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Predeformation and frequency dependence of filler-reinforced rubber

under vibration

The dynamic mechanical properties of filler-reinforced rubber are characterised by a

significant dependence on predeformation, dynamic amplitude and frequency if they are

loaded with a large static predeformation superimposed by small harmonic vibrations.

If the strain amplitudes are below 0.1 %, amplitude dependence does not occur. This is

satisfied in the current thesis. In view of this, the main objective of this work is focused

on the introduction of a three-dimensional constitutive model of finite viscoelasticity

formulated in the frequency domain which is able to represent the vibroacoustic be-

haviour of the material with respect to predeformation and frequency dependence of

the storage and the loss modulus in a broad frequency domain up to 105 Hz.

In order to derive a mathematical description of material behaviour, the predeforma-

tion and frequency dependent dynamic properties of four different carbon-black filled

rubber vulcanisates are first examined through quasi-static and dynamic investigations.

The quasi-static experiments are mainly focused on the predeformation dependent equi-

librium stress response of the material, whereas the dynamic tests are performed via

the dynamic mechanical analysis technique to characterise the predeformation and fre-

quency dependence of the dynamic moduli in the frequency domain. Since this work

does not account for stress-softening phenomena like the Mullins effect and the am-

plitude dependent Payne effect, preliminary quasi-static and dynamic tests are carried

out to characterise the influence on these phenomena.

Based on these experimental facts, a suitable constitutive model is derived to represent

the observed vibroacoustic behaviour with respect to the dependence of the storage

and the loss modulus on predeformation and frequency. The formulation is based on

the general approach by Haupt and Lion (2002) and starts with a decomposition of the

deformation gradient into a volumetric and an isochoric part.

www.unibw.de
Faculty Web Site URL Here (include http://)
Department or School Web Site URL Here (include http://)


Thereafter, a second time-relative decomposition is applied to the isochoric part of the

deformation gradient and the specific Helmholtz free energy is defined by the additive

decomposition into an equilibrium part and a viscous overstress part. In order to ac-

count for the predeformation dependence, a deformation dependent relaxation function

is introduced. On this basis, the constitutive equations are first derived in the time

domain using the dissipation principle. In order to make the constitutive equations ap-

plicable for a transformation into the frequency domain, a geometrical linearisation in

the neighbourhood of the predeformed state is applied. Finally, the solution for small

harmonic oscillations in the neighbourhood of the static predeformation is evaluated

and the dynamic modulus tensor of fourth order is derived.

In terms of computational efficiency, a second version of the constitutive approach is

introduced by the extension of the classical formulation using the concept of fractional

derivatives.

In order to identify the material parameters of both formulations, the specified identi-

fication equations are derived to simulate the experimental data. Thereafter, the ma-

terial parameters are determined by the minimisation of errors between experimental

data and numerically simulated data. The numerical simulations of both constitutive

models are compared to each other to reveal the performance of the extended fractional

approach.

After identification of the parameters, both constitutive approaches are implemented

into the finite element code MSC Marc to perform efficient three-dimensional simula-

tions of complex structures. Finally, the constitutive models are validated by the finite

element simulation of dynamic tests with rubber-steel compounds up to 104 Hz.



Prior printed publications

During the development of this work, several prior printed publications which relate to

parts of this work, have been published. These prior printed publications were approved

by the Universität der Bundeswehr München and are listed below:

� D.Wollscheid and A. Lion (2012)

Modelling of predeformation- and frequency-dependent material behaviour of filled

rubber under large predeformations superimposed with harmonic deformations of

small amplitudes, Proceedings in Applied Mathematics and Mechanics (PAMM),

Vol. 12, Issue 1, 291–292, 2012.

� D.Wollscheid and A. Lion (2013)

On the dynamic material behaviour of filled rubber with respect to preload and

frequency

Constitutive Models for Rubber VIII, CRC Press/Balkema, Taylor & Francis

Group, London, 87–93, 2013.

� D.Wollscheid and A. Lion (2013)

Predeformation- and frequency-dependent material behaviour of filler-reinforced

rubber: Experiments, constitutive modelling and parameter identification

International Journal of Solids and Structures, No. 50, 1217–1225, 2013.

� D.Wollscheid and A. Lion (2013)

The benefit of fractional derivatives in modelling the dynamics of filler-reinforced

rubber under large strains: a comparison with the Maxwell-element approach

Computational Mechanics, Vol. 53, No. 5, 1015–1031, Springer-Verlag Berlin

Heidelberg, ISSN: 0178-7675, 2014 (online 2013).





Contents

List of Figures v

List of Tables ix

Abbreviations xi

Symbols xiii

Indexes & Operators xvii

1 Introduction 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Current state of research . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Composition of this work . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2 Basics of continuum mechanics 13

2.1 Kinematics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.1.1 Motion and displacement . . . . . . . . . . . . . . . . . . . . . . 14

2.1.2 Deformation gradient . . . . . . . . . . . . . . . . . . . . . . . . 16

2.1.3 Strain tensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.1.4 Deformation rate and strain rate . . . . . . . . . . . . . . . . . 18

2.1.5 Decomposition of the deformation gradient . . . . . . . . . . . . 19

2.2 Balance equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.2.1 Balance of mass . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.2.2 Balance of linear momentum . . . . . . . . . . . . . . . . . . . . 23

2.2.3 Balance of rotational momentum . . . . . . . . . . . . . . . . . 23

2.2.4 Balance of internal energy . . . . . . . . . . . . . . . . . . . . . 24

2.2.5 Balance of entropy . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.2.6 Clausius-Duhem inequality . . . . . . . . . . . . . . . . . . . . . 25

3 Theory of material modelling 27

3.1 Hyperelasticity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.1.1 Finite hyperelasticity . . . . . . . . . . . . . . . . . . . . . . . . 29

3.1.2 Finite incompressible hyperelasticity . . . . . . . . . . . . . . . 30

3.2 Linear viscoelasticity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

i



ii Contents

3.2.1 Spring and damper . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.2.2 Maxwell element . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.2.3 Three-parameter model (TPM) . . . . . . . . . . . . . . . . . . 35

3.2.4 Maxwell chain . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.3 Fractional viscoelasticity . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.3.1 Fractional damping element . . . . . . . . . . . . . . . . . . . . 47

3.4 Finite nonlinear viscoelasticity . . . . . . . . . . . . . . . . . . . . . . . 51

3.4.1 Functional viscoelasticity with internal variables of the stress type 52

3.4.2 Multiplicative finite viscoelasticity . . . . . . . . . . . . . . . . . 53

3.5 Shifting principles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.5.1 Master curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4 Basics of elastomer materials 61

4.1 Classification of elastomers . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.2 Mechanical properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.2.1 Elasticity & hyperelasticity . . . . . . . . . . . . . . . . . . . . 65

4.2.2 Viscoelasticity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.2.3 Mullins effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.2.4 Payne effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.3 Natural rubber (NR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.3.1 Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.3.2 Area of application . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.4 Styrene-butadiene-rubber (SBR) . . . . . . . . . . . . . . . . . . . . . . 70

4.4.1 Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.4.2 Area of application . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.5 Ethylene-propylene-diene rubber (EPDM) . . . . . . . . . . . . . . . . 72

4.5.1 Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.5.2 Area of application . . . . . . . . . . . . . . . . . . . . . . . . . 73

5 Experimental investigations 75

5.1 Differential scanning calorimetry . . . . . . . . . . . . . . . . . . . . . . 77

5.1.1 Glass transition temperature . . . . . . . . . . . . . . . . . . . . 78

5.2 Quasi-static experiments . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5.2.1 Mullins effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5.2.2 Equilibrium stress . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.3 Dynamic investigations . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5.3.1 Payne effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

5.3.2 Predeformation and frequency dependence . . . . . . . . . . . . 91

5.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

6 Constitutive modelling 103

6.1 One-dimensional approach . . . . . . . . . . . . . . . . . . . . . . . . . 105

6.2 Three-dimensional approach . . . . . . . . . . . . . . . . . . . . . . . . 106

6.2.1 Kinematics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

6.2.2 Specific Helmholtz free energy . . . . . . . . . . . . . . . . . . . 108



Contents iii

6.2.3 Clausius-Planck inequality . . . . . . . . . . . . . . . . . . . . . 112

6.2.4 Geometric linearisation . . . . . . . . . . . . . . . . . . . . . . . 114

6.2.5 Incompressible formulation . . . . . . . . . . . . . . . . . . . . . 120

6.2.6 Dynamic modulus tensor . . . . . . . . . . . . . . . . . . . . . . 121

6.2.6.1 Type A: Classical model . . . . . . . . . . . . . . . . . 121

6.2.6.2 Type B: Fractional model . . . . . . . . . . . . . . . . 123

7 Parameter identification 127

7.1 General procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

7.2 Static part . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

7.2.1 Uniaxial tension and compression . . . . . . . . . . . . . . . . . 130

7.2.2 Pure shear . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

7.3 Dynamic part . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

7.4 Numerical identification process . . . . . . . . . . . . . . . . . . . . . . 138

7.5 Identification results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

7.5.1 Static identification results . . . . . . . . . . . . . . . . . . . . . 141

7.5.2 Dynamic identification results . . . . . . . . . . . . . . . . . . . 141

8 Finite element implementation and simulation 149

8.1 Weak form . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

8.2 Linearisation of the virtual mechanical work . . . . . . . . . . . . . . . 153

8.3 Local discretisation of the virtual work . . . . . . . . . . . . . . . . . . 155

8.4 Incompressibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

8.5 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

8.6 Verification of the implementation . . . . . . . . . . . . . . . . . . . . . 163

9 Validation 165

9.1 Measuring setup and procedure . . . . . . . . . . . . . . . . . . . . . . 165

9.2 Finite element simulation . . . . . . . . . . . . . . . . . . . . . . . . . . 167

9.3 Simulation of a real engine mount . . . . . . . . . . . . . . . . . . . . . 169

10 Conclusion 175

A Tensor algebra 177

A.1 Simple scalar product . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

A.2 Double scalar product . . . . . . . . . . . . . . . . . . . . . . . . . . . 178

A.3 Cross product . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

A.4 Dyadic product . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

A.5 Transposed and inverse . . . . . . . . . . . . . . . . . . . . . . . . . . . 180

A.6 Trace of a tensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180

A.7 Mathematical relations . . . . . . . . . . . . . . . . . . . . . . . . . . . 181

Bibliography 183





List of Figures

2.1 Reference and current configuration . . . . . . . . . . . . . . . . . . . . 14

2.2 Volumetric-isochoric configuration . . . . . . . . . . . . . . . . . . . . . 20

2.3 Relative decomposition . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.1 Nonlinear stress-strain relation . . . . . . . . . . . . . . . . . . . . . . . 28

3.2 Viscoelastic material behaviour: dependence on the rate of strain . . . 32

3.3 spring (left) and damper (right) . . . . . . . . . . . . . . . . . . . . . . 33

3.4 Maxwell element . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.5 Three-parameter model . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.6 Stress response of the Three-parameter model at different rates of strain 38

3.7 Applied strain (left) and corresponding relaxation function of the TPM
(right) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.8 Frequency dependence of the storage and the loss modulus . . . . . . . 40

3.9 Maxwell chain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.10 Fractional damping element . . . . . . . . . . . . . . . . . . . . . . . . 47

3.11 Fractional Maxwell element . . . . . . . . . . . . . . . . . . . . . . . . 49

3.12 Approximation of the storage and loss modulus of the fractional Maxwell
element compared to the approximation of the classical Maxwell element 51

3.13 Elastic-inelastic decomposition with intermediate configuration . . . . . 54

3.14 Master curve of storage modulus obtained by temperature frequency
shifting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.1 Temperature dependence of the shear modulus of elastomers (cf. Röthe-
meyer and Sommer (2006)) . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.2 Nonlinear stress-strain relation of elastomers . . . . . . . . . . . . . . . 65

4.3 Viscoelasticity: stress relaxation of elastomers . . . . . . . . . . . . . . 66

4.4 Viscoelasticity: frequency dependence of the dynamic moduli . . . . . . 67

4.5 Exemplary illustration of the Mullins effect . . . . . . . . . . . . . . . . 68

4.6 Exemplary illustration of the Payne effect . . . . . . . . . . . . . . . . 69

4.7 General composition of natural rubber . . . . . . . . . . . . . . . . . . 69

4.8 General composition of SBR . . . . . . . . . . . . . . . . . . . . . . . . 71

4.9 General composition of EPM . . . . . . . . . . . . . . . . . . . . . . . . 72

5.1 Illustration of the DSC measuring principle . . . . . . . . . . . . . . . . 77

5.2 Specific heat flow rate of SBR40 over temperature . . . . . . . . . . . . 78

v



vi List of Figures

5.3 Geometries of the specimen for uniaxial tension, pure shear and com-
pression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.4 Stress-softening of SBR20 (upper left), SBR40 (upper right), EPDM20
(lower left) and NR40 (lower right) . . . . . . . . . . . . . . . . . . . . 81

5.5 Stepwise loadcase (left) and resulting stress response of SBR40 (right)
under uniaxial tension . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.6 Detail of the stress responses at 75 % of strain (SBR40) . . . . . . . . . 82

5.7 Calculation of the equilibrium stress at 75 % of strain (left) and resulting
equilibrium stress under uniaxial tension (right) (SBR40) . . . . . . . . 83

5.8 Equilibrium stress response under compression, pure shear and uni-
axial tension (upper left: SBR20), (upper right: SBR40), (lower left:
EPDM20), (lower right: NR40) . . . . . . . . . . . . . . . . . . . . . . 84

5.9 Loadcase of the dynamic investigations . . . . . . . . . . . . . . . . . . 85

5.10 Sinusoidal excitation and phase shifted harmonic stress response . . . . 85

5.11 Schematic diagramm of DMA testing device Gabo EPLEXOR 500N . . 87

5.12 Amplitude dependence of the storage and the loss modulus (upper left:
SBR20), (upper right: SBR40), (lower left: EPDM20), (lower right: NR40) 90

5.13 Amplitude dependence of the normalised storage modulus (upper left:
SBR20), (upper right: SBR40), (lower left: EPDM20), (lower right: NR40) 91

5.14 Predeformation dependence of the storage and the loss modulus at a
dynamic strain amplitude of 0.1 % and a frequency of 10 Hz (left: storage
modulus), (right: loss modulus) . . . . . . . . . . . . . . . . . . . . . . 92

5.15 Predeformation dependence of the storage and the loss modulus at a
dynamic strain amplitude of 0.1 % and a frequency of 10 Hz with regard
to the 1st Piola-Kirchhoff stress (left: storage modulus), (right: loss
modulus) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

5.16 Temperature dependence of the dynamic moduli of EPDM20 at a pre-
strain of 10 % (left: storage modulus), (right: loss modulus) . . . . . . 95

5.17 Temperature dependence of the dynamic moduli of SBR20 at a prestrain
of 10 % (left: storage modulus), (right: loss modulus) . . . . . . . . . . 96

5.18 Temperature dependence of the dynamic moduli of SBR40 at a prestrain
of 10 % (left: storage modulus), (right: loss modulus) . . . . . . . . . . 96

5.19 Temperature dependence of the dynamic moduli of NR40 at a prestrain
of 10 % (left: storage modulus), (right: loss modulus) . . . . . . . . . . 96

5.20 Shifting function for each material (upper left: EPDM20), (upper right:
SBR20), (lower left: SBR40), (lower right: NR40) . . . . . . . . . . . . 98

5.21 Temperature-frequency-sweep data of SBR40 (left) and calculated mas-
ter curve (right) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

5.22 Master curves of EPDM20 (left: storage modulus), (right: loss modulus) 99

5.23 Master curves of SBR20 (left: storage modulus), (right: loss modulus) . 99

5.24 Master curves of SBR40 (left: storage modulus), (right: loss modulus) . 99

5.25 Master curves of NR40 (left: storage modulus), (right: loss modulus) . 100

5.26 EPDM20: Independence of static predeformation and frequency from
each other (left: storage modulus), (right: loss modulus) . . . . . . . . 100



List of Figures vii

5.27 SBR20: Independence of static predeformation and frequency from each
other (left: storage modulus), (right: loss modulus) . . . . . . . . . . . 101

5.28 SBR40: Independence of static predeformation and frequency from each
other (left: storage modulus), (right: loss modulus) . . . . . . . . . . . 101

5.29 NR40: Independence of static predeformation and frequency from each
other (left: storage modulus), (right: loss modulus) . . . . . . . . . . . 101

6.1 Classical Maxwell chain . . . . . . . . . . . . . . . . . . . . . . . . . . 105

6.2 Relative-isochoric decomposition . . . . . . . . . . . . . . . . . . . . . . 107

7.1 Loadcase of the quasi-static experiments in uniaxial tension and com-
pression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

7.2 Loadcase of the quasi-static experiments in pure shear . . . . . . . . . . 132

7.3 Numerical identification procedure . . . . . . . . . . . . . . . . . . . . 140

7.4 Identification results of the equilibrium stress in compression, pure shear
and tension (upper left: SBR20), (upper right: SBR40), (lower left:
EPDM20), (lower right: NR40) . . . . . . . . . . . . . . . . . . . . . . 143

7.5 Identification result of the predeformation and frequency dependent dy-
namic moduli of SBR20 of the classical approach (left: storage modulus),
(right: loss modulus) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

7.6 Identification result of the predeformation and frequency dependent dy-
namic moduli of SBR20 of the fractional approach (left: storage modu-
lus), (right: loss modulus) . . . . . . . . . . . . . . . . . . . . . . . . . 144

7.7 Identification result of the predeformation and frequency dependent dy-
namic moduli of SBR40 of the classical approach (left: storage modulus),
(right: loss modulus) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

7.8 Identification result of the predeformation and frequency dependent dy-
namic moduli of SBR40 of the fractional approach (left: storage modu-
lus), (right: loss modulus) . . . . . . . . . . . . . . . . . . . . . . . . . 145

7.9 Identification result of the predeformation and frequency dependent dy-
namic moduli of EPDM20 of the classical approach (left: storage mod-
ulus), (right: loss modulus) . . . . . . . . . . . . . . . . . . . . . . . . . 145

7.10 Identification result of the predeformation and frequency dependent dy-
namic moduli of EPDM20 of the fractional approach (left: storage mod-
ulus), (right: loss modulus) . . . . . . . . . . . . . . . . . . . . . . . . . 145

7.11 Identification result of the predeformation and frequency dependent dy-
namic moduli of NR40 of the classical approach (left: storage modulus),
(right: loss modulus) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

7.12 Identification result of the predeformation and frequency dependent dy-
namic moduli of NR40 of the fractional approach (left: storage modulus),
(right: loss modulus) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

8.1 Three-dimensional cube and applied boundary conditions . . . . . . . . 163

8.2 Comparison between the finite element simulation and the numerical
results of the classical model: storage modulus (left), loss modulus (right)164



viii List of Figures

8.3 Comparison between the finite element simulation and the numerical
results of the fractional model: storage modulus (left), loss modulus
(right) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

9.1 Cylindrical SBR40 specimen: pure rubber specimen (left) / with bonded
steel plates (right) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

9.2 Measuring setup of validation experiments . . . . . . . . . . . . . . . . 166

9.3 Measurement data of SBR40: pure rubber specimen (left) / with bonded
steel plates (right) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

9.4 Finite element geometry of the specimen: pure rubber specimen (left) /
with bonded steel plates (right) . . . . . . . . . . . . . . . . . . . . . . 168

9.5 Comparison between the experimental data and the finite element sim-
ulation: pure rubber specimen (left) / with bonded steel plates (right) . 169

9.6 Deformed structures at the 1st resonance: pure rubber specimen (left)
and specimen with bonded steel plates (right) . . . . . . . . . . . . . . 169

9.7 Engine mount (left) and finite element geometry (right) . . . . . . . . . 170

9.8 transfer stiffness and transfer damping of the engine mount at 10%, 20%
and 30% predeformation . . . . . . . . . . . . . . . . . . . . . . . . . . 170

9.9 Deformed shapes of the engine mount at 10% predeformation: 1st eigen-
frequency (top), 2nd eigenfrequency (middle) and 3rd eigenfrequency
(bottom) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

9.10 Deformed shapes of the engine mount at 20% predeformation: 1st eigen-
frequency (top), 2nd eigenfrequency (middle) and 3rd eigenfrequency
(bottom) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

9.11 Deformed shapes of the engine mount at 30% predeformation: 1st eigen-
frequency (top), 2nd eigenfrequency (middle) and 3rd eigenfrequency
(bottom) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173



List of Tables

5.1 Glass transition temperatures of SBR20, SBR40, EPDM20 and NR40 . 78

5.2 Technical specifications of Zwick/Roell Z020 . . . . . . . . . . . . . . . 80

5.3 Technical specifications of the Gabo EPLEXOR 500N . . . . . . . . . . 88

5.4 Barrelling correction factors for EPDM20 and SBR20 in compression . 92

5.5 Identified material parameters c1 and c2 of the WLF-function . . . . . . 97

7.1 Static material parameters of SBR20, SBR40, EPDM20 and NR40 . . . 143

7.2 Dynamic material parameters of SBR20 . . . . . . . . . . . . . . . . . 147

7.3 Dynamic material parameters of SBR40 . . . . . . . . . . . . . . . . . 147

7.4 Dynamic material parameters of EPDM20 . . . . . . . . . . . . . . . . 148

7.5 Dynamic material parameters of NR40 . . . . . . . . . . . . . . . . . . 148

ix





Abbreviations

CDI Clausius Duhem Inequality

CPI Clausius Planck Inequality

DSC Differential Scanning Calorimetry

DMA Dynamic Mechanical Analysis

EPDM Ethylene-Butadiene-Diene Rubber

EPDM20 Ethylene-Butadiene-Diene Rubber with 20 phr of carbon-black

FEM Finite Element Method

NR Natural Rubber

NR40 Natural Rubber with 40 phr of carbon-black

SBR Styrene-Butadiene Rubber

SBR20 Styrene-Butadiene Rubber with 20 phr of carbon-black

SBR40 Styrene-Butadiene Rubber with 40 phr of carbon-black

TPM Tree-Parameter-Model

WLF Williams-Landel-Ferry equation

xi





Symbols

Scalar values

a, b, c material parameter

e internal energy

c1, c2 material parameters of the WLF equation

m mass

r internal radiant heat

s specific time at t = s

t time

log aθ shifting function

A surface

E elastic spring stiffness

f frequency

G∗ complex modulus

G′ storage modulus

G′′ loss modulus

G(t) relaxation function

Na shape function

T absolute temperature in K

V Volume

dv material volume element of the current configuration

dV material volume element of the reference configuration

α material parameter of the fractional damper

ε, εe, εin strain, elastic strain, inelastic strain

η viscosity

xiii



xiv Symbols

ηk viscosity of the k-th Maxwell element

η̂ entropy production inside a material body

θ temperature in ◦C

λ stretch

µ stiffness

µk stiffness of the k-th Maxwell element

ξ iso-parametric coordinate

ρ mass density of the current configuration

ρ0 mass density of the reference configuration

σ engineering stress

σeq, σov equilibrium stress, overstress

σ, σeq, σov damaged stress

τ relaxation time

τk relaxation time of the k-th Maxwell element

Ψ specific Helmholtz free energy

ω angular frequency

Vectors

da material surface element of the current configuration

dA material surface element of the reference configuration

k external forces

q heat flux of the current configuration

q0 heat flux of the reference configuration

u displacement vector

δu virtual displacement

∆u incremental displacement

v velocity

x position vector of the current configuration

X position vector of the reference configuration

dx material line element of the current configuration

dX material line element of the reference configuration

2nd order tensors



Symbols xv

0 zero tensor

1 identity tensor

a Finger strain tensor

A Almansi strain tensor

B left Cauchy-Green tensor

C right Cauchy-Green tensor

D deformation rate tensor

e Piola strain tensor

E Green-Lagrange strain tensor

F deformation gradient

L velocity gradient

I linear momentum

IR rotational momentum

P 1st Piola-Kirchhoff stress tensor

T Cauchy stress tensor

T̃ 2nd Piola-Kirchhoff stress tensor

U right stretch tensor

V left stretch tensor

W spin tensor

Γ strain tensor of the elastic-inelastic configuration

ϕη entropy flux

σA surface stress

τ weighted Cauchy stress tensor

τ neq stress tensor of the elastic-inelastic configuration

χ bijective motion function

4th order tensors

4

1 identity tensor
4

D, C elasticity tensor
4

G dynamic modulus tensor
4

P projection tensor
4

R projection tensor



xvi Symbols

Configurations

C current configuration

R reference configuration

I intermediate configuration



Indexes & Operators

Indexes

(•)eq equilibrium part of •
(•)neq non-equilibrium part of •
(•)ov overstress part of •
(•)e elastic part of •
(•)in inelastic part of •
(•)t time-relative part of •
(•)0 constant static part of •
(•)lin linearised version of •
(•)FE finite element definition of a variable • in MSC Marc

(•)FE variable • of classical model A

(•)FE variable • of fractional model B
ˆ(•) volumetric part of a tensor •
¯(•) isochoric part of a tensor •
δ(•) virtual value •
∆(•) incremental value •

Operators

grad(•) spatial gradient of •
Grad(•) material gradient of •
div(•) divergence of •
det(•) determinant of •
tr(•) trace of •
(•)−1 inverse of •
(•)T transposed of •

xvii



xviii Indexes & Operators

(•)−T inverse transposed of •
˙(•) time derivative of • with respect to time t

(•)′(s) time derivative of • with respect to time s

(∗) (∗) simple scalar product of two vectors ∗
(•) (•) simple scalar product of two tensors •
(•) (∗) simple scalar product of tensor • and vector ∗
(•) · (•) double scalar product of two tensors •
(•)⊗ (•) dyadic product of two tensors •



Chapter 1

Introduction

1.1 Motivation

Rubber materials are characterised by fairly good dynamic mechanical properties.
Thus, they are highly preferred in dynamic decoupling applications in the form of
mounting systems and vibration isolators. In this context, they are used either to
isolate the vibration of a dynamic system from the ambient structure or to prevent
external vibrations from being transferred onto shock-sensitive systems. Thereby, the
application area of rubber isolators and mounting systems stretches across a wide field
reaching from washing machines, car engines and industrial systems up to bridges and
buildings.

A very important application is found in the automotive industry where elastomer ma-
terials are commonly applied in the form of mounting systems for car engines. These
engine mounts are typically loaded with a constant static predeformation which is
caused by the engines’ mass and is superimposed by small harmonic oscillations up
to about 104 Hz once the engine is running. Since the automotive industry is focused
on high driving comfort, the main task of an engine mount is to avoid the generated
vibrations of the running engine from being transferred into the passenger cell, such
that no vibration and noise is located inside the car. Due to the complex dynamic
behaviour and the huge diversity of rubber vulcanisates, a great amount of preliminary
tests have to be carried out in the design phase of an engine mount. In order to reduce
time and costs at the design phase, effective finite element simulations have become
very popular in modern industry. In fact, these simulations cannot completely replace
experimental investigations, but they reduce the amount of experimental tests substan-
tially and therefore save time and costs. Based on this, the purpose of this work is to
provide an efficient finite element code for the simulation of engine mounts under vari-
ous predeformations in a broad frequency range. With respect to the loading condition
of engine mounts, the material behaviour of rubber has to be considered in terms of
the dependence on the static predeformation and the frequency of the small harmonic
vibration. Since finite element simulations are based on a mathematical description of
material behaviour, the purpose of this work is to develop a three-dimensional consti-
tutive approach that is capable of approximating the dynamic mechanical behaviour of
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rubber with respect to the predeformation and frequency dependent dynamic material
response. Due to computational efficiency, the constitutive model is transferred into the
frequency domain and finally extended by the concept of fractional derivatives. After
identification of the parameters, the classical and fractional extended formulations are
implemented into the finite element code MSC Marc to allow for an efficient simulation
of complex structures under various loading conditions.

1.2 Current state of research

The following section provides an overview of recent works dealing with investigations
and constitutive modelling of the quasi-static and dynamic mechanical behaviour of
rubber-like materials. As observed in recent studies, the mechanical material behaviour
of polymers is characterised by numerous complex nonlinearities including the nonlinear
stress-strain relation which occurs especially at finite strains, hysteresis effects, rate
and frequency dependence, predeformation dependence, relaxation and retardation as
well as softening effects such as the Mullins effect (Mullins 1948) or the amplitude
dependent Payne effect (Payne 1961). For a comprehensive overview of the mechanical
properties of rubber-like materials the reader is referred to specialised literature, e.g.
the textbooks by Tobolsky (1967), Schwarzl (1990) or Sperling (2006).

Along with experimental investigation, the mathematical description of rubber-like ma-
terials has been grown to a huge theory in the past and is still enlarged today. To date,
two powerful concepts in modelling the complex material behaviour of rubber have been
established in literature. The first one is based on phenomenological constitutive for-
mulations which do not account for the physical microstructure of the material. In this
context, the material description of phenomenological constitutive models is usually
based on unknown material parameters which are not related to physical background
and have to be determined by experimental investigation and parameter identification.
A comprehensive depiction of the phenomenological theory is provided, for instance,
by Treloar (1975), Krawietz (1986) or Tschoegl (1989).
The second concept in modelling materials are micromechanical constitutive formu-
lations. In contrast to phenomenological models, these approaches are based on the
network theory and describe the material on the basis of its microstructure. Moreover,
the material parameters of micromechanical formulations are related to physical back-
ground and thus enable for an interpretation of the material behaviour on the basis of
the microstructure. A detailed overview of micromechanical concepts and the network
theory is given by Heinrich et al. (1995).

The elastic properties of rubber-like materials are known to be only linear in a very
small range of deformation. If the material is loaded at finite strains, its material
response is usually characterised by a pronounced nonlinear relation between stress
and strain. The mathematical description of this phenomenon is mostly managed
via hyperelastic constitutive approaches which are based on isotropic strain energy
functions. Phenemenological formulations of this type are proposed, for instance, by
Mooney (1940), Rivlin (1948), Ogden (1972), James et al. (1975), James and Green
(1975), Yeoh (1993), Gent (1996), Attard and Hunt (2004) or Dorfmann and Ogden
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(2003) whereas micromechanically motivated strain energy functions are provided by
Kilian and Viglis (1984), Heinrich et al. (1988), Arruda and Boyce (1993), Heinrich and
Kaliske (1997), Kaliske and Heinrich (1999) or Heinrich et al. (2002). Hartmann (2001)
provides a comprehensive overview of various hyperelastic strain energy functions and
draws a comparison between them.

The viscoelastic material behaviour of rubber is a rate dependent phenomenon which
occurs by means of hysteresis effects, frequency dependence, relaxation or creep. A
comprehensive illustration of the physical structure of rubber and its linear viscoelastic
material properties is provided in the textbook by Tobolsky (1967). The investigation
and description of viscoelastic phenomena was first limited to linear viscoelasticity at
small strains and has been gradually enlarged to complex nonlinear viscoelasticity at
finite deformations. A detailed overview of the linear viscoelastic theory and the con-
stitutive concepts in modelling linear viscoelasticity is given by Tschoegl (1989) or Lion
(2007).
To date, the mathematical description of linear viscoelasticity is mostly based on rheo-
logical elements, such as elastic springs, viscous dampers and friction elements. These
models are well established in literature and represent the material behaviour on the
basis of linear differential equations of stress and strain. An individual element is only
able to describe specific properties, such as pure elasticity, but they can be used in
various combinations to represent complex material behaviour. A well-known element
combination which enables for a representation of linear viscoelastic material properties
is the so-called Maxwell element. This model is composed of an elastic spring and a
viscous damper in series and thus appropriate to represent viscoelastic material proper-
ties, such as rate dependence or relaxation. An overview of this model and several other
element combinations which are frequently applied to describe linear viscoelasticity is
given by Lion (2007) or Ranz (2007). Regarding literature, the description of vis-
coelastic material behaviour on this basis is well established and applied in a multitude
of works. In this context, the constitutive formulations by Holzapfel (1996), Kaliske
and Rothert (1997a), Lion (1997a), Reese and Govindjee (1998), Drozdov (1998), Lion
(2000b), Simo and Huges (2000), Middendorf (2001), Haupt and Lion (2002), Hart-
mann (2003) are mentioned among many others.
An essential approach for the mathematical description of linear viscoelastic behaviour
under finite deformations was first provided by Coleman and Noll (1961). The authors
introduced a three-dimensional formulation of finite linear viscoelasticity for isotropic
materials which is based on linear convolution integrals and limited to strain states
near the elastic equilibrium (Govindjee and Reese 1997). Other constitutive approaches
which describe the mechanical behaviour of rubber on the basis of convolution integrals
were proposed, for instance, by Simo (1987), Govindjee and Simo (1992a) or Kaliske
and Rothert (1997a).
An effective tool to model nonlinear viscoelastic behaviour under finite strains is the
concept of multiplicative viscoelasticity. This concept is based on a multiplicative de-
composition of the deformation gradient into elastic and viscous parts and has been
applied in several approaches, for instance, by Lubliner (1985), Lion (1997b) or Reese
and Govindjee (1998). In Govindjee and Reese (1997), the authors compare the well-
known viscoelastic damage model of Simo (1987) which is based on linear convolution
integrals with the approach by Reese and Govindjee (1998) which applies the concept of
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multiplicative viscoelasticity in combination with a nonlinear evolution law. In contrast
to models using convolution integrals, the concept of multiplicative viscoelasticity is
not restricted to strain states near the elastic equilibrium (Govindjee and Reese 1997).
Apart from the description of nonlinear finite viscoelasticity, the multiplicative decom-
position is also appropriate to describe other phenomena, such as thermoelasticity or
elastoplasticity. For instance, Lee (1969) and Kaliske and Rothert (1998) decomposed
the deformation gradient into elastic and plastic parts to model rate-independent elasto-
plasticity, whereas Haupt (2000) presented a formulation of finite thermoviscoelasticity
which is based on a multiplicative decomposition of the deformation gradient into a
thermal part and a mechanical part. An overview of the constitutive theory of multi-
plicative decomposition is provided by e.g. Meggyes (2001) and Lubarda (2004).
Eventually, modelling complex nonlinear viscoelasticity under finite deformations is
mostly based on formulations applying convolution integrals or multiplicative viscoelas-
ticity in combination with internal variables of stress or strain. Among a multitude
of other works, well-known formulations of this type are proposed, for instance, by
Simo (1987), Holzapfel (1996), Kaliske and Rothert (1997a), Lubliner (1985), Reese
and Govindjee (1998), Hartmann and Haupt (1999), Huber and Tsakmakis (1999), or
Lion (2000b).
Apart from constitutive modelling itself, computational and numerical aspects for the
implementation of viscoelastic constitutive models into a finite element code are pro-
vided by Simo and Ju (1987), Hartmann and Haupt (1999) or Hartmann (2002).

Besides hyperelastic and viscoelastic properties of rubber, Mullins (1948) observed a
strain-induced stress-softening during the first few loading cycles, which is known as
the Mullins effect. This softening effect depends on the maximum amount of pre-
strain in the loading history and is irreversible at moderate temperatures (Mullins
1950; Bueche 1961; Mullins 1969). Since early investigations of Mullins (1950) revealed
that the stress-softening is much more pronounced in filler loaded vulcanisates, the
softening effect was first assumed to be only present in filler-reinforced rubbers and
thus mainly related to a breakdown of the filler network. However, later investigations
by Harwood et al. (1965) and Harwood and Payne (1966) disproved this theory and
revealed a stress-softening in both, unfilled and filled vulcanisates. The authors even
observed that the amount of stress-softening is similar for unfilled and filler-reinforced
vulcanisates if the stress decrease is compared at the same level of stress instead of
at the level of strain. Based on this observation, the softening of unfilled and filler-
reinforced rubbers is mostly related to changes in the rubber matrix itself (Harwood
et al. 1965). Thereby, the more pronounced occurrence of the Mullins effect for filler-
reinforced rubbers is explained by the presence of the filler particles which cause an
increase in local deformation of the rubber matrix (Harwood et al. 1965; Mullins and
Tobin 1965; Harwood and Payne 1966). Referring to this assumption, Mullins and To-
bin (1965) introduced the so-called strain-amplification factor to describe the increase
of the local strain for filler-reinforced rubbers. Apart from the strain-induced softening
itself, recent investigations by Ihlemann (2005) revealed an anisotropy of the Mullins
effect. The author observed that the softening of the material depends on the loading
direction and is pronounced differently in various directions.
The mathematical description of the stress-softening of rubber is mostly based on clas-
sical damage mechanics. Several phenomenological constitutive approaches on this



Chapter 1 Introduction 5

basis are the well-known damage formulation of Simo (1987) as well as other dam-
age models proposed by, for instance, Miehe (1995), Lion (1996), Middendorf (2002),
Chagnon et al. (2004) or Heimes (2005). As explained by Hoefer (2009), the basic idea
of such damage models is related to a decrease of the load carrying area with increasing
damage of the material. In order to describe this decrease mathematically, it is quite
common to define the stored energy inside the material as a function of a scaling vari-
able which can be interpreted as a measure of the damage inside the material. On this
basis, increasing damage causes a reduction of the stored energy in the material and
consequently results in a decrease of the stress response. A comprehensive constitutive
formulation to describe more complex cyclic loading processes is introduced by Besdo
and Ihlemann (2003). This phenomenological inelastic constitutive approach applies a
material parameter which acts as a measure of the strain history. The model implies
strong nonlinearities and is capable of describing hysteresis effects, the influence of the
loading history as well as permanent deformations after unloading.
Among the phenomenological formulations, micromechanical damage models based on
the theory of networks are introduced, too. In this context, Heinrich and Vilgis (1993),
Klueppel and Schramm (2000) and Klueppel (2003) introduced micromecanical formu-
lations which are based on the so-called "tube-model". Besides these, Govindjee and
Simo (1991) and Govindjee and Simo (1992a) introduced a three-dimensional damage
formulation to describe stress-softening of filler-reinforced rubber under finite strains.
This approach is based on an additive decomposition of the deformation gradient and
motivated by the assumption that the material consists of a hard phase which repre-
sents the filler particles and of a soft phase which specifies the rubber matrix (Mullins
and Tobin 1957). On this basis, the authors decompose the free energy density into
a part which is related to chains running between cross-links and a part that refers
to chains running between particles. A micromechanical damage formulation which is
motivated by a breakdown of bonds between filler particles is proposed by Miehe and
Goektepe (2005). Further micromechanical damage models are given by Kaliske et al.
(2001) or Qi and Boyce (2004).
Apart from the mentioned constitutive formulations, a very special concept is provided
by Freund and Ihlemann (2010). The authors apply the concept of representative
directions and introduce a three-dimensional generalisation which is independent of
the type of the constitutive equations. The basic idea of this approach is to trans-
fer a one-dimensional formulation into three dimensions by calculating the solution of
the one-dimensional equations for various directions. Since the solution of the one-
dimensional models is calculated with respect to various directions, another benefit of
this approach is based on the fact that the anisotropy of the Mullins effect is auto-
matically included without taking the anisotropy into account in the one-dimensional
formulation itself.
Apart from the mathematical description, numerical aspects and formulations for the
finite element implementation of constitutive models applying damage mechanisms
are provided, for instance, by Simo and Ju (1987), Nacar et al. (1989), Govindjee and
Simo (1992b), Miehe (1994), Heinrich and Kaliske (1997), Kaliske and Rothert (1997b),
Miehe and Keck (2000), Kaliske et al. (2001), Besdo and Ihlemann (2003) or Matsuda
et al. (2004).
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The dynamic mechanical behaviour of elastomers is mostly studied using dynamic me-
chanical analysis (DMA). For a detailed description of this measuring technique, the
reader is referred to the textbook by Menard (1999). In general, the material is loaded
with a static predeformation which is superimposed by harmonic excitations. Via
FFT-analysis, the dynamic material response is investigated in the frequency domain
by means of the storage and loss modulus. On this basis, several dynamic mechanical
properties, such as amplitude or frequency dependence, can be investigated via step-
wise variation of e.g. strain amplitude or frequency during the harmonic loading.
In this context, first investigations of the dynamic mechanical behaviour of filler-
reinforced rubber were made by Gehman et al. (1941) and Gehman (1942). These
revealed a decrease of the dynamic stiffness with increasing dynamic amplitude of
strain. This amplitude dependent softening is known as the Payne effect and was stud-
ied in more detail by Fletscher and Gent (1953), Payne (1961), Payne (1962a) and
Payne (1962b). Apart from the decrease in the storage modulus with increasing strain
amplitude, the authors observed a pronounced maximum in the loss modulus at mid-
dle amplitudes of strain. In contrast to the Mullins effect, the amplitude dependent
softening is completely reversible and only present in filler-reinforced rubbers (Gehman
1942; Fletscher and Gent 1953; Hoefer 2009; Rendek and Lion 2010b).
Moreover, the manner in which the Payne effect occurs was found to be dependent on
several parameters. Detailed investigations with respect to the amount and type of
filler particles were done by Gehman (1942), Payne (1974), Dannenberg (1975), Dutta
and Tripathy (1992) or Wang and Robertson (2005). These revealed that the Payne
effect increases with an increasing amount of filler particles and is not pronounced in
unfilled rubber vulcanisates. Additionally, it was observed that filler loaded systems
with smaller particle size exhibit a more pronounced dependence on the dynamic strain
amplitude (Dutta and Tripathy 1992; Rendek and Lion 2010b).
Moreover, Payne (1960) and Payne (1962a) observed that the appearance of the ampli-
tude dependent softening is not present at arbitrary strains. The author found a yield
point at very small dynamic amplitudes below which the dynamic stiffness remains
constant and no amplitude dependence arises. This constance in the storage modulus
was also established at very high strain amplitudes by Ulmer et al. (1974).
Among others, Payne (1962a), Dutta and Tripathy (1992), Rendek and Lion (2008) or
Hoefer (2009) studied the influence of temperature on the dynamic moduli. These inves-
tigations revealed, that an increase of temperature results in a decrease of the dynamic
moduli. Since Lion (1998), Rendek and Lion (2008) and Rendek and Lion (2010b)
observed a heat build-up of the material under dynamic loading, which is increased
with rising amplitude and frequency, temperature dependence should be considered if
the material is loaded with great amplitudes and/or high frequencies.
Apart from the dependences already mentioned, the Payne effect is also affected by
the static preload and frequency. In recent investigations, Rendek and Lion (2010b)
found that the amplitude dependent softening is more pronounced at high frequencies
whereas the static preload has a minor influence on the Payne effect.
The physical interpretation of the Payne effect is mostly related to a dynamic break-
down and recovery of the filler aggregates in the filled vulcanisate and is little affected
by changes that take place in the rubber phase (Payne 1972; Klueppel and Heinrich
2002; Heinrich and Klueppel 2002; Heinrich and Klueppel 2004). Based on this as-
sumption, Lion and Kardelky (2004) explain the amplitude dependent characteristics
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of the storage and the loss modulus as follows: the monotonic decline of the storage
modulus with increasing dynamic amplitudes is caused by a decrease in the number
of intact filler bonds. Since the loss modulus is a measure of energy dissipation, it is
proportional to the breakage rate of the filler bonds, which is proportional to the num-
ber of intact bonds and increases with increasing amplitudes. Thus, the loss modulus
respectively the energy loss first increases with the amplitude because there are enough
intact filler bonds, and decreases after a maximum with the amplitude because the
number of intact bonds has considerably decreased.
Recent investigations in which the Payne effect was studied in more detail revealed com-
plex dependencies on the loading process respectively on the loading history. Wang and
Robertson (2005) and Robertson and Wang (2006) applied a special procedure of dy-
namic loadings and observed a complex dependence of the dynamic modulus on the
loading history. Basically, the specimens were loaded with a constant dynamic am-
plitude for several hours and then allowed to rest for some time. After applying an
amplitude sweep test, the authors observed jamming phenomena which they called the
"hole burning effect". Dutta and Tripathy (1992), Chazeau et al. (2000) and Rendek
and Lion (2010b) observed a dependence of the Payne effect on the loading process as
well as recovery of the dynamic moduli. In order to study the amplitude dependence
of the dynamic moduli with respect to complex dynamic loadings as they appear in
real applications, Wrana et al. (2003), Wrana and Haertel (2008) and Rendek and
Lion (2010b) applied bimodal loadings which consist of two superimposed harmonic
oscillations of different frequencies.
Based on these experimental observations, numerous constitutive approaches to de-
scribe the amplitude dependence of the dynamic material properties are provided in
literature. A well-known formulation in the frequency domain is the micromechanical
Kraus model (Kraus 1984). As described in Lion (2006), this model is limited to the
description of amplitude dependent effects and only valid in the frequency domain. The
approach is motivated by a permanent breakdown and recovery of the filler bonds and
the amplitude dependent effects are taken into account by a damage and a recovery
rate of the physical bonds. In principle, the approach is also capable of representing
temperature and frequency dependences if the parameters are defined as a function of
temperature or frequency. Since the formulation of the storage modulus and of the
loss modulus are independent of each other, there is no thermomechanical consistent
formulation within the time domain (Lion 2000b; Lion 2005). Other micromechanical
approaches based on the Kraus model are introduced by Vieweg et al. (1995) and Ulmer
(1996). Further models which are motivated by the theory of networks are proposed,
for instance, by Klueppel and Heinrich (1995), Huber et al. (1996), Boehm (2001) or
Heinrich and Klueppel (2004). An overview of several micromechanical concepts and
recent advances in the theory of filler networking is provided by Heinrich and Klueppel
(2002).
Apart from the micromechanical formulations, the Payne effect is commonly described
by rate independent phenomenological approaches. In this context, Rabkin et al.
(2003) introduced a phenomenological concept to describe the amplitude dependent
softening on the basis of friction elements. Other rate independent formulations of this
type are proposed, for instance, by Besdo and Ihlemann (1996), Ahmadi and Muhr
(1997) or Kaliske and Rothert (1998). Lion (2006) provides an overview of various
concepts in modelling the Payne effect.



