Logo
Benutzer: Gast  Login
Autoren:
Winkler, Max 
Dokumenttyp:
Dissertation / Thesis 
Titel:
Finite Element Error Analysis for Neumann Boundary Control Problems on Polygonal and Polyhedral Domains 
Betreuer:
Apel, Thomas, Univ.-Prof. 
Gutachter:
Apel, Thomas, Univ.-Prof.; Steinbach, Olaf, Univ.-Prof. Dr.; Herzog, Roland, Univ.-Prof. Dr. 
Tag der mündlichen Prüfung:
27.04.2015 
Publikationsdatum:
05.08.2015 
Jahr:
2015 
Seiten (Monografie):
159 
Sprache:
Englisch 
Schlagwörter:
Funktionenraum ; Sobolev-Raum ; Neumann-Problem ; Quasiuniformer Raum ; Optimierungsproblem ; Numerisches Verfahren ; Partielle Differentialgleichung ; Finite-Elemente-Methode 
Stichwörter:
optimal boundary control, finite element method, control constraints, partial differential equations, edge and corner singularities, weighted Sobolev spaces, variational discretization, postprocessing, energy regularization, Neumann boundary conditions, mesh refinement 
Abstract:
This thesis deals with the numerical solution of optimization problems in function spaces governed by linear elliptic partial differential equations. Many physical processes for instance in thermodynamics, elasticity, fluid mechanics or electrical engineering are modeled by partial differential equations. The aim of optimal control is to regulate occurring parameters or other quantities in such a way that the result of the mathematical model is optimal in a certain sense. In particular, Neumann...    »
 
DDC-Notation:
515.782 
Fakultät:
Fakultät für Bauingenieurwesen und Umweltwissenschaften 
Institut:
BAU 1 - Institut für Mathematik und Bauinformatik 
Professur:
Apel, Thomas 
Open Access ja oder nein?:
Ja / Yes