ ∈ (T1, . . . , Td−i).

On the other hand, since the annihilator ideal of the maximal pseudo-null Λd-
submodule Z◦ of Z is not contained in any prime ideal of height d − i, it follows
that there exists an element H ∈ Λ such that H annihilates the Λd-module Z◦,
and H �∈ (T1, . . . , Td−i). Moreover, if Z can be generated as a Λd-module by l
elements, then Proposition 2.1(3) implies that

H l · F l
Z ∈ FΛd

(Z).

If π(FZ) was non-zero, then this would imply that π(FΛd
(Z)) �= (0), in con-

tradiction to our assumptions.
Therefore FZ , and thus also GZ , lie in the kernel of the map π. This

means that

GZ ∈ (p, T1, . . . , Td−i).

But then ̂l0(GZ) > 0 by the definition. �
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We conclude the current section with the proof of a natural property
concerning the connection between the l0-invariants and the invariant ̂l0. More
precisely, we will consider the following situation. Let L∞/K be a fixed Zd

p-
extension, and consider the set of Z2

p-extensions L∞/K with L∞ ⊆ L∞, which

we abbreviate to E2 in what follows. Let Z be either X
(L∞)
A or Y

(L∞)
A . Recall

that the Fitting ideal of Z can be written as

FΛd
(Z) = (FZ) · JZ ,

where the ideal JZ of Λd is not contained in any prime ideal of height one.
In the following result we want to relate the following statements to each

other:
(1) l0(ZL∞) = 0 for all but finitely many L∞ ∈ E2,
(2) l0(πL∞(FZ)) = 0 for all but finitely many L∞ ∈ E2 (here πL∞ : Λd −→ Λ2

and L∞ = L
ker(πL∞ )
∞ , respectively),

(3) ̂l0(FZ) = 0,
(4) l0(πL∞(FZ)) = 0 for each πL∞
(5) l0(ZL∞) = 0 for each L∞ ∈ E2,
(6) l0(Z

(L∞)
A ) = 0 for each L∞ ∈ E2.

Proposition 3.25. Let L∞/K be a Zd
p-extension, d ≥ 2, and let E2 be as above.

We let Z = X
(L∞)
A or Z = Y

(L∞)
A , and we assume that Z is a Λd-torsion mod-

ule.
(a) We have implications (2) ⇒ (3) ⇒ (4), (4) ⇒ (2) and (5) ⇒ (1). In

particular, the conditions (2), (3) and (4) are equivalent.
(b) If Z = Y , then (5) ⇒ (6). If Z = X, then the same holds true, provided

that the abelian variety A has good ordinary reduction at the primes of
K above p, and that each such prime ramifies in L∞/K.

(c) Suppose that the annihilator ideal of the maximal pseudo-null Λd-submo-
dule Z◦ of Z is not contained in any prime ideal of height at most d (i.e.
we assume Z◦ to be finite). Then (4) ⇒ (5) and (2) ⇒ (1).

Proof. We start with the proof of (a). It is obvious that statement (5) implies
statement (1) and that (4) implies (2).

For the implication (2) ⇒ (3), write FZ = pm0(Z) · GZ for some element
GZ which is coprime with p, and suppose that ̂l0(FZ) �= 0. Then vp(GZ) > 0,
where p is a prime ideal which is contained in some ideal of the form

(p) + Aug(H).

Here H ∼= Zd−1
p , and Aug(H) means the augmentation ideal. In fact, p is the

pre-image under the canonical projection Λd � Ωd of a minimal prime ideal
of GZ which is contained in the image Aug(H) ⊆ Ωd of Aug(H).

Since H contains infinitely many rank d − 2 subgroups H ′, there exist
infinitely many Z2

p-extensions L∞ = LH′
∞ of K such that l0(πL∞(FZ)) > 0 for

the corresponding maps πL∞ .
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Finally, the implication (3) ⇒ (4) follows directly from the definitions.
Now we turn to the proof of (b). Under our assumptions we can apply

Corollaries 3.13 and 3.16 in order to bound the cokernels of the maps

f∨ : ZL∞ −→ Z
(L∞)
A .