8 1.2 Current state of research

A phenomenological approach of thermoviscoelasticity which also includes temperature
dependent effects is proposed by Lion (1998). The formulation is based on a multi-
plicative decomposition of the deformation gradient into a thermal and a mechanical
part and uses a scaling function which depends on the temperature. Additionally, an
internal variable is introduced and thixotropic effects are described by history depen-
dent viscosities. Another model which includes the temperature dependence on the
basis of a multiplicative decomposition of the deformation gradient into thermal and
mechanical parts is proposed in a recent work by Hoefer (2009). There, the free energy
function is additively decomposed into an elastic and inelastic mechanical parts and a
thermal part. Furthermore, the formulation employs process dependent viscosities and
an internal time scale to consider the complex deformation history.
A time domain formulation which describes transient effects arising due to changes in
dynamic amplitude is proposed by Ahmadi et al. (2005) whereas frequency domain
formulations are provided, for instance, by Joshi and Lenov (2001) or Richter et al.
(2010). A three-dimensional formulation which is applicable for both, time and fre-
quency domain, is proposed by Rendek and Lion (2010a). The authors linearise the
constitutive equations in the neighbourhood of the predeformed state, introduce a dy-
namic modulus tensor of fourth order and provide an implementation of the model into
finite element code.

The investigation and description of the vibroacoustic transfer behaviour of rubber at
high frequency vibrations which are superimposed upon large static predeformation is
mostly inspired by technical applications, such as mounting systems, vibration isolators
or tyres. Due to the loading situation and the fact that the dynamic properties depend
on predeformation and frequency, the influence of these values on dynamic stiffness
and damping behaviour of rubber is of great importance. On the one hand, it is ob-
served that the dynamic moduli increase with increasing frequency (Kari 2003; Hoefer
and Lion 2009; Rendek and Lion 2010b), whereas, on the other hand, the dependence
on static predeformation mostly appears in an increase in dynamic stiffness with in-
creasing predeformation (Sjoeberg and Kari 2003; Lion et al. 2009; Rendek and Lion
2010a; Suwannachit and Nackenhorst 2010). Thereby, the predeformation dependent
characteristics seem to be related to the hyperelastic behaviour of the material (Hoe-
fer 2009). In compression tests of unfilled and filled NR vulcanisates, Kim and Youn
(2001) observed an initial decline of dynamic stiffness at low precompression which
was followed by a subsequent increase at higher precompression. The authors relate
the initial decrease in dynamic stiffness to a breakage of the filler bonds whereas the
subsequent increase is interpreted by the limited extensibility of the rubber chains.
In order to describe the vibroaccoustic of rubber under large predeformation superim-
posed by harmonic vibrations it is quite common to consider the effects of predeforma-
tion and harmonic vibration separately. This concept was provided by Lianis (1963)
and is based on the assumption that the static predeformation is dated back in the past
such that the material already reached its equilibrium state. Since the static prede-
formation represents an equilibrium state of the material, viscoelastic effects are only
considered for the harmonic excitation. Moreover, the predeformed state is defined as
a new reference configuration and the constitutive equations are usually linearised in
the neighbourhood of the static predeformation.
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Based on this concept, Morman and Nagtegaal (1983) propose a constitutive formu-
lation for the finite element implementation of combined static predeformation with
superimposed small harmonic oscillations into the finite element code MSC Marc. The
constitutive approach inherits nine scalar-valued functions which depend on the first
and second derivative of the specific Helmholtz free energy with respect to the first and
second invariants and on the invariants themselves. From the separation of static pre-
deformation and superimposed harmonic vibration, the analysis procedure is divided
into two steps. First, the nonlinear material response due to the static predeformation
is evaluated in the time domain without consideration of viscoelastic or inertia effects.
In the second step, the nine scalar-valued material responses which result from the
superimposed harmonic excitation are calculated in the frequency domain. In this part
of the analysis, viscoelastic material behaviour and inertia effects are both considered.
A recent constitutive approach to represent frequency dependence of filler-reinforced
rubber and the corresponding finite element implementation on this basis is given by
Retka (2011).
In order to describe the frequency dependent material behaviour in a broad range, it is
very common to apply the concept of fractional derivatives (Lion and Kardelky 2004).
In contrast to classical viscoelastic formulations, the benefit of viscoelastic models of
fractional order is the small number of material parameters needed to represent the ma-
terial properties sufficiently over a broad frequency domain (Kari 2001a; Kari 2001b).
An overview about the mathematical theory of fractional derivatives is provided in the
textbook by Oldham and Spanier (1974). In Kari (2001a) and Kari (2001b), the author
presents a viscoelastic waveguide model based on fractional derivatives to describe the
frequency dependent dynamic behaviour of the axial stiffness of cylindrical vibration
isolators in the audible frequency range. This approach is validated by experimen-
tal investigations of a rubber cylinder with bonded steel plates in a broad frequency
range from 10 Hz up to 5000 Hz and agrees very well within the hole frequency range.
Sjoeberg and Kari (2002) and Sjoeberg and Kari (2003) introduce further fractional ap-
proachs to describe the experimentally observed frequency and amplitude dependence
of rubber in the frequency domain. These models describe the frequency dependent
behaviour on the basis of a Kelvin-Voigt element of fractional order and additionally
account for amplitude dependent effects by a generalised friction element. Ramirez and
Coimbra (2007) introduce a special type of fractional formulation by applying a frac-
tional derivative which is a function of the independent time. The model is validated
with experimental results and agrees very well in a wide frequency range over more
than eight orders of magnitude. Fractional formulations based on the finite viscoelastic
models of Simo (1987) and Reese and Govindjee (1998) as well as finite element im-
plementation are introduced by Adolfsson and Enelund (2003) and Adolfsson (2004).
A recent approach to describe the damping behaviour of VE dampers, which is based
on a fractional Kelvin-Voigt model as well as on a fractional Maxwell model is pre-
sented by Lewandowski and Pawlak (2011). Other fractional approaches are proposed
by Nonnenbacher (1991), Drozdov (1997) or Lion (2001).
With respect to finite element simulations, the numerical computation of fractional
formulations in the time domain is very time-consuming which is due to the non-local
character of the fractional derivative. In order to solve this problem, Schmidt (2003)
delivers an efficient proposal for the finite element implementation of a model with
fractional derivatives in the time domain. The basic assumption is related to a fading
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memory of fractional derivatives such that it is possible to consider parts of the history
with less temporal resolution without a loss of accurateness for the time integration.
Other numerical concepts for finite element computation of fractional order in the time
domain are given by Enelund and Josefson (1997), Enelund et al. (1999), Gaul and
Schanz (1994) and Gaul and Schanz (1999).
Apart from formulations in the time-domain, frequency domain formulations to repre-
sent frequency and amplitude dependence of rubber bushings are proposed by Garcia
(2006) and Garcia et al. (2007). The authors investigated the frequency and ampli-
tude dependent dynamic behaviour of carbon-black filled rubber bushings in axial and
radial directions. Based on their observations, they develop a model to describe the
axial and radial dynamic stiffness of rubber bushings with respect to frequency and
amplitude. The formulation is based on a separable elastic, viscoelastic and frictional
material model and the amplitude dependence is included by means of equivalent shear
moduli.

Apart from the description of just frequency dependent properties under harmonic
vibrations, several works deal with the description of predeformation and frequency
dependence under large static prestrain with superimposed oscillations. On the basis
of the general formulation by Haupt and Lion (2002), Lion et al. (2009) introduce a fre-
quency domain formulation to represent preload and frequency dependent phenomena.
The authors derive a frequency dependent dynamic modulus tensor of fourth order to
describe the dynamic viscoelastic behaviour in the frequency domain. The constitutive
equations are first derived in the time-domain, then linearised in the neighbourhood of
the predeformation and finally evaluated in the frequency domain. Kari (2003) inves-
tigates the dynamic stiffness of preloaded rubber isolators and presents a constitutive
model which is capable of representing both, frequency and predeformation depen-
dence, in the audible range up to 1000 Hz. In the same year, Sjoeberg and Kari (2003)
investigated the quasi-static and dynamic force response of a rubber vibration isolator
under large static predeformation superimposed by harmonic oscillations in the time
and frequency domain and observed a strong dependence on static precompression,
dynamic amplitude and frequency. The dynamic stiffness is found to increase with
static precompression and frequency and to decrease with dynamic amplitude whereas
the loss angle reveals a maximum at intermediate strains. Based on this, the authors
present a nonlinear dynamic model to describe these dependencies on frequency, pre-
deformation and amplitude simultaneously by splitting the total force into an elastic, a
viscoelastic and a friction part. Thereby, the elastic force is represented by a nonlinear
shape factor based approach, the viscoelastic force is modelled by a fractional deriva-
tive model, and the friction force is represented by a generalised friction element. Kim
and Youn (2001) introduce another approach to describe the influence of frequency and
predeformation. The formulation is derived by the linearisation of the nonlinear vis-
coelastic model of Simo (1987) in the neighbourhood of the static predeformation. On
this basis, the authors define the predeformed state as the new reference configuration
and separate the stress into static and dynamic parts. In order to describe the influence
of prestrain, a correction factor for the static deformation is additionally introduced.
Cho and Youn (2006) introduce an extension of the model proposed by Kim and Youn
(2001) by applying another correction factor to describe the amplitude dependence of
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the Payne effect as well. With respect to the loading condition of tyres, Suwanna-
chit and Nackenhorst (2010) present a constitutive model to represent the inelastic
behaviour of rubber under large cyclic preloading in combination with superimposed
excitations of high frequency. The authors combine the nonlinear viscoelastic model
of Simo (1987) with a pseudo-elastic approach to describe the related effects, such as
nonlinear elasticity, hysteresis and damage at low frequencies. The deformation gra-
dient is decomposed into a linear part which is associated with the behaviour at high
frequencies and a nonlinear part which is related to the inelastic deformation at low
frequency. Moreover, the authors present the linearisation of the constitutive approach
and provide a finite element implementation on the basis of the proposal by Morman
and Nagtegaal (1983).
Regarding computation aspects, a numerical approach for the finite element implemen-
tation of a tire model, the ALE-formulation, is introduced by Nackenhorst (2004). An
implementation of the viscoelastic model provided by Kim and Youn (2001) into a finite
element code is presented by Lee et al. (2003). Another numerical implementation of
the fractional formulation given by Sjoeberg and Kari (2003) is provided by Gil-Negrete
et al. (2009).

A very new area of investigation deals with so-called magneto sensitive rubbers. These
are filled with iron particles such that their stiffness can be controlled by applying an
external magnetic field. The sensitivity of the dynamic stiffness on the magnetic field
appears in an increase of stiffness with the magnetic field (Blom and Kari 2011; Blom
and Kari 2012). Based on experimental investigations, Blom and Kari (2011) made
the following observations: The rubber reveals a strong amplitude dependence even for
small strains and the magnetic sensitivity also strongly depends on the amplitude. Fur-
thermore, the elastic component is found to be magneto-sensitive whereas the depen-
dence of the viscoelastic component on the magnetic induction appears to be small. On
the basis of these observations, the authors introduce a nonlinear constitutive model for
the amplitude, frequency and magnetic field dependences of magneto-sensitive rubber
in the audible frequency range which is in very good agreement with the experimental
results.
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1.3 Composition of this work

The comprehensive presentation of this work is separated into several chapters.
The first three chapters are meant to introduce the reader to the mathematical re-
quirements needed for a better understanding. For this reason, the fundamentals of
the continuum mechanical theory as well as the main concepts of material modelling
this work refers to are first presented in chapters 2 and 3. Apart from the mathematical
basis, the focus of chapter 4 is the introduction of the material class of elastomers and
its complex material behaviour.
After the presentation of these basics, the experimental investigations to characterise
the behaviour of the underlying elastomers are presented in chapter 5. In chapter 6, the
classical and the fractional extended constitutive approaches to describe the dynamic
mechanical material characteristics are presented. The identification of the material pa-
rameters and the implementation of the constitutive model into the finite element code
MSC Marc are provided in chapter 7 and 8. Section 9 deals with the validation of the
constitutive approach and provides a comparison between validation experiments and
the finite element simulation. Moreover, the finite element computation of a real engine
mount is performed in a frequency range up to 10 kHz. Finally, chapter 10 concludes
with the outcome of this thesis and provides an outline of further improvements.

Appendix A provides a short overview about tensor algebra and is used to acquaint
the reader with the mathematical notation which is used in this work.



Chapter 2

Basics of continuum mechanics

Introduction

The continuum mechanical theory is a powerful tool to describe physical phenomena of
materials mathematically. Instead of considering the microstructure of materials, such
as the molecular structure, the mathematical description of this theory is only focused
on the macroscopic level. On this basis, the material body is considered as an uniformly
distributed continuum which is composed of an infinite number of individual material
points. Each of these materials points is providing the material properties and carrying
all physical quantities, such as mass density or temperature. In general, the compre-
hensive theory of continuum mechanics can roughly be divided into three fields.
The first one is the kinematics which is focused on the mathematical description of
motion, displacement and deformation of material bodies due to external forces.
The balance principles constitute the second field in continuum mechanics. These prin-
ciples can be classified as natural laws arising from physical experience. They are in-
troduced axiomatically and can not be proven.
The last field in continuum mechanics is related to the constitutive equations. They can
be interpreted as mathematical material laws which deliver the connection between the
external forces acting on a material body and the resulting deformation.

Outline

The focus of this chapter is to provide the basics of the continuum mechanical theory,
which are relevant for this work. The first section gives an overview of the kinemat-
ics. The balance principles are introduced in the second section of this chapter, whilst
the last section presents a special form of the second law of thermodynamics which
is commonly used to formulate meaningful constitutive equations. Since the consti-
tutive equations themselves define their own theory, these will be introduced in the
next chapter separately. A comprehensive overview about the theory of continuum
mechanics and materials is given in specialised literature, as for instance Haupt (2000),
Holzapfel (2000) or Greeve (2003). Moreover, detailed discussions about the kinematics

13
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and balance principles, the following presentation mostly refers to, are provided in the
manuscripts by Lion (2008) and Johlitz (2009).

2.1 Kinematics

The kinematics delivers suitable kinematic variables and relations which are necessary
for the description of motion, displacement and deformation of a material body. The
following section briefly overviews the most important kinematic variables and rela-
tions, which are applied in this work. A detailed description of the kinematic variables
and relations is provided by Haupt (2000), Holzapfel (2000) or Greeve (2003).

2.1.1 Motion and displacement

As explained by Johlitz (2009), the description of motion, displacement and deforma-
tion of material bodies is based on so-called configurations. As illustrated figure 2.1,
two basic configurations are introduced in continuum mechanics. The first one is the
reference configuration and the second one is the current configuration.

dx

dX

current configuration

reference configuration

x

X

X

X

Y

Y

e1

e2

e3

χ(X, t)

u

Figure 2.1: Reference and current configuration

The reference configuration usually refers to an undeformed state of the material body
whereas the current configuration represents the current deformed state of the material.
As given by figure 2.1, the positions of a material point X in the reference and current
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configuration are specified by position vectors X and x. The distances between two
material points X and Y in the reference and current configuration are expressed by
vectors dX and dx.

In principle, the kinematic relations can be expressed with respect to each configuration
such that a mathematical description of the material can be managed on the basis of
the reference or the current configuration. If the material is described on the basis of
the reference configuration, the variables are expressed by functions of the reference
position vector X. This type of consideration is usually called material or Lagrangian
description. In contrast to that, a description on the basis of the current configuration
implies that all variables are represented by functions of the current position vector x.
This type of consideration is commonly called spatial or Eulerian description.

Referring to the manuscript by Johlitz (2009), the relationship between both consid-
erations is established by a bijective motion function which builds up the connection
between the position vector X of a material point X in the reference configuration and
its position vector x in the current configuration

x = χ(X, t) and X = χ
−1(x, t) . (2.1)

Based on these relations, the velocity and acceleration fields with respect to the refer-
ence configuration are derived by differentiation of the motion with respect to time

ẋ(X, t) =
dχ(X, t)

dt
= v(X, t) and ẍ(X, t) =

d2
χ(X, t)

dt2
= a(X, t) . (2.2)

In order to derive the velocity and acceleration fields in the current configuration, the
position vector X in (2.2) is replaced by the inverse of the motion

v(x, t) = ẋ(χ−1(x, t), t) and a(x, t) = ẍ(χ−1(x, t), t) . (2.3)

By differentiation of the velocity field in (2.3), an alternative representation of the
acceleration field in the current configuration is given by

a(x, t) =
∂v(x, t)

∂t
+ [gradv(x, t)] v(x, t)

=
∂v(x, t)

∂t
+

[
∂v(x, t)

∂x

]
v(x, t) .

(2.4)

Therein, the first term represents the local part of the acceleration whereas the second
term denotes its convective part. The last quantity to be introduced is the displacement
vector

u(X, t) = x(X, t) − X . (2.5)

It provides the connection between position vector X at the initial time t0 and current
position vector x at the time t > t0 and thus represents the displacement of a material
point X over time.
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2.1.2 Deformation gradient

The deformation gradient F is a fundamental quantity to describe the deformation of
a material body. It is a tensor of 2nd order

F = Fij [ei ⊗ ej] (2.6)

which is defined by differentiation of the motion with respect to the position vector X

F =
∂χ(X, t)

∂X
=

∂x

∂X
= Gradx = 1 + Gradu = 1 + h . (2.7)

1 is the identity tensor and h denotes the displacement gradient. As shown by Johlitz
(2009), the deformation gradient maps material line elements dX of the reference con-
figuration onto material line elements dx of the current configuration1

dx = F dX . (2.8)

The inverse of the deformation gradient is given by

F−1 =
∂χ−1(x, t)

∂x
=

∂X

∂x
= gradX (2.9)

and enables for the opposite transformation of material line elements

dX = F−1 dx . (2.10)

In addition, the deformation gradient and its determinant J = detF offer the possibility
to map material surface and volume elements between both configurations

da = (detF)F−T dA = J F−T dA ,

dv = detF dV = J dV .
(2.11)

The deformation gradient F contains rotational and stretching parts of deformation.
Regarding constitutive modelling, rotational parts of deformation are often not con-
sidered such that a separation into rotational and stretching parts of deformation is
beneficial. In this context, the polar decomposition can be applied meaning that the
deformation gradient is multiplicatively decomposed into a rotational tensor R and the
stretching tensors U or V

F = RU = VR . (2.12)

In this, the orthogonal tensor R specifies the rotational part of deformation whereas the
left stretch tensor V respectively the right stretch tensor U characterise the stretching
parts of deformation. Both stretching tensors are positively definite and symmetric
and can be transformed into each other by applying the operations2

V = RURT , U = RT VR . (2.13)

1simple scalar product of tensor A and vector b: Ab = Aij bj ei (cf. Appendix A)
2simple scalar product of 2nd order tensors A and B: AB = Aij Bij ei ⊗ ej (cf. Appendix A)
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Apart from the polar decomposition, it is straight forward to eliminate the rotational
parts of deformation. In this context, the right Cauchy-Green tensor C on the reference
configuration and the left Cauchy-Green tensor B on the current configuration are
introduced as

C = FT F = (RU)T (RU) = UT RT RU = U2 ,

B = FFT = (VR) (VR)T = VRRT VT = V2 .
(2.14)

In contrast to the deformation gradient F, the tensors C and B are symmetric and
link squares of material line elements. Thus, they only contain the stretching parts of
deformation whereas its rotational part is eliminated.

2.1.3 Strain tensors

Apart from the deformation tensors, the theory of continuum mechanics introduces
equivalent strain tensors with respect to each configuration. As presented in Johlitz
(2009), these tensors can be derived by subtraction of squares of material line elements.
In so doing, the Green-Lagrange strain tensor E acting on the reference configuration
and the Almansi strain tensor A referring to the current configuration are defined by

E =
1

2
(C − 1) ,

A =
1

2
(1 − B−1) .

(2.15)

Moreover, the strain tensors can be transformed into each other by applying the push-
forward and the pull-back operation

A = F−T EF−1 ,

E = FT AF .
(2.16)

Regarding surface strains, the tensors e and a are obtained by subtraction of squares
of material surfaces elements

e =
1

2
(C−1 − 1) ,

a =
1

2
(1 − B) .

(2.17)

The first one is the Piola strain tensor e which is related to the reference configu-
ration whereas the second one is the Finger tensor a which operates on the current
configuration. Similar to E and A, both tensors can be transferred into each

a = FeFT ,

e = F−1 aF−T .
(2.18)
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2.1.4 Deformation rate and strain rate

The velocity gradient and the strain rate are essential for the mathematical description
of inelastic and viscous phenomena. The velocity gradient and the strain rate can
be defined with respect to each of the configurations. Referring to the manuscript by
Johlitz (2009), the material velocity gradient in the reference configuration is defined by
the time derivative of the deformation gradient F respectively by the material gradient
of the velocity field v(X, t)

Ḟ = Gradv(X, t) =
∂v

∂X
. (2.19)

Regarding the actual configuration, the spatial velocity gradient L arises from the
spatial gradient of the velocity field v(x, t)

L = Ḟ F−1 = gradv(x, t) =
∂v

∂x
. (2.20)

The spatial velocity gradient L can be additively decomposed into a symmetric part
D and a skew symmetric part W

L = D + W . (2.21)

Therein, tensor D specifies the deformation rate tensor and tensor W is the spin tensor

D =
1

2

(
L + LT

)
= DT ,

W =
1

2

(
L − LT

)
= −WT .

(2.22)

Since both tensors arise from the spatial velocity gradient L, they are part of the
actual configuration as well. Moreover, the spatial velocity gradient L enables for a
mathematical representation of the temporal changes of material line elements, surface
elements and volume elements

(dx)• = L dx ,

(da)• =
(
(trL)1 − LT

)
da ,

(dv)• = (trL) dv .

(2.23)

With respect to the reference configuration, the strain rate tensor Ė is derived by
differentiation of the Green-Lagrange strain tensor E with respect to time

Ė =
1

2

(
ḞTF + FT Ḟ

)
. (2.24)

The relation between both tensors D and Ė is established by the push-forward and
pull-back operation

D = F−T Ė F−1 , Ė = FT DF . (2.25)
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An alternative representation of the deformation rate tensor D is given by the upper
Lie derivative of the Almansi strain tensor A

D =
△

A= Ȧ + LT A + A L . (2.26)

For more details about the mentioned kinematics, the reader is referred to Haupt (2000)
and Johlitz (2009).

2.1.5 Decomposition of the deformation gradient

As already shown by means of the polar decomposition, the multiplicative decomposi-
tion of the deformation gradient F is a common concept to split the deformation into
several parts which can be considered separately. Thereby, the multiplicative decompo-
sition usually goes along with the introduction of an intermediate configuration which
exists between the reference and current configuration. Furthermore, the multiplica-
tive decomposition usually leads to corresponding kinematic variables, as for instance
values of deformation and stretch, which are acting on the intermediate configuration.
Apart from the polar decomposition, several other types are provided in literature. One
of these is the well-known decomposition of the deformation gradient into elastic and
inelastic parts which is commonly applied in modelling nonlinear viscoelasticity under
finite deformations. This concept is known as multiplicative viscoelasticity and was
applied in numerous works in the past, e.g. Lubliner (1985) or Reese and Govindjee
(1998). Another decomposition of the deformation gradient into thermal and mechan-
ical parts is often used to describe thermoviscoelastic or thermoviscoplastic material
properties. Formulations of this type which additionally take into account temperature
effects, are proposed, for instance, by Lion (2000a) or Hoefer (2009). Lee (1969) origi-
nally introduced a plastic intermediate configuration and decomposed the deformation
gradient into elastic and plastic parts to describe elastoplasticity. Among others, sim-
ilar concepts were also applied by Simo (1988) or Kaliske and Rothert (1998). For an
overview of the different types of decomposition, the reader is referred to the presen-
tations given by Meggyes (2001) or Lubarda (2004).

The constitutive approach in this work is based on a proposal by Haupt and Lion (2002)
and applies a relative decomposition in the time domain and a volumetric-isochoric
decomposition of the deformation gradient. In order to facilitate understanding by the
reader, the time-relative and the volumetric-isochoric decomposition are introduced in
the following.

Volumetric-isochoric decomposition

The volumetric-isochoric decomposition is commonly applied to separate volume changes
from changes in the shape. This type of decomposition is related to the assumption
that the deformation of a material body consists of a volumetric part and an isochoric
part which is caused by changes in the shape of the material body. In order to sep-
arate these two parts from each other, the deformation gradient F is multiplicatively
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decomposed into a volumetric part F̄ and an isochoric part F̂

F = F̄ F̂ with F̄ = J
1

3 1 and F̂ = J− 1

3 F . (2.27)

As illustrated in figure 2.2, the volumetric-isochoric decomposition goes along with the
introduction of an intermediate isochoric configuration Ii.

R

C

Ii

reference

current

isochoric

F̂

F̄

F

Figure 2.2: Volumetric-isochoric configuration

Considering this, the isochoric right Cauchy-Green tensor Ĉ and the isochoric left
Cauchy-Green tensor B̂ are defined by

Ĉ = F̂T F̂ ,

B̂ = F̂ F̂T .
(2.28)

The isochoric Green-Lagrange strain tensor and the isochoric Piola strain tensor are
given by

Ê =
1

2

(
Ĉ − 1

)
,

ê =
1

2

(
Ĉ−1 − 1

)
.

(2.29)

If the definition of the isochoric deformation gradient in (2.27) is taken into account,
the isochoric right Cauchy-Green tensor can also be expressed in terms of the right
Cauchy-Green tensor

Ĉ = F̂T F̂ = J− 1

3 FT J− 1

3 F = J− 2

3 FT F = J− 2

3 C . (2.30)

Relative decomposition

In contrast to the polar or volumetric-isochoric decomposition, the relative decomposi-
tion of the deformation gradient is a decomposition with respect to time. As illustrated
in figure 2.3, a relative intermediate configuration It which is present at the time s,
is first introduced. Since the intermediate configuration exists between the reference
configuration R at time t0 = 0 and the current configuration C at time t, it represents
an arbitrary deformation state in the past history. The relative deformation gradient
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Ft(s) is introduced as follows

Ft(s) = F(s)F−1(t) . (2.31)

This tensor maps tangent vectors of the current configuration onto tangent vectors of a
previous configuration It at time s, as for instance a predeformed state, and thus enables
for a description of history dependence. Since the relative intermediate configuration
does not possess its own kinematic variables, the deformation of the material body is
described on the basis of the reference or the current configuration.

R

C

It

reference

current

time-relative

F(s)

Ft(s)

F(t)

Figure 2.3: Relative decomposition

Based on the definition of the relative deformation gradient in (2.31), the corresponding
relative kinematic tensors present at the time s can be introduced. The relative left
and right Cauchy-Green tensors are defined by

Bt(s) = Ft(s)F
T
t (s) ,

Ct(s) = FT
t (s)Ft(s) ,

(2.32)

whereas the relative Green-Lagrange strain tensor and the relative Piola strain tensor
at the time s are given by

Et(s) =
1

2

(
Ct(s) − 1

)
,

et(s) =
1

2

(
C−1

t (s) − 1
)
.

(2.33)

In this work, the relative decomposition is only applied to the isochoric part of the
deformation such that a relative isochoric deformation gradient arises

F̂t(s) = F̂(s) F̂−1(t) . (2.34)

A detailed description of the relative decomposition is provided in the textbook by
Truesdell and Noll (1965).



22 2.2 Balance equations

2.2 Balance equations

The balance equations are classified as natural laws which are mathematically intro-
duced as axiomatic relations. A detailed description of the balance principles, the
following presentation refers to, is given by Haupt and Lion (2002) and Johlitz (2009).
The theory of continuum mechanics introduces the following five balance equations:

• the balance of mass,

• the balance of linear momentum,

• the balance of rotational momentum,

• the balance of internal energy,

• the balance of entropy.

These balance laws can generally be formulated in the local, strong form or in the
global, weak form. Additionally, they can either be expressed with respect to the
reference configuration or with regard to the current configuration. As presented by
Johlitz (2009), each balance equation can be derived from a so-called master balance.
In its global form, the master balance is defined by the following equation

d

dt

∫

B

ρΨ(x, t) dv =

∫

∂B

ϕ(x, t) da +

∫

B

σ(x, t) dv +

∫

B

Ψ̂(x, t) dv . (2.35)

Based on this equation, the temporal change of a physical variable Ψ multiplied by the
mass density ρ is equal to the sum of its flux ϕ over the boundary surface, a volume-
distributed supply σ and a production term Ψ̂. The corresponding local form of the
master balance with regard to an arbitrary material point is given by

ρ Ψ̇ = divϕ + σ + Ψ̂ . (2.36)

Since this work only refers to the local form of the balance principles, they will only be
introduced in their local formulation with respect to each configuration in the following.

2.2.1 Balance of mass

The balance of mass indicates that the mass m of a material body is constant and does
not change over time

d

dt
m = 0 . (2.37)

Following Johlitz (2009) and taking the local form of the master balance in (2.36) and
the specification Ψ = 1, ϕ = 0, σ = 0 and Ψ̂ = 0 into account, the local form of the
balance of mass with respect to the current configuration is expressed by

ρ̇ + ρ div v = 0 . (2.38)
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Therein, variable ρ denotes the mass density of the current configuration. The relation
between ρ and the mass density ρ0 in the reference configuration can be obtained by
the relations ρ0 = dm/dV , ρ = dm/dv and (2.11)

ρ = ρ0 J
−1 . (2.39)

The local form of the balance of mass with respect to the reference configuration is
defined by

ρ0 = ρ0(X) . (2.40)

2.2.2 Balance of linear momentum

The balance of linear momentum quotes that the temporal change of the linear mo-
mentum I of a material body is equal to the external forces k which act on the body

d

dt
I = k . (2.41)

The local form of the balance of linear momentum in the current configuration is defined
by

divT + ρk = ρ
d2

dt2
x , (2.42)

whereas the local form of the balance of linear momentum in the reference configuration
is given by

DivP + ρ0 k = ρ0
d2

dt2
X . (2.43)

Therein, T is the Cauchy stress tensor and P is the 1st Piola-Kirchhoff stress tensor.
The first one is a variable of the current configuration which relates the current force
acting on a material body to its current cross section area. In contrast to that, the 1st
Piola-Kirchhoff stress tensor relates the current force acting on a material body to its
initial cross section area. The two remaining terms ρk and ρ0 k are external forces per
unit volume acting on the material body. As demonstrated in fundamental textbooks,
the following relation between the 1st Piola-Kirchhoff stress tensor and the Cauchy
stress tensor is obtained (Johlitz 2009)

P = (detF)TF−T . (2.44)

2.2.3 Balance of rotational momentum

The balance of rotational momentum states that the temporal change of the rotational
momentum IR is equal to the external moments M which act on a stationary material
point of a material body

d

dt
IR = M . (2.45)
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The local form of the balance of rotational momentum with respect to the current
configuration reads as

T = TT (2.46)

and implies the symmetry of the Cauchy stress tensor. Considering this outcome and
(2.44), the balance of rotational momentum with regard to the reference configuration
is given by

PFT = FPT . (2.47)

2.2.4 Balance of internal energy

The balance of internal energy corresponds to the first law of thermodynamics and
states that the internal energy per unit mass of a material body must be equal to the
mechanical and thermal work which is performed on the body. As presented by Johlitz
(2009), the local form of the balance of internal energy with respect to the current
configuration is defined by3

ė =
1

ρ
T ·D − 1

ρ
div q + r . (2.48)

From this equation, the temporal change of the internal energy per unit mass ė is equal
to the sum of the externally delivered stress power T · D, heat flux q and volume-
distributed heat supply r. Referring to Johlitz (2009), the local form of the balance of
internal energy with respect to the reference configuration can be derived by applying
the concept of dual variables (Haupt and Tsakmakis 1989)

1

ρ0
T̃ · Ė =

1

ρ
T ·D . (2.49)

In so doing, the balance of internal energy with respect to the reference configuration
is written as

ė =
1

ρ0
T̃ · Ė − 1

ρ0
Div q0 + r . (2.50)

Therein, T̃ is the 2nd Piola-Kirchhoff stress tensor which is defined by

T̃ = (detF)F−1 TF−T . (2.51)

The variable q0 in (2.50) is the heat flux of the reference configuration and reads as

q0 = J F−1 q . (2.52)

2.2.5 Balance of entropy

The balance of entropy considers the second law of thermodynamics. As described
by Johlitz (2009), the second law of thermodynamics is defined by an inequality which

3The dot in (2.48) denotes the double scalar product of tensors A and B: A · B = Aij Bij (cf.
Appendix A)
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indicates that the entropy production η̂ inside a material body must be equal or greater
than zero

η̂ ≥ 0 . (2.53)

With regard to the current configuration, the entropy inequality is given by

ρ η̇ + div
(q
θ

)
− ρ r

θ
= η̂ ≥ 0 . (2.54)

Therein, the first term denotes the change in entropy over time, the second term is
the entropy flux, the third term represents the entropy supply and θ is the absolute
temperature. With respect to the reference configuration, the entropy inequality reads
as

ρ0 η̇ + Div
(q0

θ

)
− ρ0 r

θ
= η̂ ≥ 0 . (2.55)

Regarding material modelling, physically consistent constitutive equations must be
compatible with the second law of thermodynamics meaning that the internal entropy
production is non-negative for arbitrary deformation and temperature processes. Con-
stitutive equations which fulfil this requirement are called thermomechanically consis-
tent.

2.2.6 Clausius-Duhem inequality

The Clausius-Duhem inequality (CDI) is an alternative representation of the second
law of thermodynamics which is frequently applied in material modelling. In contrast
to the second law of thermodynamics, the Clausius-Duhem inequality is not based on
the entropy, but on the specific Helmholtz free energy

Ψ = e − θ η , (2.56)

with the specific entropy η, the specific internal energy e and the absolute temperature
θ. In order to derive the Clausius-Duhem inequality, the specific Helmholtz free energy
is first differentiated with respect to time and then inserted into the entropy inequal-
ity (2.54) respectively (2.55). As a result of these operations, the Clausius-Duhem
inequality with respect to the current and the reference configurations is finally given
by

−ρ Ψ̇ − ρ η θ̇ − q

θ
grad θ + T ·D ≥ 0 ,

−ρ0 Ψ̇ − ρ0 η θ̇ − q0

θ
Grad θ + T̃ · Ė ≥ 0 .

(2.57)

The benefit of the Clausius-Duhem inequality is based on the fact that this alternative
expression applies the specific Helmholtz free energy as thermodynamic potential. On
this basis, it is much easier to define thermomechanical consistent constitutive models.
This work only deals with isothermal processes, which means that there are no temporal
or spatial changes in the temperature θ. As a consequence of this fact, the Clausius-
Duhem inequality reduces to the Clausius-Planck inequality (CPI) in the current and
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reference configuration
−ρ Ψ̇ + T ·D ≥ 0 ,

−ρ0 Ψ̇ + T̃ · Ė ≥ 0 .
(2.58)

From a physical point of view, the Clausius-Planck inequality postulates that the stress
power supplied to a material body must be equal to or greater than the temporal
change in the stored free energy inside the material body. Since this work is concerned
with isothermal processes, the Clausius-Planck inequality forms the basis to derive
thermomechanically consistent material laws.



Chapter 3

Theory of material modelling

Introduction

The mechanical properties of rubber-like materials are generally characterised by a num-
ber of nonlinearities. These include pronounced rate or frequency dependences, stress-
softening phenomena, nonlinear stress-strain characteristics, amplitude dependences as
well as numerous other effects. A comprehensive and detailed overview of the mechan-
ical properties of polymers is provided in the specialised textbooks by Tobolsky (1967),
Schwarzl (1990) or Sperling (2006).
The theory of material modelling focuses on the mathematical description of the com-
plex material behaviour of elastomers by suitable material laws. These material laws
are commonly called constitutive equations and deliver the relation between the defor-
mation of a material body and the forces acting on it. As already stated in chapter 2,
physically meaningful constitutive equations have to be formulated in a thermodynam-
ically consistent manner such that they conform to the second law of thermodynamics
or alternative representations, such as the Clausius-Duhem inequality.

Outline

The aim of this chapter is to introduce the basics of the theory of material modelling
the present work is engaged with. For this reason, the following sections give a brief
overview about

• hyperelasticity,

• linear viscoelasticity,

• fractional viscoelasticity,

• nonlinear finite viscoelasticity,

• and frequency-temperature shifting technique.

27
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Thereby, the following presentation mostly refers to the writings by Lion (2007) and
Johlitz (2009). Apart from these demonstrations, a detailed description of the consti-
tutive theory including several other fields is provided, for instance, by Truesdell and
Noll (1965), Treloar (1975), Krawietz (1986) or Tschoegl (1989). Since the constitutive
approach of finite viscoelasticity by Haupt and Lion (2002) forms the basis of this work,
the general approach will additionally be introduced.

3.1 Hyperelasticity

As illustrated in figure 3.1, rubber-like materials are mainly characterised by a nonlinear
relation between stress σ and strain ε.

strain ε

st
re

ss
σ

Figure 3.1: Nonlinear stress-strain relation

The mathematical description of this nonlinear material behaviour is commonly de-
scribed via hyperelastic formulations meaning that the stress can be derived by dif-
ferentiation of a strain energy function with respect to deformation. Among others,
well-know hyperelastic approaches based on isotropic strain energy functions are pro-
posed by Mooney (1940), Rivlin (1948) or Yeoh (1993). Moreover, a comprehensive
overview and a comparison of several hyperelastic concepts of this type is given by
Hartmann (2001).
As presented by (Johlitz 2009), the specific Helmholtz free energy Ψ is usually defined
as a thermodynamic potential which depends on the left or the right Cauchy-Green
tensor B or C

Ψ = Ψ(B) or Ψ = Ψ(C) . (3.1)

In order to derive a thermomechanical consistent formulation of the constitutive equa-
tion of the stress, it is necessary to calculate the time derivative of (3.1) and to evaluate
the Clausius-Duhem inequality (2.57). In terms of isothermal processes at constant
temperature, the nonlinear stress-strain relation can alternatively be deduced from the
reduced Clausius-Planck inequality (2.58). Following this procedure and taking the ref-
erence configuration into account, the material time derivative of the specific Helmholtz
free energy is first given by

Ψ̇(C) =
∂Ψ

∂C
· Ċ . (3.2)
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Considering relation (2.15) between the right Cauchy-Green tensor C and the Green-
Lagrange strain tensor E, the time derivative Ċ in (3.2) can be replaced by

Ċ = 2 Ė , (3.3)

such that (3.2) can be rewritten as

Ψ̇(C) = 2
∂Ψ

∂C
· Ė . (3.4)

Inserting this expression into the Clausius-Planck inequality (2.58), the following in-
equality is obtained [

T̃ − 2 ρ0
∂Ψ

∂C

]
· Ė ≥ 0 . (3.5)

In terms of thermomechanical consistency, this inequality must hold for arbitrary de-
formation processes. In order to satisfy this requirement and subsequently derive a
suitable mathematical description of the stress-strain relation, it is straight forward
to follow the argumentation given by Coleman and Noll (1963). According to that,
(3.5) must be satisfied for arbitrary rates of the Green-Lagrange strain tensor Ė. This
requirement is automatically fulfilled if the term in brackets of (3.5) is equal to zero.
Regarding this, the constitutive equation for the 2nd Piola-Kirchhoff stress tensor is
given by

T̃ = 2 ρ0
∂Ψ

∂C
. (3.6)

With regard to the current configuration, the constitutive equation for the Cauchy
stress can be derived in a similar manner and finally reads as

T = 2 ρB
∂Ψ

∂B
. (3.7)

Since this work is engaged with finite hyperelasticity and incompressible material be-
haviour, the concepts of finite hyperelasticity and incompressible hyperelasticity are
introcuced in the following. A detailed description of these formulations, the following
presentation refers to, is given by Johlitz (2009).

