A Framework for Batch Scheduling
with Variable Neighborhood Search
in Wafer Fabrication

o

o0

5 it asy

%

4
////

S;sunaeII

-““\

4

S &lhm’ flllog-@

Wi
&
s\\\e*?’

\\:\x\\"‘ ¢

e“\\\

e
~
©
o
‘Q\\

Wargp,,
Equipment ¢ ,

Uogy,

/1’/” o
oo
de 14’/0

ERFgp

Deadline

M@\

Voo,
S

0'.

i
1Y

Ase

Parag

........ oy

UOQE C)LHJ)
E
%
2.
aﬁ‘:\g\mh
Dy la,

LEXITY
ﬂOOl 4

§RMPO Decomposiipy =

sLocar

"'"M!.’

\)

u\

%

nnnn VERIFICATION

BENGHMARK

gy §gysrnn:n ’”””;\@9
a4 '"’”'/41 \\%“ >
R\

%

g

§
$

\'I
—_—

Single "

%1’

“,
‘.

\\\\\“\“‘\

RVNS \Nﬁ‘e‘

ol

toaey

STing

‘¢ﬁ>
>
2,

\

oag
”/ Z
?9,:

/Qf/a
b,

Gopg,

<
%

n

&

o ([‘

(&4

cation

Fabri

der Bundeswehr

Universitat j Miinchen

(-
/k
N

A FRAMEWORK FOR BATCH SCHEDULING WITH
VARIABLE NEIGHBORHOOD SEARCH IN WAFER
FABRICATION

Robert Kohn

Vollstandiger Abdruck der von der Fakultat fiir Informatik der Universitat der
Bundeswehr Miinchen zur Erlangung des akademischen Grades eines

Doktor-Ingenieurs (Dr.-Ing.)

genehmigten Dissertation.

Gutachter:

1. Gutachter: Prof. Dr. Oliver Rose
Institut fir Technische Informatik
Fakultat fir Informatik

Universitit der Bundeswehr Minchen

2. Gutachter: Prof. Dr. Stefan Pickl

Institut fiir Theoretische Informatik, Mathematik und Operations Research
Fakultat fir Informatik

Universitit der Bundeswehr Minchen

Die Dissertation wurde am 11.12.2014 bei der Universitat der Bundeswehr Miinchen
eingereicht und durch die Fakultat fiir Informatik am 6.11.2015 angenommen. Die
miindliche Priifung fand am 6.11.2015 statt.

In effect, semiconductor manufacturing
seems to be an intellectual black hole -

despite any amount of brain power thrown at it,
it always offers challenges for doing it better.

(Leachman et al., 2002)

iii

Abstract Die Halbleiterindustrie, als eine der groiten und am schnellsten wachsenden Industrien
der Welt, arbeitet kontinuierlich an der Reduktion ihrer Produktionskosten fiir konstant
erschwingliche Produktpreise am Markt. Die Produktionslogistik spielt bei der Senkung der
Produktionskosten in Halbleiterwerken (waferfabs) eine entscheidende Rolle. Man geht davon
aus, dass Scheduling-Systeme in Kombination mit entsprechenden Optimierungsverfahren
die derzeit eingesetzten Dispatch-Systeme als state-of-the-art Steuerungsverfahren in naher
Zukunft ablésen werden. Insbesondere die Méglichkeit des Optimierens verschafft Scheduling-
Systemen gegeniiber Dispatching-Systemen entscheidende Vorteile. Viele Autoren teilen
die Auffassung, dass exakte Optimierungsverfahren in Scheduling-Systemen nicht die erste
Methode der Wahl zu sein scheinen. Stattdessen werden oft Metaheuristiken und lokale
Suchverfahren zur Losung von Scheduling-Problemen mit verschiedensten Randbedingungen
herangezogen. Sie liefern akzeptable Losungen mit vertretbarem Zeitaufwand.

Diese Arbeit beschreibt ein Scheduling-Framework und dessen Implementierung fiir den
Einsatz als Batch-Scheduling System im Prozessbereich Diffusion/Oxidation in einer Halbleit-
erfabrik. Das Framework umfasst im Kern ein simulations-basiertes Scheduling-System mit
Variabler Nachbarschaftssuche (VNS) zur Optimierung. 9 Kapitel beleuchten ausfiihrlich die
zugrundeliegenden theoretischen Hintergrnde und liefern gleichfalls wertvolle Erfahrungen
aus der industrienahen Entwicklung eines Scheduling-Systems unter Praxisbedigungen.

Der theoretische Teil dieser Arbeit lasst sich zweiteilen. Zum einen stellt die ausfithrliche
Literaturbersicht zum Thema Batch-Scheduling in der Halbleiterfertigung eine wesentliche
Saule dieser Arbeit dar. Zum anderen vervollstiandigt die detaillierte Einfiihrung in das
Fachgebiet mit einer eingehenden Analyse der Komplexitétsklassen zu den wichtigsten Batch-
Scheduling Problemen den Theorieteil dieser Arbeit.

Der Fokus des praktischen Teils beleuchtet Aspekte aus Industrie und Forschung gleicher-
maflen. Das implementierte System vereinbart diese beiden Anwendungsgebiete zu gleichen
Teilen, in dem es einerseits der Forschung als Experimentiersystem dient und andererseits als
Prototyp in der Industrie funktioniert.

Das Experimentiersystem eroffnet die Moglichkeit akademische Fragestellungen aus dem
Bereich des metaheuristischen Batch-Schedulings zu beantworten. Die Experimente zeigen,
dass auch kleine Anderungen in den Ausgangsbedingungen zu bedeutenden Anderungen in
den Scheduling-Ergebnissen fithren konnen. Es geht um die Frage, welchen Einfluss die
Eigenschaften des Scheduling-Problems und die Parameter der Scheduling-Methode auf die
Qualitét der zu erreichenden Verbesserungen haben koénnen. Dariiber hinaus zeigen die
Experimente welche dieser Parameter zur Optimierung von Ablaufpldnen zu favorisieren sind.

Der Prototyp wurde gezielt fiir die speziellen Anforderungen der Industrie entwickelt. Das
Design des Frameworks ermoglicht seine Nutzung als prototypisches Steuerungssystem im
operativen Betrieb, als Real-Time Scheduling-System. Design, Implementierung und Test
eines Scheduling-Systems sind anspruchsvolle Aufgaben. Die Installation eines solchen
Steuerungssystems im laufendem Betrieb ist jedoch weitaus herausfordernder. Diese Arbeit
beschreibt das implementierte Scheduling-System mit den wichtigsten Komponenten in
den Bereichen Modellierung, Simulation und Optimierung, sowie die darunter liegenden
Datenebenen mit Verbindung zum Fertigungsystem (MES) einer Halbleiterfabrik.

Key Words Batch Scheduling, Simulation-basiertes Scheduling, Variable Nachbarschaftssuche,
Halbleiterfertigung

iv

Abstract The semiconductor industry as one of the largest and fastest growing industries in the
world needs to continuously reduce production costs to provide affordable products. Factory
operations are likely to be major drivers to realize the necessary cost reductions in wafer
fabrication facilities (waferfabs). For example operational scheduling systems powered by
optimization techniques promise to replace dispatching systems as state-of-the-art control
systems in the near future. Especially the capability of optimization makes scheduling systems
superior to dispatching systems. Many authors share the opinion that exact optimization
methods do not seem to be the method of choice in real-world scheduling systems. Instead
metaheuristics and local search (LS) methods in particular are often used to solve scheduling
problems with a variety of complicating constraints, since these algorithms can obtain good
quality solutions within a reasonable time.

The core of this work revolves around the implementation of a scheduling framework developed
to deploy it as an operational batch scheduling system in the diffusion and oxidation area
of a waferfab. The implemented framework is essentially a simulation-based scheduling
system powered by Variable Neighborhood Search (VNS). This thesis provides the underlying
theoretical background and reports valuable practical experiences from implementing a
scheduling system in a real-world industrial environment.

The focus of the theoretical part lies on two topics. First an extensive literature review
about batch scheduling in wafer fabrication stands as one of the main pillars for this work.
Secondly a detailed introduction to the batch scheduling topic with a detailed analysis of the
complexity results of the most common batch scheduling problems completes the theoretical
background of this work.

The focus of the practical work lies between the poles of academia and industry. The
implemented framework is a balancing act between academia and industry since it basically
comprises two systems: the experimental system and the prototype.

On one hand the experimental system offers the capability to properly investigate academic
questions in the area of metaheuristic batch scheduling. The experiments show that even
slight changes in the experimental setup can result in considerable changes of the output. The
question is raised whether the problem instance’s characteristics or the scheduling method
settings have greater influence on the improvements. It is further shown by experiments how
to ideally parametrize a VNS scheme optimizing schedules.

On the other hand the framework’s prototype is purposefully designed and developed for
the needs in industry. The intention of the framework’s design is to provide a functioning
prototype that is suitable to run as a real-time scheduling system on the operational level.
Designing, implementing and testing a scheduling system is a demanding task, but deploying
it in a waferfab that relies on dispatching to that date is even more challenging. This thesis
describes the top-level scheduling system with all its modeling, simulation and optimization
functionalities and the underlying data level connected to the waferfab’s manufacturing
execution system (MES).

Key Words Batch Scheduling, Simulation-Based Scheduling, Variable Neighborhood Search,
Wafer Fabrication

Contents

Acronyms
Symbols
1 Introduction
1.1 Motivation e e e e e e
1.2 Problem Description L L
1.2.1 Job Properties
1.2.2 Machine Environment
1.2.3 Constraint Environment o
1.2.4 Scheduling Objectives e
1.3 Methodology e e
1.4 Goals and Structure of the Thesis.
1.4.1 Structure of the Thesis.

2 Literature Review

2.1 Single Machine Batch Scheduling Problems
2.1.1 1lp-batch,b<mn|-
2.1.2 1|p-batch,B,sj|-
2.1.3 1|p-batch,b<mrj|-
2.14 1|p-batch,b<n,fmls|-
2.1.5 1|p-batch,B,sj,rj|- - - . o o
2.1.6 1|p-batch,B,sj,fmls|-
2.1.7 1|p-batch,b<mn,rj,fmls|- oo
2.1.8 1|p-batch,B,sj,rj,fmls|- oo o

2.2 Parallel Machines Batch Scheduling Problems
221 Pm|p-batch,b<n|-
222 Pm|p-batch,B,sj|-
223 Pm|p-batch,b<n,rj|-
224 Pm|p-batch,b<n,fmls|- L
225 Pm|p-batch,B,sj,rj|- o
2.2.6 Pm]|p-batch,B,sj,fmls|- o oo
2.2.7 Pm|p-batch,b<mn,rj,fmls|-. oo
2.2.8 Pm]|p-batch,B,sj,rj,fmls|-

3 Wafer Fabrication

3.1 Unit Processes o e e e
3.1.1 Film Formation.
3.1.2 Photolithography
3.1.3 Etching o e
3.1.4 TImpurity Doping e
3.1.5 Non-Value Processes e

3.2 Process Equipment Lo L e
3.2.1 Single-Wafer Processing Equipment
3.2.2 Cluster Tool e
3.23 Batch Furnace L
3.24 Wet Bench o e

3.3 Automated Material Handling o o
3.3.1 Storage, Transport and Equipment Automation.

3.4 Factory Layout
34.1 Farm Layout e
3.4.2 Serial Layout
3.4.3 Cellular Layout o e
3.4.4 Ballroom Layout e

vi

xiv

xviii

4 Modeling and Simulation 51

4.1 Modeling e e o1
4.2 Simulationo 52
4.2.1 Model Typology o e 53
4.2.2 Technologies e 53

4.3 Simulation Project Life Cycles oo o 54
4.4 Validation and Verification L o 54
4.5 TInput Data Management 50
4.6 Simulation in Waferfabs 56
4.6.1 Forecasting L 58
4.6.2 What-If Studies 59
4.6.3 Simulation-Based Scheduling 0 0L 60

4.7 Wafer Fabrication Equipment Modeling 60
4.7.1 Analytical Models 60
4.7.2 Simulation Models 61
4.7.3 Modeling Equipment Capacity (External Behavior) 62
4.7.4 Modeling Processing Time (Internal Behavior) 63

5 Metaheuristic Optimization 65
5.1 Taxonomyo e e 67
5.2 Complexity Theory o e 69
5.2.1 Decision Problems, Languages and Turing Machines 70
5.2.2 Complexity Classes P and NP 70
5.2.3 NP-Completeness o o e 71
5.2.4 Strong vs. Ordinary NP-Completeness 71
525 The P = NPProblemo, 72

5.3 The Search Space L 72
5.4 Metaheuristic Designo 73
5.4.1 Black-Box Modeling 75
5.4.2 Intensification vs. Diversification 75
5.4.3 Hybridization e 76
5.4.4 Parallelizationo 77

5.5 Trajectory Methods 77
5.5.1 Tterated Local Search (ILS) 79
5.5.2 Guided Local Search (GLS) 80
5.5.3 Simulated Annealing (SA) L 81
5.5.4 Threshold Accepting (TA) 81
5.5.5 Tabu Search (TS) 82
5.5.6 Variable Neighborhood Search (VNS) 82
5.5.7 Greedy Randomized Adaptive Search Procedure (GRASP) 83

5.6 Population-Based Methods o 84
5.6.1 Evolutionary Computation (EC) 84
5.6.2 Ant Colony Optimization (ACO), 86
5.6.3 Particle Swarm Optimization (PSO) 87
5.6.4 Scatter Search (SS) L 87

5.7 Benchmarking L e 88
5.7.1 Benchmark Results for Example Problems 89
5.7.2 No-Free-Lunch Theorems (NFLTs) 89
5.7.3 Comparative Testing L 90

6 Batch Scheduling 91
6.1 Scheduling and Control Systems oL 94
6.2 Complexity Review o 98
6.2.1 Complexity Hierarchies 99
6.2.2 Makespan e e e e 100
6.2.3 Maximum Lateness L L e 102

vii

6.2.4 Tardiness e e e e e e e e 103

6.2.5 Unit Penalties e 104
6.2.6 Cycle Time e 105
6.3 Exact Methods e 106
6.3.1 Dynamic Programming (DP) 106
6.3.2 Branch and Bound (BnB) L oo 107
6.3.3 Mixed Integer Programming (MIP) 107
6.3.4 Constraint Programming (CP) 108
6.4 Approximation Algorithms 109
6.5 Heuristics o e e e e e 109
6.5.1 Basic Rule-Based Heuristics oL 110
6.5.2 Batch Apparent Tardiness Cost (BATC) 111
6.5.3 More Problem-Specific Batching Heuristics 111
6.6 Metaheuristics L Lo 112
6.6.1 Ant Colony Optimization (ACO) 113
6.6.2 Simulated Annealing (SA) L 113
6.6.3 Genetic Algorithms (GAS) L 114
6.6.4 Variable Neighborhood Search (VNS) 114
6.7 Decomposition Methods L 114
6.8 Real-Time Control Strategies o 115
6.8.1 Threshold Strategy L 116
6.8.2 Look-Ahead Strategies 117
The Framework 120
7.1 Code Packages e 121
7.2 VNS Implementations 124
7.2.1 Variable Neighborhood Descent (VND) 125
7.2.2 Reduced VNS (RVNS) oo 125
7.2.3 The Basic VNS (BVNS)« o e 126
7.24 General VNS (GVNS) e 127
7.2.5 Variable Neighborhood Decomposition Search (VNDS) 128
7.3 The Experimental System 128
7.3.1 The Database Structure o 129
7.3.2 Model Generation 130
7.3.3 Administration and Data Flow 131
7.4 The Prototype e 132
7.4.1 Administration and Data Flow 135
7.4.2 Data Structure 135
7.4.3 Initializing the Scheduling System 137
7.4.4 Extracting the Snapshot Data. 138
7.4.5 Loading and Validating the Model 138
7.4.6 Generating and Executing the Schedule 140
Experimental Studies 142
8.1 Static Models L 143
8.1.1 Objective Function oo 146
8.1.2 Number of Machines L 147
8.1.3 Numberof Jobs. 148
8.1.4 Number of Job Families 149
8.1.5 Process Time e 151
8.1.6 Batch Sizes e 151
8.1.7 Dedication Density o 153
8.1.8 Job Sizes e 154
8.1.9 On-Time Delivery e 155
8.1.10 Priorities e 157
8.1.11 Correlation Between Objectives 158

viii

8.1.12 Pareto Objectives L 159

8.2 Dynamic Models e 160
8.2.1 Time Window Decomposition (TWD) 161

8.2.2 Look-Ahead Horizon 164

8.2.3 Arrival Errors. e 165

8.3 Method and Benchmarks oo 167
8.3.1 Inmitial Solution 169

8.3.2 Neighborhoods 170

8.3.3 Local Search (LS) 171

8.3.4 Shaking e 172

8.3.5 Computational Deadline 0L 173

8.3.6 Search Space 174

9 Conclusions and Outlooks 177
9.1 Theoretical Background and State-of-the-Art 177
9.2 Valuable Insights Generated by Experiments 179
9.2.1 Insights Related to Model Characteristics 180

9.2.2 Insights Related to Method Settings 183

9.3 Valuable Experiences from Implementing the Prototype 184
References 232
A Tabular Literature Overview 234
B Complexities of Batch Scheduling Problems 237
C Run Times for Exact Methods 239
D Material Flow 241
E Experiments 243
E.1 Experiment E.1 0 0 244
E.2 Experiment E.2 Lo 249
E.3 Experiment E.3 oL 256
E.4 Experiment E.4 Lo 263
E.5 Experiment E.5 o oL o 270
E.6 Experiment E.G e 277
E.7 Experiment E.7 oo e 283
E.8 Experiment E.8 oL 290
E.9 Experiment E.9o 292
E.10 Experiment E.10 0 oL 298
E.11 Experiment E.11 . . . 0 0 0 0L 0 0 302
E.12 Experiment E.12 0 L 0L e 309
E.13 Experiment E.13 C L Lo 313
E.14 Experiment E.14 o e e 317
E.15 Experiment E.15 L oL e 324
E.16 Experiment E.16 o ..o 327
E.17 Experiment E.17 o L 0o 331
E.18 Experiment E.18 o Lo 335
E.19 Experiment E.19 0oL 339
E.20 Experiment E.20 oL 343
E.21 Experiment E.210 oL 346
E.22 Experiment E.22 oL e 350
E.23 Experiment E.23o e 354
E.24 Experiment E.24 oL e 358
E.25 Experiment E.25 o 362
E.26 Experiment E.26 366

ix

E.27 Experiment E.27

List of Figures

[IENEUCRE N

o~ O Ot

10

12
13
14
15

16

17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33

34
35
36

37
38
39
40
41
42
43
44
45
46
47
48

Line performance curve (Martin, 1998); cf. (Aurand and Miller, 1997) 2
The lateness and the tardiness of a job (Pinedo, 2005, 2008) 15
Structure of the thesis 20
Flow diagram of semiconductor manufacturing (Frantsuzov, 2011); cf. (Monch et al.,

2000) . . L 39
Conceptual view of the factory system (Ferrell and Pratt, 2000) 40
Flow diagram for a generic IC process sequence (May and Spanos, 2006) 41
Single wafer processing equipment architecture (Stevens and Jakubiec, 2002) . .. 44
Cluster tool architecture (Yoshida et al., 2007) 45
Vertical batch furnace architecture (van den Berg and Den Hartog, 2004) 46
Wet bench architecture (Su et al., 2004) 46
Examples of AMHS equipment (SEMI E84,2000) 48
Integrated ballroom layout (Chung and Jang, 2007) 50
Taxonomy to study a system (Law and Kelton, 2000; Goti, 2010) 52
Validation and Verification (Sargent, 2010) 55
System of capacity-related parameters to model wafer fabrication equipment (Kohn

etal, 2010) .« . ot 62
Raw process time (RPT) of different tool types dependent on lot size Schmidt et al.

(2006) . . 63
Guidelines for optimization projects (Talbi, 2009) 66
Taxonomy for methods solving combinatorial optimization problems (Talbi, 2009) 69
Euler diagram for P, NP, NP-complete, and NP-hard set of problems (wikipedia, 2014) 73
Four examples of quality/objective functions (Luke, 2009) 74
Black-box scenario for the objective function (Talbi, 2009) 75
Design space of a metaheuristic (Talbi, 2009) 76
The I&D frame (Blum and Roli, 2003) 76
Basic Local Search (Talbi, 2009) 78
Local and global optima (Talbi, 2009) 79
Iterated Local Search (ILS) (Talbi, 2009) 80
Guided Local Search (GLS) (Talbi, 2009)o v .. 80
Simulated Annealing (SA) (Talbi, 2009) 81
Variable neighborhood Search (Talbi, 2009) 83
A generation in Evolutionary Algorithms (Talbi, 2009) 85
Particle Swarm Optimization (PSO) (Talbi, 2009) 87
Four types of solutions used for benchmarking (Talbi, 2009) 88
Time horizons for planning, scheduling and control functions (Monfared and Yang,

2007) .+ o 95
Tllustration of a working real-time control system (Monfared and Yang, 2007) . . . 96
The rolling horizon philosophy for periodical rescheduling (Liao et al., 1996) 96
Real-world state evolution and interaction with the rescheduling system (Dangelmaier

et al., 2007) . .. 97
Complexity hierarchies (Pinedo, 2008) (cf. (Graham et al., 1979)) 100
The MBS rule behavior (Glassey and Weng, 1991); c¢f. (Hopp and Spearman, 2001) 117
The package view of the framework 122
The simplified class diagram of the framework’s package MODELING 123
The principle of the variable neighborhood descent algorithm (Talbi, 2009) 126
The pseudocode for the VND algorithm (Hansen et al., 2009) 126
The pseudocode for the RVNS algorithm (Hansen et al., 2009) 126
The pseudocode for the BVNS algorithm (Hansen et al., 2009) 127
The pseudocode for the GVNS algorithm (Hansen et al., 2009) 127
The pseudocode for the VNDS algorithm (Hansen et al., 2009) 128
The data table structure of the experimental system 130
A snapshot from the framework visualizing the characteristics of a certain model

INSEANCE . . . L o e e e e e e e 131

xi

49
50
51
52
53
o4

%)
56
o7
58
99

60
61

62
63
64
65
66
67
68
69
70
71
72
73
74
(0]
76
(s
78
79
80
81

82

The data flow of the experimental system 133

Information flow diagram in a manufacturing system (Pinedo, 2008) 134
The data flow of the prototype 136
The data table structure of the prototype system 137
An exemplary Gantt-chart generated with the framework 141
Run times for the objective functions depending on the number of machines (experi-
ment E.1) oo 147
Improvements depending on the number of machines (experiment E.2) 148
Run times for objective functions depending on the number of jobs (experiment E.1) 148
Improvements depending on the number of jobs (experiment E.2) 149
Improvements depending on the number of job families (experiment E.2) 150
Run times for objective functions depending on the number of job families (experiment
0 150
Improvements depending on the process time scheme (experiment E.2) 151
Run times for the objective functions depending on the process time scheme (experi-
ment E.1) © . oo 152
Improvements depending on the batch size and the objective function (experiment E.2)153
Improvements depending on the dedication density (experiment E4) 154
Improvements depending on the job sizes (experiment E5) 156
Improvements depending on the initial due date setting and the objectives (experi-
ment E.6) 157
cycle time improvements depending on the number of the job priority settings
(experiment E.7) L 158
Frequency diagram for the cycle time with priority classes (experiment E.7) 158
Correlation factors between objectives (experiment E.8) 160
Minimizing makespan and total tardiness as single objectives and in pareto fashion
(experiment E.9) L 161
Cycle time improvements depending on the time window interval (experiment E.10) 164
Run times depending on the time window interval (experiment E.10) 164
Cycle time improvements depending on the look-ahead horizon 165
Cycle time improvements depending on the errors in job arrival prediction (experi-
ment E.15) . . L L 167
Total weighted tardiness improvement depending on the initial BATC solution
(experiment E.16)o 169
Total weighted tardiness Improvement depending on the neighborhood structure
(experiment EL18) Lo 171
Total weighted tardiness improvement depending on the neighborhood sequence
(experiment E.20) 172
Total weighted tardiness improvement depending on the neighborhood structure
combined with different local search scheme (experiment E.21) 173
Total weighted tardiness improvement depending on the shaking range (experiment
E.24) . o 173
Total weighted tardiness improvement depending on the computational deadline
(experiment E.25) oL 174
Total weighted tardiness improvement depending on the computational deadline
(experiment E.26)o 175
The number of improving moves required to get to the next optimum (experiment
E.27) o 176

The number of shaking tries required to get to the next optimum (experiment E.27) 176

xii

List of Tables

0~ O U = Wi =

Methodical literature review in 16 groups
FEight single machine scheduling problems
Publications related to 1|p-batch,b<n|-
Publications related to 1|p-batch,B,sj|-. L oL
Publications related to 1 |p-batch,b<mn,rj|-.
Publications related to 1|p-batch,b<n,fmls|-
Publications related to 1|p-batch,B,sj,rj|- oo 0oL
Publications related to 1|p-batch,B,sj,fmls|-.
Publications related to 1|p-batch,b<n,rj,fmls|-
Publications related to 1|p-batch, B,sj,rj,fmls|-
Eight parallel machines scheduling problems
Publications related to Pm |p-batch,b<mn|- o 0L
Publications related to Pm|p-batch,B,sj|- L.
Publications related to Pm |p-batch,b<n,rj|-
Publications related to Pm |p-batch,b<n,fmls|-
Publications related to Pm |p-batch, B,sj,rj|- o 0oL
Publications related to Pm|p-batch, B,sj, fmls|-
Publications related to Pm|p-batch,b<mn,rj,fmls|-
Publications related to Pm|p-batch, B,sj,rj,fmls|-0 L.
Mapping between unit processes and equipment types
Default settings for the series of experiments related to the static model
Overview of the experiments related to the static model
Default settings for the series of experiments related to the dynamic model
Overview of the experiments related to the dynamic model
Description of the benchmark models
Overview of the experiments related to the benchmark studies

xiii

Acronyms

ACO Ant Colony Optimization

AGV Automated Guided Vehicle

AHP Analytical Hierarchical Process

Al Artificial Intelligence

AIS Artificial Immune System

AMHS Automated Material Handling System

AMP Adaptive Memory Programming

APC Advanced Process Control

ASIC Application Specific Integrated Circuit

ATC Apparent Tardiness Cost

B&B Branch and Bound

BATC Batch Apparent Tardiness Cost

BCO Bee Colony Optimization

BP Batch Processing

BPM Batch Processing Machine

BVNS Basic Variable Neighborhood Search

Cmax Makespan

CAPA Capacity

CFM Continuous Flow Manufacturing

CFP Conventional Furnace Processor

CFT Continuous Flow Transport

CIM Computer Integrated Manufacturing

CLOB Character Large Object

CMOS Complementary Metal Oxide Semiconductor

CMP Chemical-Mechanical Polishing

CMS Closed Machine Set

COP Combinatorial Optimization Problem

Cp Constraint Programming

CR Critical Ratio

CT Cycle Time

CVD Chemical Vapor Deposition

DBH Dynamic Batching Heuristic

DES Discrete Event Simulation

DJAH Dynamic Job Assignment Heuristic

DP Dynamic Programming

DRAM Dynamic Random Access Memory

DSH Dynamic Scheduling Heuristic

DTM Deterministic Turing Machine

EA Evolutionary Algorithm

EC Evolutionary Computation

ECD Electrochemical Deposition

EDA Estimation of Distribution Algorithm

EDD Earliest Due Date

EEPROM Electrically Erasable Programmable Read-Only
Memory

EFEM Equipment Front End Module

EP Evolutionary Programming

ERD Earliest Release Date First

ERP Enterprise Resource Planning

Xiv

ERT
ES
EST

FCFS
FIFO
FO
FOE
FOUP
FPTAS

GA
GEM

GLS
GP
GRASP
GUI
GVNS

HPC

IC
IDM
ILS
P
ISO
ITRS

KPI

L max

LAB
LNS
LP
LS

M&S
MBP
MBS
MCR
MCS
MES
MIP
MOF
MPC
MPU
MRP
MRP II
MS

NACH
NFLT
NTM

Earliest Release Time First
Evolution Strategy
Earliest Start Time First

First Come First Served

First In First Out

Factory Operations

First-Only-Empty

Front Opening Unified Pod

Fully Polynomial Time Approximation Scheme

Genetic Algorithm

Generic Model for Communications and Control
of Manufacturing Equipment

Guided Local Search

Genetic Programming

Greedy Randomized Adaptive Search Procedure
Graphical User Interface

General Variable Neighborhood Search

High Performance Computing

Integrated Circuit

Input Data Management

Iterated Local Search

Integer Programming

International Organization for Standardization
International Technology Roadmap for Semicon-
ductors

Key Performance Indicator

Maximum Lateness
Look-Ahead Batching
Large Neighborhood Search
Linear Programming

Local Search

Modeling and Simulation
Mini-Batch Processing

Minimum Batch Size

Minimum Cost Rate Heuristic
Material Control System
Manufacturing Execution System
Mixed Integer Programming
Metaheuristic Optimization Framework
Model Predictive Control

Micro Processing Unit

Material Requirements Planning
Manufacturing Resources Planning
Minimum Slack

Next Arrival Control Heuristic

No-Free-Lunch Theorem
Non-Deterministic Turing Machine

XV

ODD
OHS
OHT
OHV

Op curve
OR

OTD

PAC
PECVD
PGV
PSC
PSO
PTAS
PVD

R&D
RCL
RGV
RHCR
RTP
RVNS

SA
SAT
SCM
SCOP
SDES
SECS-1

SECS-II

SEM
SEMATECH
SEMI

SI
SPT
SS
SVNS
SWP

TA
TCT
THP
TLNA
TS
TSP
TT
TU
TWCT
TWD
TWT
TWU

UML

Operation Due Date
Overhead Shuttle
Overhead Hoist Transport
Overhead Hoist Vehicle
Operating Curve
Operations Research
On-Time Delivery

Probabilistic Approximate Completeness
Plasma-Enhanced Chemical Vapor Deposition
Personnel Guided Vehicle

Planning, Scheduling and Control

Particle Swarm Optimization

Polynomial Time Approximation Scheme
Physical Vapor Deposition

Research and Development

Restricted Candidate List

Rail Guided Vehicle

Rolling Horizon Cost Rate

Rapid Thermal Processor

Reduced Variable Neighborhood Search

Simulated Annealing

Satisfiability Problem

Short Cycle Time Manufacturing

Stochastic Combinatorial Optimization Problem
Stochastic Discrete Event Systems

SEMI Equipment Communications Standard
Part 1

SEMI Equipment Communications Standard
Part 2

Specific Equipment Model

Semiconductor Manufacturing Technology
Semiconductor Equipment and Materials Inter-
national

Swarm Intelligence

Shortest Processing Time

Scatter Search

Skewed Variable Neighborhood Search
Single-Wafer Processing

Threshold Accepting

Total Cycle Time
Throughput

Time-Limited Next Arrival
Tabu Search

Traveling Salesman Problem
Total Tardiness

Total Unit Penalties

Total Weighted Cycle Time
Time Window Decomposition
Total Weighted Tardiness
Total Weighted Unit Penalties

Unified Modeling Language

xvi

V&V
VLSN
VND
VNDS
VNS
VVA

WEDD
WIP
WSPT

Validation and Verification

Very Large Scale Neighborhood Search
Variable Neighborhood Descent

Variable Neighborhood Decomposition Search
Variable Neighborhood Search

Validation, Verification and Accreditation

Weighted Earliest Due Date

Work in Process/Progress
Weighted Shortest Processing Time

xvii

Symbols

al By

NP

—~

A notation to classify deterministic scheduling
problems by describing the specific characteris-
tics of the scheduling problem in three fields.
Worst-case time complexity function of an algo-
rithm or a problem.