Indeed, it follows from these corollaries that the cokernels are finitely generated
over Zp and thus do not contribute to the l0-invariant. Therefore the impli-
cation (5) ⇒ (6) follows from the multiplicity of characteristic power series in
short exact sequences of finitely generated torsion Λ2-modules.

In order to prove (c), suppose that the additional hypothesis on the an-
nihilator ideal of Z◦ is satisfied. Now suppose that (4) holds, and fix some
L∞ ∈ E2. Then l0(πL∞(FZ)) = 0. Assume that l0(ZL∞) > 0. Then there ex-
ists σ ∈ Gal(L∞/K) such that

FΛ2(ZL∞) ⊆ (p, σ − 1).

We write the subgroup of Gal(L∞/K) fixing L∞ as 〈σ1, . . . , σd−2〉. It
follows from the hypothesis in (c) that there exists an annihilator H̃ of Z◦

which is not contained in the prime ideal

p := (σ1 − 1, . . . , σd−2 − 1, σ − 1, p).

Moreover, Proposition 2.1(3) implies that

H̃ l · F l
Z ∈ FΛd

(Z).

Since l0(πL∞(FZ)) = 0 by (4), we may conclude that the element

H := H̃ lF l
Z ∈ FΛd

(Z)

satisfies H �∈ p. This contradicts to the fact that

FΛ2(ZL∞) = π(FΛd
(Z)) ⊆ (p, σ − 1)

and thus FΛd
(Z) ⊆ p. �

Corollary 3.26. Let L∞/K be a Zd
p-extension, d ≥ 2, and let E2 be as above.

We assume that Z is Λd-torsion. Suppose that the annihilator ideal of the
maximal pseudo-null submodule Z◦ of Z is not contained in any prime ideal
of height at most d. If Z = X, then we assume that the abelian variety A has
good ordinary reduction at the primes of K above p, and that each such prime
ramifies in L∞/K.

If ̂l0(Z) = 0, then l0(Z
(L∞)
A ) = 0 for each L∞ ∈ E2.

Proof. Use Proposition 3.25 in order to conclude that

(3) ⇒ (4) ⇒ (5) ⇒ (6).

�
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4. Applications

We start with an application concerning the weak Leopoldt conjecture (see also
Theorem 4.2 below). Since the underlying proof works both for fine Selmer
groups and for Selmer groups, we will formulate the key result for both these
objects simultaneously.

Theorem 4.1. In the following, we let Z be either X or Y (the choice of Z is
fixed throughout the theorem).

Let L∞/K be a Zd
p-extension, and suppose that rankΛ(Z(L∞)

A ) = 0 for
some Zp-extension L∞ ∈ E⊆L∞(K) of K. If Z = X, then we assume that A
has good ordinary reduction at each prime v ∈ Σp(K) and that each such prime
ramifies in L∞ ⊆ L∞. If d > 2, then we assume that the annihilator ideal of
the maximal pseudo-null submodule Z◦ of Z is not contained in any prime
ideal of height at most d.

(a) Suppose that d = 2. Then rankΛ(Z(K∞)
A ) = 0 for all but finitely many Zp-

extensions K∞ ⊆ L∞ of K.
(b) Let now d ∈ N be arbitrary again. If, in addition,

̂l0(Z
(L∞)
A ) = 0,

then rankΛ(Z(K∞)
A ) = 0 holds for each K∞ ∈ E⊆L∞(K).

Proof. For the first statement, we note that it follows from Lemma 3.17 that
Z

(L∞)
A is a torsion Λ2-module. By Lemma 3.1, the quotient (Z(L∞)

A )K∞ is a
torsion Λ-module for all but finitely many K∞ ∈ E⊆L∞(K). On the other hand,
our control Theorems 3.11 and 3.14 imply that the cokernels of the maps

f∨ : (Z(L∞)
A )K∞ −→ Z

(K∞)
A

are Λ-torsion for all K∞ ∈ E⊆L∞(K). This proves (a).
For (b), we first consider the case d = 2. Let K∞ ∈ E⊆L∞(K) be arbitrary.

We write Λ2 = Zp[[S, T ]], where Gal(L∞/K∞) = 〈T + 1〉, and we abbreviate
Z

(L∞)
A to Z.

