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Zusammenfassung

Die Analyse von Verkehrsszenarien auf mdégliche Konfliktsituationen ist wegen der
hohen Komplexitét solcher Szenarien duflerst herausfordernd. Insbesondere sollten
gewisse Sicherheits- und Leistungsanforderungen garantiert werden. In dieser Dis-
sertation werden das komplexe Umfeld und die Sicherheitsanforderungen als Ni-
veaumengen einer Lipschitz-Funktion respektive als Durchschnitt von Niveaumen-
gen glatter Funktionen definiert. Die Leistungsanforderungen werden durch Mini-
mierung einer Kostenfunktion erreicht. Somit kann das Problem als Problem der
optimalen Steuerung formuliert werden. Dies erlaubt uns, eine weite Bandbreite an
Straflengeometrien, polygonalen Hindernissen und Fahrzeugdynamiken zu analysie-
ren. Sobald das Optimalsteuerungsproblem formalisiert wurde, konnen numerische
Simulationen durch direkte Methoden (mit OCPID-DAE] Software) oder Hamilton-
Jacobi-Methoden (mit ROC-HJ-Software) erhalten werden. Ausweichmandéver, die
Menge erreichbarer Punkte und die Menge der Anfangszustinde, von welchen eine
Kollision verhindert werden kann, kénnen fir Fahrzeugdynamiken mit bis zu sieben
Zustandsvariablen berechnet werden.

Eine Sensitivitdtsanalyse wird dann durchgefiihrt, um die Robustheit der Trajekto-
rien und der Menge erreichbarer Punkte zu iiberpriifen. Ein erster Aspekt, bereits
eingehend behandelt in der Fachliteratur, konzentriert sich auf die Berechnung einer
Echtzeit-Naherung von Ausweichmanoévern und der Menge erreichbarer Punkte unter
Verwendung einer gegebenen Referenztrajektorie. Ein zweiter Aspekt versucht, die
Effekte von Messfehlern auf Rechenergebnisse vorherzusagen und damit die Robust-
heit gegen Storungen in den Anfangswerten zu iiberpriifen. Ein dritter Aspekt ist
durch das Bediirfnis von Sensorentwicklern inspiriert, die Genauigkeitsanforderun-
gen von Sensoren zu ermitteln. Zu diesem Zweck ndhert man den maximal zuldssigen
Sensorfehler, der es noch ermdglicht, Sicherheit zu garantieren.

GemiB diesen Schritten wird ein Simulationsrahmen zur Uberpriifung bestehen-
der Kollisionsvermeidungsalgorithmen vorgeschlagen. Beispiele fiir Priifungsverfah-
ren werden implementiert und erfolgreich auf Kollisionsvermeidung durch Brems-
und Lenkalgorithmen getestet.
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Abstract

The mathematical definition of a car traffic scenario, where a conflict situation may
occur, is a challenging topic in collision avoidance due to the complexity of the sce-
nario which must satisfy safety and performance requirements. In this thesis, the
complex environment and the safety requirements are simply defined as level sets
of some Lipschitz function or as intersections of level sets of smooth functions. The
performance criteria are then achieved by minimizing a cost function, referencing
the structure of an optimal control problem. This allows to deal with a variety of
road geometries, considering a significative number of polygonal obstacles and sev-
eral choices of vehicle motion models. Once the optimal control problem has been
formalized, the numerical simulations are obtained via direct methods (with OCPID-
DAE1 software), or Hamilton-Jacobi methods (with ROC-HJ software). Avoidance
trajectories, sets of reachable points and sets of initial points from which it is possi-
ble to avoid a collision are computed for vehicle dynamics with a number of states
up to seven.

Sensitivity analysis is then implemented to verify robustness of trajectories and
reachable sets, in a triple challenge. A first aspect, well known in literature, focuses
on the computation of real-time approximation of avoidance trajectories and reach-
able sets using a given reference trajectory. A second novel aspect aims to predict
measurement error effects on the computational results, verifying robustness with
respect to perturbations in the initial data. A third novel aspect is inspired by the
necessity for sensor developers to understand how precise must be a sensor. To this
purpose the estimation of the maximum sensor error for a given trajectory is derived,
preserving safety.

Through these steps a simulation framework to verify existing collision avoidance
algorithms is proposed. Examples of verification procedures are implemented and

successfully tested on collision avoidance by braking and steering algorithms.

Results, opinions and conclusions of this dissertation are not necessarily the ones of
Volkswagen AG.
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1 Advanced safety and driver assistance systems

1.1 Safety and driver assistance systems in automotive industry

The history of “safety” in automotive industry started in 1903 when the first seat
belt was patented. An important step to reduce the number of accidents was pro-
vided in the 1940s with the invention of the Driver Airbag System, a so called passive
safety system. In the modern perspective, safety means to help the driver to avoid
accidents through active safety systems, like Anti-lock Braking System (ABS), and
driver assistance systems, like danger alerts systems occurring whenever the driver’s
reaction delays or fails. Safety and Driver Assistance Systems (DAS), within their
functional limits, concretize this modern concept of safety by analyzing the traffic
situation, estimating dangers correctly and taking appropriate actions. Future de-
velopments are named Advance Driver Assistance Systems (ADAS) and evolve in the
direction of automated motor vehicles. The introduction of ADAS in the automotive
market suffers, however, of a double impedance. By law the responsibility of the
behavior of the vehicle in road traffic situations has to rely on the driver only. This
legal issue is nowadays a core discussion at an international level (United Nations
Economic Commission for Europe, Vehicle Infrastructure Integration Consortium
in the US, Advanced Safety Vehicle Project 3 in Japan, [31]) and requirements for
missing new legal regulations are preventing ADAS technologies from entering the
automotive market. The second challenge originates from technological aspects. The
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advancement of new algorithms has to deal with the complexity of the environment
and the limits of on board sensors.

An overview of last generation DAS is provided in [I0I] and only a small sample of
developments is listed here.

o Cruise Control System (CCS) with speed limiter limits the speed of
the vehicle to a preset maximum speed.

o Adaptive Cruise Control (ACC) is equipped with a radar sensor in the
front bumper to monitor the traffic situation in front of the vehicle. If the
radar sensor detects another vehicle driving in front in the same lane, then
ACC will decelerate and maintain a preset distance from the vehicle driving
in front.

e Front Assist helps to avoid rear-end collisions. The information provided by
the front radar and the front camera (depending on equipment) is used to keep
monitoring the traffic situation in front of the vehicle, and alerts the driver
to any critical situations. The aim is to minimize the stopping distance in
critical situations. The system operates in a speed range from around 5 [km/h]
to 210 [km/h] and at a distance of up to 120 meters. When a dangerous
situation is identified the driver is warned visually and acoustically. If the
driver reacts by braking too gently, the vehicle will automatically generate the
brake pressure required for the situation. More specifications on this function
are in [99, [100].

e Multicollision brake triggers an automatic braking maneuver when it iden-
tifies an initial collision.

o Traffic sign recognition is a graphical notation tool for traffic signal as in

Figure

o Dynamic Light Assist (DLA) adapts the headlamp range to prevailing
conditions.

o Lane departure warning (Lane Assist) helps the vehicle to maintain its
lane in many different traffic situations.

o Parking systems allows the driver to park in spaces 90 degrees to the lane,
parallel to the lane, and to the left and right of the lane.

o Driver Alert System (DAS) analyzes the way the driver is steering the
vehicle. If the system identifies that the driver is about to fall asleep, then an
acoustic warning is issued and the suggestion of a break is displayed.



§.1 Advanced safety and driver assistance systems 3

Longitudinal Control Lateral Control Park Assist Systems

Park Assist Park Pilot
Rear Assist

Lane Assist

City Break Assist
ACC & Front Assist (End 2013)

Driver Recommendation Driver Information

Midigkeit “
erkannt Verkehr: '
b)) /
A i B DS

Bitte Pause

Pause Recommendation Sign Assist

Light Assist

Figure 1.1: Today’s driver assistance systems.

1.2 Collision avoidance algorithms

Particular attention in this thesis is given to DAS involved in collision avoidance,
such as Front Assist [99] [100]. Most state-of-the-art collision avoidance systems use
a similar algorithm. Systems published by Mazda and Honda are based on works
of [35], 44l [88] since the early 1990s. In [35] the authors present the study of the
effectiveness of a rear-end collision avoidance system capable of working on both
straight and curved sections of highway. In [44] the authors propose a radar-based
automatic braking system to prevent the vehicle from a rear-end collision or to
reduce the impact speed without adverse effects on normal driving. Moreover, in
[88] the authors present a collision warning algorithm using parameters estimated
from an estimation scheme for tire-road friction.

Despite algorithms implemented in today’s DAS, collision avoidance has been in
general an active area of research. Contributors inspired by industrial problems,
cover a wide range of subjects, such as robotic [60, [95], aerospace industry [32], and
automotive industry [I, B1), 57, [63]. In [60] Neuro-fuzzy approaches are developed
to determine time-optimal, collision-free path of a car-like mobile robot navigating
in a dynamic environment. In [95] the problem involves a robot avoidance collision,
where the robot behaves like a charged particle that is attracted by a target posi-
tion and repelled by the obstacles. In [32] a collision avoidance Unmanned Aerial
Vehicle (UAV) is treated by identifying capture sets. In [I] the set of all reachable
point is computed efficiently by linearizing the nonlinear system and then comput-
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ing zonotopes, which can be viewed as a Minkowski sum of line segments, giving an
overapproximation of the real reachable set. In [31] a two-vehicle collision avoidance
problem in a roundabout is studied. In order to guarantee safety, the authors employ
an approach based on the computation of the unsafe set as capture set of an hybrid
automaton system, formalizing mathematically the automobile structure. In [57] the
minimal distance to an obstacle within which the vehicle cannot avoid a collision
is computed. They use an algorithm based on second-order cone programming and
sequential-quadratic programming. In [63] the authors study the merging into the
traffic and a lane changing maneuver. The way of approaching a collision avoidance
problem, extend to a big variety of tools, including optimal [67, 81], hybrid [58| 96],
differential game [66], and stochastic [2] frameworks. The focus of the stochastic and
hybrid work has been on the computation of safe regions in a collision situation, the
optimal approach optimizes performance criteria over a finite time horizon, while
the differential game approach considers the objects as players of a pursuit-evasion
differential game.

1.3 Requirements for collision avoidance systems

The existing literature on the development of collision avoidance algorithms in car
traffic scenarios reveals a major technical challenges. Reliable systems are requested
by the automotive industry, to trade off the minimization rate of nuisance alarms
and the minimization rate of missed detection. The false warnings (nuisance alarms
and missing detections) can cause the failure of the collision avoidance system that
will annoy or confuse the driver instead of helping her/him. Nuisance/false alarms
may desensitize the driver and cause future warnings to be ignored, or can start an
automatic braking maneuver whenever it is not necessary, risking that the driver
loses the vehicle control. For example, let a path be driven following a road surface,
say a curved roadway, different from the one implemented in the system, say a
straight road. In this case objects outside the vehicle path are detected as dangerous
situation. Or an obstacle in an adjacent lane is detected as to be on the vehicle’s
path when the road is curving. Furthermore, a collision avoidance system suffering
of missing detections creates a false protection feeling on the driver. The driver’s
attention may decrease due to the confidence on the collision avoidance system, even
in dangerous situations where the missing detection occurs.

False warnings can be a consequence of limitations of the algorithm considering a
small range of traffic scenario types, or too strong simplifications in the complexity
of the human behavior, or low quality data used to model the environment on which
the algorithm is based. Thus to avoid false warnings a collision avoidance system
has to be designed to meet the following criteria.

o A collision avoidance system must encompass a wide variety of driving situa-
tions and human characteristics, to be useful to the driver and not interfere
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with normal driving habits. The effect of individuals driving styles, the com-
plexity of the scenario are elements that have to be taken into account in the
development of the model behind the collision avoidance algorithm.

e The instrumentation quality data used to model the warning timings criteria
can be subject to measurement errors due to the limitations and impreci-
sions of the currently available technology on environment perception. Thus,
a collision avoidance algorithm must satisfy the robustness property under
measurements errors. Environment perception means to identify road lanes
and geometry and motion of obstacles. An overview on the modern literature
on obstacle perception is in [89]. While algorithm for lane detection based
on a probabilistic representation, are discussed in [64] and [90]. Technolo-
gies for environment perception must encounter many required performance
standards, such as capabilities in detecting a large field-of-view, sensibility to
precipitation, real-time capabilities to provide advanced notice of critical situ-
ations, and costs in the commercial automotive market. Among all the sensor
systems considered in literature, see the overview in [62], the ones currently
implemented on commercial automobiles are radar, mono-vision, stereo-vision.
Examples of sensor systems are given in Figure and in [89].

Figure 1.2: Sensor systems: (a, b, ¢) monocular, (d, e, f) stereovision, see [89].

The above criteria deal with the complexity of a real world scenario, where unex-
pected events, and rough measurement approximations can occur. A good compro-
mise between the desire to guarantee safety and the limited technological tools needs
to be agreed. A prudential point of view, such that to design an algorithm which
prevents or reduce the severity of collisions more than aiming to avoid all collisions,
is fulfilling this agreement.

Besides technical criteria, modern driver assistance systems require high standard
security qualifications before entering the market. These qualifications in legal regu-
lations demand intense testing which aims to find mistakes in the software packages,
considering the sensor accuracy. Currently, exhaustive tests in real world scenarios
are necessary, demanding high costs. Release testing of todays DAS requires up
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to 2 million test km and 1.000 test drivers. Forecast for high automation is about
100 million km with costs for such release testing of several 100 million EUR [102].
This is the reason why nowadays the automotive industry researchers look for cost
efficient alternatives to this kind of test methodology, to verify weather a collision
avoidance algorithm matches the standard qualifications. Some common cost effi-
cient verification methods for collision avoidance algorithms will be discussed in the
next section.

2 Verification of collision avoidance systems

The benefit of formal methods to verify collision avoidance algorithm and guarantee
safety, has been shown in many application areas and projects. Mathematical tools
are widely involved for such purposes.

2.1 Related work

Verification is usually performed by evaluating test cases for specific trajectories
given a particular scenario. This is done using real vehicles, as in [34] [59]. More
precisely, in [59] on-road tests are run to verify collision avoidance warnings by using
vehicular communication. In [68] statistical methods are implemented on small
samples of naturalistic driving data to meet the legal requirements for evaluation
of collision avoidance algorithms. Simulation environments are a good alternative
to real vehicle tests. Simulation techniques are studied for instance in [29) [106].
In [29] they develop appropriate alerting thresholds based on performance results
and implement them in rear-end collision mitigations. In [106] they use simulators
to reproduce the test on road, where sensors, actuators, driver, vehicle dynamics
and traffic environment are incorporated. Techniques based on the computation
of safety sets are used to provide general conditions for the absence of incorrect
decisions for a given collision avoidance function, see [36, [72], [74]. In particular,
in [36] a finite number of well-chosen trajectories will suffice to prove correctness
by checking that the system avoids a bad set. Approximation of trajectories of
the system by sensitivity analysis is developed and implemented in the context of
numerical integration. In [72], safety analysis for a very general dynamical system is
studied by looking at forward or backward reachable sets or tubes, i.e. the set of all
reachable points and the set of all starting points from which it is possible to avoid
a collision. Moreover, sensitivity analysis is used to prove the numerical stability
of this algorithm. Eventually, in [74] a verification method of a collision avoidance
algorithm is analyzed, by computing the backward reachable set of a specific car
traffic scenario. The robustness to measurement errors is also discussed, using the
definitions of robust minimal reachable set and uncertain minimal reachable set.
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The approach discussed in this thesis may be classified as the simulation environment
framework presented in [29] [106], by using optimal and reachability framework.

Many of the above approaches, are considering a specific car traffic scenario [29] [68,
74, [106]. Instead, the approach presented here will consider the rich diversity of real
world car traffic scenarios. This generalization is achieved by a novel method for
modelling general road geometries and polygonal or circular obstacles, implementing
several physical models for the vehicle motion. The computation of an optimal
avoidance trajectory which satisfies safety and performance requirements is one of
the main tools for verification in this thesis. A second tool is the computation of
the reachable set (forward or backward), as the set of points (final points or initial
points) reached by an avoidance trajectory which meets the safety requirements.
Differently from [32] the dynamics implemented here is high dimensional (up to 7
states) and highly nonlinear. While in [I] an approximation of the reachable set is
computed and the nonlinear dynamics is linearized, in this thesis the exact reachable
set is computed with nonlinear dynamics. These aspects are challenging from the
modelization and computational point of view, but they give results closer to the
reality. As seen above, sensitivity analysis with respect to initial data perturbation
is a tool widely used in literature [36}, (72, [74]. Sensitivity analysis is here employed in
a novel way to compute robust trajectories and robust sets of reachable points. The
alm is to specify sensor requirements, a huge challenge in application development.
Most importantly, numerical simulations are given in Chapter and examples of
verification procedures are successfully tested on collision avoidance by braking and
steering algorithms in Chapter [V]

2.2 Contribution of this thesis

In this thesis a tool for validation of collision avoidance systems is constructed. These
systems (see references in Section can be classified in two classes: Collision
Avoidance using Braking and Steering maneuvers (CABS) and Collision Avoidance
using only Braking maneuvers (CAB), such as rear-end collision avoidance algo-
rithms. In particular, the activation times of CABS and CAB systems are accessed,
which may be too early or too late due to sensor errors or algorithmic errors, as
motivated in Section Usually this is studied by collecting naturalistic driving
data and adjusting the activation timing criteria on this. The aim of this thesis is to
develop a software called Virtual Test Maker (VIM) to shift the tests from on-road
based to simulation based. As said in Section two criteria must be satisfied
by the collision avoidance system to prevent false warnings, and thus verified: the
complexity of human and environmental factors has to be included in the model for
the development of the algorithm, and sensor measurement errors need to be taken
into account to generate robust algorithms.

The first criterion is verified by creating a virtual environment, modelling a wide
range of naturalistic car traffic scenario where a collision is likely to happen. In this
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environment avoidance trajectories and reachable sets are computed and compared
with CABS and CAS output. To provide a virtual environment, the mathematical
model is based on the fact that the naturalistic scenario is perceived in its complex-
ity as a whole by the system, reacting to unexpected circumstances, and planning
its time evolution to achieve its mission. In this thesis, the mathematical formaliza-
tion of the environment starts by modelling the evolution of the vehicle motion as
solution of a system of ordinary differential equations (ODEs). Several non linear
systems are here solved numerically and compared, from the 3-dimensional kine-
matic model, till the 7-dimensional single track model. Thus the need of physical
simplifications in the model and of the analytical calculation playing a central role
in [65] is decreased by the approaches considered here. This formalization is espe-
cially designed to deal with the constraints imposed by limited vehicle velocities and
accelerations, because it is derived directly from the motion dynamics of the vehi-
cle. Among the admissible accelerations and velocities, a combination is chosen that
guarantees safety, maximizing an objective function. The objective function includes
a measure of progress towards a goal location. For instance, the minimization of
the time interval in which to perform the avoidance maneuver, or the maximization
of the distance to the obstacles for the whole vehicle path. Safety is met whenever
the vehicle reaches a target without being involved in a collision. By combining
these aspects, the vehicle trades off its desire to move fast towards the goal and its
desire to steer around obstacles, leading to an optimal control problem. Herein, ac-
celerations and velocities (classified as optimal controls and optimal solutions of the
problem) are computed such that performance criteria are maximized through an
objective function, and safety is guarantee by imposing inequality constraints. This
approach has the advantage that it is derived directly from the motion dynamics of
the vehicle, taking into account the drag and tire forces acting on the vehicle. More-
over safety conditions, such as to follow a road path or to avoid moving or fixed
obstacles or to reach a safe target zone, are naturally modelled as equations and
inequalities. From this model two possible tools for verification are implemented.
The first method is evaluating test cases for specific trajectories and sets of reach-
able points (forward reachable sets) in an optimal framework. A second method
is based on the computation of the unsafe set of initial states, where the collision
avoidance /mitigation function must be activated, as complement of the safe set of
initial states from which is possible to avoid a collision (backward reachable sets).
In particular, forward reachable sets are numerically computed successfully up to
7-dimensional dynamical models, while backward reachable sets up to 6-dimensional
dynamical models.

Robustness of the collision avoidance algorithm with respect to sensor measurement
errors is considered for verification by studying sensitivity analysis of trajectories and
of reachable sets. A first type of sensitivity (named ODE-Sensitivity, see [73}[105]) is
implemented to predict how sensor measurement errors in initial data affect the given
collision avoidance maneuver or the computed reachable set. A similar approach is
used in [73], where the sensitivities are used to study the behaviour of numerical
errors in the algorithm. The authors compute a first order Taylor approximation
of the solution by linearization around a nominal solution for perturbation of the
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initial state. The derivatives of the solution with respect to the initial state are
computed as in [2] by fixing the control. A second type of sensitivity generates
real-time approximations of collision avoidance maneuvers or reachable sets when
errors in the initial data occur. Such sensitivity based on parametric sensitivity
analysis is performed under the name of Fiacco-Sensitivity [23 24 41, 49, 52]. In
this case, the dependence of both the optimal trajectory and the optimal control
on perturbations in the initial state is incorporated in the Taylor approximations,
beyond the scopes of the approach in [73]. Estimation of sensor errors such that
the collision avoidance maneuver is still collision free is also an important aspect for
sensor developers, and thus studied here.

3 Outline

The next chapter mathematically defines car traffic scenarios which occur in conflict
situations. By imposing safety and performance requirements, a natural modelliza-
tion though an optimal control approach is derived. Chapter recalls notions
optimal control theory used in this thesis. Numerical solutions of optimal control
problems are discussed via direct methods [14}49] and via Hamilton-Jacobi methods
[11L 17, 18,[73]. Such notions are the theoretical background of the software packages
used in Chapter [Vl In Chapter [[V]numerical simulations of optimal trajectories and
reachable sets are computed for car traffic scenarios. By using OCPID-DAE1 soft-
ware [48], based on direct methods, an optimal collision-free trajectory, set of points
reachable from a given initial position and the associate trajectories are computed
for a given conflict situation. With the ROC-HJ software [16], based on Hamilton-
Jacobi methods, a safety set of initial states is computed in a car traffic scenario and
minimum time trajectories are constructed. An entire Section is devoted to sensitiv-
ity analysis where the optimal trajectory and the reachable set are estimated when
perturbations in the initial state occur. Moreover an estimation of the initial state
error is given for particular car traffic scenarios. Chapter [V|shows how the simula-
tion of Chapter [[V] can be implemented for verification purposes. The verification
is classified for collision avoidance by braking algorithms, and collision avoidance
by braking and steering algorithms. A special attention is given to the analysis of
sensor measurement errors in trajectories computed with the verified software pack-
ages. Finally, in Chapter [V future work directions are discussed. The chapter opens
with an overview on challenges for implementing optimal control trajectories in a
real car. The remaining discussion is focused on alternative models to consider er-
ror measurements or, more in general, uncertainties in the environment perception.
Such modelization is based on game theory or stochastic optimal control.
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The main tasks of collision avoidance systems are to reliably indicate future collisions
and - if possible - to provide escape trajectories if such exist. The collision avoidance
system is supposed to control a reference vehicle that is one of the elements of a
car traffic scenario. For this specific scenario the goals are to guarantee safety by
providing a collision free maneuver for the reference vehicle and to satisfy some
performance criteria for such a maneuver. This chapter suggests an optimal control
based method that has the potential of fulfilling these two goals. In particular the
focus is to show how the modeling process of a car traffic scenario leads to an optimal
control problem once the safety and performance conditions are imposed.

The car traffic scenario involves the motion of the reference vehicle (described by
ODEs) and the mathematical characterization of the environment where it evolves
(defined by state constraints and boundary constraints). A precise model as the one
in [46] includes a 7-dimensional state and highly nonlinear differential equations.
On the other hand models with less states and simpler equations (for instance the
4-dimensional point mass model or the 3-dimensional kinematic model) allow a wider
range of vehicle maneuvers, shrinking the set of points where the collision avoidance
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system activation occurs. The other physical entities, such as road obstacles and tar-
get sets, are modeled as the level set of some Lipschitz function or as an intersection
of sets with smooth boundaries. Once the car traffic scenario has been described,
the safety property is defined by imposing that the vehicle trajectory has to reach
the target area within a fixed time interval, avoiding the obstacles and staying on
the road. Eventually, performance criteria are provided knowing that the safety
property has to hold. Firstly, an optimal trajectory is required where the term “op-
timal” addresses to a fast or driver friendly or extreme vehicle trajectory. Secondly,
the set of all points that a vehicle maneuver can reach is determined. Thirdly, the
set of all initial points from which it is possible to avoid the obstacles by staying on
the road are defined. In conclusion, the methodology presented involves two steps:
analyzing the safety of the system, and then optimizing a desired performance goal
within the safe region of operation. The computations presented in this chapter are
obtained with OCPID-DAEL] software (see Section of Chapter [[V|for more details).
Classical results on optimal control as well as state of the art techniques to solve
optimal control problems will be treated in Chapter [LL

1 Reference vehicle model

The motion of the reference vehicle has the property to evolve in time obeying
physical laws described by Ordinary Differential Equations (ODEs):

{ 2(t) = f(t,z(t),u(t)) ae. t € [to,tf] CR,

~(ty) = 20, (1.1)

given the initial state zo € R™ and the function (dynamics) f : [to,ts] x R" X
R™ — R". The curve z : [tg,ty] — R" is unknown and it is the dynamical
evolution of the state of the dynamical system in , moreover R"# will be called
n.-dimensional state space. The function u : [to,tf] — R™ is the control that
influences the function z. The solution of for some control v and for a given
initial value zo is denoted with 2% . The peculiarity of the system presented in this
section is that the vehicle motion is controllable by a collision avoidance system or
more simply by a driver that wants to preform an avoidance maneuver. Experience
teaches that this controllability is accessible through parameter values that affect
the braking force and steering performance. In the mathematical formalism such
parameter values are denoted by the function u as it appears in .

Several levels of complexity enter the ODE system, depending on the simplifying
assumptions made on the physical system. A comparison of such models is given in
the next subsections, starting from the highly nonlinear 7-dimensional single track
model, till the 3-dimensional kinematic model. Moreover the identification of state
z and control u will be underlined for each physical model.
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1.1 The single track “7D” model and the “6D” model

The single-track car model (a detailed presentation is provided in [47]) is derived by
assuming that the rolling and pitching behavior of the car body can be neglected,
and thus the roll angle and the pitch angle are small. These assumptions give a
double advantage: the two wheels on the front and rear axle are replaced by a
virtual wheel located in the center of the respective axle and the car’s center of
gravity is located on the roadway which allows to consider the motion of the car in
the horizontal plane only. The geometrical description of the car for the single track
model is depicted in Figure

Figure 1.1: Geometrical description of the single-track car model [46].

Herein, some notation is introduced:
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re = (Tear, ycar)—r center of gravity in a reference coordinate system

v = (g, vy) " velocity at the center of gravity

v, Uy velocities of the front and rear wheel

o steering angle

Q side slip angle

af, o slip angles at front and rear wheel

P yaw angle

Fsp, Fy, lateral tire forces (side forces) on front and rear wheel

Fiy, by, longitudinal tire forces on front and rear wheel

Ly, 1y distances from the center of gravity to the front and
rear wheel

esp distance from the center of gravity to the drag mount
point

Fag, Fay drag force on the car due to air resistance and side
wind

m mass of the car

The points rr, rr at the front and at the rear wheels and their velocity are defined

as
B =l \ [ x—l.cosvy
rR_rC+S(¢)< 0 >_<y—lrsim/f>’ (1.2)
B ly \ ([ z+lfcosy '
where S(v) is the anti-clockwise rotation matrix of angle v, defined as:
[ cosyp  —siny
S() = < siny  cos > ' (1.3)

The velocity ve = (vz,vy) has module v = /vZ 4 v2 and is rotated by a side slip

angle —a from the car axle joining the front and the rear wheel

cosea(i)-(T0) o

which gives differential Equations (1.26af) and ((1.26b)).

By combining the fact that vg = r; (where f’ of a function f denotes the derivative
with respect to time of f) and vg has direction rotated by 1 — o, from the z-axel
and module vg, it holds

/ "+l s 0
neres (plnpeas ) (§) =50 09

From the second component of ([1.5)), and using the trigonometric identities, it fol-
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lows:
—sin(¢ — ap)(veos(v — a) + 1) sin)+
+cos(¢) — ay)(vsin(y) — ) — 1) cosp) = 0 =
v(sin(¢ — «) cos(¢ — ) — cos(¥ — ) sin(vp — o))+
—1,)' (cos1p cos(vp — o) + sinysin(yp — o)) =0 =
vsin ay. cosa — v cos . sina — 1,9 cos o, = 0 =

v sin a+1,1’
v COS o

(1.6)

tan o, =

Likewise for the front wheel vp = r% and vy has direction rotated by ¢ + 0 — ay
from the z-axle and module ¥F:

, Ny ~
R < §'+z?$f§22§ > < o ) =S@+d—ap)" vp. (L7

Thus

—sin(y) + 6 — o) (veos(yp — a) — gy sinep)+
—|—cos(1j} +0 — af)(vsin(¢ — a) + 1p cosyp) =0 =

v(sin(y — a) cos() + 6 — ay) — cos(vp — a) sin(vp + 0 — o))+
+lf1//(cos1/Jcos(¢ +6—ayf) +sinysin(yp+0 —ay)) =0= (1.8)
vsin(ay — d) cosa —vcos(ay — d)sina + 1) cos(ay — ) =0 =
tan(ay — §) = “a
The physical system described above should satisfy the second Newton law:
F = ma, (1.9)

with F' being the force acting on the system, m the mass of the object, a the
acceleration. The physical system described above should also satisfy the equilibrium
of momentum law:

M = Iw, M= Z Fyr;sinb; | | (1.10)
i=1,...,n

with M being the momentum of force, I the moment of inertia, w the angular
acceleration. The momentum M is defined as the sum of the n scalar products
between the force F; acting on the car and the vector r;, the latter being the distance
from the action point of force F; to the center of gravity (z,y), where the angle
between r; and F; is 6;, i =1,...,n.
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A description of the forces acting on the system is given straightforward.

Fy

Iy

Dy sin(Cy arctan(Bray +
—FE¢(Byay — arctan(Byray))))
Fplay),

D, sin(C, arctan(By,a, +
E,(Bya, — arctan(B,ay))))
Fy(ar),

—Fpf(Fp) — Frf(v)
Fiy(v; F),

—Fpr(Fp) — Fpr(v)

ET(U;FB)a

Fip — Fag + Fiycos(8) — Fypsin(0)
Fy(v, Fp,ay,6),

Fyg — Fay + Fiysin(6) 4+ Fsg cos(0)
Fy(U,FB,OZf,OZT,(;),

(1.11a)

(1.11b)

(1.11c)

(1.11d)

(1.11e)

(1.11f)

where Dy, D,.,Cy,C,, By, B, B, B, are constants. Forces Fyr, Fy, are derived by
Pacejka’s Magic Formula [78], while formulas for the braking forces Fgf, Fp, and
the rolling resistance forces Fry, Fr, as well as the air resistance forces Fay, Fay
are derived straightforward. The slide slip angles centered in the center of gravity,
in the front wheel and in the rear wheel are given by

(07

af

:= arctan (

= 1) — arctan(y'/2)

= Oé(’[)z,vya,lvb)a

= § — arctan (W"W)
v cos(a)

= Oéf(vx7vy7wvd/76>7

LY + vsin(a) >

v cos(a)

= ar(”ma”yﬂba ¢/)

(1.12a)

(1.12Db)

(1.12¢)

The (1.12a)) derives from (|1.4]), while ([1.12b]) and ((1.12d]) derive from (1.6) and (|1.8]).

Drag forces:

FAI =
Fuy =

1
5.Cw.p.‘,4.rv27

0.

Cw, py A contants,

(1.13a)
(1.13D)
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The braking forces:

i e, it Fg > A,
Fpp = %llff—fl?.FB + 43A T+, Fj+ 4&3 lflf;l Fiif |Fpl <A, (1.14a)
( IB, otherwise,
( e, if Fig > A,
Fpr = lflilr (RFE — azF}), if0<Fp <A, (1.14b)
¢ 0, otherwise,

for a small positive A = 0.01. If A = 0, Equations ((1.14a))-(1.14b]) become:

by
FBf<FB) = min(FB,iFB), (115&)
lf—l-lr

l
Fp.(Fg) = max(0,——Fp). (1.15b)
lf+lr

The rolling resistance forces:

Fry = [fr(v)- F.y, (1.16a)
FR'F = fR(U) : FZT'7 (116b)
with friction coefficient
v \4 .
fr(v) = fro+ fragos + fra (100) (v in [km/h)), (1.17)
and constants l
F,y = Mg
g S (1.18)
F, = I
2T lf+l'r :

Equations (1.9) and (|1.11)) yeld Equations (1.21d)) and (1.21e):

v, _ 1 Fy Fag Fiy
(7 ) “ W (& )-so (5 ) esweo (g )] am
Equations (1.10) and - yeld Equations ((1.21¢]) and ( m

P’ = i [Fagespsinm + Fj,.(—l,)sin0
+Fyyespsin (—g) + Fgr(—1,) sin (g)

+Flflfsin5+stlfsin(7r+5ﬂ (1'20)
= Izz [—Fayesp — Foly + Fiylysind + Fgplycosd],
where I, is the moment of inertia and M = I,,v"” by definition of momentum of

forces.

Thus the vehicle motion is described by the Ordinary Differential Equations (ODEs):
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Single track 7D model with controls ws, F'p and states v, and vy:

T = Ug (121&)

Yy = vy (1.21b)

W= wy (1.21c)

v, = - (Fycos() — Fysin(¥)) (1.21d)
m

vy = (Fesin(y) + Fy cos() (1.21¢)
1

w&) = —(stlf COS((S) — Fol — FAy esp + Flflf sin(é)) (1.21f)
= S5

J = s (1.21g)

for almost every ¢ in the fixed time interval [to,t] C R and with control parameters
|ws ()| < Wemazr and Fp(t) € [FBmin, FBmaz]- Therefore by following the notation

in (L.1)), 2 := (z,y, %, vz, vy, wy,0) and u := (w5, FB).

Alternative formulation of the system of differential equations for the “7D” model
comes by deriving

v? =2 + 1)5 = 200" = 20,0, + 2y, (1.22)
Using (1.4),(1.21d)),(1.21¢€]) and (|1.12al):
vl = L(F,cos(y) — Fysin(y)), vy = veos(y — a), (1.23)
vg’J = %(Fx sin(¢) 4+ F, cos(v))), vy = vsin(y — a), )
and thus )
v = —(Fycosa — Fysina), (1.24)
m
with Fy, F,, and « defined in ((1.11e)), (1.11f) and (1.12a)).
Moreover differentiating (1.12a)) and using (|1.23)):
o = wy Fysina+ F, cosa, (1.25)

muv

with F, and Fy defined in (L.11e|), (1.11f).
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“7D” model with controls ws, F'g and states o and v:

' =vcos(y — ) (1.26a)
y =wvsin(y — a) (1.26Db)
Y = wy (1.26¢)
1
v/ = —(Fycosa — Fysina) (1.26d)
m
of =y — Fysina + F, cosa (1.26¢)
muv
1 .
Wy, = T (Fsflycos(0) — Foply + Filysin(0)) (1.26f)
8 = w; (1.26g)

with controls s.t. |ws(t)| < wsmaz and Fp(t) € [FBmin, FBmaz), lf,lr,i,esp are
constants and system of forces described in (L.11)). Herein z := (z,y, 9, v, o, wy, 6)
and u := (wg, FB).

Observation 1.1. By taking Equations (1.21)) and considering z := (x,y, 1, vz, Uy, Wy)
and u = (0, F):

“6D” model with controls ws, Fig and states v, and vy:

' =v, (1.27a)
Y =y, (1.27b)
QJZ), = Wy (127C)
v, = ;(Fx cos(¢) — Fy sin(v))) (1.27d)
o = ;(Fw o) 4 7, o) (1.27¢)
Wy, = 1_1 (Fsplycos(0) — Foply + Fiflysin(9)) (1.271)

Equations (1.26) by considering z := (x,y,1,v, o, wy) and u = (6, Fg) give:
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“6D” model with controls wgs, F'p and states o and v:

¥’ =vcos(y — a (1.28a)
y =wvsin(y — ) (1.28Db)
Y = wy (1.28¢)
1
v/ = —(Fycosa — Fysina) (1.28d)
of = oy — Fysina + F, cosa (1.28¢)
muv
1 .
Wy, = I—(stlf cos(0) — Foply + Fiylysin(0)) (1.28f)

zz

For all the systems presented in this subsection the following condition has to be
imposed
FX+F} <g’mj,  FL+F.<g'm, (1.29)

S

where g = 9.81[m/s?] and m > my is the mass at the front and rear wheel respectively

defined as:
m -, m-ly

lf-i-lT’ mr:lf-i-lT

my = (1.30)

To compare the dynamics presented in the next subsections of this chapter, Problem
is optimized with OCPID-DAEL software, details will be treated in Section [1] of

Chapter

Problem 1.2. Assuming the notation in (L.1)), find z = (21, 22, ..., 2n.) and u such

that:

min ¢ty + cok
u

st z2(t) = f(t,2(t),u(t)) for a.e. t € [to, ty],
Z(to) = 20,
Zl(tf) :ja ZQ(tf) >g> 23(tf) :Oa
uelUU :={u:R—U CR"™, measurable},

where ¢ = (c1, 02)—r is a constant vector, T, § are constants or optimized parameters,
z1(t) denotes the x-position of the reference vehicle at time t, z3(t) denotes the
y-position of the reference vehicle at time t, and z3(t) denotes the yaw angle of the
reference vehicle at time t.