Complexity class for decision problems that can
be solved by a deterministic Turing machine in
a polynomial time.

Complexity class for decision problems that can
be solved by a non-deterministic Turing machine
in a polynomial time.

Reducibility between optimization/decision
problems in a polynomial bounded time.

Equality is unknown.

xviil

A Framework for Batch Scheduling

with Variable Neighborhood Search
in Wafer Fabrication

I
LI J]
1 Introduction —
Contents
1.1 Motivation ¢ i v v v i i i i it e e e e e e e e e e e e e e e e 3
1.2 Problem Description, 6
1.3 Methodology @ @ @ i i i i i e e e e e e e e 15
1.4 Goals and Structure of the Thesis 19

The electronics industry has become one of the largest industries in the world and manufacturing
of Integrated Circuits (ICs) is an important part of the global economy (Fowler and Rose, 2004;
Ménch et al., 2011a). The semiconductor manufacturing industry with an annual sales of more than
$250 billion worldwide at the end of 2007 is additionally considered as one of the fastest growing
industries in the world (Mathirajan et al., 2010).

A high profitability of manufacturing organizations is simply put the result of two factors: high
sales of products combined with low costs in manufacturing, at what low costs in manufacturing
is the result of a high level of productivity (Hopp and Spearman, 2001). The semiconductor
industry needs about a 30% cost per cm? reduction every 10 years to keep the costs and products
affordable (Pillai, 2006). Since productivity improvements on the same wafer size have not yielded
the necessary cost reductions, semiconductor industry historically has changed over to the next
wafer size level approximately every 10 years. Today semiconductor manufacturer also focus on
introducing a new generation of improved process equipment with greatly increased productivity in
order to delay the next wafer size transition (Pillai, 2006).

In the past, most efforts to increase productivity and thus to reduce costs included @) decreasing
the size of the chips, b) increasing the wafer sizes, and ¢) improving the yield. Beyond these three,
considerable improvements of operational processes inside the semiconductor manufacturing system,
also covered with the term Factory Operations (FO), today and in near future are likely to be the
major drivers to realize the necessary cost reductions (Ménch et al., 2003, 2011a).

The International Technology Roadmap for Semiconductors (ITRS)! frequently provides a
survey about recent and future developments in semiconductor industry (Cogez et al., 2007, 2011).

Key Performance Indicators (KPIs) Hopp and Spearman (2001) define basic performance
indicators in a production system, alternatively referred to as Key Performance Indicators (KPIs).
The Throughput (THP) of a production system is defined as the average output of the production
process per unit time (e.g. parts per hour), also referred to as THP rate. An upper limit on the
THP of a production system is its Capacity (CAPA). The utilization of a workstation can be seen
as the fraction of time the workstation is used explicitly for production. It can be computed as the
ratio of the arrival rate of the parts and its effective production rate. The effective production rate
is defined as the maximum average rate at what the workstation can process parts (considering the
effects of failures, setups, and all other detractors). The Work in Process/Progress (WIP) refers
to the inventory (all the products) between the start and end points of a product routing, i.e. all
the parts that have started but not have completed their processing. The Cycle Time (CT) is
defined for a given routing and refers to the time a part needs from its release at the beginning
of the routing until completing the last step at the end of the routing. Another basic goal of
manufacturing is On-Time Delivery (OTD), that is meeting due dates that usually directly refer to
customer orders.

Leachman and Hodges (1996) discuss a list of important metrics of semiconductor manufacturing
performance with real-life data. They examine various measures for CT, OTD, yield and productivity.
Leachman (2002) summarizes findings from benchmarking 10 200 mm manufacturing facilities.
Montoya-Torres (2006) provides an overview on the most commonly used performance evaluation
metrics in the semiconductor industry, mentioning relevant scientific works. The ITRS (Cogez
et al., 2007) reports various benchmark values in semiconductor fabrication facilities, e.g. for CT
and utilization. Godinho Filho and Uzsoy (2011) discuss dependencies among several KPIs.

lhttp://public.itrs.net/

http://public.itrs.net/

1 INTRODUCTION

Factory Operations (FO) As stated before, FO are likely to be major drivers to realize the
necessary cost reductions (Monch et al., 2011a). The primary goals of FO as a main pillar in
manufacturing management are: a) minimal WIP, b) short CTs, ¢) maximum utilization of resources
along with maximum THP, and d) high OTD (Hopp and Spearman, 2001); cf. (Cogez et al., 2007,
2011; Monch et al., 2011a). Especially meeting due dates for optimal customer satisfaction along
with short CTs have become one of the most decisive factors for the success of semiconductor
manufacturers on the global market (Mdnch et al., 2011a). The goal of production scheduling is to
strike a profitable balance between these conflicting objectives (Hopp and Spearman, 2001; Rose,
2006).

Operating Curve (Op curve) Little (1961) formulates a fundamental law for manufacturing
systems: the long-term average number of customers (L) in a stable system is equal to the long-term
average effective arrival rate (\) multiplied by the average time a customer spends in the system
(W); or expressed algebraically: L = A\WW. Given that the arrival rate is identical to the THP rate
over time in a balanced system, Little’s Law can also be stated as WIP = THP x C'T with respect
to the naming convention for manufacturing systems. Little’s Law implies that reducing CT and
reducing WIP is equivalent, provided that THP remains constant (Hopp and Spearman, 2001).

Aurand and Miller (1997) have developed the concept of the Operating Curve (Op curve) for
manufacturing systems, further clarifying the relationship between the normalized CT (x-factor)
and the machine utilization. Based on waiting line models from the Queuing Theory literature, the
Op curve methodology incorporates the effect of variability typical for manufacturing processes.
Hence, the Op curve provides a more clearer understanding of the relationship between the two
fundamental indicators of factory productivity, i.e. the product CT and the asset utilization. The
basic observation is that CT increases with an increasing utilization (respectively THP) and tends
to infinity as THP converges to CAPA.

Refer to Figure 1 visualizing the concept of Op curve at hand of an example.

4 «——Effective Capacity————»

£l

[

I.—.

&l

%_ Line
S L Performance
o Curve
&+

X L

SRR
lIIlILIIIIIIII:

Throughput

Figure 1: Line performance curve (Martin, 1998); cf. (Aurand and Miller, 1997)

Maximizing Throughput (THP) The capital cost of the production equipment runs in many
billions of dollars and is 75% of the total factory capital costs, which drives the need to maximize
the utilization of resources (Gupta et al., 2006; Pillai, 2006).

Maximizing the machine utilization means a higher return on investment due to higher a
utilization of that capital equipment. The level of utilizing a manufacturing system can run with
reasonable WIP and CT depends on the level of variability, knowing that 100% utilization is
impossible. The higher the variability the manufacturing system shows, the lower is the utilization
that has to be compensated (Hopp and Spearman, 2001).

Aurand and Miller (1997) coin the term Continuous Flow Manufacturing (CFM) covering the
Op curve methodology proposed to benchmark and predict a manufacturing performance. One of

1 INTRODUCTION

the principle methods used to improve manufacturing asset utilization is CEFM. The key focus of
CFM is to measure and manage the THP of machines by identifying and fixing problems in the
factory. As stated before, CT increases with an increasing utilization (THP) and tends to infinity
as THP converges to CAPA. This results in a trade-off between the costs of the reduced THP
required to achieve a given CT and the value of the increased productivity achieved by this CT
(Martin, 1998, 2000). The profitability in semiconductor manufacturing considerably depends on
the ability to interactively manage the trade-off between these two KPIs (Fayed and Dunnigan,
2007). Essentially, increasing THP leads to smaller costs per wafer and reducing CT results in
lower financial holding costs (Monch et al., 2011a); cf. (Pinedo, 2005, 2008).

Minimizing Cycle Time (CT) Based on the observation that CT is a much more sensitive
indicator of CAPA problems than THP, Martin (1998) suggests Short Cycle Time Manufacturing
(SCM) to focus on CT measurements rather than on THP measurements. The reason is that CT
increases rapidly as the THP approaches the effective CAPA, since CT and THP share a non-linear
relationship as described with the Op curve. The central goal of SCM is to promote productivity
improvements by reducing CAPA loss components, resulting in a shift of the Op curve that is
tantamount to simultaneously improved THP and CT; cf. (Martin, 2000).

Reducing CTs directly a) leads to better responsiveness to the customer, b) maintains manufac-
turing flexibility, ¢) improves quality, d) reduces reliance on product demand forecasts, and e) leads
to better product shipment forecasts (Hopp and Spearman, 2001). Beyond those positive effects
on customer serviceability, CT has a significant impact on productivity learning (Martin, 1998).
Usually it is said that the big companies eat the small, but today the fast run over the slow since
the most important performance difference concerns speed in many aspects. Leading companies
a) introduce new process technology earlier, b) qualify the technology faster, ¢) ramp up the yield
and the volume more quickly, d) manage shorter CTs, and e) shorten process times on equipment
with higher THP (Leachman, 2002). It is further taken into consideration that rapid CTs promote
yield improvements, especially during the early stages of product and process life cycles (Wein,
1992; Cunningham and Shanthikumar, 1996). Moore (1998) describes an observation that was
henceforward referred to as Moore’s law. It says that the number of transistors in semiconductor
devices doubles approximately every two years between subsequent technology nodes. Thus the
number of chip layers continues to increase simultaneously. In order to prevent CT stagnation or
even degradation as a result of an increasing number of chip layers, it is of particular importance to
reinforce efforts to find breakthrough approaches that lead to continuous reductions in CT (Moore,
1998; Pillai, 2006); cf. (Cogez et al., 2007, 2011).

1.1 Motivation

Operations in a wafer fabrication facility (waferfab) account for more than 75% of the total CT
and are also the largest component of costs within the value chain of semiconductor manufacturing
(Ménch et al., 2011a). Scheduling (with sequencing rules) has a significant impact on the average CT,
but has a considerable less impact on the factory performance compared to the effect of the chosen
input control policy that is supposed to properly regulate the wafer starts in order to limit the WIP
in the factory (Wein, 1988; Johri, 1993). The management of waferfabs has become increasingly
interested in using effective production Planning, Scheduling and Control (PSC) techniques as a
vehicle to achieve a competitive advantage (Gupta et al., 2006). Monch et al. (2003) state that
efficient PSC strategies currently create the best opportunity to improve operational processes in
order to realize the necessary cost reductions; cf. (Monch et al., 2011a). Major investments in PSC
processes are made consistently by all major semiconductor manufacturing enterprises, including
Intel and Samsung (Pinedo, 2008).

Modeling, Simulation and Optimization It is very likely that highly sophisticated computer-
based techniques in the area of modeling, simulation and optimization will play a key role in the
next-generation manufacturing systems. Underpinning this, six observations from the simulation
viewpoint (Allen, 2011) and from the optimization viewpoint (Hansen et al., 2009) are summarized,
which represent the main contributors to the continuous success of modeling, simulation and
optimization:

1 INTRODUCTION

a) continuing pressure for organizational efficiency, b) improved access to low-level data through
new sensors and databases, ¢) enhanced visualization capabilities (realistic simulations), d) rapid
improvement in computer performances, e) continuous research progress in theory and design of
algorithms, and f) better communication of new ideas and integration in widely used complex
software systems. These observations give strong indications that there is a pervasive need to use
modeling, simulation and optimization for decision support, in particular for PSC techniques in
current and future manufacturing systems (Fowler and Rose, 2004).

Dispatching versus Scheduling Dispatching systems set the de facto standard in scheduling
and control of waferfabs, whereby which the APF RTD? product is installed in most waferfabs
(Monch et al., 2011a); cf. (Leachman, 2002).

Scheduling deals with the allocation of resources to tasks over given time periods and its goal
is to optimize one or more objectives (Pinedo, 2005, 2008). See (T’kindt and Billaut, 2006) for
alternative definitions of the scheduling paradigm.

Fordyce et al. (2008) discuss the fundamentals of the paradigm shift from dispatching to
scheduling in an IBM 300 mm fab, reporting substantial improvements in performance and
significantly reduced overhead to adapt to changing circumstances. A dispatching system typically
employs a set of simple priority rules, which are continuously further developed to complex rule-
based decision systems that truly do a reasonable job. However, compared to scheduling systems,
dispatching systems based on rules fundamentally lack a robust ability to: a) look across time,
b) look across tools at a tool set, ¢) create an anticipated sequence of events at a tool set over some
time horizon, d) establish a formal metric, and e) search alternatives.

Another reason stems from a continuous decrease of manual handling activities. With the shift
from 200 mm to 300 mm wafer size, automated material handling generally replaces manual handling
because of the increase in size and weight of the wafers. This fact additionally intensifies the
need for scheduling approaches and drives the integration of scheduling solutions with automated
material handling efforts taking the growing importance of automation into account (Chien et al.,
2008; Monch et al., 2011a). Refer to Section 3.3 for a short introduction into automated material
handling in waferfabs.

In the past decades the standard wisdom was that the use of optimization in dispatch applications
is technically not feasible. This has begun to change driven by continuous improvements in
computing power and algorithms (Fordyce et al., 2008).

Technical Challenges Factors that generally complicate the scheduling process include: @) man-
ufacturing complexity, b) randomness and variability, ¢) long time horizons, d) data inconsistency
and availability, e) the lack of execution mechanisms, and f) the lack of a framework (Pinedo,
2008). From perspective of scheduling, a waferfab resembles a flexible job shop with various
specific characteristics that make the scheduling process inherently very complicated and of critical
importance (Pinedo, 2008). The operational control of semiconductor manufacturing facilities is a
challenge, as these systems are among the most complex manufacturing environments encountered
today (Gupta et al., 2006). Uzsoy et al. (1992b, 1994) give detailed descriptions of operational
processes in semiconductor manufacturing facilities, focusing on challenges related to PSC issues.
They highlight the following six factors that make PSC in the semiconductor industry particularly
difficult: a) complex product flows (recirculation), b) random yields, ¢) diverse equipment charac-
teristics, d) equipment downtime, e) production and development in shared facilities, and f) data
availability and maintenance; cf. (Wein, 1988; Johri, 1993; Gupta et al., 2006; Shanthikumar et al.,
2007) among others.

a) Complex product flows embody a high number of process steps, where a number of them
perform on the same production equipment and thus each lot may repeatedly visits a machine
multiple times. This kind of recirculation is also known as reentrant product flow. Even for a
fixed process route, the material flow is highly dynamic due to disturbing effects related to
scrap, on-hold, rework, and lot split/merge activities.

2http://www.appliedmaterials.com

http://www.appliedmaterials.com

1 INTRODUCTION

b) Random (wafer) yields are subject to uncertain process yields that vary due to environmental
conditions, i.e. problems with production equipment or material. Yield problems require a
large amount of engineering hold time on both lots and equipment as part troubleshooting
activities.

¢) Diverse equipment characteristics are typically encountered in waferfabs. The characteristics
of the equipment vary widely, e.g. in nature of batch processing machines, sequence-dependent
setups, and the need for auxiliary resources.

d) Equipment downtimes state another critical issue since semiconductor manufacturing tech-
nology is extremely sophisticated. Semiconductor process equipment is often subject to
unpredictable failures and requires extensive preventive maintenance and calibration efforts in
order to maintain a certain level of process quality. Unpredictable equipment downtime is con-
sidered as the main contributor to uncertainty and variability in semiconductor manufacturing
operations.

e) Production and development in shared facilities mirror the problem of efficiently reconciling
production and engineering activities. Such facilities are also referred to as Research and
Development (R&D) waferfabs. Driven by the need to continuously develop new products
and processes, very often the same equipment is used for both production lots and engineering
lots.

/) Data availability and maintenance is connected with extremely time-consuming activities
tying considerable amounts of manpower. The sheer volume of data in a semiconductor
manufacturing facility requires highly skilled capabilities in data management.

Additional complexity arises with continuous product diversification. Waferfabs with a higher
product mix along with smaller lot sizes have become the norm, which makes the manufacturing
even more complex due to an increased number of coexisting process and product flows. These
so-called high-mix low-volume waferfabs find themselves confronted with profound impacts caused
by smaller lot sizes. For example, if the standard lot size of 25 wafers is reduced to a seven wafer
lot size across the entire fab, an 3.5x increase will occur in every lot-related activity in the factory.
High-mix low-volume waferfabs in particular create a critical need to better schedule the production
material in the factory in order to keep the fab running efficiently (Pillai, 2006). In (Cogez et al.,
2007) the ITRS explicitly mentions the need to reduce losses from the high-mix effect. Monch et al.
(2011a) also note that scheduling is more complex in high-mix fabs.

Local Scheduling To our best knowledge, holistic waferfab-wide scheduling systems are not in
use until today. The reason is that full-factory scheduling methods seem to be too computationally
costly in comparison to dispatching methods. However, the lasting increase in computer efficiency
drives full-waferfab scheduling methods more competitive. In a sense simulation-based scheduling is
an intermediate concept between dispatching and true scheduling. Such scheduling systems based
on detailed deterministic simulation models derive schedules from using dispatching rules, sometimes
accompanied with search-based heuristics (Monch et al., 2011a); cf. (Gupta and Sivakumar, 2002).
Refer to Section 4.6.3 for a short examination of simulation-based scheduling approaches.

Given the complexity and the size of waferfabs, it is common to differentiate between fab-wide
scheduling and detailed area scheduling (Chien et al., 2008). It is important to ensure consistency
between these two levels, respectively between global and local scheduling decisions (Bureau et al.,
2007). Scheduling a single machine group addressed to the single or parallel machine level has been
demonstrated in some successful implementations. Ménch et al. (2011a) mention some scheduling
approaches for specific work areas in semiconductor manufacturing, e.g. in the work areas related
to diffusion/oxidation, lithography, and dry etch processes.

Batch Processing (BP) In today’s leading waferfabs, most process and metrology equipment
has become Single-Wafer Processing (SWP) tool configurations, but diffusion and oxidation as
well as wet cleaning and some implantation operations are still subject to Batch Processing
(BP) to a large extend. Such BP operations are typically performed in Conventional Furnace

1 INTRODUCTION

Processors (CFPs). Refer to Section 3.2 for descriptions of common equipment types and Section 4.7
for equipment modeling approaches. Wafer fabrication involves numerous BP operations that
considerably determine the system performance in terms of THP, WIP and CT (Fowler et al.,
2002).

Historically, BP gained a significant output and cost efficiencies, but at the expense of long CTs.
Since SWP enables a higher operating efficiency for small-lot sizes in high-mix low-volume waferfabs,
there is a strong indication that BP will start to converge to SWP or Mini-Batch Processing (MBP)
in the future fab (Pillai, 2006); cf. (Schmidt et al., 2006; Stubbe, 2010).

The costs of equipment in a new wafer fab is over 75% of the total factory capital costs (Gupta
et al., 2006) and diffusion/oxidation processes are considered as the second costly process type,
following the lithography process in the first place (Richards, 2013). A typical waferfab contains
more than 70 different types of processing tools and the cost for a single machine can range between
$50,000 to $10,000,000 (Kurz and Mason, 2008)

Depending on the product, the total number of BP steps in the process flow ranges from 50-100
steps (Pillai, 2006) and accounts for over 30% of the overall processing time (Sha et al., 2004, 2007).
Compared to other process types, diffusion/oxidation operations at Batch Processing Machines
(BPMs) come with long processing time requirements of about 10 hours or more (Johri, 1993; Mehta
and Uzsoy, 1998; Mathirajan and Sivakumar, 2006b). For these reasons, the effective scheduling
of diffusion/oxidation operations via BPMs is of particular importance for managing waferfab
productivity (Mehta and Uzsoy, 1998).

1.2 Problem Description

A scheduling problem is basically a Combinatorial Optimization Problem (COP) with sequencing
and/or partitioning decisions. The task is to find a feasible and optimal schedule for a number of
jobs in a given machine environment. The resulting schedule is required to be feasible, i.e. the
set of given constraints is satisfied without any exception so that the schedule is immediately
executable on the shop floor. In contrast to the indispensable requirement of feasibility, optimality
of a schedule is not necessarily required. However, the scheduling method always seeks for the
optimal solution. The schedule will be regarded as optimal if no other feasible schedule with a
better objective value exists.

Albers and Brucker (1993) define batching problems as combinations of sequencing and parti-
tioning problems. The aspect of partitioning refers to the task of finding a partition of jobs into
batches. The sequencing problem is given by the task to find an order of batches with an optimized
objective value.

This work focuses on scheduling BP operations in the diffusion/oxidation area. Diffusion and
oxidation operations in the waferfab frontend constitute typical scheduling problems with BPMs.
Despite of the fact that from a technological point of view diffusion and oxidation do not belong to
the same process group, since oxidation is a film formation process (see Section 3.1.1) and diffusion
belongs to impurity doping processes (see Section 3.1.4), both are thermal processes typically
performed by BPMs in the same area (even by the same machines). The wafers of usually six to
twelve lots jointly undergo a diffusion/oxidation process in a cylindrical reactor (CFP). Among
other constraints, the diffusion/oxidation process performed on BPMs is typically characterized by
incompatible job families, i.e. jobs that belong to different families cannot be processed together
(Chandru et al., 1993b; Uzsoy, 1995; Mehta and Uzsoy, 1998; Mathirajan and Sivakumar, 2006b).

A large quantity of variants of this particular type of a BPM scheduling problem is studied in
literature. These variants usually define a simplified optimization model designed to mirror the
decision problem that appears on the shop-floor under real-world conditions. These batch scheduling
models enable researchers and practitioners to study the focused batch scheduling problem with
respect to a defined set of circumstances, i.e. in different machine environments, under varying sets
of constraints, and for several objective functions.

Graham et al. (1979) introduce the o | 5 | y-notation to classify deterministic scheduling
problems by describing the specific characteristics of the scheduling problem in three fields: a) the
machine environment (a-field), b) the constraints of the problem (S-field), and ¢) the optimality
criterion (q-field). Usually, the number of jobs is denoted by n, the number of machines by m, the
subscript j refers to a job and the subscript ¢ refers to a machine (Graham et al., 1979); cf. (Leung,

1 INTRODUCTION

2004; Pinedo, 2005, 2008; T’kindt and Billaut, 2006). The «
rest of this work.

ﬁ

~-notation is used throughout the

1.2.1 Job Properties

With a scheduling problem, the given task is to find a schedule for a number of jobs in a given
machine environment. A single job generally refers to a certain lot with some specific properties.
Since this work is focused on parallel machine environments, a single job thereby refers to a single
operation related to the lot that needs to process its next operation step according to its operation
sequence on one of the parallel machines. Depending on the structure of the underlying scheduling
model, a job may be characterized by a set of mandatory and optional parameters: a) a processing
time (time span/continuous), b) a weight (continuous), ¢) a due date (date/time), d) a job size
(integer), e) a release date (date/time), and f) a deadline (date/time); cf. (Leung, 2004; Pinedo,
2005, 2008; T’kindt and Billaut, 2006).

An information regarding the processing time of a job is generally mandatory, whereas the
weight, due date, job size, release date, and the deadline are considered as optional depending on
the problem structure. A note on processing times in the « | 5 | v-notation is given only in the case
of additional restrictions, e.g. the processing time is identical. A notion of non-identical job sizes,
release dates and deadlines needs to be explicitly denoted in the §-field if existent. In contrast, due
dates and weights are usually not specied in this eld only in the case of additional restrictions.
Here, the objective function provides information about whether due dates or/and weights need to
be considered.

Section 8.1.3 discusses experiments that investigate the effect of the number of jobs in a
scheduling scenario.

Processing Time Generally, the processing time p;; represents the processing time of job j on
machine ¢; cf. (Leung, 2004; Pinedo, 2005, 2008; T’kindt and Billaut, 2006).

The diffusion/oxidation process is characterized by incompatible job families, where the process
time of a batch is given by the job family, i.e. the process recipe on the machine. More specifically,
a family of jobs is assigned to a process recipe on a machine and the process time of a batch is
given by the running time of the related process recipe on that machine. Consequently all jobs of
the same family have identical processing times on a particular machine, but family processing
times may differ between machines due to different process recipes specifically designed for a
particular machine; cf. (Chandru et al., 1993b; Uzsoy, 1995; Mehta and Uzsoy, 1998; Mathirajan
and Sivakumar, 2006b). A note on processing times in the « | 5 | y-notation is given only in the
case of additional restrictions, e.g. when the processing time is identical.

The processing time for a typical diffusion/oxidation process performed in a CFP takes four to
eight hours, but can also take more than ten hours; cf. (Johri, 1993; Mathirajan and Sivakumar,
2006b).

Loading and unloading a CFP with six to twelve lots takes a considerable amount of time,
roughly 30 minutes depending on the machine and the handling system. The time spent for loading
and unloading obviously depends on the number of jobs, but may be sufficiently considered as a
constant time accruing between processing two consecutive batches on a machine. From perspective
of modeling and scheduling load and unload times may be included in the processing time. A
typical CFP is equipped with a single reactor and thus is not capable to run a process during
(un)loading the machine; cf. (Yugma et al., 2008; Klemmt et al., 2011).

But there exist variants of CFPs with two or three reactor tubes. This type of CFP runs more
than one process simultaneously and thus offers to load and/or unload the machine while it is
processing; cf. (Johri, 1993).

Section 8.1.5 discusses experiments that investigate the effect of different distributions of
processing times in a scheduling scenario.

Weight The weight w; of job j is a priority factor reflecting the importance of the job in relation
to the other jobs in the system; cf. (Leung, 2004; Pinedo, 2005, 2008; T’kindt and Billaut, 2006).
Lots with higher priorities, sometimes called rocket lots or hot lots, usually refer to urgent customer
orders or important engineering activities. The existence of weights is not explicitly specified in

1 INTRODUCTION

the [-field, but the objective function provides information about whether weights need to be
considered.

Section 8.1.10 discusses experiments that investigate the effect of different numbers of priority
classes and weighting schemes in a scheduling scenario.

Due Date The due date d; of job j represents the date the job is expected or planned to complete
its process, e.g. the shipment date committed to the customer; cf. (Leung, 2004; Pinedo, 2005, 2008;
T’kindt and Billaut, 2006). It is common practice in waferfabs to set Operation Due Dates (ODDs)
for a lot once it enters the manufacturing system; cf. (Rose, 2002, 2003b,a). An ODD refers to a
precalculated due date assigned to each operation of a lot according to a product-specific process
sequence. Similar to job weights, the existence of due dates is not explicitly specified in the g-field,
but the objective function provides information about whether due dates need to be considered.

Section 8.1.9 discusses experiments that investigate the effect of different initial due date settings
in a scheduling scenario.

Job Size The standard lot size of 25 wafers is given by the maximum number of wafers the
carrier can hold. In most cases, a lot is filled to the maximum and carries 25 wafers. In fact, the
number of wafers in the lots differ due to a small-lot manufacturing policy or caused by accidental
effects that have lead to a removal of one or more wafers. The number of wafers, respectively the
job size is usually denoted with s;. The existence of non-identical job sizes needs to be explicitly
noted in the g-field. In this case, the batch scheduling problem is additionally constrained with
non-identical job sizes. If this note is not existent in the g-field, all jobs will be assumed to have
the identical size.

Section 8.1.8 discusses experiments that investigate the effect of different dedication schemes
with varying density factors in a scheduling scenario.

Release Date The release date r; of job j is the time the job arrives at the system, also referred
to as the ready time or arrival time. A job j can start its processing earliest at r;. If this symbol
is not present in §-field, then the processing of job j can start at any time, i.e. all the jobs are
available at time zero; cf. (Leung, 2004; Pinedo, 2005, 2008; T’kindt and Billaut, 2006).

Section 8.2.2 and Section 8.2.3 discuss experiments that investigate the effect of predicted job
arrivals in a scheduling scenario.

Deadline The deadline d_j of job j represents the latest time at which job j must be completed;
cf. (Leung, 2004; Pinedo, 2005, 2008; T’kindt and Billaut, 2006). The existence of deadlines needs
to be explicitly mentioned in the g-field. If the symbol d} is present, then the jobs will be subject
to deadline constraints. Deadlines are also referred to as maximum time lags, time boundaries, or
time constraints (Yugma et al., 2008; Klemmt et al., 2011; Monch et al., 2011a).

Completion Date The completion date refers to the time when the job finishes its processing
on the machine. With respect to a schedule, the completion date of job j is usually denoted with
Cj. The objective to be minimized is always a function of the completion times of the jobs; cf.
(Leung, 2004; Pinedo, 2005, 2008; T’kindt and Billaut, 2006).

1.2.2 Machine Environment

The a-field refers to the machine environment that basically defines the manufacturing system
underlying the scheduling problem. The simplest case refers to a manufacturing system with a
single machine only. The notion 1|- | - refers to a single machine scheduling problem, whereby the
symbol - stands for an unspecified field. Since manufacturing systems rarely consist of a single
machine, there exists a set of templates for machine environments represented in the a-field, e.g.
variants of open shops, job shops, flow shops, and parallel machines; cf. (Leung, 2004; Pinedo,
2005, 2008; T’kindt and Billaut, 2006).

A waferfab is typically organized in a number of work areas, given that each work area covers
a set of similar machines. In this context, the term similar roughly refers to the architecture of

1 INTRODUCTION

the machines as well as to the type of processes they provide. There exists a strong relationship
between the machine type and the process type since a specific process is often performed by a
specific type of machine (see Table 20).

For the entire machine pool in the fab, there exists a number of subsets of machines so that
each subset provides a disjunctive set of processes, also referred to as Closed Machine Sets (CMSs)
or work centers. Based on the shop floor layout, the machines of a single work center are often
located in near proximity, but may be also locally distributed on the shop floor. Section 3.4 briefly
examines shop floor layouts. For a typical waferfab such a CMS roughly counts up to several
dozens of machines that form a manufacturing entity from the viewpoint of production logistics. In
most cases a lot receives the process of succeeding operations in different work centers; cf. (Monch
et al., 2011a).

Section 8.1.2 discusses experiments that investigate the effect of number of machines in a
scheduling scenario.

Parallel Machine Environments Most definitions of work centers in waferfabs represent
typical parallel machine scheduling problems, which are suitable to be separately considered and
solved as an independent system. In the basic parallel machine scheduling model, a job proceeds
four basic activities: a) entering the system, b) waiting for processing (queuing), ¢) performing the
process on a machine, and d) leaving the system.

The concept of parallel machines describes a manufacturing system consisting of a number
of machines in parallel where each job in the case of machine eligibility restrictions requires a
single operation on any of the parallel machines, or on a subset of them. Among parallel machine
scheduling problems, scheduling literature commonly differentiates between three types of parallel
machines: a) identical machines (Pm), b) uniform machines (@Qm), and c¢) unrelated machines
(Rm). The parallel machine environments Pm, @Qm, and Rm differ in their processing speed
concepts. Identical machines (Pm) have the same speed and a job needs the time p; on every
machine. Uniform machines (Qm) have different speeds s; and a job j needs ';—’ time on machine 3.
Unrelated machines (Rm) can process different jobs at a different speed, i.e. machine i can process
job j at speed s;; and a job j spends % time on machine i for processing; cf. (Leung, 2004; Pinedo,

Si

2005, 2008; T’kindt and Billaut, 2006).

Diffusion/Oxidation Area Despite of the fact that the machines of a single work center perform
identical or at least similar processes, the machines may belong to different tool types and thus
show different characteristics. It is even be conceivable that a diffusion/oxidation work center has
a mixed structure in a sense that fundamentally different machines form the CMS, performing both
SWP and BP.

