Characterizing the grain structure of polycrystalline material is an important task in material science. The present paper introduces the concept of generalized balanced power diagrams as a concise alternative to voxelated mappings. Here, each grain is represented by (measured approximations of) its center-of-mass position, its volume and, if available, by its second-order moments (in the non-equiaxed case). Such parameters may be obtained from 3D x-ray diffraction. As the exact global optimum of our model results from the solution of a suitable linear program it can be computed quite efficiently. Based on verified real-world measurements we show that from the few parameters per grain (3, respectively 6 in 2D and 4, respectively 10 in 3D) we obtain excellent representations of both equiaxed and non-equiaxed structures. Hence our approach seems to capture the physical principles governing the forming of such polycrystals in the underlying process quite well.
«Characterizing the grain structure of polycrystalline material is an important task in material science. The present paper introduces the concept of generalized balanced power diagrams as a concise alternative to voxelated mappings. Here, each grain is represented by (measured approximations of) its center-of-mass position, its volume and, if available, by its second-order moments (in the non-equiaxed case). Such parameters may be obtained from 3D x-ray diffraction. As the exact global optimum o...
»