1.2 The “4D” point mass model

Taken the model described in ((1.26)), let Fp in (1.14) be the only force acting on
the system i.e. the drag forces, rolling resistance forces and lateral tire forces are
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neglected. Therefore the vehicle is identified with its center of gravity and the side
slip angle « is equal to zero, i.e. the steering angle ¢ coincides with the yaw angle

1), as shown in Figure

(:Evy) X

Figure 1.2: Geometrical description of the point mass car model.

Taking into account Equation (1.8), the system of differential equations is:

“4D” point mass model with controls wy, F'g:

r' = vcos(v) (1.31a)

y = vsin(¢) (1.31Db)

Y = wy (1.31c)

o= 1B (1.31d)
m

with z := (z,y,¢,v) and u := (wy, FB).

In Figure the point mass model of system in (1.31)) is compared with the single
track model of system in . Given an initial x-position, the reference vehicle
has to bypass as quick as possible the obstacle and reach the same z-position as
the obstacle with null velocity in y direction. The depicted trajectories are the path
of the reference vehicle and they start from all different initial xz-positions. The
initial vehicle velocity is the same for each trajectory and a fixed obstacle of width
2[m] is in & = 50[m|. The point mass model allows the vehicle to go closer to the
obstacle (trajectories are drawn up to a distance of about 25[m| to the obstacle),
while the single track allows trajectory only about 35[m| distant. This observation
highlights the fact that the point mass model allows a broader range of maneuvers
in this scenario than the single track model. Therefore, unavoidable collisions for
the point mass model are also unavoidable for the single track model. In this sense
adopting the point mass model for the vehicle motion is a prudential point of view
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for modeling the decision of unavoidable collision. This concept is useful in deciding
the activation point of collision avoidance systems, where for legal issues it has to
activate only when a collision is surely unavoidable.

Funnel 2D Funnel 2D
7
6
5
- 4
/// - P —
3
1
0 5 10 15 20 25 30 35 40 45 50 0 5 10 15 20 25 30 35 40 45 50
X X

Figure 1.3: Minimal time trajectories obtained by solving Problem from several
initial z-position are considered with initial velocity v(tg) = 25[m/s]. At the left
picture, the system in for the 4D point mass model is considered, at the right
one it is system in for the 7D model with «, v as states.

1.3 The kinematic single track model “3D” or “5D”.

Figure 1.4: Geometrical description of the kinematic car model.

Simplifying assumptions are the low lateral acceleration and the lateral tire forces are
negligible (the lateral velocity component of the tire-road contact point vanishes).
Let [ = I, + I be the distance from rear axle to front axle and let (z,y) be the
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midpoint position of rear axle of car, see Figure The midpoint position and
velocity of the rear axle of the car compute to:

TR:(z>7 vpL:(:;:) (1.32)

In the front axle of the car the midpoint position and velocity compute to:

([ xF\ _ L'\ ([ x+lcosy
e = ( N ) _TR+S(w)<O>_ ( y + Isin) >’

Ep ' — ) sin)
VF = ’ = / / )
Yr y + W' cosy
where S () is the anti-clockwise rotation matrix of angle v defined in Definition

Under the assumption that the lateral velocity component at rear axle vanishes, then
the velocity vg with module v is

m=sw) (5 )= (). (1.3

This and ([1.32]) lead to the differential equations for the position (z,y) of the mid-
point of the rear axle:

2'(t) = v(t)cosp(t), o' (t) =ov(t)sine(t). (1.35)

(1.33)

To derive the differential equation for the yaw angle v, under the assumption that
the lateral velocity component at front axle vanishes, it holds:

v

vp = S +9) < g > = Y(t)= lt>tan5(t), (1.36)

with ¥ module of vp. Summarizing, if z := (z,y,) and the velocity v(¢) and the
steering angle 6(t) are known (i.e. u := (v,6)), the position of the vehicle is given
by the differential equations:

“3D” kinematic single track model with controls 9, v:

t) cos () (1.37a)
t) (1.37b)

(
P (t) = - tan d(t) (1.37¢)
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Observation 1.3. If u:= (6, Fp) and z = (z,y,v,v) then:

“4D” kinematic single track model with controls 6, Fiz:

2/ (t) = v(t) cos(t) (1.38a)
y'(t) = v(t) sin(t) (1.38Db)
P (t) = U(lt) tan d(t) (1.38c¢)
V' (t) = —Fg(t)/m (1.38d)

where the additional state constraint |6| < 0.5263[rad]| has to hold. If the control
parameters are the braking force Fg(t) and the steering angular velocity ws(t) and
z = (z,y,9,v,d) then:

“5D” kinematic single track model with controls ws, Fip:

2/ (t) = v(t) cos(t) (1.39a)
y'(t) = v(t) sin(t) (1.39b)
P(t) = Ult) tan d(t) (1.39c¢)
V'(t) = —Fp(t)/m (1.39d)
8 (t) = ws(t) (1.39¢)

where the additional state constraints |§| < 0.5263[rad], |0'] < 0.5[rad/s] have to be
satisfied.

In Figure the three kinematic models are presented. Between the “3D” and
the “4D” model no relevant difference appears, however the “5D” model shows a
smoother behavior in the steering function than the other two kinematic models,
which is the expected behaviour imposed by Equation .
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Funnel 2D Funnel 2D Funnel 2D
7 7 7
6 6 6
5 5 5
4 4 4
> - .
3 — 3 — ~ 3
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0O 5 10 15 20 25 30 35 40 45 50 0 5 10 15 20 25 30 35 40 45 50 0 10 20 30 40 50 60
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Figure 1.5: Minimal time trajectories for the kinematic systems in ((1.37)), (1.38]),
and ([1.39) (reading from left to right), obtained by solving Problem from several
initial z-position, are considered with initial velocity v(to) = 35[m/s].

1.4 Conclusions

point mass 5D model 6D model 7D model
Funnel 2D Funnel 2D Funnel 2D Funnel 2D
7 7 7 7
6 6 6 6
5 5 5 5
. 1] 1 . . ]
3 e u T e u - T u
= = i — [ — 1
1 fads 1 fads 1 fass 1 fads
o 0 0 o
0 5 1 15 20 25 30 3 40 45 0 5 10 15 20 25 30 8 40 45 O 5 10 15 20 25 30 35 40 45 0 5 10 15 20 25 80 35 40 45
x x
Funnel 2D Funnel 2D Funnel 2D Funnel 2D
7 7 7 7
6 6 6 6
5 5 5 5
i _ | ; | I
3t //@yﬂ 17 st = T = E==Sal T = 22l
: — nl e ] L nl iz M
1 1 i 1 I
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Figure 1.6: A comparison of the 4D point mass model in system in (left), the
kinematic 5D system in ((1.39) (middle left), the single track 6D system in
(middle right) and the single track 7D system in (right) is shown. First row
shows minimal time trajectories from several initial x-positions. Second row plots
trajectories minimazing the initial x distance to the obstacle from several initial
velocities.

Several vehicle dynamics were given in this section. In the evaluation of a good
model three criteria should be taken into account. The first criteria concerns the
capabilities of the model to represent well the real motion of a vehicle. Keeping
this in mind, a prudential point of view should be assumed whenever a collision
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decision has to be taken. The automotive industry wants to be sure that a collision
is happening in order to avoid false activations of the collision avoidance systems.
In this case a vehicle model that allows a larger number of maneuvers than a real
car is attractive, since a collision decision for it implies a collision decision for the
less agile real cars. The third criteria is looking at a computational point of view,
where lower dimensional model speed up the numerical calculations, while higher
dimensional and highly non-linear models are difficult to handle.

Among all the kinematic models presented in Figure [1.5] a good approximation of
capabilities of real vehicles is only the 5D model. Indeed by looking at smoothness
of the steering effect and at the minimum z initial distance to an obstacle positioned
at 50[m], it appears that 3D and 4D kinematic models give an avoidance trajectory
starting at up to 10[m] distance to the obstacle, instead the 5D kinematic model
allows only trajectories starting at up to 20[m] distance to the obstacle. This means
that for the 5D model is more difficult to avoid a collision than for the lower di-
mensional kinematic models, in agreement with real life vehicle behaviors. With
respect to the 5D model, the 4D point mass model has both the advantages of being
one dimension lower and performing trajectories even closer to the results given by
complex models as 7D and 6D, see Figure [1.6] and it is easy to handle numerically.

Complex single track 6D and 7D models in (1.21]), (1.26)), (1.27)), and should be
considered for implementation of trajectories in real cars, thanks to their adherence
to reality. The choice between 6D and 7D models can be based on the computational
time limits or on the preference of the controls considered (steering velocity and
braking force for the 7D, instead of steering angle and braking force of the 6D).
Often models in , are preferred over models in , to avoid

regularity problems whenever the velocity is taking zero value.

2 Car traffic scenarios and modeling of constraints

Investigation and classification of conflict situations before a collision has been in-
vestigated in the project GIDAS (German In Depth investigation Accident Study).
This is a joint project between FAT (Forschungsvereinigung Automobiltechnik or
Automotive Industry Research Association) and BASt (Bundesanstalt fiir Strafien-
wesen or the Federal Road Research Institute) and it started on July 1999. They
developed a database where accidents are classified by level of injuries, scenarios,
and occurrence. On the statistical methods they use to classify accidents and the
data source, refer to [77]. The level of injuries is based on the MAIS scale, where
MAIS2+ are considered severe injuries (see [77] for details).

The department K-EFFS/G of Volkswagen Research, underlined a general classifi-
cation in Figures and In particular in Figures there are

situations of conflict before a collision, where all level of injuries (all MAIS) and
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severe level of injuries (MAIS2+) are considered on occupants of the reference
vehicle, for all environments, including urban and highways. While in Figures
there are situations of conflict before a collision, where all level of injuries
(all MAIS) and severe level of injuries (MAIS2+) are considered on opponents
of reference vehicle (bicycle, motorcycle, pedestrian), for all environments,
including urban.
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Figure 2.1: From the department K-EFFS/G of Volkswagen Research: Most fre-
quent situations of conflict for all environments, for all level of injuries (all MAIS)
are considered on occupants of the reference vehicle.
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Figure 2.2: From the department K-EFFS/G of Volkswagen Research: Most fre-
quent situations of conflict for all environments, for severe level of injuries (MAIS2+)
are considered on occupants of the reference vehicle.
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Figure 2.3: From the department K-EFFS/G of Volkswagen Research: Most fre-
quent situations of conflict for all environments, for all level of injuries (all MAIS)
are considered on opponents of reference vehicle (bicycle, motorcycle, pedestrian).

1) 2) )
) 342 - EK - Bavorrechiigler Rad?. vom Radweg von rechis u, geradeaus 211 - AB - Linksabb. u. Gegenverkehr geradeaus 321 - EK - Bevorrechtigter von rechts u, geradeaus
_J’" | 21 s
o, o o, ] 0,
o 8,4% (73) 6,8% (59) I B 6,8% (59)
i .]" N
A r
4) 5.} 301 EK- Bevomechtigter von inks, Schuldiger geradeaus )
302 - EK - Bevorechligter von links u. linkseinbiegen i - - 421 - US - FuBgdnger von rechts auf Strecke
3020 421

B
TI f 5.0% (44) f § 4.1%(36)
n308 Al

B
T ‘!f 5,4% (47)

7) 8)

341 - EK - Bevomechiigler Radf, vem Radweg von links u. geradeaus. 401 -‘:)115 - Fuiganger von links auf Strecke ohne Sichibehinderung

S 3.1% (27) fia

2y 11

Other ,Unfalltypen®: 502
(57 6%) opponents of
passenger cars

2,9% (25)

Basis: 872 opponents of passenger cars

Figure 2.4: From the department K-EFFS/G of Volkswagen Research: Most fre-
quent situations of conflict for all environments, for severe level of injuries (MAIS2+)
are considered on opponents of reference vehicle (bicycle, motorcycle, pedestrian).

The car traffic scenarios analyzed in this thesis are collected among the most frequent
according to GIDAS scenario, for all level of injuries and all environments. Figures
and [2.4]show that the road geometries involved are mainly showing that
crossing, straight roads, curves and roundabout, with a maximum of four vehicles
per scenario.
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As physical entities, the notion of car traffic scenario includes the vehicle shape and
motion, road boundaries, obstacle shape and motion and target area. The goal of
this chapter is to unify these problems and provide a general framework for modeling
such entities through a level set approach. To this purpose the notion of level set
function plays a crucial role in this chapter. The function h : R™ — R is a level set
function for a set H C R"™ if it holds

XeH << hX)<o. (2.1)

There always exists such a function since one can use the signed distance function
to H, i.e. h(X) = dy(X) such that

d(X,H) if X ¢ 7

(X)) = { —d(X,CH) ifXeH (22)

where (H = R"\'H. For the problem considered in this thesis, at least Lipschitz
continuity for the level set function is required. In some cases it is possible to
define the set H as the intersection of sets with smooth boundaries, i.e. level sets
of smooth functions. This becomes important for sensitivity analysis issues and to
find numerical solutions via direct methods of Section in Chapter

2.1 Target

Let z = (21, 22,...,2n,) be the state for the system with dynamics f described
in Section (1} and let (z1, 22) be the evolution in time of the position of the vehicle,
while z3 is the yaw angle evolution in time. The target set {2 represents the area in
a car traffic scenario where the vehicle will be at time ¢;. Such a set can be thought
of as the set of points in the space where the driver would take back the control
of the car if any collision avoidance system was activated, or the collision warnings
would stop. Therefore the target set would be:

Q:{ z€R™ | az; +bzy+c¢<0,a,b,ceR
(2.3)
and |z3(ty) — 23(to) — B| < €,8 € [-7/2,7/2] },

meaning that the vehicle has to reach the half-space H = {(21, 22) € R? | az1 + bzy +
¢ <0,a,b,c € R} and with a certain orientation given by the yaw angle condition.
For instance for straight road scenarios the |23(tf) — 23(tp)| < € has to hold for a
small threshold € > 0. For a curve or a crossing scenario, |z3(ts) — 23(tp) — 8| <

e, €[—n/2,m/2].
The associated Lipschitz continuous function ¢ : R?* — R is

©(z) := max ((a21 + bz +¢), (Jz3(ty) — z3(to) — B — e)), (2.4)

where a,b,c € R and 8 € [-7/2,7/2].
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Observation 2.1. The set § is an intersection of level sets with smooth boundaries,
i.€.
Q={zeR™ | §(z) <O}, (2.5)

with ¢ : R — R"? smooth with ng = 3, such that

az1 +bz +c
o= =z(ty) —2sto) —B—¢ |, (2.6)
—Zg(tf) + Z3(t0) + 5 — €

where a,b,c € R, B € [-7/2,7/2], € € R small.

2.2 Road configurations

As presented in the introduction to this chapter, relevant road geometries are sum-
marized in four categories: straight, curve, crossing, roundabout. Our aim is to
define the road as a mathematical object according to its shape. A general road
setting defined only by a list of points will also be considered. This generalization
finds its motivation in the data structure of sensor output (see [89]), where the sen-
sor detects only some points that are likely to belong to the road and returns such a
list to the user. A simple idea on how to generate the set describing a straight road
and a roundabout opens this section.

o A straight road of the type in Figure

Figure 2.5: Straight road geometry.

is characterized by the set of points

ICr = {(3573/) (S R2 |ydown <y< yup}a (27)
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With Ydown, Yup constants. The set in (2.7]) is the intersection of the two half-
spaces of R? with smooth boundaries

ICm = {(:L'ay) € R? |ydown -y < 0}7
(2.8)

ICrg = {(x,y) €R2|y_yup SO}

e The roundabout shown in Figure [2.6

-]
T

road ’yroad)

o T et
P

Figure 2.6: Roundabout-curved road geometry.

is defined as
Ky = {(x, y) € R? |T6210wn < (z— xmad)Q +(y — ymad)2 < Tﬂip} ) (2.9)

where (Zyoad; Yroad) is the center of the roundabout and ry, — rgewn is the
constant width of the road. Again the set in (2.9) is the intersection of sets
with smooth boundaries

ICTI - {(-’E,y) € R? | (‘T - xroad)Q + (y - yroad)2 - T'l%p = 0}7
(2.10)

IC’I“Q - {(ﬂ?,y) € R? | - ('T - :Craad)g - (y - yroad)Q + T?loum =0

To characterize the set IC,., a level set function denoted as g, is used, and whenever
possible, a characterization through a smooth function g, is given. For instance, let
gry» 9ry e functions from R? to R, then

e in the case of (2.7,

ICT1 = (SC,y) <~ 9r (l‘ay) = Ydown — Y < 0,

2.11
Kry 2 (2,y) <= 9r(2,9) =y — Yup <0, (2.11)
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and
Koy NKr, =K 3 (z,y) = (2.12)
gr(z,y) = max (gr, (2, y), gr(z,y)) <0,
where g, Lipschitz continuous, or alternatively,
~ L Ydown — Y
Ky 3 (z,y) < gr(z,y) = < ) < Oy, (2.13)
Y — Yup
where g, : R? — R"%r is smooth and ng, = 2;
e in the case of (12.9)),
Ky, 3 (z,y) <
g (z,y) = (v — $road)2 + (y — yroad)Q - T%p <0,
(2.14)
Kry 2 (z,y) <
Gro (:E? y) = _(l' - xroad)Q - (y - yroad)2 + T?loum < 07
and
Koy NKr, =K 3 (2,y) = (2.15)

g?“(xv y) = max (91“1 (x’ y)» 9ray ($a y)) <0,
where g, Lipschitz continuous, or alternatively, K, o (x,y) if and only if

o (T = Troad)® + (Y — Yroad)® — T2p )
)= <0, 2.16
s ( y) ( —($ - xToad)Z - (y - ymad)Q + T?loum Ngr ( )

where g, : R* — R"r is smooth and ng, = 2.

Remark 2.2. A general and simple rule for constructing Lipschitz continuous level
set functions is the following. Assume that g1 (resp. g2) are Lipschitz continuous
level set functions for the set IC1 (resp. K2), that is, gi(z) <0< x € K;, fori=1,2.
Then

max(g1(z), g2(z)) <0 & x€KiNKa, (2.17a)
min(g1(z),g2(x)) <0 & =z € KUK, (2.17b)

Hence max(g1,g2) (resp. min(gi,g2)) is Lipschitz continuous and can be used as
a level set function for K1 N Ko (resp. K1 UKsz). Then more complex structures

can be coded by combining (2.17a) and (2.17b)) following well-known techniques in
computational geometry (see e.g. [40, [55]).

A generalization to other road geometries is given straightforward.

o A straight road with varying widths as in Figure
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(xbar,ydown1)

(xbar,ydown2) |

Figure 2.7: Straight road geometry with varying width.

is modelled by the set

Ky = {(:C, y) € R2 |ydown(x) <y< yup}a (2-18)
where
Ydowny if x < x,

T) = . _ 2.19
Ydown () { Ydown, 1f T > T. ( )

Yups Ydown, » Ydowns, T constants. Observing that K, = K., NKC,,,

ICrl = {(l‘»y) S R? |ydown($) —y < 0}7

(2.20)

Kr, = {(x7y) ER2|y_yup < O}'

To define the level set function of (2.18)) it would be natural to use the function
(2.19))

gr(z,y) = max (gr, (2, 9y), gr (z,y)) < 0, with
r(2,y) (gri (2,Y): gra (2, ) (2.21)

9r (2, Y) = Ydown (%) =y <0, gry(2,Y) = Y — Yup < 0.

However due to the discontinuity of g, (z,y), the function g,(x,y) is not Lip-
schitz. The desired definition which yields a Lipschitz level set function is
instead

gr(7,y) = max ( min ( —(y— ydown1)7 —(z — 'CE))7
(2.22)
_(y - ydowng)ﬂ (y - yup) > .

The set IC, should not be written as intersection of level sets with smooth
boundaries and thus cannot be used for models where direct methods are
applied.

o A crossing with corner points given by (z;,y;),i =0, ...,3, as in Figure
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(x4.¥,) (Yg)

0¥) IERE

Figure 2.8: Crossing road geometry with smooth boundaries.

is modelled as the set

K, = . N

(2.23)

where |z] denotes the biggest integer less or equal than a real number z and
[x] denotes the smallest integer grater or equal than z. Thus the level set

function is

1=0,...,3

gr(2,y) = max (mm (1) # 1y = g), (~1)1E) @ — mn)).

(2.24)

Also in this case the set I, cannot be defined as intersection of sets with
smooth boundaries. However an alternative way to model the crossing road
such that it satisfies this criteria, is obtained considering its boundaries as four

circles (Figure [2.9).
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| &) *3:¥o)

Figure 2.9: Crossing road geometry.

In this case

K= N
i=0,...,3

= ﬂ
=0

o3

K,
{ woeaxpicw] (2.25)
@ (g - 12 <0 }

where x = max(z1,2),Z = min(zo, r3) and y= max(y2,¥3), ¥ = min(yo, y1)-
The Lipschitz continuous level set function is
gr ‘= max (  max, (—(:13 — ) — (y—yi)? + 7“1-2 < 0) ,

2.26
(3:—f),—(m—g),(y—gj),—(y—y) ) ( )

A characterization of the set (2.25) through a smooth function g, : R? — R"r
is:

Kr>(z,y) <= gr <0n, , (2.27)
where ng, = 8 and
—(z—2)’ = (y—w)’ +r]
—(z—22)” = (y— 1)’ + 13
—(z - 1’3)2 ~(y— ya)z + T?z
~ —(x—24)"— (y — +r
Grlay) = | TS T (2.28)
—r+x
y—y
—yty

e A curved road that starts and ends straight, as in Figure with center
(wroad7 yroad)
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Figure 2.10: Curved road geometry.

is modeled as the union

Ky o= K, UKy U Kr, (2.29)
with
Icrl - {(l’,y) S RQ |$doum S x S xupa if Yy S yroad} ’
K?"z = {(:an) S R? |ydown <y< Yup, if z > zroad} )
(2.30)
Ky = {(z,y) eR?| 72 < (2 — Troaa)? + (y — )2 <2
T3 Y down road Y = Yroad)” = up?
if v < 2p0qq and Yy = yroad}~
where
Yup = Yroad T Tup;
Ydown = Yroad T Tdown;
Zup = Troad — Tdown

Ldown = Troad — Tup,

are constants. The level set function is defined straightforward
gr(xa y) = min ( max ((x - xup)a _(-73 - l'doum)a (y - yroad))y
max ((y - yup)7 _(y - ydown)7 _(x - wroad));

max ( ((x - xroad)Q + (y - yroad)2 - T%Lp) R (2.31)

—(z - xroad)2 —(y— yroad)2 + Tgoww

—(Y = Yroad), (T — Troad) ) )
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An alternative formulation for a curve road (see red curve line in Figure
through a smooth function g, is obtained by intersecting the set (2.9 with
one of the four possible intersection of two half spaces in R? defined by the

hyperplanes & = %044 and Yy = Yyroqq (red cross in Figure .
ICT‘ = {(ZB7 y) 6 RQ | T?lown‘S (:E - xroad)Q + (y - y’l”oad)2 S rq%p} ﬂ
(2,9) € R2| = 11141 (@ — 2y000) <0} (2.32)
(2,) € R2| = 118 (y — yp00) < 0},
where ¢ is given in the set {0,1,2,3} and it denotes one of the four subspaces
defined by & = Z,0qq and Yy = Yroeq starting from the upper-right and counting

anti-clockwise, (Zoad, Yroad) 18 the center of the circle modeling the curve and
Tup, Tdown are the radius of the two circles forming the curve boundaries.

— Let g, : R? = R be defined as

gr(x,y) := max < (Z — Zroad)® + (Y — Yroad)” — 7“124)7
—(7 — xroad)Z —(y - yroad)Q + Tgown’
_1[%]+1(37 - $road)7 _1L%J+1 (y - yroad) )

(2.33)
then g, is Lipschitz continuous and

Ky 2 (z,y) <= g:(z,y) <0; (2.34)

— Let g, : R? — R"r be defined as

—|—($ - $r0ad)2 + (y - yroad)2 - ""Zp

—(x — xroad) (y— yroad)2 + rﬁown

gr(x,y) = 2.35
g ( y) (JJ -z oad) ( )
1\' H—l(y yroad)
then g, is a smooth function with ngz, = 4 and
Kr 3 (z,y) <= gr(z,y) < Onj . (2.36)

A more general way to construct level set functions for roads delimited by polygonal
lines is shown in Figure [2.11
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Figure 2.11: Road defined by polynomials interpolating the sensor detected points
that belong to the road boundaries.

The set describing the road is characterized as
K, = {(z,y) € R?|pi(z,y) <0 and pa(z,y) >0} . (2.37)

For j = 1,2, p; : R? — R are interpolation functions of the points (z;,y;.),
i € {0,...,n} detected by the sensor as points belonging to the upper (j = 1) and
lower (j = 2) bounds of the road, as in Figure Moreover, for each j € {1,2}

Qj,o(m)y)a Vo € [xj,07zj,1]7 vy € [yj,()a yj,l]
pj=y (2.38)
Gn-1(2,Y);, VT € [Tjn-1,Tjnl, VY € [Yjn-1,Yjn]
where ¢;; : R? — R are the polynomials of degree at most 1, interpolating the pair

of knots (x;;,y;:) and (211, yji+1) for i =0,...,n —1 and j = 1,2. The level set
function associated to set (12.37)) is:

gr(z,y) = min gr, (z,y),

gry(@y) = _max (min ( (@=jir),
@), (2.39)
(Y — Yjit1),
—(Y — vj.i)s

(=1 gji(z,y) ) )

Observation 2.3. In the particular case where the functions p; are piecewise linear
and convex, the level set function of (2.37)) is

Gr = Iax gr;,
i=12 - (2.40)
Gr; = max (—13 qm-) .

i=0,...,n—1
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Moreover a characterization of the set (2.37) through a smooth function g, : R?> —
R"9r s possible

Kr 3 (2,y) <= gr(2,y) < O0n, ,ng, = 2n, (2.41)
with
+q1,0(z,y)
—q2,0(7,y)
gr(z,y) = : . (2.42)
+q1,n-1(2,y)
—G2n-1(2,Y)

Literature on models of the road via piecewise defined cubic polynomials or B-splines
is discussed in [51].

2.3 Obstacles geometry and motion

In this subsection equations for modeling the obstacle shape and motion are derived.
The obstacle geometry is approximated by circles or rectangles equipped by linear
or circular motion. The obstacle ¢ is denoted with O; and the “obstacle-free set”
is referring to I, which is the complement of the union of all O;, denoting an area
that is collision free. Let X;(t) = (z;(t),y;(t)) denote the center of obstacle i, which
may depend of the time ¢ € [to,t7] C R.

Circular obstacles. The obstacle is approximated by a closed ball:
O; = B(X;(t),4;), (2.43)

centered at X;(t) = (z;(t), yi(t)) and with given fixed radius ¢; > 0, for i = 1,..., k.
Thus the obstacle-free set is defined as:

’Co(t) = E( U B(XAt),&))
i=1,...,k (244)
= N {@y) eR @ —ni)? + (v - nl®) — 2 >0}

i=1,...,k

It holds that

(z,y) € Ko(t) <~
(2.45)
go((w,), 1) == maxi—y_k (—(x — 2:(t)* — (y — wi(t)* + €7) <0,
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with g, : R? x R — R Lipschitz. Moreover
(2,y) € Ko(t) <=

—(z —z1(t)* = (y — 1 ()* + £ (2.46)
50((.I,y),t) = < O”ﬁo’
—(x —2i(1)® = (y —wi(t)* + €3

with g, : R? x R = R" smooth, ng, = 4.

Rectangular obstacles. In the case of rectangular obstacles the following intro-
ductory observation is needed.

Observation 2.4. The rectangle R = [—ly,ly] x [—4y, ¢, with center in (0,0),
orientation ¢ = 0 and half dimensions £ = [{y,{,] is a set
R:={(z,y) € R?| — (by — |#]) <0 and — (£, — |y|) < 0}. (2.47)

Thus it holds
(z,y) & [l la] X [—Ly, by] =
(2.48)
de(x,y) == min ({; — |z|,4, — |y|) <O0.

The obstacle O;(t) can also be modelled as an affinely transformed rectangle with
center in X;(t), rotated of an angle 1;(t), i.e.

O;(t) == Rd;i(t)Ri + Xi(t), (2.49)
where R; rectangle of the form in (2.47) with half lengths ¢; = (¢;,,¢;,)", and

_{ cos(y(t))  —sin(yy(t))
Bso "<sin<wz-<t>> cos(ti(1)) ) (2:50)

Given a point Y € R? the condition for avoiding the obstacle O;(t) at time ¢ is
Y ¢ 0(t)
(2.51)
dXiﬂ/)i (Y) t) = dfi(R%(t) (Y - Xl(t))) <0,

where dy, is defined in (2.48|) and
cos(¢i(t))  —sin(ts(?)) >
Ry.(p) = ) . 2.52
i = ( S contrlt) (252)
Thus if the obstacle set is defined as K,(t) := C(UZ-:LMkO,-(t)) the condition for
avoidance of the obstacle region is given by the following condition
Y ¢ 0;(t),Vi <= Y € Ky(t) <~
(2.53)
go(K t) = maX;=1,. .k dXMﬁi (Y, t) <0,

with g, : R? x R — R.
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Observation 2.5. The four corners (X;;(t))i1<j<a of obstacle O;(t) are given by

Xij(t) == Xi(t) + By, Tjli, 1<j <4, (2.54)

1)1
T; = ( ( 13 (_1)0“2” ) (2.55)

where 1 < j <4 and |z| denotes the integer part of a real x.

with

In this rectangular case, it is not possible to derive a condition to characterized the
obstacle-free set through a smooth function.

Moving obstacles. The center X;(¢) and the orientation v;(t) of obstacle O;(t)
can depend on time ¢. This happens when the obstacle moves. A linear accelerated
motion along a straight path is considered:

zi(t) = $i0+vix0t+%aizot2, (2.56a)

yi(t) = yi0+viy0t+%aiyot2, (2.56b)

Vig(t) = Vigo + Qiaol, (2.56¢)

viy(t) = viyo + aiyot, (2.56d)

Gi(t) = wilto) = arctan —22, (2.56¢)
Viz0

where (aiz0,aiy0) is the constant acceleration of the obstacle i, (viz0,viyo) is the
initial velocity, (x;0, o) the initial position and ;(to) is the initial yaw angle which
is constant during the motion. It can also be that the obstacle motion is along a
curved road:

0;(t) = 9i0+wi0t+%aiot2, (2.57a)
wi(t) = wio + a4ot, (2.57Db)
xi(t) = acos(0;(t)) + xc, (2.57¢)
yi(t) = asin(0(t)) + ye, (2.57d)
Yi(t) = Hi(t)—g, (2.57¢)

with ;9 constant angular acceleration, wjo initial angular velocity, ;9 the initial
angle position, (z.,y.) center of motion and a is the initial distance to the center of
the motion.

General obstacle motion along a curve C' is possible via parametrization of C' by a
function modeling the evolution of the path of the obstacle in time.
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2.4 Vehicle and corresponding level set functions

Let X (2(t),t) = (21(t), z2(t)) denote the center of gravity of the vehicle with motion
described in Section (1} from which it appears the dependency on the time t and
on the state z = (z1,22,...,2,.). Indeed for some systems presented in Section
conditions on z hold, for instance the condition of Kamm'’s circle in Equation @D
Herein, the tire forces Fj,., Fiy depend on the state as shown in Equations @
and , while the tire forces F,, Fsy depend on the side slip angles a;., ay (see
Equations , ) which depend on several states (see Equations ,

(1.12b])). Such conditions are satisfied if and only if

2(t) € Ka(t) = {2(t) € R™ | Fyp(2(t)” + Fis(2(1))* < g°m3,

Fol(0) + Fr:(0)? < gmdy, &
and it holds the equivalence
z(t) € Ky4(t) <~
ga(2(t)) = max ( (Fyy(2(t))? + Fip(2(1)? — g°m3), (2.59)
(Far(2(1))% + Fin(2(0))? — gm?) ) <0.
Moreover given gg : R? x R — R" smooth, ng, = 2, then
~ _ (Fp(2(1)? + Fip(2(1)* — g°m})
2(t) € Kq(t) <= Ga(2(t)) := ( (Fur((0)% + Fo((1)? —meg) ) < 09. (2.60)
The shape of the vehicle can be modeled as a circle
V(z(t),t) :== B(X(2(t),1),4), (2.61)

where B(X (z(t),t),£) is a ball in R? centered in X (z(t),t) of radius £ € R. Or the
vehicle can be modelled as a rectangle, using ([2.47)):

V(z(t),t) == { X(2(t),t) = (z1(t), 22(t)) € R* |
—(ly —|21(t)]) < 0 and (2.62)

—(ly —l2®) <0 }.
Here X (z(t),t) is the rectangle center, £ = (£;,£,)" half lengths and vertices
Xj(z(t),t) :X(Z(t),t) +R,Z3(t)Tj€, j=1,...,4, (263)

with the matrices T} as in (2.55), R as in (2.52)), and 23 being the yaw angle of the
vehicle.

Let V(z(t),t) be the vehicle set evolving in time with state z(-), solution of the

system in ([I.1)) and let K4 as in (2.58). Let 2 be a target set, let K, be the road
set and let O;(t),7 = 0,...,k be the obstacles with associated obstacle-free set K,.
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Then in the time interval [tg,t¢] the reference vehicle has to drive a safe trajectory
which means that z(-) has to satisfy the following condition

Z(t) S ]Cd(t), Vit € [to,tf] (2.64&)
V(z(t),t) NC (K, UK(t) =0, Vi€ [to, tf], (2.64b)
z(tf) € Q. (2.64c)

While Conditions and can be represented by inequalities involving
level set functions or smooth functions, (see (2.59) and (2.60) for condition (2.64a),
and see and for condition (2.64d))), for there is no characterization.
In the next paragraphs characterizations of the sets V(z(t),t), K., and K,(t) will
give an at least necessary condition for .

Observation 2.6. If the vehicle is identified with its center of gravity X (z(t),t),
condition ([2.64b|) is equivalent to one of the following:

e given g, and g, as in Subsections and Lipschitz reqular,
X(2(t),t) e K(t) <= g(z(t),t) <0, for eacht € [to,ts], (2.65)

with g(z(t),t) := max(g,(2(t)), go(2(t),t) +n), n > 0 small (such that the
equality can hold);

e given g, and g, as in Subsections and [2.3, smooth functions,

X(z(t),t) € K(t) <= g(2(t),t) < Ogng, for each t € [to,ty], (2.66)
with G (2(00.8)
~ o gr(z(t),t

glalt), 1) = < Gol2(0), ) + 1 ) < Ong: (2.67)

n > 0 small;

with K(t) := K, N Ko(t), Ky and Ko(t) defined in Subsections and[2.3

If the vehicle is defined as a circle (2.61) or a rectangle (2.62)), then a sufficient
condition for (2.64b]) has to be derived. In particular Equation (2.64b]) is equivalent
to

V(z(t),t) C Kp, (2.68a)
V(z(t),t) C Ko(t). (2.68b)

Condition for is satisfied redefining the lower (upper) bound of the road by
increasing (decreasing) the values of Ydown, "down (Yup, "up) by the maximum dimen-
sion of the vehicle. In the next paragraphs condition is analyzed depending
on the obstacle shape.
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Circular vehicle. If the vehicle V is modeled as the ball (2.61]) and the obstacles
O; are described by ([2.43) for each i = 1,...,k, then (2.68b) is equivalent to:

B(X(2(t),t),0)n | B(Xi(t), ) = 0. (2.69)
1<i<k

and since for each i =1,...,k
BX((1),0),0) 0 BOXi(0),6) = 0 = |X((0),8) = Xi(t)]l2 > €+ £, (2.70)
then condition ([2.69) is equivalent to one of the following;:

e given g, : R™ x R — R Lipschitz,
Gol2(8),1) = max —(| X ((t),8) = Xi(t) ]2 — € — £5) < 0 (2.71)

1<i<k
« given g, : R™* x R — R"% smooth, ng, =k,

—(21(t) —21(1))? — (22(8) — 31(8)” + (£ + £1)?
Jo(z(t),1) := : < Ong, -

—(21(t) — 2 (1)) = (22(t) — wk(£))® + (£ + Lp)?
(2.72)

If the obstacles O;(t) are the affinely transformed rectangles in (2.49)), the following
conditions hold simultaneously

Vi=1,... k=14 Xi;{t)¢BX(t),1t),0) <

o (X (0,0 = X0l — ) <0,

Vi=1,....k X(t) ¢ (X(z() t), )<:>
masx — (X (=(8),) — Xy(t)l2 — €) <

1<i<k

where X ;(t) are the vertices of obstacle ¢ defined in Observation Condition
(2.73)) assures that neither a vertex nor the center of any of the obstacles lie inside
the vehicle. The following are equivalent necessary conditions for (2.68b)):

(2.73)

e given g, : R™ x R — R Lipschitz,

9o(2(t),t) ;= max | max —[1X(2(8),8) = X(®)]l2 + £ ) < 0;
I<ish \ X(t)e{Xi1 (), Xia(t), Xi(t)}
(2.74)
e given g, : R™ x R — R"% smooth, ng, = 5k,
—(21(t) = z11(1)? = (22(t) = y1.1(1))> + £

(1 (1) — 2 2 _ (4 _ 2 g2
o(2(t), 1) := (18) — 2:1208) :( ) —yalf))* 44 < Op,, . (2.75)

(a1 t) — 21(1)? — (22(t) — ()2 + 2
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Rectangular vehicle. If the vehicle is modelled as a rectangle, see (2.62)), then
two case have to be considered. If the obstacles O;(t), i = 1,...,k are circles
described by ([2.43)), the following conditions hold simultaneously

Vi=1,...,kVj=1,...,4, X;(2(t),t) ¢ B(X;(t),l;) <
max _ —([|X;(z(t), 1) — Xi(t)|[2 — £:) <0,

1<i<k, 1<j<4
Vi=1,...,k, X(z(t
—(|| X (=(t),t
max —(|[X(=(t),1)
where X (z(t),t) are the vertices of the vehicle defined in (2.63). Condition (2.76|) as-
sures that neither a vertex of the vehicle nor its center lie inside any of the obstacles.
The following are equivalent necessary conditions for (2.68b|):

),t) & B(Xi(t),4) < (2.76)

Xl(t)HQ — &) <0,

e given g, : R™ x R — R Lipschitz,

go(z(t),t) := max ( max — 1 X3(t) = X (2(t), t|| —|—€i> <0; (2.77)
I<i<k \ Xe{Xy,..,X4,X}

« given g, : R™ x R — R"% smooth, ng, = 5k,
—(z1(t) — Z1,1(t))z —(yi(t) - Z2,1(t))z + E;
5o (2(0).) = —(@1(t) — 212(1)) _:(yl () =220 + 41 | _ o . (278

(ant) — 2 (8)? — (g (t) — z2())? + €2

Figure shows the case where also the obstacles are rectangles and they are

described by ([2.49).

oY,

(1’, y) x

Figure 2.12: Vehicle and obstacles.