In this work, it is assumed that a diffusion/oxidation work center under study exclusively consists
of BPMs, i.e. CFPs. However, the machines may differ in their dedicated processes, processing
times, and batch sizes. The typical diffusion/oxidation process in a furnace is characterized by
incompatible job families, where a family of jobs is assigned to a process recipe on a machine and
the process time of a batch is given by the running time of the related process recipe on that
machine.

Since the family processing times may differ between machines due to different process recipes
specifically designed for a particular machine, the corresponding scheduling problem embodies
unrelated machines (Rm) and can be denoted with Rm | - | -.

This work is dedicated to the scheduling problem with BPMs in the diffusion/oxidation area;
The implemented framework as well as the documented experiments exclusively deal with a parallel
unrelated BPMs environment. However, this work gives an extensive review of BPM scheduling
problems for single and parallel machine environments under varying constraints in Section 2.

1.2.3 Constraint Environment

The S-field further refines the scheduling problem by defining a set of constraints to be considered;
cf. (Leung, 2004; Pinedo, 2005, 2008; T’kindt and Billaut, 2006). It may contain multiple entries
or no entry at all.

1 INTRODUCTION

Pinedo (2005, 2008) distinguishes between hard and soft constraints. A hard constraint has to
be satisfied at all costs. A soft constraint basically refers to a preference. If any of the given hard
constraints is violated, the schedule will no longer be feasible and therefore not executable on the
shop floor. In this context, soft constraints basically refer to a kind of an objective function that
incorporates penalty costs in the case of violated soft constraints.

Generally, a scheduling problem is characterized by an arbitrary set of constraints depending
on the structure of the underlying model. The typical BPM scheduling problem in waferfabs is
bounded in a sense that the maximum batch size is limited by the maximum capacity of the BPM.
The typical (bounded) BPM scheduling problem in the diffusion/oxidation area is further subject
to a) non-identical job sizes, b) incompatible families, c) release dates, and d) machine eligibility
constraints. This work studies numerous variants of BPM scheduling models under varying sets
of these constraints. Moreover, the studied problem is further known to typically be subject to
deadlines and machine unavailability constraints, also referred to as machine breakdowns. However,
this work does not explicitly study the effects of breakdowns or deadlines. With the exception of
those mentioned constraints that typically appear in BPM models for diffusion/oxidation processes,
this work omits a) precedence constraints, b) preemptions, c¢) sequence dependent setup times,
d) recirculation, e) job splitting, and f) rejections among other constraints, which are not typical for
the focused problem, but are reported to be present in other BPM models (compare the literature
review in Section 2).

Parallel Batching (p-batch) The scheduling problem present at diffusion/oxidation furnaces is
obviously a typical parallel batch scheduling problem since the wafers of batched jobs simultaneously
undergo a thermal process inside the furnace reactor. Consequently the jobs in a batch have the
identical starting, processing, and completion time.

Brucker (2007) defines a parallel batch as a grouped set of jobs jointly processed on the same
machine and introduces the abbreviation p — batch that emerged to the widely accepted notion
for parallel batching problems in scheduling literature. Thus, the notion p — batch in the S-field
further refines the machine environment in a sense that parallel BP is allowed; cf. (Leung, 2004;
Pinedo, 2005, 2008; T’kindt and Billaut, 2006). The literature review in Section 2 exclusively covers
(bounded) p — batch problems.

Batch Size Constraints (b<n) Generally it is distinguished between bounded and unbounded
p — batch problems. The (maximum) size of a batch is commonly denoted with the parameter
b, whereby the bounded case b < n refers to those p — batch problems in which the batch size is
limited by the machine capacity; cf. (Leung, 2004; Pinedo, 2005, 2008; T’kindt and Billaut, 2006).

With respect to the focused p — batch problem in the diffusion/oxidation work area, it is required
to consider two types of batch size limits related to the machine capacity: the number of jobs/lots
and the number of wafers. Refer to Section 4.7.3 that introduces a general modeling concept for
waferfab production equipment; cf. (Kohn et al., 2010). On one hand, there exists a constraint on
the maximum number of lots in a batch; the maximum batch size in terms of jobs/lots is usually
limited by the number of load ports provided by the machine. On the other hand, the maximum
number of wafers in a batch is limited by the number of internal wafer slots offered by the furnace
reactor. A typical vertical batch furnace in a 200 mm waferfab with a standard lot size of 25 wafers
is equipped with eight load ports and provides space for up to 200 wafers. The maximum batch
sizes, both the wafer capacity limit and the maximum number of jobs, may differ between machines
due to different machine architectures and even between job families due to different process recipe
specifications. Clearly, neither of both limits is allowed to be exceeded by any batch; cf. (Yugma
et al., 2008; Klemmt et al., 2011).

In the majority of research focused on p — batch problems in the diffusion/oxidation area of
waferfab frontends, the maximum batch size b simply refers to the maximal number of jobs/lots
allowed for grouping for a batch. It is assumed that the job sizes are equal, i.e. the number of wafers
is identical among all the lots. The maximum batch size b in terms of jobs implicitly represents
the limit for the wafer capacity of the furnace reactor. More precisely, the maximum number of
jobs b is the ratio of the maximum wafer capacity and the standard lot size and b is assumed to be
equal to the number of load ports provided by the machine. Using the « | 5 | v-notation the basic
bounded p — batch problem can be described with - | p — batch,b < n | -.

10

1 INTRODUCTION

But most practitioners probably would consider ignoring the existence of non-identical job sizes
as an insufficient simplification. For some equipment types, the maximum job limit is even greater
than the number of load ports. This kind of machines offer a special reloading operating mode in
which it is possible to load the machine with a number of additional lots after transferring the
wafers of the lots on the load ports into the reactor. In this case, an empty carrier (its wafers
are already transferred into the reactor) on a load port is replaced by a filled one, which is then
unloaded to the reactor before the process begins. The motivation behind this special loading policy
is to improve managing the utilization of those BPMs in the presence of a non-negligible amount of
partially filled lots in the system. The importance of differentiating between both types of batch
size limits in the design of p — batch scheduling models for the diffusion/oxidation area is amplified
by the current trend to manufacture small lot sizes. The literature review in Section 2 exclusively
covers bounded p — batch problems. Section 8.1.6 discusses experiments that investigate the effect
of different batch sizes in a scheduling scenario.

Non-Identical Job Sizes (B, s;) As stated before, the number of wafers in the lots may differ.
In this case, the scheduling problem is additionally constrained with non-identical job sizes, which
imply that the sum of the wafers in a batch is limited by the maximum wafer capacity of the
machine. In this context, the maximum wafer capacity of the machine is denoted with B and the
size of a job with s;, whereupon both B and s; need to be mentioned in the S-field.

Originally, the typical p — batch problem characterized by non-identical job sizes stems from
heat-treatment operations present in waferfab backends, also referred to as burn-in operations.
Depending on the product type, the jobs may require a different number of boards that define
the size of the job. The capacity of the oven is given by the maximum number of boards it can
accommodate. This kind of scheduling problem is typically described with - | p — batch, B, s; | -; cf.
(Kempf et al., 1998; Mathirajan and Sivakumar, 2006a).

The notion - | p — batch, B, s; | - applied for the focused diffusion/oxidation model would imply
that there effectively exists no load port limit, i.e. the machine provides a reloading operating
mode that allows the attached loading system to continue reloading additional lots until the wafer
capacity of the machine is reached.

To our best knowledge, the reloading operating mode is limited to a small number of additional
lots. Hence, the notion - | p — batch,b < n,B,s; | - is regarded as a proper description for the
diffusion/oxidation model with respect to machine capacity constraints. Following this notation,
b denotes the maximum number of jobs in a batch, B denotes the maximum number of wafers
in batch, and s; implies that the jobs are subject to non-identical sizes. The literature review in
Section 2 covers p — batch problems with and without non-identical job sizes. Section 8.1.8 discusses
experiments that investigate the effect of different dedication schemes with varying density factors
in a scheduling scenario.

Incompatible Job Families (fmls) The p — batch scheduling problem present in the oxida-
tion/diffusion area typically deals with incompatible job families (fmls). A job j belongs to a
certain job family and jobs from different families cannot be batched together. Jobs from different
families are incompatible since a job family relates to a certain process specification that defines
temperature, gas mixture and running time among other parameters in order to achieve a well-
defined chemical reaction. Moreover, a family of jobs is assigned to a process recipe on a machine
and the process time of a batch is given by the running time of the related process recipe on that
machine. Consequently all jobs of the same family have identical processing times on a particular
machine, whereby family processing times may differ between machines due to different process
recipes specifically designed for a particular machine; cf. (Chandru et al., 1993b; Uzsoy, 1995;
Ghosh and Gupta, 1997; Mehta and Uzsoy, 1998; Leung, 2004; Mathirajan and Sivakumar, 2006b;
Pinedo, 2008).

The notion fmls in the S-field refers to the constraint of incompatible job families. If the notion
fmls is missing in the beta-field, then any pair of jobs will be compatible and can be batched
together. The basic bounded p — batch scheduling model with incompatible families can be described
with - | p — batch,b < n, fmls | -

The literature review in Section 2 covers p — batch problems with and without incompatible
families. A special form of batch incompatibility constraints between jobs is given by graph

11

1 INTRODUCTION

compatibilities (Boudhar, 2003; Finke et al., 2008). The Section 8.1.4 discusses experiments that
investigate the effect of different numbers of job families in a scheduling scenario.

Machine Eligibility Restrictions (M;) Machine eligibility restrictions (M;) further refine the
machine environment with process dedications. A job j cannot be processed on any machine, but
only on any one belonging to a specific subset M;. The set M; denotes the set of machines that can
process job j. If the 8-field does not contain Mj, job j can be processed on any one of the available
machines as defined in the default model of scheduling problems; cf. (Leung, 2004; Pinedo, 2005,
2008; T’kindt and Billaut, 2006).

In the context of the focused batch scheduling problem present in the diffusion/oxidation area,
machine eligibility restrictions manifest themselves in a mapping between job families and machines,
i.e. each job family is dedicated to one or more machines. More specifically, each job family is
linked to a process recipe that is qualified on a machine. Vice versa, an equipment is qualified
for a set of process recipes and thus offers processing for the corresponding set of job families.
Considering the fact that each job belongs to a job family, there exists a subset M; of machines
that is capable of processing each job; cf. (Yugma et al., 2008; Klemmt et al., 2008, 2011).

Qualifying a process on a machine means to ensure that the desired process reliably performs
within a predened range of process parameters. By doing several tests it is possible to find out
whether the thickness of an oxide lm lies in-between a certain range after completing the process
for example. Qualifying a process on a machine can be very time- and resource-consuming, but
increases the flexibility of a work center and has a positive influence on the Op curve; cf. (Fayed and
Dunnigan, 2007; Johnzén et al., 2007, 2008, 2011). The terms equipment qualification, equipment
dedication and process dedication are often used synonymously in this context.

As mentioned before, the goal is to schedule a set of parallel machines, which typically form a
CMS qualified for a set of processes that is disjunctive to other process subsets from other CMSs;
cf. (Johri, 1993). The particular mapping between machines and qualified processes within a CMS
can be formulated as a matrix of machines and qualified processes on these machines, also referred
to as dedication matrix. The dedication matrix is characterized by a density factor. A dedication
density factor that equals one would describe homogenous CMS in which every job can be processed
on any machine, i.e. no restrictions exist. A factor below one would represent an inhomogeneous
CMS implying that a certain number of machines does not provide all the entire set of processes
available. Likewise, this work correspondingly deals with a matrix of machines and job families in
the scheduling model described.

A typical bounded p — batch scheduling problem with a machine eligibility restriction can be
suitably described with the notion - | p — batch,b < n,M; | -. A mapping M, between jobs and
machines can be easily deduced from the dedication matrix between job families and machines and
from the membership of jobs to job families.

Beyond process dedications, the set of allowed machines M; may be further constrained for a
job due to several reasons, e.g. strict policies in quality management or material flow control. For
example, additional constraints, set permanently or temporarily, may purposefully prohibit the
processing of a job only at a defined operation on a certain machine, or based on other combinations
of job attributes. Especially R&D waferfabs deal with several systems on several system layers in
order to allow or prohibit distinct process operations. In contrast, a job may be explicitly dedicated
to be processed on a single predefined machine at a certain operation, e.g. as a result of Advanced
Process Control (APC). With respect to diffusion/oxidation furnaces it is required to regularly
monitor the quality of the process by adding a number of non-productive wafers to a regular
product-batch. In this special case a job with control wafers is created and dedicated to a distinct
process on a machine.

However, finally each job is allowed to be processed on a set of machines M;. Several authors
include machine eligibility constraints in their parallel batching models; cf. (Klemmt et al., 2008,
2011; Li and Qiao, 2008; Yugma et al., 2008; Li et al., 2009b).

Section 8.1.7 discusses experiments that investigate the effect different of dedication schemes
with varying density factors in a scheduling scenario.

Release Dates (7;) The release date r; of job j describes the time when the job j enters the
system, also referred to as ready time or arrival time. A job j can start its processing earliest at r;;

12

1 INTRODUCTION

cf. (Leung, 2004; Pinedo, 2005, 2008; T’kindt and Billaut, 2006). If this symbol is not present in
[-field, then the processing of job j can start at any time, i.e. all the jobs will be available at time
zero. The notion - | p — batch,b < n,r; | - refers to a bounded scheduling problem with dynamic
arrivals.

The way researchers examine a deterministic parallel machine scheduling problems with arrivals
is in a sense detached from reality. First the focused parallel machine environment is simplified
to an independent manufacturing system though it is usually embedded into to a larger complex
manufacturing system, e.g. a work center in the diffusion/oxidation area is part of a waferfab.
Second, it is simply assumed that the arrival date is known, not considering that reliably predicting
arrival dates in a waferfab is a complex task. Refer to Section 4.6.1 for further information about
prediction and forecasting methods.

The existence of release dates in a scheduling model implicitly presupposes that a suitable
system for job arrival date predictions exists (Yugma et al., 2008). The capability of predicting job
arrivals first includes a suitable equipment model used to predict completion dates of currently
running jobs. Creating and maintaining equipment models that allow accurate completion date
predictions in short time is itself a tough task. This task will become even more difficult if it is
intended to predict completion dates of queued jobs at the preceding operation steps in addition
to currently running jobs. At this point short-term simulation models of high quality need to be
deployed.

After a job has completed its process at the preceding operation, and after unloading from
the machine, usually an Automated Material Handling System (AMHS) transfers the lot to its
destination, e.g. a material storage equipment located in a work area of the succeeding operation.
Once the predicted completion date at the previous operation is known, the arrival date to predict
additionally needs to incorporate transport and handling times that accrue due to AMHS activities.

The literature review in Section 2 covers p — batch problems with and without release dates.
Section 8.2.2 and Section 8.2.3 discuss experiments that investigate the effect of predicted job
arrivals in a scheduling scenario.

Deadlines (Jj) The deadline Jj of job j represents the latest time at which job j must be
completed. The existence of deadlines needs to be explicitly mentioned in the S-field; cf. (Leung,
2004; Pinedo, 2005, 2008; T’kindt and Billaut, 2006). The notion - | p — batch,b < n,d; | - refers to
a bounded scheduling problem with deadlines. Deadlines are also referred to as maximum time
lags, time boundaries, or time constraints; cf. (Yugma et al., 2008; Klemmt et al., 2011; Ménch
et al., 2011a).

Such time bounds typically occur between the wet etch/clean and furnace operations, but also
appear between other operations. The motivation behind is driven by quality concerns; the idea is
to prevent unintentional oxidation and contamination effects that might occur during waiting for
the next process. In the case of violated time bounds, the corresponding lot might be scrapped, but
at least needs an additional inspection and/or some sort of rework, e.g. has to visit a preceding
cleaning step again; cf. (Johri, 1993; Scholl and Domaschke, 1999, 2000; Klemmt and Ménch, 2012).
Several authors include deadlines in their parallel batching models; cf. (Ikura and Gimple, 1986;
Monch et al., 2006a; Klemmt et al., 2008; Yugma et al., 2008; Bar-Noy et al., 2009; Klemmt et al.,
2011; Koehler and Khuller, 2013).

Machine Breakdowns (brkdwn) In the case of machine breakdowns (brkdwn) we face a
situation in which a number of machines may not be continuously available during the focused
time period. The machine is not available for regular processing due to scheduled or unscheduled
maintenance, or it is hold busy with engineering activities. The existence of periods in time where
machines are not available for processing is also referred to as machine availability constraints;
cf. (Leung, 2004; Pinedo, 2005, 2008; T’kindt and Billaut, 2006). The notion - | p — batch,b <
n, brkdwn | - refers to a bounded scheduling problem with breakdowns.

In a deterministic scheduling model the periods of unavailability are known in advance. Since
preemption is not allowed, a process batch is required to be completed before a period of unavail-
ability begins. Clearly, a process batch starts earliest after a breakdown period ends. Yugma
et al. (2008) and Klemmt et al. (2011) report the inclusion of machine breakdowns in their parallel
batching models.

13

1 INTRODUCTION

1.2.4 Scheduling Objectives

The top priority of any manufacturing organization is to gain a high profitability. A high level
of profitability relies on a number of subordinated performance indicators (Hopp and Spearman,
2001). The most important are: a) throughput (THP), b) cycle time (CT), and ¢) on-time delivery
(OTD); cf. (Monch et al., 2011a).

In order to quantify these performance indicators, there exist numerous performance measures
that can serve as optimality criteria for scheduling problems in form of objective functions. The
~-field refers to the optimality criterion chosen for the scheduling problem at hand. In practice, the
optimality criterion given by an objective function is often a composite of several basic performance
measures. In this case, the scheduling problem becomes a multi-objective optimization problem.
However, the objective to be minimized is always a function of the completion times of the jobs;
cf. (Leung, 2004; Pinedo, 2005, 2008; T’kindt and Billaut, 2006). In the following important
performance measures for scheduling problems are introduced, in particular those that are of
interest for batch scheduling problems.

Section 8.1.11 and Section 8.1.12 discuss experiments that investigate the the effect of different
objective functions and their relationships in a scheduling scenario.

Throughput (THP) Maximizing THP is often of utmost importance in many manufacturing
facilities. The THP of an entire facility is limited by its bottleneck machines, i.e. those machines
in the facility that have the lowest CAPA. The objective Makespan (Ci,ax) is closely related to the
THP objective. Cpax is equivalent to the completion time of the last job that leaves the system,
defined as maxz(Ch,...,C,), where C; is the completion time of job j. Optimizing C,ax is of
particular importance when there is a finite number of jobs. Minimizing the C,, .« in a parallel
machine environment implies balancing the work load over the various machines, which also leads
to a higher THP rate when there is a constant flow of jobs over time. Since THP and the utilization
are strongly connected, a shorter C,,., in turn implies a higher utilization; cf. (Leung, 2004;
Pinedo, 2005, 2008; T’kindt and Billaut, 2006). Minimizing C,,.x results in larger values of THP
corresponding to a higher level of utilization, which in turn leads to smaller costs per wafer (Monch
et al., 2011a).

Another THP-related performance measure that characterizes BP performance is the batching
coefficient. For a particular machine over a given time horizon, the batching coefficient is the ratio
of the average number of jobs in a batch and its maximum batch size (Yugma et al., 2008).

Cycle Time (CT) Improving CT is supposed to come with various positive effects, e.g. improved
yield (Wein, 1992; Cunningham and Shanthikumar, 1996), productivity learning (Martin, 1998),
and customer serviceability (Hopp and Spearman, 2001). The CT refers to the time a job spends in
a system until its processing is completed. The terms completion time, flow time, throughput time,
and lead time altogether most often synonymously refer to the term CT that is preferably used in
this work. The completion date C; refers to the time when the job j finishes its processing on a
machine. With respect to a schedule, the completion date C; also refers to the (CT) of the job j.

There are two important objective measures: the Total Cycle Time (TCT) and the Total
Weighted Cycle Time (TWCT). The TCT is defined as the sum of the completion times of the
jobs, denoted by Z?Zl Cj. The TWCT represents the weighted counterpart of Z?:1 C}, defined as
the sum of weighted completion times of the jobs, denoted with Y7, w;C;. Minimizing Y77, C;
and/or 2?21 w;C; results in lower total holding or inventory costs incurred by the schedule; cf.
(Leung, 2004; Pinedo, 2005, 2008; T’kindt and Billaut, 2006).

Another objective is given by the normalized CT (x-factor), originally defined in (Aurand and
Miller, 1997). The x-factor is defined as the ratio of the completion time of a job and its processing
time on the machine. Since the completion time is composed of the waiting/queuing time and the
processing time, the x-factor also represents the ratio between the waiting time and the processing
time. Yugma et al. (2008) employ the x-factor as a vehicle to minimize the CT.

On-Time Delivery (OTD) There are several important objectives that are related to due dates
intended to gain a high level of OTD, which in turn increases customer satisfaction. Typical OTD

14

1 INTRODUCTION

performance measures are a) Maximum Lateness (Lax), b) Total Unit Penalties (TU), and ¢) Total
Tardiness (TT); cf. (Leung, 2004; Pinedo, 2005, 2008; T ’kindt and Billaut, 2006).

Linax is defined as max(L1,...,L;,) where the lateness of job j is then L; = C; — d;, given
that d; denotes the due date and C; the completion date of job j. Minimizing L.« is in a sense
equivalent to minimizing the worst performance of the schedule. TU refers to the total number of
tardy jobs is given by the sum of unit penalties incurred by the schedule, denoted with 2?21 U;.
The unit penalty U; of job j is defined as U; = 1 if C; > dj; otherwise U; = 0. The weighted
number of tardy jobs refers to the sum of Total Weighted Unit Penalties (TWU), denoted with
Z;’:l w;Uj, given that the different jobs carry different priority weights w;. This objective does
not focus on the question how tardy a job actually is, but on the question whether it is tardy or
not. However, minimizing Z?Zl U; may result in practically unacceptable schedules with some
jobs being very tardy. This concern is addressed with the due date related objective TT. The TT
is defined as the sum of all tardiness values (Z?Zl T;) where the tardiness T of job j is defined
as max(Cjd;,0), which is identical to T; = max(L;,0). The Total Weighted Tardiness (TWT)
(Z;;l w,;T;) represents the weighted counterpart of z;;l T;, given that the different jobs carry
different priority weights w;.

Refer to Figure 2 for a graphical explanation of the definitions of lateness and tardiness.

L;

T

/d —G

(a) The lateness Lj of job j

T

(b) The tardiness T} of job j

Figure 2: The lateness and the tardiness of a job (Pinedo, 2005, 2008)

1.3 Methodology

Dispatching systems set the de facto standard in scheduling and controlling waferfabs (Ménch
et al., 2011a); cf. (Leachman, 2002). In the past decades the standard wisdom was that the use of
optimization in dispatch applications is technically not feasible. This has begun to change, driven
by continuous improvements in computing power and algorithms. Especially the capability of
optimization makes scheduling systems superior to dispatching systems, respectively the ability to
search alternatives combined with a formal metric in terms of an objective function used to compare
alternative decisions. Today the real barrier is of cultural and not technical nature (Fordyce et al.,

15

1 INTRODUCTION

2008).

Pinedo (2004, 2005, 2008) first and foremost distinguishes between two types of scheduling
problems: deterministic scheduling and stochastic scheduling problems. Stochastic scheduling
usually deals with simple priority or dispatching rules providing immediate decisions in a real-time
control system. Deterministic scheduling emphasizes the aspect of optimization. Deterministic
scheduling models are used to evaluate the performance of optimization methods in solving scheduling
problems as a special form of COPs with the goal of minimizing or maximizing a given objective
function. Since deterministic scheduling problems belong to the class of COPs the same type
of solution methods come into operation. These methods are generally divided into exact and
approximate methods (compare Section 5).

Exact Methods The results from complexity theory enable us to distinguish between hard and
easy problems (see Section 5.2 for a detailed examination of the concept of NP-completeness). Most
scheduling problems belong to the class of NP-hard problems for which it is widely accepted that
no optimal method with polynomial run time exists. Since it is considered impossible to optimally
solve NP-hard scheduling problems of practical size in a reasonable time, research with practical
background focuses on approximate methods that can lead to feasible schedules with an acceptable
quality in considerable less time. The reason why problems are hard to solve can be found in their
complexity, their size, their specific structure, or a combination of these aspects; cf. (Talbi, 2009).

The most obvious idea to solve a COP is to just enumerate all feasible solutions. But due to
the complexity of most COPs, a simple complete enumeration will result in unacceptable high
computing times. The challenge is to develop efficient algorithms that perform better than a simple
enumeration (Lee, 2004).

The class of exact methods to solve COPs covers Mixed Integer Programming (MIP), Dynamic
Programming (DP), Constraint Programming (CP), and Branch and Bound (B&B). Commercial
software packages for mathematical programming (e.g. CPLEX?, Gurobi*, Xpress®) have seen
tremendous progress over the last decade in terms of capabilities for solving much larger problem
sizes (Méndez et al., 2006). However, for a considerable amount of optimization problems present
in academia and industry, it is intractable to obtain optimal solutions by the use of any exact
method in a reasonable time. The crucial point is that exact methods need large amounts of time
to optimally solve NP-hard problems of practical size. Consequently, the use of exact methods
becomes inapplicable in practice, where a responsible person has to make a decision as soon as
possible in order to achieve desirable results (Marti and Reinelt, 2011).

Many authors share the opinion that exact methods do not seem to be the method of choice
in real-world scheduling systems. Talbi (2009) notes that partial enumerative algorithms such
as B&B are limited to rather small instances and thus are not advisable to solve medium and
large instances. Potts and Strusevich (2009) notice a stagnation of research on B&B algorithms
(and other enumerative approaches), identifying the combinatorial growth of the solution space as
an obstacle to the exact solution of practical problems. Although Moénch et al. (2011a) consider
MIP and CP as important solution techniques, they argue that these techniques are assessed to be
too slow to be adopted in real-world implementations. Among others Dorigo and Stiitzle (2004),
propose approximate methods that trade optimality for efficiency, since the performance of exact
algorithms is not satisfactory and their applicability is often limited to rather small instances.

Approximate Methods In contrast to exact methods, approximate methods do not proof the
optimality of the obtained solutions; and by definition, this is what differentiates them from exact
methods. By not having the burden to proof optimality, approximate methods leave parts of the
state space unvisited and thus lead to near-optimal solutions in a reasonable time compared to
exact algorithms (Dorigo and Stiitzle, 2004; Talbi, 2009).

Especially for NP-hard problems, exact algorithms perform poor with respect to computing time.
Consequently, solving large instances with exact methods is practical impossible, i.e. would take
enormous amounts of time to obtain the optimal solution. Approximate methods trade optimality
for efficiency (Dorigo and Stiitzle, 2004); cf. (Talbi, 2009).

Shttp://www.ibm.com
4http://www.gurobi.com
Shttp://www.fico.com

16

http://www.ibm.com
http://www.gurobi.com
http://www.fico.com

1 INTRODUCTION

Approximate methods can be further divided into heuristics and approximation algorithms
(compare Section 5). A heuristic is any approach without a formal guarantee of performance.
Approximation algorithms guarantee that the obtained solution lies within a defined range of the
global optimum (Brucker, 2007; Talbi, 2009). An approximation algorithm for a certain problem
class guarantees that any obtained solution corresponds to an objective value for which a factor
defines the distance to the actual optimum (compare Section 6.4). Basically, Polynomial Time
Approximation Schemes (PTASs) and a Fully Polynomial Time Approximation Schemes (FPTASs)
form this group (Brucker, 2007; Chandru and Rao, 2010; Klein and Young, 2010).

Within the class of heuristics, it is basically distinguished between constructive heuristics and
search heuristics (Zapfel et al., 2010); cf. (Talbi, 2009). Construction algorithms describe an incre-
mental procedure: starting from an empty initial solution, construction algorithms iteratively add
solution components until a complete solution is obtained without any backtracking. Constructive
heuristics are usually problem-specific, non-iterative, and create one single solution by applying
a set of rules based on problem-specific knowledge. This is the underlying concept of a typical
dispatching system. Search heuristics follow a certain search scheme that repeatedly examines
many different solutions for a given problem in order to find better solutions (Zapfel et al., 2010);
cf. (Talbi, 2009).

Metaheuristics Search heuristics correspond to metaheuristics in a broader sense. Informally,
a metaheuristic states an algorithmic advancement of a simple heuristic, which is commonly
defined as a rule of thumb that leads to near-optimal solutions without complete knowledge of
the problem. Even though there is no universal definition for metaheuristics, it is widely accepted
that a metaheuristic is a general algorithmic framework that a) is generally problem-independent
and applicable to a wide set of different problems, b) describes an iterative upper-level strategy
that guides the operations of subordinate heuristics, ¢) combines different concepts for exploring
and exploiting the search space (diversification and intensification), often facilitated by the use of
randomness (Blum and Roli, 2003; Zépfel et al., 2010).

In contrast to exact methods, metaheuristics lead to acceptable solutions in a reasonable
time; solution quality and computing time is generally not exactly defined, e.g. acceptable and
reasonable (Talbi, 2009). Metaheuristics primarily justify their use with a well-balanced performance
characteristic that describes a favorable trade-off between solution quality and computing time.

Most authors consistently distinguish between two classes of metaheuristics: trajectory methods
based on a single solution and population-based methods (Blum and Roli, 2003); cf. (Talbi, 2009;
Luke, 2009; Zapfel et al., 2010; Marti and Reinelt, 2011; Baghel et al., 2012). Trajectory methods
(see Section 5.5) obtain improved solutions by repeatedly modifying an existing solution during the
search procedure, e.g. Local Search (LS) (Hill-Climbing), Simulated Annealing (SA), Threshold
Accepting (TA), Tabu Search (TS), Greedy Randomized Adaptive Search Procedure (GRASP),
Variable Neighborhood Search (VNS), Guided Local Search (GLS), and Iterated Local Search (ILS);
cf. (Blum and Roli, 2003; Talbi, 2009; Baghel et al., 2012; Boussaid et al., 2013). Population-
based methods (see Section 5.6), operating on a set of solutions, create improved solutions by
recombining existing solutions e.g. Evolutionary Algorithms (EAs) (Genetic Algorithms (GAs),
EAs, Evolutionary Programming (EP), Genetic Programming (GP)), Scatter Search (SS), Ant
Colony Optimization (ACO), Particle Swarm Optimization (PSO) and Artificial Immune System
(AIS); cf. (Blum and Roli, 2003; Talbi, 2009).

Beyond trajectory methods and population-based methods, research spends a considerable
effort in developing hybrid metaheuristics, which refer to the idea of combining metaheuristics
with metaheuristics or other techniques for optimization. Hybridization aims to exploit the
complementary character of different optimization strategies. In fact, combining an appropriate set
of complementary algorithmic concepts can be the key for the design of high-performing search
methods (Blum et al., 2011). Another research direction with the goal to improve search efficiency
deals with parallelization. The idea of parallelizing metaheuristics is driven by two forces: the
complexity of computational problems and the rapid development in the technology of distributed
computing systems. Here, parallelism can help to reduce the computation time and the increase
solution quality (Alba, 2005).

17

1 INTRODUCTION

Metaheuristics versus Mixed Integer Programming (MIP) Metaheuristics and LS meth-
ods in particular are often the method of choice for real-life scheduling problems with a variety
of complicating constraints, since these algorithms can obtain good quality solutions within a
reasonable time (Méndez et al., 2006; Potts and Strusevich, 2009).

