Logo
Benutzer: Gast  Login
Autoren:
Adam, Nico 
Dokumenttyp:
Dissertation / Thesis 
Titel:
Improved SAR Coherence Magnitude Estimates in Scenarios with Low Coherence and Small Sample Size 
Betreuer:
Schmitt, Michael, Univ.-Prof. Dr.-Ing. habil. 
Gutachter:
Schmitt, Michael, Univ.-Prof. Dr.-Ing. habil.; Sörgel, Uwe, Univ.-Prof. Dr.-Ing. 
Tag der mündlichen Prüfung:
12.02.2025 
Publikationsdatum:
17.03.2025 
Jahr:
2025 
Seiten (Monografie):
xiii, 89 
Sprache:
Englisch 
Schlagwörter:
Radarinterfeometrie ; Bayes-Inferenz ; Kohärenz ; Streuung ; Schätzung ; Bayes-Verfahren ; Maschinelles Lernen 
Stichwörter:
Interferometric Synthetic Aperture Radar (SAR) (InSAR); Bayesian inference; coherence magnitude; degree of coherence; distributed scatterers in SqueeSAR or CESAR or phase linking; estimation by machine learning 
Abstract:
Interferometric Synthetic Aperture Radar (SAR) (InSAR) is a well-established method for measuring the topography of the Earth and the displacements of its surface with millimeter accuracy. As this information is essential for infrastructure safety, there are numerous operational SAR missions, InSAR processing systems and InSAR-based monitoring services. The SAR coherence magnitude is an essential parameter in InSAR. It is directly related to the signal-to-noise ratio and is therefore synonymous...    »
 
DDC-Notation:
621.38223 
Fakultät:
Fakultät für Luft- und Raumfahrttechnik 
Institut:
LRT 9 - Institut für Raumfahrttechnik und Weltraumnutzung 
Professur:
Schmitt, Michael 
Open Access ja oder nein?:
Ja / Yes 
Art der OA-Lizenz:
CC BY-ND 4.0