3.1.1 Finite hyperelasticity

Regarding finite deformations, the nonlinear stress-strain relation is usually described
by means of a representation via invariants. In this context, the specific free Helmholtz
energy is not defined as a function of B or C itself, but as a function of their main
invariants IB, IIB, IIIB or IC, IIC, IIIC

Ψ(B) = Ψ(IB, IIB, IIIB) or Ψ(C) = Ψ(IC, IIC, IIIC) . (3.8)
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In this, the three main invariants are given by

IC = tr C = C · 1 ,

IIC =
1

2

(
(C · 1)2 − CT ·C

)
,

IIIC = det C = (detF)2 .

(3.9)

Following the same procedure as before and taking the reference configuration into
account, the material time derivative of the specific Helmholtz free energy is first cal-
culated

Ψ̇(C) =
∂Ψ

∂C
· Ċ =

[
∂Ψ

∂IC

∂IC
∂C

+
∂Ψ

∂IIC

∂IIC
∂C

+
∂Ψ

∂IIIC

∂IIIC
∂C

]
· Ċ . (3.10)

Therein, the derivatives of the invariants with respect to the right Cauchy-Green tensor
C read as

dIC
dC

= 1 ,

dIIC
dC

= IC 1 − C ,

dIIIC
dC

= (detC)C−T .

(3.11)

Inserting these relations into (3.12) and considering (3.3) as well as the symmetry of
C (C−T = C−1), the material time derivative of the specific Helmholtz free energy is
given by

Ψ̇(C) = 2

[
∂Ψ

∂IC
1 +

∂Ψ

∂IIC
(IC 1−C) +

∂Ψ

∂IIIC
(detC)C−1

]
· Ė . (3.12)

After evaluation of the Clausius-Planck inequality based on Coleman and Noll (1963),
the constitutive equation for the 2nd Piola-Kirchhoff stress tensor reads as

T̃ = 2 ρ0
∂Ψ

∂IC
1 + 2 ρ0

∂Ψ

∂IIC
(IC 1−C) + 2 ρ0

∂Ψ

∂IIIC
(detC)C−1 . (3.13)

Regarding the current configuration and taking the theorem of Cayley-Hamilton into
account

B3 − IB B2 + IIB B − IIIB 1 = 0 , (3.14)

the constitutive equation for the Cauchy stress tensor finally reads as

T = 2 ρ
∂Ψ

∂IIIB
1 + 2 ρ

∂Ψ

∂IB
B − 2 ρ

∂Ψ

∂IIB

(
IIB 1 − IIIB B−1

)
. (3.15)

3.1.2 Finite incompressible hyperelasticity

In general, elastomer materials are characterised by nearly incompressible behaviour
meaning that their volume remains constant over deformation. From a mathematical
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point of view, incompressibility can be expressed by the conditions

div v = 1 ·D = 0 , C ·C−1 = 0 or J = det F = 1 . (3.16)

Based on these conditions and relation (3.9), the third invariants of the left and right
Cauchy-Green tensor are equal to 1 and thus vanish after differentiation with respect
to deformation

IB = IC = (detF)2 = 1 ⇒ İB = İC = 0 . (3.17)

On this basis, the specific Helmholtz free energy can be defined as a function of only
the first and the second invariants of the left or right Cauchy-Green tensor

Ψ(B) = Ψ(IB, IIB) or Ψ(C) = Ψ(IC, IIC) . (3.18)

In order to derive the stress-strain relation in terms of incompressible material be-
haviour, the relations 1 · D = 0 and C · C−1 = 0 are considered. Since the con-
stitutively undetermined reaction stress does not contribute to the stress power, it is
given by −p1 in terms of the current configuration and by −pC−1 in terms of the
reference configuration. If relations (3.11) and (3.3) are taken into account, the mate-
rial time derivative of the specific Helmholtz free energy with respect to the reference
configuration is defined by

Ψ̇(C) =
∂Ψ

∂C
· Ċ =

[
∂Ψ

∂IC

∂IC
∂C

+
∂Ψ

∂IIC

∂IIC
∂C

]
· Ċ

= 2

[
∂Ψ

∂IC
1 +

∂Ψ

∂IIC
(IC 1−C)

]
· Ė .

(3.19)

Inserting this expression into the Clausius-Planck inequality (2.58) and taking the
reaction stress into account, the following inequality is obtained

[
T̃ + pC−1 − 2 ρ0

∂Ψ

∂IC
1 − 2 ρ0

∂Ψ

∂IIC
(IC 1−C)

]
· Ė ≥ 0 . (3.20)

Similar as before, this inequality is evaluated via the argumentation by Coleman and
Noll (1963) which finally yields the constitutive equation for the 2nd Piola-Kirchhoff
stress tensor

T̃ = − pC−1 + 2 ρ0
∂Ψ

∂IC
1 + 2 ρ0

∂Ψ

∂IIC
(IC 1−C) . (3.21)

Applying the same procedure with respect to the current configuration and taking
(3.14) into account, the constitutive equation for the Cauchy stress tensor is finally
defined by

T = − p1 + 2 ρ
∂Ψ

∂IB
B + 2 ρ

∂Ψ

∂IIB
B−1 . (3.22)

A more detailed description of the mentioned concepts in modelling finite and incom-
pressible hyperelasticity are provided by Johlitz (2009).



32 3.2 Linear viscoelasticity

3.2 Linear viscoelasticity

Apart from the nonlinear stress-strain relation, rubber-like materials are typically char-
acterised by pronounced rate or frequency dependence. This behaviour is classified as
viscoelasticity and occurs by means of hysteresis, stress relaxation, creep or damp-
ing effects. For an overview about mathematical concepts of linear viscoelasticity, the
reader is referred to the manuscripts of Lion (2007) or Johlitz (2009). Moreover, a
comprehensive and detailed depiction of the linear viscoelastic theory is provided in
the textbook by Tschoegl (1989).
In general, viscoelasticity can be described by a dependence of the stress response σ
of the material on strain ε and strain rate ε̇. As illustrated in figure 3.2, the stress re-
sponse of viscoelastic materials is typically increased for larger rates of strain (ε̇1 > ε̇2).

st
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Figure 3.2: Viscoelastic material behaviour: dependence on the rate of strain

A common concept to mathematically describe viscoelasticity is based on time-dependent
functionals of stress or strain history. In this context, the stress can be defined by

σ(t) = F [ε(s)] with −∞ < s ≤ t , (3.23)

and the strain can be written as

ε(t) = F−1[σ(s)] with −∞ < s ≤ t . (3.24)

A linear approximation of these functionals which is frequently applied in modelling
viscoelasticity is expressed by means of convolution integrals for stress and strain

σ(t) =

∫ t

−∞

G(t− s) ε′(s) ds ,

ε(t) =

∫ t

−∞

J(t− s) σ′(s) ds .

(3.25)

Therein, functions G(t− s) and J(t− s) are the relaxation and retardation functions.
They describe the time-dependent connection between stress and strain in the time
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domain. If one and the same material is described, G(t) and J(t) depend on each
other.

A popular and easy interpretable concept to describe linear viscoelastic material be-
haviour is based on rheological elements, such as elastic springs and viscous dampers.
These models represent the material behaviour on the basis of linear differential equa-
tions of stress or strain and are thus limited to the description of linear relationships. On
their own, rheological elements are only able to represent specific material properties,
such as pure elasticity (spring) or pure viscosity (damper). But used in combination,
they offer the possibility to describe complex viscoelastic material behaviour.
The basic elements and popular element combinations to model linear viscoelastic ma-
terial behaviour are introduced in the following sections. In general, the mathematical
relations between stress and strain can be derived by solution of the differential equa-
tions with respect to specific functions of stress or strain. Since this work only deals
with the stress-based formulation, the following presentation is limited to this type.
For an overview of various element combinations and their properties, the interested
reader is referred to the works by Lion (2007) and Ranz (2007). A detailed description
of rheological elements, the following presentation mostly refers to, is given by Johlitz
(2009).

3.2.1 Spring and damper

The elastic spring and the viscous damper are the two basic elements which are essential
to describe linear viscoelastic material behaviour. The spring is capable of representing
elastic properties whereas the damper is able to describe viscous phenomena. As illus-
trated in figure 3.3, the spring is determined by the modulus E and the linear damper
is defined by its viscosity η.

ηE

ε ε

Figure 3.3: spring (left) and damper (right)

The stress response of the elastic spring is a linear function of strain and given by

σ = E ε . (3.26)

In contrast to that, the stress response of the viscous damper is a linear function of
strain rate and reads as

σ = η ε̇ . (3.27)
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Since the differential equations of both elements are linear in strain and strain rate,
the spring and damper are limited to the description of linear elastic and linear vis-
cous phenomena. The description of viscoelastic phenomena is usually managed by
combinations of springs and dampers in series or in parallel.

3.2.2 Maxwell element

The Maxwell element is one of the simplest element combinations to represent linear
viscoelastic material behaviour. As illustrated in figure 3.4, this element is composed of
a spring with modulus E and a damper with viscosity η which are connected in series.

ηE

ε

εe εin

Figure 3.4: Maxwell element

It combines the elastic and viscous properties of spring and damper which enables for
a representation of simple viscoelastic phenomena in a qualitative manner. Since both
elements are connected in series, the total stress is equal for each element and reads as

σ = E εe = η ε̇in . (3.28)

However, the total strain is distributed over both elements and separated into an elastic
part εe which is associated with the spring and an inelastic part εin which is related to
the damper. Regarding this, the total strain of the Maxwell element can be expressed
by the sum of elastic and inelastic strains

ε = εe + εin . (3.29)

The corresponding strain rate is obtained by differentiation with respect to time

ε̇ = ε̇e + ε̇in . (3.30)

Taking into account the introduced relations (3.28), (3.29) and (3.30), the differential
equation of the Maxwell element is given by

σ̇ +
1

τ
σ = E ε̇ (3.31)

with the relaxation time τ = η/E. In order to obtain the general solution, the dif-
ferential equation (3.31) must be integrated with respect to time. In so doing, the
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constitutive equation of stress finally reads as

σ(t) = E

∫ t

0

ε̇(s) e−
t− s
τ ds =

∫ t

0

G(t− s) ε̇(s) ds . (3.32)

Therein, the relaxation function G(t−s) is defined by means of a decreasing exponential
function

G(t− s) = E e−
t− s
τ . (3.33)

More detailed calculations are presented by Johlitz (2009).

3.2.3 Three-parameter model (TPM)

The Three-parameter model (TPM) is an extension of the Maxwell element which is
able to represent more complex viscoelastic properties. As presented in figure 3.5, the
TPM is composed of an additional elastic spring which is connected with a Maxwell
element in parallel.

η

E

µ

ε

εe εin

σ σ

Figure 3.5: Three-parameter model

On this basis, the TPM is capable of describing viscoelastic material behaviour with
consideration of quasi-static effects, such as creep at constant stress or relaxation at
constant strain. The total stress of the TPM is distributed over the elastic spring and
the Maxwell element. As a consequence, it is given by the sum of the equilibrium stress
σeq of the elastic spring and the overstress σov of the Maxwell element

σ = σeq + σov . (3.34)

Therein, the equilibrium stress and the overstress are defined by

σeq = E ε ,

σov = µ εe = η ε̇in .
(3.35)

The total strain of the TPM is of equal amount for the elastic spring and the Maxwell
element whereby the strain of the Maxwell element is additively decomposed into elastic
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and inelastic parts
ε = εe + εin . (3.36)

From this, the strain rates follow by differentiation with respect to time

ε̇ = ε̇e + ε̇in =
1

µ
σ̇ov +

1

η
σov . (3.37)

Based on these relations, the differential equation of the TPM can be calculated as
follows (Johlitz 2009)

σ̇ − σ̇eq = σ̇ov ,

⇔ σ̇ − E ε̇ = µ ε̇e ,

⇔ σ̇ − E ε̇ = µ

(
ε̇ − 1

η
σov

)
,

⇔ σ̇ − E ε̇ = µ

(
ε̇ − 1

η
(σ − E ε)

)
,

⇔ σ̇ = (E + µ) ε̇ − µ

η
σ +

E µ

η
ε ,

⇔ σ̇ +
µ

η
σ = (E + µ) ε̇ +

E µ

η
ε .

(3.38)

If the relaxation time τ = η/µ is introduced, (3.38) can be rewritten as

σ̇ +
1

τ
σ = (E + µ) ε̇ +

E

τ
ε . (3.39)

Similar as for the Maxwell element, the general solution is derived via integration of
the differential equation (3.39) with respect to time. As described by Johlitz (2009),
(3.39) is first multiplied by the term exp(t/τ)

σ̇ +
1

τ
σ =

E

τ
ε + (E + µ) ε̇

∣∣∣ · e 1

τ
t

⇔ σ̇ e
1

τ
t +

1

τ
σ e

1

τ
t =

E

τ
ε e

1

τ
t + µε̇ e

1

τ
t + E ε̇ e

1

τ
t

⇔
(
σ e

1

τ
t
)

.

=
(
E ε e

1

τ
t
)

.

+ µ ε̇ e
1

τ
t .

(3.40)

The subsequent integration with respect to time then results in the following constitu-
tive equation

σ(t) = σ(0) e−
t
τ + E ε(t) − E ε(0) e−

t
τ

+

∫ t

0

µ ε̇(s) e−
t− s
τ ds .

(3.41)
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If stress and strain at time t = 0 are equal to zero, the initial conditions ε(0) = 0 and
σ(0) = 0 hold such that (3.41) can be written as

σ(t) = E ε(t) +

∫ t

0

µ ε̇(s) e−
t− s
τ ds

=

∫ t

0

(
E + µ e−

t− s
τ

)
ε̇(s) ds

=

∫ t

0

G(t− s) ε̇(s) ds .

(3.42)

Therein, the relaxation function of the TPM is given by

G(t− s) = E + µ e−
t− s
τ . (3.43)

As presented in the manuscript by Johlitz (2009), the differential equation of the TPM
can be evaluated with respect to specific loading conditions. First regarding very slow
and fast deformation processes, the differential equation of the TPM can be reduced
and two limiting cases of the stress response can be derived. In terms of very slow
loadings, the temporal changes in stress and strain are comparatively small

σ̇ <<
1

τ
σ , ε̇ <<

1

τ
ε (3.44)

such that the rates of stress and strain in (3.39) can be neglected. Considering this,
the reduced form of the differential equation of the TPM is given by

1

τ
σ =

E

τ
ε . (3.45)

Multiplication with τ results in the corresponding stress response of the TPM

σslow = E ε =̂ σeq . (3.46)

Since this stress response corresponds to the stress σeq of the elastic spring, it is usually
called equilibrium stress response (Johlitz 2009).

The second limiting case results from very fast loadings. In this case, the behaviour is
opposite meaning that the rates of stress and strain are much larger than stress and
strain itself

σ̇ >>
1

τ
σ , ε̇ >>

1

τ
ε . (3.47)

On this basis, the non-differentiated terms in (3.39) can be omitted such that the
reduced form of the differential equation is given by

σ̇ = (E + µ) ε̇ . (3.48)
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With the initial conditions σ(0) = 0 and ε(0) = 0, the corresponding stress response of
the TPM is obtained by integration with respect to time

σfast = (E + µ) ε . (3.49)

In contrast to (3.46), this stress response corresponds to that of two springs in parallel
and denotes the spontaneous response of the TPM (Johlitz 2009). As illustrated in
figure 3.6, the equilibrium and spontaneous stress responses of the TPM define lower
and upper limits of stress meaning that stress responses at middle strain rates are
located between both limit cases.

strain ε

ε̇1

ε̇2 > ε̇1

ε̇3 > ε̇2

st
re

ss
σ

σslow

σfast

Figure 3.6: Stress response of the Three-parameter model at different rates of strain

Apart from slow and fast deformations, the stress response of the TPM can be derived
with regard to several other loading conditions. Regarding experimental investigations,
viscoelastic material behaviour of rubber is commonly studied via relaxation tests in
the time domain. In this context, the quasi-static response of the TPM at constant
strain is of importance. Taking into account simple relaxation tests, the material is
usually loaded with a strain ε0 which is held constant over time t. Mathematically, this
loading procedure can be expressed by the following conditions

ε(t) =





0 if t = 0

ε0 = const. if t > 0
(3.50)

From this relation, the corresponding stress response of the TPM can be derived by
inserting (3.50) into the differential equation (3.39). In so doing, the initial stress
response at the time t = 0 reads as

σ(0) = (E + µ) ε0 (3.51)

and the time-dependent stress response for times t > 0 follows to

σ(t) =
(
E + µ e−

t
τ

)
ε0 = G(t) ε0 . (3.52)
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Therein, the relaxation function G(t) is a decreasing exponential function which de-
scribes the time-dependent stress decrease at constant strain. For illustration, the
applied strain and the relaxation function are displayed in figure 3.7 over time t. As
described by Johlitz (2009), the relaxation function starts at the initial modulus E+µ
and decreases for large times against the equilibrium modulus E.
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Figure 3.7: Applied strain (left) and corresponding relaxation function of the TPM
(right)

Besides from the investigation of viscoelastic behaviour via relaxation tests in the time
domain, it is straight forward to characterise viscoelastic material properties through
dynamic mechanical analysis (DMA) in the frequency domain. There, the material
is loaded with harmonic excitations of strain amplitude ∆ε and its material response
is investigated in the frequency domain by means of the storage and loss modulus.
A detailed description of dynamic mechanical analysis is given by Menard (1999).
Considering this loading condition, the harmonic response of the TPM by means of the
storage and loss modulus is of interest to represent the observed phenomena. In the
case of strain-controlled excitations, the harmonic strain with amplitude ∆ε applied to
the material is mathematically defined by

ε = ∆ε(ω) eiωt (3.53)

with the angular frequency ω. The harmonic stress response given by the TPM reads
as

σ = ∆σ(ω) eiωt (3.54)

with the stress amplitude ∆σ. If these relations (3.53) and (3.54) are inserted into the
differential equation (3.39) and

d

dt
eiωt = iω eiωt (3.55)

is taken into account, the differential equation of the TPM leads to

iω∆σ eiωt +
1

τ
∆σ eiωt = iω (E + µ)∆ε eiωt +

1

τ
E∆ε eiωt . (3.56)
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Since dynamic mechanical analysis is focused to the storage and the loss modulus,
the quotient of harmonic stress and strain amplitudes is considered. To this end,
the harmonic response of the TPM is given by means of the complex-valued dynamic
modulus

G∗(ω) =
∆σ

∆ε
= E +

iω τ µ

1 + iω τ
. (3.57)

It is a frequency dependent function which characterises the dynamic mechanical trans-
fer behaviour of the material under dynamic loadings. Apart from the relaxation func-
tion, the dynamic modulus is an essential quantity to describe viscoelastic material
behaviour in the frequency domain. In order to obtain the storage and loss modu-
lus, the complex-valued dynamic modulus (3.57) must be decomposed into its real
and imaginary parts. For this purpose, (3.57) is extended by the complex conjugate
(1− iωτ), which then leads to the separation into real and imaginary parts

G∗(ω) = E +
(ω τ )2 µ

1 + (ω τ)2
+ i

ω τ µ

1 + (ω τ)2

= G′(ω) + iG′′(ω) .

(3.58)

In this, the real part G′(ω) in (3.58) is the storage modulus and the imaginary part
G′′(ω) is the loss modulus. From a physical point of view, the storage modulus can
be interpreted as the dynamic stiffness of the material or as a measure of the stored
energy inside the material whereas the loss modulus can be described as a measure of
energy dissipation or as a measure of damping effects. For illustration, the frequency
dependence of storage and loss modulus is displayed in figure 3.8. At very low frequen-
cies, the storage modulus is equal to the equilibrium modulus E and increases with
larger frequency against the spontaneous modulus E+µ. The loss modulus reaches its
maximum value at the characteristic frequency ω = 1/τ and decreases against zero for
small and high frequencies (Johlitz 2009).
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Figure 3.8: Frequency dependence of the storage and the loss modulus
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Thermomechanical consistency of the TPM

Regarding isothermal processes at constant temperature, as it is the case in this work,
the thermomechanical consistency of rheological elements can generally be proven on
the basis of the of the Clausius-Planck inequality

σ ε̇ − ρ0 Ψ̇ ≥ 0 . (3.59)

A detailed description of this approach is provided by Johlitz (2009). Referring to this
concept, the derivative of the free energy of the TPM with respect to time must be
calculated first. The free energy of the TPM is equal to the sum of the energy which
is stored in the two elastic springs

ρ0 Ψ =
1

2
E ε2 +

1

2
µ ε2e

=
1

2
E ε2 +

1

2
µ (ε− εin)

2 .

(3.60)

Based on this, the derivative with respect to time is given by

ρ0 Ψ̇ = E ε ε̇ + µ (ε− εin) ε̇ − µ (ε− εin) ε̇in . (3.61)

If this result is inserted into (3.59), the following inequality is obtained

(σ − [E ε + µ (ε− εin)] ) ε̇ + µ (ε− εin) ε̇in ≥ 0 . (3.62)

Referring to Coleman and Noll (1963), this inequality must hold for arbitrary defor-
mation processes. Regarding this requirement, (3.62) must be satisfied for arbitrary
strain rates ε̇ which automatically implies that the first term in brackets must be equal
to zero. On this basis, the stress in (3.62) is given by

σ = E ε + µ (ε− εin) . (3.63)

Considering this relation, the last term of inequality (3.62) remains

µ (ε− εin) ε̇in ≥ 0 . (3.64)

In this, a thermomechanically consistent relation for the inelastic strain rate is given
by the linear differential equation

ε̇in =
µ

η
(ε− εin) . (3.65)

If this relation is inserted into (3.64), the following formulation is obtained

µ2

η
(ε− εin)

2 ≥ 0 . (3.66)

Since stiffness and viscosity are always positive (µ > 0 and η > 0), this inequality is
satisfied for arbitrary deformation processes, and the thermomechanical consistency of



42 3.2 Linear viscoelasticity

the TPM is thus proven.

3.2.4 Maxwell chain

The previously introduced TPM can indeed describe viscoelastic material properties in
a qualitative manner. However, a quantitative representation of real viscoelastic phe-
nomena calls for more complex rheological models. Accordingly, it is straight forward
to extend the TPM by adding a series of Maxwell elements in parallel. This extension
is called the classical Maxwell chain. As illustrated in figure 3.9, the classical Maxwell
chain is composed of a linear spring and n Maxwell elements in parallel. Based on this
composition, the Maxwell chain is defined by the modulus E of the single spring and
by k = 1..n stiffness parameters µk and viscosities ηk of the parallel connected Maxwell
elements. Hence, the Maxwell chain contains a number of 2n+ 1 material parameters.

E

η1µ1

η2µ2

ηnµn

ε

εe,k εin,k

σ σ

k = 1...n

Figure 3.9: Maxwell chain

Since the general composition of the Maxwell chain is similar to that of the TPM, the
total strain is given by the sum of elastic and inelastic strains εe,k and εin,k

ε = εe,k + εin,k , k = 1...n . (3.67)

Differentiation with respect to time leads to the corresponding strain rate

ε̇ = ε̇e,k + ε̇in,k , k = 1...n . (3.68)
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The total stress is additively decomposed into the equilibrium stress σeq of the indi-
vidual spring and the sum of the inelastic overstresses σov,k of the k = 1...n Maxwell
elements

σ = σeq + σov = σeq +
n∑

k=1

σov,k . (3.69)

Therein, the inelastic overstresses are defined by

σov,k = µk εe,k = ηk ε̇in,k . (3.70)

From these definitions, the differential equations of the overstresses are obtained by
differentiation of (3.70) with respect to time

σ̇ov,k = µk ε̇e,k = µk

(
ε̇ − 1

ηk
σov,k

)

= µk ε̇ − µk

ηk
σov,k .

(3.71)

Introducing relaxation times τk = ηk/τk of each Maxwell element, (3.71) finally reads
as

σ̇ov,k = µk ε̇ − 1

τk
σov,k . (3.72)

As described by Johlitz (2009), the stress response of the Maxwell chain is derived
by multiplication of the differential equation (3.72) by the exponential term exp(1/τk)
and subsequent integration with respect to time in the limits s = 0 to s = t. These
operations finally yield the following expression for the overstresses

σov,k(t) =

∫ t

0

µk e
− t−s

τk ε̇(s) ds . (3.73)

If this result is then inserted into (3.69), the stress response of the Maxwell chain is
given by

σ(t) = E ε +

∫ t

0

(
n∑

k=1

µk e
− t−s

τk

)
ε̇(s) ds

=

∫ t

0

(
E +

n∑

k=1

µk e
− t−s

τk

)
ε̇(s) ds

=

∫ t

0

G(t− s) ε̇(s) ds .

(3.74)

In contrast to the TPM, the time-dependent relaxation function G(t) of the Maxwell
chain is not only defined by just one single exponential function, but by the sum of
n exponentials which results from the combination of n Maxwell elements in parallel.
On this basis, the Maxwell chain can be used to model more complex viscoelastic
material properties. Considering dynamic mechanical analysis, the harmonic response
of the Maxwell chain in the frequency domain can be derived in a similar manner
as for the TPM. In order to describe its response with regard to harmonic strains or
stresses, (3.53) and (3.54) are taken into account. Inserting these relations into (3.72)
and separating the real and imaginary parts, the complex modulus G∗, the storage
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modulus G′ and the loss modulus G′′ finally read as

G∗(ω) = G′(ω) + iG′′(ω)

= E +
n∑

k=1

µk
(ω τk)

2

1 + (ω τk)2
+ i

n∑

k=1

µk
ω τk

1 + (ω τk)2
.

(3.75)

Thermomechanical consistency of the Maxwell chain

The thermomechanical consistency of the Maxwell chain can be similarly proven as for
the TPM. The free energy is first defined by

ρ0 Ψ =
1

2
E ε2 +

1

2

n∑

k=1

µk (ε− εin,k)
2 , (3.76)

with the time derivative

ρ0 Ψ̇ = E ε ε̇ +
n∑

k=1

µk (ε− εin,k) ε̇ −
n∑

k=1

µk (ε− εin,k) ε̇in,k . (3.77)

Inserting this relation into (3.59), the following inequality is obtained

(
σ −

[
E ε +

n∑

k=1

µk (ε− εin,k)

])
ε̇ +

n∑

k=1

µk (ε− εin,k) ε̇in,k ≥ 0 . (3.78)

Following the argumentation of Coleman and Noll (1963), inequality (3.78) is fulfilled
if the stress is given by

σ = E ε +
n∑

k=1

µk (ε− εin,k) = E ε +
n∑

k=1

σov,k . (3.79)

Considering this result, the remaining inequality reads as

n∑

k=1

µk (ε− εin,k) ε̇in ≥ 0 . (3.80)

If the relation for the inelastic strain rates

ε̇in,k =
µk

ηk
(ε− εin,k) (3.81)

is taken into account and inserted into (3.80), the remaining inequality follows to

n∑

k=1

µ2
k

ηk
(ε− εin,k)

2 ≥ 0 . (3.82)
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In terms of positive stiffness parameters µk and positive viscosities ηk, this inequality
holds for arbitrary deformation processes such that the thermomechanical consistence
of the Maxwell chain is ensured.

3.3 Fractional viscoelasticity

The classical Maxwell chain introduced above is suitable to represent complex viscoelas-
tic properties of rubber. However, the description of the material behaviour by this
model is based on relaxation functions of the exponential type and is thus related to a
discrete relaxation spectrum. For this reason, a fairly huge number of Maxwell elements
and a huge number of material parameters is required to represent the dynamic prop-
erties of elastomers (Haupt and Lion 2002). In order to improve this situation, it has
become well accepted to extend classical rheological models by the concept of fractional
derivatives. In contrast to classical rheological elements, the fractional ones turned out
to be very suitable to approximate complicated viscoelastic material behaviour with
only a few material parameters. Caputo and Mainardi (1971) provide a comparison
between classical constitutive approaches and constitutive models of fractional order
which reveals the effective approximation of material behaviour by fractional models
with less material parameters. Based on this advantage, the concept is commonly
applied to represent long-term relaxations or the frequency dependence over a broad
range of frequency.
Caputo (1967) and Slonimsky (1967) first introduced the concept of a fractional deriva-
tive to the theory of linear viscoelasticity, which is applied in a similar way in this work.
A comprehensive overview of the mathematical theory of this concept and the appli-
cation of fractional derivatives is provided in the textbooks by Oldham and Spanier
(1974), Podlubny (1999) or Kilbas et al. (2006).
Referring to Haupt and Lion (2002) and regarding a function f(t) with f(t) = 0 for
t ≤ 0, the concept of a fractional derivative is generally applied by replacing the stan-
dard time derivative of the function by a derivative of fractional order

d

dt
f(t) → dα

dtα
f(t) , 0 < α < 1 . (3.83)

Thereby, the fractional derivative itself is defined by the linear functional

dα

dtα
f(t) =

1

Γ(1− α)

∫ t

0

1

(t− s)α
f ′(s) ds for 0 < α < 1 , (3.84)

with the Eulerian Gamma function

Γ(1− α) =

∫ ∞

0

ξ−α e−ξ dξ . (3.85)

If this concept is applied to the classical damping element by replacing the time deriva-
tive by a derivative of fractional order, the fractional damping element is obtained.
Starting with this basic element, other rheological models can be motivated by com-
bining it with other elements in series or parallel. One of these combinations is the
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Maxwell element of fractional order which is defined by the series connection of an elas-
tic spring and a fractional damping element. Among others, detailed discussions about
the application of the concept of fractional derivatives to various viscoelastic models
are provided by Bagley and Torvik (1983b), Koeller (1984), Nonnenbacher (1991) or
Schiessel et al. (1995). Studies on the thermomechanical requirements of fractional
models are given, for instance, by Gurtin and Herrera (1965) or Lion (2001).

As already stated, the concept of fractional derivatives is very effective in approxi-
mating viscoelastic phenomena with only a small number of material parameters and
therefore frequently applied to represent long-term relaxation or frequency dependence
over a broad range of frequencies. For instance, Adolfsson and Enelund (2003) intro-
duce a fractional model in the time domain, which is based on the nonlinear viscoelastic
approach by Simo (1987). A fractional modification of the viscoelastic model of Reese
and Govindjee (1998) is proposed one year later by the same author (Adolfsson 2004).
With respect to the focus of this work, fractional formulations in the frequency do-
main which are applied to describe complex rubber dynamics and damping phenomena
are fairly common in the literature. In Kari (2001a) and Kari (2001b), the author
introduces a viscoelastic waveguide model which is capable of describing the frequency
dependent behaviour of the axial stiffness of cylindrical vibration isolators in a broad
frequency range. Other frequency domain formulations based on rheological elements of
fractional order are proposed by Bagley and Torvik (1979), Bagley and Torvik (1983a)
and Bagley and Torvik (1985). Lewandowski and Pawlak (2011) recently presented
an approach to describe the damping behaviour of VE dampers, which is based on a
fractional Kelvin-Voigt model as well as on a fractional Maxwell model.
Several other constitutive models of fractional order are proposed, for instance, by
Nonnenbacher (1991), Drozdov (1997), Haupt et al. (2000), Lion (1997b), Haupt et al.
(2000) or Lion (2001).

With respect to finite element computations in the time domain, the numerical applica-
tion of the fractional calculus is very time-consuming. Due to the non-local character
of fractional derivatives, the entire history must be stored when solving the related
equations by time integration (Schmidt and Gaul 2006). Schmidt (2003) provides a
comprehensive overview of fractional viscoelastic material laws and their numerical im-
plementation into a finite element code. For instance, the author proposes an efficient
time domain implementation of a fractional model into a finite element code. Thereby,
the author refers to the fading memory character of a fractional derivative whereupon
parts in the history can be regarded with less temporal resolution, without losses of ac-
curateness for the time integration. Among others, the works by Enelund and Josefson
(1997), Enelund et al. (1999), Gaul and Schanz (1994) and Gaul and Schanz (1999)
also deal with the finite element implementation of fractional viscoelastic models.
Apart from finite element implementation, Lewandowski and Chorazyczewski (2010)
are concerned with the identification of the material parameters and provide an effective
method with respect to fractional Kelvin-Voigt and Maxwell models. The constitutive
approach presented in this work is also based on a fractional extension of a Maxwell
chain, but transformed from the time in the frequency domain. Due to this, the men-
tioned numerical problems in the time domain do not arise.
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In order to acquaint the reader with the fractional extension of the classical Maxwell
chain, the fractional damping element and the fractional Maxwell element will be intro-
duced in the following. Thereby, the presentation mainly refers to the argumentations
by Haupt and Lion (2002).

3.3.1 Fractional damping element

The fractional damping element can be interpreted as a mix between spring and damper
which is controlled by the fractional exponent α. As illustrated in figure 3.10, a frac-
tional representation of the damper can be defined by the material parameters µ and
α. Here, factor τ = 1s is not a parameter and only introduced for dimensional reasons.

µ τα

ε

Figure 3.10: Fractional damping element

In order to derive the differential equation of the fractional damper, the time derivative
of strain in the constitutive equation of the classical damping element (3.27) is first
replaced by a derivative of fractional order

σ = µ τα
dα

dtα
ε , 0 ≤ α < 1 . (3.86)

If the definition of the fractional derivative in (3.84) is taken into account, the stress
response of the fractional damper is given by

σ(t) =
µ τα

Γ(1− α)

∫ t

0

1

(t− s)α
ε̇(s) ds . (3.87)

In contrast to the Maxwell element, the relaxation function of the fractional damper is
no exponential function, but it is a decreasing power law which reads as

G(t) =
µ

Γ(1− α)

(τ
t

)α
. (3.88)

In Lion (2000c), it is proven that this type of power-law can be written in terms of a
continuous relaxation spectrum

G(t) =

∫ ∞

0

g(ζ) e−
t
ζ dζ with g(ζ) =

µ τα

Γ(1− α) Γ(α) ζα+1
(3.89)

with the relaxation time ζ.
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Moreover, the fractional damping element generally interpolates between Hookean elas-
ticity and Newtonian viscosity (Lion 1997b). For the limit case α = 0, the fractional
damper results into the linear elastic spring

σ = µ ε , (3.90)

with modulus µ, whereas the limit case α = 1 yields a constitutive equation similar to
that of the viscous damper

σ̇ = µ τ ε̇ . (3.91)

Considering the frequency dependent behaviour of rubber observed in DMA tests, the
harmonic response of the fractional damper due to harmonic strain excitations is in
focus. Taking a harmonic deformation of strain amplitude ∆ε and angular frequency
ω into account

ε = ∆ε(ω) eiωt , (3.92)

the harmonic stress response of the fractional damper is given by

σ = ∆σ(ω) eiωt . (3.93)

Inserting both relations into (3.86) and taking into account the fractional derivative of
the exponential function

dα

dtα
eiωt = (iω)α eiωt , (3.94)

the differential equation (3.86) changes to the following formulation

∆σ eiωt = (iω)α µ τα ∆ε eiωt . (3.95)

On the basis of this relation, the harmonic response is obtained in terms of the complex
modulus and reads as

G∗(ω) =
∆σ

∆ε
= µ (iωτ)α . (3.96)

In order to separate (3.96) into real and imaginary parts, the relation

iα = cos
(
α
π

2

)
+ i sin

(
α
π

2

)
(3.97)

must be taken into account. By applying this operation, the complex modulus is finally
given by the sum of storage modulus G′(ω) and loss modulus G′′(ω)

G∗(ω) = G′(ω) + i G′′(ω) = µ (ωτ)α cos
(
α
π

2

)
+ i µ (ωτ)α sin

(
α
π

2

)
. (3.98)

Fractional Maxwell element

The fractional Maxwell element is defined by the connection of an elastic spring and a
fractional damper in series. Since this element is quite similar to the classical Maxwell
element, but extended by fractional derivatives, it can be interpreted as a generalisation
of the latter one. As illustrated in figure 3.11, the fractional Maxwell element inherits
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the material parameters µ and α. In contrast to the fractional damper, factor τ is also
a material parameter using this type of representation.

µ τα

ε

µ

εeεin

Figure 3.11: Fractional Maxwell element

The differential equation of the fractional Maxwell element is obtained by replacing the
time derivatives in the differential equation of the classical Maxwell element (3.31) by
derivatives of fractional order

dα

dtα
σ +

1

τα
σ = µ

dα

dtα
ε . (3.99)

Inserting the definition of stress into (3.99)

σ = µ τα
dα

dtα
εin , (3.100)

the differential equation can alternatively be expressed by

dα

dtα
σ = µ

dα

dtα
ε − µ

dα

dtα
εin . (3.101)

For thermodynamical reasons, it is necessary to apply fractional derivatives of the
same order to stress and strain (Lion 2001). Following the presentation by Haupt and
Lion (2002), the stress response of the fractional Maxwell element can be derived by
first transforming the differential equation into the complex domain via applying the
Laplace transformation

f(t) → f̂(ω) = L{f(t)} =

∫ ∞

0

f(t) e−ωt dt . (3.102)

On this basis, the stress response in the frequency domain reads as

σ̂(ω) = µ
(τω)α

1 + (τω)α
ε̂(ω) . (3.103)

After that, (3.103) is transformed back such that the time domain formulation of the
inelastic overstress is finally given by

σov = µ

∫ t

0

Eα

(
−
(
t− s

τ

)α)
ε′(s) ds . (3.104)
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In this expression, the relaxation function of the fractional Maxwell element is given
by

G(t− s) = µEα

(
−
(
t− s

τ

)α)
. (3.105)

Therein the kernel function

Eα

(
−
(
t− s

τ

)α)
(3.106)

is related to the so-called Mittag-Leffler function

Eα(x) =
∞∑

k=0

xk

Γ(1 + αk)
. (3.107)

In terms of the specification α = 1, the kernel function Eα results in a classical expo-
nential function such that the fractional Maxwell element turns into a classical Maxwell
element. In contrast to the fractional damper, which is characterised by a singularity
at time t = 0, the function converges for all α > 0 and equals 1 at time t = 0 (Haupt
and Lion 2002).

In order to derive the complex modulus of the fractional Maxwell element, harmonic
deformation and stress responses are considered

ε = ∆ε(ω) eiωt ,

σ = ∆σ(ω) eiωt .
(3.108)

Inserting these relations into the differential equation of the fractional Maxwell element
(3.99) and taking (3.94) into account, the complex modulus is finally given by

G∗(ω) =
∆σ

∆ε
= µ

(iωτ)α

1 + (iωτ)α
. (3.109)

In order to obtain the storage and the loss modulus on the basis of this definition, the
complex modulus must be decomposed into real and imaginary parts

G∗(ω) = G′(ω) + i G′′(ω) . (3.110)

After some mathematical calculations, the storage modulus reads as

G′(ω) = µ
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and the loss modulus is given by

G′′(ω) = µ
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In order to illustrate the frequency dependent characteristics of the fractional Maxwell
element, figure 3.12 provides a comparison between the storage and loss modulus of
the classical and fractional Maxwell element for different values of α. In the case of
α = 0, the fractional Maxwell element represents linear elastic behaviour without any
frequency dependence whereas the specification α = 1 results in the representation
of the classical Maxwell element. Hence, the frequency dependent characteristics and
the viscous properties of the fractional Maxwell element are controllable by the mate-
rial parameter α. If α is small, the fractional Maxwell element exhibits a frequency
dependence which is spread over an extremely wide range.
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Figure 3.12: Approximation of the storage and loss modulus of the fractional
Maxwell element compared to the approximation of the classical Maxwell element

3.4 Finite nonlinear viscoelasticity

The rheological elements introduced above are based on linear differential equations
and are thus generally limited to describe linear viscoelastic material behaviour under
small deformations. Since elastomer materials are often loaded with finite deforma-
tions, other concepts must be developed. A common concept to describe nonlinear
viscoelastic properties on the basis of rheological elements refers to the introduction of
additional internal variables to represent process dependent viscosities. Among others,
this concept is applied by Hoefer (2009) to describe the amplitude dependent Payne
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effect.
Coleman and Noll (1961) first extended the theory of linear viscoelasticity and pro-
vided a three-dimensional formulation of finite linear viscoelasticity which is based on
convolution integrals. Nowadays, two concepts have become well accepted in the the-
ory of finite nonlinear viscoelasticity to date. The first one is called multiplicative
viscoelasticity and based on internal variable of strain. It is based on a multiplicative
decomposition of the deformation gradient into elastic and inelastic parts which goes
along with the introduction of an elastic-inelastic intermediate configuration. The elas-
tic part of deformation is usually described via a specific Helmholtz free energy whereas
the inelastic part of deformation is mostly represented by an evolution equation for the
inelastic strain rate. The general concept of multiplicative decomposition was intro-
duced early by Lee and Liu (1967) and Lee (1969) in the theory of finite plasticity.
Among others, finite nonlinear viscoelastic formulations based on the multiplicative
decomposition of the deformation gradient have been introduced by Lubliner (1985),
Lion (1996), Reese and Govindjee (1998), Hartmann and Haupt (1999), Huber and
Tsakmakis (1999), Lion (2000b), Middendorf (2002) or Johlitz (2008).
The second concept to describe nonlinear viscoelasticity under finite deformations is
related to the early formulation by Coleman and Noll (1961) and based on the func-
tional representation of viscoelasticity. In contrast to multiplicative viscoelasticity, this
concept applies internal variables of stress and manages without an intermediate con-
figuration. Instead of that, a specific Helmholtz free energy is defined for the overstress
and the differential equations for the overstress are formulated directly. Viscoelastic
models of this type are proposed, for instance, by Simo (1987), Govindjee and Simo
(1992b), Holzapfel (1996), Kaliske and Rothert (1997a), Holzapfel (2000) or Haupt
and Lion (2002). A comparison between selected models of both concepts of finite vis-
coelasticity is provided by Reese and Govindjee (1998). Since this work only deals with
harmonic vibrations under small amplitudes of strain, the concept of finite nonlinear
viscoelasticity will be introduced in a brief manner only.

3.4.1 Functional viscoelasticity with internal variables of the
stress type

The functional viscoelasticity for finite deformations is commonly based on rate depen-
dent functionals of strain history which are mostly expressed by means of convolution
integrals. The stress is additively decomposed into an equilibrium part T̃eq and an
overstress part T̃ov

T̃ = T̃eq + T̃ov . (3.113)

The equilibrium part can be related to the Green-Lagrange strain tensor E whereas the
overstress part can be expressed via rate dependent functionals of the strain history
E(s)

T̃eq = T̃eq(E) , T̃ov = F
s≤t

[E(s)] . (3.114)
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According to the principle of fading memory (Truesdell and Noll (1965)), the memory
functional F must vanish for constant static histories E(s) = E0 = const.