Then, as in Equation (2.51)), given a point Y € R?, the following

Y ¢ V((t),1)
(2.79)
dx,p(Y) == de(R_y00 (Y — X(2(t),1))) <0
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gives a condition for the avoidance of the obstacles, where function dy(-) is defined
in ([2.48). Thus, the following

olo(0).6) = maxicicn ( maxg e, g drs(Ki(0), -
2.80

mxse i, e (K(E0.0) ) <0
is a necessary condition for (2.68Db)).

Presently, by definition the function g, : R®* x R — R is Lipschitz continuous and

Go(z,t) <0 <= Vi,j: X;(2(¢),t), X(2(t),t) ¢ O;(t) and

Vi j o Xi(t), Xa(t) ¢ V(2(t),1) (2.81)

However, the aim is to characterize the fact that the obstacle and vehicle are dis-
joints, i.e.,
V(. tn( ] oit) =0 (2.82)
1<i<k
In general, the condition g,(z(t),t) < 0 (that is, condition (2.81)) is not sufficient
to ensure that holds, as shown by the counter-example illustrated in Figure
2.13

(l’,y) X

Figure 2.13: Vehicle and obstacles.

This condition can be solved by using Farkas’ Lemma, see [50], adding an additional
control. This will however increase the complexity of the problem.

To summarize, in this section for a given car traffic scenario defined as a quintuple
(Ka, Kry Ko, V,Q), the associated Lipschitz functions g4, gr, go, ¢ or the associated
smooth functions gy, g, go, @ were derived by imposing property . Let now
g:R™ xR — R be defined as

9(2(1),t) == max {ga(z(t),1), gr (2(t), 1), go(2(1), 1) + 1} , (2.83)
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and let g : R™ x R — R" be the vector function such that
, (2.84)

with 7 > 0 small. Thus equivalent sufficient conditions for (2.64) to hold, are given
by

e in this case the level set functions are only Lipschitz,

p(=(t7)) < 0, and g(=(t), ) < 0 V¢ € [to, t]; (2.85)

e in this case the level set functions are smooth,

e1(2(ty))
o(z(ty)) == : <0, and
‘5ngg(z(tf))
(2.86)
g1(2(t),1)
g(z(t),1) == : <0Vt € [to, tyl;

Gng (2(1), 1)

« if for instance ) and K are the zero-level sets of functions ¢ and g respectively,
or equivalently if €2 and K are the intersection sets of the zero-level sets of
functions ¢;, i = 1,...,ngz, and g;, i = 1,...,ng respectively, then and
are equivalent to (2.87))

z(ty) € Q, and z(t) € K(t) Vt € [to, ty], (2.87)

Conditions (2.85))-(2.87) are called constraints. In particular if there is time depen-
dency they are called state constraints, otherwise they are named boundary con-
straints.

3 Definition of objectives used in collision avoidance systems

The model presented in this chapter addresses to two main objectives which can
be thought of as safety and performance goals. The reference vehicle trajectory,
modelled in Section [I|as the function z¥ (-) solution of System (L.1), must achieve
such objectives. Guaranteeing safety is the first priority, satisfying performance
criteria the second. Safety has been discussed in Section [2] and a mathematical

condition to impose it, is given in one of Conditions (2.85)-(2.87).
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In this Section the performance criteria will be defined as the functional

wo(zy, (7), 7, w) + /OT Jo(zg, (), u(t))dt. (3.1)

To satisfy such performance criteria means to find a control strategy u € U := {u :
[0,00) = U C R™ | u measurable} and parameters w € W, 7 € [to,ty] such that
the functional is minimized. Once the performance criteria have been defined
it becomes natural to write the optimal control problem modelling the car traffic
scenario where safety and performance requirements are guaranteed.

Problem 3.1. Let [tg,t¢] C R be a non-empty and bounded interval with fized time
points tg < ty and

©wo R™ x [to,tf] x R™ — R,
fo : R™ xR™ SR,
f [to,tf] x R™ x R™ — R,
be maps. Let (K¢)i>0 and Q be closed set of R". Find states z : R — R™

absolutely continuous, controls u € U = {u|u : [0,+00) — U C R™ meaurable.}
and parameters w € W C R™, 7 € [to, t¢] such that:

3.2a)
zZu€U weW,TEto,t f]

min J = @o(z(7), T, w) + tTfo(z(t),u(t))dt (3.
s.t. 2(t) = f(t,2(t),u(t)) a.e. t € [to, 7] CR, (3.2b)

Z(to) = 20, (3.2(3)

z(t) € K(t),Vt € [to, 1], (3.2d)

z(1) € . (3.2¢)

The (3.2a)) is called objective function, Equation (3.2b]) is an Ordinary Differential
Equation (ODE), Equations (3.2c)) and (3.2¢€]) are boundary constraints, while (3.2d))

is a state constraint. Conditions (3.2d))-(3.2€) can be written as (2.85) or (2.86)), due
to the equivalence with (2.87)).

By solving Problem for a specific characterization of the functional (3.1]), the
following three main questions will be answered in the next paragraphs.

1. Does it exist a collision-free trajectory for the reference vehicle, minimizing
the final time to achieve the target or minimizing the steering effort during
the path or starting the maneuver on the last possible point such that it is
possible to avoid a rear-end collision?

2. Given an initial point for the vehicle maneuver, which is the set of points that
the vehicle can reach, avoiding a collision?

3. Which points of the car traffic scenario are “safe starting points”, in the sense
that the reference vehicle starting a maneuver from those points can avoid a
collision and reach the target set?
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Question Compute an optimal trajectory from a given initial position
to a secure final state.

Definition 3.2. The state solution of Problem[3.1] associated to the control solution
u, for a given initial state zo € R"*, is denoted by 23 and it is called optimal
trajectory.

In this case the objective function is defined to meet the following requirements.

e The minimization of the final time 7 expects to perform the vehicle maneuver
z as fast as possible.

o Driver friendly trajectories with not extreme control values are also requested,
this is achieved for instance by minimizing the steering effort term. The con-
trols appear to be more regular than for minimization of the initial distance
to an obstacle where the controls are expected to be more extreme since are
the shortest possible trajectories.

e In a rear-end collision scenario, the distance vehicle-obstacle at time ¢y is
denoted by w and it will determine the vehicle initial position, i.e. z(ty) =
zo(w). The minimization of w represents the last possible zg(w) from which
the vehicle can start a maneuver that avoids a rear-end collision, in the sense
that if @ > w then the maneuver starting from zo (@) does not satisfy property

and (29).

Therefore,

gpg(zgo (1), 7,w) + /OT fO(Zgo (t),u(t))dt := 17 + cow + c3 /OT u(t)th (3.3)

with appropriate constants ¢, co, c3 > 0. The objective functional is a linear combi-
nation of the final time 7, the steering effort and the initial distance w to obstacle
O;. Since sometimes it is not clear whether a collision can be avoided at all, a con-
straint violation minimization technique is employed, for instance conditions
and are minimized instead of being hard constraints.

Question Compute the reachable set from a given initial position.

Definition 3.3. The reachable set in the time interval [to,ts] associated to the
dynamics f for a given initial state zy € R™=, for Problem[3.1], is defined as

]-"R{f = {Zf e R™ | for a given zy € R",3u € U and 37 € [to, ty] :

(3.4)
zy, feasible trajectory of Problem [3.1] and 2o (1) = zf}.
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The set of all trajectories that reach the points of the reachable set is called trajectory
funnel and it is defined as

Tf{f = {zgo :R = R"™ | for a given zo € R",Ju € U and 31 € [to, tf] : 55)
2l feasible trajectory of Problem and 2% (1) € ]-‘R{f }

A more general and complete definition of reachable set is given in [7, Section 10.4].

Let G = {gn}nencn be a grid on the state space R™. The reachable set is char-
acterized by distance functions minimizing the distance of the endpoint z(7) of a
trajectory to gy plus a regularization term involving the steering effort, for each grid
point gp. Thus

T T
ol (r)mw) + [ Aol (0, u®)dt = cal(r) e + 2 [ u(ePdr (3.6)
0 0
is the minimized function over u,w, 7 for each g in G, with appropriate constants

c1,c0 > 0.

Question Compute the backward reachable set within time ¢;.

Definition 3.4. The backward reachable set in the time interval [to,ty] associated
to the dynamics f, for Problem|[3.1], is defined as

BR,{; = {zo € R"™ | Ju € U : 2}, feasible trajectory of Problem } (3.7)

A definition of backward reachable set is given for instance in [17].

Let G = {gn}rhencn be a grid on the state space R™=. For each g the Problem
is soved with zg = g5 and the functional

po(zz,(7), T, w) + /OT Jo(25, (1), u(t))dt (3.8)

is minimized.

4 Errors in data detection by sensors

Measurements errors due to sensors enter the problem by assuming that any sensor
data is composed of the true value plus some random error value. This is important
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to investigate false warnings of collision avoidance systems as explained in Section
of Chapter [ The purpose of this section is to show how this can be modeled to
predict changes in the solution of the Optimal Control Problem by studying the
Perturbed Optimal Control Problem [4.1]

Problem 4.1. Let [ty,t¢] C R be a non-empty and bounded interval with fized time
points tg <ty and

©wo - R™ x [to,tf] x R™ — R,
fo : R™ xR™ SR,
f o [to,tf] x R™ x R™ — R"=,
be maps. Let (K¢)i>0 and Q be closed set of R". Find states z : R — R

absolutely continuous, controls u € U = {u|u : [0,+00) = U C R™ meaurable} and
parameters w € W C R™ 1 € [to, t¢] such that:

" Hlvlél [ J:=po(z(7), T,w)+ [ fo(z(t),u(t))dt (4.1a)
2 u€U wEW,TE[to, t f] to

s.t. 2(t) = f(t,2(t),u(t)) a.e. t € [to,7] CR, (4.1b)

z(to) = 20(p), (4.1c)

z(t) € K(t),Vt € [to, 7], (4.1d)

z(1) € Q, (4.1e)

where p € P C R™ fized.

The perturbation parameter p € P C R" models sensor perturbations that enter
the mathematical model owing to measurement errors in the initial values. The
vector p is used for sensitivity analysis and will denote perturbation parameters
that enter the problem, but are not optimized.

Let the following map be considered

L((0, 1] R™) X R 3 (u,p) > 22 () € WH2([t0, 4L B™), - (42)

denoting the control and parameter to state mapping, which maps a given control
u and a given parameter p to the corresponding state trajectory zgo ()" Two types
of sensitivity are then investigated.

o Let 2 := zgo the nominal optimal solution of Problemwith nominal optimal
control @ := 4(p) and nominal perturbation p, such that the initial value
is zop := zo(p). The aim is to investigate the dependence of the solution 2
and of the control 4 on p to find an optimal solution of Problem The
Fiacco-Sensitivity approach is used to approximate such optimal solution of
Problem [4.1] by using a Taylor expansion around p and a parametric sensitivity
analysis (see Section of Chapter of the nominal solution Z and of
with respect to p (references on parametric sensitivity analysis are in [411 52]).
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o Let 2 := 2 the nominal optimal solution of Problemwith nominal optimal
control 4 := 4(p), nominal perturbation p and initial value zg := zo(p). The
aim is to investigate the dependence of the solution Z with respect to p by
fixing the control 4 (a reference for this sensitivity is [105]). This means to
find the solution of the following initial value problem for p € B(p,r).

A(t) = F((t), alt)), ae. in [to,tf],
2(to) = z0(p) =: €. (4.3)

The goal of this model is to understand how an optimal solution for Problem
changes by perturbing the initial value but keeping the same controls.
This will model situations where unknown errors from the sensors are given to
the driver or to the collision avoidance system, that will calculate an optimal
control taking such values as correct ones. For this second case the approach
called ODE-Sensitivity is applied and it investigates the dependence of the
solution of the initial value problem with respect to the initial state.
Thus the perturbed solution will not be optimal since 4 is fixed.

The sensitivities here introduced will be computed in Section [3| of Chapter [[V] for
nominal optimal trajectories and for nominal reachable sets. Moreover an estimation
of the maximum possible perturbation p is given, such that the perturbed trajectory,
solution of is still safe (i.e. it satisfies and (3.2€)) even if it is not optimal.
This finds its motivation in the search of the lowest sensor measurement precision,
such that robustness for the collision avoidance system is guarantee.
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In this chapter some results in optimal control theory are recalled from existing
literature. A brief overview in reachability and optimal control theory is given in
Section 1 based on the introductions of [4, (5, [97) [98]. Section [2|is presenting some
of the numerical methods discussed in literature for solving reachability and optimal
control problems. It is based on the work presented in [14} [17) 18] 49, [92]. Particular
attention is oriented to numerical methods implemented in the software packages
OCPID-DAE (such as direct methods, see [48] and Subsection 2.1]of this thesis) and
ROC-HJ (such as methods for solving the Hamilton Jacobi Belmann PDE, see [16]
and Subsection of this thesis), used to compute the results in Chapters and
V1

1 Optimal Control Theory

Control theory analyses the properties of controlled systems, i. e. dynamical systems
on which one can operate through a control. The aim is to bring the system from
a given initial state to a certain final state, respecting specific criteria. From a
mathematical point of view a control system is a dynamical system depending on a
control input, which is often subject to constraints. Examples of dynamical systems
are differential systems, discrete systems, systems with noise, systems with delay,...
To model such system, mathematical tools from several domains are used, such as
differential equations, partial differential equations, integral equations, functional
equations, stochastic equations,... An example of a control system, which will be
addressed in the next sections, is the parametrized dynamical system in Problem

LIl
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Problem 1.1. Let the following dynamical system be given:

2(t) = f(t, 2(t), u(t), for a.e. t € [to,ty],
z(to) = 20, (1.1)
(t) e, Vte [to,tf)

where the elements that define the control system are:

tr,to € R, are given initial time and the final time, respectively;
z:R—=R" n, >0, is an absolutely continuous function called the state;
zp € R"#, is the initial state;

u:R—UCR"™ n, >0, isa measurable function called the control,
f:RxR"™ xU — R", is the dynamics map;
K C R"=, a closed set called state-constraints set.

Under mild hypothesis (see [1]), given a measurable function w, the control system
admits a unique solution which is an absolutely continuous function denoted as

2y called state of the control system.

Reachability analysis studies the ability to find a control law to bring a given control
system from an initial state to a final state. The main questions in reachability are
to determine for a given control system the set of all final states that can be reached
by the system starting from a given initial state (forward reachable set) and vice
versa the set of all initial states from which the system can start and reach a given
final state (backward reachable set). Often in industrial applications the concept
of robust reachable sets and perturbed reachable sets arise, see [5] and Chapter
of this thesis. It is important to mention that methods for the approximation of
reachable sets often use set-valued calculus and the formulation of control problems
as corresponding differential inclusions, see [5], [7]. Therefore, systems of the form
can be written as the initial value problems (or Cauchy problems) associated
with the differential inclusion

2 (t) € F(t,2(t)), for almost all t € [to,ts],
z(to) = 2o, (1.2)
z(t) € KL, Vt € [to, t),

where F' : R x R = R" is a set-valued map. Equivalence of the solutions of
Systems and was proven by Filippov in 1959 under mild assumptions (see
[7, Chapter 10]). In Section [2.2] an algorithm based on the solution of the Hamilton
Jacobi Belmann equation to compute these sets is shown. Algorithms for computing
reachable sets are discussed in [6l 18, [87] and [19, 20} 43 [70} [83].

Optimal control deals with the problem of finding a control function for a given
control system to go from an initial state to a final state minimizing certain criteria.

Its roots are in calculus of variations, studying problems of the type described in
Problem [L.2
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Problem 1.2. Find a function z such that:

min, [}/ L(t, 2(t), £(t))dt,
z(to) = 20, 2(ty) = 2y,

given a time interval [to,tf], a function L : [to,tf] x R™ x R" — R, and 2, 2y
points in R™=.

An example of Problem that initially attracted attention was to determine the
curve designing the path that brings a point-like body from one place to another,
with zero initial speed, in the least amount of time. It is known as the Brachis-
tochrone problem, studied by Galileo in 1638. Consequently Jean Bernoulli in 1696
found the solution, an arc of a cycloid starting from the vertical tangent, see [98].
Variational principles of classical mechanics, such as Fermat’s principle, Dirichlet’s
principle, Euler Lagrange equations, were widely used techniques for solving prob-
lems in calculus of variations.

Optimal control is an extension of the calculus of variations which imposes a new
kind of constraints, such as dynamical constraints and pathwise constraints, leading
to the formulation of Problem [1.3]

Problem 1.3. Find a measurable function u : [to,t;] — R™ and a corresponding
absolutely continuous function z : [to,tf] — R"* such that:

minz,u %0 (Z(to)v Z(tf>)’

z = f(t,z(t),u(t)) a.e. in [to,ts],
u(t) e U C R™,

p(2(to), 2(ty)) = 0,

given a time interval [to, ts], functions f : [to, tf]xR™ xR™ — R"*, g : R™ xR™ —
R, ¢ : R"* x R" — R" and zp, zy points in R"=.

The study of optimal control problems attained more and more attention from the
late 1950s when two important advances where made. The first, the Pontryagin
maximum principle, is a generalization of the Euler Lagrange equation to deal with
control constraints and differential equations. It is a set of necessary conditions
for a control function to be optimal [80]. The second, the dynamic programming
principle, is a procedure that links the search for an optimal control function to
the search for the solution of a partial differential equation called Hamilton-Jacobi
equation [13].

Key advances in optimal control arose in the 1970s when two important develop-
ments (explained below) took place for solving problems with state-constraints, as
given in Problem which were not covered by the previous available version of
the maximum principle.
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Problem 1.4. Find a measurable function u : [to,ty] — R™ and an absolutely
continuous function z : [to,ty] — R™ such that:

minz,u 2] (Z(tO)a Z(tf))7

Z= f(t,z(t),u(t)) a.e. in [to,tf],
u(t) e U C R™,

p(2(to), 2(ty)) =0,

2(t) € K CR™, Vi€ [to,ty),

given a time interval [to, t¢], functions f : [tg, tf] xR™ xR™ — R ¢q : R™* xR™ —
R, ¢ : R" x R" — R"™ and 29, zy points in R"=, K a compact set.

The field of nonsmooth analysis and in particular the theory of generalized gradients
developed by F.H. Clarke (see [28]), provided necessary conditions of optimality for
such nonsmooth variational problems. In this way it was possible to solve problems
as [L.4] involving state constraints as generalized problems in calculus of variations
with discontinuous derivative of the cost function. Related references on the deriva-
tion of necessary conditions of optimality are [84) 85, 08]. An alternative approach is
based on geometric control [93] by interpreting the necessary conditions for optimal-
ity as geometric conditions about reachable sets. Higher order necessary conditions
are discussed in [107].

The second key advance is the concept of viscosity solution due to M.G. Crandall
and P.-L. Lions. It provides a framework for existence and uniqueness of generalized
solutions to Hamilton-Jacobi equations arising in optimal control. In particular it
built a relation between the value function (map that associates any initial time
to and initial state zy with the optimal value of Problems and and the
solution of the Hamilton-Jacobi equation. For the unconstrained case (Problem,
several works have been devoted to the characterization of the value function as a
continuous viscosity solution of a Hamilton-Jacobi equation [11},[38]. In the presence
of state constraints, the continuity of this value function is no longer satisfied unless
the dynamics satisfy assumptions on the boundary of the state constraints, called
controllability assumptions (inward pointing qualification condition (IQ) by Soner
in [91] and outward pointing qualification condition (OQ) by Frankowska in [42]).
For the characterization of the value function without controllability assumptions
see for instance [17] and the references therein and for a characterization based on
viability theory, see [26l, 27].

Numerical methods for solving optimal control problems are discussed in Section
together with the analysis of the dependence of minimizers on parameters (sensitiv-
ity analysis). The main motivation for investigating sensitivity analysis comes from
engineering applications. The optimal performance is degraded by parameter per-
turbations and the implementation of nominal controls in real-world processes does
not give the nominal expected trajectory. Therefore, the dependency of the solution
of an optimal control problem on parameter values in the initial state components
it must be investigated. By adopting the dynamic programming approach, such
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dependence is supplied by the value function, solution of the Hamilton-Jacobi equa-
tion (whenever existence hypothesis are satisfied). Moreover computational schemes
are available for computing the optimal state and control, satisfying the maximum
principle. In this case, it is possible to provide gradients or sensitivity information
about this dependence near the nominal initial data as done in [23], 24, |41}, 49] and
recalled in Section In this way an alternative method to the computation of a
new optimal solution is given, providing a real-time approximation of the perturbed
optimal solution via Taylor expansion.

2 Numerical methods

Numerical solutions of optimal control problems can be categorized into three main
approaches: dynamic programming approach, indirect method and direct method.

The dynamic programming approach (DPP) is based on the dynamic programming
principle. The approach solves the Hamilton Jacobi Equation associated with the
given optimal control problem by computing the level sets of the value function [11,
17,18, [73]. Such methods require to solve a partial differential equation in potentially
high state dimensions, and the design of related computational algorithms is still
under development, see for instance |16} [71]. However first results [32] on application
to industrial problems are promising.

The indirect method solves numerically a multi-point boundary value problem for
the state and adjoint variables by using the maximum principle [3} 53] (56, [61), [79].
This approach leads to highly accurate numerical solutions but it often requires good
knowledges on necessary and sufficient conditions to set up the optimality system.
Moreover a good initial guess for the approximate solution is needed in order to
guarantee convergence [33] [75], [02].

The direct method is based on discretization of state and/or control variables over
time, so that the resulting finite dimensional optimization problem is solved nu-
merically by suitable methods for nonlinear programming. This approach has the
advantage that it is easy to manage for users that do not have a deep insight in opti-
mal control theory and it is capable to handle large scale problems. Direct methods
have been presented in detail by many authors, in particular see [14] [49].

2.1 Direct methods

This subsection is based on the work presented in [14] [49] [92].
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The transcription method

Direct methods, also known as transcription methods, received huge attention in
the numerical optimal control community in the last twenty years, with many appli-
cations to complex optimal control problems in industry. The idea is based on dis-
cretization of the infinite-dimensional optimal control problem and on optimization
of the resulting finite-dimensional optimization problem with state of art software
packages for Nonlinear Programming (NLP). Also known as “first discretize and
then optimize”, transcription methods are identified in two phases:

1. transcribe the infinite-dimensional problem into a finite-dimensional problem
with finite set of NLP variables;

2. optimize the finite-dimensional problem using an NLP solver.

The focus of this Chapter is to summarize two main techniques to discretize the
optimal control problem 2.1} the collocation method and the direct shooting method.

Gradient methods for continuous optimal control problems are also classified as
direct methods. The algorithm works in the same spaces in which the optimal
control problem is defined and only later it introduces a suitable discretization to
solve numerically the resulting initial value problem. However only simple state
constraints, like box constraints, can be included [49, Chapter §].

Among the optimal control problems of the form[1.4] the following type is considered
here.

Problem 2.1 (OCP). Given I := [ty,tf] C R a non-empty compact time interval
with tg <ty fized,

00 : R™ x R™ — R,

fiI xR x R™ — R"=,

g: I xR™ x R™ — R,
p : R™ X R™ — R™,

sufficiently smooth functions, the following problem is defined:

min wo(z(to), 2(ty))
w. r.t. z€ZuelU
s. t. 2(t) = f(t, 2(t),u(t)), ae.inl (2.1)

g(t, z(t),u(t)) <0, in I
¢(z(to), z(tf)) =0,

where Z = W'z (I) is the state space and U = Liu(I) is the control space. The
notation Wlngo(f) denotes the space of absolutely continuous vector-valued functions
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from I in R™ with essentially bounded first derivative. The notation L (I) denotes
the space of essentially bounded vector-valued functions from I to R™=.

Bolza problems with cost function of the type
ty
wo(z(to),z(ty)) + [ fo(t, 2(t), u(t))dt (2.2)

to

with fo : I x R™ x R™ — R sufficiently smooth, can be written in Mayer form
defining the additional state zjeq:

Znew(t) = fo(t, 2(t),u(t)), znew(to) = 0. (2.3)

Moreover problems with free final time can be also transformed to Problem by
applying the time transformation

t(s) =to+ s(ty —to),s € [0,1]. (2.4)

Time discretization: The time discretization is defined by a grid on the time
interval [tg,tf] C R:

G:{t0<t1<"‘<t]v:tf},

with step size hj =tj41 —1t;,7=0,...,N -1 (2.5)
and mesh-size h := max h;.
§=0,...,N—1

If G is an equidistant grid then the step size is constant h = (ty — to)/N and the
grid points are t; = to + jh,j = 0,..., N. To estimate the accuracy of a solution
means to investigate how well the approximate solution matches with the solution of
Problem Algorithms for automatic and adapted step-size selection are required
to improve efficiency and accuracy of discretization algorithms [14]. Strategies for
step-size selection are based on numerical estimates of the local discretization error
in order to keep this error below a given tolerance.

Control discretization: Let us take a time grid G defined as in ({2.5)), following
the notation of [49] the discretized control is:

M
Uapp(-) = ZwiBi(') (2.6)
i=0

where w4y, belongs to the (A + 1)-dimensional subspace of the essentially bounded
functions from [tg,tf] to R™ with basis B := {By,..., By} and basis functions
By, ..., By. The components of the vector w := (wo, ..., wys) are the new control
parameters for the discretized problem. Some examples of control discretization are
here described:
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1. Let w; = u(t;),i = 0,...,N — 1 be the control variables at each node of the

time grid G, the controls are chosen as piecewise constant functions:

uapp(t) =w;, b <1<t (27)

. Let w; = u(t;),i = 0,...,N — 1 be the control variables at each node of the

time grid G, the controls are chosen as piecewise linear interpolating functions
between w; and w;41:

Uapp(t) = w; + Tz(wiﬂ —wy), t; <t <t (2.8)

)

. As in [49, Section 5.1] the control can be parametrized by functions with local

support called B-spline functions:

N+k—1

uapp(-) = Y wiBf() (2.9)

i=1

where for ¢ =1,..., N +k — 1, w; € R™ and Bf() B-splines of order &k € N
defined by recursion:

1 ifr<t<m
1 o 7> i+1
Bi(t) = { 0 otherwise
(2.10)

BF(t) := = Bhl(y) 4 Tl gkl

Tiph—1—Ti ¢ Titk—Tit1  ot1
on the auxiliary grid Ggy, := {7li = 1,..., N + 2k — 1}, with
to  if1<i<k

=4 tip ifk+1<i<N+k-—1 (2.11)
ty  HN+Ek<i<N+2k—1

. In [86] the control is parametrized on the time grid G by N-degree Lagrange

interpolating polynomials:

N

uapp () =Y wiLi(") (2.12)

=0

where for i = 1,..., N, w; := u(t;) at the Legendre-Gauss-Lobatto points ¢;
and L;(-) are Lagrange interpolating polynomials of order N € N. Such control
discretization is used for the pseudospectral methods, a class of transcription
methods in which both, control and state, are approximated by N-degree
Lagrange interpolating polynomials. The advantage of pseudospecral method
is that it can have a rate of convergence faster than polynomials (exponential
or spectral) and a good accuracy, however oscillations for non-differentiable
trajectories are a disadvantage.
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Integration schemes

Discretization methods for ODE are an important tool for finding numerical so-
lutions of optimal control problem. They are categorized as explicit or implicit,
one-step methods or multi-step methods. Let us consider the initial value problem:

2(t) = f(t,2(t), 2(to) = 20 (2.13)
and let G, denote the time grid defined in ({2.5)).

Definition 2.2. Let F,,,n € {1,2}, continuous functions with values in R"=. An
explicit method for finding the approximate solution of (2.13) is defined as:

z(to) = 2o,
Z(ti+m+1) = Fl(tl'v oo tigm, Z(t1)7 SER) Z(ti+m)7 hi> SERE) hi+m)’ (214)
i+me{0,...,N—1}.
An implicit method for finding the approzimate solution of (2.13) is defined as:

Z(tO) = 20,
Fg(ti, ey tidme1, Z(tz'), .. ,Z(ti+m+1), hi,..., hi+m+1) =0, (2.15)
i+me{0,...,N—1}.
If m > 0 the method is called multi-step method, if m = 0 it is called one-step
method.

At each integration step, for implicit methods, a nonlinear system of equations is
solved using Newtown method or fixed point iteration. Therefore implicit methods
require a higher computational effort than explicit methods, but they lead to better
stability properties. Some references discussing consistency, stability and conver-
gence of integration schemes are [25], [49).

A prominent class of one-step explicit methods is the k-stage Runge-Kutta scheme.

Definition 2.3 (see [49) Section 4.1]). The k-stage Runge-Kutta method is defined
as:

K
2(tin) = 2(t) + hi Y bif;(ti, 2(8:), ha), (2.16)
j=1
where
Filtiy 2(ta), hi) = f(ti + cihiy 2(t) + hi > ajifits, z(t:), ha)) (2.17)
I=1<j

for 1 < j <k and k € N. The known constants aj,bj,c; are defined using the
Butcher array:

C1
c2 | a21
(2.18)
Ck | QK1 .- Qkk—1
by ... b1 br
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If ajy =0 for alll > j the scheme is called explicit, otherwise implicit.

Explicit Euler method is a 1-stage Runge-Kutta method defined by the Butcher
array:

00
1 (2.19)
and
Z(tprl) = Z(ti) =+ hif(ti, Z(ti)). (2.20)

Direct collocation

The direct collocation method aims to transform the optimal control problem into
a nonlinear optimization problem via full discretization (both control and state are
discretized in time) [14) 54].

State discretization: Once the control is discretized as in , the solution
of the Ordinary Differential Equation (ODE) over the interval [¢;,t; + h;] for i =
0,...,N —1, with t; points of the state grid G defined as in , is approximated
by a polynomial p : [t;,¢; + h;] — R™ of degree k which satisfies the collocation
conditions:

 collocation points are defined as ¢; < 751 < -+ < T < tip1 = i + his Zapp
denotes the function obtained by discretization of state z and z; = z4pp(t;) and

U; = uapp(ti; w);

e collocation conditions are given by imposing the initial condition and the differ-
ential equations of Problem at all collocation points:

P(7i5) = (75, p(Tig) s tapp (i W), G =1,....k; (2.21)

o define 211 = p(ti+1) and denote z;; = (7).
There are different schemes for choosing the collocation points, the most common

are Gauss, Radau and Lobatto methods. Gauss, Lobatto and Radau are implicit
Runge-Kutta schemes.

Discretized OCP: Discretization of state and control constraints yields the fol-
lowing discretized optimal control problem.
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Problem 2.4. The discretized optimal control problem in Mayer form via collocation
method is:

min J(z) = po(z0, 2N)
w. r. L. Z:(20,201,...,Z0k,21,...,
ZN—-1,ZN—-10y---32N—-1 ks <N,
Wo, -« .+, W) (2.22)
c Rz (N+1)+n: Nk+ny(M+1))
s. t. H(Z) - ORan+n¢
G(z) < Op(W+1)ng
where
21 —pl(t
! p( 1) g(to,ZO,UO)
H(Z) - : == ORN'”Z+"<P’ G(Z) == S S OR(N+1)n9'
2y ~pliy) g(tn, 2n,un)
©(20,2N) T
(2.23)

Problem 2.4 is a large and sparse NLP problem with optimization variable z, which
can be solved using sequential quadratic programming or interior-point methods,
[103].

Gradients: NLP methods require gradients of the functions involved.

Collocation methods are specific Runge-Kutta methods, thus they can be written as
in Definition
Ziv1 = % + hiF(ti, Zi, W, hi), (2.24)

where F': R x R x RIM+Dnu o R 5 R”: is continuous. Problem is large and
sparse, thus derivatives of the functions J, H, G with respect to the optimization

variable z = (20, ..., 2N-1,Wo, .., w)) are easy to compute.
0J(z Opo (20,2 Oo(20,2
8(2) - ( 9001(9,200 N)7OR”Z7'"ﬂOR"“%NN)’ORM+1>
MO Inz
OH(z) _ ’
72 My In. (2.25)
B(20.2 (20,2 :
S0(8+0N) Orrzxgrre ... Ornzxrre %NN)
ho 2 (fo:20,0,h0)

ow

OF(t h
hy (N,glz\ll),% N)

ORM+1 % Rre
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where M; := I, + h;OF (t;, z;,w, h;)/0z,i=10,...,N.

99g(to,z0,u0)

0z0
0G(z) _
0z
99(tn 2N uN)
ozn
9g(to,z0,u0) dug .. 9g(to,z0,u0) dug (2.26)

Jug Owg dug owpr

Og(tn.znuN) Ouy .. Og(tn.zN,uN) Ouy

oun dwo Oun Jwpy

Control parametrization through functions with basis functions with local support,
for instance B-spline in (2.9)), will lead to sparsity of the derivative %. This will
further increase the simplification of the structure of the derivatives.

Direct single shooting

Shooting methods are classically used for solving Boundary Value Problems (BVP)
in indirect methods. However applications of such methods to direct methods has
been studied and implemented in [15], 21], 22 [37, 45| [49] [82] 94]. They are classified
as reduced discretization methods, so that the control is discretized and then the
state is obtained recursively by numerical integration.

State discretization: Given a time grid G defined by (2.5), 2z.pp denotes the
discretization of state z and z; = Zgpp(ti) ¢ = 0,..., N, and u; = ugpp(ti;; w). Single
Shooting method can be summarized as follow:

o guess an initial value zp = z(tp) and a control parametrization;

« integrate the state equation from ¢y to ¢; using methods in Section for
instance for one-step methods:

20 = Z(to)
Zig1 = zi + hiF (i, zi,w, ), i=0,...,N—1 (227)

where F : R x R?: x RM+Dnu R —5 R™= continuous, and fori = 1,..., N, z
are not optimization variables but are functions of zg and w, z;(zg, w).

For a given initial condition the state trajectory is uniquely defined by the control
parametrization w. The main advantage of this method with respect to direct collo-
cation is the small amount of NLP variables. However it is very sensitive to a small
change in the initial value which may have a large influence on the state, specially
with highly non-linear differential equations.
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Discretized OCP:

Problem 2.5. The discretized optimal control problem in Mayer form via the single
shooting method is:

min J(2) = po(20,2N) i
— Ny+nqy, (M+1
w. 1. t. z = (Zo,wo,...,w]\/[) eR (228)
s. t. H(z) = Ogne
G(2) < Opvr1yng
where
g(to, 20, uo)
H(z) = ¢(20,2n) =0rre, G(2) = : < Ogvenmg  (2:29)

g(tn, 2N, uN)

Gradients: Reduced discretization methods lead to more complex derivatives than
full discretization methods, since they access the sensitivity information of the nu-
merical solution with respect to parameters.

9J(z) _ (8800(20,21\7) 4 9%0(z0.2n) D2y 5¢0(2072N)8z1v)

0z 0z0 ozn 0z0 ozn ow
OH(z) _ ([ 9¢(z0,2Nn) + 0¢(20,2n) Ozy  Ov(20,2N) OzNn
0z 0z0 ozN 0zp ozN ow
99(t0,20,u0)
0z0
9g(t1,21,u1) 921
0G(z) __ 0z1 0z0
dg(tn,zn,uN) Ozn
ozN 0z0
99(t0,20,u0) dug
Oug ow
9g(t1,21,u1) dz1 + 9g(t1,21,u1) duy
0z1 ow ouq ow

ag(thzNzuN) ozn + ag(thzNzuN) Jun
ozN ow oun ow

The sensitivities 8%(%2@) and azi((;j’w) fori =1,..., N—1 can be computed by finite
differences. However to improve accuracy and efficiency, approaches as sensitivity
differential equation, adjoint equation and algorithmic differentiation are used. To

exploit such methods, see [49] and the references therein.