Let FZ ∈ Λ2 denote the characteristic power series of Z. As in the proof
of [26, Theorem 3.3], we can choose an element H ∈ Λ2 such that the image H
of H in Ω2 = Λ2/p is not divisible by T and pm0(Z)+s · FZ · H annihilates Z
for sufficiently large s ∈ N. Since l0(Z) = 0 by assumption, FZ ∈ Ω2 is also co-
prime with T . Therefore the same holds true for FZ · H, and ZK∞ = Z/(T · Z)
is a torsion Λ = Zp[[S]]-module. In view of Lemmas 3.11 and 3.14 the same
holds true for Z

(K∞)
A .

Now let d ∈ N be arbitrary, and let K∞ ∈ E⊆L∞(K). We consider the
Z2

p-extension

L(2)
∞ := K∞ · L∞
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of K, where L∞ is the Zp-extension of K from the hypotheses of the theorem.

It follows from Corollary 3.26 that l0(Z
(L(2)

∞ )
A ) = 0. Therefore the first part of

the proof of (b) implies that rankΛ(Z(K∞)
A ) = 0. �

Let L∞/K be a Zd
p-extension, and let A be an abelian variety defined

over K. Recall from Remark 3.19 that Y
(L∞)
A being a torsion Λd-module is

known as the weak Leopoldt conjecture holds for A over L∞. Therefore we
may derive from Theorem 4.1 the following

Theorem 4.2. Let L∞/K be a Zd
p-extension, and suppose that the weak Leopoldt

conjecture holds for some Zp-extension L∞ ∈ E⊆L∞(K) of K. If d > 2, then
we assume that the annihilator ideal of the maximal pseudo-null submodule of
Y = Y

(L∞)
A is not contained in any prime ideal of height less than d.

(a) If d = 2, then the weak Leopoldt conjecture holds for A over all but finitely
many Zp-extensions of K which are contained in L∞.

(b) Let d ≥ 2 be arbitrary. If, in addition, ̂l0(Y
(L∞)
A ) = 0, then the weak

Leopoldt conjecture holds in fact for all Zp-extensions K∞ ∈ E⊆L∞(K)
of K.

Remark 4.3. In [23], Lim proved a special instance of this result. To be more
precise, Lim considered abelian varieties over Z2

p-extensions of K which contain
the cyclotomic Zp-extension Kcyc

∞ of K. The assertion (a) of Theorem 4.2 then
follows from [23, Theorem 3.9], and Lim proved the assertion of (b) under the
potentially stronger assumption that Y

(L∞)
A is pseudo-null over Λ2 (see [23,

Proposition 3.8]).

In the case of Selmer groups, we can actually go one step farther.

Theorem 4.4. Let L∞/K be a Zd
p-extension, and suppose that

(i) rankΛ(X(L∞)
A ) = 0 for some L∞ ∈ E⊆L∞(K) such that each v ∈ Σp(K)

ramifies in L∞,
(ii) for any v ∈ Σp(K) its decomposition subgroup of Gal(L∞/K) is open,
(iii) A has good ordinary reduction at each v ∈ Σp(K),
(iv) K is totally imaginary, and
(v) A(L∞)[p∞] is finite.

If d > 2, then we moreover assume that the annihilator ideal of the maximal
pseudo-null Λd-submodule of X

(L∞)
A is not contained in any prime ideal of

height at most d. Then the following statements hold.

(a) The following are equivalent:
(1) ̂l0(X

(L∞)
A ) = 0,

(2) X
(K∞)
A is Λ-torsion for each K∞ ∈ E⊆L∞(K), and μ(X(K∞)

A ) is con-
stant as one runs over the Zp-extensions K∞ ∈ E⊆L∞(K) of K.
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(3) λ(X(K∞)
A ) is bounded as K∞ runs over the Zp-extensions of K which

are contained in L∞.
(b) In particular, if ̂l0(X

(L∞)
A ) = 0 and μ(X(K∞)

A ) = 0 holds for any K∞ ∈
E⊆L∞(K), then the same holds in fact true for every K∞ ∈ E⊆L∞(K).