Several authors document the superiority of metaheuristics compared to MIP approaches in
experimental studies, in particular for batch scheduling problems. Xu et al. (2012) show that
ACO is more robust and consistently outperforms MIP, especially for large job instances. Melouk
et al. (2004), Chang et al. (2004) and Damodaran et al. (2007) describe experiments in which SA
consistently outperforms MIP with respect to solution quality and run time. Xu and Bean (2007),
Damodaran et al. (2006) and Chou and Wang (2008) provide experimental results indicating that
solution schemes based on GAs result in better objective values in shorter run times, especially for
larger problems. The experiments in (Klemmt et al., 2009) turn out that VNS outperforms MIP
with respect to solution quality and time; They find out that VNS performs faster than MIP while
providing high quality solutions at the same time.

Klemmt et al. (2011) show that MIP approaches are basically suitable for optimizing small or
medium batch scheduling problems, but combined with decomposition methods. However, even the
finding of a feasible solution can be a problem for bigger problem instances (Klemmt et al., 2008).
The commercial solver CPLEX is most often used as state-of-the-art solver for MIP formulations.
In awareness of the observation that even state-of-the-art MIP solver can only handle relatively
small problems, Klemmt et al. (2009) propose decomposition approaches in order to reduce the
problem complexity. Although Monch et al. (2011a) consider MIP and CP as important solution
techniques, they argue that these techniques are assessed to be too slow to be adopted in real-world
implementations, compared to the vast academic literature about scheduling in semiconductor
manufacturing.

Variable Neighbourhood Search (VNS) From the No-Free-Lunch Theorems (NFLTSs) it
can be informally deduced that no metaheuristic performs better than another across all possible
problems (Wolpert and Macready, 1997). Ho and Pepyne (2001) point out that specializing search
algorithms to the landscape structure of the focused problem class is the only way one strategy
can outperform another (see Section 5.3). Thus, it can be said that the choice of a particular
metaheuristic is less important than its actual implementation.

Since performance is a priori no decisive criterion for choosing a metaheuristic method, the
aspect of simplicity becomes more important. Simpler algorithms are easier to implement, maintain,
adapt, explain and analyze. This statement in general holds for the development of software
systems, and in particular for the design of metaheuristic algorithms. Indeed, simplicity results in
lower susceptibility to errors (Silberholz and Golden, 2009); cf. (Talbi, 2009).

VNS was first mentioned in (Mladenovié¢ and Hansen, 1997) and then examined in different
variants in (Hansen and Mladenovié¢, 2001, 2003; Hansen et al., 2001, 2009). The basic idea is a
systematic change of the neighborhood during the search, typically established in two alternating
search phases, a descent search phase and a randomized perturbation phase. VNS is a relatively
new method among metaheuristics, but has attracted many researches to adopt it as solution
method for combinatorial optimization problems, e.g. for solving the Traveling Salesman Problem
(TSP) (Hu and Raidl, 2008; da Silva and Urrutia, 2010).

But in particular, VNS is used to solve scheduling problems. Implementations of VNS for batch
scheduling problems can be found in (Klemmt et al., 2009; Almeder and Monch, 2011; Kohn and
Rose, 2012; Cakici et al., 2013; Kohn and Rose, 2013; Kohn et al., 2013). Single machine scheduling
problems are solved by VNS in (Wang and Tang, 2009; Kirlik and Oguz, 2012). VNS for parallel
machine scheduling problems is proposed in (Anghinolfi and Paolucci, 2007; de Paula et al., 2007;
Driessel and Monch, 2009; Behnamian et al., 2009; Sevkli and Uysal, 2009; Driessel and Monch,
2011; Bilyk and Monch, 2012; Chen and Li Jun-qing, 2012). But also job shop problems are subject
to VNS approaches; cf. (Sevkli and Aydin, 2006; Pongchairrerks and Kachitvichyanukul, 2007;
Sevkli and Aydin, 2007; Aydin and Sevkli, 2008; Jie et al., 2008; Roshanaei et al., 2009; Adibi et al.,
2010; Jun-Qing et al., 2010; Yazdani et al., 2010).

18

1 INTRODUCTION

1.4 Goals and Structure of the Thesis

The main goal of this work is to implement a scheduling framework to be deployed as an operational
batch scheduling system in the diffusion and oxidation area of a waferfab frontend. The desired
scheduling framework additionally requires to offer the opportunity to deal with academic questions
beyond its intended use as a prototype in industry. Summarizing, the framework’s design needs
to enable two main purposes: a) operational scheduling on the shop floor (use as a prototype
to be deployed in the industry) and b) exhaustive studies in an experimental system (use as an
experimental system answering methodical questions).

On one hand the intention of the framework’s design is to provide a functioning prototype
that is suitable to run as a real-time scheduling system on the operational level. The goal is to
report valuable practical experiences from implementing a scheduling system into a real-world
industrial environment. On the other hand the framework needs to cover an experimental system
that offers the capability to properly investigate academic questions in the area of metaheuristic
batch scheduling. The goal here is to employ extensive experiments in order to closely examine a
particular metaheuristic (Variable Neighborhood Search) solving typical batch scheduling problems
in numerous variants.

Furthermore, this thesis claims to cover both aspects from theory and practice in nearly equal
measures. The theoretical part intends to facilitate the development of the framework by providing
the underlying (theoretical) background in more detail. The focus here lies on two topics. a) First
this work provides an extensive review about the current state-of-the-art in the area of batch
scheduling research. b) Second the theoretical groundwork of this work comprises a detailed analysis
of the complexity status of the most common batch scheduling problems.

The Prototype The main intention of the framework’s design is to provide a functioning
prototype that is suitable to serve as a real-time scheduling system on the operational level.

Both researchers and practitioners face the problem that the scheduling problems in academia
and industry are rarely identical. The practical problems from industry are typically afflicted
with many different constraints. Hence it is often necessary to design case-specific solutions
beyond those reported as standard in the scientific literature. Another challenge is to integrate
sophisticated scheduling solutions with the existing software structure. The development of real-
time simulation/optimization systems as well as their plug-and-play interoperability with existing
software is a grand challenge today (Fowler and Rose, 2004).

The main goal of the practical part is to design, implement, and test a proper scheduling system
in order to deploy it in a waferfab that relies on dispatching to that date. The resulting scheduling
framework requires to comprises two main components: a) a top-level scheduling system with all
its modeling, simulation and optimization functionalities and b) an underlying data level connected
to the waferfab’s Manufacturing Execution System (MES).

The Experimental System The second important intention of the framework’s design besides
a functioning prototype is to provide the capability of running massive amounts of experiments in
a comfortable fashion. The intended framework is required to offer the capabilities to analyze the
effect of the framework’s system factors on the system performance in a reproducible environment.
Designing, defining, executing and analyzing experiments as time-saving as possible is one of the
central functionalities of this framework.

The motivation behind this is that very little is known about the functioning of metaheuristics.
The reasons why metaheuristics work so well (and under what conditions) remain unidentified to
a large extend. The goal is to identify important factors affecting optimization results by use of
intense experimentation. For example, beyond the nature of the search scheme, it is known that a
search method’s performance also depends on the fine tuning of the algorithm’s control parameters
(Watson, 2009).

Another tasks of the desired experimental system is to determine the benefit which could be
expected from deploying a scheduling system in the real world. The experiments serve to provide
reliable numbers for economic benefits based on which a manager decides whether installing a
scheduling system is profitable.

19

1 INTRODUCTION

A question with more scientific background is that of the sources of the observed improvements
considered as optimization effects. The desired framework is required to facilitate answering the
question whether the problem instance’s characteristics or the scheduling method settings have
a greater impact on the improvements. The most important results expected to be the result of
the experiments fall in two categories: a) insights related to model characteristics and b) insights
related to method settings.

1.4.1 Structure of the Thesis

The theoretical groundwork facilitates the development of the framework and rounds out the thesis
with its practical focus on developing an experimental system and a prototype system. The focus
of the theoretical part lies on two topics. a) The current state-of-the-art in the area of batch
scheduling research (Section 2). b) A detailed analysis of the complexity status of the most common
batch scheduling problems (Section 6). A well structured system of sections leads topic-by-topic to
the main results of this work.

Figure 3 depicts the structure of the thesis comprising nine sections without appendices. The
visualized structure basically uses an analogy of a house with three floors: a) the fundamentals
(Section 1 and Section 2), b) the basic topics (Section 3 to Section 5), and ¢) the main topic
(Section 6 to Section 8). It ends up with the conclusions in Section 9, i.e. with the roof.

Section 1 and Section 2 provide the fundamentals of this work. The introduction in Section 1
clarifies the motivation, introduces the problem statement, and discusses the related methodology.
Section 2 provides an extensive literature review about batch scheduling in wafer fabrication as
one of the main pillars of this work. The review covers 170 publications in total, methodically
structured in 16 groups.

The second level introduces three basic topics required to fully understand the main part. It
begins with a brief overview of wafer fabrication and its most important aspects in Section 3.
Section 4 introduces the art of simulation as a key technique in modern manufacturing systems.
The theoretical groundwork is complemented with a short overview on the state-of-the-art in
metaheuristic optimization (Section 5).

The third level begins with theoretically examining the main topic: batch scheduling. Section 6
provides a detailed introduction to the batch scheduling topic with an detailed analysis of the
complexity results of the most common batch scheduling problems. Section 7 gives a detailed
description of the implemented framework, providing a top level description of data systems, data
transfer mechanisms and essential data procedures. Section 8 reports the insights resulting from
the experiments.

Finally, Section 9 comprises the main results of this work, organized in three main topic
areas: a) theoretical background and state-of-the-art (Section 9.1), b) valuable insights spawned by
experiments (Section 9.2), and ¢) experiences from implementing a prototype (Section 9.3).

9. Conclusions and Outlooks

| |
7. The Framework 8. Experimental Studies i i
! Main Topic |
| |
| |
6. Batch Scheduling : l
e e I
| :
3. Wafer 4. Modeling and 5. Metaheuristic i Basic Topics !
Fabrication Simulation Optimization ! P :
e e e e e e e 1
o
’ 2. Literature Review ‘

’ 1. Introduction ‘

Figure 3: Structure of the thesis

20

]
o o]
2 Literature Review S ——
Contents
2.1 Single Machine Batch Scheduling Problems 23
2.2 Parallel Machines Batch Scheduling Problems 30

This section provides an extensive review of bounded parallel batch (p — batch) scheduling
problems, addressed for both single and parallel machine environments under varying sets of
constraints. Three constraints are identified as the most important and distinctive characteristics
among the vast number of literature related to p — batch scheduling problems: @) incompatible job
families (fmls), b) release dates (r;), and ¢) non-identical job sizes (B, s;).

The review covers 170 publications in total, methodically structured in 16 groups representing
different combinations of fmls, r; and B, s; for the single and the parallel machine environment;
cf. Table 1. For an overview on the entire set of literature sources see the tables in Appendix A. A
clear emphasis is put on deterministic scheduling problems. However, for the sake of completeness
stochastic scheduling models gain also recognition in the context of real-time control as well. The
reviewed works most often relate to p — batch scheduling problems found in waferfabs, whereas
minor publications are motivated by other industrial applications. The majority is either motivated
by frontend diffusion/oxidation operations or by backend burn-in operations.

Prior some authors have presented literature reviews about batch scheduling problems. To our
best knowledge, Potts and van Wassenhove (1992) and Webster and Baker (1995) provide the
first reviews about batching problems, discussing early research in the field of batch scheduling
theory with focus on single-machine scheduling models. Potts and Kovalyov (2000) give an
extended review of batching problems in various machine environments and for several objectives,
putting emphasis on complexity results as well as on the efficiency and effectiveness of algorithms.
Mathirajan and Sivakumar (2003) especially review batch scheduling problems in semiconductor
manufacturing, classifying batching problems into 12 groups while distinguishing between stochastic
and deterministic problems. They refine their classification schemes and systematically organize
the published articles in an updated survey three years later (Mathirajan and Sivakumar, 2006b).

Table 1: Methodical literature review in 16 groups

rr%achme constraints a | B | y-notation section #publications
environment B,s; r; fmls
- - - 1|p—batch,b<n|- 2.1.1 21
v - - 1| p— batch,B,s; | - 2.1.2 24
- v - 1| p—batch,b <n,r;|- 2.1.3 20
1] - - v 1| p—batch,b < n, fmls| - 2.14 17
v v - 1|p—batch,B,sj,r; |- 2.1.5 11
v - v 1| p— batch, B, s;, fmls | - 2.1.6 7
- v v 1| p—batch,b <n,r;, fmls |- 2.1.7 19
v v v 1| p—batch, B, sj,rj, fmls | - 2.1.8 2
- - - Pm | p—batch,b<n |- 2.2.1 2
v - Pm | p —batch, B, s; | - 2.2.2 10
- v - Pm | p—batch,b <n,r; |- 2.2.3 5
Pm |- | - - v Pm | p — batch,b < n, fmls | - 2.2.4 7
v v - Pm | p —batch, B, s;,r; | - 2.2.5 10
v - v Pm | p —batch, B, s;, fmls | - 2.2.6 2
- v v Pm | p—batch,b <n,r;, fmls|- 227 22
v v v Pm | p —batch, B, s;,r;, fmls| - 2.2.8 7

170 (total)

21

2 LITERATURE REVIEW

Machine Environment This review examines single machine models in Section 2.1 and parallel
machines models in Section 2.2. The grouping comprises eight variants of the basic single machine
problem 1 | p — batch,b < n | - and eight variants of the basic parallel machines problem
Pm | p—batch,b < n | -; cf. Table 1.

Beyond single and parallel machine models and out of scope of this review, the area of scheduling
problems in flowshop environments with BPMs attracts a remarkable amount of researchers. Among
others, Ahmadi et al. (1992), Sung and Yoon (1997), Sung et al. (2000), Sung and Min (2001) and
Damodaran and Srihari (2004) deal with deterministic batch scheduling problems in flowshops. In
contrast, among others Gurnani et al. (1991, 1992), Neale and Duenyas (2000), van der Zee (2002),
Mason et al. (2007), and Ham and Fowler (2008) study batch scheduling problems in flowshops
under stochastic settings.

Primary Constraints Three primary constraints are used to establish a methodical grouping
with 16 classes for the literature: a) non-identical job sizes (B, s;), b) release dates (r;), and
¢) incompatible job families (fmls). Refer to Table 1.

The combination of these three constraints result in eight model variants for each machine
model, i.e. eight variants for the single machine model and eight variants for the parallel machine
model. For example, the eight single machine models range from the basic model with no constraints
(1| p—batch,b < n|-) to the model with three constraints (1 | p — batch, B, sj,rj, fmls | -). In
this way, there exist another eight corresponding parallel machine models, adding up to 16 model
variants in total.

From another point of view, there exist eight different models for each of these three char-
acterizing constraints (B, s;, r; and fmls), whereby the single machine model and the parallel
machine model count four variants each. There are eight models that deal with non-identical job
sizes (B, s;); the simplest case 1 | p — batch, B, s; | - (see Section 2.1.2) is first studied by Uzsoy
(1994). The grouping counts eight models that deal with release dates (r;). The simplest case
1| p—batch,b < n,r; |- (see Section 2.1.3) wis first studied by Ikura and Gimple (1986), Lee et al.
(1992), and Webster and Baker (1995); cf. Brucker (2007). Consequently there exist eight models
that deal with incompatible job families (fmls). The simplest case 1 | p — batch,b < n, fmls | -
(see Section 2.1.4) is first studied by Chandru et al. (1993b) and Uzsoy (1995), whereby Uzsoy
(1995) also examines the case with job arrivals.

Process Time Models There exist two basic model types: a) the longest job processing time
model (L) and b) the family processing time model (F).

The longest job processing time model (L) describes the case in which the jobs have arbitrary
processing times and the processing time of the batch is determined by the longest processing time
of its jobs. This kind of model is originally motivated by the backend burn-in operations. The
simplest case 1 | p — batch,b < n | - is first studied by Lee et al. (1992), Albers and Brucker (1993)
and Chandru et al. (1993a); cf. Brucker (2007).

The family processing time model (F) is usually motivated by diffusion or oxidation operations
that deal with incompatible job families. In this case, the processing time of a batch is given by the
corresponding job family and different job families have different processing times. As one of the
first, Chandru et al. (1993b) and Uzsoy (1995) study the simplest case 1 | p — batch,b < n, fmls | -,
whereby Uzsoy (1995) considers the case with job arrivals 1 | p — batch,b < n,r;, fmls | -. Fowler
et al. (1992a,b) and Weng and Leachman (1993) propose real-time control strategies that incorporate
future arrivals for the same problem under stochastic settings.

In general p — batch-scheduling problems formally characterized with incompatible job families
(fmls) correspond to the family processing time model (F). Minor works consider incompatible
job families (fmls) in conjunction with the longest processing time model (L); cf. (Boudhar, 2003;
Finke et al., 2008; Nong et al., 2008a; Sabouni and Jolai, 2010; Meng and Lu, 2011).

Some authors consider the special case with constant processing times (C), i.e. the processing
time is generally a constant that is identical for all jobs. For example, Webster and Baker (1995),
Ozturk et al. (2012), Li et al. (2012b), and Koehler and Khuller (2013) deal with deterministic
models characterized by constant processing times, whereas Ikura and Gimple (1986), Glassey and
Weng (1991), Fowler et al. (1992a), van der Zee et al. (1997), Korkmaz (2004) and van der Zee
(2007) discuss real-time-control strategies in stochastic environments.

22

2 LITERATURE REVIEW

Methods and Objectives The focus of this review lies on deterministic offline scheduling models.
The solution approaches are basically distinguished into a) exact methods (E), b) heuristics (H),
¢) metaheuristic (MH), and d) approximation algorithms (A); exact methods for special case(s) are
denoted with the character (*).

Despite of the fact that the emphasis is put on deterministic offline scheduling models, the review
also mentions deterministic scheduling models under online setting (#) and stochastic scheduling
models related to real-time control. For example, Chen et al. (2001), Nong et al. (2008b), Meng
and Lu (2011), Zhang et al. (2001a) and Li et al. (2012b,a) consider online-scheduling models. The
most important strategies in the area of real-time control (RTC) are discussed in Section 6.8 more
in detail.

This review aims to describe the objective function as accurately as possible, e.g. the objective
is to minimize makespan (C,ax). At least, the type of objective is determined, i.e. related to cycle
time (CT), related to on-time delivery (OTD) or composed of multiple objectives (MO).

Additional Constraints Beyond the three primary constraints (B, s;, rj, fmls), there exist
numerous constraints considered in conjunction with p — batch scheduling problems. This review
lists models with many different extensions, e.g. deadlines (d;), machine eligibility constraints
(M;), sequence-dependent setup times (sdst), preemption (prmpt), rejection (rjct), reentrant jobs
(rntr), job splitting (jspl), graph compatibility (gc), secondary resources (sr), stochastic processing
times (spt), precedence constraints (prec), and machine breakdowns (brkdwn).

2.1 Single Machine Batch Scheduling Problems

Despite of the fact that scheduling a single machine is quite unattractive from practical point of
view, research is very interested in single machine models since they form sub problems for parallel
machine scheduling problems typically faced in industry; cf. (Ménch et al., 2011a). This section
covers eight variants of single BPM scheduling problems summarized in Table 2.

Table 2: Eight single machine scheduling problems

machine constraints . .
. a | B | y-notation section
environment B,s; r; fmlis

- - - 1|p—batch,b<n|- 2.1.1
v - - 1| p— batch,B,s; | - 2.1.2
- v - 1| p—batch,b <n,r;|- 2.1.3

1] - - v 1| p—batch,b < n, fmls| - 2.1.4
v v - 1|p—batch,B,s;,r; |- 2.1.5
v - v 1| p— batch, B, s;, fmls | - 2.1.6
- v v 1|p—batch,b<mn,rj, fmls|- 2.1.7
v v v 1| p—batch,B,sj,rj, fmls | - 2.1.8

2.1.1 1|p-batch,b<n|-

The review begins with the basic bounded batch scheduling problem on a single BPM, denoted
with 1 | p — batch,b < n | -. All publications describe the longest job processing time model (L),
with the exception of the model in (Webster and Baker, 1995) that deals with constant processing
times (C). See Table 3 for a tabular overview.

Makespan Minimizing C,,,x on a single BPM can be solved optimally in polynomial time.
Brucker et al. (1998) and Sung and Choung (2000) present such algorithms with polynomial run
time; cf. Brucker (2007).

On-Time Delivery Lee et al. (1992) present polynomial algorithms for special cases of L.y
and) Uj; cf. (Webster and Baker, 1995). Brucker and Kovalyov (1996) and Liu (2007) provide
polynomial and pseudo-polynomial DP approaches for special cases of) w;Uj; cf. Brucker (2007).

23

2 LITERATURE REVIEW

Brucker and Kovalyov (1996) also provide a FPTAS for the original, unrestricted problem) w,;U;.
The problem) T; can be solved polynomially if the processing times are constant (Brucker, 2007)
and pseudo-polynomially if the processing times and due dates are agreeable (Liu, 2007). Ménch
et al. (2006a) incorporate deadlines and describe a GA with the objective of minimizing the sum of
the absolute deviations of completion times from the due date, assuming that the jobs have the
same due date.

Cycle Time Webster and Baker (1995), Hochbaum and Landy (1997), Brucker et al. (1998) and
Poon and Yu (2004) provide polynomial and pseudo-polynomial algorithms for special cases of) C}.
For the unrestricted version, Chandru et al. (1993a) give a B&B algorithm, Hochbaum and Landy
(1997) describe an approximation algorithm, and Cai et al. (2002) and Deng et al. (2002) describe
PTASs. Chandru et al. (1993a) present a simple heuristic to solve the same problem. Turning to
the weighted variant, Albers and Brucker (1993), Webster and Baker (1995) and Brucker (2007)
present polynomial algorithms for special cases of) w;C; and Uzsoy and Yang (1997) give a B&B
scheme as well as several heuristics for the original, unrestricted version. Chen et al. (2001) study
the same problem under online setting.

Multiple Objectives Sabouni and Jolai (2010) consider a special case of 1 | p — batch,b < n | -
with jobs that belong to two different customers and simultaneously optimize for C,,,, and Ly ..
In this case, the jobs belong to different customers, processed based on their individual criteria, i.e.
Chax or Liax. They optimally solve the problem with equal processing times.

Real-Time Control Neuts (1967) study the problem under stochastic settings and present the
well-known Minimum Batch Size (MBS) rule that aims on minimizing CT. Ganesan et al. (2004)
study the problem 1 | p — batch,b < n | - under stochastic setting and minimize the mean CT and
the maximum tardiness at the same time.

Table 3: Publications related to 1|p-batch,b<n]-

publication model method objective constraints

Neuts (1967) - RTC CT -

Lee et al. (1992) L E* OTD -

Albers and Brucker (1993) L E* CT -

Chandru et al. (1993a) L E, H CT -

Webster and Baker (1995) C E* OTD, CT -

Brucker and Kovalyov (1996) L E* A OTD -

Hochbaum and Landy (1997) L E* A CT -

Uzsoy and Yang (1997) L EH CT -

Brucker et al. (1998) L E* cT -

Brucker et al. (1998) L E Crax -

Sung and Choung (2000) L E Crax -

Chen et al. (2001) L A# CT -

Cai et al. (2002) L A CT -

Deng et al. (2002) L A CT -

Ganesan et al. (2004) L RTC MO -

Poon and Yu (2004) L E CT :

Ménch et al. (2006a) L MH* OTD d;

Brucker (2007) L E Crnax -

Brucker (2007) L E* OTD, CT -

Liu (2007) L B OTD .

Sabouni and Jolai (2010) L E* MO -
model: {longest job processing time (L), constant processing time (C)}; method:{exact method (E), heuristic (H), real-time control (RTC),

metaheuristic (MH), approximation algorithm (A), special case(s) (*), online setting (#)}; objectives:{makespan (Cmax), cycle time (CT),
on-time delivery (OTD), multiple objectives (MO)}; constraints:{deadlines (d;)}

24

2 LITERATURE REVIEW

2.1.2 1|p-batch,B,s;]|-

This section reviews the basic batch scheduling problem on a single BPM with non-identical job
sizes, denoted with 1| p — batch, B, s; | -. The mentioned publications deal with the longest job
processing time model (L), with the exception of the model in (van der Zee, 2007) that deals with
constant processing times (C). See Table 4 for a tabular overview.

Makespan Dupont and Dhaenens-Flipo (2002) and Parsa et al. (2010) propose B&B methods
to find solutions with optimal Cy,.x. Zhang et al. (2001b), Kashan et al. (2009) and Zhang and
Cao (2007) present approximation algorithms and Uzsoy (1994) and Parsa et al. (2010) provide
heuristics. Due to the complexity of the problem, several authors developed metaheuristics for it.
Mathirajan et al. (2004), Melouk et al. (2004) and Damodaran et al. (2007) present SA algorithms.
Damodaran et al. (2006) and Kashan et al. (2006a,b) propose GAs. Jia and Leung (2014), Cheng
et al. (2010) and Zhang et al. (2009b) give descriptions of methods based on the ACO concept,
whereby Cheng et al. (2010) consider stochastic processing times.

On-Time Delivery Malapert et al. (2012) present a CP approach for L., and Erramilli and
Mason (2008) minimize y , w,;T; with MIP and SA.

Cycle Time Uzsoy (1994) presents a B&B scheme and heuristics for C;. Jolai Ghazvini and
Dupont (1998) also describe a heuristic and Xu et al. (2008a,b) propose an ACO approach for the
same problem. Azizoglu and Webster (2000) propose a B&B scheme for) w;C;.

Multiple Objectives Kashan et al. (2010) present different GAs for minimizing C,,ax and Lax
at the same time. Lu et al. (2009a) present a PSO algorithm that simultaneously minimizes Cy,ax

and > Cj.

Table 4: Publications related to 1|p-batch,B,s;|-

publication model method objective constraints
Uzsoy (1994) L 0 Crnax -
Uzsoy (1994) L E, H CT -
Jolai Ghazvini and Dupont (1998) L H CT -
Azizoglu and Webster (2000) L E CT -
Zhang et al. (2001Db) L A Chax -
Dupont and Dhaenens-Flipo (2002) L E Crnax -
Mathirajan et al. (2004) L MH Cmax -
Melouk et al. (2004) L E, MH Cmax -
Damodaran et al. (2006, 2007) L MH Crax -
Kashan et al. (2006a,b) L MH Crax -
Zhang and Cao (2007) L A Chax -
Erramilli and Mason (2008) L E, MH OTD -
Xu et al. (2008a,b) L MH CT -
Kashan et al. (2009) L A Crax -
Lu et al. (2009a) L MH MO -
Zhang et al. (2009b) L MH Crax -

Cheng et al. (2010) L MH Cmax spt

Kashan et al. (2010) L MH MO -
Parsa et al. (2010) L E, H Cruax -
Malapert et al. (2012) L E OTD -
Jia and Leung (2014) L MH Cruax -

model:{longest job processing time (L)}; method:{exact method (E), heuristic (H), metaheuristic (MH), approximation algorithm (A)};
objectives:{makespan (Cmax), cycle time (CT), on-time delivery (OTD), multiple objectives (MO)}; constraints:{stochastic processing
times (spt)}

25

2 LITERATURE REVIEW

2.1.3 1|p-batch,b<n,r;]|-

The basic bounded batch scheduling problem on a single BPM with release dates is denoted with
1| p—batch,b < n,r; |- The publications describe the longest job processing time model (L), with
a few exceptions. Gupta et al. (2004) deal with the family processing time model (F) and Webster
and Baker (1995) discuss both the longest job processing time model (L) and the family processing
time model (F). Ikura and Gimple (1986) and Glassey and Weng (1991) restrict themselves to
constant processing times (C). See Table 5 for a tabular overview.

Makespan Ikura and Gimple (1986) and Sung et al. (2002) present polynomial algorithms for
special cases of Cyax. Ikura and Gimple (1986) also study the problem with deadlines. Lee and
Uzsoy (1999), Poon and Zhang (2000), Liu and Yu (2000) and Deng et al. (2003) give pseudo-
polynomial algorithms for special cases. Sung and Choung (2000) present a B&B scheme and
several heuristics for the general problem. Efficient heuristics can also be found in (Lee and Uzsoy,
1999) and (Liu and Yu, 2000), whereas Liu and Yu (2000) describe a heuristic with a defined
bound on performance. Poon and Zhang (2000) and Deng et al. (2003) provide PTASs. Zhang
et al. (2001a) study problem under online setting. Lu et al. (2009b) and Cao and Yang (2009)
incorporate job rejection in their models. Lu et al. (2009b) give polynomial and pseudo-polynomial
algorithms for special cases as well as a approximation algorithm and a PTAS. Cao and Yang
(2009) also present a PTAS for it.

On-Time Delivery Webster and Baker (1995), Baptiste (2000), Li and Lee (1997) and Lee et al.
(1992) show that special cases of L.y can be solved in polynomial time. Wang and Uzsoy (2002)
present a GA combined with DP to solve the general version. Lee et al. (1992) and Lee and Pinedo
(1997) present polynomial algorithms for special cases of) U;. Baptiste (2000) and Brucker (2007)
consider the weighted variant) w;U;, presenting algorithms with polynomial run time for special
cases.

Cycle Time Liu and Cheng (2005) give a PTAS for) C; and Webster and Baker (1995) present
a polynomial DP for a special case of the same problem. Baptiste (2000) and Brucker (2007) present
polynomial algorithms for special cases of the weighted version) w,;C}

Real-Time Control Glassey and Weng (1991) and van der Zee (2004) present look-ahead
strategies in a stochastic environment in order to reduce CTs.

2.1.4 1|p-batch,b <n,fmls]|-

This section reviews the basic bounded batch scheduling problem with incompatible families on
a single BPM, denoted with 1 | p — batch,b < n, fmls | -. The publications describe the family
processing time model (F), with a few exceptions. Boudhar (2003), Finke et al. (2008), Nong et al.
(2008b), Sabouni and Jolai (2010) and Meng and Lu (2011) deal with the the longest job processing
time model (L). See Table 6 for a tabular overview.

Makespan Uzsoy (1995) shows that minimizing Cy,.x is optimally solvable in polynomial time.
Nong et al. (2008b) and Meng and Lu (2011) study the problem under online setting and provide
approximation algorithms with a worst case ratio 2. Finke et al. (2008) and Boudhar (2003) study
the problem with compatibility graphs, whereupon both present polynomial algorithms for special
cases. Boudhar (2003) also gives a heuristic.

On-Time Delivery Uzsoy (1995) shows that minimizing L,,.x is optimally solvable in polynomial
time. Dauzere-Péres and Monch (2013) provide a MIP formulation and a GA for minimizing) U;
and the weighted case > w;U;. Jolai (2005) present polynomial and pseudo-polynomial algorithms
for special cases of > U; minimization. Liu and Zhang (2008) provide a DP method for minimizing
> w;U;. Mehta and Uzsoy (1998) present a polynomial DP scheme for a special case and several
heuristics for the general case of) T; minimization. Devpura et al. (2001) and Perez et al. (2005)
propose several heuristics to solve the weighted case) w;Tj.