F
s≤t

[E0] = 0 . (3.115)

Instead of introducing an intermediate configuration, the differential equation is directly
formulated for the inelastic overstress. In this context, a common formulation is given
by

˙̃
Tov +

1

τ
T̃ov =

d

dt

(
2
∂Ψov

∂C

)
. (3.116)

Haupt and Lion (2002) introduce a general concept of finite nonlinear viscoelastic-
ity which is based on functional viscoelasticity. This model can be interpreted as a
generalisation of a classical Maxwell element and is shown to be compatible with the
Clausius-Duhem inequality. The authors define two equivalent differential equations
for the overstress which are closely related to the differential equation of a classical
Maxwell element. The constitutive approach in this work is based on one of these
formulations which is defined by the following differential equation for the overstress
part of the 2nd Piola-Kirchhoff stress tensor

˙̃
Tov +

1

τ
T̃ov = − 2µ ė . (3.117)

From this differential equation, the authors derive the constitutive equation of the 2nd
Piola-Kirchhoff stress as follows

T̃ov(t) = − 2µ

∫ t

−∞

e−
t−s
τ e′(s) ds . (3.118)

It is a functional of the history of the Piola strain tensor e and thus a special case of the
functional representation given in (3.114). In Haupt and Lion (2002), it is also shown,
that a thermodynamically consistent formulation for the specific Helmholtz free energy
is given by

ρ0 Ψov(t) = − 2µ

∫ t

−∞

e−
t−s
τ e′(s) ·C(t) ds . (3.119)

In order to represent more complicated nonlinear viscoelastic effects, such as tempera-
ture and amplitude dependent behaviour, the constitutive approach can be extended by
process dependent relaxation times, which is very convenient in the theory of functional
viscoelasticity. For instance, Hoefer and Lion (2009) represent the nonlinear viscoelas-
tic effects of filler-reinforced rubber by applying relaxation times, which depend on the
deformation history and the current deformation rate.

3.4.2 Multiplicative finite viscoelasticity

Multiplicative viscoelasticity is a well-known concept to describe nonlinear viscoelastic
behaviour of polymers under finite deformations. A detailed description of multiplica-
tive viscoelasticity, the following presentation refers to, is given by Johlitz (2009). The
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concept is based on the multiplicative decomposition of the deformation gradient into
an elastic part Fe and an inelastic part Fi

F = Fe Fi . (3.120)

As illustrated in figure 3.13, the multiplicative split leads to an elastic-inelastic inter-
mediate configuration Ie.

R

C

Ie

elastic-inelastic

reference

current

Fe

Fi

F

Figure 3.13: Elastic-inelastic decomposition with intermediate configuration

Via the elastic and inelastic parts of the deformation gradient, an inelastic right Cauchy-
Green tensor Ci on the reference configuration and an elastic left Cauchy-Green tensor
Be on the current configuration can be defined by

Ci = FT
i Fi

Be = Fe F
T
e .

(3.121)

Moreover, the intermediate configuration inherits its own measures of stress and strain.
The strain tensor Γ operates on the intermediate configuration and can be obtained by
the push forward of the Green-Lagrange strain tensor E

Γ = F−T
i EF−1

i (3.122)

or alternatively by the pull back of the Almansi strain tensor A

Γ = FT
e AFe . (3.123)

Based on these definitions and the relation between the Green-Lagrange strain tensor
E and the right Cauchy-Green tensor C in equation (2.15), the strain tensor Γ can be
additively decomposed into an elastic part Γe and an inelastic part Γi as well

Γ = Γe + Γi . (3.124)

Therein, the elastic component is given by

Γe =
1

2

(
FT

e Fe − 1
)

(3.125)
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and the inelastic part reads as

Γi =
1

2

(
1 − F−T

i F−1
i

)
. (3.126)

An objective rate of Γ can be defined via the derivative of the Green-Lagrange strain
tensor E with respect to time

△

Γ= F−T
i Ė F−1

i = Γ̇ + LT
i Γ + ΓLi . (3.127)

Apart from the strain tensor Γ, the inelastic stress tensor τ neq arises on the intermediate
configuration

τ neq = Fi T̃neq F
T
i = F−1

e Tneq F
−T
e . (3.128)

In order to derive the constitutive equations from the elastic-inelastic decomposition,
it is quite common to formulate the specific Helmholtz free energy and to define an
evolution equation for the inelastic part of the deformation. Referring to Johlitz (2009)
and regarding the current configuration, the specific Helmholtz free energy is usually
decomposed into an elastic part Ψeq and an inelastic part Ψneq which are defined by
deformation tensors B and Be

Ψ(B,Be) = Ψeq(B) + Ψneq(Be) . (3.129)

On the basis of this definition, the constitutive equation for the Cauchy stress tensor
can be derived from the Clausius-Duhem inequality or from the isothermal Clausius-
Planck inequality. This procedure finally results into an additive split of the Cauchy
stress tensor in an elastic equilibrium stress and a non-equilibrium overstress

T = Teq + Tneq . (3.130)

In Johlitz (2009), this concept is applied to the Three-parameter model. Considering
this and assuming incompressible material behaviour, the Cauchy stress tensor can be
defined by

T = − p1 + 2 ρ0 B
∂Ψeq

∂B
+ 2 ρ0 Be

∂Ψneq

∂Be

. (3.131)

If a Neo-Hookean approach is applied for the equilibrium and the non-equilibrium part
of the specific Helmholtz free energy

Ψ = Ψeq(IB) + Ψneq(IBe
) =

1

2
µ (IB − 3) +

1

2
µe (IBe

− 3) , (3.132)

the Cauchy stress in (3.131) follows to

T = − p1 + µB + µe Be (3.133)

and the residual inequality is expressed by

µe 1 ·
(
Fe

△

Γi FT
e

)
= Ce µe ·

△

Γi ≥ 0 . (3.134)
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In order to satisfy (3.134), it is state of the art to introduce a relaxation time r as a
proportional factor and to formulate an evolution equation for the inelastic strain rate.
Taking incompressibility into account, a deviatoric formulation for the inelastic strain
rate can be motivated

△

Γi =
1

r

[
Ce − 1

3
tr(Ce)1

]
. (3.135)

Using the pull-back of the inelastic strain rate

Ėi =
1

2
Ċi = FT

i

△

Γi Fi (3.136)

and taking (3.135) into account, the evolution equation (3.135) can be reformulated in
terms of the rate of the inelastic right Cauchy-Green tensor

Ċi = 2FT
i

△

Γi Fi =
2

r
FT

i

[
Ce − 1

3
tr(Ce)1

]
Fi . (3.137)

Inserting the relations

Ce = FT
e Fe =

(
FF−1

i

)T
FF−1

i = F−T
i FT FF−1

i = F−T
i CF−1

i (3.138)

and
tr(Ce) = tr

(
F−T

i CF−1
)
= tr

(
CF−1

i F−T
i

)
= tr

(
CC−1

i

)
(3.139)

into (3.137), the evolution equation finally reads as

Ċi =
2

r

[
C − 1

3
tr
(
CC−1

i

)
Ci

]
. (3.140)

A very detailed description of the mentioned relations is given in the manuscript by
Johlitz (2009).

3.5 Shifting principles

The viscoelastic properties of rubber-like materials are generally characterised by a
pronounced dependence on temperature. For instance, stress relaxation and creep
have been observed as proceeding more slowly at low temperatures and faster at high
temperatures (Ferry 1980; Schwarzl 1990). Based on the connection between temper-
ature and time as well as between temperature and frequency, the principles of time
temperature and frequency temperature shifting are introduced by the theory of vis-
coelasticity. They are based on the assumption of thermorheological simple material
behaviour meaning that the elastic parameters of the material are independent of the
temperature and only the viscosities and relaxation times are influenced by tempera-
ture. Furthermore, each of the viscosities must depend on the temperature in the same
manner.
Taking the assumption of thermorheological simple materials into account, the con-
cepts of time temperature and frequency temperature shifting can be derived from
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classical rheological elements. Referring to Lion (2007) and taking a Three-parameter
model into account, the temperature-dependent viscosity is defined by the product of
a temperature-dependent shift function aθ(θ, θ0) and the constant viscosity η(θ0) = η0
at a constant reference temperature θ0

η(θ) = aθ(θ, θ0) η0 . (3.141)

The temperature-dependent shift function is normalised and always positive

aθ(θ0, θ0) = 1 , aθ(θ, θ0) > 0 . (3.142)

The related relaxation time can be introduced as follows

τ(θ) =
η(θ)

E
= aθ(θ, θ0)

η0
E

= aθ(θ, θ0) τ0 . (3.143)

By inserting (3.143) into (3.39), the differential equation of the Three-parameter model
results in the temperature dependent differential equation

σ̇ +
1

aθ(θ, θ0) τ0
σ = (E + µ) ε̇ +

E

aθ(θ, θ0) τ0
ε . (3.144)

By assuming a constant temperature, the stress response is obtained as

σ(t) = E ε(t) +

∫ t

0

µ ε̇(s) e
− t− s

aθ τ0 ds

=

∫ t

0

(
E + µ e

− t− s
aθ τ0

)
ε̇(s) ds

=

∫ t

0

G

(
t− s

aθ

)
ε̇(s) ds ,

(3.145)

wherein the temperature dependent relaxation function is expressed as

G(t, θ) = G

(
t

aθ(θ, θ0)
, θ0

)
. (3.146)

If the relation
t

aθ
= 10

log
(

t
aθ

)

= 10log t− log aθ (3.147)

is taken into account, (3.146) can be rewritten as

G(t, θ) = G
(
10log t− log aθ , θ0

)
. (3.148)

Based on this expression, the relaxation function is shifted horizontally by the shift
function log aθ in logarithmic time scale. Thereby, the function aθ(θ, θ0) determines
the temporal scaling of the relaxation function between the reference temperature θ0
and an arbitrary temperature θ. For θ > θ0, the relaxation function is shifted to the
left whereas temperatures below the reference temperature (θ < θ0) result in a shift to
the right. With respect to experimental investigations in a limited time or frequency
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domain, this shifting technique is commonly applied to extend the domain or to reduce
the experimental testing time by measuring at various temperatures.

The frequency temperature shifting principle can similarly be derived. If the temperature-
dependent relaxation time (3.143) is inserted into the harmonic response of the Three-
parameter model (3.58), the complex modulus follows to

G∗(ω, θ) = G∗
(
ω aθ(θ, θ0), θ0

)
. (3.149)

Regarding the relation

ω aθ = 10log(ω aθ) = 10logω+ log aθ (3.150)

and separating the complex modulus into its real and imaginary parts, the temperature
dependent storage and loss modulus can finally be expressed by

G′(ω, θ) = G′
(
aθ(θ, θ0)ω, θ0

)
= G′

(
10logω+ log aθ , θ0

)
,

G′′(ω, θ) = G′′
(
aθ(θ, θ0)ω, θ0

)
= G′′

(
10logω+ log aθ , θ0

)
.

(3.151)

Similar to the time temperature shifting principle, both moduli can be shifted hori-
zontally by the shift function log aθ in the logarithmic frequency scale. In terms of
temperatures above the reference temperature (θ1 > θ0), both moduli are shifted to
lower frequencies whereas lower temperatures (θ2 < θ0) result in a shift to higher
frequencies. With respect to experimental investigations, the frequency temperature
shifting technique is a powerful tool to extend the experimental limited frequency range
to a broader one. The extended characteristics of the dynamic moduli are called master
curves.

3.5.1 Master curves

As already mentioned in the previous section, the great benefit of the shifting principles
consists in the possibility of accelerating time-consuming relaxation or creep tests or
extending the experimentally limited frequency range to a broader one by measuring
at different temperatures and generating a master curve. These master curves can
be obtained by applying the shifting principles to the experimental data at different
temperatures. In this work, the temperature frequency shifting principle is applied
to extend the experimental frequency range to lower and higher frequencies. In order
to obtain the master curves, the shift function log aθ is represented by the so-called
WLF-function (Williams et al. 1955)

log aθ =
c1 (θ − θ0)

c2 + (θ − θ0)
, (3.152)

with the material parameters c1 and c2. In principle, the application of the WLF-
function is limited to temperatures above the glass transition temperature, but there are
various modifications to extend the applicable temperature range to lower temperatures
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than the glass transition. For more details, the reader is referred to Schwarzl and
Zahradnik (1980) or Klueppel (2008). If the shift function is determined, the frequency
temperature shift can be applied to the experimental data to generate the master curve
by horizontal shifting in the logarithmic frequency scale. An illustration of the shifting
procedure with respect to the storage modulus at different temperatures θ3 > θ2 >
θ0 > θ1 with reference temperature θ0 is provided in figure 3.14.
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Figure 3.14: Master curve of storage modulus obtained by temperature frequency
shifting





Chapter 4

Basics of elastomer materials

Introduction

The conventional term "rubber" generally denotes the material class of elastomers. In
this, one can distinguish between natural rubber which is obtained by the natural product
latex and synthesised rubbers which are artificially produced by polymerisation, polycon-
densation or polyaddition.
Due to their excellent mechanical properties, elastomer materials are frequently used in
industrial applications. Thereby, the main focus is on their unique elastic properties
which radically differ from those of other solid materials. Whilst the elastic deformation
range of metals is generally limited to very small strains, elastomers are characterised
by a huge capability to resist large deformations which can exceed much more than
100% of strain. Apart from this behaviour, rubber materials exhibit the great benefit
that their mechanical properties like stiffness or abrasion resistance can easily be con-
trolled by the addition of different filler-types, such as silica or carbon-black, such that
they can be designed for special technical applications. Thereby, one can distinguish
between reinforcing active fillers which are commonly added to enhance the mechanical
properties and inactive fillers which are mainly used to improve processability.
With respect to industrial applications, elastomer materials are especially applied in the
tyre industry as well as in the automotive industry in which they are frequently applied
as mounting systems for car engines. Whilst the tyre industry especially focuses on
low abrasion resistance and high road adhesion, the automotive industry aims at isolat-
ing the vibrations produced by the running engine to prevent the vibrations from being
transferred into the passenger cell.

Outline

This work is focused on the experimental investigation, constitutive modelling and finite
element simulation of filler-reinforced rubber. Hence, it is essential to first characterise
the material and its mechanical properties. On this basis, suitable experiments can
be carried out and, subsequently, an adequate constitutive model can be derived to
represent the observed material characteristics. For this reason, the aim of this chapter

61
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is to provide an overview of the basics of elastomer materials and rubber compounds
which form the basis of this work:

• natural rubber with 40 phr amount of carbon-black (NR40),

• styrene-butadiene rubber with 20 phr and 40 phr amount of carbon-black (SBR20
and SBR40),

• ethylene-propylen-diene rubber with 20 phr amount of carbon-black (EPDM20).

The focus of the following presentation is the classification and composition of elas-
tomers, their mechanical properties, and the main areas of application. Thereby, the
following presentation mostly refers to the detailed descriptions given in the textbooks
by Michaeli (2006), Röthemeyer and Sommer (2006) and Schwarz and Ebeling (2007).
For a comprehensive overview of the physics and mechanics of polymers, the reader is
also referred to the textbooks by Tobolsky (1967), Schwarzl (1990), Ehrenstein (1999)
or Sperling (2006).

4.1 Classification of elastomers

As presented in the textbooks by Röthemeyer and Sommer (2006) and Schwarz and
Ebeling (2007), elastomer materials belong to the main class of polymers. These are
organic compounds which mainly consist of carbon and hydrogen atoms which are con-
nected to molecular chains. They are mostly obtained from the resource crude oil by
polymerisation, polycondensation or polyaddition. The carbon and hydrogen atoms are
combined to macro molecules which can be cross-linked by physical or chemical bonds.
Due to the different degree of cross-linking, polymer materials are characterised by a
huge diversity between their chemical and physical properties, such as mechanical stiff-
ness, strain resistance, fusibility, solubility or swelling. Since these properties mostly
depend on type and degree of cross-linking of the chain molecules, polymers are usu-
ally subclassified on the basis of this relation. Regarding this, polymer materials are
usually divided into thermoplastics, elastomers and duromers. The general structure
and properties of these types will shortly be introduced in this section. A detailed
description is provided by Röthemeyer and Sommer (2006) and Hoefer (2009).

Thermoplastics

Thermoplastics are branched chain molecules which are merely cross-linked by weak
physical bondings. Due to the absence of stronger covalent cross-links, thermoplastics
are fusible and thus processable by injection moulding and extrusion. Furthermore, one
can distinguish between amorphous and semi-crystalline thermoplastics. Amorphous
thermoplastics are characterised by an orderless distribution of their macro molecules
whereas the macro molecules of semi-crystalline thermoplastics exhibit a certain degree
of arrangement. In contrast to amorphous thermoplastics which are easy fusible, the
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fusibility of semi-crystalline thermoplastics decreases with increasing degree of crys-
tallisation.

Elastomers

Elastomers are weakly cross-linked chain molecules which are neither fusible nor sol-
uble, but strongly capable of swelling. Based on the weak cross-linking, the macro
molecules of elastomers are very flexible which finally results in the unique elastic de-
formability of the material. In general, one can distinguish between natural rubber and
synthesised rubbers which are mostly enhanced by active filler particles to guarantee
suitable mechanical properties. The characteristic glass transition temperature Tg of
elastomers is typically located below 0◦C. Below this temperature, the macro molecules
are in a frozen state and loose their flexibility. In Röthemeyer and Sommer (2006), the
temperature dependent mechanical behaviour of elastomers is described by means of
the shear modulus. Referring to this presentation, one can distinguish between four
characteristic temperature regions in which the mechanical properties of elastomers
significantly change. These are illustrated in figure 4.1 by means of the temperature
dependent shear modulus.
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Figure 4.1: Temperature dependence of the shear modulus of elastomers (cf. Röthe-
meyer and Sommer (2006))

The first region is located at very low temperatures below the glass transition temper-
ature and denotes the energy-elastic area. In this region, the molecular chains are in a
frozen glassy state meaning that they are hindered from moving and thus not flexible.
Consequently, the material looses its typical elastic properties and is characterised by
huge stiffness below the glass transition temperature. If the temperature is raised, the
flexibility of the molecular chains increases, which subsequently results in a softening
of the material.
The second region is the glass transition area in which the material fades from the
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energy-elastic state to the entropy-elastic state. In this area, the shear modulus is
characterised by a pronounced decrease with increasing temperature. Thereby, the
point of inflexion is usually defined as the characteristic glass transition temperature
Tg.
The third region is the entropy-elastic area which characterises the commonly rated
range of use. In this region, the molecular chains exhibit high flexibility such that
elastomers adopt their typical elastic properties with increasing temperature. In con-
trast to the energy-elastic region at very low temperature, the dynamic mechanical
behaviour is characterised by low storage and loss moduli at the entropy-elastic area.
The last region is located at very high temperatures and defines the area of corrosion. In
this region, the heat resistance of elastomers is exceeded by temperature which results
in a destruction of their molecular chains and thus in a loss of the material’s stiff-
ness. Based on these temperature dependent characteristics, the technically relevant
operating area of rubber is usually located between the glass transition temperature
and the decomposition temperature. More details about these temperature dependent
characteristics are provided by Röthemeyer and Sommer (2006).

Duromers

In contrast to thermoplastics and elastomers, duromers are composed of strongly cross-
linked chain molecules. They are linked via strong covalent bonding and thus reveal
a lack of flexibility. Moreover, duromers are characterised by considerable stiffness at
room temperature, non-fusibility, non-solubility and non-swellability. In comparison
to elastomer materials, the glass transition temperature of duromers is usually located
above room temperature and the technically relevant operating area is commonly below
the glass transition temperature.

4.2 Mechanical properties

In contrast to other solid materials, such as thermoplastics or metals, elastomers are
characterised by unique mechanical properties. As described by Röthemeyer and Som-
mer (2006) in detail, rubber-like materials are comparatively soft and exhibit a rel-
atively small Young’s modulus which is commonly located between 10−1 MPa and
102 MPa. Moreover, due to the high flexibility of the molecular chains, elastomers
are characterised by excellent elastic properties and can resist huge deformations ex-
ceeding more than 100 %. For comparison, thermoplastics and metals possess a Young’s
modulus of 103 - 104 MPa respectively 105 MPa and are therefore much stiffer than rub-
ber. Furthermore, the elastic deformability of thermoplastics and metals is limited to
10 % respectively 1 % of strain and is thus comparatively small.
Apart from their excellent elastic deformability, the material behaviour of elastomers
is determined by numerous complex nonlinear effects, especially if the material is re-
inforced by filler particles. Apart from the nonlinear stress-strain relation, especially
under finite deformation, rubber is characterised by several viscoelastic effects, such
as rate and frequency dependence, stress relaxation or creep. Especially in terms of
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filler-reinforced rubber, pronounced stress-softening phenomena, such as the Mullins
effect (Mullins 1948) or the amplitude dependent Payne effect (Payne 1962a) can be
observed.
In order to understand the nonlinear behaviour of elastomer materials, the general
characteristics of elasticity and viscoelasticity as well as the Mullins and the Payne
effect are described in the following. A detailed description of these phenomena and
several other physical and mechanical properties of elastomers is provided in fundamen-
tal textbooks, e.g. Tobolsky (1967), Ehrenstein (1999). Michaeli (2006), Röthemeyer
and Sommer (2006), Sperling (2006) or Schwarz and Ebeling (2007).

4.2.1 Elasticity & hyperelasticity

The elastic properties of elastomers are physically related to the high flexibility of the
weakly cross-linked molecular chains and mainly result from changes in the entropy
during loading and unloading of the material. In the undeformed state, the material
is in its equilibrium meaning that the molecular chains are in a preferred state which
is defined by maximum entropy. If external deformations are applied, the flexible
molecular chains start moving and adopt a new spatial configuration which differs from
the equilibrium. Due to this, the preferred state of maximum entropy is abandoned
and the externally delivered work is stored as energy inside the material. A subsequent
unloading of the material results in a release of the stored energy and thus in a return
to the equilibrium state.
In general, the elastic material behaviour of rubber is linear in a limited range of
deformations only which is typically located below 10 % of strain. Especially under
finite deformations, elastomers exhibit a nonlinear relation between stress and strain
which is mainly caused by material and geometrical nonlinearities. If the stress-strain
relation can be calculated by differentiation of an energy function with respect to
deformation, such as the specific Helmholtz free energy, this phenomenon is called
hyperelasticity. An illustration of the nonlinear stress-strain relation is provided in
figure 4.2.
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Figure 4.2: Nonlinear stress-strain relation of elastomers
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4.2.2 Viscoelasticity

As presented in chapters 1 and 3, the mechanical properties of elastomers are char-
acterised by pronounced time, rate and frequency dependences. These properties are
classified as viscoelastic effects which mainly arise from simultaneous running of elastic
and viscous processes. As explained by Röthemeyer and Sommer (2006), the elastic be-
haviour is based on the storage of energy during the loading process and a subsequent
release of this energy during unloading whilst the viscous phenomena are physically
related to the dissipation of energy. Characteristic viscous phenomena of elastomers
are stress relaxation, retardation, rate or frequency dependence, hysteresis, damping
effects or self heating.
From a physical point of view, the viscoelastic behaviour of elastomers can be explained
by the fact that the molecular chains need a certain amount of time to change their
position and are thus unable to instantly follow an applied deformation.
Regarding relaxation tests, the typical viscoelastic stress relaxation can be observed if
the material is loaded with a certain amount of strain which is held constant over time.
Since the molecular chains are unable to directly follow the deformation, the stress
response temporally decreases until the material reaches its equilibrium state (figure
4.3).
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Figure 4.3: Viscoelasticity: stress relaxation of elastomers

In order to study the rate or frequency dependent properties of elastomers under dy-
namic loadings, it is common practice to use dynamic mechanical analysis (Menard
1999). This technique is also applied in the current work to study the influence of
predeformation and frequency on storage and loss modulus. The material is deformed
with a harmonic excitation and its response is evaluated by means of the dynamic
moduli in the frequency domain. Thereby, the storage modulus can be interpreted as
a measurement of the material’s stiffness and the loss modulus can be described as a
measurement of the dissipated energy. Based on this procedure, it is found that the
storage modulus increases with increasing frequency (Sjoeberg and Kari 2003; Lion
et al. 2009; Rendek and Lion 2010a; Suwannachit and Nackenhorst 2010), whereas the
loss modulus reveals sigmoidal characteristics with a maximum at middle frequencies.
Furthermore, the dynamic properties are observed to be more or less dependent on the
static preload (Kim and Youn 2001; Kari 2003; Rendek and Lion 2010b), which seems
to be related to the hyperelastic behaviour (Hoefer and Lion 2009). For illustration, the
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frequency dependent characteristics of the storage and the loss modulus are displayed
in figure 4.4.
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Figure 4.4: Viscoelasticity: frequency dependence of the dynamic moduli

4.2.3 Mullins effect

The Mullins effect is a strain-induced stress-softening phenomenon of virgin material
which is mostly observed during the first loading cycle (Mullins 1948). It was found,
that this softening effect depends on the maximum amount of strain in the loading his-
tory and is irreversible at moderate temperatures (Mullins 1950; Bueche 1961; Mullins
1969). Moreover, softening is observed in the case of unfilled and filler-reinforced rub-
ber, but more pronounced for filler-loaded vulcanisates (Mullins 1950; Harwood et al.
1965; Harwood and Payne 1966). On the basis of these observations, stress-softening is
mostly related to changes in the rubber matrix which mainly result from a breakdown
of weak chemical bonds. The enhanced pronunciation of the Mullins effect in terms
of filler-reinforced vulcanisates is due to the presence of the filler and can physically
be related to an increase in the local deformation of the rubber matrix such that the
material is in a state of higher deformation (Harwood et al. 1965; Mullins and Tobin
1965; Harwood and Payne 1966). Mathematically, this interpretation can be described
by the strain-amplification factor which was proposed by Mullins and Tobin (1965).
For illustration, a schematic presentation of the Mullins effect is given in figure 4.5
as an example. The red coloured stress paths σ01, σ02 and σ03 are virgin stress paths
whereas the blue coloured stress paths σD1, σD2 and σD3 are damaged ones. If the
virgin material is first loaded to strain ε1 virgin stress response represented by path
σ01 is obtained. Since the material has been damaged during this first loading, further
loadings to strain ε1 lead to a decreased stress response which is described by damage
path σD1. If the strain is increased from ε1 to ε2, the material response is defined by
virgin path σ02 because only strain ε1 was reached in the history of the deformation.
Due to further damage of the material in the previous loading, a second loading from
zero strain to strain ε2 then results in damaged stress path σD2 and so on.
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Figure 4.5: Exemplary illustration of the Mullins effect

4.2.4 Payne effect

The Payne effect is an amplitude dependent softening of filler-reinforced rubber which
occurs under dynamic loadings. The effect was investigated early by Gehman et al.
(1941) and Gehman (1942) and appears as a decrease of the material’s dynamic stiffness
with an increasing dynamic amplitude of strain. Whilst the storage modulus decreases
with increasing dynamic strain, the loss modulus exhibits a pronounced maximum at
middle strain amplitudes (Fletscher and Gent 1953; Payne 1961; Payne 1962a) and
(Payne 1962b). It is observed that amplitude dependent softening is not present at
arbitrary dynamic strains. At very small and high amplitudes of strain, the dynamic
stiffness remains constant and amplitude dependent effects vanish (Payne 1960; Payne
1962a) and (Ulmer et al. 1974).
In contrast to the Mullins effect, the Payne effect is only present for filler-reinforced
rubber vulcanisates. Moreover, the amplitude dependent softening was found to be
strongly dependent on the amount, the size and the type of filler particles and to be
more pronounced for high amounts and small sizes of filler particles (Gehman 1942;
Payne 1974; Dannenberg 1975; Dutta and Tripathy 1992; Wang and Robertson 2005;
Rendek and Lion 2010b). Furthermore, it is observed that the phenomenon is com-
pletely reversible (Gehman 1942; Fletscher and Gent 1953; Hoefer 2009; Rendek and
Lion 2010b). For illustration, the amplitude dependent characteristics of the Payne
effect are displayed in figure 4.6 for different amounts of filler particles.
A physical interpretation of the Payne effect is given by Lion and Kardelky (2004).

The authors state, that the decrease of the storage modulus with increasing amplitude
of strain is due to a decrease in the number of intact filler bonds at higher values of
strain. The loss modulus is proportional to the breakage rate of the filler bonds which is
on the other hand, proportional to the number of intact filler bonds. At small dynamic
strains, the filler bonds are intact such that the loss modulus first increases with the
dynamic amplitude of strain. After reaching its maximum value at middle strains, at
which the breakdown and reformation of the filler network reaches its maximum, the
loss modulus decreases again which is due to the breakdown of the filler network and
the considerable reduction of filler bonds.
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Figure 4.6: Exemplary illustration of the Payne effect

4.3 Natural rubber (NR)

The definition "natural rubber" includes a wide spectrum of different elastomer materi-
als which are directly extracted from nature. As described in the detailed presentation
by Schwarz and Ebeling (2007), the raw material of natural rubber is the juice of rub-
ber trees which is usually called "latex". From this resource, natural rubber is mainly
obtained by special flocculation and drying processes. Since latex is a natural product,
the properties of processed natural rubber are strongly dependent on the production
area and preparation process. Thus, natural rubber is divided into numerous different
types, such as the popular and high quality "Standard Malaysian Rubber".
As illustrated in figure 4.7, natural rubber is based on polymeric bonds of isoprene
molecules. This composition exhibits reactive double bonds which enable for a cross-
linking of natural rubber with sulphur or peroxide, but they also make the material
susceptible for an accumulation of ozone and oxygen. Therefore, natural rubber has
to be stabilised by anti-ageing agents to avoid early ageing phenomena. For more de-
tails about natural rubber, its composition, mechanical properties and application, the
reader is referred to the textbooks by Röthemeyer and Sommer (2006) and Schwarz
and Ebeling (2007).
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Figure 4.7: General composition of natural rubber



70 4.4 Styrene-butadiene-rubber (SBR)

4.3.1 Properties

From a mechanical point of view, unfilled natural rubber is, compared to unfilled syn-
thesised rubbers, characterised by high mechanical stiffness. As presented by Röthe-
meyer and Sommer (2006) and Schwarz and Ebeling (2007), the mechanical stiffness
of the material is influenced by strain-induced crystallisation effects which take place
under extremely large deformations in the progressive region of the stress-strain curve.
Furthermore, the material features high elasticity and elongation at fracture, excel-
lent tear growth and shock resistance as well as low permanent set after deformation.
With respect to dynamic mechanical loadings, natural rubber exhibits low hysteresis
effects, a low loss factor and a small amount of self-heating. Its thermal properties are
characterised by low heat resistance, but excellent cold flexibility. On this basis, the
application range of natural rubber typically reaches from about -50◦C up to 70◦C.
Due to its poor resistance against weather, ozone, oxygen and ultraviolet light, natural
rubber is characterised by pronounced ageing phenomena and must therefore be sta-
bilised by protecting agents.
Moreover, the material tends to low swelling effects in water and reveals good resistance
against polar solvents, such as alcohol, ester or ketones whereas its resistance against
unpolar solvents, such as oil and fuel, is to the contrary. A detailed description of the
mentioned properties is provided by Röthemeyer and Sommer (2006) and Schwarz and
Ebeling (2007).

4.3.2 Area of application

Due to the large number of attractive physical properties, natural rubber is used in
many applications. With regard to its good dynamic mechanical properties, such as
the relatively low loss factor and low self-heating effects, natural rubber is commonly
used in dynamic mechanical applications. Based on this, the material is frequently
used in the tyre industry as well as for decoupling applications in the form of rubber-
metal elements, engine mounts or bridge mounts. In fact, natural rubber was often
used as all-purpose rubber in the past, but nowadays it is more and more replaced by
synthesised compounds which are mostly developed for special applications.

4.4 Styrene-butadiene-rubber (SBR)

In contrast to natural rubber, styrene-butadiene rubber is a synthetic rubber which
is commonly used in various industrial applications. As illustrated in figure 4.8, the
material is generally made up by the co-polimerisation of butadiene and styrene.

As described by Michaeli (2006), Röthemeyer and Sommer (2006) and Schwarz and
Ebeling (2007), SBR is mostly manufactured by emulsion or solution polymerisation.
SBR vulcanisates obtained from emulsion polymerisation are shortly called E-SBR
and preferred by industry. Regarding this type, a distinction can be drawn between
hot rubber which is polymerised at high temperatures of about 50◦C and cold rubber
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Figure 4.8: General composition of SBR

which is polymerised at low temperatures of about 5◦C. In comparison to hot rubber,
cold rubber offers the benefit of a low molecular weight which simplifies subsequent
processing of the material. Due to its good processability, cold rubber is much more
accepted in the industry today. Apart from emulsion polymerisation, only a little
amount of SBR is produced by solution polymerisation. This type is called L-SBR, but
not much preferred by the industry.

4.4.1 Properties

The mechanical properties of SBR are strongly dependent on the amount of styrene.
Normally, SBR with 23.5 % amount of styrene is used in industrial applications. Types
with a lower amount of styrene exhibit a lower glass transition temperature, lower
self-heating, higher elasticity and higher abrasion resistance whereas the properties of
compounds with a higher amount of styrene are opposite (cf. Röthemeyer and Sommer
(2006)).
In contrast to natural rubber, SBR is characterised by low stiffness and tensile strength,
especially in the unfilled state. Thus, the addition of filler particles is required to
enhance its mechanical properties. Thereby, it is common practice to add high active
fillers, such as carbon-blacks. Under dynamic mechanical loadings, SBR reveals a
slightly greater amount of self-heating than natural rubber whereas its temperature
resistance exists below 110◦C and is therefore much better than that of NR. With a
glass-transition temperature of -50◦C, the operating area of SBR ranges from -50◦C up
to 110◦C.
With respect to ageing phenomena, SBR is characterised by moderate resistance against
weather phenomena, ageing and ozone, but its resistance can extensively be enhanced
by the addition of protecting agents. Beyond this, the material is chemically resistant
against unpolar solvents, weak acids and bases but tends to swell in oil and fuel. A
comprehensive overview about the mentioned properties is given by Röthemeyer and
Sommer (2006) and Schwarz and Ebeling (2007).
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4.4.2 Area of application

Based on the cheapness of the raw material, SBR is frequently used in a broad range
of applications. The major area of application is located in the tire industry. Besides
this field, the material is also used for rubber tubes, conveyor bands and several other
technical applications.

4.5 Ethylene-propylene-diene rubber (EPDM)

Similar to SBR, ethylene-propylene rubber is a synthetic type of rubber which is based
on ethylene-propylene rubber (EPM). As described by Schwarz and Ebeling (2007),
this type is mainly obtained by the co-polymerisation of ethylene and propylene and
has no double bondings such that cross-linking with sulphur or peroxide is not possible
without modification. For illustration, the chemical composition of EPM is displayed
in figure 4.9.
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Figure 4.9: General composition of EPM

On the basis of EPM, EPDM is then obtained by the addition of another terpolymer,
usually diene. This addition then results in the build up of reactive double bonds which
allows for a cross-linking of EPDM with sulphur or peroxide.

4.5.1 Properties

The mechanical properties of EPDM vulcanisates are strongly dependent on the amount
of ethylene. A detailed description of this relationship is provided by Röthemeyer and
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Sommer (2006) and Schwarz and Ebeling (2007). Generally, higher amounts of ethy-
lene cause an increase in crystallinity and thus result in an increase of the material’s
stiffness. On the other hand, the mechanical properties at low temperatures are de-
graded with increasing amount of ethylene. Based on the concentration of ethylene,
the material can be classified into amorphous, semi-crystalline and crystalline types.
Lower ethylene concentrations between 45 % and 55 % result in amorphous polymers
which exhibit low mechanical stiffness. These types must be reinforced by filler parti-
cles, such as carbon-black, to guarantee good mechanical properties.
In the case of middle concentrations of ethylene, which are typically located between
55 % and 65 %, semi-crystalline polymer types arise. These types reveal a partly crys-
talline structure and are characterised by higher stiffness in the unfilled state.
Crystalline EPDM types are characterised by very high concentrations of ethylene
between 65 % and 75 % and thus exhibit much higher mechanical stiffness than the
amorphous or semi-crystalline ones (cf. Röthemeyer and Sommer (2006)).
Apart from mechanical stiffness, the mechanical properties of EPDM are characterised
by high elasticity, low permanent set and good tear growth resistance which is compa-
rable to that of NR. But similar to SBR vulcanisates, amorphous and semi-crystalline
EPDM types require the addition of filler particles to improve their mechanical prop-
erties.
With respect to temperature, the cold flexibility of EPDM also depends on the amount
of ethylene. Amorphous EPDM types with a smaller amount of ethylene reveal a bet-
ter behaviour at low temperatures and exhibit good flexibility down to -40◦C. The
material’s resistance against high temperatures is quite good below 135◦C in terms of
sulphur cross-linked types, whereas peroxide cross-linked types are resistant against
heat up to 150◦C (cf. Röthemeyer and Sommer (2006)).
In contrast to NR or SBR, EPDM exhibits good resistance against weather, ozone and
ultraviolet light such that ageing phenomena are not really pronounced. Beyond this,
the material is characterised by good resistance against steam and hot water, weak acids
and bases, acetones, alcohol, ketones and hydraulic liquids, but its resistance against oil
and fuel is only weakly pronounced. A detailed description of the mentioned relations
is provided by Röthemeyer and Sommer (2006) and Schwarz and Ebeling (2007).

4.5.2 Area of application

EPDM vulcanisates are used in a wide range of applications, mostly blended with other
polymers. The major area of application are profiles, cable coatings, insulations and
conveyor bands. Apart from these, the material is also applied in the car industry in
the form of gaskets, tyre compounds or coolant hoses.





Chapter 5

Experimental investigations

Introduction

Although experimental investigations are more and more replaced by powerful simula-
tion methods these days, they are indispensable to first characterise the physical and
mechanical properties of the material. This is due to the fact that a comprehensive
knowledge about the material behaviour under specified circumstances is an essential
requirement to formulate suitable constitutive models from which powerful and efficient
simulation methods can be developed. Regarding this point of view, experimental tests
form the basis for a mathematical description of materials and will therefore be in-
dispensable to perform efficient simulations. Moreover, experimental data is necessary
to identify the unknown material parameters of the underlying constitutive model by
suitable identification algorithms.

Outline

The focus of this chapter is on the experimental investigations carried out to char-
acterise the predeformation and frequency dependent properties of the following four
carbon-black filled rubber vulcanisates:

• styrene-butadiene rubber with 20 phr amount of filler (SBR20),

• styrene-butadiene rubber with 40 phr amount of filler (SBR40),

• ethylene-propylene-diene rubber with 20 phr amount of filler (EPDM20),

• and natural rubber with 40 phr amount of filler (NR40).

Due to the considered loading condition of constant static predeformation and superim-
posed harmonic vibration, the mechanical behaviour of these materials is investigated
through quasi-static and dynamic tests.
The quasi-static investigations mainly focus on the equilibrium stress response of the

75
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material which is characterised in stepwise relaxation tests at various values of defor-
mation.
The dynamic experiments concentrate on the predeformation and frequency dependent
characteristics of the storage and the loss modulus. These investigations are performed
via dynamic mechanical analyses (Menard (1999)) and are closely related to the real
loading situation of mounting systems. Hence, the material is loaded with various
constant predeformations which are superimposed by harmonic vibrations of small am-
plitudes and varying frequency. Since the dynamic mechanical analyses are experimen-
tally limited to a maximum frequency of 100 Hz, the frequency range is extended by
applying the temperature frequency shifting technique (Williams et al. (1955), Ferry
(1980), Schwarzl (1990)) to cover the broad frequency range of interest up to 105 Hz.
To characterise the relation between temperature and frequency dependence of the dy-
namic moduli and to apply the temperature frequency shifting technique, the dynamic
measurements are performed at different temperatures. Since the operating area of
elastomer materials is determined by the entropy elastic range, the glass transition
temperature is first determined by the differential scanning calorimetry. This step is
necessary to ensure that the dynamic mechanical analyses are performed above the
glass transition temperature.

With regard to the loading condition of engine mounts, stress-softening or amplitude
dependent phenomena, such as the Mullins effect (Mullins (1948), Bueche (1961))
or the Payne effect (Payne (1962a), Fletscher and Gent (1953)), are not considered
in this work. This is due to the assumption that typical mounting systems are al-
ready preloaded after assembly such that the material is preconditioned and no further
Mullins softening appears. Moreover, the vibrations which occur during driving oper-
ations are of very small amplitudes such that the amplitude dependent Payne effect,
known to be absent at very small dynamic strains (Payne (1960), Payne (1962a)), can
be omitted.
In order to confirm these assumptions with respect to the underlying materials and the
considered loading condition, the presence of both effects is studied through preliminary
investigations.

Based on the experimental tests, this chapter is divided into three main sections. The
first one deals with differential scanning calorimetry, the second section is concerned
with the quasi-static experiments and the last one focuses on the dynamic mechanical
analyses. The presentation of each section includes a description of the technical test
equipment, the applied testing procedures, as well as the experimental findings.

It is pointed out, that some parts of the experimental investigations have been published
in prior printed publications which were approved by the university (Wollscheid and
Lion (2012), Wollscheid and Lion (2013a), Wollscheid and Lion (2013b) and Wollscheid
and Lion (2014)).
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5.1 Differential scanning calorimetry

Differential scanning calorimetry is a commonly used method to characterise chemi-
cal and physical phenomena which are influenced by temperature variations. These
include melting, crystallisation, glass transition, heat capacity as well as other calori-
metric data.
In this work, the differential scanning calorimetry is carried out to determine the glass
transition temperature of the investigated carbon-black filled vulcanisates. This knowl-
edge is essential to ensure that the subsequent dynamic mechanical analyses are per-
formed above the glass transition temperature. Since the operating area of elastomers
is located above the glass transition temperature, this temperature is adequate to define
the lower temperature limit of the dynamic mechanical tests.

DSC testing device

The glass transition temperature is determined by the differential scanning calorimeter
Maya of Netsch Gerätebau GmbH. As illustrated in figure 5.1, the system consists of
a small chamber with two pans.

θ1 θ2∆θ

heat flow Q

specimen reference

temperature chamber

detectordetector

unit

temperature temperature

heating/cooling

Figure 5.1: Illustration of the DSC measuring principle

One of the pans contains the specimen to be investigated whereas the other one is
used as a reference which is usually calibrated by a sapphire specimen. Via a heating-
/cooling unit, controlled temperature processes can be applied to the two pans. Since
the pans are characterised by different heat capacities, a temperature difference arises
between them. This difference is captured by super sensitive temperature detectors
placed below the pans. Thereby, the temperature difference is measured as a function
of the time and can be related to a differential heat flow rate on which basis the calori-
metric behaviour of the specimen can be commented on. For a detailed overview of
differential scanning calorimetry, the reader is referred to the textbook by Flammer-
sheim et al. (2003).
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5.1.1 Glass transition temperature

In order to determine the glass transition temperature, the specimen is first cooled
from room temperature down to -100 ◦C and then heated up to 20 ◦C with a heating
rate of 10◦C/min. Through this procedure, the glass transition temperature can be
determined by the specific heat flow rate which is captured during the heating process.
For illustration, the specific heat flow rate over temperature is displayed in figure 5.2
in terms of the SBR40 vulcanisate.
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Figure 5.2: Specific heat flow rate of SBR40 over temperature

On the basis of this representation, a transition area between -60 ◦C and -40 ◦C can be
observed in which the specific heat flow rate significantly increases. In this area, the
mobility of the polymer chains starts to increase due to the rising temperature such that
the material migrates from the glassy to the elastic state. Based on this characteristic,
it is common to determine the glass transition temperature by the turning point of
the curve. In so doing, the results of the glass transition temperature of each material
finally obtained are listed in table 5.1.