Proof. We start with the proof of (a).
(1) =⇒ (2): Suppose that ̂l0(X

(L∞)
A ) = 0. Then Theorem 4.1 implies that

X
(K∞)
A is Λ-torsion for each K∞ ∈ E⊆L∞(K). We will show that μ(X(K∞)

A ) =
μ(X(L∞)

A ) for each K∞ ∈ E⊆L∞(K). To this purpose, let K̃∞ ∈ E⊆L∞(K) be
arbitrary, and consider the Z2

p-extension

L(2)
∞ = L∞ · K̃∞

of K, where L∞ is from hypothesis (i) of the theorem.
It follows from Corollary 3.26 and Theorem 3.22 that λ(X(K∞)

A ) is bounded
on E⊆L(2)

∞ (K); let C be an upper bound. The additional hypothesis that
A(L∞)[p∞] is finite implies that A(K∞)[p∞] is finite and of bounded order
as K∞ runs over the elements of E⊆L(2)

∞ (K). It follows from the main result of
[10] (see [20, Theorem 3.4] for more details) that the cardinality of the maximal
finite Λ-submodule (X(K∞)

A )◦ of X
(K∞)
A is bounded by some constant C̃ ∈ N

as K∞ runs over the elements in E⊆L(2)
∞ (K).

Since X
(K∞)
A is Λ-torsion for each K∞ ∈ E⊆L∞(K), the quotient X

(K∞)
A /f

will be finite for every f ∈ Λ which is coprime with the characteristic power
series of X

(K∞)
A . We make a concrete choice: We choose n large enough such

that

C̃ < n and n · C + C̃ < pn+1 − pn,

and we consider the polynomial

ν2n,n =
ω2n

ωn
∈ Zp[T ],

where ωn = ωn(T ) = (T + 1)pn − 1. The polynomial ν2n,n is a product of
irreducible factors of degrees equal to pi+1 − pi for i ∈ {n, . . . , 2n − 1}. In par-
ticular, since λ(X(K∞)

A ) < pn+1 − pn for each K∞ ∈ E⊆L(2)
∞ (K) by the choice

of n, the characteristic power series of each X
(K∞)
A is coprime with each of the

irreducible factors of ν2n,n, and therefore also coprime with ν2n,n. Therefore

rankν2n,n
(X(K∞)

A ) := vp(|X(K∞)
A /ν2n,nX

(K∞)
A |)

is finite for every K∞ ∈ E⊆L∞(K).
It follows from Lemma 3.1 and Corollary 3.15 that

μ(X(L)
A ) = m0(X

(L(2)
∞ )

A )
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for all but finitely many L ∈ E⊆L(2)
∞ (K) (indeed: Using the notation from

Corollary 3.15(a), if v ∈ Σ(K)\Σs(K), i.e. v is not completely split in the Z2
p-

extension L
(2)
∞ of K, then the Zp-rank of the decomposition group is at least

one, i.e. there exists at most one Zp-extension L of K in L
(2)
∞ such that v splits

completely in L). Suppose that μ(X(K∞)
A ) �= m0(X

(L(2)
∞ )

A ) for some fixed K∞.
Since A(L∞)[p∞] is finite by assumption, it follows that A(K∞)[p∞] is finite.
Therefore we can apply [16, Theorem 4.5 and Corollary 3.8] in order to con-
clude that there exists a Greenberg neighbourhood U = E(K∞,m) ∩ E⊆L(2)

∞ (K)
of K∞ such that

rankν2n,n
(X(L)

A ) = rankν2n,n
(X(K∞)

A ) (9)

for each L ∈ U , with the above choice of ν2n,n.
We may assume that m has been chosen large enough to ensure that

μ(X(L)
A ) = m0(X

(L(2)
∞ )

A )

holds for each L ∈ U which is different from K∞. It is a general fact that

rankν2n,n
(X(L)

A ) = rankν2n,n
(E

X
(L)
A

) + rankν2n,n
((X(L)