26

2 LITERATURE REVIEW

Table 5: Publications related to 1|p-batch,b<mn,r;]|-

publication model method objective constraints
Tkura and Gimple (1986) C E* Crax d;
Glassey and Weng (1991) C RTC CT -
Lee et al. (1992) L E* OTD -
Webster and Baker (1995) L, F E* OTD, CT -
Li and Lee (1997) L E* OTD -
Lee and Uzsoy (1999) L E* H Crax -
Baptiste (2000) L E* OTD, CT -
Liu and Yu (2000) L E*, A Crnax -
Poon and Zhang (2000) L E* A Crnax -
Sung and Choung (2000) L E, H Cmax -
Zhang et al. (2001a) L A#* A# Crnax -
Sung et al. (2002) L E* Crax -
Wang and Uzsoy (2002) L MH OTD -
Deng et al. (2003) L E* A Crnax -
Gupta et al. (2004) F RTC OTD -
van der Zee (2004) L RTC CT -
Liu and Cheng (2005) L A CT -
Brucker (2007) L E* OTD, CT -
Cao and Yang (2009) L A MO rjct
Lu et al. (2009b) L E* A MO rjct
model:{longest job processing time (L), constant processing time (C), family processing time (F)}; method:{exact method (E), heuris-

tic (H), real-time control (RTC), metaheuristic (MH), approximation algorithm (A), special case(s) (*), online setting (#)}; objec-
tives:{makespan (Cmax), cycle time (CT), on-time delivery (OTD), multiple objectives (MO)}; constraints:{rejection (rjct),deadlines

(d;)}

Cycle Time Chandru et al. (1993b) propose a polynomial DP algorithm for a special case of
minimizing » C;. Uzsoy (1995) shows that minimizing the weighted case > w;C; can be solved in
polynomial time.

Multiple Objectives Sabouni and Jolai (2010) consider a special case of 1 | p — batch,b <
n, fmls | - with jobs that belong to two different customers. The objective function simultaneously
optimizes for Cy,.x and L.y, given that the jobs belong to different customers processed based on
their individual criteria, i.e. Cpax or Liax. They optimally solve the problem with equal processing
times and give a heuristic for different processing times.

Real-Time Control Duenyas and Neale (1997) deal with random processing times and develop
a simple heuristic scheduling policy that minimizes waiting costs. Kim et al. (1998) and Kim et al.
(2001) propose batching rules that incorporate downstream and due date information. Akcali et al.
(2000) examine the performance of different loading and dispatching policies for batch processing.

2.1.5 1|p-batch,B,s;,r;|-

This section reviews the batch scheduling problem on a single BPM subject non-identical job sizes
and release dates, denoted with 1| p — batch, B, s;,r; | -. The mentioned publications deal with
the longest job processing time model (L), with the exception of the model in (van der Zee, 2007)
that deals with constant processing times (C). See Table 7 for a tabular overview.

Makespan MIP formulations for C,,,x can be found in (Xu et al., 2012) and (Vélez-Gallego et al.,
2011). Li et al. (2005a) and Lu et al. (2010) present approximation algorithms for it, whereby Lu
et al. (2010) allow for job rejections. Zhou et al. (2013) and Vélez-Gallego et al. (2011) and Xu et al.
(2012) describe heuristics. Chou et al. (2006) present a GA and Xu et al. (2012) an ACO approach.

On-Time Delivery Mathirajan et al. (2010) give a SA algorithm and Chou and Wang (2008) a
GA with integrated DP for)" w;T}, and both present MIP formulations and heuristics for it.

27

2 LITERATURE REVIEW

Table 6: Publications related to 1| p-batch, b <n, fmls| -

publication model method objective constraints

Chandru et al. (1993b) F E* CT -
Uzsoy (1995) F E Cmax, OTD, CT -

Duenyas and Neale (1997) F RTC CT spt
Kim et al. (1998) F RTC MO -

Mehta and Uzsoy (1998) F E* H OTD -
Akeali et al. (2000) F RTC CT -
Devpura et al. (2001) F H OTD -
Kim et al. (2001) F RTC OTD -
Boudhar (2003) L E* H Crnax gc

Jolai (2005) F E* OTD -

Perez et al. (2005) F H OTD -

Finke et al. (2008) L E* Crax gc

Liu and Zhang (2008) F E OTD -
Nong et al. (2008b) L A# Crax -
Sabouni and Jolai (2010) L E* H MO -
Meng and Lu (2011) L A+# Crnax -
Dauzere-Péres and Monch (2013) F E, MH OTD -

model:{longest job processing time (L), family processing time (F)}; method:{exact method (E), heuristic (H), real-time control (RTC),
metaheuristic (MH), approximation algorithm (A), special case(s) (*), online setting (#)}; objectives:{makespan (Cmax), cycle time
(CT), on-time delivery (OTD), multiple objectives (MO)}; constraints:{graph compatibility (gc), stochastic processing times (spt)}

Cycle Time Chang and Wang (2004) present a heuristic algorithm for > C;.

Multiple Objectives Wang and Chou (2013) describe an exhausted enumeration approach and
a GA to find pareto-optimal solutions with respect to Cpax and) w;T}.

Real-Time Control van der Zee (2007) proposes a look-ahead strategy that deals with non-
identical sizes in order or minimize the average flow time in the long run in a stochastic environment.

Table 7: Publications related to 1|p-batch,B,s;, rj|-

publication model method objective constraints
Chang and Wang (2004) L H CT -
Li et al. (2005a) L A Crnax -
Chou et al. (2006) L MH Crnax -
van der Zee (2007) C RTC CT -
Chou and Wang (2008) L E, H, MH OTD -

Lu et al. (2010) L A Crax rjct

Mathirajan et al. (2010) L E, H, MH OTD -
Vélez-Gallego et al. (2011) L E,H Crax -
Xu et al. (2012) L E, H, MH Chax -
Wang and Chou (2013) L E, MH MO -
Zhou et al. (2013) L H Crax -

model: {longest job processing time (L), constant processing time (C)}; method:{exact method (E), heuristic (H), real-time control (RTC),
metaheuristic (MH), approximation algorithm (A)}; objectives: {makespan (Cmax), cycle time (CT), on-time delivery (OTD), multiple
objectives (MO)}; constraints:{rejection (rjct)}

2.1.6 1|p-batch,B,s;, fmls| -

This section reviews the bounded batch scheduling problem on a single BPM with incompatible
families and non-identical job sizes, denoted with 1 | p — batch, B, s;, fmls | -. The mentioned
publications exclusively deal with the family processing time model (F). See Table 8 for a tabular
overview.

28

2 LITERATURE REVIEW

Makespan Koh et al. (2005) give a mathematical formulation and propose a number of heuristic
algorithms as well as a GA to minimize C,,.x. Kempf et al. (1998) examine heuristics for the
problem with secondary resource constraints, giving mathematical formulations for special cases.

On-Time Delivery Hoitomt and Luh (1992) present a heuristic based on relaxation, minimizing
z ijjQ.

Cycle Time Koh et al. (2005) also give a mathematical formulation, heuristic algorithms including
a GA to minimize) C; and > w;C;. Kempf et al. (1998) study the problem with secondary
resource constraints, providing mathematical formulations for special cases and heuristics for the
general case. Azizoglu and Webster (2001) present a B&B for) w;C;. Dobson and Nambimadom
(1992, 2001) give a mathematical formulation for the same problem, a polynomial algorithm for a
special case and several heuristics for the general problem. Kashan and Karimi (2007) develop an
ACO method for)" w;C; minimization.

Table 8: Publications related to 1| p-batch, B, s;, fmls |-

publication model method objective constraints

Hoitomt and Luh (1992) F H OTD -
Kempf et al. (1998) F E* H Chax, CT sr
Azizoglu and Webster (2001) F E CT -
Dobson and Nambimadom (1992, 2001) F E, E¥ H cT -
Koh et al. (2005) F E,H,MH Cpax, CT ;
Kashan and Karimi (2007) F MH OTD -

model:{family processing time (F)}; method:{exact method (E), heuristic (H), metaheuristic (MH), special case(s) (*)}; objec-

tives: {makespan (Cmax), cycle time (CT), on-time delivery (OTD)}; constraints:{secondary resources (sr)}

2.1.7 1|p-batch,b <n,r;,fmls|.

This section reviews the bounded batch scheduling problem on a single BPM with incompatible
families and release dates, denoted with 1 | p — batch,b < n,r;, fmls | -. The publications describe
the family processing time model (F), with a few exceptions. Boudhar (2003) and Nong et al.
(2008a) deal with the longest job processing time model (L). Fowler et al. (1992a) and Korkmaz
(2004) restrict themselves to constant processing times (C). See Table 9 for a tabular overview.

Makespan Uzsoy (1995) presents an efficient optimal algorithm for minimizing C,,., and Nong
et al. (2008a) develeop a PTAS for it.

On-Time Delivery Uzsoy (1995) describes several heuristics for L. Jia et al. (2013) ad-
ditionally consider reentrant jobs, proposing a rolling horizon strategy that minimizes L. or
> w;T;. Tangudu and Kurz (2006) present a B&B scheme for solving the)" w;T;-problem and
Kurz and Mason (2008) propose a heuristic for it. Li and Qiao (2008) and Guo et al. (2010) include
sequence-dependent setup times and both present algorithms based on ACO.

Cycle Time Korkmaz (2004) and Yao et al. (2012) present B&B schemes for the) C-problem
and Tajan et al. (2011) solve it with DP. Korkmaz (2004) allows job splitting and proposes a
heuristic for the case with constant processing times. Jia et al. (2013) additionally consider reentrant
jobs, proposing a rolling horizon strategy that minimizes) C;.

Real-Time Control Several look-ahead strategies consider job families while minimizing CT
measures, e.g. (Fowler et al., 1992a,b), (Weng and Leachman, 1993), (Robinson et al., 1995),
(Duenyas and Neale, 1997), and (Tajan et al., 2008, 2011). (Duenyas and Neale, 1997) consider
stochastic process times. Similarly Gupta et al. (2004) stochastically examine the problem, but
propose a look-ahead batching rule that minimizes an objective function with earliness and tardiness
measures.

29

2 LITERATURE REVIEW

Table 9: Publications related to 1|p-batch,b <n,rj, fmls|-

publication model method objective constraints

Fowler et al. (1992a,b) F RTC CT -
Weng and Leachman (1993) F RTC CT -
Robinson et al. (1995) F RTC CT -
Uzsoy (1995) F E Crnax -
Uzsoy (1995) F H OTD -

Duenyas and Neale (1997) F RTC CT spt
Boudhar (2003) L E* H Crax gc

Korkmaz (2004) C E, H CT jspl
Gupta and Sivakumar (2006) F RTC OTD, MO -
Tangudu and Kurz (2006) F E OTD -
Kurz and Mason (2008) F H OTD -

Li and Qiao (2008) F MH OTD sdst
Nong et al. (2008a) L A Crnax -
Tajan et al. (2008) F RTC CT -

Guo et al. (2010) F MH OTD sdst
Tajan et al. (2011) F RTC, E CT -
Yao et al. (2012) F E CT -

Jia et al. (2013) F H OTD, CT rntr

model:{longest job processing time (L), constant processing time (C), family processing time (F)}; method:{exact method (E), heuristic
(H), real-time control (RTC), metaheuristic (MH), approximation algorithm (A), special case(s) (*)}; objectives:{makespan (Cmax),
cycle time (CT), on-time delivery (OTD), multiple objectives (MO)}; constraints:{sequence dependent setup times (sdst), reentrant jobs
(rntr), job splitting (jspl), graph compatibility (gec), stochastic processing times (spt)}

2.1.8 1| p-batch,B,s;,r;, fmls |-

This section reviews the batch scheduling problem with incompatible families on a single BPM
subject to non-identical job sizes and release dates, denoted with 1 | p — batch, B, s;,r;, fmls | -.
Nong et al. (2008a) deal with the longest job processing time model (L), whereas Gokhale and
Mathirajan (2011) ususes the family processing time model (F). See Table 10 for a tabular overview.

Makespan Nong et al. (2008a) present an approximation algorithm to minimize C,,,x.

On-Time Delivery Gokhale and Mathirajan (2011) incorporate job splitting, presenting a
mathematical model and a few heuristics to minimize) w;Tj.

Cycle Time To our best knowledge, no publications exist neither for 1 | p—batch, B, sj,r;, fmls |
>~ Cj, nor for the weighted case Y w;C}.

Table 10: Publications related to 1|p-batch, B, s;, rj, fmls | -

publication model method objective constraints
Nong et al. (2008a) L A Cnax -
Gokhale and Mathirajan (2011) F E, H OTD jspl

model: {longest job processing time (L), family processing time (F)}; method:{exact method (E), heuristic (H), approximation algorithm
(A)}; objectives:{makespan (Cmax), on-time delivery (OTD)}; constraints:{job splitting (jspl)}

2.2 Parallel Machines Batch Scheduling Problems

A waferfab is typically organized in a number of work areas, given that each work area covers a set
of similar machines. In this context, similarity roughly refers to the architecture of the machines as
well as to the type of processes they provide. For the entire machine pool in the fab, there exists
a number of subsets of machines so that each subset provides a disjunctive set of processes, also
referred to as CMSs or work centers. For a typical waferfab such a CMS roughly counts up to up

30

2 LITERATURE REVIEW

to several dozens of machines that form a manufacturing entity from the viewpoint of production
logistics. Based on the shop floor layout, the machines of a single work center are often located in
near proximity, but may be also locally distributed on the shop floor.

The concept of parallel machines describes a manufacturing system consisting of a number of
machines in parallel where each job requires a single operation on any of the parallel machines,
or on a subset of them in the case of machine eligibility restrictions. For the sake of simplicity,
this review does not explicitly distinguish between the three common types of parallel machine
environments, i.e. identical machines (Pm), uniform machines (Qm), and unrelated machines
(Rm). Any parallel machine scheduling problem is simply classified as Pm-model with identical
machine speeds, formally omitting the fact that some authors actually consider @m- or Rm-models
with different machine processing time concepts. This section covers eight scheduling problems
summarized in Table 11.

Table 11: Eight parallel machines scheduling problems

machine constraints . .
. a | B | y-notation section
environment B,s; r; fmls

- - - Pm | p —batch,b<n| - 2.2.1
v - Pm | p —batch, B, s; | - 2.2.2
- v - Pm | p —batch,b <n,r; |- 2.2.3

Pm |- | - - v Pm | p — batch,b < n, fmls | - 2.2.4
v v - Pm | p—batch, B, s;,r; | - 2.2.5
v - v Pm | p —batch, B, sj, fmls | - 2.2.6
- v v Pm | p —batch,b < n,r;, fmls|- 227
v v v Pm | p—batch, B, s;,r;, fmls| - 2.2.8

2.2.1 Pm|p-batch,b<n|-

This section begins with the basic bounded batch scheduling problem on parallel BPMs, denoted
with Pm | p — batch,b < n | -. The mentioned publications exclusively deal with the longest job
processing time model (L). See Table 12 for a tabular overview.

Makespan To our best knowledge, no publications exist for the problem Pm | p — batch,b < n |
C’”’LIL.'L"

On-Time Delivery Monch and Unbehaun (2007) describe three decomposition heuristics that
minimize the sum of the absolute deviations of completion times from the due date of all jobs,
given that all jobs are assumed to have the same due date.

Cycle Time Chandru et al. (1993a) present a heuristic that minimizes) C).

Table 12: Publications related to Pm | p-batch,b<n]|-

publication model method objective constraints
Chandru et al. (1993a) L H CT -
Ménch and Unbehaun (2007) L H* OTD -

model:{longest job processing time (L)}; method:{heuristic (H), special case(s) (*)}; objectives:{cycle time (CT), on-time delivery

2.2.2 Pm|p-batch,B,s; |-

This section reviews the bounded batch scheduling problem on parallel BPMs with non-identical
job sizes, denoted with Pm | p — batch, B, s; | -. The mentioned publications exclusively deal with
the longest job processing time model (L). See Table 13 for a tabular overview.

31

2 LITERATURE REVIEW

Makespan Cheng et al. (2012), Cheng et al. (2013), Xu and Bean (2007), and Chang et al.
(2004) provide MIP formulations for C,,., minimization. Cheng et al. (2012) present a polynomial
approximation algorithm and Li et al. (2013) and Damodaran and Chang (2008) propose several
heuristics. Cheng et al. (2013) describe a method based on ACO, Chang et al. (2004) propose a SA
method, and Xu and Bean (2007) describe a GA. Kashan et al. (2008) compare a hybrid heuristic
based on a GA with SA. Beyond metaheuristics, Chen et al. (2011) use a clustering algorithm and
Shao et al. (2008a,b) describe a neural net to tackle the problem.

On-Time Delivery To our best knowledge, no publications exist for the problem Pm | p —
batch, B, s; | - with common objectives related to due dates.

Cycle Time Cheng et al. (2012) provide a MIP formulation and a polynomial approximation
algorithm for minimizing " Cj.

Table 13: Publications related to Pm | p-batch, B, s; | -

publication model method objective constraints
Chang et al. (2004) L E, MH Crax -
Xu and Bean (2007) L E, MH Crnax -
Damodaran and Chang (2008) L H Cmax -
Kashan et al. (2008) L MH Chmax -
Shao et al. (2008a,b) L H Cmax -
Chen et al. (2011) L H Crax -
Cheng et al. (2012) L E, A Chax, CT -
Cheng et al. (2013) L E, MH Chax -
Liet al. (2013) L H Crnax -

model:{longest job processing time (L)}; method:{exact method (E), heuristic (H), metaheuristic (MH), approximation algorithm (A)};
objectives:{makespan (Cmax), cycle time (CT)}

2.2.3 Pm|p-batch,b<n,r;|:

This section reviews the bounded batch scheduling problem on parallel BPMs with release dates,
denoted with Pm | p — batch,b < n,r; | -. The mentioned publications deal with the longest job
processing time model (L), with the exception of the model in (Koehler and Khuller, 2013) that
deals with constant processing times (C). See Table 14 for a tabular overview.

Makespan Li et al. (2005b) and Zhang et al. (2005) present PTASs for minimizing Ci,ax. Li
et al. (2012a) study the problem under online setting, describing a time window look-ahead model
that can foresee all the jobs that will arrive in given time segment.

On-Time Delivery Li et al. (2004) present a PTAS for minimizing Ly,.x.

Cycle Time To our best knowledge, no publications exist neither for Pm | p — batch,b < n,r; |
>~ C; nor for the weighted case Pm | p — batch,b < n,r; | > w,;C;.

Multiple Objectives Koehler and Khuller (2013) incorporate deadlines in their model with
identical processing times. They provide a polynomial DP algorithm for minimizing the number
of batches and C,,.x at the same time as well as a a pseudo-polynomial algorithm for a general
batch-count-sensitive objective function.

2.2.4 Pm|p-batch,b < n,fmls|-

This section reviews the bounded batch scheduling problem with incompatible families on parallel
BPMs, denoted with Pm | p — batch,b < n, fmls | -. The mentioned publications deal with the
family processing time model (F), with the exception of the model in (Li et al., 2012b) that deals
with constant processing times (C). See Table 15 for a tabular overview.

32

2 LITERATURE REVIEW

Table 14: Publications related to Pm | p-batch, b <mn,r; |-

publication model method objective constraints
Li et al. (2004) L A OTD -
Li et al. (2005b) L A Crnax -
Zhang et al. (2005) L A Crnax -
Li et al. (2012a) L A# Crnax -
Koehler and Khuller (2013) C E* Crnax d}

model:{longest job processing time (L), constant processing time (C)}; method:{exact method (E), approximation algorithm (A), special
case(s) (*), online setting (#)}; objectives:{makespan (Cmax), on-time delivery (OTD)}; constraints:{deadlines (dj)}

Makespan Uzsoy (1995) presents heuristics for minimizing Cyax.

On-Time Delivery Uzsoy (1995) presents heuristics for minimizing L;,... Balasubramanian
et al. (2004) present a GA and Almeder and Monch (2011), Raghavan and Venkataramana (2006),
Ménch and Almeder (2009) propose ACO methods for minimizing) w;T;. Almeder and Moénch
(2011) additionally present a VNS scheme and compare both VNS and ACO with a GA. Li et al.
(2012b) study the online scheduling of jobs with equal processing times in order to maximize the
weighted number of early jobs, given that preemption is allowed.

Cycle Time Uzsoy (1995) presents heuristics for minimizing w,C}.

Real-Time Control Habenicht and Moénch (2003) investigate the performance of different
dispatching and scheduling heuristics in a stochastic environment in order to minimze) w;T}.

Table 15: Publications related to Pm | p-batch, b <n, fmls]| -

publication model method objective constraints
Uzsoy (1995) F H Cmax, OTD, CT -
Habenicht and Ménch (2003) F RTC OTD -
Balasubramanian et al. (2004) F H, MH OTD -
Raghavan and Venkataramana (2006) F MH OTD -
Ménch and Almeder (2009) F MH OTD -
Almeder and Monch (2011) F MH OTD -

Li et al. (2012D) C AH* OTD prmpt

model:{constant processing time (C), family processing time (F)}; method:{heuristic (H), real-time control (RTC), metaheuristic (MH),
approximation algorithm (A), special case(s) (*), online setting (#)}; objectives:{makespan (Cmax), cycle time (CT), on-time delivery
(OTD)}; constraints:{preemption (prmpt)}

2.2.5 Pm|p-batch,B,s;,r;|-

This section reviews the batch scheduling problem on parallel BPMs with non-identical job sizes
and release dates, denoted with Pm | p — batch, B, sj,7; | -. The mentioned publications deal with
the longest job processing time model (L), with exception of the model in (Ozturk et al., 2012) that
deals with constant processing times (C). See Table 16 for a tabular overview.

Makespan Chung et al. (2009) and Wang and Chou (2010) define MIP models to find the
minimum C,,, and Li (2012) presents an approximation algorithm. Chung et al. (2009), Damodaran
and Vélez-Gallego (2010) and Chen et al. (2010) propose heuristics. Chen et al. (2010) present a GA
and a method based on ACO and Wang and Chou (2010) compare a GA with SA. Damodaran and
Vélez-Gallego (2012) evaluate a SA approach and a GRASP (Damodaran et al., 2011). Ozturk et al.
(2012) consider the problem in the context of hospital sterilization services with equal processing
times, presenting a MIP formulation and a approximation scheme as well as polynomial algorithms
for two special cases.

33

2 LITERATURE REVIEW

On-Time Delivery To our best knowledge, no publications exist for the problem Pm | p —
batch, B, sj,r; | - with common objectives related to due dates.

Cycle Time To our best knowledge, no publications exist neither for Pm | p — batch, B, sj,7; |
>~ C; nor for the weighted case Pm | p — batch, B, s;,r; | Y- w;C;

Multiple Objectives Xu et al. (2013) propose an ACO method in order to minimize the
bi-criteria objective consisting of C,.x and L.

Real-Time Control Sahraeian et al. (2014) incorporate size-dependent setup times and compare
different heuristics in a stochastic environment in order to minimize C,,, .

Table 16: Publications related to Pm | p-batch, B, sj, rj | -

publication model method objective constraints
Chung et al. (2009) L E, H Cmax -
Chen et al. (2010) L H, MH Crnax -
Damodaran and Vélez-Gallego (2010) L H Crax -
Wang and Chou (2010) L E, MH Cax -
Damodaran et al. (2011) L MH Crnax -
Damodaran and Vélez- Gallego (2012) L MH Crnax -
Li (2012) L A Crnax -
Ozturk et al. (2012) C E, E* A Crax -
Xu et al. (2013) L MH MO -
Sahraeian et al. (2014) L RTC Crax -

model:{longest job processing time (L), constant processing time (C)}; method:{exact method (E), heuristic (H), real-time control (RTC),
metaheuristic (MH), approximation algorithm (A), special case(s) (*)}; objectives:{makespan (Cmax), multiple objectives (MO)}

2.2.6 Pm|p-batch, B,s;, fmls| -

This section reviews the bounded batch scheduling problem on parallel BPMs with incompatible
families and non-identical job sizes, denoted with Pm | p — batch, B, sj, fmls | -. The mentioned
publications exclusively deal with the family processing time model (F). See Table 17 for a tabular
overview.

Makespan Koh et al. (2004) present heuristics and a GA for minimizing C,ax.

On-Time Delivery To our best knowledge, no publications exist for the problem Pm | p —
batch, B, s;, fmls | - with objectives related to due dates.

Cycle Time Koh et al. (2004) present heuristics and a GA for minimizing) C; or > w;C}

Multiple Objectives Payman and Leachman (2010) propose algorithms based on Linear Pro-
gramming (LP) and Integer Programming (IP) and a heuristic-based algorithm in order to simulta-
neously improve multiple short-term production targets, while considering secondary resources.

Table 17: Publications related to Pm | p-batch, B, s;, fmls | -

publication model method objective constraints
Koh et al. (2004) F H, MH Cpax, CT -
Payman and Leachman (2010) F H MO ST

model: {family processing time (F)}; method:{heuristic (H), metaheuristic (MH)}; objectives:{makespan (Cmax), cycle time (CT), mul-
tiple objectives (MO)}; constraints:{secondary resources (sr)}

34

2 LITERATURE REVIEW

2.2.7 Pm|p-batch,b <n,rj, fmls| -

This section reviews the bounded batch scheduling problem on parallel BPMs with incompatible
families and release dates, denoted with Pm | p — batch,b < n,r;, fmls | -. The mentioned
publications deal with the family processing time model (F), with the exception of the model in
(van der Zee et al., 1997) that deals with constant processing times (C). See Table 18 for a tabular
overview.

Makespan To our best knowledge, no publications exist for the problem Pm | p — batch,b <
n, 15, fmls | Y Craz-

On-Time Delivery Malve and Uzsoy (2007) present a GA and Chang et al. (2013) propose
a method based on PSO to minimize L. Kim et al. (2010) present several heuristics for
>~ T; minimization. Bar-Noy et al. (2009) consider the problem with deadlines and present an
approximation algorithm maximizing the weight of the scheduled jobs. Ménch et al. (2006b) present
a heuristic in order to minimize) w;T;. Monch et al. (2005) propose a GA and Chiang et al.
(2010) describe a memory-based algorithm incorporating concepts from GAs for the same problem.
Klemmt et al. (2009) provide a MIP formulation and a VNS scheme for > w;T; minimization
with machine eligibility constraints (M;). Li et al. (2008, 2009a) present an ACO method that
additionally considers sequence-dependent setup times (and M;).

Cycle Time Tajan et al. (2012) provide a mathematical formulation and a DP scheme for the
problem of minimizing the mean CT.

Multiple Objectives Reichelt and Ménch (2006) propose a method based on GAs that aims to
optimize Y w;T; and C,ax at the same time.

Real-Time Control Sha et al. (2004, 2007) present a look-ahead batch dispatching rule taking
due date information into consideration. Habenicht and Ménch (2003) describe a simple heuristic
that does not take future lot arrivals into account as well as a GA that does consider future arrivals,
focusing on) w;T;. Several look-ahead rules that minimize CTs are proposed by van der Zee et al.
(1997, 2001), Fowler et al. (2000), van der Zee (2001), Solomon et al. (2002), Cigolini et al. (2002)
and Tajan et al. (2012), where Solomon et al. (2002) additionally consider the status of downstream
machines in a sense that minimizing sequence-dependent setup times is desired. Murray et al.
(2008) propose a batch scheduling heuristic that considers sequence-dependent setup times and
take future arrivals into account, evaluated in a stochastic environment. A total cost function is
used to combine two conflicting performance measures into one, i.e. total item queuing time and
total machine running time.

2.2.8 Pm|p-batch, B,s;j,rj, fmls | -

This section reviews the bounded batch scheduling problem with incompatible families on parallel
BPMs subject non-identical job sizes and release dates, denoted with Pm | p—batch, B, sj,r;, fmls |
. The mentioned publications exclusively deal with the family processing time model (F). See
Table 19 for a tabular overview.

Makespan Klemmt et al. (2008) and Klemmt et al. (2011) examine MIP and simulation-based
optimization approaches for C,,,x minimization under machine eligibility and deadline constraints,
whereby Klemmt et al. (2011) additionally consider machine breakdown periods in their model.

On-Time Delivery Mathirajan and Sivakumar (2006a) present a few greedy heuristics that
minimize) w;7T;. Klemmt et al. (2011) include machine eligibility constraints, deadlines and
machine breakdowns in their models, evaluating MIP and simulation-based optimization for > w;T;
minimization. Gokhale and Mathirajan (2014) allow job splitting in their mathematical formulation
for minimizing)" w;T};, and present heuristics for it. Kohn and Rose (2012) use VNS to minimize

35

2 LITERATURE REVIEW

Table 18: Publications related to Pm | p-batch, b <n,r;, fmls |-

publication model method objective constraints

van der Zee et al. (1997) C RTC CT -
Fowler et al. (2000) F RTC CcT -
van der Zee (2001) F RTC CT -
van der Zee et al. (2001) F RTC CT -
Cigolini et al. (2002) F RTC CT -

Solomon et al. (2002) F RTC CT sdst
Habenicht and Monch (2003) F RTC, MH OTD -
Sha et al. (2004, 2007) F RTC OTD -
Ménch et al. (2005) F MH OTD -
Ménch et al. (2006b) F H OTD -
Reichelt and Moénch (2006) F MH MO -
Malve and Uzsoy (2007) F MH OTD -

Li et al. (2008) F MH OTD M;, sdst

Murray et al. (2008) F RTC MO sdst
Bar-Noy et al. (2009) F A OTD d;
Klemmt et al. (2009) F E, MH OTD M;

Li et al. (2009a) F MH OTD M;, sdst

Chiang et al. (2010) F MH OTD -
Kim et al. (2010) F H OTD -
Tajan et al. (2012) F RTC CT -
Chang et al. (2013) F MH OTD -

model:{constant processing time (C), family processing time (F)}; method:{exact method (E), heuristic (H), real-time control (RTC),
metaheuristic (MH), approximation algorithm (A)}; objectives:{cycle time (CT), on-time delivery (OTD), multiple objectives (MO)};
constraints:{deadlines (dj), machine eligibility (]Wj), sequence dependent setup times (sdst)}

> T; while considering machine eligibility constraints and deadlines in their optimization model.
They analyze the effect of various factors that influence the optimization potential.

Cycle Time Cakici et al. (2013) present a MIP formulation and a VNS scheme in order to
minimize) w;C;. Klemmt et al. (2008) include machine eligibility constraints and deadlines,
evaluating MIP and simulation-based optimization for minimizing) C; and) w;C};. Kohn and
Rose (2012) consider machine eligibility constraints and deadlines in their optimization model based
on VNS. They analyze the effect of various factors that influence the optimization potential when
minimizing)" C;. Kohn and Rose (2013) study the impact of accuracy in lot arrival prediction on
the objective Y C;. Their model based on VNS incorporates machine eligibility constraints and
deadlines.

Multiple Objectives Li et al. (2009b) present an ACO method that optimizes) w;T}; and Cypax
at the same time, considering machine eligibility constraints and sequence-dependent setup times.
Yugma et al. (2008) include machine eligibility constraints, precedence constraints and deadlines
in their model. They propose a method based on LS and SA to simultaneously improve the total
number of moves, the batching coefficient and the x-factor. Kohn et al. (2013) experimentally
examine the relationship between various objectives and performance measures related to CT, OTD
and THP. The underlying VNS model involves machine eligibility constraints and deadlines.

