Logo
User: Guest  Login
Authors:
Seemann, Nina; Lee, Yeong Su; Höllig, Julian; Geierhos, Michaela 
Document type:
Zeitschriftenartikel / Journal Article 
Title:
The problem of varying annotations to identify abusive language in social media content 
Journal:
Natural Language Engineering 
Volume:
29 
Issue:
Year:
2023 
Pages from - to:
1561-1585 
Language:
Englisch 
Keywords:
Natural Language Processing ; Abusive Language ; Dataset Analysis 
Abstract:
With the increase of user-generated content on social media, the detection of abusive language has become crucial and is therefore reflected in several shared tasks that have been performed in recent years. The development of automatic detection systems is desirable, and the classification of abusive social media content can be solved with the help of machine learning. The basis for successful development of machine learning models is the availability of consistently labeled training data. But a...    »
 
ISSN:
1351-3249 ; 1469-8110 
Department:
Fakultät für Informatik 
Institute:
INF 7 - Institut für Datensicherheit 
Chair:
Geierhos, Michaela 
Research Hub UniBw M:
CODE 
Open Access yes or no?:
Ja / Yes 
Type of OA license:
CC BY-NC-SA 4.0 
Miscellaneous:
Die Veröffentlichung wurde finanziell unterstützt durch die Universität der Bundeswehr München (Publish-and-Read-Vertrag).