A )◦) (10)

for each L (see the proof of [15, Theorem 3.10(iii)]). Since |(X(L)
A )◦| ≤ C̃ is

bounded as L runs over the elements in U ⊆ E⊆L(2)
∞ (K), we may conclude that

|rankν2n,n
(E

X
(L)
A

) − rankν2n,n
(E

X
(K∞)
A

)| ≤ C̃ (11)

for every L ∈ U . Now

rankν2n,n
(E

X
(K∞)
A

) = μ(X(K∞)
A ) · (p2n − pn) + n · λ(X(K∞)

A ),

and an analogous formula holds for L. Indeed, the ν2n,n-rank of the ‘λ’-part
⊕t

j=1 Λ/(gnj

j ) of E
X

(K∞)
A

(i.e. the sum over all the Zp-free quotients occuring
in E

X
(K∞)
A

) is given by
∑

ζ

vp(F (ζ − 1)),

where F =
∏t

j=1 g
nj

j , and where ζ runs over the roots of unity of exact orders
pi, i ∈ {n + 1, . . . , 2n}, which are contained in some fixed algebraic closure of
Qp. Since deg(F ) < pn+1 − pn by the choice of n, it follows that

vp(F (ζ − 1)) =
deg(F )

pi+1 − pi
=

λ(X(K∞)
A )

pi+1 − pi

for each ζ of exact order pi+1, because λ(X(K∞)
A ) = deg(F ) by the definition.

A similar formula holds for rankν2n,n
(E

X
(L)
A

), L ∈ U arbitrary, since

λ(X(L)
A ) ≤ C < pn+1 − pn
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by our choices of C and n.
Therefore inequality (11) implies that

|
(

μ(X(K∞)
A ) − μ(X(L)

A )
)

· (p2n − pn) + n ·
(

λ(X(K∞)
A ) − λ(X(L)

A )
)

| ≤ C̃.

In view of the choice of n, this shows that the μ-invariants must be equal,
i.e. the assumption μ(X(K∞)

A ) �= m0(X
(L(2)

∞ )
A ) cannot hold. Moreover, we may

conclude that

λ(X(K∞)
A ) = λ(X(L)

A )

for each L ∈ U ⊆ E⊆L(2)
∞ (K), since n > C̃.

(2) =⇒ (3): Now we assume that μ(X(K∞)
A ) = μ(X(L∞)

A ) for each K∞ ∈
E⊆L∞(K). Then [16, Theorem 4.11] implies that for each K∞ ∈ E⊆L∞(K)
there exists a neighbourhood E(K∞, n) such that

λ(X(L)
A ) ≤ λ(X(K∞)

A )

for each L ∈ E(K∞, n), i.e. the λ-invariants are locally bounded. Since the set
E⊆L∞(K) is compact with respect to Greenberg’s topology, we see that the
fact that μ is constant implies that λ is bounded on E⊆L∞(K).

(3) =⇒ (1): This follows from Theorem 3.22.
Therefore we have proven statement (a). Assertion (b) is a direct special

case. �

In [18], we have constructed families of elliptic curves E over imaginary-
quadratic number fields K (see Theorem 4.5 for the details) such that λ(X(K∞)

E )
is unbounded as K∞ runs over the Zp-extensions of K (note that the composite
of all the Zp-extensions of an imaginary-quadratic field K is a Z2

p-extension
L∞ of K). In this example, E had good ordinary reduction at the primes above
p. Therefore the results from Sect. 3 are applicable, and we may deduce the
following

Theorem 4.5. Let E be an elliptic curve of conductor N defined over Q, and
let K be an imaginary quadratic field such that O×

K = {±1}. We assume that
(1) the rational prime p does not divide 6Ndisc(K)hK |E/E0|, where hK de-

notes the class number of K, disc(K) denotes the discriminant, and E/E0

means the set of connected components of the Néron model of E over
Spec(OK),

(2) E has good ordinary reduction at each v ∈ Σp(K),
(3) the Galois representation

ρp : Gal(Q/Q) −→ Aut(E[p∞])

is surjective,
(4) E(kv)[p∞] = {0} for each v ∈ Σp(K) (here kv denotes the finite residue

field at v),
(5) |E(Fp)| �≡ −1 (mod p) if p splits in K/Q, and
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(6) every prime q | N splits in K/Q.

Then l0(X
(K∞)
E ) > 0, where K∞ denotes the composite of all Zp-extensions of

K.