36

2 LITERATURE REVIEW

Table 19: Publications related to Pm | p-batch, B, sj, rj, fmls | -

publication model method objective constraints
Mathirajan and Sivakumar (2006a) F H OTD -
Klemmt et al. (2008) F E, H Chax, CT M;, d_]
Yugma et al. (2008) F MH MO M, dj, prec
Liet al. (2009b) F MH MO M;, sdst
Klemmt et al. (2011) F E, H Cmax, OTD, CT M, d;, brkdwn
Kohn and Rose (2012) F MH OTD, CT M;, d;
Cakici et al. (2013) F E, MH CT -
Kohn and Rose (2013) F MH cT M;, d;
Kohn et al. (2013) F MH MO M;, J]
Gokhale and Mathirajan (2014) F E, H OTD jspl

model:{family processing time (F)}; method:{exact method (E), heuristic (H), metaheuristic (MH), }; objectives:{makespan (Cmax),
cycle time (CT), on-time delivery (OTD), multiple objectives (MO)}; constraints:{deadlines (dj), machine eligibility (Mj), sequence

dependent setup times (sdst), job splitting (jspl), precedence (prec), breakdowns (brkdwn)}

37

I
B [
3 Wafer Fabrication I
Contents
3.1 Unit Processes i i i i i i ittt it e e e e e e e e e e e e e 40
3.2 Process Equipment 0 000 n o e e e e 43
3.3 Automated Material Handling 47
3.4 Factory Layout« v v i i i i it i it e e e e e e e e 48

A semiconductor device is defined as a semiconductor product which has electric elements and
wiring, made to fulfill specific functions, according to SEMI International Standards (2009). Such
complex electric circuits are also known as IC, chip, microchip or die.

An IC contains minimum one semiconductor die, regardless whether it is on the way of fabrication
or completed, whether it is on the way of fabrication or completed, it has been diced, it is mounted
on some substrate or it is packaged. If it is packaged, the whole package is assumed as a device
and a device may have more than one die. Many dies are usually fabricated on a semiconductor
substrate at a time which is often referred to as wafer. The wafer is diced after completing the last
processing step and before packaging.

Flash-Memories as a specific type of Electrically Erasable Programmable Read-Only Memories
(EEPROMsS), Dynamic Random Access Memories (DRAMs), Micro Processing Units (MPUs) and
Application Specific Integrated Circuits (ASICs) can be considered as few of the most important
semiconductor devices (Cogez et al., 2011).

Technology Trends in development and fabrication of semiconductor devices follow Moore’s
law. Moore’s law is the observation that over the history of computing hardware, the number of
transistors on semiconductor devices doubles approximately every two years (Moore, 1998).

Ferrell and Pratt (2000) state that for an IC manufacturer to remain continuously competitive,
the cost per unit area of manufacturing semiconductor devices must decrease continuously. The
competitive drive for cost reduction results in the scaling of semiconductor devices to ever smaller
dimensions as well as in the increase of wafer sizes. Both scaling effects have major influence on
semiconductor manufacturer production effectiveness.

According to the ITRS structure widths on substrates, e.g. the gate length, will continuously
decrease from approximately 20 nm in 2013 down to approximately 7 nm in 2025, with minor
differences among Flash, DRAM, MPU and ASIC devices (Cogez et al., 2011).

Simultaneously to the process of shrinking structure widths, the wafer diameter increases
continuously and until today has reached 300 mm in modern wafer fabrication facilities (waferfabs).
Intel, Samsung, and TSMC announced in May 2008 that they will work together with suppliers and
other semiconductor players to develop the 450 mm technology. These three companies scheduled
the first production ramp-ups until 2016 (Cogez et al., 2011). Schaller (2004) presents a case study
of the ITRS that investigates technological innovations in the semiconductor industry.

Fabrication The semiconductor device manufacturing process covers numerous process steps

—from a bare silicon substrate to a fully functional semiconductor device. The semiconductor
manufacturing process is commonly structured into five phases: a) wafer fabrication, b) wafer test
(wafer probe), ¢) assembly, d) packaging, and e) final test. The wafer fabrication and the wafer
test are often summarized with the term frontend. Correspondingly, the term backend frames the
assembly, packaging, and the final test.

Walfer fabrication summarizes all processing steps creating fully functional dies out of a bare
silicon substrate. The wafer test comprises several testing procedures that ensure faultless dies,
respectively identifies defect dies on the wafer. After testing wafers are diced and go through
assembly. At the end of which each die is wired and packed. The resulting semiconductor devices
are then exposed to high temperatures (aged) and finally tested again, before they are shipped

38

3 WAFER FABRICATION

to the customer. See Figure 4 for a flow diagram visualizing the basic phases in semiconductor
manufacturing.
This work exclusively focuses on wafer fabrication, respectively the frontend.

Wafer
fabrication

Watfer probe

OK

—> Assembly —> mﬁ Final testing > m

Figure 4: Flow diagram of semiconductor manufacturing (Frantsuzov, 2011); cf. (Moénch et al.,
2009)

Facility Hopp and Spearman (2001) define basic terms in manufacturing. A workstation is
a collection of one or more machines that perform (essentially) identical functions. The term
workstation is also often referred to as work center or CMS, whereas the latter puts focus on
identical functions provided by the machines. A routing defines the sequence of process steps
provided by workstations passed through by a product or part. In wafer fabrication a part relates
to a carrier, also known as cassette or lot. A carrier or cassette describes an open structure that
holds one or more substrates (SEMI International Standards, 2009). SEMI E11 (2000) provides
carrier specifications for 125 mm, 150 mm, and 200 mm plastic and metal carrier. The term Front
Opening Unified Pod (FOUP) refers to a closed structure that holds 300 mm wafers; (SEMI E47,
2000) provides specifications for FOUPs. An order is a request from a customer for a particular
product, in a particular quantity, to be delivered on a particular date. A job in wafer fabrication
refers to a single lot at a certain stage of production, waiting for the next process step to be carried
out on a suitable equipment as a part of a work center. A scheduler or dispatcher system controls
the material flow in a waferfab, assigning jobs to machines at any point in time.

Contamination Control Semiconductor devices are very vulnerable to many types of contami-
nants. Especially particles coming from workers, generated by equipment and present in processing
chemicals, create risk of defects on the device. Defects occur when particles located at critical areas
on the wafer surface destroy the device functioning, for example by interrupting electrical signals
or altering electrical properties.

With respect to high production yields semiconductor manufacturer pursue a total cleanroom
strategy. A proper cleanroom design and a filtering technology provide particle-poor air with
constant environmental conditions for production. These controlled environmental conditions
include the temperature, pressure, humidity of the air and the composition of the gases (van Zant,
2004). Compared to the outdoor air, the shop floor is under constant overpressure, preventing any
particle or gas from uncontrolled penetrating the cleanroom. Workers get entry and exit through
air locks and wear special clothing covering the body. The shop floor is constantly fed with clean air
through complex filtering systems at the ceiling. At the same time the cleanroom air is constantly
extracted by continuous suction through a perforated floor. In consequence a laminar air flow
from the ceiling to the floor is established, preventing particles to hover through the cleanroom.
The number of particles allowed in cleanrooms is defined by the International Organization for
Standardization (ISO) in ISO 14644-1 (1999). Today wafer fabrication facilities using non-closed
wafer carriers require the cleanroom standard ISO 1. ISO 1 ensures that one cubic meter of air does
not count not more than 10 particles equal or larger than 0.lum and not more than two particles
equal or larger than 0.2um (Ferrell and Pratt, 2000).

39

3 WAFER FABRICATION

Computer Integrated Manufacturing (CIM) Modern semiconductor manufacturing systems
manage interoperability of tens of dozens of sub-systems that fulfill specific functions as a part
of the Computer Integrated Manufacturing (CIM) framework. From technical view, the CIM
framework in terms of a technical system is often referred to as MES.

A typical factory network combines a) the AMHS, b) production equipment, ¢) scheduler and/or
dispatcher system, d) and many other factory systems (Ferrell and Pratt, 2000). Figure 5 depicts a
conceptual view of the factory system.

In order to ensure interoperability among these systems, standards have been developed that
provide guidelines for system architecture and communication. SEMI E81 (2000) describes a
CIM framework as a software infrastructure that creates a common environment for integrating
applications and sharing information in a semiconductor factory. SEMI E96 (2000) defines standards
for the technical architecture that enable application components to cooperate in a CIM/MES
environment, needed for an improved component interoperability, substitutability and extensibility.

System

[Factory Network]

[Production Equipment } [AMHS Integration]

[Scheduler/Dispatcher J [Other Factory Systems }

Integration System System
CMS, STS, IBSEM or
CJM, PUM == Stocker SEN = 2

' Production

Equipment Eaquipment

' AMHS

Figure 5: Conceptual view of the factory system (Ferrell and Pratt, 2000)

3.1 Unit Processes

Semiconductor manufacturing consists of a series of sequential process steps. The process flow
in Complementary Metal Oxide Semiconductor (CMOS) technology counts 600 to 1200 single
process steps, still rising. Starting with raw wafers as the basic raw material, the chip grows with
each layer, also called photo-layer. After processing each wafer contains hundreds of identical
rectangular chips. The chips are separated by sawing or laser cutting. The various processing steps
fall into five general categories: a) film formation, b) lithography, c) etching, d) impurity doping,
and e) non-value processes.

Figure 6 illustrates the interrelationship between these major process categories. This cyclic
process flow is the reason for reentrant flows in a waferfab (May and Spanos, 2006). Semiconductor
Manufacturing Technology (SEMATECH), an association of member companies cooperating in
key areas of semiconductor technology, presents a 300 mm aluminum process flow for 180 nm
technology, covering six metal layers, 21 masks, 43 tool types, and 316 steps. The raw process time
for this process flow is 8.9 days (Campbell and Ammenheuser, 2000).

3.1.1 Film Formation

Film formation describes any process that modifies the wafers’ surface. Many different kinds of
thin films are used to fabricate semiconductor devices, including thermally grown oxide films,
deposited dielectric films and deposited metal films. Deposition is any process that grows, coats

40

3 WAFER FABRICATION

Mask set Film
formation

l

— Lithography

\

Etching

Impurity
doping

A

A

Wafer
out

Figure 6: Flow diagram for a generic IC process sequence (May and Spanos, 2006)

or otherwise transfers material onto the wafer. Thermal oxidation processes create an oxide layer
on the wafer surface. Planarization that belongs to the removal processes also modifies the wafer
surface by partly removing films and thus falls into this category. Film formation is often followed
by photolithography or impurity doping (May and Spanos, 2006).

Thermal Oxidation A dioxide film functions as an insulator in a number of device structures or
as a barrier to diffusion or implantation during device fabrication. Semiconductors can be oxidized
by various methods, and among these, thermal oxidation is the most important for silicon devices.
Thermal oxidation employs oxidants under high temperature to transform (oxidize) a bare silicon
surface to silicon dioxide, which is actually grown out of the substrate surface. Commonly there
exist three types of equipment for this kind of process: a) the vertical furnace, b) the horizontal
furnace, and ¢) the Rapid Thermal Processor (RTP); whereas vertical furnaces play the most
important role (May and Spanos, 2006). Singh et al. (2003) point the reduction of CT and process
activation energy as the two distinct advantages of RTP over CFP, respectively vertical and
horizontal batch furnaces.

Deposition Deposition is a process that transfers a metal material onto the wafer in thin films.
Most common depositing technologies rely on the principles of physical, chemical or electrochemical
vapor deposition. Physical Vapor Deposition (PVD) of metals is mostly accomplished by sputtering
today. Sputtering is a process in which ions of an inert gas such as argon are electrically accelerated
in a high vacuum toward a target of pure metal, such as tantalum or copper. Upon impact, the
argon ions sputter off the target material, which is then deposited as a thin film on the silicon wafer.
Chemical Vapor Deposition (CVD) is the traditional method used to deposit dielectric films on
wafers. CVD occurs when a gas mixture is passed over a heated substrate and chemical reactions
are initiated. The process is conducted in CVD reactors and can be performed at atmospheric
pressure or at low pressure. Plasma-Enhanced Chemical Vapor Deposition (PECVD) uses high
energetic plasma to initiate the chemical reaction. Electrochemical Deposition (ECD) is a wet
chemistry process that is often used to build conductive wires on the wafer (May and Spanos, 2006).

Planarization Chemical-Mechanical Polishing (CMP) is used to create a planar surface on the
wafer. This may be necessary in order to set up the wafer for the next processing steps. The process

41

3 WAFER FABRICATION

uses a chemical slurry in conjunction with a polishing pad. The pad is pressed on the wafer and
rotated with different axes. This removes material and tends to even out any irregular topography,
making the wafer flat or planar (May and Spanos, 2006).

3.1.2 Photolithography

The processes of pattern transfer and pattern generation are generally referred to as photolithography.
In lithography a structure from a mask is transferred on the substrate by the use of a photoresist.
Simplified, the lithography process contains three steps: a) coating, b) exposure, and ¢) development.
Between these three main steps the wafer goes through several bake-steps heating the wafer in
order to harden the photoresist. At the beginning, the wafer is coated with a chemical liquid called
photoresist, which is spun onto the wafer surface. Then the photoresist is selectively exposed to
ultraviolet light in an optical lithographic system, transferring the structure of a mask onto the
wafer surface. The photoresist development is usually done by flooding the wafer with the developer
solution. If a positive photoresist is used, the exposed regions of the resist are dissolved in the
developer, whereas the unexposed regions remain. As a result, an exact copy of the mask structure
is formed by the remaining photoresist on the surface. Photolithography is generally followed by
etching, which in turn is often followed by another impurity doping or film formation process.
Finally, the remaining photoresist is removed from the surface, stripped away by a chemical liquid
or burned to ashes by an oxygen plasma (May and Spanos, 2006).

3.1.3 Etching

After the photolithography process, a specific pattern made of photoresist covers the wafer surface.
To produce complex electric circuits, these resist patterns must be transferred into the underlying
layers. The pattern transfer is accomplished by an etching process that selectively removes unmasked
portions of a layer. Etching processes are conducted in a wet or dry ambient. Wet etching processes
use liquid etchants to remove material from the surface, whereas the wafer undergoes a sequence of
baths with liquid etchants. Dry etching uses plasma to remove material from the wafer surface.
Wet chemical etching is used extensively in semiconductor processing, but modern wafer fabrication
process sequences avoid wet etching and use plasma etching instead. The etching process is often
followed by impurity doping (May and Spanos, 2006).

3.1.4 Impurity Doping

Doping technologies are used to modify electrical properties of the substrate. Diffusion and ion
implantation are the two key methods of impurity doping. Originally diffusion processes were
used to bring dopants into the substrate. Later ion implantation is conducted to modify electrical
properties (May and Spanos, 2006).

Diffusion The diffusion process is conducted in a furnace. Under high temperature atoms from
another material diffuse into the wafer surface. The diffusion effect is accomplished by placing
semiconductor wafers in a high-temperature furnace and passing a gas mixture that contains the
desired dopant through it. This step is followed by a drive-in diffusion process —a thermal annealing
process which serves to activate the implanted dopants (May and Spanos, 2006).

Ion Implantation In the ion implantation process the energetic dopant ions are implanted
into the semiconductor by means of an ion beam. Ions of a certain material are accelerated to
a high energy level in an electrical field and impacted into the wafer. The main advantages of
ion implantation are its more precise control, its reproducibility of impurity dopings and its lower
processing temperature compared with those of the diffusion process (May and Spanos, 2006).

3.1.5 Non-Value Processes

Non-value adding process steps are the key factors to ensure quality and trace yields. Since particles
on a wafer surface may lead to defect chips, the process flow involves cleaning processes decreasing

42

3 WAFER FABRICATION

the number of particles on the wafer surface. Process steps in metrology ensure that processes
follow their specifications (May and Spanos, 2006).

Cleaning Cleaning processes are needed to keep the surface clean from particles. The wafer
undergoes a sequence of baths with liquids in order to remove particles from the surface. After
cleaning particle-measuring processes are conducted. Cleaning is performed especially before
proceeding high-temperature processes (May and Spanos, 2006).

Metrology Metrology processes are the key factors to monitor the quality of value-adding pro-
cesses. Process monitoring enables operators and engineers to detect problems early on to minimize
their impact and thus ensures producing reliable, high-quality devices repeatably. Manufacturing
line monitors consist of extremely sophisticated metrology equipment that can be divided into
tools characterizing the state of features on the semiconductor wafers themselves and those ones
that describe the status of the fabrication equipment operating on those wafers. Equipment state
measurements ensure that the process equipment works as desired. The measurements, performed
on wafers after a process, characterize physical parameters, such as film thickness, uniformity
and feature dimensions; or electrical parameters, such as resistance and capacitance. Based on
these observations, it is possible to derive appropriate actions that help to adjust the process
equipment. Wafer state measurements are conducted multiple times in a process flow in order to
detect problems and ensure high quality. Such investigations include visual inspections as well as
sophisticated physical and electrical measurements of various characteristics that describe the state
of a wafer (May and Spanos, 2006).

3.2 Process Equipment

Generally an equipment is a mechanical entity in the factory which plays a role in the manufacturing
process, i.e. for processing, transport, and/or storage of material. As long as the focus lies on on
wafer fabrication, the term equipment is used as a synonym for machines processing wafers, also
called wafer fabrication equipment or process equipment (SEMI International Standards, 2009).

During the years, numerous equipment architectures have been developed and introduced
into waferfabs. Semiconductor manufacturer make use of tens of dozens of different equipment
types in a single facility. Each equipment is designed to fulfill a particular function, thought for
modifying wafer surface or layers by physical or (electro)chemical reactions. The architecture of a
specific equipment type is often dictated by the process, which is intended to be carried out by
the equipment. Table 20 shows a mapping between unit processes and equipment types. Moénch
et al. (2011a) presents a similar mapping between common process types and certain processing
characteristics, such as the equipment type or area specific constraints.

From the scheduling expert’s view, the basic principle the equipment processes lots/wafers is of
particular interest, especially internal wafer flows. The job processing behavior may substantially
differ among equipment types, since they represent different construction schemes, which result in
varying THP rates and processing times.

Table 20: Mapping between unit processes and equipment types

process type equipment type
process group unit process single-wafer batch furnace wet bench cluster tool
film formation thermal oxidation | x x (CFP)
deposition X
planarization X
lithography X
etching dry X
wet X X
impurity doping diffusion x (RTP) x (CFP)
ion implantation | x (MBP)
non-value cleaning X b
metrology X

43

3 WAFER FABRICATION

SEMI Standards Despite of these differences, but also exactly for that reason, Semiconductor
Equipment and Materials International (SEMI) provides a set of standards. SEMI E10 (2000)
contains specifications for measuring reliability, availability and maintainability performance in
order to establish a common basis for communication between users and suppliers of semiconductor
manufacturing equipment. SEMI E30 (2000) provides a Generic Model for Communications and
Control of Manufacturing Equipment (GEM). SEMI E4 (2000) contains the SEMI Equipment
Communications Standard Part 1 (SECS-I) that defines a communication interface suitable for
the exchange of messages between semiconductor processing equipment and a host. This standard
does not define the data contained within a message. For that purpose, the SEMI Equipment
Communications Standard Part 2 (SECS-II) defines the details of the interpretation of messages in
(SEMI E5, 2000).

3.2.1 Single-Wafer Processing Equipment

The SWP equipment commonly stands for types of wafer fabricating equipment that process
wafers individually. The single wafer equipment is capable of processing one single wafer at a time.
Consequently wafers are processed in a strict sequential manner —one after another. The sequential
processing scheme holds for processing jobs the same. The single wafer equipment provides short
CTs due to its architecture. This is especially beneficial for waferfabs dealing with small lot sizes.
Depending on the type of process, there exists additional wafer capacity inside the equipment, for
example for cooling or heating functions. Cleaning processes, measurements and rapid thermal
processes are usually performed in this type of equipment.

This equipment usually provides two load ports (19), one for the job in process and one for
buffering the next job for process. The Equipment Front End Module (EFEM) (15) includes an
atmospheric robot (20) for moving wafers between load ports and single wafer load locks (16A,
16B). The EFEM can also be fitted with a wafer aligner (21), used to detect the wafer orientation
(notch). The reactor (13) can perform a process for a single wafer at a time. Figure 7 illustrates
the basic architecture of an SWP equipment. Singh et al. (2003) concern with the impact of SWP
on semiconductor manufacturing. They particularly point out the reduction of CT as distinct
advantage of SWP compared to BP. In the same line Stubbe (2010) regards the conversion of batch
processes to mini-batch or single-wafer processes in combination with small lot sizes as a promising
strategy to reduce CTs. Moslehi et al. (1992) present an overview of various SWP techniques.

Figure 7: Single wafer processing equipment architecture (Stevens and Jakubiec, 2002)

3.2.2 Cluster Tool

The term cluster tool is widely spread and describes an equipment type that combines a number of
process modules together, combining several process modules to a single system. Figure 8 illustrates
the basic architecture. A cluster tool effectively combines a number of process chambers to a
single machine. The typical (circular) cluster tool is basically composed of a mainframe and an
attached EFEM. The mainframe consists of a central wafer handling robot connected to the process
chambers and a number of load locks offering access to the mainframe. The EFEM comprises a

44

3 WAFER FABRICATION

number of load ports and a wafer handler, which enables the wafer transfer between load ports and
load locks.

The procedure performed to process a lot follows a defined sequence of activities. After the
carrier is put on the load port, the EFEM’s handler sequentially transfers the wafers to the load
lock, which then pumps to a vacuum. Thereafter the mainframe’s handling robot transports one
wafer after another to a free process chamber. According to the recipe, a wafer possibly visits more
than one chamber before it eventually returns to the load lock. At the time when the last wafer of
a lot returns to the load lock, the load lock vents to the atmosphere. Lastly the EFEM’s handler
transfers processed wafers back to the carrier. Finally the carrier is removed from the load port in
order to continue with the next operation.

Obviously cluster tools are made to process lots in parallel, since they comprise multiple load
locks and several chambers, which may offer different processes. But strictly speaking, the internal
processing mode, either sequential or parallel, is firstly determined by the combination of lots
recipes performed and secondly depending on the internal wafer scheduling policy. The recipe
defines the internal wafer routing, meaning the sequence of specific chambers to visit. Different
recipes commonly represent different process setups, either manifesting in different wafer routing
sequences or at least in the same wafer routing sequences with differing chamber process times.

Cluster tools are typically used to perform CVD, PVD, or CMP processes. Newest architectures
count more than one mainframe, combined to a line, where each mainframe is connected to process
chambers, also known as linear cluster tools (Park and Morrison, 2011). This kind of equipment
internally provides a kind of flow line. In photolithography such complex linear cluster tools
combine coating, exposure, developing and baking processes into one fabricating entity. Yi et al.
(2007) and van der Meulen (2007) discuss the advantages of linear cluster tools with respect to
their effect on THP and CT.

20C
i™S120

3w
)

18C
4
16¢

Figure 8: Cluster tool architecture (Yoshida et al., 2007)

3.2.3 Batch Furnace

Batch furnaces may be the most known representatives of equipment performing batch operations.
Diffusion and oxidation processes are commonly performed by batch furnaces. A number of lots
is formed to a batch, grouped to a single job where all wafers and lots are started together and
processed simultaneously by the use of the same process program (recipe). The equipment usually
provides a single process chamber performing the heat treatment. An internal wafer handling

45

3 WAFER FABRICATION

system moves wafers from lots on the load ports into the quartz boat, which is then moved into
the process chamber. Common quartz boats, respectively batch furnaces, offer space for up to
200 wafers. Batch furnaces commonly provide internal buffer for non-productive wafer needed
for processing. There exist horizontal and vertical furnaces and the vertical furnace is the most
frequent one. Some variants of semiconductor BP furnaces provide two boats offering the capability
to process two batches in parallel, as shown in Figure 9.

30

Figure 9: Vertical batch furnace architecture (van den Berg and Den Hartog, 2004)

3.2.4 Wet Bench

A typical wet bench is capable to process a certain number of lots in parallel, whereas the wafers
undergo a specific sequence of baths with liquids. A wet bench usually performs etching and
cleaning processes. Wet benches provide BP, similar to batch furnaces. Up to four lots are formed
to a batch and go through the sequence of tanks together, whereas only one batch occupies a tank
at a time. After a lot is loaded on the load port (36), a wafer handling system (34) moves the
wafers to an internal wafer carrier (38) that forms the batch. This way, wafers from up to four
lots are grouped together in order to proceed the following tank sequence together. An internal
carrier handling system (42) transfers the wafer carrier from tank to tank (40). See Figure 10 for
an illustrated example.

Figure 10: Wet bench architecture (Su et al., 2004)

46

3 WAFER FABRICATION

3.3 Automated Material Handling

The AMHS frames devices for material movement and storage, combining various components to a
fully automated system providing transport between process equipment. In the 200 mm wafer era
automated wafer handling has limited use in the semiconductor industry. With the shift to 300
mm wafers automation becomes necessary and a key factor to maximize the productivity due to
the increased weight and size of 300 mm wafers (Nazzal and Bodner, 2003). The key focus lies
on increasing the throughput of transports, reducing the average delivery times and improving
the reliability (Cogez et al., 2007). In (Cogez et al., 2011) ITRS additionally recommends actions
that focus on a more interactive control for an accurate scheduled delivery. Agrawal and Heragu
(2006) also point out that the newer 300 mm waferfabs place a high level of emphasis on AMHSs
as important tools to reduce CTs; they discuss various approaches for automated material handling
in waferfabs.

Automating the wafer transport system in waferfabs involves several levels of automation.
Nazzal and Bodner (2003) distinguish between four types of automation: @) material storage,
b) automated lot transport, ¢) equipment automation, and d) Material Control System (MCS)
coordinating the efforts of the various automation systems.

SEMI (2000) provides an overview of factory automation requirements and design. The examples
in this document have been applied in a working semiconductor 200 mm waferfab. Accordingly,
Heinrich and Deutschldnder (2012) discuss challenges, present summarized rules and show the
advantages of automation for a low-volume high-mix 200 mm facility.

3.3.1 Storage, Transport and Equipment Automation

Walfer fabrication factories will require the baseline capabilities of stocker storage and material
transport. These stocker and transport systems will be required to be fully integrated with each
other and the factory MES in order to realize the full vision of cost effective automated material
transport to and from production equipment (SEMI E102, 2000). AMHS storage equipment, also
known as stocker, is a mini environment offering material storage capacity for regular use, and in
case of cleanroom exceptions as safety device. Nazzal and Bodner (2003) list common technologies
for transporting lots: a) Overhead Hoist Transport (OHT), b) Continuous Flow Transport (CFT),
¢) Automated Guided Vehicles (AGVs), d) Rail Guided Vehicles (RGVs), and e) Personnel Guided
Vehicles (PGVs).

OHT is established in facilities where Overhead Hoist Vehicles (OHVs) are suspended from
ceiling-mounted rail mechanisms and are capable of delivering to/retrieving from stocker ports and
process tools from directly overhead. Overhead Shuttles (OHSs) connect stocker equipment, while
carrying usually two lots. CFT is established through the use of a conveyor system. AGVs stand for
movement platforms with automatic guidance capability and on-board robots for loading/unloading.
RGVs name automated vehicles that move in a straight line along a fixed path on an in-floor rail.
PGVs designate ground based manually moved transporters (see Figure 11).

Typically, AMHSs used in waferfabs are based on discrete vehicle-based overhead systems such
as OHVs. Conveyor-based CF'T implementations are starting to gain support with the expectations
that CF'T systems will be capable of handling high-volume manufacturing transport requirements
(Nazzal and El-Nashar, 2007). Heinrich et al. (2008) discuss the advantages of a CFT system with
respect to automation and its extendability to direct tool loading. Beyond wafer fabrication, Vis
(2006) discusses literature related to design and control issues of AGV systems at manufacturing,
distribution, transshipment and transportation systems.

SEMI Standards Semiconductor factories equipped with an AMHS require an integrated soft-
ware system to realize automated material movement. This AMHS integration system must be
interoperable with AMHS equipment, production equipment integration systems and other factory
systems. In order to achieve this goal, the AMHS integration system must conform to standard
communication protocols, state models and interfaces (Ferrell and Pratt, 2000). Refer to Figure 5
for a conceptual view of a factory system. SEMI E88 (2000) establishes a Specific Equipment
Model (SEM) for AMHS storage equipment. SEMI E84 (2000) and SEMI E23 (2000) provides
guidelines and defines communications associated with the material hand-off operations between
the production equipment and the components of the AMHS, for example AGV, RGV and OHV.

47

3 WAFER FABRICATION

SEMI E106 (2000) focuses on the complex interdependencies among the the SEMI standards for
300 mm physical interfaces and carriers. SEMI E101 (2000) provides a functional structure model
of an EFEM that handles carriers and substrates at the interface between the AMHS and the
process equipment.

Active

Vehicle Rail
Hand (OHT)

Hoist

Hand

il

Vehicle

Hand

(RGV) Vehicle
(AGV)
Production Production
i Equipment
. Production Equipment quip!
Rail Equipment
O O
Active Passive Active Passive Passive
Rail Guided Vehicle (RGV) Automated Guided Vehicle (AGV) Overhead Hoist Transport (OHT)

Figure 11: Examples of AMHS equipment (SEMI E84, 2000)

3.4 Factory Layout

In a typical wafer fab, there often are dozens of process flows and several hundred machines.
Machines are expensive, ranging in price from a couple of hundred thousand dollars to over thirty
million dollars per tool. The economic necessity to reduce capital spending dictates that such
machines are shared by all jobs requiring the particular processing operation provided by the
machine. This results in a manufacturing environment that is characterized by reentrant flows
(Moénch et al., 2011a).

Layout and modeling results show that the size of 300 mm factories may be significantly
larger than of current 200 mm factories. This footprint is highly dependent on the layout chosen
(Quinn and Bass, 1999). The layout study is important because the layout largely determines the
initial investment and production efficiency of a plant compared with other downstream activities.
While approximately one billion U.S. dollars was necessary for a new semiconductor fab in 1995,
manufacturers today need to invest two to three times more for the same type of facility. In
addition, layout is difficult and expensive to modify once it is set up (Chung and Jang, 2007).

There exists a variety of layout strategies in production, giving a scheme how to organize
equipment on the shop floor. These layouts either orientate on the process or on the product or
provide a trade-off between both. Four basic layout strategies emerged within the last 20 years:
a) farm layout, b) serial layout, c¢) cellular layout, and d) ballroom layout.

Drira et al. (2007) provide a recent survey on layout problems found in several types of
manufacturing systems. They suggest a general framework to analyze various layout concepts
depending on manufacturing system features. Jerbi and Chtourou (2012) particularly compares
cthe cellular and functional layout.

3.4.1 Farm Layout

The design of waferfabs for high volume production has traditionally been dominated by the
functional or process layout, where work centers consist of groups of similar or identical machines
that are capable of performing the same type of unit process. This kind of process-oriented layout
is also known as farm layout, bay layout or reentrant layout. The farm layout is still most
common due to several advantages. The four most important ones are: a) flexibility in scheduling
and robustness to machine breakdowns, b) lower machine requirements and consequently lower
capital investment cost, c) less need for clean room space due to close proximity of the machines,
and d) easier organization of the supply of gases and chemicals on the shop floor in cause of
a homogeneous equipment set in a bay. Unfortunately, these advantages also lead to complex,

48

3 WAFER FABRICATION

reentrant product flows (Hase et al., 1994). Appendix D visualizes the material flow around a
single work center in the furnace area, showing the set of connected work center that sends to and
receives material from the focused work center.

SEMATECH Layout Study In (Quinn and Bass, 1999) and (Campbell and Ammenheuser,
2000) SEMATECH analyzes variants of the farm layout and presents a comparison based on
simulation. Three layout configurations have been designed for this project: a) Farm, b) Hybrid,
¢) and Modified Hybrid.

In the Farm layout all similar tools are placed together in the same bay or set of bays. Thus,
there is a separate set of bays to hold the metrology tools. The Hybrid layout is derived from the
Farm layout by distributing metrology tools among the bays. If up to three metrology steps follow
a step that utilizes a tool within a given bay, the necessary metrology tools are located in that bay.
In the Modified Hybrid layout, ashers and wet benches are also distributed among the various bays
in addition to the metrology tool redistributions.