SBR20 -46,6 ◦C
SBR40 -48,6 ◦C

EPDM20 -49,9 ◦C
NR40 -61,0 ◦C

Table 5.1: Glass transition temperatures of SBR20, SBR40, EPDM20 and NR40

5.2 Quasi-static experiments

The main focus of the quasi-static investigations is on determining the equilibrium
response of the material. Since this work does not account for stress-softening phe-
nomena, the Mullins effect is additionally studied through preliminary investigations
to reveal the necessity of preconditioning.



Chapter 5 Experimental investigations 79

The experimental tests concerned with the Mullins effect are carried out under uniaxial
tension whereas the other experiments are performed under uniaxial tension, compres-
sion and pure shear to cover the range of different deformation types.
The geometries of the specimen for uniaxial tension, pure shear and compression are
illustrated in figure 5.3. In order to prevent barrelling during the compression tests,
some grease was applied on top and on bottom of the specimen such that the material
is not hindered from moving at the clamps.
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Figure 5.3: Geometries of the specimen for uniaxial tension, pure shear and com-
pression

Quasi-static testing device

The following experiments are performed with the quasi-static testing device
Zwick/Roell Z020.
The testing machine can generally be divided into three main components, a tension
unit, a torsion unit and a temperature chamber. These components can be used sep-
arately or in combination such that complex types of deformation can be applied.
Moreover, the temperature chamber allows for the possibility to perform isothermal
measurements and to define more complicated temperature histories in a range from
−70 ◦C up to 250 ◦C.
The force signal is measured by convertible force sensors of 150 N, 2.5 kN and 20 kN,
whereas the momentum signal is captured by a sensor of 100 Nm. The displacement can
be measured globally by the traverse sensor or locally with a camera. A brief overview
of important technical specifications of the quasi-static testing device are listed in table
5.2.

The experimental investigations are performed by using the tension unit to study the
material characteristics under uniaxial tension, compression and pure shear. Further-
more, the temperature chamber is utilised to set a constant reference temperature of
20 ◦C. Since the strain is mostly spread over the specimen inhomogeneously, it is mea-
sured locally by using the camera. The reaction force of the specimen is captured by
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maximum force 150N / 2.5kN / 20kN
maximum momentum 100Nm
displacement sensor traverse / camera
linear speed range 0.03 - 1000 mm/min
torsion speed range 0.001 - 10 rpm
temperature range -70 - 250◦C

Table 5.2: Technical specifications of Zwick/Roell Z020

the sensitive 150 N force transducer in uniaxial tension mode and by the 2.5 kN sensor
in compression and pure shear mode which is due to higher values of force.

5.2.1 Mullins effect

The Mullins effect is an irreversible, strain-induced softening phenomenon which occurs
during the first loading cycles of elastomers (Mullins (1948), Bueche (1961), Harwood
et al. (1965)). Since this effect is not considered in this thesis, it is investigated in
preliminary experiments by applying cyclic deformations under uniaxial tension. In a
first loading process, the virgin specimen is loaded five times with a maximum strain
of 100 %. After this procedure, the material is allowed to rest for three days and
then loaded again through the same procedure. Due to the separated second loading
process, superimposed viscoelastic effects, such as stress-relaxation, can be excluded
such that the stress decrease is ensured to be solely caused by the Mullins effect. The
experimentally obtained stress responses of the first and second loading processes are
illustrated for each material in figure 5.4.

Comparing the first and second loading procedures, one can observe that the stress in
the second loading process is decreasing again such that the stress-softening effect can
not be neglected. Apart from this fact, the experimental data reveals the dependence
of the Mullins effect on the amount of filler. Regarding the stress response of the SBR
vulcanisates, the stress decrease of the higher filled SBR40 rubber is more pronounced
than that of the lower filled SBR20. This observation corresponds to the early investi-
gations made by Harwood et al. (1965) or Harwood and Payne (1966) and is physically
related to the presence of the filler which results in an increase of the local strain in
the rubber matrix.
In order to avoid stress-softening during the following investigations, the specimens are
mechanically preconditioned. To this end, they are loaded up to a maximum strain
which exceeds the maximum strain reached in the tests to determine the equilibrium
stress-strain curves. Since the Mullins effect depends on the maximum strain in the
loading history, this preconditioning guarantees that no stress-softening occurs in the
following tests and that the Mullins effect can be omitted in the constitutive model.
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Figure 5.4: Stress-softening of SBR20 (upper left), SBR40 (upper right), EPDM20
(lower left) and NR40 (lower right)

5.2.2 Equilibrium stress

The equilibrium stress response of the material is determined under uniaxial tension,
compression and pure shear. The maximum static strain is set to 85 % in tension mode,
40 % in compression mode and 70 % in pure shear.
Since filler-reinforced rubbers exhibit long-term relaxation (Simo and Huges (2000)),
the equilibrium stress response is not investigated by using simple long-term relaxation
tests. It is determined by stepwise loadings and unloadings with shortened holding
times such that the duration of the experiment can be significantly reduced. For illus-
tration, the stepwise loadcase is displayed as an example on the left-hand side of figure
5.5 in terms of the SBR40 under uniaxial tension. The specimen is loaded stepwise
with specific strain amplitudes which are held constant for 1 hour in each step. Once
the maximum strain is reached, the specimen is unloaded in a similar sense.

The corresponding stress response resulting from the stepwise loading procedure is
illustrated on the right-hand side of figure 5.5. On the basis of this display, the equi-
librium stress is located between the corresponding loading and unloading steps which
belong to the same strain level. An easy method to determine the equilibrium stress
would be to take the mean value of stress between the endpoints of the corresponding
loading and unloading paths. However, the stress relaxation respectively the temporal
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Figure 5.5: Stepwise loadcase (left) and resulting stress response of SBR40 (right)
under uniaxial tension

decrease in the stress of the corresponding paths differ from each other. To illustrate
the relaxation behaviour in more detail, the stress response of the loading and unload-
ing paths at 75 % of strain is shown in figure 5.6. This figure reveals that the stress
decrease on the loading path is considerably more pronounced than on the unloading
path such that determining the equilibrium stress on the basis of the mean stress would
be too inaccurate.
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Figure 5.6: Detail of the stress responses at 75 % of strain (SBR40)

To make a more precise statement, the equilibrium stress is determined by the intersec-
tion of the tangents of the corresponding loading and unloading paths. As illustrated
on the left-hand side of figure 5.7, the tangents of the relaxation paths are calculated
with respect to the last 5 minutes of the holding time. On this basis, the intersec-
tion point of the extrapolated tangents is defined as the equilibrium stress. If this
procedure is applied with respect to each level of strain, the equilibrium stress can be
determined precisely for each strain level. The equilibrium stress determined through
this procedure and corresponding to the experimental data in figure 5.5 is given on the
right-hand side of figure 5.7.

Based on this procedure, the equilibrium stress is determined for each deformation mode
and each material. The results obtained in terms of the 1st Piola-Kirchhoff stress are
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Figure 5.7: Calculation of the equilibrium stress at 75 % of strain (left) and resulting
equilibrium stress under uniaxial tension (right) (SBR40)

plotted in figure 5.8 as a function of the stretch. Apart from the stress values, each
material behaves approximately in the same manner and is characterised by the typical
nonlinear stress-strain relation of elastomers. The effect of reinforcement due to the
addition of carbon-black can be observed by a comparison between the slightly filled
SBR20 vulcanisate and the higher filled SBR40 compound. Since the SBR40 rubber is
reinforced with a higher amount of carbon-black, its stress responses are higher than
those of the SBR20.
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Figure 5.8: Equilibrium stress response under compression, pure shear and uniaxial
tension (upper left: SBR20), (upper right: SBR40), (lower left: EPDM20), (lower

right: NR40)

5.3 Dynamic investigations

The predeformation and frequency dependent characteristics of the storage and the
loss modulus are studied via dynamic mechanical analyses in the frequency domain.
A detailed overview about the dynamic mechanical analysis is provided by Menard
(1999). In general, the material is loaded with harmonic oscillations and its dynamic
mechanical material response is evaluated in the frequency domain in terms of the
storage and the loss modulus. The variation of different measuring parameters offers
the possibility to study frequency dependence, amplitude dependence, the influence of
the static preload as well as various other dynamic material characteristics.
The dynamic mechanical tests are performed with the DMA testing device Gabo
EPLEXOR 500N which allows for measurements up to 100 Hz. In order to extend
the experimentally limited frequency range, the temperature-frequency shifting tech-
nique is applied.
Since this work does not consider amplitude dependent softening, the Payne effect is
investigated in preliminary tests to prove its absence in the region of small amplitudes.
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The basic loadcase of the dynamic experiments corresponds to that of engine mounts
and is displayed in figure 5.9. The specimen is loaded by a constant static predeforma-
tion ε0 which is then superimposed by a harmonic vibration of the amplitude ∆ε and
the frequency ω.

∆ε sin(ωt)
ε0

ε0

ε0 +∆ε

ε unloaded

static
static

+ dynamic
load

load

0

L0 Ls Ld

Figure 5.9: Loadcase of the dynamic investigations

Via a variation of the dynamic strain amplitude ∆ε, the frequency ω or the static prede-
formation ε0, the Payne effect as well as the frequency and predeformation dependence
of the dynamic moduli are studied.

Dynamic mechanical analysis

In order to acquaint the reader with the technique of dynamic mechanical analysis, the
measuring principle is first explained on the basis of figure 5.10.
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Figure 5.10: Sinusoidal excitation and phase shifted harmonic stress response

If the material is loaded with a sinusoidal excitation

u(t) = ∆u sin(ωt) (5.1)
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with the frequency ω and the amplitude ∆u, the material’s dynamic response is given
by the harmonic force response

F (t) = ∆F sin(ω t + δ) (5.2)

with the amplitude ∆F . The harmonic force response oscillates with the same fre-
quency ω as the excitation, but due to the viscoelastic material properties it is shifted
by a loss angle δ. If the excitation and the force response are expressed in terms of the
harmonic strain ε(t) and stress σ(t), the following relations hold

ε(t) = ∆ε sin(ωt) ,

σ(t) = ∆σ (cos(δ) sin(ω t) + sin(δ) cos(ω t)) .
(5.3)

On the basis of this description, the frequency dependent functions G′(ω) and G′′(ω)
are obtained by dividing the harmonic stress by the harmonic strain. The frequency
dependent storage modulus G′(ω) is defined by the sine part of the stress

G′(ω) =
∆σ

∆ε
cos(δ) , (5.4)

whereas the loss modulus G′′(ω) is identified by the cosine part of the stress

G′′(ω) =
∆σ

∆ε
sin(δ) . (5.5)

Moreover, the complex modulus G∗(ω), its absolute value and the loss factor tan(δ)
can be expressed by the storage and the loss modulus

G∗(ω) = G′(ω) + i G′′(ω) ,

|G∗(ω)| =
√
G′(ω)2 + G′′(ω)2 ,

tan(δ) =
G′′(ω)

G′(ω)
.

(5.6)

Dynamic testing device

In contrast to the quasi-static testing machine, the DMA testing device Gabo EPLEXOR
500N offers the possibility to perform dynamic measurements at frequencies up to
100 Hz. For explanation, a schematic diagram of the machine setup is given in figure
5.11.

The mechanical unit of the system can be divided into a static loading unit (upper
part) and a dynamic loading component (lower part). The static loading unit can be
compared to a quasi-static testing device and is mainly used to apply constant static
deformations. The dynamic loading component consists of an electro-dynamic shaker
which operates on the principle of a speaker and thus allows for applying harmonic
oscillations to the specimen.
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Figure 5.11: Schematic diagramm of DMA testing device Gabo EPLEXOR 500N

The force signal is measured by convertible sensors of 150 N, 500 N and 1500 N which
are installed at the upper loading unit. On the basis of these force sensors, the max-
imum amount of applicable static and dynamic load is limited to 1500 N. However,
the dynamic force is limited to a maximum of 500 N which is due to the limit of the
electro-dynamic shaker system.
The spring system which is attached to the lower dynamic loading unit has the function
of preventing the electro-dynamic shaker from reaching its mechanical end stop due to
large static preloadings. For instance, at moderate preload, a soft carbon spring is used
such that the force of the electro-dynamic shaker, which is necessary to apply harmonic
oscillations, is reduced. At high preload, a stiffer steel spring must additionally be at-
tached such that the shaker does not reach its end stop due to the static preload.
The static and dynamic displacements are captured by two sensors. The static dis-
placement is measured by a dial gauge which is installed at the upper loading unit
whereas the dynamic excitation is determined by exchangeable high sensitive range
sensors of ±1.5 mm and ±7.5 mm.
Apart from the mechanical part, the DMA system inherits a temperature chamber
which offers the possibility to control the temperature with liquid nitrogen in a range
from −150 ◦C up to 500 ◦C. For an overview, the important technical specifications of
the DMA testing device are summarised in table 5.3.

The software of the Gabo EPLEXOR 500N provides several measuring procedures
to apply dynamic loadings with changing frequency, varying static and/or dynamic
amplitude, changing temperature and more. Thereby, the dynamic material response
is analysed in terms of the storage and the loss modulus in the frequency domain. The
most important measuring procedures provided by the software are static-sweep tests,
amplitude-sweep tests, frequency-sweep-tests and temperature-frequency-sweep tests.
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maximum static force 150 N / 500 N / 1500 kN
maximum dynamic force ±500 N
maximum static displacement 35 mm
maximum dynamic displacement ±1.5 mm
frequency range 0.01 - 100 Hz
temperature range -150 - 500 ◦C

Table 5.3: Technical specifications of the Gabo EPLEXOR 500N

With respect to the dynamic loading, the difference between these sweeps consists in
the specification, which of the testing parameters are held constant and which ones are
varied during the measurement. For a better understanding, an overview of the sweeps
is given below:

• Static-sweep

The static-sweep test is defined by a harmonic loading with a stepwise variation of
static prestrain. The other testing parameters, for instance, dynamic amplitude,
frequency or temperature, are held constant. This procedure can be applied to
investigate the predeformation dependence of the dynamic material properties at
different states of static deformation.

• Amplitude-sweep

The amplitude-sweep test is characterised by a harmonic loading with varying
dynamic strain amplitudes at constant static preload, frequency and temperature.
This testing procedure is commonly applied to investigate amplitude-dependent
phenomena, such as the Payne effect.

• Frequency-sweep

The frequency-sweep test is characterised by a harmonic loading with changing
frequency. On the basis of this procedure, the frequency dependent properties
of the material can be investigated at constant static preload, amplitude and
temperature.

• Temperature-frequency-sweep:

The temperature-frequency-sweep test is defined by a harmonic loading with a
combined variation of frequency and temperature at constant static preload and
dynamic amplitude. This procedure consists of a series of sequenced frequency-
sweep tests which are performed at different temperatures. In terms of two fre-
quency sweeps and two temperatures, the procedure is described by the following
steps: At first, the first temperature is regulated and then held constant. After
that, the first frequency-sweep is performed. Then, the second temperature is
controlled and the frequency-sweep is applied again. Based on this procedure,
the frequency and temperature dependence of the dynamic material properties
can easily be investigated. Furthermore, the temperature frequency shifting tech-
nique can be applied to determine the master curve.
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In this work, amplitude-sweep tests are carried out to investigate the Payne effect.
The main investigations are based on temperature-frequency sweeps, which are per-
formed at different states of static deformation. Due to this concept, the dependence
of the storage and the loss modulus on predeformation, frequency and temperature is
studied. Moreover, the experimental frequency range is extended on the basis of the re-
lation between the frequency and temperature dependence by applying the temperature
frequency shifting technique.

5.3.1 Payne effect

The Payne effect is an amplitude dependent softening phenomenon of filler-reinforced
rubber which is generally related to a breakdown of the filler network (Payne 1962a;
Payne 1962b; Payne 1972). It is characterised by a decrease in the storage modulus
with increasing strain amplitude and a maximum of the loss modulus at middle strain
amplitudes.
Since this work focuses on the dynamic material behaviour in the vibrational range
at small strain amplitudes of 0.1 %, the Payne effect is not considered. The author-
ity to neglect amplitude dependent effects is related to early investigations by Payne
(1960) and Payne (1962a). The author observed a yield point at small strain ampli-
tudes below which the dynamic stiffness of elastomers remains constant. Due to this
fact, the amplitude dependence of the underlying materials is investigated in prelimi-
nary amplitude-sweep tests to prove the absence of the Payne effect at strains which
are smaller than 0.1 %. The investigations are performed under uniaxial tension at a
constant predeformation of 15 % which is then superimposed by harmonic oscillations
of 10 Hz. During the harmonic loading, the strain amplitude is stepwise varied from
0.01 % up to 10 % such that the amplitude dependent characteristics of the materi-
als come in sight. The experimental results of the storage and the loss modulus are
illustrated in figure 5.12 for each material.

As one can observe from the experimental data, each material reveals the characteristic
amplitude dependent decrease of the storage modulus with increasing strain amplitude.
The amplitude dependence is more pronounced for the SBR40 and NR40 vulcanisates
with higher amounts of filler. In comparison to the slightly filled SBR20 and EPDM20
compounds, the amplitude dependent decrease of the dynamic stiffness is larger for the
SBR40 and NR40 vulcanisates. The same observation can be made in terms of the
loss modulus. The typical sigmoidal behaviour is more pronounced for the vulcanisates
with 40 phr of filler and nearly missing in terms of the slightly filled vulcanisates. These
observations are in agreement with the studies by Payne (1962a) and Payne (1974) in
which the dependence of the Payne effect on the amount of filler was investigated. From
a physical point of view, the dependence of the Payne effect on the amount of filler can
physically be related to the additional filler network (Lion and Kardelky 2004). The
stronger decrease of the storage modulus in the case of the higher filled SBR40 and
NR40 can thus be related to a breakage of more filler bonds.
On the other hand, the loss modulus as a measure of the energy dissipation is pro-
portional to the breakage rate of the filler bonds. Due to the large amount of intact
filler bonds at small strain amplitudes, the loss modulus first increases with increasing
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Figure 5.12: Amplitude dependence of the storage and the loss modulus (upper
left: SBR20), (upper right: SBR40), (lower left: EPDM20), (lower right: NR40)

dynamic strain and subsequently declines after reaching its maximum value because
the number of intact bonds has considerably decreased. Based on this assumption, the
less pronounced sigmoidal behaviour of the loss modulus in the case of the slightly filled
SBR20 and EPDM20 vulcanisates might be due to the low amount of filler bonds.

With respect to the focus of this work, the essential characteristics of the experimental
observations are based on the fact that the storage modulus reveals a nearly constant
plateau at sufficient small strain amplitudes. In order to make a precise statement
about this domain, the normalised modulus G′/G′

max is plotted in figure 5.13.

If a decrease of 10 % from the maximum value of the storage modulus is defined as
the limit case to neglect the Payne effect, the amplitude dependent softening can be
omitted up to 1.4 % of dynamic strain in terms of the SBR20 compound, up to 1 %
with respect to the SBR40 rubber and up to 1.05 % and 0.25 % with regard to the
EPDM20 and NR40 vulcanistes. Since this work focuses on strain amplitudes of 0.1 %,
the Payne effect is ensured to be omittable in this region.



Chapter 5 Experimental investigations 91

10
−2

10
−1

10
0

10
1

60

70

80

90

100

110

dynamic strain ∆ε [%]

re
la

tiv
e 

st
or

ag
e 

m
od

ul
us

 G
´/

G
´

m
ax

 [%
]

10
−2

10
−1

10
0

10
1

60

70

80

90

100

110

dynamic strain ∆ε [%]

re
la

tiv
e 

st
or

ag
e 

m
od

ul
us

 G
´/

G
´

m
ax

 [%
]

10
−2

10
−1

10
0

10
1

50

60

70

80

90

100

110

dynamic strain ∆ε [%]

re
la

tiv
e 

st
or

ag
e 

m
od

ul
us

 G
´/

G
´

m
ax

 [%
]

10
−2

10
−1

10
0

10
1

30

40

50

60

70

80

90

100

110

dynamic strain ∆ε [%]

re
la

tiv
e 

st
or

ag
e 

m
od

ul
us

 G
´/

G
´

m
ax

 [%
]

Figure 5.13: Amplitude dependence of the normalised storage modulus (upper left:
SBR20), (upper right: SBR40), (lower left: EPDM20), (lower right: NR40)

5.3.2 Predeformation and frequency dependence

Motivated by engine mounts, the dynamic material properties are investigated under
large static predeformations which are superimposed by harmonic oscillations of 0.1 %
of strain in a frequency range up to 100 kHz.
The static predeformations are varied from -30 % of strain under compression up to
50 % of strain under tension such that a broad deformation range can be covered.
The experimental frequency domain is set from a minimum frequency of 0.2 Hz up to
a maximum frequency of 60 Hz. The lower frequency limit is due to an optimisation
of the testing period whereas the upper frequency limit is set to avoid resonance and
inertia effects during measurement.
The temperature range investigated covers a domain from -30◦ C up to 60◦ C. Since
engine mounts and elastomers are usually operating above the glassy state, the lower
temperature limit is set to guarantee a measurement above the glass transition temper-
ature. The upper temperature limit is set to prevent the material from thermal ageing
during measurement.
In order to separately characterise the influence of predeformation on the dynamic
moduli, the predeformation dependence is first investigated in static-sweep tests at
constant temperature, constant frequency and constant dynamic amplitude. It should
be mentioned that in terms of the slightly filled SBR20 and EPDM20 vulcanisates,
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barrelling of the specimen was present during the dynamic mechanical analysis in com-
pression. Due to the high frequencies, the application of some grease on top and on
bottom of the specimen, as it was done in the quasi-static compression tests, was not
possible. This fact implies that the measured stress responses of SBR20 and EPDM20
in compression are higher than those without barrelling. Therefore, correction factors
were calculated by comparison of the equilibrium stress data with and without bar-
relling and finally applied to the experimental data in compression. These correction
factors are listed in table 5.4 for each predeformation in compression. In contrast to
that, the dynamic measurements of SBR40 and NR40 were performed later with the
help of an advanced clamping system, such that barrelling of the specimen could be
prevented during measurement and no corrections were applied.

EPDM20
-30 % -20 % -10 %
0.907 0.862 0.837

SBR20
-30 % -20 % -10 %
0.887 0.844 0.822

Table 5.4: Barrelling correction factors for EPDM20 and SBR20 in compression

Predeformation dependence

The dependence of the dynamic material properties on the static predeformation is
first investigated in static-sweep tests. The preconditioned specimens are loaded with
a constant static strain between -30 % and 50 % which is then superimposed by a
harmonic sinusoidal oscillation of 0.1 % dynamic strain at a frequency of 10 Hz. The
experimental results of the storage and the loss modulus are plotted in figure 5.14 as a
function of the static stretch λ0.
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Figure 5.14: Predeformation dependence of the storage and the loss modulus at a
dynamic strain amplitude of 0.1 % and a frequency of 10 Hz (left: storage modulus),

(right: loss modulus)

It can first be observed that the static predeformation has an influence on both moduli,
which is of a different character for each material. The slightly filled EPDM and SBR
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rubbers with 20 phr of carbon-black behave quite similarly and reveal a smaller influ-
ence on the predeformation than the higher filled SBR40 and NR40 compounds. The
predeformation dependence of the SBR20 and EPDM20 vulcanisates is characterised
by an increase of the storage modulus with the static strain in the tension case, and
an initial decrease of dynamic stiffness at small compressions which is followed by an
increase of the storage modulus under higher compression. The loss modulus of both
materials is less affected than that of the higher filled materials and reveals predefor-
mation dependent characteristics quite similar as the storage modulus.
In contrast to the slightly filled compounds, the SBR vulcanisate with 40 phr of carbon-
black is characterised by a pronounced increase of both moduli with the static pre-
deformation in the tension and the compression mode. An initial decrease at small
compression, as it is the case for the slightly filled SBR and EPDM vulcanisates, is not
observed.
In the case of the NR with 40 phr of carbon-black, the predeformation dependence of
the storage and the loss modulus is completely different from the other vulcanisates.
Under tension, the storage modulus first decreases with the static strain up to 40 %
and then slightly increases again, whereas a decrease with increasing compression is
observed. On the other hand, the predeformation dependent characteristics of the loss
modulus are determined by a decrease with increasing predeformation in tension and
compression mode.

A physical interpretation of the predeformation dependent characteristics is given in
various works in literature. For instance, Kim and Youn (2001) studied the influence
of the dynamic modulus of filler-reinforced and unfilled natural rubber in compression
tests. The authors observed an initial decrease of the storage modulus at small pre-
compression and a subsequent increase at higher precompression. Furthermore, the
effect of the static strain was observed to be proportional to the amount of filler. In
the case of the vulcanisates with a small amount of carbon-black (NR / 0 phr and NR
/ 50 phr), it was found that the loss angle is not affected by the static compression
whereas the loss angle of the rubber with a high amount of carbon-black (NR / 70 phr)
was gradually reduced with the static compression. The authors explain the increase
of the storage modulus by the limited extensibility of the elastomer chains, whereas
the initial decrease is related to the disruption of the filler network.
Based on this interpretation, the predeformation dependent characteristics of the slightly
filled SBR20 and EPDM20 can be interpreted in a similar manner. At small com-
pression, the dynamic modulus is initially decreased due to a breakdown of the filler
structure whereas the subsequent increase at higher compression can be related to the
limited extensibility of the rubber chains. Since the behaviour of the EPDM20 and
SBR20 vulcanisates is only characterised by an increase of the storage modulus in ten-
sion mode, the breakage of the filler network is less pronounced such that the limited
extensibility of the rubber chains seems to be more pronounced and thus results in an
increase in the dynamic modulus in the whole range of predeformations under tension.
Since the higher filled SBR with 40 phr of carbon-black reveals an increase of the stor-
age modulus in tension and compression mode, the breakdown of the filler bonds might
be very small. On the contrary, the NR rubber with 40 phr is characterised by a de-
crease of the dynamic modulus under tension and compression which might be due
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to a pronounced breakdown of filler bonds or due to a higher flexibility of the rubber
chains.

Apart from the physical interpretation by Kim and Youn (2001), Hoefer (2009) provides
a different proposal to interpret the predeformation dependent material characteristics.
The author does not relate the effect to the microstructure of the material, but to its
nonlinear equilibrium response, which seems to fit very well with the experimentally
observed characteristics in this work. The connection between the nonlinear equilibrium
curve and the predeformation dependence of the dynamic moduli becomes clear if the
dependence of the dynamic moduli on the predeformation is plotted with respect to
the undeformed reference configuration in terms of the 1st Piola-Kirchhoff stress (see
figure 5.15).
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Figure 5.15: Predeformation dependence of the storage and the loss modulus at a
dynamic strain amplitude of 0.1 % and a frequency of 10 Hz with regard to the 1st

Piola-Kirchhoff stress (left: storage modulus), (right: loss modulus)

From this point of view, both dynamic moduli are increasing with decreasing predefor-
mation in the whole range. If this behaviour is compared with the equilibrium stress
data obtained from the quasi-static experiments in figure 5.8, the assumption of Hoefer
(2009) fits excellently with the experimental results. Since the dynamic moduli are
proportional to the dynamic stress response and the gradient of the equilibrium stress-
strain curves increases with decreasing prestrain, the dynamic moduli increase as well.
According to this fact, the current work follows the assumption made by Hoefer (2009)
and relates the dependence of the dynamic moduli on the static predeformation to
the nonlinear characteristics of the equilibrium stress-strain curves. Respecting this,
the experimental data of the following presentation is expressed in terms of the 1st
Piola-Kirchhoff stress tensor.

Temperature-frequency-sweep tests

In order to study the combined dependence of the dynamic moduli on static prede-
formation and frequency in a range up to 100 kHz, temperature-frequency-sweeps are
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carried out. These consist of sequenced frequency-sweeps which are subsequently per-
formed at different temperatures.
The range of predeformation is between −30% of strain under compression and up to
50 % of strain under tension. The frequency-sweeps are performed from a minimum
frequency of 0.2 Hz up to a maximum frequency of 60 Hz and the dynamic amplitude
is set to 0.1 % of strain. The tests are performed at different temperatures between
−30 ◦C and 60 ◦C such that the temperature frequency shifting technique (Ferry (1980),
Schwarzl (1990)) can finally be applied to determine the master curves.

The experimental results of the temperature-frequency-sweeps at a prestrain of 10 %
in uniaxial tension mode are illustrated in figure 5.16 - 5.19 for each material. These
results reveal the dependence of the storage and the loss modulus on temperature and
frequency. It is already well known that the storage and the loss modulus increase with
the frequency, which is in agreement with other studies, e.g. Kari (2003) or Hoefer and
Lion (2009).
The frequency dependence of the modulus of the carbon-black filled NR is less pro-
nounced than for the other types of rubber.
The influence on temperature appears in a decrease of both moduli with increasing
temperature which fits with other observations by Payne (1962a), Dutta and Tripathy
(1992), Rendek and Lion (2008) or Hoefer (2009). Furthermore, the relative change in
the dynamic moduli appears to be more pronounced in the case of low temperatures.
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Figure 5.16: Temperature dependence of the dynamic moduli of EPDM20 at a
prestrain of 10 % (left: storage modulus), (right: loss modulus)

In order to extend the experimental frequency range, the shifting function is first de-
termined by the WLF equation (Williams et al. (1955))

log aθ =
c1 (θ − θ0)

c2 + θ − θ0
(5.7)

with the material parameters c1 and c2, the current temperature θ and the reference
temperature θ0. Similar to the quasi-static investigations, the reference temperature
is set to 20 ◦C which is an average value for the application field of engine mounts.
On this basis, the shifting function log aθ results in a horizontal shifting of the curves
at higher temperatures (θ > θ0) to lower frequencies whereas the curves at lower
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Figure 5.17: Temperature dependence of the dynamic moduli of SBR20 at a pre-
strain of 10 % (left: storage modulus), (right: loss modulus)
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Figure 5.18: Temperature dependence of the dynamic moduli of SBR40 at a pre-
strain of 10 % (left: storage modulus), (right: loss modulus)
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Figure 5.19: Temperature dependence of the dynamic moduli of NR40 at a prestrain
of 10 % (left: storage modulus), (right: loss modulus)
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temperatures (θ < θ0) are shifted to higher frequencies in a logarithmic frequency scale.
The unknown material parameters c1 and c2 are identified by an identification algorithm
which is programmed in the mathematical software tool MATLAB. The identification
is based on error minimisation to obtain a master curve which is as continuous as
possible. Moreover, the identification of the parameters is performed with respect to
the whole set of experimental data meaning the storage and the loss modulus at each
predeformation are taken into account. This fact is due to the assumption that c1
and c2 are classified as material parameters. For physical reasons, these should be
independent of the static predeformation.
The material parameters c1 and c2 obtained from this identification procedure are listed
in table 5.5 for each material.

c1 c2

SBR20 4.232 107.666
SBR40 7.317 134.554
EPDM20 5.571 107.925
NR40 53.371 459.784

Table 5.5: Identified material parameters c1 and c2 of the WLF-function

If these parameters are inserted into the WLF equation (5.7), the shifting function
log aθ is obtained for each material. They are plotted in figure 5.20 for the different
vulcanisates.

Using these results, the experimental frequency range can be extended by multiplying
the shifting function with the experimental frequencies of the temperature-frequency-
sweep tests. In so doing, the mastered frequency fmaster is given by the product of
log aθ(θx) and the corresponding experimental frequency fexp(θx) at temperature θx

fmaster = log aθ(θx) fexp(θx) . (5.8)

For illustration, the experimental temperature-frequency-sweep data of the storage
modulus of SBR40 at a prestrain of 10 % and the corresponding master curve with
respect to the reference temperature of 20 ◦C are displayed in figure 5.21.

Regarding the whole experimental data with respect to each material and each pre-
deformation, the master curves of the storage and the loss modulus are obtained as
per figures 5.22 - 5.25. According to the argumentation that the predeformation de-
pendence is related to the nonlinear equilibrium stress curve, the moduli are displayed
with respect to the reference configuration (1st Piola-Kirchhoff type).

As expected, the experimental observations exhibit an increase in both moduli with
increasing frequency. Among others, this characteristic dynamic behaviour of rubber
was also found in other investigations by Kari (2003), Hoefer and Lion (2009) or Ren-
dek and Lion (2010b). As already observed in the static-sweep tests, both moduli
increase with the predeformation which is due to the nonlinear hyperelastic material
characteristics.
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Figure 5.20: Shifting function for each material (upper left: EPDM20), (upper
right: SBR20), (lower left: SBR40), (lower right: NR40)
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Figure 5.21: Temperature-frequency-sweep data of SBR40 (left) and calculated
master curve (right)
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Figure 5.22: Master curves of EPDM20 (left: storage modulus), (right: loss mod-
ulus)
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Figure 5.23: Master curves of SBR20 (left: storage modulus), (right: loss modulus)
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Figure 5.24: Master curves of SBR40 (left: storage modulus), (right: loss modulus)
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Figure 5.25: Master curves of NR40 (left: storage modulus), (right: loss modulus)

Moreover, the master curves reveal that the mutual influence of predeformation and
frequency on each other is fairly small and thus negligible. As illustrated in figure 5.26
- 5.29, this fact becomes more clear if the predeformation dependence of the dynamic
moduli is plotted in a logarithmic scale at different frequencies. Since the predefor-
mation dependent characteristics of the storage and the loss modulus are identical for
each frequency, they have no mutual influence on each other and thus can be considered
separately.
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Figure 5.26: EPDM20: Independence of static predeformation and frequency from
each other (left: storage modulus), (right: loss modulus)
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Figure 5.27: SBR20: Independence of static predeformation and frequency from
each other (left: storage modulus), (right: loss modulus)
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Figure 5.28: SBR40: Independence of static predeformation and frequency from
each other (left: storage modulus), (right: loss modulus)
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Figure 5.29: NR40: Independence of static predeformation and frequency from
each other (left: storage modulus), (right: loss modulus)
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5.4 Conclusion

Since the experimental observations are essential to formulate a suitable constitutive
approach the results of the investigations are resumed in the following. Thereby, the
most important conclusion is based on the fact that the storage and the loss modulus
of the investigated carbon-black reinforced rubbers are strongly dependent on predefor-
mation and frequency if large static predeformations are combined with superimposed
harmonic excitations.

The quasi-static investigations revealed that each vulcanisate is characterised by the
Mullins effect, whereas higher amounts of filler result in an increase of stress-softening.
Moreover, the equilibrium stress response of the investigated materials depends on the
static predeformation and is characterised by the typical nonlinear relation between
stress and strain.

On the basis of the dynamic mechanical tests it was first observed that the amplitude
dependent Payne effect is not pronounced for strain amplitudes of 0.1 % and is thus
negligible.
The storage and the loss modulus exhibit a pronounced dependence on predeformation,
in which the characteristics of both moduli can be related to the nonlinear equilibrium
stress-strain curve. The influence on temperature appears in a decrease of the storage
and the loss modulus with increasing temperature whereas the dependence of the both
moduli on frequency is determined by an increase with increasing frequency in the
entire frequency range.
Moreover, the dependence of the storage and the loss modulus on predeformation and
frequency is independent of each other such that the influence of both parameters can
be considered separately.



Chapter 6

Constitutive modelling

Introduction

Constitutive models focus on a mathematical description of materials and their specific
material properties. Based on this, the main task of constitutive models is to represent
the mechanical or thermomechanical material behaviour under specific environmental
effects. In this context, the focus is mostly on a parallel description of various ma-
terial properties, such as elasticity, rate or frequency dependence, softening effects or
temperature dependence. But, in conjunction with the complex material behaviour of
rubber and especially that of filler-reinforced vulcanisates, a mathematical description
is generally limited to the representation of some of these effects.
The basic requirement to formulate suitable constitutive models consists in knowledge
of specific material characteristics which are mostly obtained through experimental in-
vestigations.
In general, physically meaningful constitutive models must be thermomechanical con-
sistent meaning that they have to be conform to the second law of thermodynamics.
Moreover, the developed material laws constitute the basis for finite element simulations
which are commonly applied by the industry to approximate the material behaviour of
complex structures in simulations close to reality.

Outline

The aim of this chapter is to present two constitutive formulations of nonlinear finite
viscoelasticity which are capable of describing the dynamic material characteristics of
the investigated carbon-black filled rubber vulcanisates under large constant predefor-
mation superimposed by harmonic vibrations of small amplitude. The first approach
can be related to a classical Maxwell chain whereas the second one is based on an
extension with fractional derivatives and can be interpreted as a fractional Maxwell
chain. The focus of both constitutive models is on the representation of the experi-
mentally observed dependence of the storage and the loss modulus on predeformation
and frequency from 10−2 Hz up to 105 Hz. The constitutive formulations are based
on the general approach by Haupt and Lion (2002) which is modified to describe the
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predeformation and frequency dependent dynamic material properties in this work.
Due to computational effort, both constitutive models are originally formulated in the
time domain and then transferred into the frequency domain. A similar but less de-
tailed approach to describe the frequency dependence of rubber structures without a
full description of predeformation dependence is proposed by Retka (2011).

In order to introduce the basic concept of the fully three-dimensional constitutive mod-
els, the first section of this chapter starts with a one-dimensional formulation based
on a classical Maxwell chain. This model is suitable to represent rate and frequency
dependent material properties, but a description of the predeformation dependent ma-
terial characteristics observed is not possible in its general form. In order to represent
the predeformation dependence of the dynamic moduli as well, the classical Maxwell
chain is extended by adding deformation dependence to the stiffness parameters of the
Maxwell elements. On this basis, a representation of the frequency and predeformation
dependent characteristics of the storage and the loss modulus becomes possible.

In the second section, a three-dimensional formulation of the classical and fractional
constitutive models is derived. The section starts with a general time domain formula-
tion of the constitutive approach with respect to an arbitrary deformation dependent
relaxation function. After linearisation, the classical and fractional constitutive mod-
els are derived by specifying adequate relaxation functions and by transferring the
linearised time domain formulation to the frequency domain.

The presentation of the three-dimensional concept starts with the introduction of the
underlying kinematic relations which are required to derive the constitutive equations.
To this end, the deformation gradient F is twice decomposed to formulate a specific
Helmholtz free energy. The first decomposition is a multiplicative decomposition of
the deformation gradient into an isochoric part F̂ and a volumetric part F̄ whereas
the second decomposition is a time-relative decomposition of the isochoric part of the
deformation gradient. On the basis of this decomposition, the specific Helmholtz free
energy Ψ is formulated through an additive decomposition into an equilibrium part
Ψeq and a non-equilibrium part Ψov. The constitutive equation for the 2nd Piola-
Kirchhoff stress tensor T̃ is obtained from the isothermal Clausius-Planck inequality
and results in an additive decomposition into an equilibrium part T̃eq and an overstress
part T̃ov as well. In order to prepare the constitutive approach for a formulation in the
frequency domain, the constitutive equations are linearised in the neighbourhood of the
predeformation, as proposed by Haupt and Lion (2002). Following this procedure, the
2nd Piola-Kirchhoff stress tensor results in the additive composition of a temporally
constant static stress T̃0 and a linearised dynamic overstress T̃ov,lin. Since the materials
investigated are assumed to be incompressible, the constitutive equations are finally
formulated for incompressible material behaviour.
After that, the linearised constitutive model is transferred to the frequency domain
and the complex modulus tensors of fourth order are derived for the classical and the
fractional constitutive models. In order to do that, adequate relaxation functions are
defined and the harmonic stress response of both models is calculated. The classical
model is based on a relaxation function of the exponential type which is related to that
of a classical Maxwell chain whereas the relaxation function of the extended fractional



Chapter 6 Constitutive modelling 105

formulation is related to that of a fractional Maxwell chain. Therefore, both models can
be interpreted as a generalisation of the classical and fractional Maxwell chain models.

Since the classical Maxwell chain approximates viscoelastic material properties by a
discrete spectrum with relaxation functions of the exponential type, numerous Maxwell
elements are required in parallel to quantitatively approximate the frequency dependent
behaviour of the dynamic moduli in the broad frequency range this work is focused on.
On the contrary, the fractional formulation of the constitutive approach is characterised
by a continuous relaxation spectrum on the basis of which a better approximation of
the dynamic material behaviour with less parameters can be achieved.

It is stated, that some parts of constitutive modelling have been published in prior
printed publications which were approved by the university (Wollscheid and Lion
(2012), Wollscheid and Lion (2013a), Wollscheid and Lion (2013b) and Wollscheid
and Lion (2014)).

6.1 One-dimensional approach

In order to motivate the modelling concept, the classical Maxwell chain in figure 6.1 is
discussed first. This model is composed of the parallel connection of an elastic spring
with the stiffness E and k = 1...n Maxwell elements with the stiffness parameters µk

and the viscosities ηk.

E

η1µ1

η2µ2

ηnµn

ε

εe,k εin,k

σ σ

k = 1...n

Figure 6.1: Classical Maxwell chain
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If the corresponding differential equation

σ̇ov,k +
µk

ηk
σov,k = µk ε̇ (6.1)

is solved for a harmonic excitation

ε = ε0 + ∆ε eiωt , (6.2)

the relations for the storage and the loss modulus of the k-th Maxwell element are
obtained as

G′(ω) = µk
(ω τk)

2

1 + (ω τk)2
,

G′′(ω) = µk
ω τk

1 + (ω τk)2
.

(6.3)

The dynamic moduli of the complete Maxwell chain are calculated by summation and
read as

G′(ω) = E +
n∑

k=1

µk
(ω τk)

2

1 + (ω τk)2
,

G′′(ω) =
n∑

k=1

µk
ω τk

1 + (ω τk)2
.

(6.4)

Both dynamic moduli are functions of the frequency ω. In order to add predeformation
dependence through the back-door, the stiffness parameters µk of the Maxwell elements
and the modulus E can be defined as functions of predeformation

µk = µk(ε0) , E = E(ε0) . (6.5)

Regarding this extension, the storage and the loss modulus both depend on predefor-
mation and frequency

G′(ω, ε0) = E(ε0) +
n∑

k=1

µk(ε0)
(ω τk)

2

1 + (ω τk)2
,

G′′(ω, ε0) =
n∑

k=1

µk(ε0)
ω τk

1 + (ω τk)2
.

(6.6)

The functional correlation between the dynamic moduli and the predeformation can be
obtained through experimental investigations. Apart from predeformation dependent
stiffness parameters, it would also be possible to introduce predeformation dependent
relaxation times or even both.