Proof. The hypotheses (1)–(6) ensure that X
(Ka

∞)
E is non-torsion as a Λ-module,

where Ka
∞ denotes the anticyclotomic Zp-extension of K.

Since E has good ordinary reduction at the primes above p, it follows from
the results of Kato and Rohrlich that X

(Kc
∞)

E is Λ-torsion, where Kc
∞ denotes

the cyclotomic Zp-extension of K. Since each prime of K above p ramifies in
Kc

∞/K, it follows from Lemma 3.17 that X
(K∞)
E is a torsion Λ2-module. The

result follows from Theorem 4.1.
Alternatively, it has been shown in [18, Corollary 1.2] that λ(X(K∞)

E ) is
unbounded as K∞ runs over the Zp-extensions of K, provided that μ(X(Kc

∞)
E ) =

0. Therefore, under this additional hypothesis, Theorem 3.22 can be applied
to deduce the result (see also Remark 3.6). �

In [18, Example 7.14], we have given a concrete example where all the
hypotheses from this theorem are satisfied: Let K = Q(

√−7), and consider
the elliptic curve E defined by

E : y2 + y = x3 − x2 − 10x − 20.

Then the hypotheses from Theorem 4.5 are satisfied for the two primes 37 and
43, both of which are split in K/Q. To the authors’ knowledge, this provides
the first known example at all of an Iwasawa module having a non-trivial
l0-invariant.

Remark 4.6. In the situation of Theorem 4.5, the Iwasawa module X
(K∞)
E is

Λ2-torsion. Theorem 4.1 implies that X
(K∞)
E is Λ-torsion for all but finitely

many Zp-extensions K∞ of K. Therefore Theorem 3.20 implies that the μ-
invariants of the Iwasawa modules X

(K∞)
E are bounded as K∞ runs over

the Zp-extensions of K. One can in fact say more: If μ(X(Kc
∞)

E ) = 0 in
the setting of Theorem 4.5, and as X

(Kc
∞)

E is a Λ-torsion module by the re-
sults of Kato and Rohrlich, [16, Theorem 1.1] implies that the λ-invariants
λ(X(K∞)

E ) are bounded as K∞ runs over the Zp-extensions of K which are
contained in some sufficiently small neighbourhood of Kc

∞. Now the main re-
sult of [20] (more precisely, Proposition 2.6 and the implication (e) =⇒ (b)
from Theorem 1.1 of loc.cit.) implies that m0(X

(K∞)
E ) = 0. We may deduce

from Lemma 3.1 and Corollary 3.15(a) and (b) that μ(X(K∞)
E ) = 0 for all but

finitely many K∞ ∈ E⊆K∞(K). Note that we cannot apply Theorem 4.4, since
rankΛ(X(Ka

∞)
A ) > 0.

Now we derive from Theorem 4.5 the existence of a Zd
p-extension L∞/L,

d > 2, such that ̂l0(X
(L∞)
E ) �= 0. To this purpose, we first enlarge the base field,

since the imaginary quadratic number field K has not enough Zp-extensions.
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Lemma 4.7. Let E, p and K∞/K be as in Theorem 4.5, and let L/K be a fi-
nite normal p-extension with Galois group H. We assume that μ(X(Kc

∞)
E ) = 0,

where Kc
∞ denotes the cyclotomic Zp-extension of K. We assume that

L ∩ K∞= K. Let L∞ = K∞ · L. Then l0(X
(L∞)
E ) �= 0.

Proof. As we have seen in Remark 4.6, we can choose a neighbourhood U =
E(Ka

∞, n) of the anticyclotomic Zp-extension of K such that

rankΛ(X(K∞)
E ) = μ(X(K∞)

E ) = 0

for each Ka
∞ �= K∞ ∈ U . Moreover, since each prime above p ramifies in Ka

∞,
we may assume that U has been chosen small enough to ensure that the same
is true for each K∞ ∈ U . Finally, by hypothesis (6) of Theorem 4.5, each prime
of K of bad reduction splits in K/Q. It then follows from [3, Theorem 2] that
each such prime is finitely split in the anticyclotomic extension Ka

∞ of K. Since
p �= 2, we can assume that Σ\Σp contains exactly the primes of bad reduction,
and we may thus assume that each v ∈ Σ is finitely split in every K∞ ∈ U .