Direct multiple shooting

In order to reduce instability problems of the single shooting method, one approach
is to divide the problem into shorter steps. For each time subinterval a single shoot-
ing subproblem is computed. In this way the size of the problem for the NLP solver
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(more variables than single shooting but still less variables than collocation) is in-
creased, but the structure of the gradient is with a similar pattern as collocation
methods.

State discretization: Let us consider the time grid for state discretization G, as
in ([2.5)) which does not coincide with the grid G,, used for the discretization of the

control (2.6):

 shooting nodes are defined as typ < t; < --- <ty < ty, which is not the same
discretization of the control grid;

o for each segment in [¢;,t;11],4 =0,..., N — 1 guess the initial state s; = z(t;);

 integrate the state equation in each interval from ¢; to t;4; and denote with
zi(t, si,w) the solution of the initial value problem

Z(tz) = Sy,
. 2.31
1) = £t 2(0), v (t50)), 1 € [istisa; (231
e impose the continuity conditions at each shooting node:
Zi(ti+1, Si) — Si+1 = O, 1= 0, e ,N —1. (232)

Multiple shooting method is considered a hybrid method in between collocation and
single shooting methods because it divides the problem into shorter single shooting
subproblems, imposing continuity at the shooting nodes. The uncoupling struc-
ture between the multiple shooting segments allows a parallelized implementation
improving efficiency.

Discretized OCP:

Problem 2.6. The discretized optimal control problem in Mayer form via multiple
shooting method is:

min J(2) = ¢o(z0, 2N)
w. .t z2={(80,...,5N, Wy, ..., wy) € RO=NFD+nu(M+1)) (2.33)
S. t H(z) - ORNnZ+n<p '

G(2) < Opvt1yng
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where
20(t1, 80, w) — 51

H(Z) - : - ORan+n¢,
ZN-1(tN, SN—1, W) — SN

50, 5) (2.34)

g(t07 S0, Uapp<t0§ w))
G(Z) = S OR(N+1)7L9-

g(tN7 SN, uapp(tN; 'w))

Parametric sensitivity analysis

The discretized optimal control problem obtained in the previous paragraph is here
written in parametrized form:

Problem 2.7. Let p € R™ be a given parameter and J, H;,Gj : R"* x R" — R,

1=1,....,ng, j=1,...,nqg, sufficiently smooth functions.
min J(z,p) (2.35a)
z€R"z
s.t. Hi(z,p)=0, i=1,...,npg, (2.35D)
Gj(z,p) <0, j=1,...,ng. (2.35¢)

The nominal parameter p is fixed and 2 = z(p) denotes an optimal solution of
Problem for the nominal parameter p.

Under some regularity assumptions on J, H;, G, Theorem states that if Z is a
strongly regular local minimum for Problem [2.7] with p = p, then Problem [2.7] with
p in a neighborhood of p has a unique strongly regular local minimum z(p) and the
sensitivities are given (i.e. the differential with respect to p of z and of the Lagrange
multipliers, computed in p).

Definition 2.8 (see [49, Definition 6.1.2]). A strongly regular local minimum % of
the Problem[2.77, is a point in the state space R"™ such that

e z s a local minimum for Problem[2.7, i.e.

Je>0: J(3)<J(2),

Vz € B(2,¢) that satisfies (2.35b) and (2.35d); (2.36)
e The gradients
vzHl(évﬁ%Z = 17 .-l VZG](27]5)7.7 S A(27 A)a (237)
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are linearly independent, with
the set of active inequality constraints;

e Let i€ R\ € R"¢ such that (2, fi, 5\) satisfies the following Karush-Kuhn-
Tucker (KKT, see [49, Theorem 2.3.33]) conditions:

i >0, (2.39a)
[ G(2,p) =0, (2.39b)
V.J(2,0) + V.G(2,p) p+V.H(2p) A=0 (2-39¢)

where fi, \ are called Lagrange multiplier for the inequality and equality con-
straints, respectively, of Problem [2.77;

e The conditions
ﬂj—Gj(é,ﬁ) >0, Vj=1,...,n¢g (2.40)

hold true;

e Let the critical cone of Problem[2.7 defined as

To(z,p) == { d e R™ |

VZHl(zap>( ) =0,0=1,...,nm,
VZG](Z7P)( ) < O)j € A(Z’p)u/vé = 07

V.Gj(z,p)(d) =0,j € A(z,p), u > 0

SURSH

(2.41)

and let the Lagrange function of Problem[2.7 defined as
L(z, A, p) i= J(2,p) + p" G(2,p) + AT H(z,p) (2.42)
then, for all d € Teo(2,p) with d # Ogn-,
V2 L(2, 0o, i, A\, p)(d,d) > 0. (2.43)

Theorem 2.9 (see [49, Theorem 6.1.4]). Let J, H;,G; : R"* x R™ — R, i =
1,....np, j =1,...,ng be twice continuously differentiable and p a nominal pa-
rameter. Let Z be a strongly regular local minimum of Problem [2.7 for p = p, with
Lagrange multipliers fi and .

Then there exist neighborhoods Bc(p) and Bs(p, fi, 5\), such that Problem has a

unique strongly reqular local minimum

(2(p), 1(p), A(p)) (2.44)

for each p € B(p), and
A(2,p) = A(z(p),p) (2.45)
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where A(z,p) is in (2.38)) Moreover, (z(p), u(p), A(p)) is continuously differentiable
with respect to p and

-1

=) V2L V.GT V.HT V2L
“p) |=-| =-v.e A 0 | eve |, (246
& () V.H © e V.H
where
== diag(fi1, ..., fing), A = diag(G1,...,Gng). (2.47)

All functions and their derivatives are evaluated at (Z, i, ;\,]3)

Therefore,
= (a,p)() (2.48)

can be computed using the linearized necessary Karush-Kuhn-Tucker conditions in
an optimal solution (Z,4). An approximation to the optimal perturbed trajectory
is given by

z(a(p),p)(-) = 2() + %(ﬂ,ﬁ)(‘)(p—ﬁ)- (2.49)

2.2 Hamilton Jacobi approach

The Hamilton Jacobi approach described here is a numerical algorithm to compute
the backward reachable set and the minimal time trajectory for a constrained control
problem of the type The technique used is based on [17] where they consider a
target problem for a nonlinear system under state constraints. Reachability problems
are linked with the solution of the Hamilton Jacobi Equation in the framework
of viscosity solutions. Therefore, optimal times and backward reachable sets are
characterized with a level-set approach. Several papers in the literature deal with
the link between reachability and optimal control problems, see [17, [69] and the
references therein. This subsection is published in [104].

The following assumptions (H1)-(H4) will be needed:

(H1) f : R™ x U — R™ is a continuous function and Lipschitz continuous in z
uniformly in w, i.e. 3L > 0,Vz1, 29, Vu € U: |f(z1,u) — f(22,u)| < L|z1 — 23]

(H2) For all z € R™ the velocity set f(z,U) is convex.

(H3) Q is a nonempty closed set of R™. Let ¢ : R™* — R be Lipschitz continuous
and a level set function for the target, i.e.

p(z) <0 <<= zeq. (2.50)
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(H4) (Ki)iejto,e,) are a family of subsets of R™ such that there exists Lipschitz
continuous level set function g : R™ x R — R with

9(z,t) <0 = zeK; Vtelto,ts],ze€R"™. (2.51)

The focus is now to compute backward reachable sets associated to the dynamics f.
By Definition in Chapter [LI} if 2 () denotes the absolutely continuous function,
solution of the initial value problem:

2(t) = f(z(t),u(t)) a.e. t € [to,tf] CR,

~(to) = 20, (2.52)

then the backward reachable sets reaching the target €1 at times T < ty for the
dynamics f with time-dependent sets (K;) for the state constraints is defined by

BR{ = {zo e R™ | 3relto,tyf], ucld: 2 (1) €

20

(2.53)
and 2z (t) € Ky for all ¢ € [to, 7] }
Remark 2.10. Let the capture basin be defined as:
C’ap&(lct)(tf) = {zo eR™ | Juecl, 2 (tf) € Q
(2.54)

and 2% (t) € Ky for all t € [to,ty] }

(following in particular [5, Subsec. 1.2.1.2]). When there is no time dependancy,
Ki = K, it is known that the set (2.53)) is a capture basin:

BR{, = Cap{, (1) (2.55)
associated with the dynamics f(zo, (u, \)) := Af(z0,u) for (u, ) € U = U x[0,1] (see

for instance [73]). Here, a new virtual control A(-) with A(t) € [0,1] is introduced.

Now let the value function v be defined by

oleants) = inf (2 4 max a(t.24,(0)). (2.56)

where g(z,t) = g(z) in the case K; = K. Such value function involving a supremum
cost have been studied by Barron and Ishii in [12]. Then the function v is a level

set function for C'apé,C (t) in the sense that the following holds (see [17])

Capé,/c(tf) = {z0 € R™ |v(20,ty) < 0}. (2.57)
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In particular assumptions (H3) and (H4) are essential for (2.57) to hold. Further-
more, v is the unique continuous viscosity solution (in the sense of [I1]) of the
following Hamilton-Jacobi (HJ) Equation

min (8, v+ H(z,V.v), v—g(z)) =0, tr >tg, z€R",  (2.58a)
vz to) = max(p().9()), 2 € R, (2.58D)

where
H(z,p) := max(—f(z,u) -p), peR™, (2.59)

ucU

is the Hamiltonian.

For the computation of backward reachable sets with time dependent state con-
straints, following the approach of [18], the new state variable £ := (z,t) and the
“augmented” dynamics with values in R”*! are introduced:

F(€,u) = ( f(zl’ u) ) . (2.60)

Let also be & := (20, tp) and trajectories §g0 associated to F', fulfilling

£(t) = F(£(1), u(t)) and &(to) = &o. (2.61)
For a fixed ty > 1o, let
O:= |J ox{t} = Qxlto,ty] (2.62)
te(to,ts]
and
K= J Kix{t} (2.63)
tE[to,tf]

Then it holds:

Proposition 2.11. For all ty > 1o,

VE € [to, ts], 20 € Caply e, (ty) <= (20,t0) € Capfy (t7). (2.64)

The definition of ¢ by ¢(z,t) := ¢(z) is extended, so that for any {, € R" x R and
T > tg the value p is:

pl6or) i= inf o (6t (). mox o(68,1)) (2.69

te[to,T

Then, one can verify that p is Lipschitz continuous and the following theorem holds:
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Theorem 2.12. Assume (H1)-(H/).
(i) For every T > ty:

Capfcz,(;ct)(f) ={z e R™, p((2,t0),7) <0}. (2.66)
(ii) p is the unique continuous viscosity solution of

min(an + H((Z, tf)v (Vzp7 6tfp))7 p((z, tf)? T) - g(z)) =0,
T > to, (2,t5) € Rt (2.67)

p((Z,tf),to) = max(cp(z),g(z,tf)), (thf) e R

where for any § = (z,ty) and (pz,pt,) € R™ x R:

H((Z7tf)7 (pZupt‘f)) = rq?ea(}((_f<zv u) - py — ptf)‘ (2.68)

Once the backward reachable set is characterized by a viscosity solution of (2.67)),
it is possible to use a PDE solver to find the solution on a grid in the state space.

Minimal time function and optimal trajectory reconstruction.

In the case of fixed state constraints (i.e. K; = K), the minimum time function,
denoted by T, is defined by:

T (20) := inf{7 € [to,ty] | Fu e U : 25 (7) € Q and 2} (t) € K for all t € [to, 7]},
(2.69)
and if no such time 7 exists then 7 (z9) = oo. It is easy to see that the function

satisfies
T (20) = inf{7 € [to, ts], v(20,7) < 0}. (2.70)

Notice that 7 can be discontinuous even though v is always Lipschitz continuous.
No controllability assumptions are used in the present approach.

The optimal trajectory reconstruction is then obtained by minimizing the minimal
time function along possible trajectories (see for instance [39]). More precisely,
assume that the starting point is zo and that z, := 2% (t,) € Q at some future time
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tn, > to. This is equivalent to require T (z,) = 0.

input : ¢y =0, time step At > 0, small threshold n > 0, a control
discretization of the set U, say (ux)g=1,..n, C U, and t,, := nAt,
n=20,...,N —1.
output: (Zn)ne{o,..., N-1} grid function approximating the minimum time
trajectory
while n < N and T (z,) > n do
Find £* := argmink:h“’NuT(Egjf(At));
Set zp11 := Z2¢" (At);
n:=n++1;

end

Algorithm 1: Minimum time trajectiory with ROC-HJ software.

Where the notation z}*(h) denotes a one-step second-order Runge-Kutta approzi-
mation of the trajectory with fixed control uy on [t,,t,+1]. The Heun scheme with
piecewise constant selections uses the iteration:

_ h

ng(h) = Zn + §(f(znv Ulc) + f(Zn + hf(Zn, Uk)a uk)) (2'71)
It is also possible to do smaller time steps between [t,,t, + At] in order to im-
prove the precision for a given control ug. Nevertheless, numerical observations
are showing that the approximation is in general more sensitive to the control
discretization (ug)g=1,... N, of the set U.

In the time-dependant case this minimal time function can be defined in a similar
way from the value p (see [18] for details), and the optimal trajectory reconstruction
follows the same lines with the “augmented” dynamics ([2.60)).
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Investigating performance criteria for a trajectory in a car traffic scenario preserving
safety is the main goal of this chapter. The investigation process began in Section
of Chapter |LIf where three questions were posed and the optimal control model
was given in Problem of Chapter [T} Here the algorithm behind such requests is
presented and numerical solutions are shown. Two different software packages for
several vehicle models and scenarios are tested. The package OCPID-DAE1
with a Fortran 90 interface is designed for the numerical solution of optimal control
problems and parameter identification problems. The ROC-HJ Solver for solving
Hamilton-Jacobi Bellman equations can be used for reachable sets computations
and optimal trajectory reconstruction. Numerical difficulties can arise from the
high dimensionality of the vehicle model or from the regularity restrictions on the
functions describing the car traffic scenario.

As explained in Section [I] of Chapter [LI| lower dimensional models are preferred,
since they have higher maneuverability capability with lower CPU times. A trade
off between low dimension and the precision of the collision decision, by keeping
adherence to real capabilities of the vehicle, is a key value in the choice of the
reference vehicle model. The 4D point mass model in of Chapteris matching
this requirement as motivated in Section [I] of Chapter [[I On the other side, to
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compute trajectories close to real life car motions and for being able to implement
them in real cars, it is necessary to consider more complex dynamics, therefore the
model in is used. The vehicle model is widely discussed in Sectionof Chapter
[ and the related notation is reminded here. The control set is denoted as

U :={u:[to,ty) = U, u measurable},

with U a nonempty compact subset of R"*, n, > 1. Let n, > 1 and the dynamics
describing the evolution of the vehicle motion is

f:R™ x U — R"# Lipschitz continuous with respect to (z,u),

where f is described in one of the (1.21)), (1.26)), (1.27)), (1.28)), (1.31)), (1.37), (1.38)),

(1.39) depending on the chosen vehicle model. Given an initial state zp € R"™=, let
2y, denote the absolutely continuous solution of the following dynamical system

2(t) = f(2(t),u(t)) fora.e.t>0,

z(0) = zp. (0.1)

Depending on the chosen dynamics, the state z might have to obey state constraints

(1.29) of Chapter

A car traffic scenario is described in Section [2| of Chapter [II as a quintuple
(lCd,ICT,ICO,V, Q)a (02)

where ICy is defined by the dynamic constraints of Chapter L} ', is the road
set, K, is the obstacle-free set, V is the vehicle set, and (2 is the target set. As
shown there, by imposing , the associated Lipschitz functions gq4, gr, go, ¢ Or
the associated smooth functions gg4, gr, go, ® are derived, and the optimal control
problem is given. In this chapter numerical simulations obtained by solving
such model show optimal trajectories (see Definition in Chapter , reachable
sets/funnel trajectories (see Definition in Chapter , and backward reachable
sets (see Definition in Chapter , for several car traffic scenarios. In this
chapter the (0.2) is defined for each numerical simulation, followed by the optimal
control problem in the form of Problem [3.1] of Chapter [[IL A brief explanation of the
algorithm implemented is then explained, before plotting the computations.

The last section is dedicated to sensitivity analysis as required in Section [4]of Chapter
Firstly, parametric sensitivity analysis (Fiacco-Sensitivity) is adopted in order to
investigate the influence of inaccurate sensor measurements, in both trajectories and
reachable sets. A condition to update the nominal optimal solution to the optimal
one of the perturbed problem is derived, whenever a deviation between the desired
and the actual state of the process occurs. Secondly, a sensitivity analysis with
fixed optimal control (ODE-Sensitivity) is computed to investigate the influence of
inaccurate sensor measurements, in the solution of the initial value problem (and
thus trajectories and reachable sets), being the control equal to the known nominal
optimal control of the non perturbed dynamics. Hence, the definition of a robust
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reachable set is given, as the set of reachable points by the trajectories, which are
solutions of the nominal and the perturbed problem. Thirdly, the definition of
perturbed backward reachable set is given as the set of all initial state from which is
possible to drive a collision free nominal trajectory such that the nominal trajectory
is also admissible for perturbations in a neighborhood of the nominal initial state,
being the control taken as the nominal control. The perturbed backward reachable
set will be used to derive an estimation of the maximum possible error around a given
initial data, such that the nominal trajectory, staring from the perturbed initial data
and being the control the nominal one, is still collision-free. This means to give a
characterization of the parameter perturbations such that the nominal solution is
admissible even if such perturbations occur.

1 A direct methods software

The numerical solution of the optimal control problems related to the three question
of Section |3| of Chapter |LI| are here provided. For doing so the software package
OCPID-DAEL1 is used. It aims to find a numerical solution of the optimal control
problems via direct methods, using B-spline interpolation of the controls and a
multiple shooting method for the approximation of the states, see Section of
Chapter for details. Mainly a 4D point mass model and a 7D single track model
are used, however comparison with other kinematic models is also given.

1.1 Case study: straight road with a fixed circular obstacle

The case study used in this subsection expects a stationary obstacle located at the
position (z1,y1) on a straight road that has to be avoided by the reference vehicle
driving at a prescribed speed:

o The reference vehicle is a circle V(z(t),t) = B(X(z(t),t),£) of radius £ = 1
and center X (z(t),t) = (x(t),y(t)). It evolves with dynamics f describing a
7D single track model as in (1.21)) of Chapter [LI} with

z (x’vaavxavy,ww,é) states,
= (wy, FB) controls,
(1.1)
20 = (an yO,dJOuvxoavyo)w’d)O)&O)
= (0.0,1.75[m],0.0,70[km/R].0,0.0,0.0,0.0) initial states.

The state must obey condition in ((1.29)) of Chapter
o O ={z€R", 21 >ux1, 23 =0.0} according to (2.3) of Chapter
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e Road: K, = {(:):,y) ER?|0—wy <y < 7+w2}, where wo € R is a parameter
that needs to be optimized or fixed to zero, as in (2.7)) of Chapter

e Obstacle parameters: one fixed circular obstacle
01 = B(Xl(wl),ﬁl(wg)), (1.2)

with radius ¢; (wz) = 1.0—wy centered at X1 = (z1(w1),y1) = (w1, 1.75), where
w = (wy,wsz) € R? is a parameter that needs to be optimized or which is fixed
to the value w = (30.0,0.0). If w; is optimized then it means that the initial
distance between reference vehicle and obstacle is minimized, if w9 is optimize,
i.e. wo # 0, then a constraints minimization technique is implemented. The
obstacle set is defined as

Ko ={Y e R?|||Y — X1(w)]2? > £1(w3)?}. (1.3)

Using (2.70]) of Chapter [II| the state z has to satisfy property in (2.87) of Chapter
M with

e state constraints defined for:

K={2eR" | g<g(z) <g,9,g € R"}, (1.4)
with
~ L z9
9z) = <@—mWW+urww>’
o 0+£L+mn—ws

g”‘(%m»w+w>’ (15)
_ 7T—l—n+w
g = ( oo 2>,

according to (2.13)), and (2.72) of Chapter [[I, Therein n, = 7 is the state and
dynamics dimension and 7 = 0.3[m] is a safety margin.

e boundary constraints defined for:

with

N a1 o m(w)+10\ _ [ 400
o= (2 )= (M ) o= (7). am
according to (2.6 of Chapter

Thus the associated optimal control problem as in[3.1] of Chapter[[I)is given straight-
forwardly.
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Problem 1.1. Let [ty,t¢] C R be a non-empty and bounded interval with ty < tf
fixed. Let g be a smooth function defined in and let ¢ be a smooth function
defined in . Find states z : R — R™* absolutely continuous, controls uw € U =
{ulu : [to,ty) = U € R™ meaurable} and parameters w € W C R™, 7 € [to, ty]
such that:

Z7U€U,wgl‘/i[},17'€[t0,tf] o(2(7), 7 w) + [y fo(z(t), u(t))dt
s.t. 2(t) = f(t, 2(t),u(t)) a.e. t € [tg, 7] CR,
z(to) = 20,

g<g(2(t) <g, Vtelty,T], <=

< zp(t) < (T—€—1n+ws) (1.8)
1(t) — z1(w))? + (22(t) — y1)* = (€1 (w2) + £+ n)?

p<p(n) <y, =
{ z1(1) > z1(w) + 10
23(7') =0.0

where o, fo are maps, g,9,9,¢ are in (L5)) and (L.7). The function f : [to,ts] x
R” x R? — R" is the single track dynamics given in (1.21)) of Chapter with

Z = (xvvaﬂ-]wavy’wwa(s)?u = (’LU(;,FB)~

The software used in this section requires smooth state constraints, this is why in
Problem condition in (2.86f of Chapter |l1}is used over the equivalent conditions

in (87), @:85) of Chapter

Optimal trajectory

To compute an optimal trajectory z (see Definition (3.2)) of Chapter [II)) for Problem
the following functional has to be minimize:

.
ar+cegw+cs / u(t)?dt,
0
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with c1,c3 € R, ca € R? positive and the optimized parameter w = (w1, ws) € R2.
The Algorithm [2|is used and the simulations are here presented.

input : road geometry, obstacle data (geometry and motion), vehicle
data (model, geometry, initial state zg), target data (position
and yaw angle).

output: trajectory z, control u, parameters w.

define ¢ and objective function as in (3.3) Chapter
solve the Optimal Control Problem

Algorithm 2: Optimal trajectory with OCPID-DAET software.

A comparison of single track trajectories with several objective functions weights
(c € R* such that ¢;(j) = d;;, where § is the Kronecker delta) is give in Figures
The top row always refers to the trajectory in the (z,y) plane that the
reference vehicle is supposed to drive. The middle row shows the steering angular
velocity ws and the braking force Fg. The parameters in the bottom row are the
final time 7, the initial z-distance w; between reference vehicle and obstacle, and the
constraint violation term ws. In Figure a minimum time trajectory (left column)
and a minimum steering effort trajectory (right column) are compared. The latter
shows smother controls that makes the trajectory driver friendly, however minimum
time trajectory do not have extreme controls as it is the case for minimum distance
trajectories (Figure . Figure plots the trajectory obtained by minimizing wa,
if non-positive then the state constraints are satisfied. Moreover if wy is negative,
the obtained trajectory is as far as possible from the obstacles and from the border of
the road, if wo is positive then the state constraints are not satisfied for any possible
control and a collision scenario occurs. The Figure compares minimization of
wy for different initial velocities of the reference vehicle. Highly extreme controls
appear and as it will be shown in Section [3|a small error in the initial data will lead
to a crash due to the fact that such trajectory approaches the obstacle very close.
The right picture shows that for an initial velocity of 70[km/h] the minimum initial
z-distance between obstacle and vehicle is 16[m]. For the same initial velocity in
Figure the left picture has an initial distance grater than 16[m] and this is why
in that case the constraint violation wsy (third parameter plot) is negative. While in
the right picture the initial distance lower than 16[m] and this is why in that case
the constraint violation ws (third parameter plot) is grater than zero, leading to a
collision.



§.1 A direct methods software 81

Minimum time and minimum steering effort.

Optimal trajectory Optimal trajectory
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Figure 1.1: The rows (from top to bottom) contain the optimal trajectory, controls
(steering velocity and braking force), and parameters (final time, initial z-distance
between vehicle and obstacle, constraint violation). In the left column the final time
is minimized with ¢ = (1,0, 0,0). In the right column the steering effort is minimized
with ¢ = (0,0,0,1) and initial velocity vz = 70[km/h]. CPU time: 0.05[s] —0.07[s].
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Optimal trajectory

Minimum constraint violation.

Optimal trajectory
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Figure 1.2: The rows (from top to bottom) contain the optimal trajectory, controls
(steering velocity and braking force), and parameters (final time, initial z-distance
between vehicle and obstacle, constraint violation). The constraint violation is mini-
mized with ¢ = (0,0, 1,0) and initial velocity v,o = 70[km/h]. In the left column the
initial distance is fixed to w; = 30[m], in the right column it is fixed to w; = 5[m].

CPU time: 0.05[s] — 0.07]s].
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Minimum initial distance.

Optimal trajectory

Optimal trajectory
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Figure 1.3: The rows (from top to bottom) contain the optimal trajectory, controls
(steering velocity and braking force), and parameters (final time, initial z-distance
between vehicle and obstacle, constraint violation). The initial z-distance w; be-
tween vehicle and obstacle is minimized with ¢ = (0,1, 0,0); in the left column with
initial vehicle velocity vz, = 150[km/h], in the right column with vy, = 70[km/h].
CPU time: 0.05[s] — 0.07[s].



84 Chapter IV. Computational Results

Reachable set and trajectory funnel

The reachable set fR{f and the trajectory funnel 7'.7-"{ ; associated to dynamics f

and to the final time 7 € [to, ] are in Deﬁnitionof Chapter lI} Let z% denote the
optimal trajectory, solution of Problem with objective function given by in
Chapter [} i.e. where the term ||z (7) — gp||2 is minimized, with G = {9ntheqi,...ky
is a grid in the state space. Therefore, an approximation of the reachable set is given
by the union of all grid points g, sufficiently close to 2} (1),

}"R{f ~ U {gn}, C > 0 suitable, (1.9)

gn:llzZ (T)—gnll2<Ch

i.e. those belonging to an O(h)-neighborhood of gy, see [9, [10].

input : road geometry, obstacle data (geometry and motion), vehicle
data (model, geometry, initial state zp), target data (position
and yaw angle).

output: G C G,
U matrix,
Z matrix.

define a grid G = {gn }nr=1,..k, k > 0 in the state space;
for h=1,..,k do

define ¢ and objective function as in (3.6) Chapter
solve the Optimal Control Problem
if solution found then

G:=GU{gn};

U = U0 {un(t) e

Z:=2zZU {Zh(t)}te[to,ﬂ;
end

end

Algorithm 3: Reachable set and trajectory funnel with OCPID-DAE1
software.

The reachable set and the trajectory funnel are calculated for an initial velocity of
v = 126[km/h] in Figure The dotted points of the reachable set correspond
to different free final times. Due to the initial speed and the end condition ¢ (1) =
O[rad], no other grid points from the dashed bounding box can be reached by the
avoiding car.
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Reachable set Optimal trajectories

4l L L L L L L L L L T L L L L L L L L L ,
-0 -5 0 5 10 15 20 25 30 35 a0 45 10 -5 0 5 10 15 20 25 30 35 40 a5

Figure 1.4: Graph to the left shows the reachable set, graph to the right refers to the
reachable set with segment parallel to y-axel and its trajectory funnel (Definition

of Chapter .

Backward reachable set

The backward reachable set BRS associated to dynamics f is in Deﬁnition Chap-
ter [T It is the set of all initial states of a reference vehicle dynamics such that the
safety property in Chapter [[Il holds. Let G = {gn}neq1,.. k) be a grid on the
state space. An approximation of the backward reachable set is then given by the
union of all grid points g; such that it exists zg”h optimal trajectory of Problem
with initial state gy,

BR{, ~ U {an}. (1.10)

gh:zgh (t) solves Problem [I-1]
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input : road geometry, obstacle data (geometry and motion), vehicle
data (model, geometry, initial state zp), target data (position
and yaw angle).

output: G C G, Z, U.

define a grid G = {gn}n=1.. x k > 0 in the state space R
for h=1,..,k do
set zg 1= gp;
define the objective function as a constant;
solve the Optimal Control Problem
if solution found then
G =G U{gn};
Z(h) = {20 brepo
U(h) = {un(®) beepeo )
end

end
Algorithm 4: Backward reachable set with OCPID-DAE1 software.

Numerical simulations for the backward reachable set with OCPID-DAE software are
given in Subsection where a comparison with backward reachable sets compute
with ROC-HJ software takes place.

1.2 Comparison with other car models

Comparison of several car models was already shown in Section [I]of Chapter[[Il How-
ever here some key points are underlined by showing optimal trajectories, trajectory
funnels and reachable sets for such models.

In Figures and the minimum distance trajectory of the kinematic 4D
and 5D is compared with the point mass model and single track 7D. The kinematic
4D model is not affected by changes in the initial velocity for the computation of
the minimum initial distance. This is due to the fact that the steering angle is a
control and not a state as in the other models where the steering angular velocity is
instead a control.
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Optimal trajectory

10

-2+

4l I I I I I I
-10 0 10 20 30 40 50 60

w1 = 5 meters

Optimal trajectory

10

w1 = 5 meters

Figure 1.5: Optimal trajectories for Problem with ¢ = (0,1,0,0) are shown for
the kinematic 4D car model in of Chapter In the top graph with initial
vehicle velocity vy, = 150[km/h], in the bottom graph with v,, = 70[km/h]. CPU
time: 0.05[s] — 0.07[s].
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Optimal trajectory
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Optimal trajectory
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w1 = 9 meters

Figure 1.6: Optimal trajectories for Problem with ¢ = (0,1,0,0) are shown for
the kinematic 5D car model in of Chapter In the top graph with initial
vehicle velocity vy, = 150[km/h], in the bottom graph with vy, = 70[km/h|. CPU
time: 0.05[s] — 0.07[s].
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Optimal trajectory
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Figure 1.7: Optimal trajectories for Problem with ¢ = (0,1,0,0) are shown for
the point mass car model in of Chapter In the top graph with initial vehicle
velocity vy, = 150[km/h], in the bottom graph with vy, = 70[km/h]. CPU time:
0.05[s] — 0.07]s].
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Optimal trajectory

2+

4l
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Optimal trajectory
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w1 = 16 meters

Figure 1.8: Optimal trajectories for Problem with ¢ = (0,1,0,0) are shown for
the single track car model in (1.21]) of Chapter In the top graph with initial
vehicle velocity vy, = 150[km/h], in the bottom graph with vy, = 70[km/h|. CPU

time: 0.05[s] — 0.07[s].

The reachable set evaluated for the point mass model in Figure does not lead to
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considerably differences with the single track reachable set of Figure [[.4, However
the kinematic 3D model reachable set in Figure is larger than the single track
one. This is well understood by looking at the trajectory funnel where changes in
the steering angle have immediate consequence on the trajectory directions, since
the angle is a control and not controlled through its derivative, as in the single track
dynamics.

Reachable set

ot

4 I I I I I I I I I ]
-10 -5 0 5 10 15 20 25 30 35 40 45

Optimal trajectories

b

Figure 1.9: Figure to the top shows the reachable set, figure to the bottom refers to
the reachable set with segment parallel to y-axis and its trajectory funnel.
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Reachable set

4 I I I I I I I I I ]
-10 -5 0 5 10 15 20 25 30 35 40 45

Optimal trajectories

2

Figure 1.10: Figure to the top shows the reachable set, figure to the bottom refers
to the reachable set with segment parallel to y-axis and its trajectory funnel.

1.3 Optimal trajectories for a curve scenario

This subsection is considering an overtaking maneuver of a moving obstacle in a
curve road.
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o The reference vehicle is a circle V(z(t),t) = B(X(2(t),t), ) of radius £ = 1[m]
and center X (z(t),t) = (z(t ) ( )). It evolves with dynamics f describing a
7D single track model as in of Chapter LI, with

z = ($7y7¢7vx,vy,W¢,6) states,
u = (wy, FB) controls,
20 = (x(]:y()vwo,vmovvyovwwoaéo) (111)
(0.0, —25.25[m], 0.0, 70[km/h], 0.0, 0.0, 0.1[rad])

initial states,

The state z must obey condition in ([1.29)) of Chapter
o Target: Q = {z ER" | 29 >0, 23 = g} according to (2.3]) of Chapter

e Road: K, = {(:p,y) e R2 | (T curve + 0)2 <a?4+y? < (Teurve + 7)2}, where

Teurve € R is the radius of the curved road and in this case it is equal to

20[m],as in (2.32)) of Chapter

o Obstacle parameters: one circular obstacle

01 = B(Xl(w,t),ﬁl), (1.12)
with radius ¢1 = 1.0 centered at
X1 = (z1(w, to),y1(w, t9)) = (5.25 cos(w), 5.25 sin(w)), (1.13)

where w € R is a parameter that needs to be optimized or which is fixed
to the value w = 0.57[rad]. If w is optimized then it means that the initial
distance between reference vehicle and obstacle is minimized. The obstacle set
is defined as

Ko(t) = {(z,y) € R?| (z — z1(w,1))* + (y — 1 (w,1))* > 41}, (1.14)
for each t € [to,tf]. The dependence on t of O; means that the obstacle is

moving with a circular motion described in (2.57) with w19 = 5[rad/s] and
a19 = —5[rad/s?.

Using (2.70)) of Chapter [I} the state z has to satisfy property in (2.87)) of Chapter
[ with

e state constraints defined for:

K={(zt) e R" x [to, t5] | g < g(2,t) < g,g,g € R}, (1.15)
with
- 22+ 22
I (s S
(0 +4+n+ rcurve)2
g = ( (4 +77£+77)2 )7 (1.16)

- . (7 —{— n + Tcurve)2
g T +OO ’
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according to , , and of Chapter n Therein n, = 7 is the

state and dynamlcs dlmensmn and n = 0.3[m] is a safety margin.
e boundary constraints defined for:
Q={2eR™ | p<p(2) <p,p,peR™}, (1.17)

with
(1.18)

S
—
I
—
2
Il
N
IR
w (&)
N~
RS
Il
N
o O
N~
S
Il
/
SE] —é_
S~

according to (2.6) of Chapter

Thus the associated optimal control problem is given straightforwardly.

Problem 1.2. Let [ty,t¢] C R be a non-empty and bounded interval with ty < tf
fixed. Let g be a smooth function defined in and let @ be a smooth function
defined in . Find states z : R — R™ absolutely continuous, controls u € U =
{ulu: [to,tf) = U € R™ meaurable.} and parameters w € W C R™, 7 € [to, ty]
such that:

z,ueu,wgll/il?re[to,tf] (’DO(Z(T)’ ™ ’LU) + ‘/;(; fo(Z(t), U(t))dt
s.t. 2(t) = f(t,2(t),u(t)) a.e. t € [ty, 7] CR,
z(to) = 20,
g<g(z(t),t)<g, VLEto,T], <=

9,
{(20+€+77) < 21(t)? + 22(t)? < (27— L —n)®
(21(8) — 21w, 1))? + (22(t) — p(w, 1))* > (&1 + L+ n)?

A

7)

< (2 <P, <=

22(7)
z3(7)

\G
v
(a») ~—

—

wla

(1.19)

where @o, fo are maps, g,9,9,¢ are in (L.16) and (L.18). The function f : [to,ty] x
R” x R? — R" is the single track dynamics given in (1.21)) of Chapter with
= (%y;%%,vyyww,é),u = (’IU(;,FB).

The software used in this section requires smooth state constraints, this is why in
Problem condition in (2.86]) of Chapter [lI}is used over the equivalent conditions

in , of Chapter

In Figure a minimum time trajectory (found by solving Problem minimizing
7) and a minimum initial distance trajectory (found by solving Problem minimiz-
ing z1(tg) —x1(w, tp)) are shown. For the minimum time trajectory (left column) the
controls are less extreme and thus driver friendly. In the minimum initial distance
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trajectory (right column) the vehicle path seems to hit the obstacle, this however is
not true if one thinks that the obstacle is moving forward.

Minimum final time and minimum initial distance.

Optimal trajectory Optimal trajectory

Time vs Control 1 Time vs Control 2 Time vs Control 1 Time vs Control 2
05 15
-036
04 ﬂ
-038
03
1
-0.4 02
0.1
-042
0 05
044
0.1
-0.46 -2
0
-03
048
-0.4
-0. -05 -05 v v -05 .
o 02 0.4 06 08 1 o 02 0.4 0.6 08 1 o 02 0.4 06 08 1 o 02 0.4 06 08 1
Time vs Parameter 1 Time vs Parameter 2 Time vs Parameter 3 Time vs Parameter 1 Time vs Parameter 2 Time vs Parameter 3
1 1 5. 0 1
08| 08 08
35 06 06 5 -05 06
0.4 0.4 0.4
02} 02 45f -1 02
0 0
25 -0.2 -0.2 4 -15 -0.2
-0.4 -0.4 -0.4
2 -06 -06 35 -2 -06
-08 -08 -08
15 -1 -1 -25 -1
o 05 1 o 05 1 o 05 1 o 05 1 o 05 1 o 05 1

Figure 1.11: The top row contains the optimal trajectory, the middle row contains
the controls (steering velocity and braking force), and the bottom row contains the
parameters (final time, initial z-distance between vehicle and obstacle, constraint
violation). In the left column the final time is minimized, in the right column the
initial z-distance between vehicle and obstacle is minimized. CPU time: 0.05[s] —
0.07[s].
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2 A software for solving the Hamilton-Jacobi equation

The search of a trajectory performed within some minimal time criteria and the set
of all safety points from which the reference vehicle can drive a trajectory is here
computed and numerical simulations for different scenarios are given. The backward
reachable set BR{ associated to dynamics f with final time 7 € [to,tf] € R, is in
Definition Chapter It is the set of all initial states of a reference vehicle
dynamics such that Property of Chapter [II| holds. The approach used here
to compute the backward reachable set and implemented in ROC-HJ software [16]
is based on the work of [I7] and it is recalled in Subection of Chapter [[II|
Throughout the section, the 4D point mass model of Chapter [II| is used.
In the present section ROC-HJ software is used for solving the Hamilton-Jacobi
Equation in Chapter A second order ENO finite difference scheme for
partial differential equations of Hamilton-Jacobi type is implemented. More precisely
an ENO2 spatial discretization method as described in [76] is used, coupled with an
Euler forward RK1 scheme in time.