Based on their experiments, they propose the Hybrid layout and point out a list of advantages
in their simulation studies: a) The Hybrid layout outperforms the Farm layout in terms of CT and
average WIP level, for average and standard deviation measures. b) The Hybrid layout shows the
lowest values for standard deviation measured for CT and WIP. ¢) The Modified Hybrid layout
shows the best results for average WIP and average CT, outperforming the Hybrid layout in terms
of average values, although resulting in the highest values for CT and WIP standard deviation.
d) Additionally, the Hybrid layout resulted in the smallest footprint, fewest bays and lowest factory
area per wafer starts per week. Since simulation runs were made with only one process flow, a single
aluminum 180 nm logic process flow with 316 steps, the results could not be directly transferred to
a multi-product waferfab.

3.4.2 Serial Layout

The serial layout concept is clearly product-oriented, offering dedicated process equipment for
each operation required. This flow line layout yields a simple, linear product flow with short CTs,
but leads to extremely high machine requirements (and more clean room space) compared to the
reentrant layout. In the light of high capital investments, this layout is unlikely to be a practical
alternative (Hase et al., 1994). Nevertheless, there exist recent attempts to establish flow line
concepts in wafer fabrication, at least partially in suitable sections, e.g. in the wafer test area (Keil
et al., 2011; Eberts et al., 2012).

3.4.3 Cellular Layout

The cellular layout concept groups machines that are dedicated to performing operations related to
a fixed number of mask layers. Cellular layouts can be seen as an intermediate stage between the
bay layout and the flow line. The idea is to establish partial flow lines for certain layers, whereas
an entire mask layer is fabricated in a cell. Consequently one cell offers unit processes for a fixed
number of mask layers. They examine the performance of several different cellular and functional
layouts using simulation experiments. Despite of the fact that the simulation model is quite simple,
e.g. includes only one product, the authors point out the benefits of cellular manufacturing. In
particular, they emphasize that cellular layouts requiring only modestly higher capital investment
can yield significantly lower CTs in heavily loaded waferfabs. They also expect that the cellular
concept results in a) reduced setup time due to fewer operations being processed on a given piece
of equipment, b) yield improvement due to fewer changeovers, ¢) less down time as operators
take on maintenance functions, and d) simpler material handling due to machines in the cells
being in close proximity. But, as a result of their simulation results, they state that the presence
of unreliable machinery causes the performance of cellular layouts to deteriorate (Hase et al.,
1994, 1997). Similarly, Chang and Chang (1998) propose a layer-based approach that groups the
equipment of continuous process layers in the same area or cell. They discuss the layer-based layout
approach based on a simulation model that contains one logic product with 16 layers, created in
245 steps.

49

3 WAFER FABRICATION

3.4.4 Ballroom Layout

The ballroom layout is proposed by industry to increase the flexibility and productivity of the
traditional bay layout. The ballroom layout involves larger rooms than the bay layout and connects
the machines in a room by one combined OHT/OHS loop. This is a functional layout that provides
even higher routing and product mix change flexibility than bay-based layouts. This layout increases
the direct inter-bay transportation, and reduces the transportation time and the initial investment
costs (Chung and Jang, 2007). Refer to Figure 12 visualizing a variant of a ballroom layout.

70

3

30m
EHEEEEEEE
A A A ey
EIEEICEIEEEE] ¥ oo
HIEHEHEEEEE
HEEEEEEE

OHS
AEEEEEERE
EEEEEEEE
EEEEIEEIBE]
eEEEHEBRER

M

=

S

N

120 m

Y

S

S

EIE
=|Lo ISH | M7 | %)

<ENEIEEIEEE]
E BIRE

RN

=

N

N
=

=

S

m
NN

=
S

=
NS

Figure 12: Integrated ballroom layout (Chung and Jang, 2007)

50

I
N N
4 Modeling and Simulation ———
Contents
4.1 Modeling . . . ¢ i v i v i e 51
4.2 Simulation. i i i e e e e e e e e e e e e e e e e e 52
4.3 Simulation Project Life Cycles, 54
4.4 Validation and Verification 54
4.5 Input Data Management 55
4.6 Simulation in Waferfabs 0. 56
4.7 Wafer Fabrication Equipment Modeling 60

Modeling and Simulation gains rising importance for almost any kind of industry and science.
Informally, Modeling and Simulation (M&S) as a multidisciplinary field in science, provides methods
based on computer technology to imitate artificial and/or real systems. The books by Law and
Kelton (2000) and Woolfson and Pert (1999) provide early introductions to simulation modeling and
analysis. For more recent books that deal with M&S, see (Sokolowski and Banks, 2009; El Sheikh
et al., 2008; Chung, 2004). Crosbie (2010) presents a survey on grand challenges in M&S today.
Wainer (2009) and Banks (2009) point out various advantages of M&S.

Informally, M&S techniques are used to computationally imitate the behavior of any kind of
system. Maier and Rechtin (2000) define a system as a set of different elements so connected
or related as to perform a unique function not performable by the elements alone. A system
has components, relationships and implicitly a boundary, that separates it from the rest of the
environment (Krygiel, 1999). According to ISO/IEC 15288 (2008) a system may be configured
with one or more of the following system elements: a) hardware, b) software, ¢) data, d) humans,
e) processes, f) procedures, g) facilities, h) materials, and i) naturally occurring entities.

Law and Kelton (2000) identify a number of ways to study a system: a) experimentation with
the actual system or with a model of the system, b) investigation based on physical or mathematical
models, and ¢) modeling approaches based on analytical or simulation solutions (see Figure 13).
Among mathematical models, Wainer (2009) further distinguishes between analytical, numerical
and simulation approaches.

Advantages and Disadvantages of Simulation In addition to numerous economical benefits,
such as reduction in CT of R&D activities, M&S develops an understanding by observing how a
system operates (Banks, 2009). Among all advantages, the capability to compress and expand
time to allow the user to speed up or slow down the system’s behavior can be seen as the most
powerful one. Banks (2009) notes to bear in mind that simulation modeling and analysis can be
time consuming and requires special training needed for building simulation models. Similarly
Shanthikumar et al. (2007) mention that simulation requires an enormous amount of input data
and substantial resources to maintain and update the model. Due to the stochastic nature of
(most) simulation models, multiple replications are needed to perform a confident statistical
analysis. Therefore, it can be difficult and extremely time-consuming to explore what-if questions
(Shanthikumar et al., 2007).

4.1 Modeling

Models are used when the real system cannot be engaged because a) it may not be accessible, b) it
may be dangerous to engage the system, ¢) it may be unacceptable to engage the system, or d) the
system may simply not exist (Banks, 2009).

Banks (2009) and Petty (2009) both stress that a model is an abstraction from something,
intended to serve for a specific application and thus providing a suitable description from a certain
point of view. Depending on the viewpoint, some characteristics are considered important while
others are omitted.

51

4 MODELING AND SIMULATION

System
Experiment Experiment
with actual with a model of
system actual system
Physical Mathematical
model model

Analytical

Simulati
Solution ymuiation

Figure 13: Taxonomy to study a system (Law and Kelton, 2000; Goti, 2010)

Model Typology Petty (2009) broadly groups models into two types: conceptual and executable.
Conceptual models document those aspects of the real system that are to be represented and those
that are to be omitted. The conceptual model may include mathematical equations, flowcharts,
Unified Modeling Language (UML) diagrams, data tables, or simply textual descriptions. The
executable model is intended to simulate the real system as specified in the conceptual model.
The executable model may be a physical model or a mathematical representation, respectively a
computer program. Another classification distinguishes models with respect to techniques used
for modeling. Fishwick (1995) proposes four categories: a) conceptual modeling, b) declarative
modeling, ¢) functional modeling, and d) spatial modeling.

Mathematical Models Mathematical models can be seen as a set of mathematical equations
and logical relationships (Abu-Taieh and El Sheikh, 2008). Among mathematical models, Wainer
(2009) further distinguishes between a) analytical, b) numerical and ¢) simulation approaches.
Analytical models provide formal representations that allow us to study the variables of interest in
a mathematical system, e.g. a system of differential equations. For models of a higher complexity,
respectively for those for which no analytical solution is available, numerical methods are introduced.
With respect to continuous problem formulations, respectively those with temporal dimensions,
numerical methods employ discretization in order to calculate model variables at predefined time
steps. The solution obtained by numerical approximation comes with errors, since it is impossible
to calculate every possible combination of the models variables in a reasonable time. In the area of
computer simulation, traditional numerical models were converted into computer-based solutions
—the model is basically a computer program. Velten (2009) gives an introduction into mathematical
modeling and simulation.

4.2 Simulation

Since computer simulation attracts many researchers, numerous definitions have been emerged
for the term computer simulation; cf. (Abu-Taieh and El Sheikh, 2008; Paul and Balmer, 1993;
Banks, 2009). Despite of the fact that those definitions may differ within a range, most of those
definitions put emphasis on the temporal aspect of simulation. Sokolowski (2009) and Petty (2009)
for example, simply define simulation as the process of executing a model over time. More precisely,
simulation adds a temporal aspect to a static model by depicting how the system being modeled
changes over time.

52

4 MODELING AND SIMULATION

Applications Banks (2009) groups simulation applications into five categories: a) training,
b) decision support, ¢) understanding, d) education and learning, and e) entertainment.

With respect to the focused use case, Pedrielli et al. (2012) list nine important application areas
for simulation: a) commerce, b) manufacturing, ¢) supply chains, d) health services and biomedicine,
e) simulation in environmental and ecological systems, f) city planning and engineering, g) aerospace
vehicle and air traffic simulation, A) business administration and management, and) military
applications. Simulation for manufacturing and supply chains is discussed in (Merkuryev, 2009),
for health services and biomedicine in (Sokolowski and Banks, 2011), and Adamy (2003) deals with
simulation in military applications. In that line Sokolowski and Banks (2009) and Wainer (2009)
give numerous examples of simulation models for a wide range of application areas.

4.2.1 Model Typology

Any simulation model is developed for a specific purpose. It shows specific characteristics depending
on the targeted system to be modeled and on the chosen simulation method applied. The behavior
of a simulation model is generally characterized by the following three aspects: a) static or dynamic,
b) discrete or continuous (in time and/or variables), and ¢) deterministic or stochastic.

Static vs. Dynamic Models Despite of the fact that most definitions for simulation consider
the aspect of modeling time as elementary (dynamic models), Goti (2010) states, that M&S also
frames models without any components related to time (static models).

Discrete vs. Continuous Models Within the group of dynamic simulation models, Sokolowski
(2009) distinguishes between two types of systems: a) discrete in which the variables change
instantaneously at separate points in time, and b) continuous where the state variables change
continuously with respect to time. Pedrielli et al. (2012) and Abu-Taieh and El Sheikh (2008)
further distinguish between two groups among discrete system simulation systems: a) time-based
discrete simulation and b) Discrete Event Simulation (DES). In time-based discrete simulation
(also known as time-slice approach) variables change at predened points in time as the simulation
moves forward in equal time intervals. In DES variables change event-based, respectively whenever
a new event occurs. In (Abu-Taieh and El Sheikh, 2008) and (Hriiz and Zhou, 2007) one can find a
classification scheme with four types of simulation models. This classification scheme emerges when
the discrete or continuous nature is determined for time as well as for model variables separately.
Then variables in the model change in four ways: a) continuously at any point of time (continuous
time), b) continuously at discrete time events, ¢) discretely at any point of time (continuous time),
or d) discretely at discrete time events. Wainer (2009) presents a mapping between common M&S
techniques and those four groups.

Deterministic vs. Stochastic Models Beside the discrete and continuous nature of model
variables and time, there is another feature of importance that characterizes simulation models:
the behavior of the system can be deterministic or stochastic. Simulation models may make use
of randomness in order to create stochastic effects, which in turn enable the model to imitate
system behavior on a certain level of abstraction. Deterministic simulation models always lead to
identical results, provided that the simulation system runs under identical conditions. In contrast,
the results of stochastic simulations are not exactly predictable in cause of intended random effects
that represent a specific behavior (Abu-Taieh and El Sheikh, 2008).

4.2.2 Technologies

Allen (2011) provides an extensive listing of common M&S techniques with additional information,
e.g. the basic principle and relevance for certain applications. Zimmermann (2008) emphasizes
the importance of Stochastic Discrete Event Systems (SDES), but also mentions popular model
classes like Queuing Theory and Petri nets (with stochastic extensions). Queuing Theory employs
stochastic processes to model waiting lines under consideration of stochastic effects; cf. (Stewart,
2009; Gautam, 2008; Willig, 1999; Nyhuis and Wiendahl, 2009). Variants of Markov chains are
usually used to create queuing models, which may represent manufacturing systems or parts of

53

4 MODELING AND SIMULATION

it (Xu et al., 2008a). Compared with simulation, analytical approaches based on Littles law and
Queuing Theory can be much faster in achieving reasonable results. Littles law states that there
exists a proportional relationship between WIP and CT in a queuing system Little (1961). Queuing
models provide CT estimations based on the stochastic analysis of the arrival process and the service
process (Shanthikumar et al., 2007). Hriz and Zhou (2007) discuss numerous variants of Petri
nets. Another interesting branch in simulation technology is established by agent-based systems,
i.e. multi-agent systems. Those systems establish distributed simulation based on communication
among autonomous agents; cf. (Jennings and Wooldridge, 1998; Weiss, 1999; Bussmann et al.,
2004; Allen, 2011).

Discrete Event Simulation (DES) DES is one of the most important approaches in the area
of M&S. The nature of DES systems generally is a) dynamic (model varies over time), b) discrete
(in time and variables), and c¢) stochastic (as it employs randomness). Sokolowski (2009) formally
defines DES as the variation in a model caused by a chronological sequence of events acting on
it. Events are instantaneous occurrences that may cause variations or changes in the state of a
system. The state of a system is defined as one or more variables that completely describe a system
at any given moment in time. A system clock keeps track of the simulation time and may be
used to trigger events. Allen (2011) draws a bright future for both discrete event simulation and
agent-based modeling. He lists four factors that will contribute to their widespread application:
a) continuing pressures for organizational efficiency, b) improved access to low-level data through
new sensors and databases, ¢) enhanced visualization capabilities as simulations become more
realistic, and d) increasing computational efficiencies from faster computers. For deeper insights
into DES and for interesting reviews over recent developments in this field, see (Wainer, 2009; Goti,
2010; Wainer and Mosterman, 2011; Allen, 2011; Pedrielli et al., 2012).

4.3 Simulation Project Life Cycles

Any successful simulation project involves skills in both simulation and project management.
Robinson and Bhatia (1995) discuss important activities in a simulation project. Structured courses
of activities, also known as (simulation) project life cycles, have been proposed for M&S studies in
(Balci, 1994, 1998, 2012; Robinson and Bhatia, 1995; Wainer, 2009).

Wainer (2009) summarizes important activities to be performed during a simulation project. For
simplification these activities are grouped into five phases: a) problem formulation and conceptual
modeling, b) data collection, ¢) modeling and simulation, d) experimentation and output analysis,
and e) validation and verification. Wainer (2009) further points out that this sequence of steps does
not have to be interpreted as strictly sequential. It is highly recommended to follow the proposed
steps in a cyclic manner as to achieve incremental developments in each phase.

4.4 Validation and Verification

Wainer (2009) describes Validation and Verification (V&V) as follows: Verification is related to
the internal consistency between the conceptual and the executable model, and makes sure that the
simulation model is implemented as specified (Did we build the model right?). Validation focusses
on the correspondence between model and reality, respectively checks whether simulation results
are consistent with the system under study (Did we build the right model?). Refer to Figure 14 for
a graphical representation of entities and activities in the area of V&V.

According to Balci (1994), Wainer (2009) and Petty (2009) V&V techniques can be grouped
into four categories: a) informal, b) static, ¢) dynamic, and d) formal.

Activities Among others, Petty (2009) describes a very detailed model for the relationships
among the entities analyzed or developed during a simulation project. He defines activities to be
carried out within the process of V&V. Sargent (2010) proposes a more simple model in which
three activities play key roles: a) conceptual model validation, b) computerized model verification,
and c¢) operational validation

54

4 MODELING AND SIMULATION

Conceptual model validation is determining that the assumptions underlying the conceptual
model are correct and the models representation of the problem entity is reasonable for the intended
purpose of the model (Sargent, 2010).

Computerized model verification ensures that the implementation of the conceptual model
is correct, respectively is conform to the specifications made in the conceptual model. Usually,
techniques from software engineering verify that the executable model is implemented as intended,
where rudimentary stepwise code debugging would probably one of the simplest forms (Sargent,
2010).

Operational validation is determining whether the simulation model’s output has the accuracy
required for the model’s intended purpose. At the latest in this stage, crucial modeling problems
will show up in form of inaccuracies, either related a) to invalid data, b) implementation errors in
the executable model, or ¢) even wrong assumptions in the conceptual model (Sargent, 2010).

Data Validity Invalid data are often reason for failing simulation modeling projects. It is usually
difficult, time consuming, and costly to obtain appropriate, accurate, and sufficient data. Data are
needed for @) building the conceptual model, b) validating the model, and ¢) performing experiments
with the validated model. In order to ensure high-quality data, one should develop good procedures
for a) collecting and maintaining data, b) testing the collected data using techniques such as internal
consistency checks, and ¢) screening the data for outliers and determining if the outliers are correct
(Sargent, 2010).

Accreditation Petty (2009) discusses the process of accrediting a model, in addition to the
V&V activities: Accreditation is the official certification by a responsible authority that a model
is acceptable for use for a specific purpose. The term accreditation is often used in conjunction
with verification and validation, even though it is an entirely different sort of process. While
verification and validation are technical in nature, accreditation is a nontechnical decision process.
Consequently V&V is often extended to Validation, Verification and Accreditation (VVA).

Validity

Problem Entity
P (System) oy
7 . ~ ~
e s ~
Operational CO;I/IcOe(})etlual
Validation Validation
’

1 X \\
! Experimentation AI::::ZSIS \
\
Data Modeling 1
1
1

_—————

/

Computerized Computer Programming Conceptual
Model ™ and Implementation Model
w
. A
N i
~<_ Computerized -
~ Model -~
Verification

Figure 14: Validation and Verification (Sargent, 2010)

4.5 Input Data Management

Missing data and low data quality is a major barrier in transferring results from academic into
real-world applications (Moénch et al., 2011b). Especially the huge amounts of data available in
the todays operative systems justify the need for data mining techniques to be used to deal with
missing or erroneous data. Sargent (2010) discusses data validity as an integral part of V&V and

55

4 MODELING AND SIMULATION

emphasizes the importance of appropriate, accurate, and sufficient data for a successful simulation
project. Robinson and Bhatia (1995) simply classify data into three categories: a) available, b) not
available but collectable, and ¢) available and not collectable.

Skoogh and Johansson (2008) identify four major problems related to Input Data Management
(IDM) during simulation projects; the data problems we face are often due to: @) too many
measurements in cause of insufficiently specified data accuracy, b) late additional rounds of data
gathering as a consequence of missing actions verifying that all data would be found, ¢) failing
of raw data gathering caused by not properly chosen and clearly defined gathering methods, and
d) many iterations in data collection as a result of an inefficient validation process.

To overcome these challenges it is highly recommended to develop effective methodologies in the
area of IDM, especially in DES that require enormous amounts of data. For example, Bengtsson
et al. (2009) describe methodologies for IDM in DES. Another structured methodology for the
input data management process that covers identification, collection, and preparation of input
data for simulation models is available in (Skoogh and Johansson, 2008). They propose a clear
mode of operation for handling input data, intending to increase both the rapidity and the quality
in the input data phase of simulation projects. The proposed scheme comprises the following
sequence of activities: 1. identify and define relevant parameters, 2. specify accuracy requirements,
3. identify available data, 4. choose methods for gathering of not available data, 5. create data
sheets, 6. compile available data, 7. gather not available data, 8. prepare statistical or empirical
representation, and 9. validate data representations.

Automated Model Generation The process of data collection is extremely time consuming
and hence automating it would be highly advantageous (Robertson and Perera, 2002). Mathewson
(1984), probably as one of the first, deals with the idea of an automated model generation, in
particular for DES systems. Since then, a considerable amount of literature about challenges
and solution approaches related to the idea of automated modeling has been published. Son and
Wiysk (2001) also present an architecture to automatically generate a simulation model. They
describe a methodology to collect static and dynamic information from shop floor control systems,
illustrated with examples of different manufacturing systems. In particular data coupling between
the data world of the production is considered as a challenging task, and Horn et al. (2005) present
a concept to integrate a simulation-based real-time production planning system in wafer fabrication.
Especially for online simulation systems, automated generation of simulation models becomes
necessary to ensure (near) real-time capabilities. Noack et al. (2010) discuss a data architecture
used to automatically create an online simulation model for an entire waferfab. With respect to
large-scale simulation models, huge amounts of data from different databases and other data sources
need to be processed properly; cf. (Randell and Bolmsjé, 2001; Mueller et al., 2007).

Data Cleaning The success of automated modeling is based on valid data. Though entirely
valid data are rarely the case, automated modeling is strongly related to data cleaning procedures.

Rahm and Hai Do (2000) classify data quality problems that are addressed by data cleaning
and provide an overview of the main solution approaches. Data cleaning is especially required
when integrating heterogeneous data sources. In particular, simulation projects for complex
manufacturing facilities (e.g. waferfabs) typically deal with numerous, heterogeneous data schemes.
Schema matching is the task to produce a mapping between elements of minimum two data schemes
that might be heterogeneous in their structures, and is a basic problem in many database application
domains Rahm and Bernstein (2001), to which large-scale simulation projects definitely belong to.

Fang et al. (1991), Bright et al. (1994) and Rahm and Bernstein (2001) discuss strategies to
tackle heterogeneity in connected databases.

4.6 Simulation in Waferfabs

Semiconductor manufacturers are constantly under pressure to reduce CT and OTD. Accurate CT
estimation can greatly support production planning and scheduling of waferfabs. However, this
question is not easy to answer due to complicated tool specifications and process flows (Shanthikumar
et al., 2007).

56

4 MODELING AND SIMULATION

Fowler and Rose (2004) state that there is a need for the pervasive use of M&S for decision
support in current and future manufacturing systems. They identify four grand challenges that
need to be addressed by the simulation community to realize this vision; M&S particularly needs:
a) an order of magnitude reduction in problem-solving cycles, b) real-time, simulation-based
problem-solving capability, ¢) true plug-and-play interoperability of simulations and supporting
software, and d) to convince the management to sponsor M&S projects. Between those four
convincing the management to sponsor modeling and simulation projects is the biggest challenge.

In addition, grand challenges in M&S are discussed in (Fowler and Rose, 2004) for complex
manufacturing systems and in (Ménch et al., 2011b) for discrete event logistics systems. Uzsoy
et al. (1992b) give a review of simulation performance evaluation in semiconductor industry. Chien
et al. (2008) review the role of modeling and analysis in semiconductor manufacturing, presenting
expert’s views on the challenges and successes of modeling and analysis.

Wafer fabrication poses challenging difficulties in developing simulation models, in particular
due to two reasons: complicated tool specifications and varying process flows (Shanthikumar et al.,
2007). First, service processes on tool sets are subject to high variation due to a) multiple products
and operations on the same tool set, b) requirements of cascading and setups, c¢) restrictions such
as dedication and waiting for metrology verification, d) variable batch sizes, and e) scheduled and
non-scheduled downtimes of equipment.

Second, process flows involve hundreds of operations with many reentrant processes. Thus,
process flows, even for identical products, vary due to a) unforeseeable effects like scrap, on-hold,
and rework, b) multiple products accompanied with lot split and lot merge, ¢) engineering lots that
compete with production lots for resources (in R&D waferfabs), and d) random order arrivals and
product replacements as a result of fast market demand changes.

Queuing Theory vs. DES In accordance to the two basic approaches to study a model of
a system, analytical modeling and simulation, there exist two prevailing methods for waferfab
performance evaluation: Queuing Theory and DES. Both approaches have their justification, are
extensively used in practice and complement each other (Uzsoy et al., 1992b). A decision for or
against one of both is recommended to be driven by the profile of requirements given by the use
case(s).

Analytical modeling may be a better choice for simple queuing systems, whereas simulation is
often used to analyze the complex queuing systems in which analytical methods become intractable
or unacceptable due to too inaccurate outputs (Fishwick and Park, 2009). Queuing models are
used for fast, approximate analyses and simulation models are developed for detailed studies which
take considerably longer (Uzsoy et al., 1992b); cf. (Shanthikumar et al., 2007).

Uzsoy et al. (1992b) report that the values of the parameters of interest obtained from the
queuing models deviated from the values obtained from simulation by between 7% and 20%.
However, the run times observed for the queuing approach were much shorter than the simulation
run times.

Shanthikumar et al. (2007) proceed with two aspects that make exploring what-if question by
simulation difficult and extremely time-consuming: First, simulation requires an enormous amount
of input data and substantial resources to maintain and update the model. Second,based on the
nature of simulation modeling, multiple replications are needed to perform confident statistical
analysis.

Likewise, one can find arguments against applying Queuing Theory. One of the Queuing
Theory’s major issues in practical applications is: Queuing Theory assumes a stationary status
of the system and real fab operation is never in a stationary status (steady-state), but at any
time in a transient state (Shanthikumar et al., 2007). Shanthikumar et al. (2007) survey the
application of Queuing Theory for waferfabs and Govil and Fu (1999) survey the contributions and
applications of Queuing Theory in the field of discrete part manufacturing. Uzsoy et al. (1992b)
provide an extensive list of simulation models applied in semiconductor manufacturing and also
present examples of queuing models. Kumar and Kumar (2000) provide an instruction to the
application of queuing models to the design and analysis of waferfabs.

57

4 MODELING AND SIMULATION

4.6.1 Forecasting

Forecasting generates expectations of the future in order to evaluate alternate policies (Hopp and
Spearman, 2001). The development of advanced forecasting techniques is an important aspect in
the area of modeling and analysis in semiconductor manufacturing (Chien et al., 2008). There is
one basic distinction between forecasting methods: a) qualitative forecasting using the expertise
of people, rather than precise mathematical models, and b) quantitative forecasting based on
some kind of mathematical model (Hopp and Spearman, 2001). Among quantitative forecasting
models, Hopp and Spearman (2001) further distinguish between: a) causal models predicting a
future parameter as a function of other parameters, and b) time series models predicting a future
parameter as a function of past values of that parameter. A commonly used classification scheme
distinguishes forecast methods with respect to their forecast horizon: a) long-term forecasts to
support strategic decisions (months to years), b) mid-term forecasts to support tactical decisions
(weeks to months), and ¢) short-term forecasts to support operational decisions (days to weeks).
In that context, Hopp and Spearman (2001) state the following three well-known and generally
applicable laws of forecasting: a) Forecasts are always wrong! b) Detailed forecasts are worse than
aggregate forecasts! ¢) The further into the future, the less reliable the forecast will be!

Long-Term Forecasting Long-term forecasting is usually performed as offline study, and the
simulation experiments are conducted as steady-state simulation. Uzsoy et al. (1992b) provide an
extensive list of simulation models applied in semiconductor manufacturing. Simple factory models
show essentially the same behavior as a complete factory (Rose, 1999b). Rose (2000) investigates
model accuracy of simple waferfab models and proposes model improvements in (Rose, 2007).
Long-term forecasts are used to predict up to two years of fab operations (Bosch and Wright,
2008). GiBrau (2013) presents a DES system developed for a highly customer oriented ASIC factory.
In order to improve model accuracy, researchers investigate specific topics in connection with
waferfab simulation modeling. For example, modeling machine breakdowns in waferfab models is
an important task, discussed in (Rose, 2004; Scholl, 2008)

Long-term forecasting is a suitable use case for analytical approaches, e.g. Queuing Theory
(see Section 4.6). For example, Schelasin (2011) outlines a method based on Queuing Theory
together with targeted historical data to estimate CT. Becker (2003) presents a simulation model of
a complete waferfab using Petri nets. A promising branch in forecasting technologies employs data
mining techniques. Based on measured and calculated process metrics (such as WIP at specific
operations, lot priority, product type, etc.), data mining algorithms feed models used to predict,
e.g. CT (Backus et al., 2006). Predictions based on data mining algorithms perform better when
being combined with domain knowledge (Chien et al., 2005). Another idea to enhance forecasting
schemes based on data mining methods, is to implement clustering methods, which support the
system to specifically threat product groups, tool sets, process types etc. according to their specifics.
This way, Mosinski et al. (2011) implement a lot delivery forecast based on time series in a waferfab
with wide product range. Neural networks have also been investigated. Usually back-propagation
networks are trained with historical data to generate forecasts (Yu and Huang, 2002; Chen, 2007).
Based on neural networks, Liao and Wang (2004) generate delivery time estimates for 300 mm
AMHS operations.

Short-Term Forecasting For short-term forecasting, DES is the option of choice, since an-
alytical approaches based on Queuing Theory lack the required level of detail; cf. Section 4.6.
Simulating short terms is naturally characterized by a transient behavior. In most cases, it is
desired to setup those systems as online implementations, which continuously synchronize with the
activities on the shop floor in order to instantly provide short-term forecasts. Weigert et al. (1999)
investigate the basic principles of process accompanying simulation. They discuss a method for
synchronization and adaptation of the simulation model while the manufacturing process continues.
High fidelity simulation systems that provide reliable short-term forecasts are highly desired to be
applied in operational planning, scheduling, and control of manufacturing; cf. Smith et al. (1994);
Reijers and van der Aalst (1999); Werner and Weigert (2002); Bagchi et al. (2008). The existence
of actual data is essential to any short-term simulation system. Online simulation systems have
direct access to the current fab state and and thus provide the capability to generate predictions in

58

4 MODELING AND SIMULATION

(near) real-time; cf. Drake and Smith (1996); Potoradi et al. (2002). High fidelity combined with
the ability for fast responses, makes online short-term forecasting highly beneficial for operational
planning, scheduling, and control of manufacturing systems But, implementing such a simulation
system is a crucial task. Scholl (2008); Scholl et al. (2010, 2011); Noack et al. (2011) describe an
online simulation model for short-term lot arrival forecasting in a mature 200 mm waferfab. They
discuss challenges, solution approaches and important modeling issues; cf. Noack (2012).

4.6.2 What-If Studies

Considerable effort has gone into the development of simulation models for waferfabs and their use
to analyze the effects of different control strategies and equipment configurations (Uzsoy et al.,
1992b). Simulation models also serve as vehicle to investigate product mix changes, fabrication
layouts, and the effect of lot sizes. Simulation studies that are carried out to answer certain
questions in order to facilitate understanding of the relation between cause and effect, are also
known as what-if-studies.

Dispatching Rule Evaluation Rule-based dispatching rules constitute one of the most powerful
tools to control material flows. Early simulation studies on how certain dispatching rules affect
factory performance are presented in (Uzsoy et al., 1992a; Waikar et al., 1995; Holthaus and
Rajendran, 1997; Mittler and Schoemig, 1999). The effect of various dispatching rules on CT and
OTD have been assessed by use of DES systems for example in (Kim et al., 2001; Rose, 2001,
2002, 2003a,b; Hung and Chang, 2002; Sunkara and Rao, 2003; Dominic et al., 2004; Ménch and
Zimmermann, 2004). More recent DES studies about dispatching control strategies are available in
(Sha et al., 2006; Valente, 2007; Ko et al., 2010; Chiang and Fu, 2012; Gifirau, 2013; Zhou and
Rose, 2009, 2010, 2012).