6.2 Three-dimensional approach

In this section, a three-dimensional formulation of the classical and of the fractional
constitutive approaches will be introduced. The section starts with an introduction of
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the kinematics and a general time domain formulation of the constitutive equations.
After that, the frequency domain formulations are derived with respect to the classical
and the fractional Maxwell chain.

6.2.1 Kinematics

In order to formulate the specific Helmholtz free energy, the deformation gradient F(t)
is twice decomposed. The first separation is a volumetric-isochoric decomposition of
the deformation gradient into a volumetric part F̄(t) and an isochoric part F̂(t)

F(t) = F̄(t) F̂(t) with F̄(t) = J
1

3 (t)1 , F̂(t) = J− 1

3 F(t) (6.7)

and the Jacobian determinant J = det(F(t)). The volumetric part of the deformation
gradient is related to the deformation induced by changes in the volume whereas the
isochoric part is related to the deformation which is due to changes in the shape of
the body. In terms of incompressible material behaviour, the Jacobian determinant is
equal to 1 and the isochoric part F̂(t) is equal to F(t). The second decomposition is
a time-relative decomposition of the isochoric part of the deformation gradient, on the
basis of which the relative isochoric deformation gradient arises

F̂t(s) = F̂(s) F̂−1(t) , 0 ≤ s ≤ t . (6.8)

As illustrated in figure 6.2, the relative isochoric deformation gradient maps tangent
vectors of the current isochoric configuration Ii at time t onto tangent vectors of a
previous isochoric configuration Ii,t at time s. Thus, F̂t(s) represents a deformation
state at time s.

R

C

Ii

Ii,t

reference

current

isochoric

isochoric

relative

F̂(s)

F̄(t)

F̂(t)

F̂t(s)

F(t)

Figure 6.2: Relative-isochoric decomposition
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Based on the double decomposition of the deformation gradient, the relative isochoric
right Cauchy-Green deformation tensor and its inverse are defined by

Ĉt(s) = F̂T
t (s) F̂t(s) = F̂−T (t) F̂T (s) F̂(s) F̂−1(t) = F̂−T (t) Ĉ(s) F̂−1(t) ,

Ĉ−1
t (s) =

(
F̂T

t (s) F̂t(s)
)−1

= F̂−1
t (s) F̂t(s)

−T

= F̂(t) F̂−1(s) F̂−T (s) F̂T (t) = F̂(t) Ĉ−1(s) F̂T (t) .

(6.9)

With the inverse of the relative isochoric right Cauchy-Green tensor in (6.9) and relation
(2.17), the definition of the relative isochoric Piola strain tensor can be defined

êt(s) =
1

2

[
Ĉ−1

t (s) − 1
]

=
1

2

[
F̂(t) Ĉ−1(s) F̂T (t) − 1

]

=
1

2
F̂(t)

[
Ĉ−1(s) − F̂−1(t) F̂−T (t)

]
F̂T (t)

=
1

2
F̂(t)

[
Ĉ−1(s) − Ĉ−1(t)

]
F̂T (t)

= F̂(t)
[
ê(s) − ê(t)

]
F̂T (t) .

(6.10)

6.2.2 Specific Helmholtz free energy

The specific Helmholtz free energy is defined by the additive decomposition into an
elastic part ρ0 Ψeq(C(t)) and an overstress part ρ0 Ψov(t).

ρ0 Ψ(t) = ρ0 Ψeq(C(t)) + ρ0 Ψov(t) . (6.11)

The elastic part is a function of the right Cauchy-Green tensor C(t) whereas the over-
stress part is a functional of the history of the relative isochoric Piola strain tensor
êt

ρ0 Ψov(t) = −
∫ t

−∞

G(t− s, Ĉ(t))
d

ds
tr(êt(s)) ds . (6.12)

In order to describe the dependence of the dynamic moduli on predeformation, a defor-
mation dependent relaxation function G(t − s, Ĉ(t)) depending on the current defor-
mation is introduced. This formulation corresponds to a model of finite viscoelasticity
in which the stress relaxation behaviour depends on the deformation at which the re-
laxation takes place. If this approach is linearised, it leads to dynamic moduli which
depend on the static predeformation. Moreover, the linearised constitutive approach
can be interpreted as a generalisation of the classical Maxwell chain in which the stiff-
ness parameters and/or the viscosities of the Maxwell elements depend on the static
predeformation.
On the basis of (6.11) and (6.12), the material time derivative of the specific Helmholtz
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free energy is obtained by applying the product rule of differentiation

ρ0 Ψ̇(t) = ρ0 Ψ̇eq(C(t)) − G(0, Ĉ(t))
d

dt
tr(êt(t))

︸ ︷︷ ︸
ρ0 Ψ̇ov,1

−
∫ t

−∞

G(t− s, Ĉ(t))
d

dt

[
d

ds
tr(êt(s))

]
ds

︸ ︷︷ ︸
ρ0 Ψ̇ov,2

−
[∫ t

−∞

∂G(t− s, Ĉ(t))

∂Ĉ(t)

d

ds
tr(êt(s)) ds

]
· ˙̂
C(t)

︸ ︷︷ ︸
ρ0 Ψ̇ov,3

−
∫ t

−∞

∂G(t− s, Ĉ(t))

∂t

d

ds
tr(êt(s)) ds

︸ ︷︷ ︸
ρ0 Ψ̇ov,4

.

(6.13)

The rate of the overstress ρ0 Ψ̇ov can be separated into four parts ρ0 Ψ̇ov,1, ρ0 Ψ̇ov,2,
ρ0 Ψ̇ov,3 and ρ0 Ψ̇ov,4. These parts are first rearranged to derive a simplified formulation
of the derivative of the specific Helmholtz free energy.
Since the relative intermediate configuration Ii,t and the reference configuration C
match together at time s = t, the relative isochoric Piola strain tensor is equal to
zero for s = t

êt(t) = 0 . (6.14)

Taking this into account, the overstress part ρ0 Ψ̇ov,1 in equation (6.13) vanishes

ρ0 Ψ̇ov,1(t) = −G(0, Ĉ(t))
d

dt
tr(êt(t)) = 0 . (6.15)

In order to rearrange the other parts, the derivative of the trace of the relative isochoric
Piola strain tensor with respect to s as well as its temporal derivative must first be
calculated. Based on the derivative of the relative isochoric Piola strain tensor with
respect to s

d

ds
êt(s) = F̂(t)

(
d

ds
ê(s)

)
F̂T (t) = F̂(t) ê′(s) F̂T (t) (6.16)

and the trace operation

tr(êt(s)) = [ê(s) − ê(t)] · Ĉ(t) , (6.17)

the derivative of the trace of êt(s) with respect to s reads as

d

ds
tr(êt(s)) = tr

(
d

ds
êt(s)

)
= ê′(s) · Ĉ(t) . (6.18)
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Evaluating this relation at time s = t and taking the temporal derivative of the inverse
isochoric right Cauchy-Green deformation tensor into account

˙̂
C−1(t) = − Ĉ−1(t)

˙̂
C(t) Ĉ−1(t) , (6.19)

the following result is obtained

˙̂e(t) · Ĉ(t) =
1

2

[
Ĉ−1(t) − 1

]·
· Ĉ(t) =

1

2

(
Ĉ−1(t)

)·
· Ĉ(t)

= − 1

2

[
Ĉ−1(t)

˙̂
C(t) Ĉ−1(t)

]
· Ĉ(t)

= − 1

2
tr
(
Ĉ−1(t)

˙̂
C(t) Ĉ−1(t) Ĉ(t)

)
= − 1

2
tr
(
Ĉ−1(t)

˙̂
C(t)

)

= − 1

2
tr
(
Ĉ−1(t)

[
˙̂
FT (t) F̂(t) + F̂T (t)

˙̂
F(t)

])

= − 1

2
tr
(
˙̂
F(t) F̂−1(t) + F̂−T (t)

˙̂
FT (t)

)

= − 1

2
tr
(
L̂(t) + L̂T (t)

)
= − tr

(
D̂
)

= 0 .

(6.20)

Using (6.20), the time derivative of (6.18) is obtained by applying the product rule of
differentiation and finally reads as

d

dt

(
d

ds
tr(êt(s))

)
=

d

dt

(
ê′(s) · Ĉ(t)

)
= ˙̂e′(s) · Ĉ(t) + ê′(s) · ˙̂

C(t) . (6.21)

Since ˙̂e′(s) is a function of s, the first term in (6.21) equals zero. Taking the time
derivative of the determinant of the right Cauchy-Green tensor into account

d

dt
(detC(t)) =

∂ detC(t)

∂C(t)
· Ċ(t) = (detC(t))C−1(t) · Ċ(t) , (6.22)
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the second term in (6.21) can be reformulated by applying the product rule of differ-
entiation

ê′(s) · ˙̂
C(t) = ê′(s) ·

[
(detC(t))−

1

3 C(t)
]·

= ê′(s) ·
[
− 1

3
(detC(t))−

1

3

(
C−1(t) · Ċ(t)

)
C(t) + (detC(t))−

1

3 Ċ(t)

]

= ê′(s) ·
[
(detC(t))−

1

3

{
Ċ(t) − 1

3

(
Ċ(t) ·C−1(t)

)
C(t)

}]

= (detC(t))−
1

3

{
ê′(s) · Ċ(t) − 1

3
(ê′(s) ·C(t))

(
Ċ(t) ·C−1(t)

)}

= (detC(t))−
1

3 Ċ(t) ·
{
ê′(s) − 1

3
(ê′(s) ·C(t))C−1(t)

}

= (detC(t))−
1

3 Ċ(t) ·
{

4

1 − 1

3
C−1(t) ⊗ C(t)

}
· ê′(s)

=

[
(detC(t))−

1

3

{
4

1 − 1

3
C−1(t)⊗C(t)

}
· ê′(s)

]
· Ċ(t) .

(6.23)
In order to simplify this expression, the projection tensor of fourth order

4

P (t) = (detC(t))−
1

3

{
4

1 − 1

3
C−1(t)⊗C(t)

}
(6.24)

is introduced and inserted into (6.23). In so doing, (6.21) changes to

d

dt

(
d

ds
tr(êt(s))

)
=

d

dt

(
ê′(s) · Ĉ(t)

)
=

[
4

P (t) · ê′(s)
]
· Ċ(t) , (6.25)

such that the second part of the rate of the specific Helmholtz free energy in (6.13) can
be rewritten as

ρ0 Ψ̇ov,2 = −
[∫ t

−∞

G(t− s, Ĉ(t))
4

P (t) · ê′(s) ds
]
· Ċ(t) . (6.26)

In order to reformulate the third part ρ0 Ψ̇ov,3, the same procedure as in (6.23) can be
applied. On this basis, the following relation is obtained

∂G(t− s, Ĉ(t))

∂Ĉ(t)
· ˙̂
C(t) =

[
4

P (t) · ∂G(t− s, Ĉ(t))

∂Ĉ(t)

]
· Ċ(t) , (6.27)

such that the third part of the rate of the specific Helmholtz free energy is expressed
by

ρ0 Ψ̇ov,3 = −
[∫ t

−∞

4

P (t) · ∂G(t− s, Ĉ(t))

∂Ĉ(t)
ê′(s) · Ĉ(t) ds

]
· Ċ(t) . (6.28)
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In order to redefine the last term ρ0 Ψ̇ov,4 in (6.13), the mathematical relation

∂G(t− s, Ĉ(t))

∂t
= − ∂G(t− s, Ĉ(t))

∂s
(6.29)

is taken into account. Applying the partial integration, ρ0 Ψ̇ov,4 first changes to

ρ0 Ψ̇ov,4 =

∫ t

−∞

∂G(t− s, Ĉ(t))

∂s

d

ds
tr(êt(s)) ds

=

[
∂G(t− s, Ĉ(t))

∂t
tr(êt(s))

]t

−∞

−
∫ t

−∞

∂2G(t− s, Ĉ(t))

∂t2
tr(êt(s)) ds .

(6.30)
Based on the principle of fading memory, the relaxation function decays to zero for
large times

lim
s→−∞

∂G(t− s, Ĉ(t))

∂t
= 0 . (6.31)

Considering this and êt(t) = 0, the first term in (6.30) is equal zero

[
∂G(t− s, Ĉ(t))

∂t
tr(êt(s))

]t

−∞

= 0 , (6.32)

such that ρ0 Ψ̇ov,4 can be reduced to

ρ0 Ψ̇ov,4 = −
∫ t

−∞

∂2G(t− s, Ĉ(t))

∂t2
tr(êt(s)) ds . (6.33)

With the reformulation of the rate of the overstress parts in (6.15), (6.26), (6.28) and
(6.33), the material time derivative of ρ0 Ψ can be written as

ρ0 Ψ̇(t) = ρ0
∂Ψeq(C(t))

∂C(t)
· Ċ(t)

−
[∫ t

−∞

G(t− s, Ĉ(t))
4

P (t) · ê′(s) ds
]
· Ċ(t)

−
[∫ t

−∞

4

P (t) · ∂G(t− s, Ĉ(t))

∂Ĉ(t)
ê′(s) · Ĉ(t) ds

]
· Ċ(t)

−
∫ t

−∞

∂2G(t− s, Ĉ(t))

∂t2
tr(êt(s)) ds .

(6.34)

6.2.3 Clausius-Planck inequality

In order to derive a thermomechanically consistent constitutive relation between stress
and strain, the Clausius-Planck inequality for isothermal processes is taken into ac-
count. With respect to the reference configuration, the Clausius-Planck inequality
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reads as
T̃(t) · Ė(t) − ρ0 Ψ̇(t) ≥ 0 . (6.35)

Inserting (6.34) into the Clausius-Planck inequality and taking the relation

Ė(t) =
1

2
[C(t) − 1]· =

1

2
Ċ(t) , (6.36)

into account, the following inequality is obtained:

[
1

2
T̃(t) − ρ0

∂Ψeq(C(t))

∂C(t)

+

∫ t

−∞

G(t− s, Ĉ(t))
4

P (t) · ê′(s) ds

+

∫ t

−∞

4

P (t) · ∂G(t− s, Ĉ(t))

∂Ĉ(t)
ê′(s) · Ĉ(t) ds

]
· Ċ(t)

+

∫ t

−∞

∂2G(t− s, Ĉ(t))

∂t2
tr(êt(s)) ds ≥ 0

(6.37)

This inequality is evaluated with respect to the standard argumentation of Coleman
and Noll (1963). On this basis, the inequality is satisfied if the first term in brackets
is equal to zero which automatically yields the constitutive equation of the 2nd Piola-
Kirchhoff stress tensor

T̃(t) = T̃eq(t) + T̃ov(t)

= 2 ρ0
∂Ψeq(C(t))

∂C(t)
− 2

∫ t

−∞

G(t− s, Ĉ(t))
4

P (t) · ê′(s) ds

− 2

∫ t

−∞

4

P (t) · ∂G(t− s, Ĉ(t))

∂Ĉ(t)
ê′(s) · Ĉ(t) ds .

(6.38)

Since the projection tensor of fourth order
4

P (t) is a function of time t, it is not
influenced by the integration and can therefore be placed in front of the integral. In so
doing, the overstress can alternatively be expressed by

T̃ov(t) =
4

P ·
(
S̃ov,1(t) + S̃ov,2(t)

)
(6.39)

with the two overstresses

S̃ov,1(t) = − 2

∫ t

−∞

G(t− s, Ĉ(t)) ê′(s) ds ,

S̃ov,2(t) = − 2

∫ t

−∞

∂G(t− s, Ĉ(t))

∂Ĉ(t)
ê′(s) · Ĉ(t) ds .

(6.40)

This is the time domain formulation of a thermodynamically constitutive model of
finite viscoelasticity which includes deformation dependent relaxation behaviour.
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6.2.4 Geometric linearisation

In order to make the constitutive approach applicable for a formulation in the frequency
domain, the constitutive equations are first linearised in the neighbourhood of a con-
stant static predeformation F0. Referring to Haupt and Lion (2002), the deformation
gradient F(t) is multiplicatively decomposed into a constant deformation F0 and a time
depending deformation f(t)

F(t) = f(t)F0 with f(t) = 1+ h(t) , ||h|| ≤ 1 . (6.41)

Thereby, the incremental displacement gradient h(t) represents the incremental dis-
placement in the neighbourhood of the static predeformation F0. For the purpose of
more clarity, the respective arguments will be neglected in the following presentation.
All variables indexed with "0" are constant whereas the other ones are functions of
time t if no other argument is explicitly mentioned.
Based on the assumptions in (6.41), the kinematic relations introduced above can be
expressed in their linearised form. Since incremental terms of higher order are very
small, they will be neglected during linearisation. Taking (6.41) into account, the lin-
ear approximation of the transposed, the inverse and the inverse transposed of the
deformation gradient can first be expressed by

FT = FT
0 (1+ hT ) ,

F−1 = F−1
0 (1− h) ,

F−T = (1− hT )F−T
0 .

(6.42)

With the incremental displacement gradient h, the linearised strain tensor as well as
its deviatoric part are introduced as

Elin =
1

2

(
h+ hT

)

ED
lin = Elin − 1

3
tr(Elin)1

(6.43)

On the basis of the definitions in (6.42), the linear approximation of the right Cauchy-
Green tensor can be written as

C = FT F = FT
0 (1+ hT ) (1+ h)F0

= FT
0 (1+ h+ hT + hhT )F0

= C0 + FT
0 (h+ hT )F0

= C0 + 2FT
0 ElinF0 .

(6.44)

The linearised version of the inverse reads as

C−1 =
(
FT F

)−1
= F−1 F−T = C−1

0 − 2F−1
0 ElinF

−T
0 . (6.45)
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In order to derive the linear approximation of the isochoric right Cauchy-Green tensor,
the linear approximation of the determinant of C and the general definition with regards
to its αth power are first introduced

detC = det(C0 + 2FT
0 ElinF0)

= det(C0 (1 + 2F−1
0 ElinF0))

= (detC0) det(1 + 2F−1
0 ElinF0)

= (detC0) (1 + 2 tr(F−1
0 ElinF0))

= (detC0) (1 + 2 tr(Elin)) ,

(detC)α = (detC0)
α (1 + 2α tr(Elin)) .

(6.46)

On the basis of these relations, the linearisation of the isochoric right Cauchy-Green
tensor is given by the expression

Ĉ = (detC)−
1

3 C

= (detC0)
− 1

3

(
1 − 2

3
tr(Elin)

) (
C0 + 2FT

0 ElinF0

)

= (detC0)
− 1

3

(
C0 − 2

3
tr(Elin)C0 + 2FT

0 ElinF0

)

= Ĉ0 + 2 (detF0)
− 1

3 (detF0)
− 1

3

(
FT

0 ElinF0 − 1

3
FT

0 tr(Elin)1F0

)

= Ĉ0 + 2 F̂T
0

(
Elin − 1

3
tr(Elin)1

)
F̂0

= Ĉ0 + 2 F̂T
0 ED

lin F̂0

(6.47)

and the corresponding derivative with respect to time reads as

˙̂
C = 2 F̂T

0 ĖD
lin F̂0 . (6.48)

Moreover, the linearised version of the isochoric Piola strain tensor can be written as

ê =
1

2

[
Ĉ−1 − 1

]
=

1

2

[
(detC)

1

3 C−1 − 1
]

=
1

2

[
(detC0)

1

3

(
1 +

2

3
tr(Elin)

) (
C−1

0 − 2F−1
0 Elin F

−T
0

)
− 1

]

=
1

2

[
(detC0)

1

3

(
C−1

0 − 2F−1
0 ElinF

−T
0 +

2

3
tr(Elin)C

−1
0

)
− 1

]

=
1

2

[
(detC0)

1

3 C−1
0 − 1

]
− (detC0)

1

3 F−1
0

[
Elin − 1

3
tr(Elin)1

]
F−T

0

= ê0 − F̂−1
0 ED

lin F̂
−T
0 .

(6.49)
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The linear approximation of its material time derivative is given by

˙̂e = − F̂−1
0 ĖD

lin F̂
−T
0 . (6.50)

Based on the kinematic assumption in (6.41) and the corresponding linearisations in
(6.42) – (6.50), the linearised version of the constitutive equations is derived in the
following.

The linear approximation of the equilibrium part T̃eq of the 2nd Piola-Kirchhoff stress
tensor is obtained by inserting (6.44) into (6.38) and applying the Gateaux derivative.
In so doing, the linearised formulation of the equilibrium stress tensor is given by

T̃eq,lin(t) = 2 ρ0
∂Ψeq(C)

∂C

∣∣∣∣
C0

+ 2 ρ0
∂2Ψeq(C)

∂C2(t)

∣∣∣∣
C0

· (C − C0)

= 2 ρ0
∂Ψeq(C)

∂C

∣∣∣∣
C0

+ 2 ρ0
∂2Ψeq(C)

∂C2(t)

∣∣∣∣
C0

· (2FT
0 ElinF0) .

(6.51)

In order to obtain the linearisation of the overstress T̃ov, the linearised formulations
of S̃ov,1 and S̃ov,2 in (6.40) as well as the linear approximation of the projection tensor
4

P in (6.24) must first be derived. If the linearised formulation of the isochoric right
Cauchy-Green tensor in (6.47) and the linear approximation (6.50) are inserted into
(6.40), the linearisation of the first part of the overstress is obtained by applying the
Gateaux derivative and by neglecting terms of higher order

S̃ov,lin,1(t) = − 2

∫ t

−∞

G
(
t− s, Ĉ0 + 2 F̂T

0 ED
lin F̂0

) (
− F̂−1

0 E′D
lin(s) F̂

−T
0

)
ds

= 2

∫ t

−∞

[
G(t− s, Ĉ0) +

∂G(t− s, Ĉ)

∂Ĉ

∣∣∣∣∣
Ĉ0

·
(
2 F̂T

0 ED
lin F̂0

)]

F̂−1
0 E′D

lin(s) F̂
−T
0 ds

= 2

∫ t

−∞

G(t− s, Ĉ0) F̂
−1
0 E′D

lin(s) F̂
−T
0 ds .

(6.52)
In order to obtain a linearised version of the second part of the overstress, the linearised
form of the derivative of the relaxation function with respect to Ĉ is first calculated. To
this end, the linearised formulation in (6.47) is considered and the Gateaux derivative
is applied

∂G(t− s, Ĉ)

∂Ĉ
=

∂G(t− s, Ĉ0 + 2 F̂T
0 ED

lin F̂0)

∂Ĉ

=
∂G(t− s, Ĉ)

∂Ĉ

∣∣∣∣∣
Ĉ0

+ 2
∂2G(t− s, Ĉ)

∂Ĉ2

∣∣∣∣∣
Ĉ0

·
(
F̂T

0 ED
lin F̂0

)
.

(6.53)
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By inserting (6.47), (6.50) and (6.53) into equation (6.40) and by neglecting terms of
higher order, the linearised version of the second part of the overstress reads as

S̃ov,lin,2(t) = 2

∫ t

−∞

[
∂G(t− s, Ĉ)

∂Ĉ

∣∣∣∣∣
Ĉ0

+ 2
∂2G(t− s, Ĉ)

∂Ĉ2

∣∣∣∣∣
Ĉ0

·
(
F̂T

0 ED
lin F̂0

)]

(
F̂−1

0 E′D
lin(s) F̂

−T
0

)
·
(
Ĉ0 + F̂T

0 ED
lin F̂0

)
ds

= 2

∫ t

−∞

∂G(t− s, Ĉ)

∂Ĉ

∣∣∣∣∣
Ĉ0

(
F̂−1

0 E′D
lin(s) F̂

−T
0

)
· Ĉ0 ds

= 2

∫ t

−∞

∂G(t− s, Ĉ)

∂Ĉ

∣∣∣∣∣
Ĉ0

tr
(
E′D

lin(s)
)
ds = 0 .

(6.54)
Since tr(ED

lin) = 0 holds, S̃ov,lin,2(t) is equal to zero. From the definition of the fourth
order projection tensor in equation (6.24), its linearised formulation is derived by in-
serting (6.44) and (6.47)

4

P (t) = (detC)−
1

3

{
4

1 − 1

3
C−1 ⊗C

}

= (detC0)
− 1

3

(
1 − 2

3
tr(Elin(t))

)

{
4

1 − 1

3

[
C−1

0 − 2F−1
0 ElinF

−T
0

]
⊗
[
C0 + 2FT

0 ElinF0

]}

= (detC0)
− 1

3

{
4

1 − 1

3
C−1

0 ⊗C0

}
=

4

P0 .

(6.55)

Since (6.26) is already a linear function of the linearised strain tensor, it is sufficient to

consider only the constant part in the linearisation of
4

P (t) in (6.55). On the basis of
the derived linearised fromulations of the overstresses and the fourth order projection
tensor in equations (6.52), (6.54) and (6.55), the linearised version of the overstress in
(6.38) can finally be written as

T̃ov,lin(t) =
4

P0 ·
(
2

∫ t

−∞

G(t− s, Ĉ0) F̂
−1
0 E′D

lin(s) F̂
−T
0 ds

)
. (6.56)

Since the constant part
4

P0 of the projection tensor is independent of time s and thus
not concerned with integration, the following term is obtained from (6.56)

4

P0 ·
(
F̂−1

0 E′D
lin(s) F̂

−T
0

)
. (6.57)
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Rearrangement of this expression first leads to

4

P0 ·
(
F̂−1

0 E′D
lin(s) F̂

−T
0

)
= (detC0)

− 1

3

{
4

1 − 1

3
C−1

0 ⊗C0

}

·
(
F−1

0 E′D
lin(s)F

−T
0

)
(detC0)

1

3

=

{
4

1 − 1

3
C−1

0 ⊗C0

}
·
(
C−1

0 FT
0 E′D

lin(s)F0 C
−1
0

)
.

(6.58)
Considering the following mathematical relations (Ehlers 2007)

(A⊗B) ·C = (C ·B) A,

(A⊗B)T23 · C = ACBT
(6.59)

and taking into account
tr
(
E′D

lin(s)
)
= 0 , (6.60)

further calculations result in

4

P0 ·
(
F̂−1

0 E′D
lin(s) F̂

−T
0

)
= C−1

0 FT
0 E′D

lin(s)F0 C
−1
0 − 1

3
tr
(
E′D

lin(s)
)
C−1

0

= C−1
0 FT

0 E′
lin(s)F0 C

−1
0 − 1

3
tr (E′

lin(s)) C
−1
0 FT

0 F0 C
−1
0

=
[
C−1

0 ⊗C−1
0

]T23 ·
(
FT

0 E′
lin(s)F0

)
− 1

3
tr (E′

lin(s)) C
−1
0 .

(6.61)
If the last term in (6.61) is reformulated as follows

1

3
tr (E′

lin(s)) C
−1
0 =

1

3
tr
(
F−T

0 FT
0 E′

lin(s)F0 F
−1
0

)
C−1

0

=
1

3
tr
(
C−1

0 FT
0 E′

lin(s)F0

)
C−1

0

=
1

3

[(
FT

0 E′
lin(s)F0

)
·C−1

0

]
C−1

0

=
1

3

[
C−1

0 ⊗C−1
0

]
·
(
FT

0 E′
lin(s)F0

)

(6.62)

and inserted into (6.61), formulation (6.57) can finally be expressed by

4

P0 ·
(
F̂−1

0 E′D
lin(s) F̂

−T
0

)
=

{[
C−1

0 ⊗C−1
0

]T23 − 1

3

[
C−1

0 ⊗C−1
0

]}

·
(
FT

0 E′
lin(s)F0

)

=
4

R0 ·
(
FT

0 E′
lin(s)F0

)
.

(6.63)



Chapter 6 Constitutive modelling 119

Therein, the fourth order tensor
4

R0 is another projection tensor

4

R0 =

{[
C−1

0 ⊗C−1
0

]T23 − 1

3

[
C−1

0 ⊗C−1
0

]}
. (6.64)

Considering (6.63), the linearised overstress of the 2nd Piola-Kirchhoff type in (6.56)
reads as follows

T̃ov,lin(t) =
4

R0 · S̃ov,lin,1 =
4

R0 ·
(
2

∫ t

−∞

G(t− s, Ĉ0)F
T
0 E′

lin(s)F0 ds

)
. (6.65)

The linearised 2nd Piola-Kirchhoff stress tensor finally arises from the sum of its lin-
earised equilibrium part (6.51) and its linearised overstress part (6.65)

T̃lin(t) = Teq,lin + T̃ov,lin(t)

= 2 ρ0
∂Ψeq(C)

∂C

∣∣∣∣
C0

+ 4 ρ0
∂2Ψeq(C)

∂C2

∣∣∣∣
C0

·
(
FT

0 Elin F0

)

+
4

R0 ·
(
2

∫ t

−∞

G(t− s, Ĉ0)F
T
0 E′

lin(s)F0 ds

)
.

(6.66)

Taking a look at this result, the linearised 2nd Piola-Kirchhoff stress tensor can be
additively separated into three different parts. The first one results from the linearisa-
tion of the equilibrium stress T̃eq. It is evaluated at the static predeformation C0, is
constant in time and can be interpreted as the static stress response arising from the
predeformation

Teq,lin1 = T̃0 = 2 ρ0
∂Ψeq(C)

∂C

∣∣∣∣
C0

. (6.67)

The second term also arises from the linearisation of T̃eq and is evaluated at the static
predeformation C0. In contrast to the first part, the second one depends on time. It
is a function of the actual incremental strain tensor Elin at time t and thus represents
the linear stress response resulting from the harmonic excitation in the neighbourhood
of the static predeformation

T̃eq,lin2(t) = 4 ρ0
∂2Ψeq(C)

∂C2

∣∣∣∣
C0

·
(
FT

0 ElinF0

)
. (6.68)

The last part is a history functional which depends on the deformation dependent
relaxation function G(t − s, Ĉ0) and on the history of the incremental strain tensor
Elin(s). It represents the viscoelastic effects arising from the harmonic excitation in
the neighbourhood of the static predeformation

T̃ov,lin(t) = T̃ov =
4

R0 ·
(
2

∫ t

−∞

G(t− s, Ĉ0)F
T
0 E′

lin(s)F0 ds

)
. (6.69)
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6.2.5 Incompressible formulation

Since this work focuses on rubber, the constitutive equations are formulated for incom-
pressible material behaviour in the following. For this purpose, an unknown pressure
term p is firstly introduced. With regard to the additive decomposition of the 2nd Piola-
Kirchhoff stress tensor, the pressure is additively decomposed into an equilibrium part
p0 and a dynamic overstress part pov(t) as well

p(t) = p0 + pov(t) . (6.70)

In order to derive the constitutive equation for the 2nd Piola-Kirchhoff stress tensor
for incompressible material behaviour, the Clausius-Planck inequality is extended by
the unknown pressure term

(
− (p0 + pov)C

−1 + T̃(t)
)
· Ė(t) − ρ0 Ψ̇(t) ≥ 0 . (6.71)

The assumption that the constitutively undetermined reaction stress is given by the
term −pC−1 is compatible with the statement, that it does not contribute to the stress
power (−pC−1 · Ė = 0). As before, the inequality (6.71) is evaluated with respect to
the argumentation by Coleman and Noll (1963), which finally yields the incompressible
formulation of the 2nd Piola-Kirchhoff stress tensor

T̃(t) = − (p0 + pov)C
−1 + 2 ρ0

∂Ψeq(C)

∂C

∣∣∣∣
C0

+4 ρ0
∂2Ψeq(C)

∂C2

∣∣∣∣
C0

·
(
FT

0 ElinF0

)

+
4

R0 ·
(
2

∫ t

−∞

G(t− s, Ĉ0)F
T
0 E′

lin(s)F0 ds

)
.

(6.72)

In order to prepare the incompressible formulation for the transformation into the
frequency domain, the first term in (6.72) must be linearised as well. By neglecting
terms of higher order and by inserting (6.44), the linearisation of the first term in (6.72)
follows to

− (p0 + pov)C
−1 = − (p0 + pov)

(
C−1

0 − 2F−1
0 ElinF

−T
0

)

= − p0 C
−1
0 − povC

−1
0 + 2 p0 F

−1
0 ElinF

−T
0

= − p0 C
−1
0 − pov C

−1
0 + 2 p0 F

−1
0 F−T

0 FT
0 ElinF0 F

−1
0 F−T

0

= − p0 C
−1
0 − pov C

−1
0 + 2 p0 C

−1
0 FT

0 ElinF0 C
−1
0

= − p0 C
−1
0 − pov C

−1
0 + 2 p0

[
C−1

0 ⊗C−1
0

]T23 · FT
0 ElinF0

= − p0 C
−1
0 − pov C

−1
0 + 2 p0

4

R0 ·FT
0 ElinF0 .

(6.73)
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The fourth order projection tensor in terms of incompressibility is given by

4

R0=
[
C−1

0 ⊗C−1
0

]T23
, (6.74)

because the second term in (6.64) leads to

[
C−1

0 ⊗C−1
0

]
·
(
FT

0 ElinF0

)
= tr

(
C−1

0 FT
0 ElinF0

)
= tr (Elin) = 0 . (6.75)

The linearisation (6.73) is finally inserted into (6.72), such that the incompressible
formulation of the linearised 2nd Piola-Kirchhoff stress reads as

T̃lin(t) = − p0 C
−1
0 + 2 ρ0

∂Ψeq(C)

∂C

∣∣∣∣
C0

− pov C
−1
0

+

(
4 ρ0

∂2Ψeq(C)

∂C2

∣∣∣∣
C0

+ 2 p0
4

R0

)
· (FT

0 ElinF0)

+
4

R0 ·
(
2

∫ t

−∞

G(t− s, Ĉ0)F
T
0 E′

lin(s)F0 ds

)
.

(6.76)

Since the isochoric right Cauchy-Green tensor is equal to the right Cauchy-Green tensor
in the case of incompressibility (Ĉ0 = C0), the relaxation function in (6.76) can be
expressed as a function of C0.

6.2.6 Dynamic modulus tensor

In order to derive the dynamic modulus tensor of fourth order, the linearised consti-
tutive formulation (6.76) must be transferred to the frequency domain. Therefore, the
corresponding relaxation function G(t−s,C0) must first be defined such that the differ-
ential equation for the overstress S̃ov and the resulting harmonic response, which arises
from the harmonic excitations in the neighbourhood of the static predeformation, can
be derived. Based on this procedure, the frequency domain formulations of the stress
tensor and the corresponding dynamic modulus tensors are derived with respect to
a classical Maxwell chain and finally deduced for the modified fractional formulation
which is related to a fractional Maxwell chain.

6.2.6.1 Type A: Classical model

In terms of an interpretation of the linearised model as a classical Maxwell chain, the
relaxation function is of the exponential type and reads as

GA(t− s,C0) =
n∑

k=1

µk(C0) e
− t−s

τk . (6.77)

A dependence in the form of τk = τk(C0) is possible but has been omitted for simplifi-
cation. Based on this assumption, the 2nd Piola-Kirchhoff stress tensor in (6.76) reads
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as

T̃A
lin(t) = − p0 C

−1
0 + 2 ρ0

∂Ψeq(C)

∂C

∣∣∣∣
C0

− pov C
−1
0

+

(
4 ρ0

∂2Ψeq(C)

∂C2

∣∣∣∣
C0

+ 2 p0
4

R0

)
· (FT

0 ElinF0)

+
4

R0 ·
(
2

∫ t

−∞

n∑

k=1

µk(C0) e
− t−s

τk FT
0 E′

lin(s)F0 ds

)
,

(6.78)

wherein the viscoelastic overstress is given by

S̃A
ov(t) = 2

∫ t

−∞

n∑

k=1

µk(C0) e
− t−s

τk FT
0 E′

lin(s)F0 ds . (6.79)

The differential equation for the overstresses S̃A
ov,k can be derived as presented in chapter

3 and reads as (cf. (3.71))

˙̃
SA
ov,k(t) = 2µk(C0)F

T
0 ĖlinF0 − 1

τk
S̃ov,k . (6.80)

In order to obtain the harmonic solution of this differential equation, the harmonic
incremental strain tensor

Elin(ω, t) = ∆Elin e
iωt (6.81)

with the strain amplitude ∆Elin and the angular frequency ω is introduced. On this
basis, the overstress response is given by

S̃ov(ω, t) = ∆S̃ov e
iωt , (6.82)

whereas the overstress part of the pressure reads as

pov(ω, t) = ∆p eiωt . (6.83)

If the time derivatives of the incremental strain tensor and the overstress

˙̃
Sov(ω, t) = iω∆S̃ov e

iωt

Ėlin(ω, t) = iω∆Elin e
iωt ,

(6.84)

are inserted into the differential equation (6.80), the following result is firstly obtained

iω∆S̃A
ov,k e

iωt = 2 iω µk(C0)F
T
0 ∆ElinF0 eiωt − 1

τk
∆S̃A

ov,k eiωt . (6.85)

By rearranging this relation, the harmonic overstress response follows to

∆S̃A
ov = 2

n∑

k=1

µk(C0)
iωτk

1 + iωτk
FT

0 ∆ElinF0 . (6.86)
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Based on this result and the definitions in (6.81), (6.82) and (6.83), the frequency
domain formulation of the 2nd Piola-Kirchhoff stress in (6.78) is given by

T̃A(ω, t) = T̃0 + ∆T̃A eiωt

= − p0 C
−1
0 + 2 ρ0

∂Ψeq(C)

∂C

∣∣∣∣
C0

− ∆pC−1
0 eiωt

+

(
4 ρ0

∂2Ψeq(C)

∂C2

∣∣∣∣
C0

+ 2 p0
4

R0

+2
n∑

k=1

µk(C0)
iωτk

1 + iωτk

4

R0

)
· FT

0 ∆ElinF0 e
iωt

(6.87)

and the dynamic modulus tensor of fourth order reads as

4

GA (ω) = 4 ρ0
∂2Ψeq(C)

∂C2

∣∣∣∣
C0

+ 2 p0
4

R0 +2
n∑

k=1

µk(C0)
iωτk

1 + iωτk

4

R0 (6.88)

with the complex modulus

4

G

∗

A (ω) = 2
n∑

k=1

µk(C0)
iωτk

1 + iωτk

4

R0 . (6.89)

6.2.6.2 Type B: Fractional model

With regard to an interpretation of the linearised model as a fractional Maxwell chain,
the frequency domain formulation of the 2nd Piola-Kirchhoff stress tensor and the
definition of the dynamic modulus tensor are derived on the basis of the following
relaxation function (Haupt and Lion (2002))

GB(t− s,C0) =
n∑

k=1

µk(C0)Eα

(
−
(
t− s

τk

)αk
)

, 0 ≤ α ≤ 1 . (6.90)

Inserting this definition into (6.76), the 2nd Piola-Kirchhoff stress is given by

T̃B
lin(t) = − p0 C

−1
0 + 2 ρ0

∂Ψeq(C)

∂C

∣∣∣∣
C0

− pov C
−1
0

+

(
4 ρ0

∂2Ψeq(C)

∂C2

∣∣∣∣
C0

+ 2 p0
4

R0

)
· (FT

0 ElinF0)

+
4

R0 ·
(
2

∫ t

−∞

n∑

k=1

µk(C0)Eα

(
−
(
t− s

τk

)αk
)

FT
0 E′

lin(s)F0 ds

)

(6.91)
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wherein the viscoelastic overstress reads as

S̃B
ov(t) = 2

∫ t

−∞

n∑

k=1

µk(C0)Eα

(
−
(
t− s

τk

)αk
)

FT
0 E′

lin(s)F0 ds . (6.92)

On this basis, the related differential equation of fractional order of the overstresses
S̃B
ov,k is calculated as (cf. (3.99))

dαk

dtαk
S̃B
ov,k(t) = 2µk(C0)F

T
0

dαk

dtαk
Elin(t)F0 −

1

ταk

k

S̃B
ov,k . (6.93)

If the fractional derivatives of (6.81) and (6.82) are defined

dα

dtα
S̃ov(ω, t) = (iω)α∆S̃ov e

iωt

dα

dtα
Elin(ω, t) = (iω)α∆Elin e

iωt

(6.94)

and inserted into the differential equation (6.93), the following relation is first obtained

(iω)αk ∆S̃B
ov,k e

iωt = 2 (iω)αk µk(C0)F
T
0 ∆ElinF0 eiωt − 1

ταk

k

∆S̃B
ov,k eiωt . (6.95)

Based on the rearrangement of this relation, the harmonic overstress response can be
obtained

∆S̃B
ov = 2

n∑

k=1

µk(C0)F
T
0 ∆ElinF0

(iωτk)
αk

1 + (iωτk)αk
. (6.96)

Inserting this result and (6.81), (6.82) and (6.83) into equation (6.91), the frequency
domain formulation of the 2nd Piola-Kirchhoff stress tensor is given by

T̃B(ω, t) = T̃0 + ∆T̃B eiωt

= − p0 C
−1
0 + 2 ρ0

∂Ψeq(C)

∂C

∣∣∣∣
C0

− ∆pC−1
0 eiωt

+

(
4 ρ0

∂2Ψeq(C)

∂C2

∣∣∣∣
C0

+ 2 p0
4

R0

+2
n∑

k=1

µk(C0)
(iωτk)

αk

1 + (iωτk)αk

4

R0

)
· FT

0 ∆ElinF0 e
iωt

(6.97)

and the fourth order dynamic modulus tensor of the fractional model follows to

4

GB (ω) = 4 ρ0
∂2Ψeq(C)

∂C2

∣∣∣∣
C0

+ 2 p0
4

R0 +2
n∑

k=1

µk(C0)
(iωτk)

αk

1 + (iωτk)αk

4

R0 (6.98)
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with the complex modulus

4

G

∗

B (ω) = 2
n∑

k=1

µk(C0)
(iωτk)

αk

1 + (iωτk)αk

4

R0 . (6.99)

By comparing (6.88) with (6.98) or (6.89) with (6.99), one can observe that the fre-
quency dependences of the classical and fractional constitutive models differ. In the
case of αk = 1, both models are equal.





Chapter 7

Parameter identification

Introduction

Parameter identification is necessary to determine the unknown material constants of
a constitutive model. The focus of the identification is the optimisation of these pa-
rameters such that the numerical approximation of the constitutive approach is able to
represent the experimentally observed material characteristics. The general procedure
can therefore be characterised as an optimisation process, which is commonly based on a
minimisation of the error between the experimental data and the numerically simulated
data provided by the constitutive model. Moreover, the identification process is usually
performed on the basis of suitable optimisation algorithms, for instance, the local least
squares method or the global genetic algorithm.
In order to perform an identification, the experimental testing procedures must be sim-
ulated by the constitutive model to provide the corresponding numerical results. To this
end, the equations for the numerical simulation must first be derived on the basis of the
constitutive equations.