2.1 Case study: straight road with a fixed rectangular obstacle.
Let the following configuration be considered with a fixed obstacle:

o Target: Q = {(z,y,v), >0, || <0.1} according to (2.3) of Chapter

e Road: K, = {(a:,y) eR?| -35<y< 3.5} as in (2.7) of Chapter

¢ Obstacle parameters: one fixed rectangular obstacle Oy of size ¢, = £1, = 1.0
centered at X; = (z1,y1) = (—10.0, —1.5).

o Reference vehicle evolves with dynamics f describing a 4D point mass model

as in (1.31)) of Chapter [II}, with

z = (x,y,1,v) states,
u = (wy, FB) controls, (2.1)
zo = (20,Y0, %0, 0)

= (—40.0[m],—1.5[m],0.0,35.0[m/s]) initial states,

It is a rectangle V(z, t) of dimensions ¢1, = f1, = 1.0[m] and center at X (z,t) =

(2(2), y(1))-

Therefore the state z has to satisfy Property (2.87)) of Chapter [lI, with

K {z€R" ||22] < (3.5 —0—1n),90(2) + 1 < 0},
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therein g, real-valued function defined by (2.80]) of Chapter n, = 4 is the state
and dynamics dimension and n = 0.3[m] is a safety margin. Thus the associated
problem is given straightforwardly.

Problem 2.1. Let [to,t¢] C R be a non-empty and bounded interval with fized time
points to = 0 <ty and

[ [to.tf] x R™ x R™ — R"=,
g : R"™ SR,
o : R 5 R,

be maps. Find the absolutely continuous function z3 : R — R"*, a controlu € U =
{ulu:[to,ty) = U € R™ measurable} and a parameter T € [to,tf] such that:

2(t) = f(t, ( ), u(t)) a.e. t € [ty, 7] C R,

z(to) = 20 (2.3)

g9(2(t)) == (|Zz( ) =35 =0-1),9(2(1))) <0, '
¢(2(7)) = max(—z1(7), |23(7)[ — 0.1) <0,

with f as in (1.31) of Chapter z = (z,y,¢,v), u = (wy, FB), go a real-valued
function defined by (2.80) in C’hapter and T 1s minimized.

The associate algorithm is Minimal time trajectories are also computed by fol-
lowing Algorithm [1] of Chapter

input : road geometry, obstacle data (geometry and motion), vehicle
data (model, geometry, initial state zp), target data (position
and yaw angle).

output: G ¢ G

define a grid G = {gn}n=1,...k, k > 0 in the state space R"*;
solve the HJ equation in Chapter associated to , the
solution is v(zo, tf);
for h=1,..,k do

evaluate v(gp, 7);

if v(gn,7) <0 then

| G:=GU{g};
end

end
Algorithm 5: Backward reachable set with ROC-HJ software.

Hence, the reference vehicle (red rectangle) drives from left to right in Figure
and overtakes the fixed obstacle (blue rectangle). By considering relative velocities,
this scenario is enough to model an overtaking maneuver of a slower moving car.
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Reachable set BR{ . (Optimal trajectory also represented with a black line)

5k
HEHEH HEHEH R R R
o 0o 0 o 00 ® ® 00 0 0 00
or & s e B
o e e s .
_Sk
I I I I I I I I I j
-50 -45 -40 -35 -30 -25 -20 -15 -10 -5 0 5

Figure 2.1: Reachable set BR£ , obtained with N, = 70 and N, = 8 grid points.

The white part in Figure [2.1] corresponds to an area of starting points from which
the red car cannot reach the target, whatever maneuver is undertaken, since its
velocity is too high to avoid a collision with the blue car. Hence the trajectories
from these points are infeasible and this means the starting points do not belong to
the backward reachable set.

In Figure the evolution in the time interval [to,tf] = [0,2] of the BR{ set is
shown. For each plot i = 1,...,4, starting from the blue points the reference vehicle
can reach the target avoiding the obstacle within ¢; seconds.

Reachable set BR{Z_ fori=1,...,4.
(Optimal trajectory also represented with a black line)

Figure 2.2: Evolution in time ({1 = 0[s],t2 = 0.5[s],t3 = 1[s],t4 = 1.5[s]) of the
reachable set BRI , obtained with N, = 70 and N, = 8 grid points.

Convergence test

For testing the stability of the HJ approach, a convergence analysis with respect to
mesh grid refinement is given. Let grid on the state space be defined and

(x,y,1,v) € [-50,10] x [—4,4] x [-1,1] x [5,65], (2.4)
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using a variable number of grid points in the (z,y) variables given by N, = 35-2™

and N, =4 -2™, depending on an integer parameter m € {1,...,5}.
5k
HHH HHH I
o 0o 0 o 0o 0 ® © 00 0 0 00
o ] $3¢
e e intmtaseset™ .
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I I I I I I I I I j
-50 -45 -40 -3 30 -25 -20 -15 -10 -5 0 5

Figure 2.3: Reachable set BRg , and optimal trajectory represented with a black
line.

The number of grid points in the ¥ and v variables are fixed and given by
Ny =20 and N, =6. (2.5)

The errors are computed by using a reference value function v, obtained for m =5
(i.e., Ny = 1020, N, = 128). Furthermore a CFL restriction of the type At/Ax <
const is used for the stability of the scheme. The results are given in Table The
L, L' and L? errors have been computed as follows. For a given grid mesh (2;)
and corresponding (constant) step space Az, with e; := v(z;) — ver(2;) denoting the
local error at grid point z;:

1/2
e t=max; le;|, e :=Az Y . le|, epz:= <Az > e?) . (2.6)

In Table in order to evaluate numerically the order of convergence for a given
(m—1) /g(m)
LP norm, the estimate a,, := % is used for corresponding values N, =

35-2™ and N, = 4-2". (i.e. the mesh steps N, and N, are refined by 2 between
two successive computations).

A convergence of order roughly 2 is observed even for the ENO2-RK1 scheme which
in principle is only first order in time. This is due to the fact that the dynamics
is close to a linear one in this case (a similar RK2 scheme was also tested, second
order in time, which gives similar convergence results on this example).

N, N, H er~  order ‘ eri  order ‘ erz  order H CPU time (s.) ‘

70 8 | 0.489 - 1.126 - 6.769 - 0.34
140 16 || 0.078 2.64 | 0.337 1.73 | 2.255 1.58 1.50
280 32 |/ 0.026 1.60 | 0.118 1.52 | 0.795 1.50 9.20
560 64 || 0.006 2.07 | 0.030 1.98 | 0.207 1.94 69.40

Table 2.1: Error table for varying (N,, N,) parameters.
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Comparison with a direct method

In order to validate the HJB approach for this scenario, comparison of the results
with numerical simulations obtained by using a direct optimal control approach for
calculating the reachable set (9] [10]) are needed. The simulations are obtained by
using the OCPID-DAE1 Software [4§], following the approach described in [52, [105].
The resulting backward reachable set within time ¢y = 2 is plotted in Figure
(top picture) and shows a good correspondence with the HJ approach (backward
reachable set in the bottom picture). Notice that both computed reachable sets are
expected to be equal up to some accuracy of the order O(Az) (with Az =1 in this
figure).

Figure 2.4: Comparison with a direct method (upper picture).

Remark 2.2. The advantage of using a direct optimal control approach (like the
OCPID-DAE1 Software) is that is able to deal with a greater number of states
variables, which is necessary whenever a precise car-model is required, close to the
behavior of a real car. However the handling of state constraints (in particular
obstacles with non-smooth boundaries) sometimes leads to numerical difficulties in
order to get feasible trajectories. On the other hand the PDE solver (like ROC-HJ
for solving Hamilton-Jacobi equations) is limited, in practice, by the number of
state variables, because it requires to solve a PDE with as many dimensions as
the number of state variables. However if the dimension can be processed on a
given architecture, then the HJ approach requests only the Lipschitz property of the
functions describing the dynamics and the state constraints. In particular, there
is mo problem for dealing with non smooth obstacles such as rectangular obstacles,
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crossing roads scenarios (more generally it could handle polygonal roads or more
complex polygonal obstacles).

Computational considerations

The ROCHJ software is easily dealing with rectangular obstacles and handling many
different road geometry due to the very few regularity assumptions made on the
functions describing such objects. Indeed only Lipschitz continuity of the state and
boundary contraints is requested. This gives the possibility to model the car traffic
scenario adherent to the complexity of a real world scenario, leading to correct avoid-
ance trajectories. The limitations of such software are based on the architectures
used because the method cannot handle high dimension in the state space. Prob-
lems with 5 and 6 states as the 6D single track model have been implemented but
they request special techniques to be solved by the computer. For instance, par-
allelization is extremely useful in these case and some numerical simulations were
extremely promising. Another possibility was investigated by combining a compu-
tation on multiple threads (depending on the available computer) with a “clever”
choice of a state grid, by choosing the least possible number of grid points such
that critical state points are considered. For instance the (z,y)-grid has to include
the boundaries of the obstacles and of the road, the velocity grid has to meet the
projection value and the angle grid can be composed only by three grid points. With
the architecture used for the simulations of this Chapter, a MacBookPro computer
with two threads, such high dimensional computations were extremely costly.

2.2 Examples for more complex scenarios

In the next examples several road geometries are considered and discussion on inter-
pretation of backward reachable set is explained. For all the examples the avoidance
condition between obstacles and vehicle is given by in of Chapter L] since all
objects here are rectangles.

e Scenario 1: straight road with varying width. A highway road is consid-
ered, with varying width described by the level set of Chapter |LI| with
function of Chapter . This can be interpreted as an additional exit
lane appearing only for a short part of the considered road.

Two obstacles (blue rectangles) are moving with linear motion (see of
Chapter [lI) in the same direction as the reference vehicle (red rectangle). All
object widths and lengths are here equal to 1[m]. The set of blue points
depicted in Figure and Figure is the projection on the (z,y) plane of
the backward reachable set with t; = 2[s], steering angle 1 (t9) = O[rad] and
velocity v(tg) = 35[m/s].
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The target set is defined according to (2.3)), (2.4)) of Chapter
Q={zeR|p(z) <0}, (2.7)

with
©(z) = max {—21, |z3] — 0.01} . (2.8)

The optimal control problem is given in

Problem 2.3. Let [to,tf] C R be a non-empty and bounded interval with fized
time points to = 0 <ty and

f o [to,ty] x R™ x R™ — R"=,
g [to,tf] x R" — R,
¢ : R™ >R,

be maps. Find the absolutely continuous function z; : R — R"=, a control
uweld ={ulu: [to,ty) = U € R™ measurable} and a parameter T € [to,t]
such that:

Ef)) f(t,2(t), u(t)) a.e. t € [to, 7] CR,

2(to) = 20

g(t, z( )) = max {gr(t, 2(t)), gol(t Z(t))w-,gok(th(t))} <0,
©(2(7)) <0, with ¢ defined in (2.8),

with f asin (1.31]) ofC’hapter z=(z,y,¢,v), u = (wy, FB), goisi =1,...,k
are real-valued functions defined by (2.80) of Chapter k is the number of

obstacles, and g, is a real-valued function defined by (2.22)) of Chapter .

(2.9)

Scenario la: (see Figure ) In this example an overtaking maneuver is
considered with one first (obstacle) car in front of the vehicle, moving forward
with velocity 10[m/s] and to be overtaken, and a second (obstacle) car next to
the reference vehicle also moving forward at velocity 20[m/s] and blocking the
maneuver. In Figure it is the position of the vehicle and of the obstacle
cars that is shown at initial time o5 = 0. More precisely the parameters used
for this Figure are (N, Ny) = (70,12) grid points; the trajectory (black line)
is starting from (x(0),y(0)) = (—40.0,—1.5), ¥(0) = 0 and v(0) = 35[m/s], a
first obstacle car takes initial values (x(0),y(0)) = (=10, —1.5), with ¥(0) =
and a constant velocity v(0) = 10[m/s]; a second obstacle car takes initial
values (x(0),y(0)) = (—40,1.5), with ¢(0) = 0 and a constant velocity v(0) =
20[m/s].
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Figure 2.5: (Scenario 2a) Reachable set BR.

Scenario 1b: (see Figure ) This example is similar to the previous one
excepted for the fact that the second (obstacle) car is next to the first one at
initial time. (More precisely, the second obstacle car now takes initial values
(z(0),y(0)) = (—10,1.5), and other parameters are otherwise unchanged).

Figure 2.6: (Scenario 1b) The reachable set BR2 is non connected to the contrary
to Scenario 1la.

The backward reachable set is the set of initial points of R* (according to the
model of Chapter for which the collision can be avoided avoidable,
and target can be reached, within ¢; seconds (therefore so that is satisfied the
final conditions 37 € [to,ts]| such that z(7) > 0 and ¢(7) = 0). The set of
blue points depicted in Figure and Figure is the projection on the (z,y)
plane of the backward reachable set where the steering angle and the velocity
are fixed to the values ¢ (t9) = O[rad] and v(tg) = 35[m/s] (which correspond
to the initial values of the car when maneuver starts).
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By starting in the blue region, the vehicle (in red) might avoid a collision. On
the other hand, starting from a point in the white area then the vehicle will
either go outside the road or will collide with the obstacle, before being able
to reach the safety region €. In both figures an extra part of the backward
reachable set that lay below second obstacle. This is due to the varying road
width, and means that the vehicle is forced to stay on the road. In Figure
[2.6] the backward reachable set is not connected, which means that the red
rectangle can avoid a collision by starting the maneuver either leaving the
obstacles behind (since it is faster no crash will occur) or from a sufficiently
high distance behind the two obstacles depending on its y position (about
24[m] if the reference vehicle starts in the first lane and 14[m] if it starts in
the second lane). The optimal trajectories (black line) seem to overlap the
obstacles and their trajectories before reaching the target set. This is because
the blue rectangles only show the initial position of the obstacles at time tg = 0,
and not the evolution of their linear motion in the time interval [0,].

Scenario 2: curved road with fix or moving obstacles. The road shape

is now described by the level set in (2.29)) of Chapter [lI| with function (2.31))
of Chapter [II, with a 7[m] width and a road radius of 50[m]. The target set is

again the level set (2.7) with function ({2.8)).
The optimal control problem is given in [2.4]

Problem 2.4. Let [to,tf] C R be a non-empty and bounded interval with fized
time points to = 0 <ty and

f o [to,ty] x R™ x R™ — R"=,
g : [to,tg] x R"™ = R,
v : R™ 5 R,

be maps. Find the absolutely continuous function z; : R — R"=, a control
uweld ={ulu:to,ty) = U € R™ measurable} and a parameter T € [to,t]
such that:

2(t) = f(t,2(t), u(t)) a.e. t € [to, 7] CR,
o (2.10)

g(t, 2(t)) = max {g,(t, 2()), go1 (£, 2(t)), - . - , gk (t, 2(t)) } < 0,
@(z(ty)) <0, with ¢ defined in (2.8),

with f as in (1.31]) ofC’hapteT z=(x,y,¢,v), u = (wy, FB), goisi =1,...,k
are real-valued functions defined by (2.80)) in Chapter k is the number of
obstacles, and g, is a real-valued function defined by (2.31)) in Chapter .

Scenario 2a: Two fixed obstacles (blue rectangles with different width and
lenght parameters) have to be avoided by the vehicle (red square), see Fig-
ure and the target ) has to be reached, if possible, in the time interval
[0,5] seconds. The first obstacle has dimensions 0.5[m] and is positioned in
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(—5,48.25). The second obstacle has width 0.5[m] and length 1[m], its position
is (—25,45).

55

50
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..........
..........
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e IEE - 4D
‘ 1
2Py’
s o

40t

Figure 2.7: (Scenario 2a) Reachable set BR5 for a curved road with two fixed ob-
stacles.

Scenario 2b: In this scenario depicted in Figure the road parameters are
similar, there is now only one obstacle but that is furthermore moving with a
circular motion at speed of 5[m/s].

55

45

40

35

Figure 2.8: (Scenario 2b) Reachable set BR/ for a curved road with one moving
obstacle.

e Scenario 3: crossing road and moving obstacles. The following scenario
involves a crossing described by the level set in of Chapter with
function of Chapter|lIl The width of the four streets involving a crossing
can be different one from each other. Here, the horizontal lower and upper road
bounds and the vertical limits are different, as illustrated in Figure An
object (blue rectangle) of dimensions 1{m] is traveling from left to right from
position (—10.0,—2.0) meters with speed 5[m/s] and deceleration 5[m/s?].
A second obstacle (length 1.0[m] and width 2.0[m]) starting from position
(—18,4) is traveling from top to bottom with speed 5[m/s] and deceleration
5[m/s?]. Within time t; = 2.5[s] the red square of dimensions 1.0[m] has to
reach one of the three targets at the end of each road: top (with steering angle
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5lrad]), bottom (with steering angle —%[rad]) or right (with steering angle
0[rad]). Therefore, the level set (2.7 has function:

o(2(r) = mw{—xﬁ%mmﬂwﬂ—ZLWﬁ%+ﬂ,

(2.11)
(7)1} - 001}rad] .
T € [to,ty]. At this speed and for an initial position close to the center of the
crossing, the red vehicle is able to leave the crossing before the second obstacle
enters the center of the crossing. In this example the optimal trajectory (black
line) will steer to avoid the obstacle in the front and will also decelerate to
avoid the second obstacle.

The optimal control problem is given in [2.5]

Problem 2.5. Let [to,tf] C R be a non-empty and bounded interval with fized
time points to = 0 <ty and

f o [to,ty] x R™ x R™ — R"=,
g [to,tf] x R™ — R,
v : R™ =R,

be maps. Find the absolutely continuous function z; : R — R"#, a control
uweld ={ulu:to,ty) = U € R™ measurable} and a parameter T € [to,t]
such that:

2(t) = f(t,2(t), u(t)) a.e. t € [to, 7] CR,

20,
g(tv ( )) ‘= max {gr(tv Z(t)),g(n(t, Z(t)), .. 7gok(t, z(t))} <0, (2'12>

(2(1)) <0, with ¢ defined in (2.11]),

with f asin (1.31]) ofC'hapteT z=(x,y,¢,v), u = (wy, FB), goisi =1,...,k
are real-valued functions defined by (2.80) of Chapter k is the number of
obstacles, and g, is a real-valued function defined by (2.24) of Chapter .

S
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-5

Figure 2.9: (Scenario 3) Reachable set BRy 5 for a crossing with one fixed and one
moving obstacle.

3 Sensitivity analysis modeling errors in initial data detec-
tion

In this section perturbations in the initial data zg enter the Optimal Control Problem
of Chapter [IIl The aim is to model sensor errors in measurements of the initial
state and to perform a sensitivity analysis for this specific problem to study the in-
fluence of parameters on the solution (trajectory and controls) and on the reachable
set. Therefore Problem [4.1] of Chapter [T} called perturbed optimal control problem
is studied. Two different approaches will be considered, Fiacco-Sentitivity, ODE-
Sensitivity, as presented in Section ] of Chapter [l By using a computed nominal
optimal trajectory, the Fiacco-Sensitivity tells about changes in the nominal tra-
jectory if the initial values are perturbed in a neighborhood of the nominal initial
values. The ODE-Sensitivity is showing how the trajectory changes if the nominal
trajectory is driven but with wrong information in the initial data (Section . In
Section such concepts will be extended to reachable sets and trajectory funnels.
Moreover a maximum error estimation is given in Section [3.3] It is useful to under-
stand the requirements for sensor precision such that the nominal trajectory is still
satisfying the state constraints.

3.1 Sensitivity in optimal trajectories

Fiacco-Sensitivity. The first approach called Fiacco-Sensitivity is based on
a parametric sensitivity analysis of the optimal solution for the Optimal Control
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Problem of Chapter [II] with respect to p, compare [41 Sections 3.2 and 4.2].
To this end let @ = u(p) and 2 := zgo(ﬁ ; denote the optimal solution for the Op-
timal Control Problem of Chapter [[I] for a nominal parameter p. The map z
defined in of Chapter [[1| assignes to (4(p),p) the solution zgo(gj fz). Therefore, the
Fiacco-Sensitivities of the state and the control are defined as

These sensitivities can be computed using the linearized necessary Karush-Kuhn-
Tucker conditions in an optimal solution (2,%). An approximation to the optimal
perturbed trajectory is given by

z(t(p),p)(-) = 2(-) + Sr()(p — P)- (3.2)

input : (2(tg),a(ty)), Viti € [to, 7] C R,

ﬁ? ZO”’”’p?
€= 20(p) € B(zo, 7).
output: z

for ¢ € [to, 7] do
solve system and get matrix Sp(tx);
Z(tk) == 2(tk) + Sk (te) (P — p)
end
Algorithm 6: Fiacco-Sensitivity implemented in OCPID-DAEL.

An example of Fiacco-perturbed trajectories according to (3.1]) with respect to pa-
rameter p;,¢ = 1,...,5, is presented in Figure [3.1l The reference trajectory is the
minimal time trajectory in the left column of Figure|l.1
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FIACCO-Optimal trajectory

parameter 1
10 parameter 2
parameter 3
parameter 4
parameter 5
8r parameter 6
6 i
4 =
2 =
0
2k
_4 1 1 1 1 1 1 1 1 1 1 J
-10 -5 0 5 10 15 20 25 30 35 40 45

Figure 3.1: The seven trajectories show the nominal trajectory (black dashed
line) and its perturbation with respect to pi,...,ps and w.r.t. all pa-
rameters combined (dark magenta line). The perturbation vector is p =
(5[m], 1[m],0.1[rad], 5[m/s],0.5[m/s]). The solutions (states and controls) or the
perturbed optimal control problem for such perturbations of the initial values are
well approximated by the Fiacco-Sentitivity which gives feasible trajectories.

ODE-Sensitivity. The second approach called ODE-Sensitivity investigates
the dependence of the solution of the initial value problem in of Chapter |LI| on
p in a ball of the nominal parameter p and for a fixed (optimal) control @. To this
end let & = u(p) be given and let 2 := zgo(f ;) denote the corresponding solution of
the initial value problem

2(t) = f(2(t),a(t), 2(0) = z0(p)- (3-3)

Again the map z defined in (4.2]) of Chapter [lI] assignes to (u(p),p) the solution

zgo(? {3)' Then, the ODE-Sensitivity of the state is defined as

Sol-) = 0z

= S D)), (3.4)
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Note that this is just the partial derivative of the state mapping with respect to p
for a fixed control and not the total derivative as in . An approximation to the
perturbed trajectory is obtained similar as in . The ODE-Sensitivity is given
by solving the sensitivity differential equation

_ dZ()

= o). (3.5)

So(t) = fL(2(t),u(t))So(t),  So(0)

input : (2(tx),a(tx)), Vtg € [to,7] CR,

ﬁ? Zo7r7p7
¢ = 29(p) € B(zo,7).
output: z

for ty, € [to, 7] do
solve system and get matrix So(tx);
Z(t) = 2(tk) + So(tk) (D — p)
end
Algorithm 7: ODE-Sensitivity implemented in OCPID-DAE1.

An example of ODE-perturbed trajectories with respect to each parameter p;,i =
1,...,5, is illustrated in Figure [3.2l The reference trajectory is the minimal time
trajectory in the left column of Figure
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ODE-Optimal trajectory

parameter 1
10 parameter 2
parameter 3
parameter 4
parameter 5
8 parameter 6 /
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-10 -5 0 5 10 15 20 25 30 35 40 45

Figure 3.2: The seven trajectories show the nominal trajectory (dashed black
line) and its perturbation with respect to pi,...,ps and w.r.t. all pa-
rameters combined (dark magenta line). The perturbation vector is p =
(5[m], 1[m],0.1[rad], 5[m/s],0.5m/s]). Perturbations on zy and v,, values are too
big since they lead to a crash. Perturbation in the yaw angle g will bring the vehicle
out of the road.

The ODE-Sensitivity analysis can be extended from a single perturbation vector
p € R™ to a range of perturbations in a ball around the nominal initial state zo(p)
of radius r > 0. Algorithm [§] is using ODE-Sensitivity analysis to compute such
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trajectories.

input : (f(tk),ﬂ(tk)) Vi € [tQ,T] C R,
D, 20,7

output: Z matrix.
define a grid P := {p;};=1,..» such that & := zo(p;) € B(zo,r);
for 5, € [to, 7] do

solve system and get matrix S(ty);

fori=1,...,h do

| Zi(t) = 2(t) + St (D — pi);
end

Z(ty) == (21(tr), - - -, 2n(t))
end

Algorithm 8: Perturbed trajectory for a ball around a nominal initial state
implemented in MATLAB code.

The perturbed trajectory related to the minimum constraint violation trajectory in
the left column of Figure is given in Figure The perturbed trajectory related
to the minimum time trajectory in the left column of Figure is given in Figure
The perturbed trajectories are computed for each entry of the parameter p and
for a perturbation taking into account all parameters together. The perturbation
intervals are p; € [—5, 5] meters, p2 € [—1, 1] meters, ps € [—0.1, 0.1] radiants,
pa € [—5, 5] meters/seconds and ps € [—0.5,0.5] meters/seconds. The two figures
do not show particular difference, and in both cases such perturbation intervals are
too big and lead to a crash.
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ODE perturbation of an optimal trajectory

Perturbation of state 1 in [5,-5]
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Perturbation of state 2 in [1,-1]
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Figure 3.3: Perturbations in the first five initial states are shown in the figure for
a minimum constraint violation trajectory. The perturbation value is discretized
over the interval shown in the title of each figure to understand the shape of the
perturbation set in such interval.
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ODE perturbation of an optimal trajectory

Perturbation of state 1 in [5,-5] Perturbation of state 2 in [1,-1]
10 10
5 .““,— "" °
0 0
-10 0 10 20 30 40 -10 0 10 20 30 40
Perturbation of state 3 in [0.1,-0.1] Perturbation of state 4 in [5,-5]
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Figure 3.4: Perturbations in the first five initial states are shown in the figure for
a minimum time trajectory. The perturbation value is discretized over the interval
shown in the title of each figure to understand the shape of the perturbation set in
such interval.

Example of Fiacco- and ODE-Sensitivity of an optimal trajectory for a
curve road scenario. The Fiacco- and ODE-Sensitivities for the optimal trajec-
tories of Figure is given in Figure [3.5 and Figure [3.6] using Algorithms [6] and
[
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FIACCO-Optimal trajectory

parameter 1
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Figure 3.5: Fiacco-Sensitivity: the top picture is the minimum time trajectory of
Figure the bottom picture is the minimum initial distance trajectory of the
same Figure The seven trajectories depicted in each picture show the nominal

trajectory (dashed black line) and its perturbation with respect to pi,...

,p5 and

w.r.t. all parameters combined (dark magenta line). The perturbation vector is
p = (5m], 1m], 0.1[rad], 5[m/s], 0.5[m/s]).
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ODE-Optimal trajectory
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Figure 3.6: ODE-Sensitivity: the top picture is the minimum time trajectory of
Figure the bottom picture is the minimum initial distance trajectory of the
same Figure The seven trajectories depicted in each picture show the nominal
trajectory (dashed black line) and its perturbation with respect to pi,...,ps and
w.r.t. all parameters combined (dark magenta line). The perturbation vector is
p = (5[m], 1[m],0.1[rad], 5[m/s],0.5[m/s]).

The ODE-Sensitivity for perturbations in a ball as in Algorithm [§|is given in Figure
for the minimum time trajectory and in Figure for the minimum initial
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distance trajectory. Bigger perturbation intervals are allowed for the minimum time
trajectory than for the minimum initial distance, because the latter is a more extreme
trajectory approaching the obstacle as close as possible.

ODE perturbation of an optimal trajectory

Perturbation of state 1 in [1,-1] Perturbation of state 2 in [1,-1]
0 0
-5 -5
-10 -10
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0 5 10 15 20 25 0 5 10 15 20 25
Perturbation of state 3 in [0.1,-0.1] Perturbation of state 4 in [1,-1]

Perturbation of state 5 in [1,-1]

/
5 10 15 20 25

Figure 3.7: Perturbations in the first five initial state are shown in figure for a
minimum time trajectory. The perturbation value is discretize over the interval
written above each graph.
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ODE perturbation of an optimal trajectory

Perturbation of state 1 in [1,-1] Perturbation of state 2 in [1,-1]

-25
0 5 10 15 20 25 0 5 10 15 20 25
Perturbation of state 3 in [0.1,-0.1] Perturbation of state 4 in [1,-1]
0 0
-5 -5
-10 -10
-15 -15
-20 -20
-25 - ) ) ) -25 - ) ) )
0 5 10 15 20 25 0 5 10 15 20 25
Perturbation of state 5 in [1,-1] Perturbation of all states together
0
-5
-10
-15
-20
-25
0

Figure 3.8: Perturbations in the first five initial state are shown in figure for a
minimum initial distance trajectory. The perturbation value is discretize over the
interval written above each graph.

3.2 Sensitivity in trajectory funnels and reachable sets

In the next first paragraph a way to define the reachable set of the perturbed initial
value problem [.1] of Chapter [[I} for p in a ball of a nominal parameter p, for linear
dynamics is given. In the second paragraph a method to investigate the dependence
of the reachable set on p for the nonlinear system optimal control problem of
Chapter [l is shown. It uses an approximation based on the computation of the
reachable sets in Algorithm
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Linear initial value problem. Let the linear control system be defined as:

() = A(t)2(t) + B(tu(t) ae. in (to, t;)

z(to) = 20(p),p € R"™ (3.6)

for almost every t in [to, t¢]. The system (3.6]) has a unique solution (see [30, Chapter
1]) for every:

u €U = L'((to, t); R™)
A, B € L™®((to, ty); R™*"=)
Zo(ﬁ) € R"=.

The solution is the continuous function such that:

t
2(t) = ®(t)20(p) + q)(t)/ &~ Y7)B(t)u(r)dr,u € U, (3.7)

to

with ®(-) the solution of the following matrix ordinary differential equation with

given initial value:
Z(t) = A(t)=z(t)

z(to) = In, (38)
where I,,, is the n, X n, identity matrix.
Moreover the reachable set is:
FRE = 100+ 005) [ 0 By 39)
The perturbed control system is defined as:
2(t) = A(t)f(t) + B(t)~u(t), a.e. in (to,t5) (3.10)
z(to) = z0(p), where p € B(p,r),r > 0.
The solution can be written as:
2(t) = ®(t)20(p) + B(1) /tt & Yr)B(r)a(r)dr,u €U (3.11)
0
and the reachable set is:
FRE, i = 0051000+ 3(0p) [ 80BN ). (312)
Observation 3.1. It holds that
FRY o) = 181 (200) — 200)} + FR] (3.13)
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where the sum is a Minkowski sum. Indeed if v € }'R{f 20(5) then = can be written

in the form:

= B(t7)z0(p) + @(tf)/ "1 (1) B(r)u(r)dr

to

it exists u € U. Therefore,

x = ®(ty)z0(p) — P(ty)20(p) + P(t)20(p) + D(ty) / ! & Y(7)B(T)u(r)dr. (3.14)

to

Since .

f

&= B(t))20(5) + <I>(tf)/ & (7) B(r)u(r)dr
to
with w € U arbitrary, then T € F Rf . Thus,
#:20(P)
2= B(t7)(20(p) — 20(7)) + 7 € {(B(t7)(20(p) — 20(P)} + FRY .

Vice versa if T € FRS then T can be written in the form:

ty,20(P)
ty
T =®(tf)zo0(p) + q)(tf)/ &~ Y(7)B(t)u(r)dr
to
it exists u € U. Therefore,

T =®(ty)zo(p) — (ty)z0(P) + (tr)2z0(p) + D(t) / ' & Y7)B(t)u(r)dr. (3.15)

to

T+ @(tr)(20(p) — 20(P)) = P(tg)20(p) + L(ty) / Lo () B()u(r)dr = @

to

with w € U arbitrary, then x € ]:Rff ()"

Definition 3.2. Let X and Y be two non-empty subsets of R® and d a distance
function of R™ associated to the norm || -||. The Hausdorff distance between the sets
X,Y is denoted by d(X,Y) and it is defined by:

di(X,Y) :=max < sup inf d(z, (), sup inf d(z, . 3.16
H(X.Y) X{ze}?w( ) sup int <>} (3.16)

Moreover, the norm of a set X C R™ is defined as:

IX1/ »= max |l]| = d (X, {0}). (3.17)
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Observation 3.3. Denoting with dy the Hausdorff distance then

f ! _
i (FRtf:ZO(ﬁ)7 }—Rtfvzo(ﬁ)) N
= dH({(I)(tf)(ZO(ﬁ) —20(p))} + fR{f,Zo(f))’ IR{fvzo(ﬁ)) - (3.18)
= max m}n d(z,z 4+ ®(tr)(20(p) — 20(P))) <
IE}—Rif,zO(ﬁ) i‘G]:Rtf,ZO(ﬁ)

< |12t 5)lllz0 () — zo(P)I-

Observations and [3.3| show stability of the reachable set with respect to param-
eters in the initial value.

Nonlinear perturbed optimal control problem. Let ]:Rfﬁﬁ and T]:{f,ﬁ de-
note the reachable set and the trajectory funnel (respectively) for Problem of
Chapter [[I| with nominal parameter p. An approximation of F R{ D and 7'.7:{ 7 for
p # p can be obtained by linearization from ]-"R{f 5 and Tf{f’ﬁ using the sensitivity
analysis in and . In particular given a grid G in the state space, then
the sensitivity analysis is performed with respect to the perturbation parameter
p € B(p,r), r > 0 for each optimal solution Z := Zy(p) Such that 37 € [to,ts] such

that 2(7) is close enough to a grid point (i.e. 2(7) € fR{f o)

FR{,,~ U {on}, (3.19)
gnill2(@,p)(r)+ ZGEID (p—p) —gy 2 <Ch

Moreover the approximation of the trajectory funnel is given by

9z(a, p)(-)

TFp~ U @n0)+ =

gnil|2(a,p)(r)+ ZEDD (p—p) g, |, <Ch

(p—p)}, (3.20)
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for C' > 0 suitable and %ﬁ)(ﬂ denotes one of the previously discussed Fiacco- or
ODE-Sensitivities.

input : Let G, U and Z be the output of Algorithm [3| such that
Z(tr) = (Zi(tr))igica, Ute) = (@i(tk))igiec  Vir € [to, 7],
b, 20,7, p,§ == z0(p) € B(zo,7).
output: G, Z.
for ¢, € [to,tf] do
for g; € G do
solve system or and get matrix S;(tx);
Zi(tk) = Zi(tk) + Si(te) (P — p);
end

Algorithm 9: Sensitivity in reachable set and trajectory funnel.

Figures[3.9/and show the reachable set and the trajectory funnel of Problem
of Chapter [lI] for perturbations on p in the initial state (Fiacco-Sensitivity), while
Figures |3.11| and show the reachable set and the trajectory funnel if a pertur-
bations p occur in the initial state, but with fixed control (ODE-Sensitivity). The
Fiacco-Sensitivity is much more sensitive to perturbations and for big perturbations
does not give the desired solution. The ODE-Sensitivity aims to understand how
the reachable sets change if a perturbation occur in the initial data, but the control
is fixed. The reference reachable set and trajectory funnel are in Figure [1.4. The
perturbations are written on top of each graph.
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FIACCO-Reachable set
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Figure 3.9: Reachable sets approximations by Fiacco-Sensitivity, perturbed of
p = (5[m],1[m],0.1[rad], 5[m/s],0.5[m/s]) and with a perturbation of all param-
eters together.
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FIACCO-Optimal trajectories

Perturbation of state 1 in [5,-5] Perturbation of state 2 in [1,-1]
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Figure 3.10: Trajectory funnel approximations by Fiacco-Sensitivity, perturbed of
p = (5]m], 1[m],0.1[rad], 5[m/s],0.5[m/s]) and with a perturbation of all parameters
together.
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ODE-Reachable set

Perturbation of state 1 in [5,-5] Perturbation of state 2 in [1,-1]
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Figure 3.11: Reachable sets approximations by ODE-Sensitivity, perturbed of
p = (5[m],1[m],0.1[rad],5[m/s],0.5[m/s]) and with a perturbation of all param-
eters together.
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ODE-Optimal trajectories

Perturbation of state 1 in [5,-5] Perturbation of state 2 in [1,-1]
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Figure 3.12: Trajectory funnel approximations by ODE-Sensitivity of p =
(5[m], 1[m],0.1[rad],5[m/s],0.5[m/s]) and with a perturbation of all parameters to-
gether.