To each such K∞, we consider the finite p-extension K ′
∞ = K∞ · L of

K∞, and we identify Gal(K ′
∞/K∞) with H.

Now we consider the commutative diagram

0 Sel(E/K∞) H1(KΣ/K∞, E[p∞])
∏

v∈S Jv(E/K∞)

0 Sel(E/K ′
∞)H H1(KΣ/K ′

∞, E[p∞])H
∏

v∈S Jv(E/K ′
∞),

α β γ

where Jv(E/K∞) = lim−→
⊕

w|v H1(Fw, E)[p∞] and the limit is taken over all
finite subextensions Fw/Kv of K∞,w. Moreover, Jv(E/K ′

∞) is defined in an
analogous manner.

We want to show that the Pontryagin duals of ker(β), coker(β) and ker(γ)
are finite, since this will show that also ker(α) and coker(α) are finite.

Since ker(β) = H1(H,E(K ′
∞)[p∞]) and coker(β) = H2(H,E(K ′

∞)[p∞])
are both cofinitely generated over Zp and annihilated by some power of p (the
latter holds true since H is finite), their Pontryagin duals are also annihilated
by the same power of p. Therefore ker(β)∨ and coker(β)∨ are finite.

Now we consider the kernel of γ. Since each prime of K above p ramifies in
the Zp-extension K∞, both K∞/K and K ′

∞/K ′ are deeply ramified extensions
in the sense of Coates and Greenberg (see [4, Theorem 2.13]). Therefore the
kernel of γ may be written in the form C × D, where

C =
∏

w∈Σ(K∞)\Σp(K∞)

H1(H,E(K ′
∞,w)[p∞])

and

D =
∏

w∈Σp(K∞)

H1(Hw, Ẽ(k′
∞,w)[p∞]).
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Here we have fixed, by abuse of notation, a prime w of K ′
∞ above w ∈ Σ(K∞),

respectively, and Hw ⊆ H denotes the corresponding decomposition subgroup.
Moreover, k′

∞,w denotes the residue field of K ′
∞,w and Ẽ is the reduction of E

over the residue field.
Again, each of these cohomology groups is cofinitely generated over Zp

and annihilated by a power of p and hence is finite. Since no prime v ∈ Σ
is totally split in K∞/K, it follows that Σ(K∞) is finite, and therefore the
Pontryagin dual of the kernel of γ is finite.

We have shown that the kernel and the cokernel of the natural dualised
map

ψ(K∞) : (X(K′
∞)

E )H −→ X
(K∞)
E

are finite. Recall that rankΛ(X(K∞)
E ) = μ(X(Kc

∞)
E ) = 0 for each Ka

∞ �= K∞ ∈ U .
Therefore rankp(X

(K∞)
E ) is finite for each such K∞, and it follows that the

same holds for rankp((X
(K′

∞)
E )H). Nakayama’s Lemma implies that X

(K′
∞)

E is
Λ-torsion and has μ-invariant zero. Since rankΛ(X(Ka

∞)
E ) > 0 by our hypothe-

ses, the proof of the last assertion of Theorem 3.22 shows that the λ-invariants
λ(X(K∞)

E ) are unbounded as K∞ runs over the elements in U . Since the cok-
ernel of ψ(K∞) is finite for each K∞, and as

λ(X(K′
∞)

E ) ≥ rankZp
((X(K′

∞)
E )H),

it follows that λ(X(K′
∞)

E ) is also unbounded. But then Theorem 3.22 implies
that l0(X

(L∞)
E ) > 0 (recall that the additional hypothesis on the maximal

pseudo-null submodule of X
(L∞)
E is not needed in the d = 2 case, as has been

pointed out in Remark 3.6). �

The following theorem follows if we combine the previous Lemma 4.7
with Corollary 3.26.

Theorem 4.8. Let E be an elliptic curve defined over Q, and let K be an imag-
inary quadratic number field such that the hypotheses from Theorem 4.5 are
satisfied. We assume that μ(X(Kc

∞)
E ) = 0, where Kc

∞ denotes the cyclotomic
Zp-extension of K.