Outline

The focus of this chapter is the identification of the material parameters of the classical
and the fractional constitutive approaches. On account of this, the constitutive equa-
tions must be specialised with respect to the experimentally applied loading conditions
and will be called identification equations.
On this basis, the first section of this chapter starts with an introduction to the gen-
eral concept which is applied to derive the identification equations which belong to the
quasi-static and dynamic investigations.
Moreover, the hyperelastic part of the specific Helmholtz free energy ρ0 Ψ is introduced
and the deformation dependent parameters µk(C0) of the overstress part of the models
are defined.
The second section is concerned with the static part of the model. Hence, the identifi-
cation equations required to simulate the quasi-static experiments are derived for each
deformation mode.
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The parameter identification of the dynamic part of the classical and of the fractional
models and their corresponding identification equations to represent the dynamic me-
chanical experiments are provided in the third section.
The fourth section is concerned with the numerical identification routine which is pro-
grammed in the form of a numerical software code in MATLAB.
In order to reveal the performance of the classical and the fractional constitutive model,
the identification results of the quasi-static and dynamic experiments are presented in
the last section of this chapter. Thereby, a comparison between both formulations is
additionally drawn to reveal the benefits of the fractional constitutive model with re-
spect to the number of material parameters required and the quality of the numerical
approximation.

It is mentioned, that parts of the parameter identification have been published in
prior printed publications which were approved by the university (Wollscheid and Lion
(2013a), Wollscheid and Lion (2013b) and Wollscheid and Lion (2014)).

7.1 General procedure

The parameter identification in this work is generally divided into a static part and a
dynamic part. The static one is concerned with the identification of the static part of
the model whereas the dynamic part of identification focuses on the identification of
the dynamic part of the classical and of the fractional models.

The static material parameters are identified by a minimisation of the error between
the experimental equilibrium stress data and the corresponding numerical simulation.
To this end, the following equation is used:

T̃0 = − p0 C
−1
0 + 2 ρ0

∂Ψeq(C)

∂C

∣∣∣∣
C0

(7.1)

After that, the static material parameters are held constant and the dynamic ones are
identified by a minimisation of the error between the mastered experimental data of the
temperature-frequency-sweep tests and the corresponding numerical approximation of
the model

∆T̃ eiωt = −∆p eiωt C−1
0 +

(
2 p0

4

R0 +4 ρ0
∂2Ψeq(C)

∂C2

∣∣∣∣
C0

+G∗
A/B

4

R0

)
· FT

0 ∆ElinF0 e
iωt .

(7.2)

The complex part of the overstress is summarised in the variable G∗
A/B and denotes the

complex modulus. In terms of the classical model (type A), it reads as

G∗
A = 2

n∑

k=1

µk(C0)
iωτk

1 + iω τk
, (7.3)
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whereas its definition for the fractional approach (type B) is given by

G∗
B = 2

n∑

k=1

µk(C0)
(iωτk)

αk

1 + (iω τk)αk
. (7.4)

In order to provide the identification equations, a suitable formulation of the specific
Helmholtz free energy ρ0 Ψeq(C) as well as of the deformation dependent dynamic pa-
rameters µk(C0) are chosen first. With respect to the subsequent finite element imple-
mentation of the constitutive models into the code MSC Marc, the specific Helmholtz
free energy is defined by the Mooney approach (Mooney 1940)

ρ0 Ψeq(C) = C10 (IC − 3) + C20 (IC − 3)2 + C30 (IC − 3)3

+C11 (IC − 3) (IIC − 3) + C01 (IIC − 3) ,
(7.5)

with the first and second invariants IC and IIC of the right Cauchy-Green tensor and
the material parameters C10, C20, C30, C11 and C01. Since the experimentally obtained
equilibrium stress response is determined by a single curvature, a mathematical repre-
sentation on the basis of five material parameters is not necessary. Regarding this, the
formulation applied in this work is reduced to the material constants C10 and C01

ρ0 Ψeq(C) = C10 (IC − 3) + C01 (IIC − 3) . (7.6)

In order to represent the predeformation dependent properties of the storage and the
loss modulus, the dynamic parameters µk(C0) are defined by a function of the expo-
nential type, which depends on the first and second invariants IC and IIC of the right
Cauchy-Green tensor. In terms of the SBR20, SBR40 and EPDM20 vulcanisates, the
dynamic parameters are defined by

µk(C0) = µ0,k e
a (IC − 3)+ b (IIC − 3) . (7.7)

The more complex deformation dependence of the NR40 vulcanisate is approximated
by an additional term which depends on IC and IIC

µk(C0) = µ0,k e
a (IC − 3)+ b (IIC − 3)+ c (IC − 3) (IIC − 3) . (7.8)

In this, the variables a, b and c are material parameters and the variables µ0,k represent
the reference value of the dynamic parameters µk(C0). With regard to the interpreta-
tion as a Maxwell chain, the parameters µ0,k can be interpreted as a reference stiffness
of the Maxwell elements.

7.2 Static part

In order to obtain the identification equation to identify C10 and C01, the equilibrium
stress in (7.1) must be specified with respect to each deformation mode. To this end, it
is necessary to calculate the first derivative of the specific Helmholtz free energy with
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respect to the right Cauchy-Green tensor first. If the chain rule of differentiation is
applied, the first derivative of ρ0 Ψeq in (7.6) can be written as

ρ0
∂Ψeq

∂C
= ρ0

∂Ψeq

∂IC

∂IC
∂C

+ ρ0
∂Ψeq

∂IIC

∂IIC
∂C

. (7.9)

By inserting the derivatives of the first and of the second invariant IC and IIC

∂IC
∂C

= 1 (7.10)

∂IIC
∂C

= IC 1 − C . (7.11)

into (7.9), the first derivative of the equilibrium part of the specific Helmholtz free
energy reads as

ρ0
∂Ψeq

∂C
= C10 1 + C01

(
IC 1 − C

)
=
[
C10 + C01 IC

]
1 − C01 C . (7.12)

If (7.12) is inserted into (7.1), the following result is obtained

T̃0 = − p0 C
−1
0 + 2

[
C10 + C01 IC

]
1 − 2C01 C0 . (7.13)

In order to obtain the identification equation which belongs to (7.13), the equilibrium
part of the 2nd Piola-Kirchhoff stress T̃0 must be specified with respect to the exper-
imentally applied loadings. For this purpose, the kinematic relations with respect to
uniaxial tension, compression and the pure shear are derived.

7.2.1 Uniaxial tension and compression

In order to derive the equilibrium stress response T̃0 with respect to uniaxial tension
and compression, the corresponding kinematic relations must be defined. With regard
to the experimental testing procedure, the loading condition displayed in figure 7.1 is
taken into account.

L

L0

B

B
0

e1

e2

e3

u1

Figure 7.1: Loadcase of the quasi-static experiments in uniaxial tension and com-
pression
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The specimen is loaded by the uniaxial displacement u1 in loading direction e1. Thus,
the specimen is stretched from its initial length L0 to the deformed length L, whereas its
initial width B0 and and its initial thickness D0 are reduced to width B and thickness
D in the deformed state. Based on this, the stretches in the e1, e2 and e3 directions
are defined by the ratio of the deformed dimensions to the initial dimensions

λ1 =
L

L0

, λ2 =
B

B0

, λ3 =
D

D0

, (7.14)

such that the deformation gradient reads as

F =




λ1 0 0
0 λ2 0
0 0 λ3


 . (7.15)

Regarding isotropic material behaviour, the stretches in directions e2 and e3 are iden-
tical such that λ2 = λ3 holds. Taking this relation and the incompressibility constraint

detF = λ1 λ2 λ3 = 1 (7.16)

into account, the deformation gradient (7.15) at stretch λ can be expressed by

F =




λ 0 0

0
1√
λ

0

0 0
1√
λ


 . (7.17)

Based on this definition and the relation C = FT F, the right Cauchy-Green tensor
and its inverse read as

C =




λ2 0 0

0
1

λ
0

0 0
1

λ


 , C−1

0 =




1

λ2
0 0

0 λ 0
0 0 λ


 . (7.18)

In order to obtain the identification equation with respect to uniaxial tension and
compression, (7.18) is inserted into (7.13). Thereby, the unknown pressure p0 must
first be determined by one of the geometrical constraints

T̃0,22 = T̃0,33 = 0 . (7.19)

With respect to the e2 direction, the corresponding one-dimensional equilibrium stress
response at static prestretch λ0 is given by

T0,22 = − p0 λ0 + 2
[
C10 + C01 IC

]
− 2C01

1

λ0

= 0 . (7.20)
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This equation is solved with respect to the static pressure p0

p0 = 2
[
C10 + C01 IC

] 1

λ0

− 2C01
1

λ2
0

(7.21)

and inserted into the equilibrium stress of the loading direction

T̃0,11 = − p0
1

λ2
0

+ 2
[
C10 + C01 IC

]
− 2C01 λ

2
0 . (7.22)

On the basis of this procedure, the identification equation of the equilibrium stress T̃0,11

with respect to uniaxial tension and compression reads as

T̃0,11 = 2
[
C10 + C01 IC

] (
1 − 1

λ3
0

)
− 2C01

(
λ2
0 − 1

λ4
0

)
. (7.23)

Since the experimental stress data provided by the quasi-static testing device is of the
1st Piola-Kirchhoff type, the identification equation for T̃0,11 must be transformed into
1st Piola-Kirchhoff stresses. With the relation between the 1st and the 2nd Piola-
Kirchhoff stress

P = T̃ F ⇒ P0,11 = T0,11 λ0 , (7.24)

the identification equation to simulate the experimentally obtained equilibrium stress
in uniaxial tension and compression reads as

P0,11 = 2
[
C10 + C01 IC

] (
λ0 − 1

λ2
0

)
− 2C01

(
λ3
0 − 1

λ3
0

)
. (7.25)

7.2.2 Pure shear

The identification equation of the equilibrium stress with respect to pure shear can be
derived in the same manner as for uniaxial tension and compression. With respect to
this loadcase, figure 7.2 is taken into account.

L

L
0

B = B0

e1
e2

e3

u1

Figure 7.2: Loadcase of the quasi-static experiments in pure shear
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The specimen is loaded by the displacement u1 in direction e1 which results in an
elongation of the specimen from its initial length L0 to the deformed length L and a
reduction of its initial thickness D0 to the deformed thickness D. Since the width of the
specimen is much larger than its thickness, the initial width remains constant during
deformation such that B = B0 holds. In view of this, the stretches in e1, e2 and e3
directions are defined by

λ1 =
L

L0

, λ2 =
D

D0

, λ3 =
B

B0

= 1 . (7.26)

By taking isotropic material behaviour and incompressibility into account, the defor-
mation gradient at stretch λ is given by

F =




λ 0 0

0
1

λ
0

0 0 1


 (7.27)

from which the right Cauchy-Green tensor and its inverse can be obtained

C =




λ2 0 0

0
1

λ2
0

0 0 1


 , C−1 =




1

λ2
0 0

0 λ2 0
0 0 1


 . (7.28)

Based on these relations, the equilibrium stress T0,11 at static prestretch λ0 can be
derived. First, the static pressure p0 is determined by the geometrical constraint T0,22 =
0

p0 = 2
[
C10 + C01 IC

] 1

λ2
0

− 2C01
1

λ4
0

. (7.29)

By inserting this solution into (7.1), the equilibrium stress in loading direction reads
as

T̃0,11 = 2
[
C10 + C01 IC

] (
1 − 1

λ4
0

)
− 2C01

(
λ2
0 − 1

λ6
0

)
. (7.30)

If the relation between the 1st and the 2nd Piola-Kirchhoff stresses in (7.24) is applied,
the identification equation to simulate the experimentally obtained equilibrium stress
with respect to pure shear is given by

P0,11 = 2
[
C10 + C01 IC

] (
λ0 − 1

λ3
0

)
− 2C01

(
λ3
0 − 1

λ5
0

)
. (7.31)

7.3 Dynamic part

In order to derive the dynamic identification equations, the constitutive equation for
the overstress ∆T̃ in (7.2) must be specified with respect to the harmonic loading in the
dynamic-mechanical tests. In so doing, the second derivative of the equilibrium part of
the specific Helmholtz free energy with respect to the right Cauchy-Green tensor must
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be evaluated first. Starting from (7.12), the second derivative of ρ0Ψeq follows to

ρ0
∂2Ψeq

∂C2
= C01

∂IC
∂C

⊗ 1 − C01
∂C

∂C
. (7.32)

By inserting the derivatives of IC and IIC in (7.10) in equation (7.32) and taking the
relation

∂C

∂C
= (1⊗ 1)T23 (7.33)

into account, the second derivative of the specific Helmholtz free energy is written as

ρ0
∂2Ψeq

∂C2
= C01 (1⊗ 1) − C01 (1⊗ 1)T23 . (7.34)

If this result is inserted into (7.2), the equation for the 2nd Piola-Kirchhoff overstress
reads as

∆T̃ = −∆pC−1
0 + 2 p0

4

R0 ·
(
FT

0 ∆ElinF0

)

+4
[
C01 (1⊗ 1) − C01 (1⊗ 1)T23

]
·
(
FT

0 ∆ElinF0

)

+G∗
A/B

4

R0 ·
(
FT

0 ∆ElinF0

)
.

(7.35)

Since the dynamic mechanical analyses are characterised by small harmonic excitations
∆ε in the neighbourhood of the predeformation F0, the same loadcase is considered as
for the quasi-static experiments in tension and compression (figure 7.1). To this end,
the e1 direction is the loading direction and the assumptions of incompressibility and
isotropy are taken into account. Based on these assumptions, the deformation gradient
of predeformation at static prestretch λ0, its transpose and its inverse read as

F0 = FT
0 =




λ0 0 0

0
1√
λ0

0

0 0
1√
λ0


 , F−1

0 =




1

λ0

0 0

0
√
λ0 0

0 0
√
λ0


 , (7.36)

On the basis of these relations, the right Cauchy-Green tensor at prestretch λ0 and its
inverse result in

C0 =




λ2
0 0 0

0
1

λ0

0

0 0
1

λ0


 , C−1

0 =




1

λ2
0

0 0

0 λ0 0
0 0 λ0


 . (7.37)
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With the dynamic strain amplitude ∆ε, the incremental Green-Lagrange strain tensor
can be expressed by

Elin =
1

2
(h + hT ) = ∆ε




1 0 0

0 − 1

2
0

0 0 − 1

2


 (7.38)

which results in the definition of the following term

(FT
0 ∆ElinF0) = ∆ε




λ2
0 0 0

0 − 1

2λ0

0

0 0 − 1

2λ0


 . (7.39)

By taking the projection tensor of fourth order

4

R0 = (C−1
0 ⊗C−1

0 )T23 (7.40)

and the relation (Ehlers 2007)

(A⊗B)T23 ·C = ACBT , (7.41)

into account, the following kinematic relation is obtained

4

R0 · (FT
0 ∆ElinF0) = ∆ε




1

λ2
0

0 0

0 − λ0

2
0

0 0 − λ0

2




. (7.42)

Based on these expressions, the dynamic identification equation can be evaluated sim-
ilarly as for the quasi-static loadcase in tension and compression. First, the pressure
term ∆p is calculated by one of the geometric constraints

∆T̃22 = ∆T̃33 = 0 . (7.43)

By taking the mathematical relations (Ehlers 2007)

(1⊗ 1)A = tr(A)1 ,

(1⊗ 1)T23 A = A

(7.44)

in combination with (7.36), (7.37), (7.39) and (7.42) into account, the pressure is
evaluated by the geometric constraint for the e2 component of the dynamic part of the
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2nd Piola-Kirchhoff stress tensor

∆T̃22 = −∆p λ0 + 2 p0 ∆ε

(
− λ0

2

)

+4

[
C01 ∆ε

(
λ2
0 − 1

λ0

)
− C01 ∆ε

(
− 1

2λ0

)]
+ G∗

A/B ∆ε

(
− λ0

2

)
= 0 .

(7.45)
By rearranging this equation, the pressure finally reads as

∆p = ∆ε

{
− p0 + 4

[
C01

(
λ0 − 1

λ2
0

)
+ C01

1

2λ2
0

]
− 1

2
G∗

A/B

}
. (7.46)

By inserting this result into (7.2), the dynamic identification equation is derived and
reads as

∆T̃11 = ∆ε

{
3 p0

1

λ2
0

+ 4C01

(
1

2λ4
0

− 2

λ0

)
+

3

2
G∗

A/B

1

λ2
0

}
. (7.47)

In view of the dynamic-mechanical tests, the experimental results are provided in form
of the storage and the loss modulus which are of the Cauchy stress type. Hence,
equation (7.47) is firstly transformed into Cauchy stresses by applying the relation
between the Cauchy stress T and the 2nd Piola-Kirchhoff stress T̃

T = F T̃FT = (1+ h)F0 T̃ FT
0 (1+ hT ) . (7.48)

If terms of higher order are neglected, the one-dimensional form of this relation can be
expressed by

T11 = T̃11 λ
2
0 (1 + ∆ε)2 ≈

(
T̃0,11(λ0) + ∆T̃11(λ0,∆ε)

)
λ2
0 (1 + 2∆ε) . (7.49)

By inserting the static and dynamic identification equations T̃0,11 and ∆T̃11 in (7.23)
and (7.47) into the (7.49), the Cauchy stress reads as

T11 = 2
[
C10 + C01 IC

] (
λ2
0 − 1

λ0

)
− 2C01

(
λ4
0 − 1

λ2
0

)

∆ε

{
4
[
C10 + C01 IC

] (
λ2
0 − 1

λ0

)
− 4C01

(
λ4
0 − 1

λ2
0

)

+3 p0 + 4C01

(
1

2λ2
0

− 2λ0

)
+

3

2
G∗

A/B

}

(∆ε)2
{
6 p0 + 8C01

(
1

2λ2
0

− 2λ0

)
+ 3G∗

A/B

}
.

(7.50)

It consists of a static part and two dynamic parts whereby the first one is of first order
in ∆ε and the second one is of second order in ∆ε. Since the dynamic strain amplitude
is very small, the dynamic term of second order can be neglected ((∆ε)2 → 0), such
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that the final form of the dynamic identification equation follows to

∆T11 = ∆ε

{
4
[
C10 + C01 IC

] (
λ2
0 − 1

λ0

)
− 4C01

(
λ4
0 − 1

λ2
0

)

+3 p0 + 4C01

(
1

2λ2
0

− 2λ0

)
+

3

2
G∗

A/B

}
.

(7.51)

If the static pressure p0 in (7.21) is inserted into (7.51), the dynamic identification
equation finally reads as

∆T11 = ∆ε

{
4
[
C10 + C01 IC

] (
λ2
0 +

1

2λ0

)
− 4C01

(
λ4
0 + 2λ0

)
+

3

2
G∗

A/B

}
.

(7.52)
With the complex responses of the linearised overstress models G∗

A/B in (7.3) and (7.4),
the dynamic identification equation of the classical approach reads as

∆TA
11 = ∆ε

{
4
[
C10 + C01 IC

] (
λ2
0 +

1

2λ0

)
− 4C01

(
λ4
0 + 2λ0

)

+3
n∑

k=1

µk(C0)
iωτk

1 + iω τk

}
,

(7.53)

whereas the expression of the fractional formulation follows to

∆TB
11 = ∆ε

{
4
[
C10 + C01 IC

] (
λ2
0 +

1

2λ0

)
− 4C01

(
λ4
0 + 2λ0

)

+3
n∑

k=1

µk(C0)
(iωτk)

αk

1 + (iω τk)αk

}
.

(7.54)

Since the identification of the material parameters is performed with respect to the
storage and the loss modulus, the dynamic identification equations (7.53) and (7.54)
must finally be transferred into the corresponding identification equations for the com-
plex moduli G∗

A and G∗
B. For this purpose, ∆TA

11 and ∆TB
11 are divided by the strain

amplitude ∆ε and then separated into real and imaginary parts. In so doing, the
storage and the loss modulus of the classical approach are defined by

G′
A(ω) = 4

[
C10 + C01 IC

] (
λ2
0 +

1

2λ0

)
− 4C01

(
λ4
0 + 2λ0

)

+3
n∑

k=1

µk(C0)
(ω τk)

2

1 + (ω τk)2

G′′
A(ω) = 3

n∑

k=1

µk(C0)
ω τk

1 + (ω τk)2
.

(7.55)

In terms of the fractional model, the separation into real and imaginary parts is more
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complicated, but the resulting formulations of the storage and the loss modulus are ob-
tained the same way as for the fractional Maxwell element, which is given by equation
(3.111) and (3.112). Since the identification routine is programmed in the numerical
code MATLAB, the software provided functions real() and imag() can be applied to
calculate the real and imaginary parts of a complex-valued function. Using these func-
tions, the specified identification equations of the storage and the loss modulus read
as

G′
B(ω) = 4

[
C10 + C01 IC

] (
λ2
0 +

1

2λ0

)
− 4C01

(
λ4
0 + 2λ0

)

+ real

(
3

n∑

k=1

µk(C0)
(i ω τk)

αk

1 + (i ω τk)αk

)
,

G′′
B(ω) = imag

(
3

n∑

k=1

µk(C0)
(i ω τk)

αk

1 + (i ω τk)αk

)
.

(7.56)

7.4 Numerical identification process

The identification procedure to determine the material parameters is programmed by a
numerical code in the software MATLAB. The general concept of the implementation
is based upon the minimisation of the error between the experimental data and the
numerically simulated data

error =

∣∣∣∣
∣∣∣∣
σnum − σexp

σexp

∣∣∣∣
∣∣∣∣ → min . (7.57)

From this, the identification equations (7.25), (7.31), (7.55) and (7.56) are implemented
into a numerical code to simulate the quasi-static and dynamic-mechanical tests. The
numerical results are then compared with the corresponding experimental ones and the
error between both is calculated. The subsequent optimisation of the material param-
eters to minimise the error is performed by suitable optimisation routines provided by
the software MATLAB.

The identification procedure is generally divided into the identification of the static
material parameters C10 and C01 and the identification of the dynamic material pa-
rameters µk0, τk, a, b, c and αk. Based on this division, the identification process is
performed in two steps. The static material parameters are first identified with respect
to the experimental and numerical equilibrium stress-strain data. After that, the iden-
tified static material parameters are held constant and the dynamic ones are identified
by using the experimental and numerical data of the frequency and predeformation
dependent storage and loss modulus in a subsequent second step.

The basis of the static parameter identification builds up the equilibrium stress data
of the quasi-static investigations and the numerical equilibrium stress response P0,11
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provided by (7.25) and (7.31). The identification routine applied to optimise the static
material parameters can be divided into four main steps which are initialisation, sim-
ulation, evaluation of the error and optimisation.

At the initialisation step, the experimental data σexp and εexp of the quasi-static ten-
sion, compression and pure shear tests are loaded from the experimental data files.
Moreover, the initial values of the static material parameters C10 and C01 as well as
their lower and upper bounds can be defined by the user (default values: 0 MPa up to
10 MPa).
After the initialisation is finished, the numerical simulation of the experimental equilib-
rium stress data is performed on the basis of (7.25) and (7.31) with respect to tension,
compression and pure shear.
After that, the quality of the approximation is determined by the evaluation of the abso-
lute error between the experimental equilibrium stress data σexp and the corresponding
numerical one σnum

error =

∣∣∣∣
∣∣∣∣
σnum(εexp) − σexp(εexp)

σexp(εexp)

∣∣∣∣
∣∣∣∣ . (7.58)

Thereby, the relative value of the error is chosen to assure that each data point is
considered independently of its numerical value. Moreover, the individual errors of all
data points from each deformation mode are summed up to get a total error such that
each deformation mode is simultaneously taken into account during calculation of the
error.
After evaluating the total error, the material parameters are optimised by a software-
provided nonlinear least squares method which is given by the internal function lsqnon-
lin. Thereby, the focus is on the minimisation of the error such that the quality of the
numerical approximation becomes as good as possible. Regarding this, the new set
of optimised material parameters is automatically derived by the software MATLAB
respectively by the function lsqnonlin. On the basis of the new set of material param-
eters, the whole identification process starts from the beginning again. This iteration
takes place as long as the error is still higher than a user-defined minimum value. If
the error is smaller than the defined minimum, the identification process automatically
terminates and the identified static material parameters are saved in a file.

The procedure to identify the dynamic material parameters µk0, τk, a, b, c and αk

is similar to the identification process of the static ones. It is based on a minimisa-
tion of the error between the predeformation and frequency dependent storage and
loss modulus which are obtained from the temperature-frequency-sweep tests and the
corresponding responses G′

A and G′′
A of the classical model in (7.55) respectively G′

B

and G′′
B of the fractional approach in (7.56). As before, the dynamic identification

process is described by initialisation, numerical simulation, evaluation of the error and
optimisation of the material parameters.
The initialisation step includes the import of the master curve data of the temperature-
frequency-sweep tests at each predeformation. This data consists of the applied prede-
formation and frequency as well as of the corresponding storage and loss modulus at
the given frequency and predeformation. Moreover, the initial values of the dynamic
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Figure 7.3: Numerical identification procedure

material parameters µk0, τk, a, b, c and αk as well as their lower and upper bounds can
be defined by the user. The previously identified static material parameters C10 and
C01 are read from the saved file and are considered as constants during the dynamic
part of the identification process.
The simulation of the experimental data is performed by an evaluation of the corre-
sponding identification equations of the dynamic moduli in (7.55) and (7.56). Similar
to the static identification process, the relative errors between the experimental storage
and loss modulus G′

exp and G′′
exp and the numerically computed moduli G′

num and G′′
num

are calculated in the next step

errorG′ =

∣∣∣∣
∣∣∣∣
G′

num − G′
exp

G′
exp

∣∣∣∣
∣∣∣∣ ,

errorG′′ =

∣∣∣∣
∣∣∣∣
G′′

num − G′′
exp

G′′
exp

∣∣∣∣
∣∣∣∣ .

(7.59)

After this, the individual errors of each data point and each predeformation are summed
up to a total error which is minimised in the subsequent optimisation process.
In contrast to the static part of identification, the optimisation of the dynamic material
parameters is performed by a genetic algorithm which is also provided by the software
MATLAB as function ga. The genetic algorithm is a global optimisation algorithm
and is applied to prevent the optimisation from sticking to a local minimum due to a
great amount of material parameters. The new and optimised material parameters are
again provided by the optimisation algorithm and are taken as new values for the next
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iteration until the error between the experimental and numerical data reaches the user
defined-minimum.

7.5 Identification results

The focus of this section is to present the identified static and dynamic material pa-
rameters as well as the corresponding results of the numerical approximation of the
experimental data with regard to the equilibrium stress and the predeformation and
frequency dependent storage and loss modulus.

7.5.1 Static identification results

The static part of the parameter identification was focused on the identification of C10

and C01 such that the simulated equilibrium stress fits as well as possible with the
experimental equilibrium stress data. The identified values of the static material pa-
rameters with respect to each vulcanisate are listed in table 7.1. The simulation results
of the experimental equilibrium stress data based on the identified values of C10 and C01

are plotted in figure 7.4 with regard to each vulcanisate and each deformation mode.
On the basis of this figure, it can be observed that the numerical approximation is in
very good agreement with the experimental equilibrium stress data. Based on this fact,
the constitutive model is very suitable to quantitatively approximate the hyperelastic
equilibrium response of each vulcanisate with only two material parameters.

7.5.2 Dynamic identification results

The dynamic part of the identification was focused on the determination of the pa-
rameters µk, τk, αk, a, b and c. The identified material parameters of the classical
and of the fractional approach are listed in tables 7.2 - 7.5 for each vulcanisate. The
numerical results of both formulations are discussed in the following. Thereby, the
numerical approximation of the classical model should be discussed first. After that,
the numerical representation of the classical model is compared to that of the fractional
approach to reveal the benefits of the fractional formulation. Initially, one can state
that the numerical approximations of both constitutive approaches are in very good
agreement with the experimental data of each vulcanisate.
As illustrated in figures 7.5, 7.7, 7.9 and 7.11, the classical model can already quan-
titatively approximate the predeformation and frequency dependent properties of the
storage and the loss modulus of each material. In view of an interpretation of the
classical model as a Maxwell chain, a relatively large number of 10 Maxwell elements
in parallel is required to represent the dynamic properties of each vulcanisate over a
broad frequency range of about seven decades. Hence, the classical model inherits
24 material parameters in terms of the SBR20, SBR40 and EPDM20 rubber and 25
parameters in the case of the NR40 vulcanisate. This fact implies a high complexity
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of the identification process and a disadvantage with respect to computational effort.
Apart from the large amount of material parameters, the numerical approximation of
the loss modulus provided by the classical approach is characterised by pronounced
oscillations, which are due to the discrete relaxation spectrum.

If the simulations of the fractional formulation given in figures 7.6, 7.8, 7.10 and 7.12 are
taken into account, the numerical representation of the predeformation and frequency
dependent dynamic properties seems to be nearly of the same quality at first sight.
But, in contrast to the classical approach, the fractional model is characterised by
two benefits. With respect to the quality of the approximation, the representation
of the loss modulus by the fractional model reveals no oscillations and is thus much
better than the approximation of the classical formulation. Regarding a Maxwell chain,
the oscillations are natural and arise from the characteristic sigmoidal behaviour of
the loss modulus of a single Maxwell element. This behaviour is also characteristic
for discrete relaxation spectra. The absence of oscillations in terms of the fractional
model is due to the continuous relaxation spectrum of the approach. Apart from this
benefit, much less material parameters are required to quantitatively approximate the
experimental data. If the interpretation as a fractional Maxwell chain is considered, the
very suitable fit of the storage and the loss modulus is achieved by the application of
only 4 fractional Maxwell elements which results in 16 instead of 24 material parameters
in terms of the SBR20, SBR40 and EPDM20 rubber and 17 instead of 25 material
parameters in terms of the NR40 vulcanisate. Based on this reduction, the identification
of the material parameters is more simple in comparison with the classical constitutive
model. Furthermore, the few amount of material parameters dramatically boosts the
identification procedure, and moreover, the numerical simulation.
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SBR20
C10 [MPa] C01 [MPa]
0.17071 9.89934 e-2

EPDM20
C10 [MPa] C01 [MPa]
0.16993 0.10749

SBR40
C10 [MPa] C01 [MPa]
0.20338 0.17255

NR40
C10 [MPa] C01 [MPa]
0.22473 0.13481

Table 7.1: Static material parameters of SBR20, SBR40, EPDM20 and NR40
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Figure 7.4: Identification results of the equilibrium stress in compression, pure
shear and tension (upper left: SBR20), (upper right: SBR40), (lower left: EPDM20),

(lower right: NR40)
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Figure 7.5: Identification result of the predeformation and frequency dependent
dynamic moduli of SBR20 of the classical approach (left: storage modulus), (right:

loss modulus)
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Figure 7.6: Identification result of the predeformation and frequency dependent
dynamic moduli of SBR20 of the fractional approach (left: storage modulus), (right:

loss modulus)
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Figure 7.7: Identification result of the predeformation and frequency dependent
dynamic moduli of SBR40 of the classical approach (left: storage modulus), (right:

loss modulus)
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Figure 7.8: Identification result of the predeformation and frequency dependent
dynamic moduli of SBR40 of the fractional approach (left: storage modulus), (right:

loss modulus)
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Figure 7.9: Identification result of the predeformation and frequency dependent
dynamic moduli of EPDM20 of the classical approach (left: storage modulus), (right:

loss modulus)
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Figure 7.10: Identification result of the predeformation and frequency dependent
dynamic moduli of EPDM20 of the fractional approach (left: storage modulus), (right:

loss modulus)
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Figure 7.11: Identification result of the predeformation and frequency dependent
dynamic moduli of NR40 of the classical approach (left: storage modulus), (right:

loss modulus)
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Figure 7.12: Identification result of the predeformation and frequency dependent
dynamic moduli of NR40 of the fractional approach (left: storage modulus), (right:

loss modulus)
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Classical approach
a [-] b [-]

6.89416 e-2 0.12571

k µk [MPa] τk [s]
1 48.3319 1.98097 e-7
2 2.49171 5.54839 e-6
3 0.83595 4.69067 e-5
4 0.41932 4.03828 e-4
5 0.26381 3.40498 e-3
6 0.21712 2.74666 e-2
7 0.18520 0.20242
8 0.13642 1.72733
9 0.19136 56.9035
10 0.11549 544.306

Fractional approach
a [-] b [-]

0.11598 7.60850 e-2

k µk [MPa] τk [s] αk [-]
1 46.2521 1.62040 e-7 0.81581
2 2.28793 1.01101 e-5 0.56452
3 1.30408 1.20383 e-2 0.29352
4 0.14608 158.608 0.83250

Table 7.2: Dynamic material parameters of SBR20

Classical approach
a [-] b [-]

-0.79307 1.32161

k µk [MPa] τk [s]
1 29.3852 3.39292 e-7
2 3.45354 6.27872 e-6
3 1.47962 6.34561 e-5
4 0.82855 5.76019 e-4
5 0.56381 5.83982 e-3
6 0.47559 5.38728 e-2
7 0.37131 0.49104
8 0.28175 4.42678
9 0.28293 81.2908
10 0.48645 507.516

Fractional approach
a [-] b [-]

-0.82271 1.39609

k µk [MPa] τk [s] αk [-]
1 136.254 1.38155 e-8 0.57695
2 1.86687 4.70654 e-5 0.47569
3 1.33865 3.53095 e-2 0.36166
4 1.40752 6.68732 0.16599

Table 7.3: Dynamic material parameters of SBR40
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Classical approach
a [-] b [-]

0.39401 -0.11561

k µk [MPa] τk [s]
1 3.88191 3.27744 e-7
2 0.54257 8.05794 e-6
3 0.33374 6.59606 e-5
4 0.27757 4.90615 e-4
5 0.26738 3.51158 e-3
6 0.25947 2.43553 e-2
7 0.24219 0.17277
8 0.22276 1.34822
9 0.36251 18.4952
10 0.17808 542.940

Fractional approach
a [-] b [-]

0.42808 -0.13149

k µk [MPa] τk [s] αk [-]
1 5.41962 1.18569 e-7 0.61082
2 0.62716 4.03573e -5 0.47682
3 1.18242 1.64750 e-2 0.34460
4 0.59755 19.7448 0.38693

Table 7.4: Dynamic material parameters of EPDM20

Classical approach
a [-] b [-] c [-]

-0.80646 -0.98208 2.35351

k µk [MPa] τk [s]
1 3.46551 2.33676 e-7
2 0.87572 5.40025 e-6
3 0.74353 5.56571 e-5
4 0.51671 5.16696 e-4
5 0.42521 3.78492 e-3
6 0.36573 2.73059 e-2
7 0.31533 0.18350
8 0.29750 1.20108
9 0.26786 7.31068
10 1.74780 293.531

Fractional approach
a [-] b [-] c [-]

-0.79693 -1.02881 2.46163

k µk [MPa] τk [s] αk [-]
1 3.14154 6.23204 e-7 0.49268
2 1.71258 3.08624 e-4 0.36819
3 1.86762 1.38236 0.27460
4 1.14150 570.341 1

Table 7.5: Dynamic material parameters of NR40



Chapter 8

Finite element implementation and

simulation

Introduction

The finite element method, shortly FEM, has become a powerful tool to simulate the
behaviour of complex geometrical structures under complex types of deformations. The
procedure is based on mathematical material models and can be described as a numeri-
cal approximation used to solve complex initial and boundary value problems which are
mathematically defined by partial differential equations. Basically, the complex geom-
etry is simplified by separating the solution area into a finite number of elements, as
for instance triangles or rectangles, which are spatially defined by nodes. The variables
are calculated at these nodes and approximated in between by suitable shape functions
which can be of linear, quadratic or even higher order.
In order to calculate an approximation of the solution, the underlying differential equa-
tions (strong form) are first transferred to their weak form by applying various princi-
ples, such as the minimum of the potential energy or the principle of virtual mechanical
work. A benefit of the finite element method consists in the possibility of accounting for
physical and geometrical nonlinearities. In this context, one can distinguish between
three different types of nonlinearities. Physical or material nonlinearities define the
first type and result from the material behaviour itself. As an example, the nonlin-
ear stress-strain relation of elastomers can be mentioned in this context. The second
type are geometrical nonlinearities which especially occur at finite deformations, such
as finite displacements or twists. The last type of nonlinearities is found in nonlinear
boundary conditions, as in case of contact problems.
In order to calculate a numerical solution of these nonlinear problems, it is quite com-
mon to apply stepwise, iterative algorithms, such as the Newton-Raphson method.

149
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Outline

The focus of this chapter is the implementation of the derived classical and fractional
constitutive models into the finite element code MSC Marc which offers the possi-
bility to implement user-defined material laws in the frequency domain. The finite
element simulation is only provided for the SBR40 vulcanisate, but can similarly be
performed with respect to the other rubber materials. In the first section, the weak
form of the equation of motion is derived on the basis of the principle of virtual work.
The virtual mechanical work will be linearised in the second section and locally dis-
cretisised in the third section. Since this work assumes incompressibility, the derived
linear system of differential equations will be extended by the method of Lagrangian
multipliers to include incompressibility in the fourth section. The fifth section is about
the implementation of the constitutive models into the finite element code MSC Marc.
The implementation is based on the proposal of Morman and Nagtegaal (1983) and
performed via the user subroutine UPHI. An implementation of another frequency do-
main formulation into the finite element code MSC Marc was done by Retka (2011)
in a similar manner. In order to derive the equations for the implementation, the
constitutive formulations defined by the finite element code MSC Marc will first be
presented and subsequently be compared to those of the classical and the fractional
constitutive models. In the last section, the finite element implementation is validated
by a comparison between the numerical simulation and the finite element approxima-
tion of the frequency and predeformation dependent properties of the storage and loss
modulus. For a detailed overview of the finite element method, the reader is referred to
the textbooks by Zienkiewicz (1971), Schwarz (1988), Betten (1997), Betten (1998), or
Zienkiewicz et al. (2005). Similar approaches for a finite element implementation of a
viscoelastic and a thermoviscoelastic model into MSC Marc, the following presentation
mostly refers to, are presented by J.Retka et al. (2007) and Retka (2011). With respect
to the finite element code MSC Marc, information about the theory, element formula-
tions, program input and user subroutines as well as some examples are provided by
the documentation (MSC.Software 2010a; MSC.Software 2010b; MSC.Software 2010c;
MSC.Software 2010d; MSC.Software 2010e).

Moreover, it is pointed out that parts of this chapter have been published in prior
printed publications which were approved by the university (Wollscheid and Lion
(2013a), Wollscheid and Lion (2014)).

8.1 Weak form

In order to calculate an approximation of the differential equations of a physical prob-
lem, it is necessary to transform these into their weak form. Considering the principle
of virtual work, the local form of the underlying differential equations is first multiplied
by a virtual test function and then integrated over the solution area. With respect to
mechanical problems, as it is the case in this work, the test function is defined by the
virtual displacement δu. It can be interpreted as an imaginary, incremental displace-
ment which must be compatible with the geometrical boundary conditions. Taking the
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principle of virtual work into account, the local form of the equation of motion in the
actual configuration

divT + ρk − ρ
dv

dt
= 0 (8.1)

is first multiplied by the virtual displacement δu by applying the simple scalar product1

and then integrated over the volume of the structure. In so doing, the weak form of the
equation of motion respectively the virtual mechanical work with respect to the actual
configuration is obtained

δW =

∫

v

(divT + ρk − ρ v̇) δu dv = 0

=

∫

v

div(T) δu dv +

∫

v

ρk δu dv −
∫

v

ρ v̇ δu dv = 0

.

(8.2)

Considering the product rule of differentiation as well as the symmetry of the Cauchy
stress tensor (T = TT ), the first term in (8.2) can be reformulated by the following
relation

div(T) δu = div(TT δu) − T · grad(δu) = div(T δu) − T · grad(δu) . (8.3)

Taking the definition of the surface stress vector σa into account

σa = Tn ⇒
∫

a

σa da =

∫

a

Tn da (8.4)

and applying the Gaussian theorem of integration

∫

a

Tn da =

∫

v

divT dv , (8.5)

the first term in (8.2) can be rewritten as

∫

v

(divT) δu dv =

∫

v

(
div(T δu) − T · grad(δu)

)
dv

=

∫

a

(Tn) δu da −
∫

v

T · grad(δu) dv

=

∫

a

σa δu da −
∫

v

T · grad(δu) dv .

(8.6)

The last term of this expression can be transformed again. If the definition of the
deformation gradient (2.7) is considered, the relations

δF = Grad(δu) and grad(u) = Grad(u)F−1 (8.7)

1simple scalar product of vectors a and b: ab = ai bi (cf. Appendix A)
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hold. On this basis, the virtual Almansi strain tensor δA is given by

δA =
1

2

(
gradT (δu) + grad(δu)

)
. (8.8)

Regarding this relation and considering the symmetry of the Cauchy stress tensor again,
the second term in (8.6) can be replaced by

T · grad(δu) = T · δA , (8.9)

such that (8.6) can finally be expressed by

∫

v

(divT) δu dv =

∫

a

σa δu da −
∫

v

T · δA dv . (8.10)

By insertion of this outcome into (8.2), the virtual mechanical work with respect to
the actual configuration is finally defined by

δW =

∫

v

T · δA dv

︸ ︷︷ ︸
δWint

−
∫

a

σa δu da −
∫

v

ρk δu dv

︸ ︷︷ ︸
δWext

+

∫

v

ρ v̇ δu dv

︸ ︷︷ ︸
δWρ

= 0 . (8.11)

Therein, the first term is the internal part of virtual work δWint which is caused by
internal stresses inside the material. The second and the third term define the external
part of virtual work δWext which is a result of external surface and volume forces acting
on the material. The last term denotes the inertia part of virtual work δWρ which is
caused by the inertia forces.

In this work, the implementation into the finite element code MSC Marc is based on
a formulation with respect to the reference configuration. Regarding this, the virtual
mechanical work must be expressed by means of variables of the reference configuration.
Considering (8.7) and (8.8), the virtual strain tensor δA can first be transferred to the
reference configuration on the basis of (2.16)

δE =
1

2

(
δFT F + FT δF

)
= FT δAF . (8.12)

Considering this expression and relations (2.11), (2.39) and (2.51), the virtual mechan-
ical work with respect to the reference configuration is finally given by

δW =

∫

V

T̃ · δE dV

︸ ︷︷ ︸
δWint

−
∫

V

ρ0 k δu dV −
∫

A

σA δu dA

︸ ︷︷ ︸
δWext

+

∫

V

ρ0 ü δu dV

︸ ︷︷ ︸
δWρ0

= 0 . (8.13)

In this expression, ü = v̇ and σA are the acceleration vector and the surface stress
vector of the reference configuration. Similar to (8.11), the first term of this functional
denotes the internal part of virtual work caused by internal stresses, the second and
the third term represent the external part of virtual work which results from surface
and volume forces and the last term specifies the inertia part of virtual work caused
by inertia forces.
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8.2 Linearisation of the virtual mechanical work

In this work, large static predeformations superimposed by small harmonic oscillations
are considered. This loading condition is characterised by geometrical and physical
nonlinearities which implies the necessity of linearisation of the mechanical functional.
After linearisation, the mechanical problem can be iteratively solved by the Newton-
Raphson algorithm. In this context, the boundary conditions, as for instance external
displacements, are applied incrementally and the mechanical functional is iteratively
solved for each increment. In order to calculate a linear approximation of the mechan-
ical functional, its change in the direction of a small displacement increment ∆u can
mathematically be described by the Gateaux derivative. Considering this and regard-
ing the current increment k and the iteration n, the linear approximation of the virtual
mechanical functional at the next increment k + 1 and iteration n can generally be
expressed by the sum of its value at the current increment k and its corresponding
Gateaux derivative at the current increment k

δW
(
uk+1
n , δu

)
= δW

(
uk
n, δu

)
+ D

(
δW

(
uk
n, δu

))
[∆u] . (8.14)

Linearisation of internal part of virtual mechanical work

In order to obtain a linear approximation of the internal part of the virtual mechanical
work, the Gateaux derivative of the first term in (8.13) must be calculated. Doing this
and considering the product rule of differentiation, the linearised formulation of the
internal part of virtual work first reads as

δWint(u, δu) + D(δWint(u, δu)) [∆u] =

=

∫

V

T̃ · δE dV +

∫

V

D(T̃ · δE) [∆u] dV

=

∫

V

T̃ · δE dV +

∫

V

δE ·D(T̃) [∆u] dV +

∫

V

T̃ ·D(δE) [∆u] dV .