The ODE-Sensitivity for reachable sets (trajectory funnels) is useful to find the
subset of the reachable set (or trajectory funnels), whose points are the final states
of those optimal trajectories that does not violate the state constraints. Such a set
is called robust reachable set (or robust trajectory funnel) and it is formally defined

in 34

Definition 3.4. Let ]:7?,{ be the reachable set for Problem of Chapter . The
f
robust reachable set of level r > 0 is defined as

FRy, = {z7 € FRL |3u €U, 3r € [to, 1] : A
2y, s a solution of Problem[3.1] of Chapter [l with 2% (1) = zy
and V¢ € B(zo,1), zgsatisﬁes the state constraints of the Problem [3.]]

of Chapter [II}.
(3.21)
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The robust trajectory funnel of level r > 0 is defined as

Tf:f = {z:‘z‘o :R— R™ |Ju el : 2% solution of Problem[3.1] of Chapter Il and

24 (r) € FRy, Ir € [to,tf]}.
(3.22)

Given a grid G = {gh}he{l,...,k} in the state space, Algorithm computes the
robust reachable set (and the robust trajectory funnel) as a subset of the reachable
set .7-"72{ such that, given an initial value zg and an optimal control @ for Problem
of Chapter Il each optimal trajectory 2% (with |lgr — 22 (7)|| < Ch for a suitable
constant C and grid point gp € ]:R{f) is admissible for any & € B(zp,r) with r > 0
given. In Algorithm 20 := 20(p) and £ := zo(p) for p € B(p,r).

input : G and Z output of Algorithm [J] such that
Z(tr) = (Zi(tk))ig,ec
Vi € [to, 7], P, 20,7

output: G robust reachable set,
Z robust trajectory funnel.

define a grid P := {pp}p=1... g such that & := 29(pn) € B(z0,7);
for g; € G do

for 5, € [to, ts] do

.....

solve system and get matrix S;(t);
for h=1,...,H do
| Zin(tr) == Zi(tk) + Si(tk) (P — pn);

end

if all (Z,(tk))n=1,..n satisfy state constraints then
G:=GU{g}
Z(i,k) :== (Zin(te), -  Zim(te));

end

end

end
Algorithm 10: Robust reachable set implemented with MATLAB.

The robust reachable set for the scenario modeled in Problem is given in Figure
The robust trajectory funnel is given in Figure In this case the constraint
violation is minimized and the resulting optimal trajectory is the furthest from the
obstacles and the boundary of the road.
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Reachable set
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Figure 3.13: The top picture shows the nominal reachable set, the bot-
tom picture shows the robust reachable set for a perturbation of p =
(1[m],0.1[m],0.01[rad], 1[m/s],0.1[m/s]) and —p.
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Optimal trajectories
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Robust funnel trajectories
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Figure 3.14: The top picture shows the nominal trajectory funnel, the bot-
tom picture shows the robust trajectory funnel for a perturbation of p =
(1[m],0.1[m],0.01[rad], 1[m/s],0.1[m/s]) and —p.

3.3 Radius estimation

The idea of ODE-Sensitivity analysis is that once an optimal control 4 € U has been
found for Problemﬂof Chapter and for a given zg € BR{ e then the dependency
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of the optimal solution zﬁo on zq is investigated. The set BTQ: ; contains all the initial

states zg € BRf with associated optimal control 4, such that zg satisfies the state
and boundary constramts of Problem [3.1] H of Chapter ! for all £ € B(zg,r). In
Proposition [3.6| the maximum r for a given trajectory z7 is estimated for problems
with boundary constrains only. In particular the constant C is found, such that
r < C gives a sufficient c condltlon for deciding weather a point in the backward
reachable set is also in BRt ; for problems without state constraints. In the second
paragraph an algorithm to obtain a similar estimation of r is derived for optimal
control problems with state constraints only.

Radius estimation with boundary constraints only. Here an estimation of
the maximum possible initial data perturbation is given, such that the nominal
optimal trajectory, for Problem of Chapter [[I| with boundary constraints only,
is still admissible. This is useful for sensor developers that need to understand the
precision of a sensor used in autonomous driving.

Definition 3.5. Let BRf be the backward reachable set for Pmblem of Chapter
[ with only boundary constmmts The perturbed backward reachable set of level
r > 0 is defined as
BT%:J, = {20 € BR{f,\ Ju €U : 2% is a solution of Problem[3.1] of Chapter|[I]
with only boundary constraints and VZy € B(zg,1), 2y satisfies

the boundary constraints of Problem[3.1] of Chapter [IT}.
(3.23)

The next proposition finds a sufficient condition on r > 0 small such that zy € E’TQ: .

Proposition 3.6. Let f : R™ x R™ — R"™ be a C? and let L > 0 denote the
uniform Lipschitz constant with respect to its first argument, i.e.

1f(zu) = FZ )l < Lllz =2l Vu, (3.24)

where z # Z. Given zg € R", consider an optimal trajectory z,(t) with optimal
control u,, € R™ for Problem of Chapter[I] such that:

Let Q) be the target set and dg : R™ — R be the Lipschitz continuous signed distance
function to Q). Then

_3 do(zz(tf))
- K HMtfH

where 23\7/2; is in Definition

— 2 € BR;,, (3.26)

M, = exp /0 D, f (220 (1), usg (1))dr), £ 0 (3.27)
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and

K > 14 4/1— (20e" s dg(z () /| M1, ). (3.28)

with
1D? f (-3 11z (#)) oo < C- (3.29)

Proof. Let zy be given and consider an optimal trajectory z(t) = z,,(¢) with control
U= Uy,:

2(0) = % (3.30)
Now let Z(t) be a solution of

where p := Zy — 20, p € 7 Brn: is small.

Considering the Caratheodory solutions of the problems (3.30]) and (3.31)), it holds:
t

Z(t) = 2(t) = 20 — 20 +/ fE(T),u(r)) = f(2(7), u(r))dr. (3.32)
0

For (3.24) then:

I1Z(t) — 20 < 120) — 2(0)[| + fy IF(Z(7), (7)) — f(2(7),u(r))|dr (3.33)
< lpll+ fy LIE(T) = 2(7)||dr

and so for the Gronwall’s inequality:

12(8) = 2(@)I| < [lplle™ < re. (3.34)

Assuming that f is at least C? twice continuously differentiable in the z variable
and the Taylor expansion is:

FE@),u(t)) = f(2(8),u(®) = D=f(2(t), u(t)) (3(t) — 2(1) + Ra(2(1)),  (3.35)

where
I RaCate)) = L2 Gty e (3.36)
Moreover let C' > 0 be a constant such that
ID?f (- u(t)) ]l < C, (3.37)
then o
IR (2()I] < 5 e (3.38)
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Imposing .
Ay =D, f(2(t),u(t)), and M;:=exp (/0 Aqds) (3.39)
and considering and , it holds:
WO p e, )~ =) + Relet)  (340)
Solving :
Z(t) —2(t) =

p+ Jy Ra(z(r)) exp (— f7 Ads) dr) M, (3.41)
= pM;+€(t)

e(t) = ( /O t Ro(2(7)) exp (- /0 ' Asds) dT) M, (3.42)

and, recalling (3.38|),

gp + f(f Ro(2(1)) exp (— [y Asds) dT; exp ( fg ATdT)

where

[l < (fo IR exp (J D= ((5), uls))|ds) d ) -
exp (Jy 1D (2(7), u(r))ldr ) (3.43)
< Cp2edlt —. ag(r).
6L

The following implication will be proved:

supdo(z(ty) + My e+ e(ty)) < 0=z € BR;,. (3.44)
e€B

Let dq(-) defined as:

[ d(z,Q), if 2 € CQ
do(v) := { —d(z,0Q), ifreQ

where (Q = R™: and d is the distance between a point and a set in R defined as:
d(x,Q) := inf ||w — x||.
(2,0) i= inf |l — 2]
By triangular inequality it holds

d(z,y) + d(y,Q), y € R" and z € 0Q, (3.45)
d(y,z) +d(x,Q), yeR"™ and z € Q, (3.46)

which implies that
do(x) < da(y) + d(z,y). (3.47)
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Therefore,
SUpeep da(2(ty) +rMe +e(ty)) <
< dq(z(ty)) + rsupeep || Miye +e(ty)| =

< do(a(ty)) + roupecp | Myl + [le(ty)] = (3:45)
= da(z(ty)) + 7| M| + at, (r),
using Equation and being r > 0.
Thus,
da(2(ty)) + rl|Mi [l + aip(r) <0 =
SUDec B dQ(Z(tf) +I\%f€ + E(tf)) <0 = (3.49)

20 € BRtf'

The aim is to find a condition on r out of (3.49) which implies zg € BTQ: ;- 1t suffices
that » > 0 and:

C
da(z(ts)) + || My || + T26—Le4Ltf <0, (3.50)

using (3.43). Let 71,72 be the roots of Equation (3.50) with 71 < 0 < ry then:

3LHMtfH 2C —dq(z(ty))
<p< _UWR £ ALty [ ZHQ\RF)) )
O<r Cetlts ! 1 3Le ( ||MtfH2 > (3.51)

where do(z(tf)) < 0 since z(tf) is the optimal feasible trajectory for (3.30). In

particular if
20 —da(2(ty))
K =1+ /1+ =eilts < , (3.52)
¢ 3L e

the sufficient condition for zy € ETQ: PRtE

Ogrg_gdsz(z(tf))

ISAN 2O (3.53)
K || My, ||

Radius estimation with state constraints only. In Figure the obstacle
is denoted as the set CK and it holds that z(t) € K for all ¢ € [to,ts]. The radius
r is then taken as the maximum radius such that zy € lf§7v?,:f Which means that
for a given zg and a corresponding optimal trajectory zgo (red line), all perturbed

trajectories zg (black curves) are satisfying the state constraints (zg(t) € K(t),vt e
[to,tf]), for all £ € B(Zo,T).
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Figure 3.15: Idea of the perturbed reachable set and radius estimation

Observation 3.7. For r small, in first approximation it holds
2B (1) = 2Bz ) (8) 2 2(8) + 7 M B + o(r), (3.54)

where 2(t) = z (t) is the reference trajectory, My is in ([3.27) and B is the unit ball.
Equation (2.85)) of C’hapter is, in first approximation, equivalent to

sup.ep ¢(2(ty) +rMie) <0, and SUP(0,¢,) SUPee R g(2(t) + rMye) <0,
(3.55)
where B is the unit ball. In the same way,

p(2(tp) + 7| M, V(2(tp))l| <0 (3.56)
and

sup g(2(1)) + r[|M, Vg (2(t))|| <0 (3.57)
(0tr)
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Algorithm (11| shows how the radius estimation in Observation is computed.

input : (2(tk), a(tk)) Vi € [to, L], P, 20
state constraints in the form g(z, ;) <0,
with values in R"™s.

output: r,r1,...,7,, .

for ¢, € [to,ts] do

J=0;

solve system (3.5]) and get matrix S(t);

find Dy(ty) = (522 (=(t), 1) ) ,

nQ ni1=1,...,ng, na=1,...,n,

compute DS(t) := Dg(tx) * S(tr);

r = +00;
forny =1,...,n4 do
if total radius then
|7 = min(r,—ga, (2(65), )/ | DSy (1))
else
for no =1,...,n, do
‘ Tngy (h) = min(THQ (h)> —9ny (Z(tk)’ tk)/abs(DthnQ (tk)))v
end
end
end

end
Algorithm 11: Radius estimation implemented with MATLAB.

Radius estimation of ROCHJ trajectories. To understand better how the
total radius works, the scenario in Subsection is considered with the following
modifications:

o the obstacle initial position is X7 = (x1,y1) = (0.0[m], —1.75[m]);

o the reference initial state is zo = (0, Yo, %0, vo) = (—30.0[m], —1.75[m], 0.0, 20.0[m/s]).

The backward reachable set in a time horizon T' = 2[s] and the minimum time
optimal trajectory with 7 = 1.452[s] are depicted in Figure
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Reachable set BR% . (Optimal trajectory also represented with a black line)

t=2, level set=0

Figure 3.16: Reachable set BRg, obtained with N, = 18 grid points on the interval
[—40, 5] and N, = 16 grid points on the interval [—4,4].

The total radius estimation for the reference trajectory in Figure is computed
in column radius as the minimum over the total radius estimations computed at
each time step in column radiusy of Table The column g is the state constraint
value computed in the state (x(t(k)),y(t(k)), v (t(k)),v(t(k))) at time t(k) for the
iteration step k € [1,..., N]. As one can see, the state constraint is always satisfied
since it is always negative as requested in Problem Column ||Dg - S|| gives the
factor that divides the state constraints value, for each time step t(k), to compute
the total radius as shown by the formula in Algorithm

re = —g(2(t(k)), ¢(k) /| DSE(R))[l,  with DS(#(k)) = Dg(t(k)) - S(t(k))

and thus the total radius will be » = min{ry,...,ry}.
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z(t(k)) | y(t(k)) | ¥(k)) | v(tk)) | t(k) k g |Dg - S| | radiusk | radius
-30 -1.75 0 20 0 0 -3.5 2.002 1.748 1.748
-29 -1.737 0.025 20 0.05 20 -2.5 2.295 1.089 1.089
-28 -1.7 0.05 20 0.1 40 | -2.551 3.732 0.684 0.684
=27 -1.637 0.075 20 0.15 60 | -2.653 5.051 0.478 0.478
-26 -1.55 0.1 20.004 0.2 80 | -2.806 7.477 0.375 0.375
-25 -1.445 0.114 20.079 0.25 100 | -3.002 9.434 0.318 0.318
-24 -1.318 0.139 20.154 | 0.301 | 120 | -3.235 11.424 0.283 0.283
-23 -1.166 0.164 20.23 0.351 | 140 | -3.519 13.426 0.262 0.262
-22 -0.987 0.189 20.265 | 0.401 | 160 | -3.856 15.436 0.25 0.25
-21 -0.787 0.2 20.34 0.451 | 180 | -4.247 17.434 0.244 0.244
-20 -0.584 0.2 20.41 0.501 | 200 | -4.653 19.422 0.24 0.24
-19 -0.381 0.2 20.445 | 0.551 | 220 | -5.058 21.412 0.236 0.236
-18 -0.18 0.192 20.52 0.601 | 240 | -5.467 23.396 0.234 0.234
-17 0.002 0.17 20.594 0.65 | 260 | -5.422 1.799 3.015 0.234
-16 0.186 0.187 20.668 0.7 280 | -4.415 1.965 2.247 0.234
-14.999 0.363 0.163 20.741 | 0.749 | 300 | -3.425 2.111 1.622 0.234
-13.999 0.516 0.146 20.815 | 0.797 | 320 | -2.432 2.244 1.084 0.234
-12.999 0.661 0.134 20.887 | 0.846 | 340 | -1.437 2.376 0.605 0.234
-12.549 0.719 0.123 20.92 0.868 | 349 | -1.034 18.086 0.057 0.057
-11.999 0.783 0.11 20.959 | 0.894 | 360 | -1.091 18.629 0.059 0.057
-10.999 0.886 0.1 21.031 | 0.942 | 380 | -1.088 18.63 0.058 0.057
-9.999 0.986 0.1 21.098 0.99 | 400 | -1.189 19.628 0.061 0.057
-8.999 1.086 0.1 21.108 | 1.037 | 420 | -1.289 20.627 0.062 0.057
-7.999 1.186 0.093 21.179 | 1.085 | 440 | -1.391 21.622 0.064 0.057
-6.999 1.267 0.069 21.25 1.132 | 460 | -1.537 2.905 0.529 0.057
-5.998 1.324 0.046 21.32 1.179 | 480 | -2.525 2.981 0.847 0.057
-4.998 1.358 0.022 21.386 | 1.226 | 500 | -3.262 51.118 0.064 0.057
-3.998 1.369 0 21.4 1.273 | 520 | -3.262 53.138 0.061 0.057
-2.998 1.369 0 21.47 1.32 | 540 | -3.262 55.137 0.059 0.057
-1.998 1.369 0 21.489 | 1.366 | 560 | -3.262 57.136 0.057 0.057
-0.998 1.369 0 21.465 | 1.413 | 580 | -3.262 59.134 0.055 0.055
-0.148 1.369 0 21.446 | 1.452 | 597 | -3.262 59.834 0.055 0.054

Table 3.1: Time evolution every 20 iterations of the state of the reference vehicle and
of the total radius estimation are listed. Iterations 349 and 597 are also exploited
for clarification.

Radius estimation of OCPIDDAE trajectories.

Minimum constraint violation

The
The
The
The
The
The

radius
radius
radius
radius
radius

of parameter
of parameter
of parameter
of parameter
of parameter

is
is
is

D W N -

is
5 is

trajectory:

= N O O

total radius is 0.00209028

.63652204
.45000000
.04150295
.56418685
.08372933

units

units
units
units
units
units

The radius estimation for
the reference trajectory considered in Figure is provided straightforward.



138 Chapter IV. Computational Results

The constraint violation value wo = —0.45 meters, will allow a larger error in the
initial state since the constraints are minimized and not only satisfied. This is shown
in the next data, where the radius estimation for the minimum time trajectory in
Figure is computed and where the constraint violation is fixed to we = 0.0 and
not optimized.

Minimum time trajectory:

The radius of parameter 1 is 0.94731495 units
The radius of parameter 2 is 0.28520537 units
The radius of parameter 3 is 0.03015129 units
The radius of parameter 4 is 1.38143485 units
The radius of parameter 5 is 0.79722614 units

The total radius is 0.00559723 units
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1 The Virtual Test Maker Software.

The software package that collects results of Chapter[[V]and employes them to verify
collision avoidance systems is here explained in details. It is developed in a Linux
platform, but it can be extended to Windows systems as well. It is organized in

three phases:
(2 ©,
‘ln]mt in‘r(‘rfzu’*(\‘ — Core OCP — | Output plots
T T

/]\
|C++/FORTRAN|

Table 1.1: Structure of Virtual Test Maker.

Explanation of Table [I.1]is given here.
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@ The JAVA interface is a user friendly interface to define the car traffic scenario
parameters and to choose the desired output object.

@ The optimization core using ROC-HJ and OCPID-DAE1 software packages is
based on C++ and Fortran programming language respectively. It will solve
the optimal control problem of the form (3.2) of Chapter [[I, with constraints

of the form ([2.85) and (2.86]) of Chapter

@ The MATLAB plotting helps the visualization of the output data files ob-
tained from the ROC-HJ and OCPID-DAEL1 software packages. Moreover a
sensitivity analysis is performed.

The Virtual Test Maker (VTM) tool is collected in folder GUI_0.xx with structure
given in Figure

[=Defaults
| [=BackwardReachableSet
|__=RocHs

L...continues in Figure
| [BFinalReachableSet
| =0CcPIDDAE

L...continues in Figure
| [>0ptimalAvoidanceTrajectory
(=ROCHJI
L...continues in Figure
(=0CPIDDAE
| ..continues in Figure
| [BVerifyAwvAlgorithm
(ELastPointToBrakeSteer

L...continues in Figure

(=0ptimalTrajectory

L...continues in Figure

[(=>ReachableSet

L...continues in Figure
| [BVerifyHotAlgorithm

(EMATLAB

L...continues in Figure

(=ROCHJ

L...continues in Figure

Figure 1.1: Folder structure behind the user interface. Each level corresponds to a
drop-down menu of the interface window in Figure [L.4]

Folders shown in Figure [1.1]| contain the source code to answer to a question posed
by the user. Each folder corresponds to an answer.
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1. The backward reachable set is defined in of Chapter [[I] and it is com-
puted with ROC-HJ software following Algorithm [5| of Chapter

2. The final reachable set is the reachable set defined in [3.3] of Chapter [[] and
it is computed with OCPID-DAE1 software following Algorithm [3| of Chapter
The FIACCO-sensitivity and the ODE-sensitivity (Algorithm [9] Chapter
are also computed.

3. The optimal avoidance trajectory is defined in of Chapter [T and it is
computed with OCPID-DAEI software following Algorithm [2] of Chapter
The FTACCO-sensitivity (Algorithm |§| Chapter and the ODE-sensitivity
(Algorithm [7| Chapter are computed. The ROC-HJ software computes
minimum time trajectories with a 4D vehicle model and more flexible scenario

configurations, see Section [2| of Chapter [V]and Algorithm [I] Chapter

4. The verification of CAB algorithm will be treated in details in Section
As shown in Figure this question does not have a software choice
but a goal choice, the reason for this is that the software used is always
OCPID-DAET1 software, but several explicit objectives are accessible. In par-
ticular the OptimalTrajectory runs Item with OCPID-DAE1 software
and ReachableSet runs Item .

5. The verification of CABS algorithm will be treated in details in Section
The ROCHJ choice is exactly computation at Item . The MATLAB choice
performs the Algorithm [8) of Chapter and radius estimation of Algorithm

of Chapter .

The Default folder structure goes forward as indicated in Figure with the
choice of a road geometry. Each road geometry contains then the source code for
the Core Phase in C++ or FORTRAN folders, the parameter files describing the car
traffic scenario as entered from the user friendly interface for the Input Phase in
GUI folder and the code plotting the output objects and performing the sensitivity
analysis for the Output Phase in MATLAB folder.
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Tool

SROCH]
=

L eseur goto
BROCHJparaneter’
St

BROCH pr:
L ot goto
L @rocus =

eScarve

BROCHTparaneter THPUT_expl.txt
BRoCHIp: 1

L e5uatLag goto
|Brocus =

Figure 1.2:

First

[E0CPIDDAE or B>0ptimalTrajectory or EReachableSet

Crossing

—IEFDRTRAM goto (2)
Bcrossing_3.£90

LBoGUT goto
BOCPIDDAEparameter INPUT_expl. txt
BOCPIDDAEparameter INPUT . txt
[BOCPIDDAEparameterCAR_expl. txt
[BOCPIDDAEparameterCAR. txt
[BOCPIDDAEparameterADV_expl. txt
BOCPIDDAEparameterADV. txt

L E=maTLAB goto (3)

BOCPIDDAE.m

L Bcurve

{—EFORTRAN goto (2)

Bcurve_3.£90

LE6ur goto

| BOCPIDDAEparameter INPUT _expl . txt

| BOCPIDDAEparameter INPUT . txt

| BOCPIDDAEparameterCAR_expl.txt

|_BOCPIDDAEparameterCAR. txt

|_BOCPIDDAEparameterADV_expl.txt

L_BOCPIDDAEparameterADV. txt

L (ouATLAB goto (3)

BOCPIDDAE.m

B>Straight

{—CSFORTRAN goto (2)

Bstraight_3.£90

LE=6UT goto

|_BOCPIDDAEparameter INPUT_expl.txt

[ BOCPIDDAEparameter INPUT . txt

| BOCPIDDAEparameterCAR_expl.txt

| BOCPIDDAEparameterCAR. txt

| BOCPIDDAEparameterADV_expl. txt

L PoCPIDDAEparameterADV. txt

LEouATLAB goto (3)
BOCPIDDAE.m

column ROCHJ

CSMATLAB

BCrossing

=BGUT goto
[-BHOTtrajectory_expl.mat
BHOTtrajectory.mat
{-BHOTparameterCAR_expl.txt
{BHOTparameterCAR. txt
|BHOTparameterINPUT_expl.txt
L BHOTparameter INPUT. txt
L(51ATLAB goto (3)

BVerHOT.m

L=Curve

—B>GUI goto
[-BHOTtrajectory_expl.mat
[-BHOTtrajectory.mat
~BHOTparameterCAR_expl.txt
{—BHOTparameterCAR. txt
{BHOTparameter INPUT_expl . txt
L BHOTparameter INPUT . txt
—%MATLAB goto (3)

BVerHOT.m

L B>straight

=E=GUT goto
—BHOTtrajectory_expl.mat
[-BHOTtrajectory.mat
{BHOTparameterCAR_expl.txt
{-BHOTparameterCAR. txt
[-BHOTparameter INPUT_expl.txt

-BHOTparameter INPUT. txt
L(=MATLAB goto (3)
BVerHOT.m

folder

structure,
OCPIDDAE/OptimalTrajectory/ReachableSet folder structure,

LastPointToBrakeSteer

Straight -

FORTRAN goto (2)
Bstraight_s3.£90
Bstraight_b3.£90

GUI goto
BAWVparameterINPUT_expl. txt
BAwWVparameter INPUT . txt
BAWVparameterCAR_expl.txt
DAWVparameterCAR. txt
DAWVparameterADVs_expl.txt
DAWVparameterADVs . txt
E TADVb_expl.txt
DAWVparameterADVb. txt
PMATLAE goto @

BverAw.m

BAWVparam

second

column
third column

LastPointToBrakeSteer folder structure, fourth column MATLAB folder structure.

In the following paragraphs folders GUI, C++, FORTRAN, MATLAB will be discussed in
relation to the three phases mentioned at the beginning of this section.

e The data inserted by the user in the window interface, are saved to folders
named GUI in several files depending on the chosen option among the ones
in the Configuration drop-down menu. Each file collects internally the pa-
rameters in groups that are named as the options of the Group drop-down

menu.

e« ROC-HJ software is contained in each folder named C++ and it is designed for
several road geometries as crossing, curve, roundabout, straight and straight
larger. It is used for backward reachable set computations and minimum time
trajectories, moreover it is used in the verification of the CABS algorithm.
This software belongs to the Core Phase described in

e The OCPID-DAEL software is contained in folders named FORTRAN and is
designed for road geometries such as crossing, curve, straight. It is used for
reachable sets, optimal trajectories for several minimum criteria and the last
point to brake and last point to steer, the latest is used for the verification of

CAB algorithm. This software belongs to the Core Phase described in [
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e Four MATLAB files are used in all questions for plots or computational rea-
sons. The file OCPIDDAE.m plots the output of OCPID-DAEL software, while
the file ROCHJ.m plots the results of ROC-HJ software. The file VerAWwv.m
shows pictures related to the last point to brake and last point to steer for the
verification of CAB algorithm, and the file VerHOT.m computes and plots the
sensitivity and radius estimation of a CABS trajectory. This software belongs
to the Output Phase described in

The first row of Figure summarizes the folder structure here presented and relate
it to the software architecture in the second row of the same figure.
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INPUT PHASE

USER INTERFACE:
Question (Q) software (S) road (R) configuration (C) group (G)

Qa: | | Q4: | | Qs: l

| $1:ROC-H) | | $1: OCPID-DAE | | $1: OCPID-DAE || $2:ROCHI | BRI e o] S1: MATLAB $2:ROCHY
R1: crossing Ri: crossing R1.cossing
R2: curve R1: crossing Ri;crossg R2: curve R1: crossing R1: crossing R1: crossing
R3: oundabout R2: curve R3: roundabout Ri: sraight R2: curve R2: cuve irzaney
Ré: swaight R3: swraight R: siraight R3: siraight R3: siraght
RS: siraight larger RS: sraight larger e Seagn e

???ﬂ"r-rﬂ'

CORE PHASE
Run source code
RocHum | | ocPibpAEm | | ocPipAEm || RocHIm VerAWV.m OCPIDDAE.m VerHOT.m ROCHJ.m

USER INTERFACE:

Define desired output (first three drop-down menus) among Q1, Q2, Q3, Q4, Q5,
computed with a chosen software (choice among OCPID-DAE, ROC-HJ, MATLAB)
for a specific road geometry (crossing, curve, roundabout, straight, straight larger)
Define then the car traffic scenario parameters (last two drop-down menus)
organized in configuration files and classified by groups

ROC-HJ OCPID-DAE
& Function radius: & Subroutine Sensitivity:

data_crossing.h straight.f90 .
data_curve.h straights.f90

data_roundabout.h straightb.fo0
data_straighth curve.fo0

data_straightlarger.n crossing.fo0

\
SCENARIO: ROCHJ.m VerHOT.m VerAWV.m OCPIDDAE.m

road.m
target.m
vehicle.m
obstacle.m

SENSITIVITY:
Sensitivity.m

differential.m
dynamics.m
state_constraints.m

Figure 1.3: In first row the folder structure containing the software is shown. In the
second row the logic behind such folder is represented. In both pictures the three

mentioned phases (input, core, output) are underlined.

Input interface In order to launch the interface from a Linux terminal, the user
has to execute the file startGUI.sh by typing the command ./startGUI.sh. This
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will execute the file GUI. jar. After the interface is launched the image pictured in
Figure will appear. In the left-upper corner the button case will allow to start
your case simulation and save it in the same named folder.

CASE: Undefined

O e

[

N DD

Case : 20140820_

®
®
]
@ 15

BD

[

]

3

upﬂ

Figure 1.4: VTM user interface: to name the case simulation as first step (top pic-
ture). A same named folder will be created in folder GUI_0.xx with same structure
as folder Default. After choosing the output and the scenario, the picture on bot-
tom appears where the user can see in the shell on bottom if the run computed a
solution. Moreover the user has the option to save the run or delete it.

On the left the chosen scenario will be graphically shown as soon as the scenario
parameters are entered on the right side of the window interface. The drop-down
menus mirror the folder structure described in Figure and contained in the folder
Default, see Figure [I.3]

e Question: The user is asked to choose a question that will define the output.
The VTM tool is then accessing the folder with the same question name:
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[(=BackwardReachableSet
[(©>FinalReachableSet
(=0ptimalAvoidanceTrajectory
(EVerifyAwvAlgorithm
EVerifyHotAlgorithm

e Software: The user specify the software that computes the answer to the
previously chosen question and the folder of the same name is accessed by the
interface:

F>ROCHJ
(=0CPIDDAE
(EMATLAB

e RoadGeometry: As seen in Section [2] of Chapter [ the choice of the road
geometry is related to the optimizer (ROC-HJ and OCPID-DAEL). Indeed to
different optimizers correspond different regularity requirements on the state
constraints. In the third drop-down menu the user can choose the function that
models the road state constraint and the folder of the same name is accessed
by the interface:

(=Crossing
=Curve
(=Roundabout
[=Straight
(=StraightLarger

e Configuration: Each configuration writes a data files inside the GUI folder
with the parameters specified by the user:
BROCHJIparameterINPUT. txt
[(BOCPIDDAEparameterINPUT. txt
[BAWVparameter INPUT. txt
[BHOTparameter INPUT. txt
[BOCPIDDAEparameterADV.txt
[BAWVparameterADVs.txt
BAWVparameterADVb.txt
BOCPIDDAEparameterCAR. txt
[BAWVparameterCAR.txt
[BHOTparameterCAR.txt
[BHOTtrajectory.mat

e Group: The parameters in each data file in the GUI folder are organized in
groups. Once a group is chosen, the parameters are listed in the interface
and tooltips are shown whenever the user places the mouse pointer on the
parameter name.

The detailed description of the Configuration files and Group data is given straight-
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forward.

e The files

ROCHJparameterINPUT.txt, OCPIDDAEparameterINPUT. txt,
AWVparameterINPUT. txt, HOTparameterINPUT. txt

collect the scenario data and includes road margins, obstacle geometry and
motion, reference vehicle geometry and initial states, target definition, states
and controls boundaries and computational grid refinement. The related files

ROCHJparameterINPUT_expl.txt, OCPIDDAEparameterINPUT_expl.txt,
AWVparameterINPUT_expl.txt, HOTparameterINPUT_expl.txt

include tooltips and the definition of each parameter group.

e The files

OCPIDDAEparameterADV.txt, AWVparameterADVs. txt,
AWVparameterADVb.txt

collect advanced data for software OCPID-DAE1 such as states, controls and
parameters boundaries and initialization. The related files

OCPIDDAEparameterADV_expl.txt, AWVparameterADVs_expl.txt,
AWVparameterADVb_expl.txt

include tooltips and the definition of each parameter group.

e The files
OCPIDDAEparameterCAR.txt, AWVparameterCAR. txt, HOTparameterCAR. txt

collect vehicle data for software OCPID-DAE] in particular whenever the sin-
gle track model is chosen. The related files

OCPIDDAEparameterCAR_expl.txt, AWVparameterCAR_expl.txt,
HOTparameterCAR_expl.txt

include tooltips and the definition of each parameter group.

e The file HOTtrajectory.mat is a matrix whose column are the states, controls
and optimized parameters, and whose rows are their values at each time step.
The related file HOTtrajectory_expl.mat includes tooltips on the structure
of such matrix.



148 Chapter V. Verification Tool

By clicking on the Start button the core computation will start, running either
ROC-HJ software or OCPID-DAEI1 software, depending on the output requested.
On the left bottom of the window interface, a terminal script will appear to follow
the correctness of the core execution. Once the simulation is launched the user can
access three next steps:
Start

Stop: the user can interrupt the simulation

Save Result: the user can save the simulation in a folder under a user

chosen name, i.e. YYYYMMDD_xxx

Delete Result: the user can delete the run data, for instance whenever

an error occurred in the core execution

The folder YYYYMMDD_xxx will have the same structure as the Dafault folder depicted
in Figure (1.1

Core Optimal Control Problem By pressing the Start button, the interface
will start the Core Phase running the source code to solve the optimal control prob-
lem. The source code is contained in folders C++, FORTRAN, MATLAB (see Figure
depending on the chosen software package. Two software packages are computing
numerical solution of the optimal control problem defined in of Chapter

Software package ROC-HJ in folder C++, solves n-dimensional Hamilton Jacobi Bell-
man equations by finite difference methods, or semi-lagrangian methods, via sequen-
tial or parallel code. For deeper informations, see [16]. The file data_xxx.h is the
main input file, it reads the parameter values from ROCHJparameterINPUT.txt and
contains the functions that define the equation to be solved:

=Cc++

L (>data_car
[Bdata_crossing.h
Bdata_curve.h
RAdata_roundabout.h
[Bdata_straight.h
[Bdata_straightlarger.h

Figure 1.5: Organization of source file for ROC-HJ software.

The optimal control problem of the form [3.1] of Chapter [[I, with constraints in the
form of (2.85) of Chapter [lI] is implemented in the file interface data_xxx.h as

follows:

e the dynamics is implemented in function inline void dynamics and its gra-
dient is computed in inline void Dz_dynamics for radius estimation pur-
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poses;

the Hamiltonian requires functions inline void compute_Hconst, inline
double Hnum for numerical stability;

the constraints are defined in function inline double vO, where target con-
straints are herein implemented, while state constraints need the auxiliary
function inline double g_obstacle that requires functions inline double
g_obstacle_point and inline double g_vehicle_point for guaranteeing
the avoidance of obstacles-vehicles and the cruise of vehicle on the road; the
definition of the road set is contained in function inline double g_road and
the definition of the obstacle motion is in function

inline void g_obstacle_motion.

The functions void compute_radius, void compute_radius_d implemented in the
interface file data_xxx.h is an extension of the software package. It is computing
the radius estimation according to Algorithm [11| of Chapter [lI The output files are:

VF.dat contains the final value function v at the end of the computation. The
file is structured as follows, on each line :

i1 i2 .... in val
where val corresponds to the value v(ty; z9) at mesh point 2o = (2, ..., 2, )-

coupe.dat contains the projection on a 2d space of a n-dimensional problem
with n > 2, in this case the plot of coupe.dat is a “cut” in some particular 2d
plane where the results are visualized.

tmin.dat : minimal time function, structured as VF.dat.

parameterMATLAB. txt contains the parameters defined by the user to define
the car traffic scenario to plot the solution.

The software package OCPID-DAEL in folder FORTRAN is designed for the numerical
solution of optimal control problems and parameter identification problems of the
form 3.1} of Chapter [[I, with constraints in the form of of Chapter [II} see [48)]
for details. The file OCPIDDAE.f90 is the main input file, saved in folder FORTRAN.
It reads the parameter values from

OCPIDDAEparameterINPUT.txt, OCPIDDAEparameterCAR. txt,
OCPIDDAEparameterADV.txt

and contains the functions that define the equation to be solved. The optimal control
problem is implemented in the file interface OCPIDDAE.f90 as follows:
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e SUBROUTINE 0OBJ: objective function;
e SUBROUTINE DAE: dynamics;

e SUBROUTINE NLCSTR: state constraints modeling obstacle motion and geometry
and road geometry;

e SUBROUTINE BDCOND: target constraints.