Moreover, let L/K be any finite normal p-extension, and let L∞ denote
the composite of all Zp-extensions of L. Let d = rankZp

(Gal(L∞/K)).
We assume that the annihilator ideal of the maximal pseudo-null Λd-

submodule of X
(L∞)
E is not contained in any prime ideal of height at most

d.
Then ̂l0(X

(L∞)
E ) > 0.

We mention one final application. We want to construct examples of
Iwasawa modules with non-trivial ̂l0-invariant. Since it is difficult to check the
condition on the annihilator ideal of the maximal pseudo-null submodule of
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X
(L∞)
E , we choose a different approach. In the following, let A be an arbitrary

abelian variety defined over K, let L∞/K be a Zd
p-extension, and write Z for

either Y
(L∞)
A or X

(L∞)
A (i.e. the following result holds for both Selmer groups

and fine Selmer groups).

Theorem 4.9. Let L∞/K be a Zd
p-extension, and suppose that Z is a torsion

Λd-module, and that L∞ contains a Zd−1
p -extension K∞ of K such that Z

(K∞)
A

is a non-torsion Λd−1-module. Then ̂l0(Z) > 0.

Proof. This follows from the i = d − 1 special case of Theorem 3.24, since
the annihilator ideal of the maximal pseudo-null Λd-submodule Z◦ of Z is not
contained in any prime ideal of Λd of height one. �

Now we state our main application of this result. We mention only one
example for the scope of Theorem 4.9; the base field K could be chosen in
many different ways.

Corollary 4.10. Let K = Q(ζ3i) for some i ≥ 2, where ζ3i denotes a primitive
3ith root of unity (in some fixed algebraic closure of Q). Let E be an elliptic
curve defined over Q.

We assume that p ≡ 2 (mod 3) is a prime number such that E has good
ordinary reduction at p, and that the conductor NE of E satisfies NE ≡ 1(mod 3).

If E(K)[p] = {0}, and if p divides none of the local Tamagawa factors cv

of the primes v of K of bad reduction, then there exists a Z3i−1+1
p -extension

L∞ of K such that the ̂l0-invariant of X
(L∞)
E is non-trivial.

Proof. Let k ⊆ K be the unique imaginary quadratic subfield. It follows from
[27, Example 5.1] that there exists a Z

r2(K)
p -extension K∞ of K such that

complex conjugation acts by −1 on Gal(K∞/K). Note that

r2(K) = [K : Q]/2 = 3i−1.

In view of our hypotheses, [27, Corollary 3.6 and Example 5.1] imply that
X

(K∞)
E is a non-torsion Λr2(K)-module. More precisely, the condition (c) from

[27, Corollary 3.6] holds in view of the two facts 4 � [K : Q] and p ≡ 2 (mod 3)
(the latter implies that p has even order in (Z/3Z)×), as is explained in
[27, Example 5.1]. If χ denotes the quadratic character of k = Q(

√−3), then
χ(NE) = 1 in view of the condition NE ≡ 1 (mod 3).

Now let L∞ := K∞ · Kcyc be the compositum with the cyclotomic Zp-
extension of K. Since K is a totally abelian field, it follows from the results of
Kato and Rohrlich (see [12,30]) that X

(Kcyc)
A is a torsion Λ1-module. Therefore

X
(L∞)
A is Λd-torsion in view of Lemma 3.17, where d = r2(K) + 1. Then it

follows from Theorem 4.9 that ̂l0(X
(L∞)
A ) > 0. �
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Example 4.11. Let E be the elliptic curve with Cremona label 19a1, and let
K = Q(ζ9). Computations in SAGE [31] verify that E has good ordinary re-
duction at p = 5, E(K)[5] = {0} and that 5 divides none of the Tamagawa
numbers cv of the primes v of K. By the previous corollary there exists a
Z4

p-extension L∞ of K such that the ̂l0-invariant of X
(L∞)
E is non-trivial.
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[15] Kleine, Sören.: Local behavior of Iwasawa’s invariants. Int. J. Number Theory
13(4), 1013–1036 (2017)
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