Logo
User: Guest  Login
Authors:
Kersting, Joschka; Geierhos, Michaela 
Document type:
Konferenzbeitrag / Conference Paper 
Title:
Towards Comparable Ratings: Quantifying Evaluative Phrases in Physician Reviews 
Collection editors:
Cuzzocrea, Alfredo; Gusikhin, Oleg; Hammoudi, Slimane; Quix, Christoph 
Title of conference publication:
Data Management Technologies and Applications 
Subtitle of conference publication:
10th International Conference, DATA 2021, Virtual Event, July 6–8, 2021, and 11th International Conference, DATA 2022, Lisbon, Portugal, July 11-13, 2022, Revised Selected Papers 
Series title:
Communications in Computer and Information Science 
Series volume:
1860 
Conference title:
International Conference on Data Science, Technology and Applications (10., 2021, Virtuell) ; International Conference on Data Science, Technology and Applications (11., 2022, Lissabon) 
Venue:
Virtuell ; Lisbon, Portugal 
Year of conference:
2021 ; 2022 
Date of conference beginning:
06.07.2021 ; 11.07.2022 
Date of conference ending:
08.07.2021 ; 13.07.2022 
Place of publication:
Cham, Switzerland 
Publisher:
Springer 
Year:
2023 
Pages from - to:
45-65 
Language:
Englisch 
Keywords:
Aspect Classification ; Rating Weight ; Physician Reviews 
Abstract:
We present a concept for quantifying evaluative phrases to later compare rating texts numerically instead of just relying on stars or grades. We achieve this by combining deep learning models in an aspect-based sentiment analysis pipeline along with sentiment weighting, polarity, and correlation analyses that combine deep learning results with metadata. The results provide new insights for the medical field. Our application domain, physician reviews, shows that there are millions of review texts...    »
 
ISBN:
978-3-031-37889-8 ; 978-3-031-37890-4 
Department:
Fakultät für Informatik 
Institute:
INF 7 - Institut für Datensicherheit 
Chair:
Geierhos, Michaela 
Research Hub UniBw M:
CODE 
Open Access yes or no?:
Nein / No