The output files are:

o 0OCODEO1 contains time, state, control, parameter, state constraints:

to Z1 (to) e Zn, (to) (75} (to) e Un, (to)
tN Zl(tN) an(tN) ul(tN) unu(t]\[)
(1.1)
wi(to) ... wp,(to) g1(to) ... gn,(to)
wl(tN) wnw(tN) gl(tN) gng(tN)
where tg, ..., ty is the time grid;

e 0CODEO2 contains time, sensitivities:

0 8an o) Ozn
to {ajolj (to) - - 0z0; (to)}jzl s {85013- (to) -+ 550;‘ (to)}jzl Ny

o anz o) o) n
tN {azzolj (tn)--- 920, (tN)}jzl s {Buzolj (tn) - 350;‘ (tN)}jzl M

8 8 n 8 8 .
{auixlzj (to) - 3UZNJ' (to)}jzl T i aiwf(to)}j: o

20ty

T ICORE IO} SN £ ICORSE -0 S
(1.2) o o
where g, ..., ty is the time grid and z(tg) = z0 = (201, . - - , Z0n. ) is the nominal
initial value.

o 0OCODEO3 contains time, derivative of state (only for some integrators);
e 0OCODEO4 contains number and value of optimization variables;

e ADJOINT contains time, state, adjoints, multipliers of discretized state con-
straints.
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The SUBROUTINE sensitivity is an extension to the software package. It will use
the output files of OCPID-DAE] software to compute reachable sets, optimal trajec-
tories, following Algorithms of Chapter |lIl The ODE-sensitivity and FIACCO-
sensitivity is computed in 0CODEO2 and in the variable DSOLREALTIME (that contains
the sensitivities of the optimal solution vector z with respect to the parameters p) and
in SUBROUTINE sensitivity the perturbed optimal trajectory and the perturbed
reachable set are computed implementing Algorithms [7] [6] [9] of Chapter

The SUBROUTINE TXT will save the following data files:

e The file txtreachable.txt and all files of the type txtreachablexx.txt,
contain time, states, controls, parameters for each point of the reachable grid
on the xy-plane:

t(h), {{z(i,h,§),i=1,...,NoN,},j=1,...,n.},
{u(i, hyj),i=1,...,NoNy},j=1,...,n.}, (1.3)
Hwlish,j),i=1,,...,NoN},i=1,...,n0}

where N, is the number of grid points on z and NV, is the number of grid
points in y, moreover h = 0,..., N with ¢g,..., ¢ty time grid.

o Files txtfiacco.txt, txtode.txt contain time, states, controls, parameters
for each point of the reachable grid on the xy-plane and for each perturbation
parameter pi, ..., Pn,

t(h)’ {{{Z(i7h7j7 k)vll = ]-a . -uNxNy} 5j = ]-7 st 7n2}k:1,...,np} ’
{{{u(z’,h,j, k)yi=1,...,N;N,},j=1,... ,nu}k:h_mp} , (1.4)
{{{w(i,h,j, k)yi=1,,...,NoN,},j=1,.. .,nw}k:%np}

where N, is the number of grid points on x and N, is the number of grid points
in y, moreover h = 0,..., N with tg,..., ¢y time grid and n,, is the dimension
of the perturbed parameter p = (p1,...,pn,)-

e The file txtparameter.txt contains the parameters defined by the user to
define the car traffic scenario to plot the solution.

Output plots The MATLAB will be manually launched by the user by typing
the name of one of the four main files in the MATLAB console. The input files are
the Core Phase output and the Input Phase output (orange boxes in Figure .
The graphical output are the answers to the initial question chosen by the user in
the JAVA interface.

e The ROCHJ.m file will read the output files of ROC-HJ software and will plot the
backward reachable set or the optimal trajectory depending on the question
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given as input in the JAVA interface. The simulations are described in Section

of Chapter

e The OCPIDDAE.m file will plot the optimal trajectory with states, controls and
parameters pictures, the reachable set and the associated FIACCO and ODE
perturbation. The sensitivity.m file is called by OCPIDDAE.m to compute the
perturbed reachable set and the radius estimation. The ratio of point reached
over the reachable grid points is provided. Numerical examples are given in

Section [I] and [3] of Chapter

e The file VerAWV.m will give a verification tool for Collision Avoidance by Brak-
ing algorithms (CAB). It plots the last point to brake and last point to steer
for several obstacle and vehicle velocities. It will be treated in Section

e The file VerHOT.m is computing the perturbed set and the radius estimation
using sensitivity.m file, of a trajectory computed with Collision Avoidance
by Braking and Steering algorithm (CABS). The verification procedure for
such algorithm is discussed in Section [3]

2 Collision avoidance by braking algorithms

The collision avoidance by braking algorithm is named CAB and gives different kind
of warnings to the driver when a collision is likely to occur. The scenario is including
one obstacle driving in the direction of the reference vehicle, in front of it. Due to a
hard braking maneuver of the obstacle or being the obstacle stuck in the reference
vehicle lane, the collision avoidance system warns the driver of the reference vehicle
with three different warnings. An acoustical and braking warnings capture the driver
attention that hopefully will perform a steering and braking maneuver to avoid the
collision. If the driver does not react to these minor warnings, an automatic braking
maneuver is performed to avoid the obstacle or at least mitigate the collision with
it.

The input of CAB-algorithm is the initial state of the reference vehicle (position,
acceleration, velocity) and the initial data of the obstacle in front of it (position,
velocity, acceleration). The obstacle motion is also given as input and it can be
decided a priori (i.e. linear motion) or real motion data can be given for each time
step. The output is a matrix with the obstacle motion data, vehicle motion data
and the given warning, for each time step. Warning 0 means that nothing is given,
warning 1 corresponds to an acoustical signal, warning 2 is a braking signal and
warning 3 performs an automatic braking maneuver until the collision is avoided or
mitigated. In Table and the structure of the output is shown. In particular
for Table the obstacle motion is simulated, i.e. linear motion is implemented.
A first algorithmic mistake is detected by looking at the simulation, that does not
correspond to reality since once the obstacle reaches zero velocity the simulation
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shows that the obstacle drives backwards, a phenomenon that does not happens in
real life scenarios.

The output in Tables and can be summarized with Figure [2.1] where the
warning levels are identified with distance intervals between the position of the
vehicle and the position of the obstacle.
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Reac Ego Ego qu qu . . . . .
time |sens| tion \Warn tte Ego|Ego delt|acc indi|indi DistxD'St Obj | Obj| Rel |Acc|Acc|Yaw|Stw| Ego | Lat |[Lon| Obj| Obj

.—_|Level vel | Iw eler|cato|cato y |velx|vely| vel | x | y [rate|der|sens|stab|stab| ax | ay

Time alw ator[ rl | rr
3.67|0.63|1.28| 0 |-1.00({50| O [ O |50 O [ O |[4889 0 | O [ O |50| O[O |JO[O 063 1|1[0]|O
3.70|10.64|1.29| 0 |-1.00(/50| O [ O |50| O [ O |4833 0 | O[O |50|0|O0O)O|[O(O064]1]|1[O0]|O0
3.75|0.65/1.30| 0 |-1.00/50| O [ O |50| O [ O |47.78 O | O[O |50| O[O ) O[O [0O6B5(1]|1[0]|O
3.78|0.66|1.31| 0 |-1.00/50| O [ O |50| O [ O |47221 0 | O[O |50|O0|O0O)Of[O(O66[1]|1[0]|O0
3.83|0.66/1.31| 0 |-1.00/50| O [ O |50| O [ O 46667/ O | O (O |50| O[O ) O[O |0O66(1|1[0]|O0
3.86|0.67|1.32| 0 |-1.00/50| 0 [ O |50| O [ O |46.11| 0O | O[O |50| 0 |O)O|[O (067 1]|1[0]|O0
3.91|0.68|1.33| 0 |-1.00/50| O [ O |50| O [ O |4556/ 0 | O (O |50| O[O ) O[O 068 1]|1[0]|O0
3.94|10.68|1.34| 0 |3.75(50| 0 [ O |50| O [ O |[45.000 0 | O[O |50| O |O)O|[O (068 1]|1[0]|O0
4.02(0.69(1.35( 1 (3.50{50| 0 | O (50| 0O | O (4389 0| O | O (50| 0| 000|069 1[1]0]O
4.1110.71|1.37| 1 |3.35/50| 0 [ O |50| O [ O |[4278/ 0 | O[O |50| O[O )JO|OO71{ 1|1 [O0]|O
4.19(0.72(1.38| 1 (3.25(50| 0 | O (50| O | O [4167/ 0 | O | O (50| 0| OO O|072{1[1]|0]0O
4.27(0.73{1.40( 1 (3.10{50| 0 | O (50| O | O [4056{ O | O | O (50| O | O | OO (0731 |[1]|O0|O
4.3410.74|141| 1 |295|/50| 0 | O (50| O | O [39.44 0 | O (0O [50| 0| 0| OO (0741 [1[O0]|O0
4.42(0.75(1.42| 1 (285(50| 0 | O (50| 0 | O (3833 0| 0|0 (5 |0|0|0]O0(f0751[1]|0]O0
450(0.76(1.43| 1 (2.75(50| 0 | O (50| O | O (3722 0 | O | O (50| O | O | OO |O76]1|[1]|0|O
4.63(0.77(1.44( 1 (260({50| 0 | O (50| O | O (3556{ O | O | O (50| 0O | O|O O (0771 |[1]|0]O
4.70({0.78(1.46( 1 (250({50| 0 | O (50| O | O (3444 0| O | O (50| 0| 0000781 [1]|0]0O
4.78(0.79(1.47| 1 [(2.40({50| 0 | O (50| O | O (3333{ 0| O | O (50|0|0|O0O]|Of079|1|[1]|0]|O
4.86(0.80(1.48( 1 (2.30({50| 0 | O (50| 0| O (3222 0 | O | O 50| 0| 0|0 Of08]|1[1]|]0]O
491(0.80({0.64| 2 (250({50| 0 | O (50| 0 | O (3167/ 0|0 | O (50| 0|00 0O(f08|1[1]0(0O0
4.98(0.81({0.65| 2 [(2.40({50| 0 | O (50| 0O | O (30.56{ 0O | O | O [50|0|O0|O0O]|O(f081|1[1]0(0O0
5.06|0.81|0.65| 2 |2.25(50| 0 [ O |50| O [ O |2944 0O | O[O |50|0|O0O)JOf[O (081 1]|]1[0]|O0
5.14|0.82|0.66| 2 |2.15(50| 0 [ O |50| O [ O [2833/ 0 | O[O |50| OO )O|O(082(1]|1[0]|O0
5.25|0.83|0.66| 2 |2.05(50| 0 [ O |50| O [ O |27221 0 | O[O |50| 0 |O)O|[O (083 1]|1[0]|O0
5.33|0.84|0.67| 2 |1.90(50| 0 [ O |50| 0 0O 2611/ 0| O[O |5|0f(0)O|[O0O(0841]|1[0]|O0
5.42|0.84|0.67| 2 |1.80({50| O [ O |50| O [ O |25.000 0 | O (O |50| O[O )O|O 084 1]|1[0]|O
5.50|0.85|0.67| 2 |1.70{50| O [ O |50| O [ O |2389 O | O[O |50| O[O )O|[OO81]|1[0]|O0
5.55|0.85/0.68| 2 |1.65(50| O [ O |50| O [ O |2278/ 0 | O (O |50| O (O ) O[O [O85(1|1[0]|O
5.63|0.86/0.68| 2 |1.55(50| 0 | O |50| O [ O |2167/ 0O | O[O |50|0|O0O)O|[O(O081]|1[0]|O0
5.73|0.87|0.69| 2 |1.45(50| 0 [ O |50| O [ O |2056/ O | O (O |50| O[O )O|[O(O87(1]|1[0]|O
5.80|0.00|0.00| 3 |1.60{50| O [ O |50| O [ O [1944 O | O | O |50| 0 |O0O)O|O 0871 ]|1[0]|O0
5.84|0.00|0.00| 3 |1.50(50| 0 [ O |50| O [ O |1889 O | O [O |50| 0[O ) O|O 0871 ]|1[0]|O0
5.89|0.00|0.00| 3 |1.45|(50| 0 | O |50| 0 O 1833 0| 0|0 |5 )|0|0)OfO|087(1]|1[0]|O0
5.9210.00|0.00| 3 |1.40(50| 0 | O |50| 0 (O 1778 0 | O[O |50| 0[O ) O|[O 088 1]|1[0]|O0
5.98|0.00|0.00| 3 |1.35(50| 0 [0 |50| 00117220 |0|0|5)|0|0)OfO0O|081]|1[0]|O0
6.03|0.00|0.00| 3 |1.25(50| 0 | O |50| 0 (O 1611/ 0| O[O |50|0|0O)OfO|0881]|1[0]|O0
6.09|0.00|0.00| 3 |1.15/50| 0 [ O |50| O [ O |1556| 0 | O [ O |50| O[O ) O[O 088 1]|1[0]|O
6.13|0.00|0.00| 3 |1.10{50| O [ O |50| O [ O |[15.000 0 | O [ O |50| O[O ) O|[O 089 1]|1[0]|O0
6.14|0.00|0.00| 3 |1.05/50| O [ O |50| O [ O [1444 0O | O[O |50|0|O0O)O|[O 089 1]|1[0]|O
6.19|0.00|0.00| 3 |1.00{50| O [ O |50| O [ O 1389 O | O[O |50| 0|0 ) O|O |08 1]|1[0]|O0
6.25|0.00|0.00| 3 |0.95(50| 0 [ O |50| O [ O 1333 0 | O[O |50|0|0)O|O|0891]|1[0]|O0
6.27|0.00|0.00| 3 |0.90{50| O [ O |50| O [ O 1278/ 0 | O [ O |50| O[O ) O[O 089 1|1 [0]|O
6.31|0.00|0.00| 3 |0.85(50| 0 [ O |50| O [ O 12221 0 | O[O |50| 0[O )OO |09f1]1[O0]|O0
6.34|0.00|0.00| 3 |0.80{50| O | O |50| O (O |1167/ O | O[O |5 | 0|0)O|O0|09(f1]1[0]|O0
6.39|0.00|0.00| 3 |0.75{50| 0 [ O |50| O (O |1111/ O | O[O |50|0|0)O|O0|09f1]1[0]|O0
6.4410.00|0.00| 3 |0.75(50| O [ O |50| O [ O |1056/ O | O [ O |50| O[O )OO |09 1]1[O0]|O0
6.48|0.00|0.00| 3 |0.70{50| O [ O |50| O [ O |[10.000 0 | O [ O |50| O[O )OO 09| 1]|1[O0]|O0
6.5210.00|0.00| 3 |0.65(50| 0 [ O |50| O [ O |944| 0| O[O |50|0|0)JOf[Of091{1]|]1[0]|O
6.56|0.00|0.00| 3 |0.60({50| O [ O |50| O (0O |889| 0|0 |O|50|0|0)JOf[O0Of091{1]|]1[0]|O0
6.59|0.00|0.00| 3 |0.55(50| 0 |0 |50|0(f0|8330|0|0|5)|0[0)JOf[O0f091{1]|]1[O0]|O0
6.63|0.00|0.00| 3 |0.50({50| 0O |5 | 000|778/ 0|0|0|5)|0|0)JOf[O0Of091{1]1[O0]|O0
6.67|0.00|/0.00| 3 |045(50| 0 [ O |50| O (O |722/ 0| O[O |5|0|0)JOf[Of091f{1]|1[0]|O
6.70|0.00|0.00| 3 |0.40(50| 0 [ O |50| O (O |667| 0| O[O |5|0|0)O0fO0|092(1]1[0]|O0
6.75|0.00|0.00| 3 |0.35(50|{ 0 (0O |5 |0 (0|61 0|0|O0|5)|0[0)O0|O0|092(1]1[0]|O0
6.80|0.00|0.00| 3 |0.35(50| 0 [ O |50| O (O |556|0|0|0|5)|0[0]0fO0(092({1]1[0]|O0
6.83|0.00|0.00| 3 |0.30{50| 0 | O |50| 0 (0O |500/ 0|0f|O0|5)|0[0)O0OfO0|092(1]1[0]|O0
6.89|0.00|0.00| 3 |0.25(50| 0 [ O |50| O [ O |444| 0| O[O |50|0|0)O|O0|092{1]|1[0]|O0
6.91|0.00|0.00| 3 |0.20{50| 0 [ O |50| O [ 0O |389| 0|0 |0 |5 |0|0)O0OfO0|092(1]1[0]|O0
6.97|0.00|0.00| 3 |0.15(50| 0 [ O |50| O [ O |333|/ 0|0 |0 |5|0|0)O0OfO0|092(1]1[0]|O0
7.00/0.00|0.00| 3 |0.15/50| 0 [ O |50| O [ O |278/ O | O[O |50| 0[O ) O[O |093|1]|1[0]|O0
7.05|0.00|/0.00) 3 |0.10/50| 0 | 0 |50| 0 |0 |222| 0| 0|0 |5 ]|0|0]JO0ofO0Jo093|1]1]|0]O

Table 2.1: The initial reference vehicle velocity is 50[km/h] and the obstacle is fixed.
The initial z-distance between vehicle and obstacle is 50[m] and the initial y-distance
is 0[m]. The acoustical warning 1 starts at 43.89[m] till 32.22[m| z-distance between
the obstacle and the vehicle, the braking warning 2 starts at 31.67[m] till 20.56[m)]
z-distance and the automatic braking maneuver is performed from a z-distance of
19.44[m] till the collision is avoided or mitigated (2.22[m] z-distance).
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Reac Ego | Ego | Ego | Ego ] . . NP
. N Warn Ego|Ego R M . Dist| Obj |Obj Acc|Acc|Yaw|Stw| Ego | Lat |Lon | Obj [Obj
time | sens .IE:(:e Level| ¢ |vel| w dﬁN"a :'(;c“e)l' ";::f’ld ",['::ff Distx "0 veix |vely| Re'Ve!['x 1"y |rate|der| sens [stablstab| ax | ay
18.02 1| 1.72 0f -1.00] 50| O 0 50 0 0| 49.87] O 3856 O 11.44/ O of o Of 1.00[ 1 1 -10[ O]
18.06 1| 1.72 0 -1.00| 50| O 0 50 0 0| 49.73] o 37.12f 0 12.88 O oOf O Of 1.00[ 1 1| -10[ O]
18.09] 1] 1.72 0| -1.00] 50| O 0 50 0 0| 49.57 O 3568 Of 14.32( Of Of oOf O] 1.00[ 1 1| -10[ 0
18.14 1| 1.72 0 -1.00| 50| O 0 50 0 0| 49.40( O 34.24f 0 15.76] O of o Of 1.00[ 1 1| -10[ O]
18.19] 1| 1.72 0 -1.00| 50| O 0 50 0 0| 49.20f o 32.80f O 17.20, ©Of of o oOf 1.00[ 1 1| -10[ O]
18.22 1| 1.72 0 -1.00| 50| O 0 50| 0 0| 49.00( oOf 31.36 Of 18.64f Of oOf oOf O] 1.00[ 1 1| -10[ 0
18.27| 1| 1.72 0 -1.00| 50| O 0 50 0 0| 48.77] O 29.92 0 20.08/ ©Of of o Of 1.00[ 1 1| -10[ O]
18.31 1| 1.72 0 -1.00| 50| O 0 50 0 0| 4854 O 2848 0 2152 0Of of o oOf 1.00[ 1 1| -10[ O]
18.34 1| 1.72 0 -1.00| 50| O 0 50| 0 0| 48.28 O 27.04f 0] 2296 O of o Of 1.00[ 1 1| -10[ O]
18.38 1| 1.72 0 -1.00| 50| O 0 50 0 0| 48.01 0] 25.60f Of 2440 O O oOf of 1.00 1 1| -10[ O]
18.42] 1] 1.72 0] 4.00] 50| O 0 50 0 0| 47.72 O 24.16| Of 25.84 Of oOf oOf O] 1.00[ 1 1| -10[ 0
18.50) 1| 1.72 1 3.85| 50| O 0 50| 0| 0| 47.10f O 21.28 O] 28.72] O Of Of Of 1.00[ 1 1| -10[ O]
18.58| 1| 1.72 1 3.70| 50| O 0 50 0| 0| 46.41 0] 1840f oOf 31.60( O O oOf oOf 1.00 1 1| -10[ O]
18.66 1| 1.72 1 3.55| 50| O 0 50 0| 0| 45.66 Of 15.52| Of 3448 oOf Of oOf O] 1.00( 1 1| -10[ 0
18.75 1| 1.72 1 3.45 50| O 0 50 0| 0| 44.85( Of 12.64f oOf 37.36| Of Of Of O] 1.00[ 1 1| -10[ 0
18.83] 1| 1.72 1 3.30] 50| O 0 50| 0| 0| 4397 O 9.76] 0] 4024 0O of o oOf 1.00[ 1 1| -10[ O]
18.91 1| 1.72 1 3.20| 50| O 0 50 0| 0| 43.03( Of 6.88f Of 43.12( Of Of oOf O] 1.00[ 1 1| -10[ 0
18.98| 1| 1.72 1 3.10] 50| O 0 50| 0| 0| 42.02| Of 4.000 O] 46.000 Of of o0 ©Of 1.00( 1 1| -10[ O]
19.06 1| 1.72 1] 3.00] 50| O 0 50 0| 0| 4095 oOf 1.12] O] 4888 O oOf o0f 0| 1.00[ 1 1| -10[ O]
19.11 1] 0.77| 2| 2.00f 50 O 0 50 0 0| 40.39 oOf -0.32 oOf 50.32 of oOf oOf O] 1.00{ 1 1| -10[ 0
19.19] 1| 0.77| 2| 1.85 50| O 0 50 0 0| 39.23] oOf -3.20f O] 53.20, Of of o Of 1.00[ 1 1| -10[ O]
19.27] 1| 0.77| 2| 1.75[ 50 O 0 50 0 0| 38.00f oOf -6.08f oOf 56.08f Of oOf oOf O] 1.00{ 1 1| -10[ 0
19.34] 1] 0.77| 2| 1.65 50 O 0 50 0 0| 36.70 Of -8.96 Of 58.96 Of Of oOf O] 1.00[ 1 1| -10[ 0
19.44 1| 0.77| 2| 155 50| O 0 50 0 0| 35.34| Of -11.84 0O 61.84 O of O Of 1.00[ 1 1| -10[ O]
19.47| 0[ 0.00| 3] 1.60| 50| O 0 50 0| 0| 3464 Of -13.28/ Of 63.28/ Of Of Of O] 1.00( 1 1| -10[ 0
19.50] 0[ 0.00] 3] 1.55| 50| O 0 50 0| 0| 33.92 Of -14.72 oOf 64.72( Of Of Of O] 1.00[ 1 1| -10[ 0
19.55] 0[ 0.00] 3| 145 50| O 0 50| 0| 0| 33.19| 0| -16.16] 0| 66.16/ O Of Of Of 1.00[ 1 1| -10[ O]
19.59] 0| 0.00] 3| 1.40| 50| O 0 50 0| 0| 32.44| 0| -17.60f ©O0f 67.60F Of oOf Of Of 1.00[ 1 1| -10[ O]
19.64 0[ 0.00] 3] 1.35 50| O 0 50 0| 0| 31.67[ Of -19.04f O 69.04f Of Of oOf O] 1.00{ 1 1| -10[ 0
19.67| 0| 0.00] 3| 1.30] 50| O 0 50| 0| 0| 30.89] Of -20.48 0] 70.48 O oOf O Of 1.00[ 1 1| -10[ O]
19.70] 0[ 0.00| 3| 1.25| 50| O 0 50 0| 0| 30.09] Of -21.92f 0 71921 0 of o Of 1.00[ 1 1| -10[ O]
19.75) 0[ 0.00] 3| 1.20] 50| O 0 50| 0| 0| 29.27| 0| -23.36] 0] 73.36) Of Of Of Of 1.00( 1 1| -10[ O]
19.81 0| 0.00] 3| 1.15| 50| O 0 50| 0| 0| 28.44| 0| -24.80f 0] 74.80, Of of o oOf 1.00[ 1 1| -10[ O]
19.83] 0[ 0.00] 3] 1.10] 50| O 0 50 0| 0| 27.59 Of -26.24f o0 76.24f Of Of Of O] 1.00( 1 1] -10[ 0
19.86 0[ 0.00] 3| 1.05| 50| O 0 50| 0| 0| 26.73| Of -27.68 0 77.68 O Of O Of 1.00( 1 1| -10[ O]
19.92] 0| 0.00] 3| 1.00] 50| O 0 50| 0| 0| 25.85| 0| -29.12 0O 79.12] O Of O Of 1.00[ 1 1| -10[ O]
19.95] 0f 0.00) 3] 0.95 50| O 0 50 0| 0| 24.96( Of -30.56| Of 80.56| Of Of Of O] 1.00{ 1 1| -10[ 0
19.98| 0| 0.00] 3| 0.90| 50| O 0 50| 0| 0| 24.04| 0| -32.000 O] 82.000 Of of o Of 1.00[ 1 1| -10[ O]
20.03| 0[ 0.00| 3| 0.85 50| O 0 50| 0| 0| 23.12| 0| -33.44 0| 83.44/ 0 of o oOf 1.00[ 1 1| -10[ O]
20.06| 0[ 0.00] 3] 0.80| 50| O 0 50 0| 0| 22.17 Of -34.88] Of 84.83 Of Of Of O] 1.00f 1 1| -10[ 0
20.11 0| 0.00] 3| 0.75| 50| O 0 50| 0| 0| 21.22| 0| -36.32] O] 86.32] Of Of Of Of 1.00[ 1 1| -10[ O]
20.16| 0[ 0.00] 3| 0.70| 50| O 0 50| 0| 0| 20.24| of -37.76 0| 87.76] O Of Of Of 1.00[ 1 1| -10[ O]
20.19 0[ 0.00] 3| 0.70| 50| O 0 50| 0| 0| 19.25( 0| -39.20 O 89.20, O Of O O| 1.00[ 1 1| -10[ O]
20.23 0[ 0.00] 3| 0.65 50| O 0 50| 0| 0| 18.24| 0| -40.64 O] 90.64 O of Of Of 1.00( 1 1| -10[ O]
20.28 0[ 0.00] 3] 0.60| 50| O 0 50 0| 0| 17.22[ Of -42.08 Of 92.08/ Of Of Of O] 1.00{ 1 1| -10[ 0
20.31 0[ 0.00] 3| 0.55| 50| O 0 50| 0| 0| 16.18] Of -43.52 0] 93.52] 0O Of O Of 1.00[ 1 1| -10[ O]
20.34 0[ 0.00] 3| 0.50| 50| O 0 50 0| 0| 15.12| 0| -4496| O 9496 Of Of O Of 1.00[ 1 1| -10[ O]
20.39] 0[ 0.00] 3| 0.45| 50| O 0 50 0| 0| 14.05( Of -46.40 Of 96.40[ Of Of oOf O] 1.00( 1 1| -10[ 0
20.42] 0[ 0.00] 3| 0.40| 50| O 0 50 0| 0| 1297 Of -47.84f oOf 97.84f Of Of Of O] 1.00[ 1 1| -10[ 0
20.47 0| 0.00] 3| 0.40| 50| O 0 50 0| 0| 11.86| 0| -49.28] 0] 99.28 0O Of Of Of 1.00[ 1 1| -10[ O]
20.50 0[ 0.00] 3] 0.35 50| O 0 50 0| 0| 10.74[ 0f -50.72| Of 100.72 Of Of Of O] 1.00{f 1 1| -10[ 0
20.56 0[ 0.00] 3| 0.30] 50| O 0 50| 0| 0] 9.61 0] -52.16| 0O 102.16 0 O] Of Of 1.00f 1 1| -10[ O]
20.59] 0[ 0.00] 3| 0.25] 50| O 0 50 0| 0| 846| 0| -53.60f 0| 103.60, O Of Of Of 1.00[ 1 1| -10[ O]
20.63| 0[ 0.00) 3] 0.20| 50| O 0 50 0| 0| 7.29( Of -55.04f Of 105.04f Of oOf oOf O] 1.00{ 1 1| -10[ 0
20.67 0[ 0.00] 3| 0.15| 50| O 0 50| 0| 0 6.11 0] -56.48) 0O 106.48( O O] Of Of 1.00f 1 1| -10[ O]
20.72 0| 0.00] 3| 0.15| 50| O 0 50| 0| 0| 491 0| -57.92 0] 107921 0 of o0 Of 1.00[ 1 1| -10[ O]
20.77| 0[ 0.00) 3] 0.10] 50| O 0 50 0| 0| 3.69 Of -59.36| Of 109.36| Of Of Of O] 1.00{ 1 1| -10[ 0
20.80 0| 0.00] 3| 0.05| 50| O 0 50 0| 0| 246| 0| -60.80f 0| 110.80, ©Of Of O Of 1.00[ 1 1| -10[ O]
20.83] 0] 0.00] 3] -1.00] 50| O 0 50 0f 0| 0.000 Of 0.000 0 0.000 Of Oof O o] 1.000 1 1] -10[ 0

Table 2.2: The

initial reference vehicle velocity is 50[km/h| and the obstacle is driv-
ing with initial speed 40[km/h] and acceleration —10[m/s?]. The initial z-distance
between vehicle and obstacle is 50[m| and the initial y-distance is 0[m]. The acous-
tical warning 1 starts at 47.10[m] till 40.95[m] z-distance between the obstacle and
the vehicle, the braking warning 2 starts at 40.39[m] till 35.34[m] x-distance and
the automatic braking maneuver is performed from a z-distance of 34.64[m)] till the
collision is avoided or mitigated (0[m] z-distance). In this case the obstacle motion
is simulated with a linear motion.
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v=50km/h

-50 -32.22 -31.67 -20.56 -19.44

v=50km/h
v=50km/h =-10m/s"2

-50 -47.10 -40 64 0

.95 -34.
-40.39 -35.34

Figure 2.1: First row shows the three CAB warnings for a fixed obstacle. In second
row a moving obstacle is considered and the three warnings are shown.
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2.1 Last point to brake and last point to steer

To be consistent with the CAB output, VIM tool provides output for comparison
for each warning level. The output provided in this section is the last point to
brake and the last point to steer for the three CAB warning levels. The criteria to
define the warning levels in the VI'M tool is based on different ways of imposing box
constraints for the control. In particular Table summarizes the warning criteria
for CAB and VTM.

warning CAB VTM last point to steer VTM last point to brake

level output

wl [wl,wl] || solve Problem with ws € | solve Problem with ws €
[-0.1,0.1]rad/s =: I Fp € | [-0.5,0.5]rad/s =: I3 Fp €
[—0.5,1.5]10*N =: J3 [—0.5,0.5]10*N =: .);

w2 [w2,w2] || solve Problem with ws € | solve Problem with ws €
[-0.2,0.2]rad/s =: I, Fp € | [-0.5,0.5]rad/s =: I3 Fp €
[—0.5, 1.5]10*N =: J; [—0.5,0.7]10*N =: Jy

w3 [w3,w3] || solve Problem with ws € | solve Problem with ws €
[-0.5,0.5]rad/s =: Is Fg € | [-0.5,0.5]rad/s =: I3 Fg €
[—0.5, 15104 N =: J; [—0.5, 1.5] 104N =: J;

Table 2.3: The last point to steer associated to warning level i, with ¢ = 1,2,3 is
denoted by dj,. and it is defined as d, := z1(to) — z1(to) where z1(to) and 21(to)
are given by solving Problem with steering velocity in I; and braking force in
J3. The last point to brake associated to warning level ¢, with ¢+ = 1,2, 3 is denoted
by db, and it is defined as d¥, := z1(to) — z1(to) where z(to) and z1(ty) are given
by solving Problem with steering velocity in I3 and braking force in J;.

The optimal control problem computing the last point to steer and the last point to
brake is of the form of Problem of Chapter [l with constraints in the form ([2.86)
of Chapter [lI] and with objective function given by (3.3)) of Chapter

Problem 2.1 (Last point to steer). Let [to,t¢] C R be a non-empty and bounded
interval with fized to < ty. Find states z : R — R"# absolutely continuous, controls
uweld={ulu: [to,ty) = U € R™ meaurable} and parameters w € W C R™,
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€ [to, ty] such that:

min :El(to)
2, u€U weW,T€[to,t ]
s.t. 2(t) = f(t,2(t),u(t)) a.e. t € [ty, 7] CR,
Z(to) = 20,
target constraint: z1(t) > x1(7), z3(7) = 0.0
obstacle avoidance state constraints: (2.1)
(21(8) — 2(6) + (22(8) — ya()? = (b + £+ )2
Vi = ]., s Nobst

road state constraints: (r+/0+mn) < z9(t) < (F—£€—mn)
Kamm'’s circle state constraint: ([1.29) of Chapter|[I]
boz constraints: u(t) € [u, ], Vt € [0, 7]

where f : [to, 5] % R” x R x R? — R7 is the single track dynamics given in of
Chapter with z = (x,y,, Vg, Uy, Wy, 0),u = (ws, FB) and w = x1(ty) optimized
parameter. The control boundaries u,u will depend on the chosen warning. The
Nobst Obstacles are modeled as balls of radius ¢; and center (x;(t),y;(t)) moving of
linear motion with velocity v;(t) and constant acceleration a;. The vehicle is a ball
of radius ¢ and center (z1,z2) = (x,y). The safety margin between obstacles and
vehicle is 1 = 0.3m and the road y boundaries are denoted with r = 0,7 =T7.

Problem 2.2 (Last point to brake). Let [to,tf] C R be a non-empty and bounded
interval with fized to < ty. Find states z : R — R"# absolutely continuous, controls
uweld={ulu: [toty) = U € R™ meaurable} and parameters w € W C R™,
T € [to, tf] such that:

min x1(to)
zu€U ,weW,T€[to,t f]
" ) = f(t2O,u(t)  ae tefto,T] CR,
Z(t()) = 20,
target constraint: (2.2)

Zl(T):.%'l(T)—e 61 n, 2’4(7') 7)1( )
road state constraints: (r + ¢+ 17) < ZQ(t) F—L—m)
Kamm’s circle state constraint: of Chapter
box constraints: u(t) € [u,ul, Vt E [0,7’]

where f: [to,tf] x RT x RT x R? — R is the single track dynamics given in of
Chapter with z = (2, Y, Vg, Vy, Wy, ), u = (ws, Fp) and w = x1(ty) optimized
parameter. The control boundaries u,u will depend on the chosen warning. The
reference vehicle has to stop behind the obstacle with velocity less or equal than the
obstacle velocity at final time v;(7). The obstacle length is {1, while the vehicle length
is £ and the safety margin between obstacles and vehicle is n = 0.3m. The road y
boundaries are denoted with r = 0,7 = 7.

By solving Problems and [2 - 2| for each control interval [u,u] associated to each
warning level wl, w2, w3 (see Table- the trajectories in Flguresare found
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and the last point to steer/brake is given by x1(tg) — z1(t9). The simulation is run

for ngps = 1.

Optimal braking/steering trajectories: Obstacle vel=0 Vehicle vel=13.9

Last point to brake/steer warning 1

8
c 6
i)
E /
o
S ® = ®
0f | | | | | | | | J
-5 0 10 15 20 25 30 35 40 45
X position
Last point to brake/steer warning 2
8 —
c 6
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@' 4r /_
o
2F =
S @ ®
0 | | | | | | | | |
-5 0 10 15 20 25 30 35 40 45
X position
Last point to brake/steer warning 3
8 —
c 6
i)
2 4r
o
=27 ®
0 | | | | | | | | |
-5 0 10 15 20 25 30 35 40 45
X position

Figure 2.2: The last point to steer and the last point to brake of Table for each
warning level. Optimal braking/steering trajectories: Obstacle vel= 0[m/s] Vehicle

vel= 13.9[m/s].
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Optimal braking/steering trajectories: Obstacle vel=11.1 Vehicle vel=13.9
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Figure 2.3: The last point to steer and the last point to brake of Table for
each warning level. Optimal braking/steering trajectories: Obstacle vel= 11.1[m/s]
Vehicle vel= 13.9[m/s].
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Optimal braking/steering trajectories: Obstacle vel=0 Vehicle vel=41.7
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Figure 2.4: The last point to steer and the last point to brake of Table for each
warning level. Optimal braking/steering trajectories: Obstacle vel= 0[m/s] Vehicle
vel= 41.7[m/s].
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Optimal braking/steering trajectories: Obstacle vel=11.1 Vehicle vel=41.7
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Figure 2.5: The last point to steer and the last point to brake of Table for
each warning level. Optimal braking/steering trajectories: Obstacle vel= 11.1[m/s]
Vehicle vel= 41.7[m/s].

Following the structure of Table Table compares the last point to steer and
the last point to brake for each warning level, with the distance intervals given by
CAB-algorithm for each warning level. Four case studies are computed for com-
binations of two different vehicle initial velocities and two different obstacle initial
velocities.
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vel vel warning || CAB output VIM last | VIM last
car obst level point to | point to
[km/h]| [km/h] steer d° brake d®
50 0 wl [43.8889, 32.222] 16.950 34.280
w2 [31.6667, 20.5556] 13.950 25.406
w3 [19.4444, 2.22222] 12.270 13.251
50 40 wl [7.55556, 5.11111] 2.730 3.588
w2 [5, 2.77778] 2.720 3.233
w3 [2.55556, 2.11111] 2.720 2.743
150 0 wl [130, 100] 46.105 270.744
w2 [98.3333, 75] 41.298 199.872
w3 [73.3333, 2.72853] 38.258 98.441
150 40 wl [108.333, 83.8889] 32.605 144.549
w2 [82.6667, 54.55506] 29.880 107.448
w3 [53.3333, 3.22222] 28.033 53.778

Table 2.4: Four cases where the distances given CAB-algorithm for each warning
level are compared with the last point to steer and the last point to brake for each
warning level. For high vehicle velocities the warning level distance is always less
than the last point to brake. For low vehicle velocities the CAB-algorithm applies a
prudential strategy in the sense that the warning is given always for bigger distances
than the last point to brake.