(8.15)

In order to reformulate this expression, the virtual deformation gradient δF and the
Gateaux derivatives of the incremental and virtual displacement fields u and δu are
first defined

δF = D(F) [δu] , D(u)[∆u] = ∆u , D(δu)[∆u] = 0 . (8.16)

On the basis of these definitions, the virtual Green-Lagrange strain tensor δE and its
Gateaux derivative can be expressed by

δE =
1

2

(
δFT F + FT δF

)
= D(E) [δu]

D(δE)[∆u] =
1

2

(
GradT (∆u) Grad(u) + GradT (u) Grad(∆u)

)
.

(8.17)
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Considering the Gateaux derivative of the 2nd Piola-Kirchhoff stress

D(T̃)[∆u] = C ·D(E)[∆u] , (8.18)

the linear approximation of the internal part of virtual mechanical work is finally given
by

δWint(u, δu) + D(δWint(u, δu)) [∆u] =

=

∫

V

T̃ · δE dV +

∫

V

D(E) [δu] · C ·D(E) [∆u] dV +

∫

V

T̃ ·D(δE) [∆u] dV .

(8.19)
Therein, variable C denotes the elasticity tensor

C = 4 ρ0
∂2Ψeq(C)

∂C2
. (8.20)

Linearisation of external part of virtual mechanical work

The linear approximation of the external part of virtual mechanical work can similarly
be derived by applying the Gateaux derivative. In so doing, the linearised version of
the external part of the virtual mechanical work is first given by

δWext(u, δu) + D(δWext(u, δu)) [∆u] =

=

∫

A

σAδu dA +

∫

A

D(σAδu
)
[∆u] dA +

∫

V

ρ0 k δu dV +

∫

V

D
(
ρ0 k δu

)
[∆u] dV .

(8.21)
Considering the product rule of differentiation and taking relations (8.16) into account,
(8.21) finally reads as

δWext(u, δu) + D(δWext(u, δu)) [∆u] =

=

∫

A

σAδu dA +

∫

A

D(σA) [∆u] δu dA +

∫

V

ρ0 k δu dV

∫

V

ρ0 D(k) [∆u] δu dV

=

∫

A

(
σA + ∆σA

)
δu dA +

∫

V

ρ0 (k + ∆k) δu dV .

(8.22)

Linearisation of inertia part of virtual mechanical work

The linearised formulation of the inertia part of the virtual mechanical work is similarly
derived as for the external part. Considering the linearisation of the acceleration field

D(ü)[∆u] = ∆ü (8.23)
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and applying the Gateaux derivative, the linear approximation of the inertia part of
the virtual mechanical work is given by

δWρ0(u, δu) + D
(
δWρ(u, δu)

)
[∆u] =

=

∫

V

ρ0 ü δu dV +

∫

V

D(ρ0 ü δu) [∆u] dV

=

∫

V

ρ0 ü δu dV +

∫

V

ρ0 D(ü) [∆u] dV

=

∫

V

ρ0 (ü + ∆ü) δu dV .

(8.24)

8.3 Local discretisation of the virtual work

The local discretisation of the virtual mechanical work is based on so-called shape
functions Ni(ξ). These can be of first, second or higher order and depend on iso-
parametric coordinates ξ which are given by the considered element type. On this
basis, the local discretisation of displacement field u, acceleration field ü, incremental
displacement field ∆u and virtual displacement field δu are given by

u =
∑

i

Ni ui , ü =
∑

i

Ni üi , ∆u =
∑

i

Ni ∆ui , δu =
∑

i

Ni δui . (8.25)

Therein, the index i is the nodal number and the variables ui and üi denote the nodal
displacement and acceleration. Regarding these relations and taking into account (2.7),
the local discretisation of deformation gradient and virtual deformation gradient can
be expressed by

F = 1 +
∑

i

ui ⊗Grad(Ni) ,

δF = Grad(δu) =
∑

i

δui ⊗Grad(Ni) .
(8.26)

On this basis, the local discretisation of the virtual Green-Lagrange tensor can be
defined

δE =
1

2
(δFT F + FT δF)

=
1

2

([
∑

i

Grad(Ni)⊗ δui

]
F + FT

[
∑

i

δui ⊗Grad(Ni)

])

=
1

2

∑

i

δui

(
[Grad(Ni)⊗ F]T12 + [F⊗Grad(Ni)]

)
.

(8.27)

Taking into account the definition (8.17) and the local discretisation

Grad(∆u) =
∑

i

∆ui ⊗Grad(Ni) , (8.28)
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its related Gateaux derivative can be written as

D(δE) [∆u] =
[(

Grad(Nj)⊗∆uj

) (
δui ⊗Grad(Ni)

)]

=
[
δui ∆uj

(
Grad(Nj)⊗Grad(Ni)

)]
.

(8.29)

Based on the introduced relations, the local discretisation of the virtual mechanical
work can be derived. First regarding the internal part of virtual mechanical work in
(8.19) and taking relation (8.27) into account, the local discretisation of its first term
of the internal virtual mechanical work follows to

∫

V

T̃ · δE dV = δui

∫

V

1

2
T̃ ·
[(

Grad(Ni)⊗ F
)T12

+
(
F⊗Grad(Ni)

)]
dV

= δui R
int
i .

(8.30)
Therein, the introduced variable Rint

i denotes the nodal force resulting from the internal
stresses inside the material. In order to derive the local discretisation of the remaining
two terms of the internal part of virtual mechanical work, (8.29) is taken into account
and inserted into (8.19). In so doing, the local discretisation of the remaining two terms
is given by

∫

V

D(E) · C ·D(E) [∆u] dV +

∫

V

T̃ ·D(δE) [∆u] dV

=

∫

V

1

2
δui

[(
Grad(Ni)⊗ F

)T12
+
(
F⊗Grad(Ni)

)]
· C·

· 1
2

[(
Grad(Nj)⊗ FT

)
+
(
FT ⊗Grad(Nj)

)T23
]
∆uj dV

+

∫

V

T̃ ·
[
δui ∆uj

(
Grad(Nj)⊗Grad(Ni)

)]
dV

= δui

(
KC

ij + KT̃

ij

)
∆uj .

(8.31)

In this expression, the variables KC

ij and KT̃

ij are the components of the tangent stiffness

matrix. Thereby, the part KC

ij is related to the material properties and KT̃

ij corresponds
to the geometric properties. With the approximation of the virtual displacement field
δu in (8.25), the discretisation of the external part of virtual mechanical work reads as

∫

A

(
σA + ∆σA

)
Ni δui dA +

∫

V

ρ0
(
k + ∆k

)
Ni δui dV = δui R

ext
i . (8.32)

Therein, the variable Rext
i denotes the external nodal force which is caused by external

forces acting on node i. In order to derive the local discretisation of the inertia part of
the virtual mechanical work, the linearised definitions (8.25) are considered. Then, the
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local discretisation of the inertia part of the virtual mechanical work is finally given by

∫

V

ρ0 Nj üj Ni δui dV +

∫

V

ρ0 Nj ∆üj Ni δui dV

= δui R
ρ0
i + δui Mij ∆üj .

(8.33)

The variable R
ρ0
i defines the inertia nodal force which is present at node i whereas the

variable Mij is a component of the mass matrix. If the discretisised definitions (8.30),
(8.31), (8.32) and (8.33) are taken into account, the local discretisation of the virtual
mechanical work for a single node i can finally be expressed by

δui

[
Mij ∆üj +

(
KC

ij + KT̃

ij

)
∆uj

]
= δui

[
− Rint

i + Rext
i − R

ρ0
i

]
. (8.34)

Since the virtual displacement δui can be arbitrary varied, this equation is automat-
ically fulfilled if the terms in brackets on the left and right side of the equation are
identical. Regarding the whole body instead of a single node i, the following linear
system of equations is obtained

[
M
] [
∆ü
]
+
[
K
] [
∆u
]
=
[
R
]
. (8.35)

A detailed presentation of the introduced relations in sections 8.1, 8.2 and 8.3 with
regard to the implementation of a thermoviscoelastic approach is provided by J.Retka
et al. (2007).

8.4 Incompressibility

The developed classical and fractional constitutive models are defined for incompress-
ible material behaviour meaning that the constraint

detF = 1 (8.36)

has to be fulfilled. As described by J.Retka et al. (2007), a common possibility to
account for this constraint is based on the method of Lagrange multipliers. In this
context, the finite element code MSC Marc applies a special type of element formulation
to account for incompressibility which is called "Hermann element". In order to realise
incompressibility with regard to the finite element computation, the weak form of the
balance equations can be derived via minimisation of potential energy. Considering
this and referring to the argumentations by J.Retka et al. (2007), the whole potential
energy is first defined by the sum of the internal and external energy

Π = Πint + Πext . (8.37)

If the Lagrange multiplier p is introduced, the method of Lagrange multipliers can be
applied via extension of the specific Helmholtz free energy by the incompressibility
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constraint. The result of this operation is given by

Ψ(C, p) = Ψ(C) + p (detF − 1) . (8.38)

Taking this expression into account, the internal part of potential energy can be defined
by

Πint =

∫

V

(ρ0Ψ(C) + p (detF − 1)) dV . (8.39)

Regarding this definition, the minimum of potential energy is present if the directional
derivatives are stationary. The expression of this requirement is given by

δΠ = D(Π)∆u + D(Π)∆p = 0 . (8.40)

Therein, the Lagrange multiplier p must be accounted for as an independent variable
meaning that the first and second term in (8.40) must be considered separately. Based
on this, the following two constraints must be fulfilled in terms of incompressibility

δΠ = D(Π) [∆u] = 0 and D(Π) [∆p] = 0 . (8.41)

As a consequence, the consideration of incompressibility by the additional constraint
D(Π) [∆p] = 0 leads to an extension of the linear system of equations given in (8.35)
by a further equation. After local discretisation, the following extended system of
equations is obtained

[
[Muu] [0]
[0] [0]

] [
∆ü

∆p

]
+

[
[Kuu] [Kup]
[Kpu] [0]

] [
∆u

∆p

]
=

[
Ru

Rp

]
. (8.42)

Comparing (8.35) and (8.42), one can observe, that the method of Lagrange multipliers
leads to another unknown and thus raises the number of equations to solve (J.Retka
et al. 2007; Retka 2011).

8.5 Implementation

In this section, the constitutive equations for the implementation of the classical and
fractional constitutive models into the finite element code MSC Marc are derived.
In this context, the constitutive formulations given by MSC Marc are presented and
the implementation equations are derived by comparing them with the constitutive
equations of the classical and fractional models. For clarification, the definitions in
MSC Marc are identified by index "FE" whereas definitions of the material models are
denoted by index "M" in the following.
The implementation of the constitutive models is based on the proposal by Morman and
Nagtegaal (1983) and performed via the user-subroutine "UPHI". Based on this, the
finite element computation is decomposed into a static and a dynamic loadcase. The
static loadcase considers the static predeformation and is calculated in the time domain
whereas the dynamic loadcase represents the superimposed harmonic vibration and is
calculated in the frequency domain. On the basis of this separation, the displacement
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field u is additively decomposed into a static displacement u0 which corresponds to the
static loadcase and a dynamic displacement ∆u eiωt which is related to the dynamic
loadcase

u(ω, t) = u0 + ∆u eiωt . (8.43)

As a consequence, the resulting 2nd Piola-Kirchhoff stress tensor is also additively
decomposed into an equilibrium part T̃FE,0 and a harmonic part ∆T̃FE

T̃FE = T̃FE,0 + ∆T̃FE eiωt . (8.44)

In order to prepare the constitutive equations of the developed material models for an
implementation into the finite element code MSC Marc, the definitions of the static
and dynamic parts T̃M,0 and ∆T̃M of the constitutive approaches are compared with
those of the finite element code T̃FE,0 and ∆T̃FE in the following.

Implementation of static part

In order to implement the static part T̃M,0 of the constitutive models into finite element
code, its definition must be compared with the corresponding definition T̃FE,0 in MSC
Marc. In so doing, one can observe, that both formulations are equal to each other

T̃FE,0 = − p0 C
−1
0 + 2 ρ0

∂Ψeq(C)

∂C

∣∣∣∣
C0

= T̃M,0 . (8.45)

In MSC Marc, the specific Helmholtz free energy ρ0 Ψeq(C) is defined by a Mooney
approach (Mooney 1940)

ρ0 Ψeq(C) = C10 (IC − 3) + C20 (IC − 3)2 + C30 (IC − 3)3

+C11 (IC − 3) (IIC − 3) + C01 (IC − 3) ,
(8.46)

with five material parameters C10, C20, C30, C11 and C01 and the first and second
invariants IC and IIC of the right Cauchy-Green tensor. Regarding the constitutive
models applied in this work, the specific Helmholtz free energy is similarly defined by
a Mooney approach, but only based on two material parameters C10 and C01

ρ0 Ψeq(C) = C10 (IC − 3) + C01 (IC − 3) . (8.47)

Considering this, the static part can directly be implemented into finite element code
MSC Marc by providing material parameters C10 and C01 as input variables via the
user interface. Since parameters C20, C30 and C11 are not considered by the constitutive
models, they are simply set to "0".
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Implementation of dynamic part

The finite element formulation overstress part ∆T̃FE in MSC Marc is given by

∆T̃FE = −∆pC−1
0 +

(
4

DFE +2 iω
4

GFE (ω,C0)

)
·
(
FT

0 ∆ElinF0

)
. (8.48)

Therein, variable
4

DFE is the fourth order elasticity tensor and variable
4

GFE is the com-
plex modulus tensor of fourth order. Regarding the constitutive models, the overstress
part ∆T̃M is defined by

∆T̃M(ω, t) = −∆pC−1
0 +

(
4

DM +
4

GA/B (ω,C0)

)
·
(
FT

0 ∆ElinF0

)
. (8.49)

The first term in (8.48) and (8.49) arises from the incompressibility constraint and is
equal for the finite element code and the constitutive models

− ∆pC−1
0 = −∆pC−1

0 . (8.50)

On this basis, the finite element definition of this term can be applied for implementa-
tion without modification.

In order to compare the remaining terms of the dynamic parts ∆T̃FE and ∆T̃M , the

definition of the elasticity tensor
4

DFE in MSC Marc

4

DFE = p0

{[
C−1

0 ⊗ C−1
0

]T23
+
([

C−1
0 ⊗ C−1

0

]T34
)T23

}
+ 4 ρ0

∂2Ψ(C)

∂C2

∣∣∣∣
C0

(8.51)

and the corresponding elasticity tensor
4

DM of the classical and fractional models

4

DM = 2 p0
4

R0 +4 ρ0
∂2Ψeq(C)

∂C2

∣∣∣∣
C0

(8.52)

are discussed at first. The last terms of both definitions are already equal to each other

4 ρ0
∂2Ψ(C)

∂C2

∣∣∣∣
C0

= 4 ρ0
∂2Ψ(C)

∂C2

∣∣∣∣
C0

(8.53)

and can be implemented without any modification. In contrast to this, the first terms
in (8.51) and (8.52) must satisfy the following equation for implementation

p0

{[
C−1

0 ⊗ C−1
0

]T23
+
([

C−1
0 ⊗ C−1

0

]T34
)T23

}
!
= 2 p0

4

R0 (8.54)

For this purpose, the elasticity tensor
4

DFE of the finite element code can be reformu-
lated. If the symmetry of the right Cauchy-Green tensor is taken into account, the
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derivative of its inverse with respect to deformation can be expressed by

∂C−1

∂C

∣∣∣∣
C0

= − 1

2

{[
C−1

0 ⊗ C−1
0

]T23
+
([

C−1
0 ⊗ C−1

0

]T34
)T23

}

= −
[
C−1

0 ⊗ C−1
0

]T23
=̂ −

4

R0 .

(8.55)

By rearranging this expression, the following relation is obtained

{[
C−1

0 ⊗ C−1
0

]T23
+
([

C−1
0 ⊗ C−1

0

]T34
)T23

}
= 2

4

R0 . (8.56)

Considering this, the elasticity tensors
4

DFE and
4

DM are proven to be equal to each
other

4

DFE = 2 p0
4

R0 +4 ρ0
∂2Ψ(C)

∂C2

∣∣∣∣
C0

=
4

DM , (8.57)

such that the finite element definition of the elasticity tensor can be applied for imple-
mentation without modification.

At last, the definitions of the complex modulus tensors
4

GFE and
4

GA/B in (8.48) and
(8.49) must be considered. In terms of the finite element code MSC Marc, the complex
modulus tensors is defined by means of nine scalar material functions Gk(ω) and Gij(ω)
which depend on the angular frequency ω

4

GFE (ω,C0) = G0(ω)

{[
C−1

0 ⊗ C−1
0

]T23
+
([

C−1
0 ⊗ C−1

0

]T34
)T23

}

+G1(ω)

{[
1 ⊗ C−1

0

]T23
+
([

C−1
0 ⊗ C−1

0

]T34
)T23

}

+G2(ω)

{[
C0 ⊗ C−1

0

]T23
+
([

C−1
0 ⊗ C−1

0

]T34
)T23

}

+G10(ω)
[
1 ⊗ C−1

0

]
+ G20(ω)

[
C0 ⊗ C−1

0

]

+G11(ω) [1 ⊗ 1] + G22(ω) [C0 ⊗ C0]

+G12(ω) [1 ⊗ C0] + G21(ω) [C0 ⊗ 1] .

(8.58)

The definition of the complex modulus tensor
4

GA/B of the constitutive models is given
by

4

GA/B (ω,C0) = G∗
A/B(ω,C0)

4

R0 . (8.59)

Therein, variable G∗
A/B(ω,C0) is the equivalent to the first material function G∗

0(ω).

Thus, only the first term in (8.58) must be considered for implementation. Since the
remaining terms are not part of the constitutive models, the other material functions
can be set to "0". If definitions (8.55) and (8.56) are taken into account, the following
relation between the finite element code and the proposed constitutive models must be
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satisfied

2 iω
4

GFE (ω,C0) = 4 iω G0(ω)
4

R0
!
=

4

GA/B (ω,C0) = G∗
A/B(ω,C0)

4

R0 .
(8.60)

Based on this, the definitions of the complex modulus of the classical approach G∗
A and

of the fractional model G∗
B have to be discussed. In terms of the classical approach,

the complex modulus in (8.60) is defined by

G∗
A(ω,C0) = 2

n∑

k=1

µk(C0)
iω τk

1 + iω τk
. (8.61)

If this relation is compared to the definition in MSC Marc (8.60), the scalar material
function G0,A of the finite element code is given by

G0,A(ω,C0) =
1

4 iω
G∗

A(ω,C0) =
1

2 iω

n∑

k=1

µk(C0)
iω τk

1 + iω τk
. (8.62)

Separating the real and imaginary parts in (8.62), the following equations of the real
and imaginary parts must be implemented in the finite element code

G′
0,A(ω,C0) =

1

2

n∑

k=1

µk(C0)
ω τ 2k

1 + (ω τk)2
,

G′′
0,A(ω,C0) =

1

2

n∑

k=1

µk(C0)
τk

1 + (ω τk)2
.

(8.63)

With respect to the fractional model, the complex modulus in (8.60) is given by

G∗
B(ω,C0) = 2

n∑

k=1

µk(C0)
(iω τk)

αk

1 + (iω τk)αk
. (8.64)

If this relation is compared with the definition of the finite element code (8.60), the
scalar material function G0,B is expressed by

G0,B(ω,C0) =
1

4 iω
G∗

B(ω,C0) =
1

2 iω

n∑

k=1

µk(C0)
(iω τk)

αk

1 + (iω τk)αk
. (8.65)

Regarding this relation and applying the software-provided functions real() and aimag(),
the implementation equations of the real and imaginary parts are defined by

G′
0,B(ω,C0) = real

(
1

4 iω
G∗

B(ω,C0)

)

G′′
0,B(ω,C0) = aimag

(
1

4 iω
G∗

B(ω,C0)

)
.

(8.66)
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8.6 Verification of the implementation

This section is about the verification of the finite element implementation to investigate
the accurateness of the implemented code in MSC Marc. For this purpose, the numeri-
cal data of the parameter identification of the classical and of the fractional constitutive
model is compared to the corresponding data of the finite element simulation. To this
end, the predeformation and frequency dependent material characteristics of the stor-
age and the loss modulus are simulated by means of a simple three-dimensional cube
with respect to the SBR40 vulcanisate. The geometry is discretisised by a single hexa-
hedral 8 node Hermann element which is, as well as the applied boundary conditions,
illustrated in figure 8.1.

Figure 8.1: Three-dimensional cube and applied boundary conditions

The finite element calculation is divided into two LOADCASES, a static and a dy-
namic one. By first regarding the static loadcase, the cube is loaded on top with a
constant predeformation in z-direction in a strain range from −30% up to 50%, which
is incrementally applied in ten steps. At its lower side, the cube is fixed in z-direction
whereas the faces which are normal to x- and y-directions are fixed in this direction.
After the static predeformation is applied, the deformed structure is loaded by a har-
monic oscillation of 0.1% of strain which is applied on top of the cube in z-direction.
The finite element simulation is performed in a frequency range from 10−2 Hz up to
105 Hz.
On the basis of the comparison in the previous section, the static material properties
are directly defined in the user interface by choosing the material model MOONEY
in the index card MATERIAL PROPERTIES and inserting the static material pa-
rameters C10 and C01. The dynamic material laws are applied by choosing the property
PHI by activating the option RATE EFFECTS and selecting the user subroutine
UPHI. To start the finite element simulation, the option TOTAL LAGRANGE is
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applied in the SOLV ER menu meaning that the solution is calculated with respect to
the reference configuration. This is due to the definition of a user subroutine which
usually implies a calculation with respect to the reference configuration. Moreover, the
nonlinear mechanical problem is computed on the basis of an iterative Newton-Raphson
method.
The comparison between the finite element simulation and the corresponding numerical
results of the parameter identification are displayed in figures 8.2 and 8.3 for each pre-
deformation. As the figures reveal, the finite element simulations accurately fit to the
numerical results in the whole range of predeformations and frequencies which ensures
the correctness of the finite element implementation.
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Figure 8.2: Comparison between the finite element simulation and the numerical
results of the classical model: storage modulus (left), loss modulus (right)
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Figure 8.3: Comparison between the finite element simulation and the numerical
results of the fractional model: storage modulus (left), loss modulus (right)



Chapter 9

Validation

Introduction

Validation of a constitutive model is essential to prove its ability to represent the be-
haviour of complex structures and loading conditions. Hence, validation of a material
model is usually carried out by applying more complicated loadings to more complex
structures than they were applied for the fitting of the model and by comparing the
experimental results with the simulated one.

Outline

The focus of this chapter is the validation of the developed constitutive models. Since
the classical and the fractional models for the overstress represent the material be-
haviour in a similar way, validation is only carried out for the fractional approach.
To this end, measurements of a cylindrical SBR40 specimen with and without bonded
steel plates are performed up to frequencies of 10 kHz and compared with the finite
element simulations of the fractional model. Moreover, the last section provides the
finite element simulation of a real engine mount and the computational results at three
different predeformations.

9.1 Measuring setup and procedure

As illustrated in figure 9.1, validation measurements are performed on the basis of a
cylindrical SBR40 specimen with and without bonded steel plates.

The measuring setup to validate the constitutive model is illustrated in figure 9.2.
Via a dynamic shaker, a harmonic oscillation up to 10 kHz is applied to the top of
the specimen. Due to the measuring equipment, a preloading of the specimen is not
possible. The shaker is fixed at the upper side and the specimen is clamped at the
bottom. Since the transfer behaviour of the specimen is of interest, the acceleration

165
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Figure 9.1: Cylindrical SBR40 specimen: pure rubber specimen (left) / with bonded
steel plates (right)

a

F amplifier

amplifier

shaker

acceleration sensor

force sensor

power supply

FFT analyser

signal gen.

specimen

Figure 9.2: Measuring setup of validation experiments

caused by the harmonic oscillation is captured at the upper side of the specimen and
its reaction force is measured with a force sensor at the lower side of the specimen.
The shaker is actuated by a power supply by which the amplitude of the oscillation
can be set, but not controlled. Due to the technical limits of the shaker, the amplitude
of the oscillation decreases with increasing frequency. The type of the oscillation is
a sinusoidal loading which is provided by a signal generator which is connected with
the signal input of the shaker. In order to measure the force and acceleration signal
of the sensors, they are connected with two amplifiers. These amplifiers pass a time-
dependent voltage signal to a FFT analyser which is used to transfer the signals to
the frequency domain. Since this work is focused on the storage and the loss modulus,
force, displacement and the phase angle are of interest. Thus, the acceleration signal
is twice integrated by the FFT analyser in the frequency domain

u = (iω)2 a = −ω2 a . (9.1)

On the basis of the displacement u and the reaction force F , the transfer function F/u
is calculated by the FFT analyser and saved to a file for each frequency together with
the phase angle δ between u and F .
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In order to compare the measuring results with the finite element simulation, a repre-
sentative dynamic transfer stiffness is calculated. Since the predeformation is zero and
the harmonic oscillation is very small, the dynamic stress and strain can be expressed
by

∆σ =
F

A
, ∆ε =

u

l0
(9.2)

with the cross section A and the initial length l0 of the specimen. Regarding these
relations and taking (5.4) into account, the dynamic transfer stiffness can be calculated

G′ =
∆σ

∆ε
cos(δ) =

F

u

l0
A

cos(δ) . (9.3)

The experimental data for the dynamic transfer stiffness is provided in figure 9.3 for
the SBR40 specimen with and without bonded steel plates.

0 2000 4000 6000 8000 10000
10

4

10
5

10
6

10
7

10
8

10
9

frequency f [Hz]

tr
an

sf
er

 s
tif

fn
es

s 
[P

a]

0 2000 4000 6000 8000 10000
10

4

10
5

10
6

10
7

10
8

10
9

frequency f [Hz]

tr
an

sf
er

 s
tif

fn
es

s 
[P

a]

Figure 9.3: Measurement data of SBR40: pure rubber specimen (left) / with bonded
steel plates (right)

The transfer stiffness of both specimens reveals similar characteristics, but the inertia
frequencies differ from each other. The pure rubber specimen is characterised by two
pronounced resonances located at 4500 Hz and 8200 Hz. The rubber with bonded steel
plates also reveals two inertia frequencies which are located at lower frequencies of
3000 Hz and 8000 Hz. This behaviour was expected and can be related to the higher
mass of the steel plates and their mass density, which results in a shift of the resonances
to lower frequencies.

9.2 Finite element simulation

Finite element simulations are performed with the same geometries and boundary con-
ditions as the measurements of the cylindrical SBR40 specimen with and without
bonded steel plates. As illustrated in figure 9.4, both specimens are loaded on top
with the harmonic displacement u in y-direction (vertical) and fixed on the bottom.
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Figure 9.4: Finite element geometry of the specimen: pure rubber specimen (left)
/ with bonded steel plates (right)

In contrast to the simulations in chapter 8, the finite element computations to validate
the constitutive model include the consideration of inertia effects. For this purpose,
the mass density of the material must be provided as program input. In the case of the
SBR40 vulcanisate and the steel plates, the mass density is 1120 kg/m3 and 7860 kg/m3.

In order to compare the results of the simulation with the experimental data, the
dynamic transfer stiffness corresponding to (9.3) is calculated on the basis of the finite
element results for the real part of the harmonic stress response ∆σreal occurring at
the bottom of the specimen, and the displacement u which is applied on the top of the
specimen. With (5.4) and (9.2), the dynamic transfer stiffness reads as

G′ =
∆σreal

u
l0 . (9.4)

Similar to this relation, a dynamic transfer damping can be defined on the basis of the
finite element results for the imaginary part of the harmonic stress response ∆σimag

G′′ =
∆σimag

u
l0 . (9.5)

The comparison between the measuring data and the finite element simulation in figure
9.5 reveals good agreement for both measurements, especially until the first inertia
effects occur.

In the case of the pure rubber specimen, the first resonance frequency is captured
exactly and the second one is in good agreement. With regard to the rubber with
bonded steel plates, the first inertia frequency does not exactly match the measurement,
but is still in good agreement with the experimental data. If one recognises, that the
frequency of the dynamic analysis tests used to fit the model was only up to 60 Hz,
parameter identification was performed without considering the bonded steel plates
and the fact that the SBR40 used for the fitting of the model was from a different
production process, one can state that the developed constitutive approach is suitable
to represent the dynamic material properties of complex structures under complicated
loading in a broad frequency range.
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Figure 9.5: Comparison between the experimental data and the finite element
simulation: pure rubber specimen (left) / with bonded steel plates (right)

For illustration, the deformed finite element structures of both specimens at their first
eigenfrequency are displayed in figure 9.6, wherein factor 100 is applied for the display
of the harmonic deformation.

Figure 9.6: Deformed structures at the 1st resonance: pure rubber specimen (left)
and specimen with bonded steel plates (right)

9.3 Simulation of a real engine mount

Finally, the dynamic behaviour of a real engine mount is simulated at predeformations
of 10 %, 20 % and 30 % in compression which is superimposed by a harmonic oscillation
of 0.1 % in a frequency range up to 10 kHz. The finite element simulations are per-
formed on the basis of the material parameters of the SBR40 vulcanisate and include
consideration of inertia effects to reveal the resonances of the engine mount. The engine
mount and the undeformed finite element geometry of the pure rubber structure are
displayed in figure 9.7.

The engine mount is fixed at the bottom and loaded on top in negative y-direction.
With regard to the real structure of the engine mount, the rubber stays in direct con-
tact with the metal parts and is thus hindered from moving at contact points. Hence,
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Figure 9.7: Engine mount (left) and finite element geometry (right)

finite element nodes located at the inner hole and at vertical faces of the outer notch of
the structure are fixed in directions x and z whereas nodes located at horizontal faces
of the outer notch are fixed in direction y.
Since the engine mount is rotationally symmetric, only a quarter of its structure is com-
puted to shorten the simulation time. For this purpose, option CY LIC SYMMETRY
must be activated in MSC Marc. The results of the finite element simulations for the
transfer stiffness and transfer damping are provided in figure 9.8 for each predeforma-
tion.
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Figure 9.8: transfer stiffness and transfer damping of the engine mount at 10%,
20% and 30% predeformation

First, one can observe that the transfer stiffness and transfer damping are characterised
by three significant eigenfrequencies. As expected, transfer stiffness and damping are
increased for larger predeformations. Finally, the induced eigenfrequencies are shifted
to higher values if predeformation is increased.

In order to illustrate the behaviour of the engine mount at the eigenfrequencies, the
deformed finite element shapes and the corresponding real part of the harmonic stress
response at the eigenfrequencies are displayed in figures 9.9, 9.10 and 9.11 for each
predeformation and a scaling factor of 5 for the harmonic deformation.
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Figure 9.9: Deformed shapes of the engine mount at 10% predeformation: 1st
eigenfrequency (top), 2nd eigenfrequency (middle) and 3rd eigenfrequency (bottom)
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Figure 9.10: Deformed shapes of the engine mount at 20% predeformation: 1st
eigenfrequency (top), 2nd eigenfrequency (middle) and 3rd eigenfrequency (bottom)
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Figure 9.11: Deformed shapes of the engine mount at 30% predeformation: 1st
eigenfrequency (top), 2nd eigenfrequency (middle) and 3rd eigenfrequency (bottom)





Chapter 10

Conclusion

This work focused on the investigation, mathematical description and finite element
implementation of the predeformation and frequency dependent dynamics of filler-
reinforced rubber structures loaded with a large static predeformation superimposed
by small harmonic oscillations of 0.1 % of strain. Four different rubber vulcanisates
were investigated in quasi-static and dynamic-mechanical analysis tests to characterise
the material’s equilibrium response and the dynamic characteristics of the storage and
the loss modulus. The equilibrium stress-strain curves revealed the characteristic non-
linear behaviour of elastomers. The outcome of the dynamic mechanical analysis tests
was a pronounced dependence of the storage and the loss modulus on both predefor-
mation and frequency. The predeformation dependence was investigated in a range
of prestrain from 30 % in compression up to 50 % in tension whereas the frequency
dependent behaviour was characterised in a frequency range from 10−2 Hz up to 105 Hz
by applying the temperature frequency shifting technique.
Regarding the experimental results, the predeformation dependence was found to be
mainly connected with the nonlinear equilibrium stress-strain behaviour of the material
and thus implies an increase of the storage modulus with increasing predeformation.
The loss modulus does not depend on the equilibrium stress but also depends on the
predeformation. On the other hand, the frequency dependent characteristics of the
storage and the loss modulus revealed an increase with the frequency in the whole
frequency range.
Based on the experimental facts obtained, two constitutive formulations of nonlinear fi-
nite viscoelasticity have been formulated to describe the predeformation and frequency
dependence of the investigated vulcanisates. Both formulations are based on the pro-
posal by Haupt and Lion (2002), are defined as history functionals, and inherit a
deformation dependent relaxation function to describe the predeformation dependent
material characteristics. Moreover, the linearised version of the nonlinear model can
be expressed in terms of differential equations of integer or of fractional order. The
first constitutive approach is based on a differential equation of integer order and can
be related to a classical Maxwell chain whereas the second model uses a fractional
formulation and can be interpreted as a Maxwell chain of fractional order.
Based on error minimisation between experimental and numerical data of the constitu-
tive models, the material parameters of both constitutive formulations were successfully
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identified by a programmed identification routine in the software MATLAB.
By comparison, both models were found to be suitable to represent the dynamic mate-
rial characteristics of the storage and the loss modulus with respect to the dependence
on predeformation and frequency. Moreover, the fractional constitutive approach re-
vealed the benefit of approximating the experimental data with much less material
parameters but in the same quality as the classical model, which implies a significant
increase in computational efficiency with respect to the identification process and the
numerical simulation.
Last but not least, the classical and the fractional constitutive models were imple-
mented into the finite element code MSC Marc to perform realistic simulations of more
complex structures. The implementation is based on the proposal by Morman and
Nagtegaal (1983) and performed via the user subroutine UPHI. The correctness of the
implemented finite element code was ensured by a comparison between the numerically
simulated data based on parameter identification, and the finite element computations.
On this basis, the numerical and the finite element data was found to match exactly
each other such that the implementation was proven to be correct.
The fractional constitutive model was validated by a comparison between dynamic mea-
surements of SBR40 rubber cylinders with and without bonded metal plates loaded by
harmonic oscillations up to 10 kHz, and the computational results of the finite element
simulation. Since the validation revealed good agreement between the experimental
and simulation data, the constitutive approach was found to be able to represent the
dynamic characteristics of elastomers including inertia effects.
Finally, the finite element simulation of a real engine mount was performed at differ-
ent predeformations to give a complex computation example. The simulation results
revealed the expected predeformation and frequency dependent characteristics of the
storage and the loss modulus as well as inertia frequencies which where found to be
influenced by the predeformation.

In further investigations, it would be an improvement to develop a test setup to enable
the experimental investigation of a real engine mount up to 10 kHz or even 100 kHz
and compare the results with the finite element simulation. Moreover, the model may
be extended by amplitude and temperature dependence, which are important in other
dynamic applications, such as shock absorbers or tyres. Another benefit would be the
investigation of the influence of ageing effects on the dynamics of the material and to
develop an appropriate extension of the constitutive model.



Appendix A

Tensor algebra

The aim of this chapter is on the presentation of the mathematical notation of tensor
algebra which is used in this work. On this, the simple scalar product, the double
scalar product, the cross product, the dyadic product, the inverse and transposed, the
trace operation and some mathematical relations are introduced. An overview about
the mathematics and notation, this presentation mostly refers to, is also provided by
Ehlers (2007).

A.1 Simple scalar product

The simple scalar product is characterised by no mathematical operator meaning that
a mathematical operator is completely leaved out. The simple scalar product links two
basis vectors standing directly to each other.

Simple scalar product of two vectors

Regarding two vectors a and b, the simple scalar product is expressed by:

ab = (ai ei) (bj ej) = ai bj δij = ai bi (A.1)

It links the basis vector ei of vector a scalar with the basis vector ej of vector b which
results in a reduction of the order by factor 1. Regarding this, the outcome of the
simple scalar product of two vectors a and b is a scalar value ai bi.

Simple scalar product of 2nd order tensor and vector

The simple scalar product of a 2nd order tensor A and a vector b is defined by:

Ab = (Aij ei ⊗ ej) (bk ek) = Aij bk δjk ei = Aij bj ei (A.2)

177



178 Tensor algebra

Based on this definition, the simple scalar product links the basis vector ej of tensor A
scalar with the basis vector ek of vector b and thus leads to a reduction of the highest
order by factor 1. The results is then a vector Aij bj ei, such that the 2nd order tensor
A can be interpreted as a linear operator. In terms of the simple scalar product of a
2nd order tensor and a vector, the distributive and associative laws hold

A(a + b) = Aa + Ab ,

a(A + B) = aA + aB ,

α (Aa) = (αA) a = A (α a) .

(A.3)

Simple scalar product of two 2nd order tensors

Considering two 2nd order tensors A and B, the simple scalar product reads as:

AB = (Aij ei ⊗ ej) (Bkl ek ⊗ el) = Aij Bkl δjk ei ⊗ ej = Aij Bij ei ⊗ ej (A.4)

It links the basis vector ej of tensor A scalar with the basis vector ek of tensor B and
thus results in a 2nd order tensor Aij Bij ei ⊗ ej. Here, the order is not reduced by the
simple scalar product. In terms of the simple scalar product of two 2nd order tensors,
the distributive and associative laws hold, but the commutative law does not

A (B + C) = AB + AC ,

A (BC) = (AB)C ,

AB 6= BA .

(A.5)

A.2 Double scalar product

The double scalar product is characterised by a single dot "·". In contrast to the
simple scalar product, the double scalar product always links two basis vectors with
two others. Therefore, the double scalar product can only be applied for tensors of 2nd
or higher order. Regarding two 2nd order tensors A and B, the double scalar product
is expressed by:

A ·B = (Aij ei ⊗ ej) · (Bkl ek ⊗ el) = Aij Bkl δik δjl = Aij Bij (A.6)

It links the basis vector ei of tensor A scalar with the basis vector ek of tensor B

and the basis vector ej of tensor A scalar with the basis vector el of tensor B. Thus,
the order is twice reduced by applying the double scalar product such that a scalar
value Aij Bij is obtained. For the double scalar product of two 2nd order tensors, the
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distributive, the associative and the commutative law hold

A · (B + C) = A ·B + A ·C ,

(αA) ·B = A · (αB) = α(A ·B)C ,

A ·B = B ·A .

(A.7)

Moreover, the double scalar product between a 4th order tensor
4

A and a 2nd order
tensor B is defined by:

4

A ·B = (Aijkl ei ⊗ ej ⊗ ek ⊗ el) · (Bmn em ⊗ en) = Aijkl Bkl ei ⊗ ej (A.8)

A.3 Cross product

The cross product is characterised by the mathematical operator "×". Considering
two vectors a and b, the cross product between both is defined by:

a× b = ai bj eijk ek =




a2 b3 − a3 b2
−a1 b3 + a3 b1
a1 b2 − a2 b1


 (A.9)

A.4 Dyadic product

The dyadic product is characterised by the mathematical operator "⊗". The dyadic
product between two vectors a and b results in a 2nd order tensor A and is expressed
by:

A = a⊗ b = (ai ei)⊗ (bj ej) = ai bj (ei ⊗ ej) = Aij (ei ⊗ ej) (A.10)

Applying the dyadic product between two 2nd order tensors A and B results in a 4th

order tensor
4

A:

4

A = A⊗ B = (Aij ei ⊗ ej)⊗ (Bkl ek ⊗ el)

= Aij Bkl (ei ⊗ ej ⊗ ei ⊗ ej) =
4

Aijkl (ei ⊗ ej ⊗ ei ⊗ ej)

(A.11)
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A.5 Transposed and inverse

The transposed of a tensor A with

A = Aij (ei ⊗ ej) (A.12)

is obtained by switching the basis vectors and can thus be defined by

AT = Aij (ej ⊗ ei) . (A.13)

Moreover, the following relations hold

(A + B)T = AT + BT ,

(αA)T = αAT ,

(AB)T = BT AT .

(A.14)

The inverse of tensor A is defined by the following relation

AA−1 = 1 . (A.15)

Furthermore, the following relations are defined

(A−1)T = A−T ,

(AB)−1 = B−1 A−1 .
(A.16)

In terms of 4th order tensors, the special transposed Tij is introduced. It indicates a
switch of the indices i and j. Regarding this, the simple scalar product of three 2nd
order tensors A, B and C can be expressed by

ABC = [A⊗B]T24 · CT

=
[
A⊗BT

]T23 · C

= [B⊗A]T13 · CT

=
[
B⊗AT

]T14 · C .

(A.17)

A.6 Trace of a tensor

The trace operation of tensor A is defined by

tr(A) = A · 1 . (A.18)
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Moreover, the following relations hold

tr(αA) = α tr(A) ,

tr(a⊗ b) = a · b ,

tr(AT ) = tr(A) ,

tr(AB) = tr(BA) ,

tr(ABC) = tr(BCA) = tr(CAB) , .

(A.19)

A.7 Mathematical relations

Among others, some mathematical relations which are partly applied in this work can
be defined from the relations introduced above:

(1⊗ 1)A = tr(A) ,

(1⊗ 1)T23 A = A ,

(1⊗ 1)T24 A = AT .

(A.20)

(A⊗B)T23 (C⊗D)T23 = (AC⊗BD)T23 ,

(A⊗B)T23 (C⊗D) = (ACBT ⊗D) ,

(A⊗B) (C⊗D)T23 = (A⊗CT BD) ,

(A⊗B)T23 C = ACBT .

(A.21)
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