In Figures for each warning level, the last point to steer (red line) and
the last point to brake (black line) are plotted for several vehicle initial velocity.
One can notice that for low velocities the last point to brake occurs later than
the last point to steer and thus the braking maneuver is more convenient than the
steering maneuver. In Figure a fixed obstacle is considered while in Figure
the obstacle constant velocity is 15m/s and in Figure [2.8|is 30[m/s].
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Figure 2.6: The last point to steer and the last point to brake are function of
the initial velocity of the reference vehicle. In first row, plots are computed for
warning level 1 i.e. for values of the steering velocity in the interval [—0.1,0.1]
and braking force in the interval [—0.5,0.5] 10*N. Similarly second and third row
are computed for warning level 2 and 3 respectively, with steering velocity in the
intervals [—0.2,0.2], [~0.5,0.5] and braking force in the interval [—0.5,0.7] 104N,
[—0.5,1.5] 10N, respectively. The obstacle is fixed in this particular case.
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Figure 2.7: The last point to steer and the last point to brake are function of
the initial velocity of the reference vehicle. In first row, plots are computed for
warning level 1 i.e. for values of the steering velocity in the interval [—0.1,0.1]
and braking force in the interval [—0.5,0.5] 10*N. Similarly second and third row
are computed for warning level 2 and 3 respectively, with steering velocity in the
intervals [—0.2,0.2], [~0.5,0.5] and braking force in the interval [—0.5,0.7] 104N,
[—0.5,1.5] 10*N, respectively. The obstacle has constant velocity 15m/s in this
particular case.
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Last point to brake/steer warning 1 (Obstacle velocity=30)
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Figure 2.8: The last point to steer and the last point to brake are function of
the initial velocity of the reference vehicle. In first row, plots are computed for
warning level 1 i.e. for values of the steering velocity in the interval [—0.1,0.1]
and braking force in the interval [—0.5,0.5] 10*N. Similarly second and third row
are computed for warning level 2 and 3 respectively, with steering velocity in the
intervals [—0.2,0.2], [~0.5,0.5] and braking force in the interval [—0.5,0.7] 104N,
[—0.5,1.5] 10*N, respectively. The obstacle has constant velocity 30m/s in this
particular case.

The last point to brake and the last point to steer are plot as functions of the
vehicle initial velocity and the relative initial velocity between vehicle and obstacle,
for warning levels 1 and 2 in Figures for warning level 3 in Figure [2.10 The
warning level is given by imposing different box constraints on the controls, as done
previously in this section. The more the warning increase the more the control
intervals increase, allowing bigger capabilities to the vehicle. As a consequence of
this, the last time to brake and the last time to steer decrease while increasing the
warning level.
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Figure 2.9: The last time to brake defined as initial distance between the reference
vehicle and obstacle is given in first row, while the last point to steer is given in
second row. The left picture refers to warning level 1 (for the last point to steer
ws € [—0.1,0.1] and for the last point to brake Fp € [—0.5,0.5]), while the right
picture refers to warning level 2 (for the last point to steer ws € [—0.2,0.2] and for
the last point to brake Fp € [—0.5,0.7]). By fixing the relative velocity, the last time
to brake and the last time to steer for high vehicle velocity is constant, however for
small velocities the last point to steer decreases by increasing the vehicle and obstacle
velocity. For high relative velocities the last point to brake is higher than the last
point to steer, thus steering maneuvers are preferred over braking maneuvers.
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Figure 2.10: For warning level 3 (for the last point to steer ws € [—0.5,0.5] and for
the last point to brake Fp € [—0.5,1.5]), the last time to brake defined as initial
distance between the reference vehicle and obstacle is given in first row, while the
last point to steer is given in second row. By fixing the relative velocity, the last time
to brake and the last time to steer for high vehicle velocity is constant. For high
relative velocities the last point to brake is higher than the last point to steer, thus
steering maneuvers are preferred over braking maneuvers. However for low relative
velocities the last point to steer is higher than the last point to brake.

2.2 Reachable set for each warning level

The following optimal control problem is solved to find the reachable set for a given
car traffic scenario where CAB algorithm can be tested.

Problem 2.3. Let [to,tf] C R be a non-empty and bounded interval with fized
to < ty. Find states z : R — R™ absolutely continuous, controls u € U = {u|u :



§.2 Collision avoidance by braking algorithms 169

[to,tf) = U € R™ meaurable} and parameter T € [to,tf] such that:
min

(in) - ()
z2,u€U,TEto,t 5] z2 (T) gf?i 2

s.t. 2(t) = f(t, 2(t), u(t)) a.e. t € [ty, 7] CR,
z(to) = 2o,
target constraint: zs(1) = 0.0
obstacle avoidance state constraints:
(21(t) = zi(1))? + (22(t) — vi(1)* > (6 + £ +1)?
VZ = 1,...71’Lob5t
road state constraints: (r+40+mn) < z(t) < (F—£—mn)
Kamm’s circle state constraint: (1.29)) of C’hapter

where f: [to,tf] x R” x R x R? — R7 is the single track dynamics given in
of Chapter with z = (x,y,¢,v,wy,0),u = (ws, FB). The ngpst obstacles are
modeled as balls of radius £; and center (x;(t),y;(t)) moving with linear motion with
velocity v;(t) and constant acceleration a;. The vehicle is a ball of radius ¢ and center
(z1,22) = (x,y). The safety margin between obstacles and vehicle is n = 0.3[m] and
the road y boundaries are denoted with r = 0,7 = 7. The target area is defined by
the condition on the vehicle yaw angle which guarantee that the vehicle at the final
time T is driving parallel to the road.

The reachable set is computed recursively solving the optimal control problem
for each point g in the grid

{on}n=1..0 = Gy C [X,X]| x [YV,Y] CR? (2.4)

defined as:

@ X+ 5 X(h, -1
gh=<%r)= Xt Ve =) (2.5)
n, Y+ 5 (hy — 1)

for hy, =1,...,Hy,hy=1,...,Hyand H = H,Hy,, h = h;h,,.

For the numerical simulations the first case of Table is considered, where the
initial vehicle velocity is 50km/h and the single obstacle is fixed. For each warning
level distance intervals computed by CAB algorithm (see Table column 4 of the
first case study), the reachable set is provided in Figure This means to solve
Problem for an x initial distance between vehicle and obstacle within the warning
intervals, i.e. dy, = (21 — 21(to)) € [w;, w;] for i = 1,2,3. The ratio of number of
reachable points over the number of grid points is given for each warning level:

CASE v0_vehicle=50km/h vO_obstacle=0km/h:

The ratio of reachable points over the target grid is 0.6
for warning level 1

The ratio of reachable points over the target grid is 0.6
for warning level 2
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The ratio of reachable points over the target grid is 0.4
for warning level 3

The ratio can also be used to construct new warning level definitions since it is
decreasing with the increasing of the warning level.
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Figure 2.11: On the left the reachable set is computed, on the right a funnel of

trajectories is plot for a fiber of the reachable set. Each row correspond to a different

warning level.

The robust reachable set associated to the reachable set in Figure is non-empty
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only for very small intervals of the perturbations, see Figure
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Robust reachable set
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Figure 2.12: The robust reachable set is computed for perturbations from p =
(1,0.1,0.01,1,0.1) to —p. Each picture correspond to a different warning level start-
ing from warning level 1 in the right picture.
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2.3 Optimal trajectory for each warning level

The following optimal control problem is solved to find minimum time trajectories
for a given car traffic scenario where CAB-algorithm can be tested.

Problem 2.4. Let [to,ty] C R be a non-empty and bounded interval with fized
to < ty. Find states z : R — R™ absolutely continuous, controls u € U = {u|u :
[to,ty) = U € R™ measurable} and parameter T € [to,ts] such that:

min T
zZ,u€U,TEto,t f]
s.t. 2(t) = f(t, 2(t), u(t)) a.e. t € [to, 7] CR,
Z(t()) = 20,

target constraint: z1(T) > Ziarget, 23(7) = 0.0
obstacle avoidance state constraints:
(21(t) — 24(D)% + (z2(8) — ()? = (b + £+ 1)?
Vi = 1,.. -y Nobst
road state constraints: (r+4€+mn) < z2(t) < (T —£€—n)
Kamm’s circle state constraint: of Chapter

where f : [to,tf] % R” x R?2 — R is the single track dynamics given in (1.21]) of
Chapter with z = (x,y,1, Vg, Uy, Wy, 0),u = (w5, Fg). The nepst obstacles are
modeled as balls of radius £; and center (z;(t),y;(t)) moving with linear motion with
velocity v;(t) and constant acceleration a;. The vehicle is a ball of radius ¢ and center
(21,22) = (x,y). The safety margin between obstacles and vehicle is n = 0.3m and
the road y boundaries are denoted with r = 0,7 = 7. The target area is defined by
the condition on the vehicle yaw angle which guarantee that the vehicle at the final
time T s driving parallel to the road, moreover the vehicle can stop in the half-space
defined by T > Tiqrget-

For the numerical simulations the first case of Table is considered, where the
initial vehicle velocity is 50[km/h] and the unique obstacle is fixed. The interval
computed by CAB-algorithm (see Table column 4 of the first case study), the
minimum time trajectory is provided in Figures for warning level 1, for
warning level 2, for warning level 3. Thus the Problem [2.4]is solved three times,
each time imposing dy,;, = z1(t,) — 1 € [w;, w;] for i = 1,2,3. The ODE-Sensitivity
information is in Figure and Fiacco-Sensitivity information is in Figure
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Figure 2.13: Warning level 1. From top to bottom, optimal trajectory, controls and
parameters are given.
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Optimal trajectory
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Figure 2.14: Warning level 2. From top to bottom, optimal trajectory, controls and
parameters are given.
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Optimal trajectory
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Figure 2.15: Warning level 3. From top to bottom, optimal trajectory, controls and
parameters are given.
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ODE-Optimal trajectory
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Figure 2.16: The ODE-perturbed trajectory is plot for a perturbation of p =
(5,1,0.1,5,0.5) for each warning level.
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FIACCO-Optimal trajectory
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Figure 2.17: The Fiacco-perturbed trajectory is plot for a perturbation of p =
(5,1,0.1,5,0.5) for each warning level.
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The radius is given straightforward:

Radius estimation for the optimal trajectory at warning level 1:
The radius of parameter is 1.11282078 units

The radius of parameter .28044771 units

The radius of parameter .02146816 units

The radius of parameter .04972374 units

The radius of parameter 5 is 1.12156770 units

The total radius is 0.00512426 units

is
is

D W N -

is

= = O O

Radius estimation for the optimal trajectory at warning level 2:
The radius of parameter 1 is 1.08799803 units
The radius of parameter is 0.28052736 units
The radius of parameter 3 is 0.02412671 units
1.
1.

S w NN e

The radius of parameter 4 is 13457006 units
The radius of parameter 5 is 17160768 units

The total radius is 0.00689615 units

Radius estimation for the optimal trajectory at warning level 3:
The radius of parameter is 0.89301410 units

The radius of parameter .28668384 units

The radius of parameter .03296789 units

The radius of parameter .356622279 units

The radius of parameter 5 is 0.99717206 units

The total radius is 0.00940189 units

is
is

D W N -

is

O = O O

3 Collision avoidance by braking and steering algorithms

The CABS-algorithm deals with traffic complexity in urban surroundings and it is
implemented in new assistance systems and safety systems with the aim to reduce
the number of accidents. The algorithm is designed for finding real time trajectories
for collision avoidance scenarios by parametric sensitivity analysis of a non-linear
optimization problem. Parametric sensitivity analysis has been presented in Chapter
and is based on the idea that once a nominal optimal trajectory is found, then
one can find real time approximation of optimal trajectories with small perturbation
of the initial state in the non-linear optimal control problem whose solution is the
nominal trajectory. The non-linear optimal control problem adopts the single track
dynamics in of Chapter [lI| with seven states and two controls. The objective
function is a linear combination of several functions that model the total time of
maneuver, the length of the maneuver, the total velocity over the time horizon, the
total slip angle over time horizon and the opposite of the minimum distance between
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vehicle and obstacle over the time step. Such function is minimized not over the
controls, but over three time steps t1, 2,3 which are the switching times where the
steering velocity control ws changes its value. The steering velocity is defined as the
piecewise continuous function in Figure [3.1] The braking force is defined according
to the Kamm’s circle law of Chapter [lIj in such a way that the equality holds.
Box constraints are imposed for the controls and the states.

min
W3

Figure 3.1: Definition of the steering velocity control ws.

The scenario (see Figure implemented for the CABS-algorithm requests to avoid
an obstacle driving in front of the reference vehicle. The two objects have the same
velocity direction and the same yaw angle at initial time ¢g. Due to the lack of data
from the sensors in the reference vehicle, the obstacle geometry cannot be detected
entirely, only its width is available. For these reasons in the model the obstacle
set is seen as an offset to overcome at the final time. Thus terminal constraints
are involving the final slip angle, steering angle, and yaw angle, as well as the
final position of the vehicle. The road geometry is not considered and the obstacle
motion is given a priori as a linear motion, i.e. no system identification techniques
are applied to predict the obstacle motion.
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Figure 3.2: CABS algorithm scenario.

The CABS-algorithm input is then the offset, the x obstacle position and the initial
state of the dynamical system modeling the reference vehicle motion. The output is
composed of an optimal avoidance trajectory described by the seven states (vehicle
position (z,y), vehicle velocity v, vehicle yaw angle 1, vehicle yaw rate wy,, vehicle
side slip angle «, vehicle steering angle §) and two controls (vehicle steering velocity
ws and vehicle braking force Fg) of Figures and is considered.
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Figure 3.4: CABS trajectory-controls wg, Fi3.

In the next simulations three scenarios are considered all with a straight road with
lower bound —2 meters and upper bound 8 meters.

1. A single fixed circular obstacle of radius 1 meter and position (25,0) has to
be avoided. The circular vehicle of radius 1 meter has initial state z(0) =
(0,0,19.4,0,0,0,0).

2. A fixed circular obstacle of radius 1 meter with initial position (25,0) has to
be avoided by the circular vehicle of radius 1 meter with initial state z(0) =
(0,0,19.4,0,0,0,0). Another circular obstacle of radius 1 meter with initial
position (2,6) and constant velocity 25m/s is overtaking the reference vehicle.

3. A circular obstacle of radius 1 meter with initial position (25,0) and mov-
ing of linear motion with initial velocity 10m/s and acceleration —6m /s>
has to be avoided by the circular vehicle of radius 1 meter with initial state
2(0) = (0,0,19.4,0,0,0,0). Another circular obstacle of radius 1 meter with
initial position (40, 6) initial velocity 25m/s and initial acceleration —6m/s?
is approaching the reference vehicle by driving in the opposite direction.
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3.1 Sensitivity study

The starting point to construct a verification procedure for the CABS-algortihm, is
to compute the ODE perturbed trajectories with respect to the nominal trajectory
computed with CABS-algorithm (see Section of Chapter for details). In
Figure the nominal trajectory is plotted for scenario described in Item . The
perturbed trajectory set is plotted in Figure and all the perturbed trajectories
are collision free, indeed the considered perturbation value for each state is within
the limit shown by the maximum perturbation radius estimation of Table If
perturbations are outside the ball of radius the maximum radius estimation, then the
perturbed trajectory set is composed by trajectories that are leading to a collision
or leaving the road, see Figure 3.7

Optimal trajectory

-2

Figure 3.5: Sensitivity comparison-nominal trajectory.
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ODE perturbation of an optimal trajectory
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Figure 3.7: Sensitivity comparison-perturbation outside the ball with maximum
radius estimation boundaries and center in the nominal initial state.

Table |3.1] gives the maximum radius estimation for ODE-perturbation of the initial
value of the nominal optimal trajectory such that the perturbed trajectories are col-
lision free. Roughly speaking, if the sensor detecting the initial state of the reference
vehicle has tolerance within the computed radius in Table then the nominal op-
timal trajectory is collision free even if affected by sensor errors in data detection.
The Table shows two radius estimation in this particular case of verification of a
CABS-trajectory. The first column is including the Kamm’s circle state constraint,
the second column does not take into account the state constraint and this leads
to bigger radius estimation. The reason why this happens is because in the com-
putation of the CABS-trajectory, the Kamm’s circle state constraints is satisfied as
equality, and thus as soon as the perturbation affects the equation, the condition
is not satisfied. Thus if the state constraints depends on the state whose initial
value is perturbed, there is no margin of perturbation for having this constraint still
satisfied.

For the scenario described in Item and the scenario described in Item the
optimal trajectories are given in Figures [3.8| and The obstacles are moving and
at the final time a crash is occurring. Thus the CABS-trajectory cannot be applied
in scenarios where there is more than one obstacle, since in many cases this will lead
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with Kamm’s | without Kamm’s

circle state con- | circle state con-

straint straint
The radius of parameter 1 is 0.00000000 units 3.39492756 units
The radius of parameter 2 is 0.00000000 units 0.70000000 units
The radius of parameter 3 is 0.00000000 units 5.02035598 units
The radius of parameter 4 is 0.00000000 units 0.15962142 units
The radius of parameter 5 is 0.00000000 units 2.09258572 units
The radius of parameter 6 is 0.00000000 units 0.31363956 units
The radius of parameter 7 is 0.00000000 units 0.14582771 units
The total radius is 0.00000000 units 0.00683953 units

Table 3.1: Maximum radius estimation with and without Kamm’s circle constraints.

to a collision.

Scenario at time tg.

Optimal trajectory

Scenario at time ¢ € (g, 7].

Optimal trajectory.

Figure 3.8:
sets.

Scenario at time tg.

Optimal trajectory

The scenario in Item nominal trajectory and perturbed trajectory

Scenario at time t € (tg, 7).

Optimal trajectory

Figure 3.9:
sets.

The scenario in Item nominal trajectory and perturbed trajectory
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3.2 Comparison with backward reachable set

In Figure the backward reachable set (see Definition of Chapter [LI)) is com-
puted for scenarios in Items , , . In the computations, the reference vehicle
as well as the obstacles are modeled as squares of dimension 2 meters. The vehicle
dynamics is the 4d model in of Chapter [lI] since this gives the possibility to
look at a larger number of trajectories. For scenarios in Items and the initial
state considered here is in the computed reachable set, thus an optimal trajectory
exists from such initial state. For scenario in Item this trajectory is the CABS-
trajectory in Figure however for the scenario in Item the CABS-trajectory
is not collision free (see Figure top-right picture), so the trajectory suggested by
the VIT'M tool should be adopted. The scenario in Item does not have a collision
free trajectory from the given initial state and a collision will for sure happen. In
this case the collision avoidance system based on the CABS-algorithm should not
activate and a mitigation algorithm should be applied.

10

ececscccccsccsccsecsocsccscccioses
. oo L0
Ofeeoocsocccsseccscscs

5+
-20 -10 0 10 20 30 40

10~

-5 | [ 1 [ i I [
-20 -10 0 10 20 30 40 50 60

Figure 3.10: In first and second row the backward reachable set and a minimum
time trajectory from the initial state zp = (0,0,19.4,0,0,0,0) are computed for
the scenario in Item and the scenario in Item respectively. The backward
reachable set for the scenario in Item is computed in the last row, where it is
clear that an optimal trajectory from the initial state zg = (0,0, 19.4,0,0,0,0) leads
always to a collision.
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A selection of possible future research directions is here presented. Industrial appli-
cations and problem formulations with different theoretical approaches are discussed
for improving and developing collision avoidance systems.

The implementation in real car of algorithms based on optimal control approaches
attracts the car industry attention. The advantages of a collision avoidance algo-
rithm based on optimal control techniques is the possibility to deal with complex
scenarios, and thanks to this to develop precise avoidance maneuvers. However the
more complex the scenario is the slower are the computational times to find an op-
timal solution. The real time implementation is tricky and requires deep numerical
analysis skills.

A second important issue in collision avoidance is the modelization of sensor data
uncertainties or model errors. The use of stochastic optimal control can be an
interesting tool to understand how these errors affect the problem and to obtain
solutions that are robust with respect to such uncertainties. In this chapter the
stochastic term is only introduced in the initial value problem obtained by fixing
the control to a given optimal function.

The last research direction presented in this chapter tries to improve the physical
model presented in Chapter [[Il The simplification made in Chapter [[T of considering
an a priori known obstacle motion is too strong. In real life car traffic scenarios the
obstacle motion is unknown and has a strong influence on the failure of the colli-
sion avoidance system. The obstacle motion depends on many factors, as human
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or environmental, leading to a very complex modelization problem involving sev-
eral academic subjects, ranging from psychology to data learning. A game theory
approach can be a compromise between the assumption of a pre-defined obstacle
motion and the one fully faithful to the complexity of a real life scenario. Therefore
a car traffic scenario can be considered as a game between obstacles and vehicle. In
the worse case scenario a non-cooperative game has to be considered, for the best
case scenario a cooperative game is required.

1 Real time implementation of collision avoidance trajecto-
ries

Implementation in cars of collision avoidance algorithms via optimal control tech-
niques is an attractive field in car industry. Such success is due to the fact that
optimal control problems model a wide rage of typologies of car traffic scenario,
with more than one obstacle and several road geometries, considering also the ca-
pabilities of the reference vehicle. The idea here shown concerns the basic scenario
in collision avoidance. An obstacle has to be overcome by a car in a straight road
and no other obstacles are involved. It appears that such a scenario is commonly
happening in many real life situations and many data has been collected. A com-
parison with human driver trajectories is extremely useful to have a feedback on the
correctness of the model. Moreover a look at real life trajectories will lead to a better
understanding of the maneuver performance criteria, and thus of the choice of the
objective function. Since optimal control solvers do not give real time solutions, the
idea is to implement in the car the optimal solutions found off-line sorted by initial
data and scenario typology.

The experimental data used in the following examples are collected by the Driver
Assistance System department in Volkswagen Research. Four real life situations are
considered where a vehicle overtakes an obstacle in a straight road.

First Example. Using the notation of Problem [3.1] of Chapter [[I] the initial state

A0) = (@(0),5(0),1(0),v,(0), ,(0), w,(0),5(0)) "
— (0,1.75,0,21,0, —0.0027, 0.05) '

where (z,y) is the vehicle center of gravity, 1 is the yaw angle, (vs, vy) are the veloc-
ity components in [m/s], wy is the yaw rate, and d is the steering angle. The obstacle
initial position is (15.42,1.10) moving with acceleration 0.74[m/s?] and initial ve-
locity 19.35[m/s]. In the simulations the obstacle and the vehicle are considered as
squares of dimension 2[m| and the road has width 7[m|. The final condition imposes
that the maneuver terminates at time ¢y such that the z-position of the vehicle at
time ty equals the one of the obstacle.
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In Figure the real trajectory and the velocity value are compared with the ones
of simulated data for different objective functions. It appears that the experimen-
tal data trajectory is a combination between the minimal initial distance and the
minimal time solution.
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Figure 1.1: The first column shows the velocity component values v, v, in [m/s],
while the second column plots the trajectory in the (z,y) plane. The first row shows
the data related to real life scenarios. The second road is the minimal time solution.
The third row is the solution obtained by minimizing the initial z-distance between
vehicle and obstacle. The last row solution is obtained by minimizing the steering
effort.
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Second Example. In this case the obstacle is smaller and slower than in the first
example, moreover it is really close to the lower bound of the road. Thus:

2(0) = (2(0),5(0),¥(0), vz(0), vy4(0), w4 (0), 6(0))
= (0,1.75,0,20.38,0,0.0076, 0.08).

The obstacle initial position is (13.55,0.75) moving with acceleration 0.67[m/s?]
and initial velocity 17.13[m/s]. In the simulations the obstacle and the vehicle are
considered as squares of dimension 1{m] and 2[m] respectively, and the road has
width 7[m]. As in the first example, the final condition imposes that the maneuver
terminates at time ¢y such that the z-position of the vehicle at time ¢y equals the
one of the obstacle.

In Figure the real trajectory and the velocity value are compared with the ones
of simulated data for different objective functions. It appears that the experimental
data trajectory is well approximated by the minimal time solution.
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Figure 1.2: The first column shows the velocity component values v, v, in [m/s],
while the second column plots the trajectory in the (z,y) plane. The first row shows
the data related to real life scenarios. The second road is the minimal time solution.
The third row is the solution obtained by minimizing the initial z-distance between
vehicle and obstacle. The last row solution is obtained by minimizing the steering

effort.
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Third Example. The initial vehicle state is:

2(0) = (2(0),y(0),%(0),v(0), v, (0), wy(0),5(0))
= (0,1.75,0,24.4,0,—0.019, 0.0).

The obstacle initial position is (14.74,0.72) moving with acceleration 0.51[m/s?]
and initial velocity 21.79[m/s]. In the simulations the obstacle and the vehicle are
considered as squares of dimension 2[m], and the road has width 7[m]. As in the
first example, the final condition imposes that the maneuver terminates at time ¢
such that the z-position of the vehicle at time ¢y equals the one of the obstacle.

In Figure the real trajectory and the velocity value are compared with the ones
of simulated data for different objective functions. It appears that the experimental
data trajectory is well approximated by the minimal time solution and the solution
minimizing the steering effort.
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Figure 1.3: The first column shows the velocity component values v,, v, in [m/s],
while the second column plots the trajectory in the (z,y) plane. The first row shows
the data related to real life scenarios. The second road is the minimal time solution.
The third row is the solution obtained by minimizing the initial z-distance between
vehicle and obstacle. The last row solution is obtained by minimizing the steering

effort.
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Fourth Example. In this case the obstacle is smaller and slower than in the first
example. The initial vehicle state is:

2(0) = (2(0),5(0),¥(0), vz(0), vy4(0), w4 (0), 6(0))
= (0,1.75,0,20.57,0, -0.001, 0.05).

The obstacle initial position is (7.2,1.2) moving with acceleration 0.40[m/s?] and
initial velocity 19.14[m/s|. In the simulations the obstacle and the vehicle are con-
sidered as squares of dimension 1{m| and 2[m] respectively, and the road has width
7[m]. As in the first example, the final condition imposes that the maneuver termi-
nates at time ¢y such that the z-position of the vehicle at time ¢; equals the one of
the obstacle.

In Figure the real trajectory and the velocity value are compared with the ones
of simulated data for different objective functions. It appears that the experimental
data trajectory is well approximated by the solution obtained minimizing the steering
effort.
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Figure 1.4: The first column shows the velocity component values v, v, in [m/s],
while the second column plots the trajectory in the (z,y) plane. The first row shows
the data related to real life scenarios. The second road is the minimal time solution.
The third row is the solution obtained by minimizing the initial xz-distance between
vehicle and obstacle. The last row solution is obtained by minimizing the steering

effort.
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The four examples show that all objectives may occur, largely depending on the
driver behavior. Thus to implement optimal trajectories in real car, the driver
behavior needs to be detected and the corresponding avoidance trajectory can be
applied. For instance for an aggressive driver, a minimum initial distance trajectory
is more suitable and it avoids the risk of nuisance warnings. While for an “average”
driver a minimum steering effort trajectory is more appropriate to avoid panic attacs
in the driver.

2 Stochastic approach

Given an initial state zgp € R"#, n, > 1 integer, for any control policy u € U =
L>([to, tf],U), 2% (-) denotes the Caratheodory solution of the following dynamical
System

2(t) = f(z(t),u(t)), a.e. t>t,

z(to) = 20. (2.1)

Let @ € U such that the function zg‘o satisfies the following constraints:
22 (tr) €C, (2.2)

with C non empty closed set of R"=.

As seen in Section of Chapter it is possible to estimate the maximum r > 0
such that for all £ € B(z,7), zg solves with z(t9) = &, and (2.2). A similar
estimation for r is here found if a stochastic term for modeling errors in the initial
data is introduced.

Let the stochastic initial value problem in (2.3)) be considered.

Z(t) = f(Z(t),0(t), a.e. t>to,
Z(to) = 20 +eW =: €. (2.3)

where W is for instance a random variable with law N(0,1) and u € U given such

that (2.2)) holds.

Then the perturbed trajectory starts with the value Z§ = 29 + eW where W is an
N(0,1) random variable. Thus

to
Z) =2+ | f(Z)dt (2.4)
0

and
to

Ziy=Zi+ | 1zt (2.5)



200 Chapter VI. Future Directions

By difference,
to
zpzmﬂ%—m+/Lw—ﬁw, (2.6)
0

where L is the Lipschitz constant of the dynamics f. Then by the Gronwall Lemma

Z5, — Zp | < 0128 — 2] < e eo|W|, Wiy > 0. (2.7)

Assuming that Z?f € C, the probability to reach the target for the perturbed tra-
jectory is computed. More precisely, the size of ¢ (which measures the size of the
initial perturbation) needs to be found, such that, for instance,

PlZ{, €eCl=zA=1-a, asmall (2.8)

where here A corresponds to the confidence to be achieved.

If
de(Z,) = =6 <0 (2.9)

(where d¢ denotes the signed distance to C), then B(Z?f, 9) C C, and

PZ, € C] PZf, € B(Z},,0)]
Pl 25 — Z7,| < 4]

1
Pleelts|W| < 4] (2.10)
[

BW| < e8] = 1 — B[[W| > e~21]

€ €

VIV IV

Now let b := e~ Lts g. Assuming that d /e is large (or e sufficiently small with respect
to d), then the following holds

]P)HW’ 2 b] = W HZOHEIJ 6_||ZOH2/2dZO
(27T)7d/28d71 fboo rd=le=r*/2qy (2.11)

~ (27)7 Y28, b 22 b o0

where Sg_; is the unit surface in R?, and W random variable with values in R,
Thus in order to have (12.8]), b has to be such that:

(2m) 425, b2 V)2 g, (2.12)

SO
—b*/2 + o(b) ~ loga, (2.13)

b~ +/—2loga. (2.14)

and therefore

To conclude

0
~e 2.15
e v—2loga ( )

For instance, if a = 0.01 the value \/ﬁ = 0.33 is obtained.
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3 Game theory approach

In this section a pedestrian motion and a car motion subject to uncertainties are
modelled as differential games.

3.1 Models

Car Model. The dynamics of the car is given by

jg((é; z fgjgzc(t),uc(t)), a.e in [0, 7 (3.1)

where

 The time interval [to, ;] is fixed.

o The state is z¢ := (z¢, Yo, vo, Yo); (xo,yc) are the coordinates of the center
of gravity of the car, vo is the velocity function and ¢ is the steering angle
function.

e The control is uc := (ac,wyc); ac is the acceleration function of the vehicle
and wyc is the steering angular velocity function.

e The function f¢ is defined as:

:c:C(t) = ve(t) cos(o(t)),
i
Yo(t) = wye(t).

o The vector of initial state z¢ is constant.

Perturbed Car Model. If perturbations in the dynamics or in the initial state
are considered then the can be written as . Perturbations in the dynamics
fo and in the initial value z¢(0) are modeled by the function p = (p1,p2) € P =
L>®([tg, <], P), P C R? and for i = 1,2, p;i(t) € B(vp;, Bp,), the ball of radius -,
centered in By,.

The dynamics of the car is, in this case, given by
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26(t) = folze(t),uc(t)) +pi(t), aein [to,ty] (3.3)
2c(0) = zc0+ pa(t) '

where z¢,uc, fc, 200 are defined as before and the time interval [to,ty] is fixed.

Pedestrian Model. The dynamics of the pedestrian is given by

Zp(tg z ngz]a(t),uja(t)), a.e in [to, tf] (3.4)

where

o The time interval [to,ty] is fixed.

o The state is zp := (xp,yp), the coordinates of the center of gravity of the
pedestrian.
o The control is up := (v}, v%); vh and v} are the components of the pedes-

trian’s velocity in the x-axis and in the y-axis respectively.

e The function fp is defined as:

wP(t) = ’Ug(t)v (3.5)
- P

o The vector of initial state zpg is constant.

3.2 Differential game

Pedestrian-Car. The first game is between a suicide pedestrian P and a car
C. The pedestrian is modeled as a ball of radius rp constant and centered in
(xp(t),yp(t)), the car is modeled as a ball of constant radius r¢ and center (zc(t), yo(t)).
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e Terminal state constraints. They want to reach their own target, To =
[z, +00] X [—00, +00] for the car and Tp = [zp,Tp] X [y, +00] for the pedes-
trian, in a safe position:

zp < xp(ty) <Tp,
yP(tf) > yP)

= 3.6
rolty) > 2c, (3.6)
lbc(tf) =0,

where zp, Tp, Yp and x are constants.
e Control constraints. The controls are bounded as follow:

up <up(t) < up,
ue < uc(t) <, (37)
where up, Up, u- and Uc are constants.

e State constraints. The car C has to stay on the road for the whole path,
until it reaches the target T¢, so:

Yp <yc(t) <¥g, (3.8)

and y R YR are the lower and upper bound of a straight road respectively.

Moreover the crash is modelled with the following state constraint:

a+ (zp(t) — zc(t)® + (yp(t) — yo(t))?
—(rp(t) +rc(t)? > 0,t € [to, ty],
a >0,

« is defined in the next item.

o Differential equations.

2p(t) i fp(zp(t),up(t)), a.ein [to,ty] (3.9)
zp(to) = zpo
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and
z0(t) = fo(za(t),uc(t)), a.ein [to,t]
%%w ~ e (3.10)

Moreover the following equation tells that « is a constant state:

o =0. (3.11)

¢ Objective function. While C' is trying to avoid P, P is trying to crash with
C, so the equation

ty
t max{0, (rp +7c)* — (xp(t) — 2c(t))? — (yp(t) — yo(t)*}2dt  (3.12)

is minimized over u¢ and maximized over up in a zero-sum game.

Carl-Car2-Car3. In this game two cars C2,(C3, modeled as balls of radius r¢2, 7c3
centered in (zc2(t), yca(t)), (xcs(t), yes(t)), try to hit car C'1, modeled as a ball of
radius r¢p and center (xe1(t),yo1(t)). The radius ro1, reog, rog are constant.

e« Terminal state constraints. All the cars involved want to reach their own
target, To1 = [zoy, +00] X [—00, +00], Tea = [Tog, +00] X [—00,Tesl, Tes =
[—00,Tes] X [y 4y +00], in a safe position:

xCl(tf) 2&017 wCI(tf):(L
zea(ty) 2 oo, yoolty) < Yoo Yeo2(ty) =0, (3.13)
zes(ty) <Teos,  yoslty) 2 yqy  Yos(ty) =0,

where o1, Zoo, Yoo, Tes and Yoq are constants.

¢ Control constraints. The controls are bounded as follow:
ue < uci(t) <uc, forall ie€{l,2,3} (3.14)

where u- and ¢ are constants.
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e State constraints. It can appear that in this kind of game almost any con-
stellation will lead to a collision, i.e. the car 1 cannot avoid it. However if the
following constraints are impose an improvement on the avoidance possibilities
is expected. Each car Ci has to stay on the road for the whole path, until it
reaches the target T¢;, so:

Yp <yci(t) <Yp, forall ie€{l,2,3} (3.15)

and y R YR are the lower and upper bound of a straight road respectively.

Moreover the crash is modelled with the following state constraint:

o+ (zea(t) — zo1(t)? + (yea(t) — yer (t))?
—(rea +re1)? >0,

a+ (zes(t) — zoi(t)? + (yes(t) — yer(t))?
—(res +re1)? >0,

a >0,

« 1s a constant state. Also C2 does not have to crash with C3:

(zea(t) — ze3(t)? + (Yoo (t) — yes(t)? — (rez + res)® > 0. (3.16)

e Differential equations. Objects C1,C2,C3 are following the car model
described in (3.1)):

20:(t) = feoi(zci(t),uci(t)), a.e in [to,ty]
ZC?(tO) = 20i0 (3.17)

for i € {1,2,3}. As before the following equation tells that « is a constant
state:
o =0. (3.18)

e Objective function. While C'1 is trying to avoid C2 and C3, C2 and C3 are
trying to crash with C'1, so:

ty
t max{0, (rp +rc)* — (zp(t) — zc(t))? = (yp(t) — yo(t))*}2dt  (3.19)

is minimized over uc; and maximized over uce, uc3 in a zero-sum game.

Perturbation-Car. In this game car C1, modeled as a ball of fixed radius r
and center (z1(t),y1(t)), tries to avoid car C2, a balls of fixed radius ry and center
(z2(t),y2(t)), moving with a given motion. Errors in the dynamics and in the initial
state are affecting C'1 and in particular they play against it.



206

Chapter VI. Future Directions

W

t, N ¢
01‘ ™ o -

e Terminal state constraints. Object C'1 wants to reach the target, To1 =

[Zcq, +00] X [—00, +00], in a safe position:

zo1(ty) = zoy
ber(ty) = 0, (3:20)

where z; is a constant.
Control constraints. The control is bounded as follow:

ucr < uci(t) < uer, (3.21)
where u-; and Ucp are constants.

State constraints. C1 has to stay on the road for the whole path, until it
reaches the target T, so:

Yp <yo1(t) <Yp (3.22)
and y R YR are the lower and upper bound of a straight road respectively.
Moreover the crash is modelled with the following state constraint:

a+ (zca(t) — zc1(t)” + (yoa(t) — yeu (t))?

—(rea +rc1)? >0,
a >0,

« is a constant state. We have to specify that xc2(t) and yca(t) are such that:

zeo(t) = zea(to) + vealto)t + Sacat?,

yoo(t) = yoo(to) (3.23)

where (zc2(to), yo2(to)) is the initial position of C2, vea(ty) is the initial ve-
locity of C2 and acs is its constant acceleration.

Differential equations. Objects C1 is following the car model described in

(3-3):

zeq(t) = folzoi(t),uci(t)) + pi(t), a.e in [to,ty]
ZCC;%tO) = 2010 + p2(t). (3.24)

As before the following equation is added which tells that « is a constant state:

o =0. (3.25)
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o Other constraints. As in (3.3)):

— Perturbations in the dynamics fo are modeled by the vector

pi(t) € B(yp1, Bpy); (3.26)

the ball of radius v,, centered in B, .

— Perturbations in the initial value z¢(ty) are modeled by the vector

pa(t) € B(’sz: sz)’ (3.27)

the ball of radius 7,, centered in B,p,.

¢ Objective function. While C1 is trying to avoid C2 and reach the target
Tcn staying on the road, p is trying to make C'1 violating the constraints, so:

ty
t max{0, (rp +rc)* — (zp(t) — zc(t))? — (yp(t) — yo(t))*}2dt  (3.28)

is minimized over uc1 and maximized over p.
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