Layout Studies Layout studies are considered as an important activity in the waferfab planning
phase, motivated by the fact that the layout is difficult and expensive to modify once it is set up
(Chung and Jang, 2007). Hase et al. (1994, 1997) and Chang and Chang (1998) present DES studies
in which they study cellular, reentrant, layer-based layouts and variants of them for waferfabs.
In (Campbell and Ammenheuser, 2000) and (Quinn and Bass, 1999) one can find factory layout
studies accompanied with AMHS modeling for modern 300 mm waferfabs. More recent studies on
issues related to factory layout and automation are presented in (El-Kilany, 2004) and (Chung and
Jang, 2007).

Lot Release Strategies Lot release strategies intend to keep the WIP in waferfabs under a
critical level and thus prevent the increase in CT; cf. Little’s Law (Little, 1961). Popular workload
control strategies are presented in (Rose, 1999a) and (Sivakumar et al., 2008). Recently, Fredendall
et al. (2010) investigate the effect of lot release strategies via simulation.

Lot-Sizing Lot sizing is considered to be a promising strategy for CT reduction, especially for
high-mix, low-volume factories. Combining Queuing Theory and simulation together as one unified
approach, Potoradi and Winz (1999) make a general observation concerning lot sizes. For areas
of the factory that are highly utilized, a larger lot size is required to meet THP. For areas less
utilized, a smaller lot size can be implemented to minimize CT. Since the process time depends on
the lot size for a wide range of machine types, it is beneficial to match the lot size and machine
configuration (Schmidt et al., 2006). The effect of matching lot sizes and machine configurations
considerably depends on loading situations at factory bottlenecks (Wang and Wang, 2007). Stubbe
(2010) examines the effect of small lot sizes on CT in combination with a conversion of batch
processes to mini-batch or single-wafer processes. Especially for batch processes, lot sizing plays
a key role in performance evaluation. One can find related simulation studies in (Rummel, 2000;
Bonnin et al., 2003).

59

4 MODELING AND SIMULATION

4.6.3 Simulation-Based Scheduling

Simulation-based scheduling systems place highest requirements upon simulation. Scheduling
systems require an online simulation that provides detailed forecasts with high accuracy in a very
short time. Qiao et al. (2012b) review simulation-based scheduling approaches for wafer fabrication
and introduce a simulation-based modular planning and scheduling system for a waferfab. Smith
et al. (1994), Drake and Smith (1996) and Sivakumar (1999) present early scheduling systems based
on DES in complex manufacturing environments, e.g. wafer fabrication. More simulation-based
scheduling systems used for shop floor planning, control and scheduling are presented in (Werner
and Weigert, 2002; Potoradi et al., 2002; Chong et al., 2003b; Monch et al., 2003; Klemmt, 2012).
Chong et al. (2003a) and Fowler et al. (2003) describe simulation-based scheduling approaches
that focus on factory bottlenecks. Horn et al. (2006), Horn (2008) and Weigert et al. (2009)
discuss their experiences during the development of a simulation-based scheduling system for a
semiconductor backend facility. A simulation-assisted approach for scheduling and rescheduling
complex production system configurations is investigated in (Dangelmaier et al., 2006, 2007). Wu
and Wysk (1989) and Zhang et al. (2009a) describe their strategies to dynamically choose suitable
dispatching rules based on the results provided by DES.

4.7 Wafer Fabrication Equipment Modeling

Equipment models form one of the central pillars to evaluate waferfab performance (planning and
simulation) and to control material flow (sophisticated dispatching and scheduling in particular).
Generally it is distinguished between two types of equipment models: a) simplified equipment
models based on an analytical approach that is sufficiently fast enough to be implemented as a
basic component in a simulation/dispatching/scheduling system, and b) detailed simulation models
used for performance analysis, in most cases applied to study complex cluster tools.

Since detailed simulation models perform too slow to be applied for fab simulation, most research
activities try to develop fast, analytical models with higher accuracy. Conventional equipment
models used for long-term simulation applications usually consist of information about THP and
may include additional information for BP. Simulation especially for short horizons and optimization
solutions (e.g. lot scheduling), need more detailed models that mimic the equipments processing
behavior more precisely. Beyond rather simple THP models, capacity equipment limitations as well
as predicting accurate processing times become points of interest in the field of equipment modeling.
The demand for detailed equipment models separately focusing on capacity-related and temporal
aspects of lot processing is growing, driven by upcoming simulation and optimization applications.

Automated Parametrization The need for more detailed models with high accuracy remarkably
increases the modeling effort. Building equipment models is usually done by hand and takes large
amounts of time due to manually searching multiple data sources and analyzing surveys addressed
to experts. In spite of the fact that modern MESs track huge amounts of data generated on
the shop floor, not all needed modeling information are directly accessible. Compared to expert
interviews, the idea of automated modeling based on given MES data promises considerable time
savings and even new information that can increase equipment model quality. Self-creating and
self-parameterizing equipment models as a result of automating the modeling process using data
mining techniques as far as possible would considerably increase efficiency of today’s modeling
policies.

4.7.1 Analytical Models

Any waferfab simulation system incorporates a kind of analytical model. Shikalgar et al. (2003)
discuss a realistic way of representing cluster tools in a simulation model of the entire line. Most
publications focus on modeling modern cluster tools, because of their modeling complexity and
growing importance in industry. Morrison (2011a,b) discusses linear and affine models that
are commonly used to model equipment THP in waferfab simulations. He focuses on clustered
photolithography and multi-cluster tools and develops flow line models that allow for diverse
products, wafer lots and wafer location dependent setups. The processes in photolithography are
often performed by linear cluster tools, Yi et al. (2007) analyze steady-state THP and scheduling

60

4 MODELING AND SIMULATION

for those with with single-blade robots. Analytical models need to consider the effect of parallel
chambers and their interrelation with small lot sizes, having that focus. Schmidt et al. (2006)
evaluate modeling methods for small lot sizes for cluster tools with parallel chambers.

Wood et al. (1994); Wood (1996) lay the basis for analytical cluster tool models. They introduce
an analytical modeling approach used for THP modeling and process time estimations. It is used
for cluster tools that include internal wafer handling and processing times and additionally provides
bottleneck conditions for serial and parallel processing modes.

Perkinson et al. (1994, 1996) present an analysis of the relationship between process times,
transport times, and maximum THP in an individual cluster tool, discussing the effect of redundant
chambers and chamber revisitation process sequences on the THP. Gupta et al. (2008) verify the
models described in (Perkinson et al., 1994, 1996) by use of simulation.

In the field of automated modeling, Lange et al. (2008) present an approach for automated
generation of equipment THP models by analyzing internal equipment events, basically combining
the approaches of (Wood et al., 1994; Wood, 1996) and (Perkinson et al., 1994, 1996); cf. (Lange,
2008). A method for automated semiconductor equipment modeling and model parameter estimation
using MES data is presented in (Kohn et al., 2010; Kohn and Rose, 2011). Frantsuzov (2011)
validates automatically created equipment models, their applicability and accuracy, using various
sets of real-life data from wafer fabrication. Also based on event data, Hosoe et al. (2007) investigate
estimating tool processing time with high accuracy.

Niedermayer and Rose (2003) observe the influence of recipe combinations and the impact of
start delays and present the idea of using slow down factors mirroring dynamic interrelationships
inside a cluster tool. In the following, Unbehaun and Rose (2006) have continued developing the
idea (of using slow down factors) and present a model as well as a method to predict process times
at cluster tools. Niedermayer and Rose (2003) and Unbehaun and Rose (2006) both evaluate their
results by use of DES models mirroring the ideal equipment behavior in real world. With respect to
real-world data, Kohn and Rose (2011) present an approach to automatically create an analytical
process time model. They consider the effect of small lot size as well as the slow down effect. Other
simulaton models employ regression spline meta-models (Ruppert et al., 2000) or Petri nets (Qiao
et al., 2012a).

4.7.2 Simulation Models

Cluster tools are usually subject to simulation models, since analytical models lack of accuracy
due to the highly complex internal processing behavior. Early simulation models for cluster tools
are discussed in (Pierce and Drevna, 1992; LeBaron and Pool, 1994). More sophisticated models
reproduce the flow of wafers through a cluster tool more accurately (Becker, 2007). For example
Park and Morrison (2011) develop a simulation of cluster tools with realistic parameters, which
incorporates rolling setups and wet cleans. LeBaron and Hendrickson (2000) present a flexible
and sufficiently accurate cluster tool simulation model. Simulation models support cluster tool
performance evaluation in order to provide reliable THP values for factory capacity planning.
Koehler et al. (1999) describe the application of simulation for analyzing cluster tool CTs and
cluster tool capacity planning.

Another use case is driven by industrial engineering, simulation models facilitate identifying
internal bottlenecks, e.g. a slow moving wafer handler. Once a bottleneck is identified, it is possible
to initiate appropriate measures that improve cluster tool’s THP. Swe et al. (2006) present a
simulation model for cluster tools. They discuss the factors that influence CT. Christopher (2008)
shows the effect of load lock dedication on a sample multi-process chamber tool.

A further application is given by the need to validate analytical models —Gupta et al. (2008)
verify the models described in (Perkinson et al., 1994, 1996) by use of simulation. Detailed
simulation models also serve as a suitable vehicle to evaluate dispatching and scheduling strategies
for cluster tools. For example, Diimmler (2004) deals with modeling and optimization of cluster
tools in semiconductor manufacturing. The use of slow down factors and their application to cluster
tool scheduling is discussed in (Niedermayer and Rose, 2003; Unbehaun and Rose, 2006, 2007).
Various scheduling methods are subject to simulation studies. Oechsner and Rose (2005) deal with
filtered beam search and recipe comparison and Jung and Lee (2012) employ timed Petri nets.

61

4 MODELING AND SIMULATION

4.7.3 Modeling Equipment Capacity (External Behavior)

Kohn et al. (2010) present a system of quantities that classifies capacity-related equipment model
parameters according to their relationship to three dimensions and three units. These dimensions
and units refer to physical components of the production system as well as to logical entities being
part of the material flow control system. A set of capacity-related equipment parameters is arranged
into an ordinal system with the goal to create a helping structure and a better understanding for
shop floor manufacturing operations.

On one hand, three unit types build an ordinal scale of this system of quantities when ordering
them by their logical relationships, namely a) wafer, b) lot, and ¢) batch. The lowest unit in a
frontend semiconductor fabrication facility and also in this system of quantities is defined as a
single silicon substrate, termed as a wafer in this paper. A single lot constitutes the next greater
unit within this ordinal system and is defined as a group of one or more wafers of the same type.
Obviously both units, wafer and lot, have a physical context in this system. The largest unit is
defined by a single batch and has a logical meaning in contrast to the both units mentioned before.
A (parallel) batch is commonly defined as a group of lots to be simultaneously processed on a
machine, e.g. CFPs such as vertical and horizontal furnaces. Due to the fact that the lots in a
batch collectively share the same process resource, the lots have equal starting and finishing times.

On the other hand, three dimensions describe the size of a physical or logical entity with a
capacity-related meaning, namely a) lot size, b) batch size, and ¢) equipment size. First, the size
of a lot, given in the number of wafers, is commonly known as lot size and identically termed in
this system. Second, the common term batch size is used to describe the size of a batch and can
be set either in the number of lots or wafers. The last dimension, equipment size, describes the
equipment’s process capacity. The process capacity is defined as the maximum number of units
that can be processed simultaneously throughout the equipment and can be expressed in units of
batch, lot and wafer.

As a result of these presented dimensions and units, six meaningful capacity-related model
parameters emerge: a) lot size in wafers (LSW), b) batch size in lots (BSL), ¢) batch size in wafers
(BSW), d) equipment size in batches (ESB), €) equipment size in lots (ESL), and f) equipment size
in wafers (ESW). The dimension lot size can only be meaningfully described with the number of
wafers within the lot carrier (LSW). The dimension batch size is usually defined by a maximum
number of lots (BSL). In some cases the compilation of lots to a batch is additionally limited by the
sum of the lots wafers (BSW). The dimension equipment size can either be limited by the number
of simultaneously processed batches (ESB), the number of simultaneously processed lots (ESL), the
number of wafers that could be processed in parallel (ESW) or by a combination of all of them. In
some cases there exists a mathematical relationship between the values of these model parameters.
One can see that this system shows an ordinal character for both dimensions that combine physical
and logistic entities of the production system.

Refer to Figure 15 for a graphical representation of the described capacity model.

Unit
>
2
T
s
= ___
g
g
E
73

Batch (B) ESB=I
Lot (L) BSL=1 ESL=BSL*ESB
Wafer(W) || LSW=I | BSweisweBst -
. Batch Size Equipment ~ Dimension
Lot Size (LS) (BS) Size (ES)

Figure 15: System of capacity-related parameters to model wafer fabrication equipment (Kohn
et al., 2010)

62

4 MODELING AND SIMULATION

4.7.4 Modeling Processing Time (Internal Behavior)

A common approach to classify wafer fabrication equipment is to distinguish equipment with respect
to their processing time behavior, respectively the relationship between lot size and process time.
Among others, Schmidt et al. (2006) describe three semiconductor tool types. Hosoe et al. (2007)
extend these three types by one another special form of SWP. In (Scholl et al., 2010) one can find
five types of equipment. They furthermore distinguish between different cluster tools. Schmidt
et al. (2006) evaluate modeling methods for small lot sizes for cluster tools with parallel chambers.

Here it is basically distinguished between: a) Single wafer tools process single wafers; the process
time is a linear function of the lot size. b) Batch tools process batches of one or multiple lots; the
process time is a constant exclusively depending on the type of process (recipe). ¢) X-piece tools
(mini-batch-tool) process batches of x wafers; the lot size is smaller than the standard lot size and
the process time is a step function of lot size. d) Integrated processing where cluster tools process
multiple lots in parallel, sequential or mixed mode; the process time is hard to predict.

Refer to Figure 16 for a graphical representation of the described processing time models.

e \
I \
— Batch — X-Piece = = Single wafer‘ el
25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1
lotsize

Figure 16: Raw process time (RPT) of different tool types dependent on lot size Schmidt et al.
(2006)

Single-Wafer Processing (SWP) Typical SWP equipment is characterized by a linear rela-
tionship between the process time and the lot size. A simple Az + B model sufficiently predicts
process time for a certain recipe, where = denotes the lot size; the slope of the line A and the offset
B depend on internal equipment configuration, e.g. chamber process speeds. In most cases, the
machine only contains one single process chamber that is capable of processing one single wafer at a
time. Consequently, the wafers of a job are processed sequentially and thus the lot size affects the
process time directly. The data analysis shows that processing time additionally depends on the job
recipe. Moslehi et al. (1992) present an overview of various single-wafer integrated semiconductor
device processing.

Batch Processing (BP) BPMs are characterized by a process time that is equal for all the jobs
that constitute the batch. The process time minimum depends on the recipe chosen for the process,
but is independent from the lot size. A typical batch process in wafer fabrication is performed
in CFP machines, i.e. vertical and horizontal furnaces. But also wet benches provide batching
capability, processing up to two lots in a batch simultaneously.

X-Piece Processing The operation of X-piece processing machines is similar to the operation of
BPMs. They are alternatively called mini-batch equipment. This type of equipment is characterized
by a step-function between process time and lot size, whereas the equipment only processes one
single job at a time. Internally, the equipment performs BP with wafers. A bunch of wafers from a
single job is internally processed simultaneously and these mini-batches of wafers are processed in
sequence. The behavior of a step-function arises in case the lot size is greater than the mini-batch

63

4 MODELING AND SIMULATION

size of the machine, then it takes several mini-batch cycles to finish processing an entire job. For
this kind, equipment for ion implantation is representative, where up to 13 wafers are exposed to
ion beams on a rotating disc; consequently, it requires two mini-batch cycles to process a regular
lot with 25 wafers.

Integrated Processing Especially modeling and simulation of integrated processing equipment
(cluster tools) is a crucial task; cf. (Ménch et al., 2011a). The processing behavior is hard to predict
due to a complex arrangement of interacting wafer handlers and process chambers, controlled by
internal dispatching or scheduling systems. Early configurations comprise one mainframe connected
to a number of process chambers, which are extended to architectures that combine two mainframes
with numerous process chambers. Most recent cluster tool designs lead to linear cluster tools that
promise to be advantageous in THP and CT over their predecessors. For the simplest cluster tool
architecture with one mainframe, two load-locks and a number of process chambers two processing
schemes stand out, sequential and parallel processing. A cluster tool may switch between both
processing modes with the recipe(s) chosen to process the jobs. On one hand, the parallel processing
mode in which simultaneously processed lots slow each other down. The internal scheduler threats
the lots equally, the lots compete for internal resources and thus slow each other down. On the
other hand, the sequential processing mode in which the succeeding lot waits for the preceding lot
to finish. Simply, the preceding lot is always preferred by the scheduler, while the secondly started
lot is strictly forced to wait.

64

]
e
5 Metaheuristic Optimization ————
Contents
5.1 TaXONOmY « ¢ v v v v v v v v v vttt e e e e e e e e e e e e 67
5.2 Complexity Theory i ittt 69
5.3 The Search Space i i i i i, 72
5.4 Metaheuristic Design i i i et e e e e e 73
5.5 Trajectory Methods it it 77
5.6 Population-Based Methods. 84
5.7 Benchmarking 0 0 i e i e e, 88

Optimization is the process of selecting the best alternative among a given set of options. It covers
scientific methods for decision making in order to optimize one or more objectives in a constrained
environment (Baghel et al., 2012). The science branch Operations Research (OR) is concerned
with methodologies for optimization, respectively decision making. Most of the definitions of OR
emphasize that OR problems have an interdisciplinary character and that OR methods make use
of mathematical models to facilitate the process of decision making (Ravindran, 2008). At this
point this work refers to (Hillier and Lieberman, 2001) for a comprising introduction to OR, to
(Ravindran, 2008) for a more detailed view on OR with respect to management science and to
(Russell and Norvig, 1995) for a very detailed description of methods in the wide area of Artificial
Intelligence (AI) that is naturally connected to OR. In the OR community metaheuristics play an
increasingly important role in the area of methods discussed for solving optimization problems.

Project Guidelines Talbi (2009) emphasizes that decision making must be tackled in a rational
way and describes four basic steps that need to be processed during an OR study: a) formulate
the problem, b) model the problem, c) optimize the problem, and d) implement a solution (see
Figure 17). By formulating the problem the internal and external factors and the objective(s)
are outlined. Then, during the modeling phase, an abstract mathematical model is built for the
problem, involving simplifications and approximations in order to reduce the complexity. After
modeling the problem a suitable method for solving it hast to be found. Finally, the obtained
solution is implemented and tested by practitioners in the real environment. In a line with the life
cycles in software development and simulation studies, the course of actions in OR projects is rarely
linear, but often cyclic (Talbi, 2009). At this point, this work refers to (Hillier and Lieberman,
2001) for a similar OR project guideline, comprising six phases.

Especially for metaheuristics, Hansen and Mladenovié¢ (2003) propose four important activities
to provide the underpinnings before developing a solution based on metaheuristics for a given
problem: a) evaluate the difficulty /complexity of the problem and, if possible, the complexity of
the best-known exact algorithm, b) evaluate the performance of previous algorithms and determine
the largest instances solved exactly, ¢) evaluate the performance of previous metaheuristics applied
to this problem in terms of size, error and computing time, and d) analyze already proposed
metaheuristics and identify algorithmic key ingredients used for search, e.g. neighborhoods; cf.
(Talbi, 2009).

Optimization Problem The term problem generally refers to a task or question, defining the
environment in which a decision has to be chosen, usually with unspecified values. In contrast, the
term (problem) instance refers to a certain variant of a problem with specified values (Dorigo and
Stiitzle, 2004).

In the following a formal description of optimization problems is given, corresponding to the
description given in (Baghel et al., 2012); cf. (Talbi, 2009). An optimization problem P = (S, f)
consists of two components linked with each other: the state space S and the objective function
f. The state space S, alternatively referred to as search space or solution space, contains the
entire set of feasible solutions, where each solution s satisfies the constraints. The state space S is

65

5 METAHEURISTIC OPTIMIZATION

Formulate ——> Model ——| Optimize »| Implement
Solution

Figure 17: Guidelines for optimization projects (Talbi, 2009)

defined by a set of variables X = {x1,...,2,}, their corresponding variable domains Dy, ..., D,,
and a set of constraints among the variables in X; S = {s = {(z1,v1),..., (Zn,vn)} | v; € D;}.
The objective function f: S — R assigns to every feasible solution s € S an objective value f(s)
indicating the quality of the solution, formally defined as a real number. Given the fact that we
usually focus on minimization problems, the problem is to find a solution s* € S with the smallest
possible objective value f(s*). The solution s* is then considered as the best solution, respectively
the optimal solution or global optimum; f(s*) < f(s)Vs € S.

Combinatorial Optimization Similar to simulations models, the optimization problems we
face in the area of OR can either be programmed with real valued variables or with discrete
variables. Those entirely based on discrete variables belong to the class of COPs. Solving a COP
means to choose the best solution from a finite set of possible solutions (Baghel et al., 2012).

The TSP and the Knapsack problem are probably the most common representatives in the
class of COPs. The TSP is the problem of finding a minimum length circuit of a graph, where each
node of the graph is only visited once (Hamiltonian circuit). The Knapsack problem is the task
to select a subset of items from a given set of items, each assigned with a value and a resource
requirement, in such a way that they fit into a knapsack of limited capacity, while the sum of item
values is maximized (Dorigo and Stiitzle, 2004). For more detailed information about problems
and methods in the area of combinatorial optimization, see (Lee, 2004), (Du and Pardalos, 2005),
(Vasudev, 2007), (Paschos, 2008), and (Korte and Vygen, 2012).

Stochastic Combinatorial Optimization Another distinction is given by the existence of
uncertainty or stochastic effects in the optimization model: optimization problems can either be
deterministic or stochastic. Stochastic Combinatorial Optimization Problems (SCOPs) include
uncertain, stochastic, and dynamic information in their mathematical formulations. Most real-world
problems come with uncertainties and information about the problem is partially unknown. The
lack of detailed information is responded by modelers with assumptions on probability distributions
that describe parts of the problem stochastically. In consequence, the optimization problems become
even more difficult (Bianchi et al., 2009).

Shortcomings of Exact Methods The most obvious idea to solve a COP is to just enumerate
all feasible solutions. But due to the complexity of combinatorial problems, simple complete
enumeration will result in too long computing times that are not acceptable in practice. The
challenge is to develop efficient algorithms that perform better than simple enumeration (Lee,
2004).

For a considerable amount of optimization problems present in academia and industry, it is
intractable to obtain optimal solutions by the use of exact methods in a reasonable time. The
crucial point is that exact methods need large amounts of time to solve that kind of problems
to optimality. Consequently, the use of exact methods becomes inapplicable for most practical
applications, where a responsible person has to make a decision as soon as possible in order to
achieve desirable results (Marti and Reinelt, 2011). The reason why problems are hard to solve can
be found in their complexity, their size, their specific structure, or a combination of all aspects; cf.
(Talbi, 2009).

66

5 METAHEURISTIC OPTIMIZATION

Advantages of Metaheuristics In contrast, metaheuristics lead to acceptable solutions in a
reasonable time; solution quality and computing time is generally not exactly defined, i.e. acceptable
and reasonable. In this context, the specific use case defines the range of acceptable solutions
and determines up to which deadline computing times are still reasonable. But, a crucial issue
is that metaheuristics do not provide the capability to evaluate the solution quality with respect
to optimality. Compared to exact optimization algorithms that guarantee the optimality of the
obtained solutions and to approximation algorithms that provide at least a value for the distance to
the optimum metaheuristics generally lack performance in that point (Talbi, 2009). Metaheuristics
primarily justify their use with a well-balanced performance characteristic that describes a favorable
trade-off between solution quality and computing time.

Another point that justifies the use of metaheuristics instead of exact methods is given by
optimization problems that deal with uncertainty and stochastic effects (SCOPs). For that class
of noisy problems, uncertainty and robustness cannot be modeled analytically and thus non-
deterministic optimization models are used (Talbi, 2009). In consequence SCOPs become even
more difficult, exact methods become inefficient with respect to computing time and metaheuristics
emerge as the more attractive alternative, especially for SCOPs (Bianchi et al., 2009).

Further References For a more comprehensive and detailed view on metaheuristics, this work
refers to (Blum and Roli, 2003), (Gendreau and Potvin, 2009), (Luke, 2009), (Moscato and Cotta,
2009), (Talbi, 2009), and (Zapfel et al., 2010), whereas (Talbi, 2009) deserves special mention.
Khajehzadeh et al. (2011), Parejo et al. (2011), Baghel et al. (2012), and Boussaid et al. (2013)
present surveys reviewing recent developments in the field of metaheuristic optimization methods.

5.1 Taxonomy

This section briefly outlines the methods available for solving COPs/SCOPs, while following a
taxonomy identical to the one presented in Talbi (2009). See Figure 18 for a graphical visualization
of the taxonomy described in the following.

Exact vs. Approximate Methods There exist two fundamentally different classes of methods
available to solve combinatorial problems: exact and approximate methods. Exact algorithms are
characterized by the ability to proof the optimality of the obtained solutions; and by definition this
is what distinguishes them from approximate methods (Dorigo and Stiitzle, 2004; Talbi, 2009). In
this context, Prestwich (2008) refers to complete and incomplete search, which correspond to exact
and approximate methods, emphasizing that exact methods completely search the state space while
approximate methods only search parts of it.

By not having the burden to proof the optimality, approximate methods leave parts of the
state space unvisited and thus lead to near-optimal solutions in a reasonable time compared to
exact algorithms. Especially for NP-hard problems exact algorithms perform poor with respect to
computing time. Consequently solving large instances with exact methods is practical impossible,
i.e. would take enormous amounts of time to obtain the optimal solution. Approximate algorithms
trade optimality for efficiency (Dorigo and Stiitzle, 2004); cf. (Talbi, 2009). Obviously complete
and incomplete search have complementary strengths and weaknesses (Prestwich, 2008).

Heuristics vs. Approximation Algorithms Approximate methods can be further divided
into heuristics and approximation algorithms. A heuristic is any approach without a formal
guarantee of performance. Approximation algorithms guarantee that the obtained solution lies
within a defined range of the global optimum (Brucker, 2007; Talbi, 2009).

Constructive Heuristics vs. Search Heuristics Within the class of heuristics, it is basically
distinguished between constructive heuristics and search heuristics (Zapfel et al., 2010); cf. (Talbi,
2009). Construction algorithms describe an incremental procedure: starting from an empty initial
solution, they iteratively add solution components until a complete solution is obtained without any
backtracking. In its simplest version the solution components are added in a random order. More
sophisticated construction algorithms follow a greedy strategy by adding the solution components,

67

5 METAHEURISTIC OPTIMIZATION

which means that at each step a solution component is chosen from a ranked list based on some
heuristic information, instead of a simple random choice (Dorigo and Stiitzle, 2009). Constructive
heuristics are usually problem-specific, non-iterative, and create one single solution by applying a
set of rules based on problem-specific knowledge.

Search heuristics follow a certain search scheme that repeatedly examines many different
solutions for a given problem in order to find better solutions (Zépfel et al., 2010); cf. (Talbi, 2009).

Metaheuristics Search heuristics correspond to metaheuristics in a broader sense. Brucker
(2007) defines any approach without a formal guarantee of performance as a heuristic. Informally, a
metaheuristic states an algorithmic advancement of a simple heuristic, which is commonly defined
as a rule of thumb that leads to near-optimal solutions without complete knowledge of the problem.
There is no single and universal definition for the term metaheuristic, there exist numerous of them.

However, it seems that there evolved a widely accepted understanding of metaheuristics in
academia: a metaheuristic is a general algorithmic framework that a) is generally problem-inde-
pendent and applicable to a wide set of different problems, b) describes an iterative upper-level
strategy that guides the operations of subordinate heuristics, ¢) combines different concepts for
exploring and exploiting the search space (diversification and intensification), often facilitated by
the use of randomness (Blum and Roli, 2003; Zapfel et al., 2010).

Trajectory Methods vs. Population-Based Methods Most authors consistently distin-
guish between two classes of metaheuristics: trajectory methods (based on a single solution) and
population-based methods (Blum and Roli, 2003); cf. (Luke, 2009; Talbi, 2009; Zapfel et al., 2010;
Marti and Reinelt, 2011; Baghel et al., 2012). The number of solutions used to obtain new solutions
in every cycle of search is the distinguishing factor between the methods. More precisely, it is
distinguished between search methods that operate on a single solution and those that operate on
multiple solutions.

Trajectory methods obtain improved solutions by repeatedly modifying an existing solution
during the search procedure, e.g. LS (Hill-Climbing), SA, TA, TS, GRASP, VNS, GLS, and ILS;
cf. (Blum and Roli, 2003; Talbi, 2009; Baghel et al., 2012; Boussaid et al., 2013).

Population-based methods, operating on a set of solutions, create improved solutions by
recombining existing solutions e.g. EAs (GAs, EAs, EP, GP), SS, ACO, PSO and AIS; cf. (Blum
and Roli, 2003; Talbi, 2009).

Hybrid Metaheuristics Beyond these basic groups, another class of algorithms has recently
emerged: hybrid (meta)heuristics. Hybrid methods merge two or more search methods (i.e.
metaheuristics) or only aspects of them as a new approach, in a sense that the resulting search
procedure combines the strengths of different search methods (Baghel et al., 2012); cf. (Blum and
Roli, 2003).

Hyper-Heuristics Hyper-heuristics cover automated methodologies for selecting or generating
low-level (meta)heuristics. They intend to automate the design and adaptation of heuristic methods
in order to produce more generally applicable search methodologies. The idea behind is that
searching over a space of heuristics may be more effective than directly searching the underlying
problem space. In this context, it is distinguished between two main categories: heuristic selection
and heuristic generation (Burke et al., 2009). In the area of Evolutionary Computation (EC), this
approach is referred to as meta-evolutionary approach.

Alternative Taxonomies Underpinning the observation that metaheuristics are subject to vital
research, there exist different ways to classify metaheuristics, depending on the characteristics used
for the distinction. Beyond subdividing between population-based methods and single-solution
search, alternative taxonomies classify metaheuristics by distinguishing between a) nature-inspired
and non-nature inspired methods, b) dynamic and static objective functions, ¢) one neighborhood
structure and various neighborhood structures, d) memory usage and memory-less methods, e) de-
terministic and stochastic search, and f) iterative versus greedy search schemes (Blum and Roli,

68

5 METAHEURISTIC OPTIMIZATION

2003; Talbi, 2009); cf. (Zéapfel et al., 2010; Marti and Reinelt, 2011) for more alternative taxonomies
used to classify metaheuristics.

For example, Zéipfel et al. (2010) put emphasis on the strategy used to obtain new solutions and
propose three groups of heuristic search algorithms: a) repeated solution construction, b) repeated
solution modification, and ¢) repeated solution recombination. Here, repeated solution modification
methods relate to trajectory methods and the methods based on repeated solution recombination
refer to population-based methods. In contrast to the widely accepted two-group taxonomy
(trajectory and population-based methods), Zépfel et al. (2010) mention GRASP and ACO as parts
of a third category, namely methods based on repeated solution construction. These methods always
create new solutions from scratch (by construction). Unfortunately, important metaheuristics such
as VNS, GLS, Evolution Strategies (ESs), and PSO remain unclassified in this taxonomy.

Optimization methods

Exact methods Approxmate methods
Branch and X Constraint Dynamic A*, IDA* Heuristic algorithms ~ APProximation

programming programming algorithms

N~ .

Metaheuristics Problem-specific

Branch and Branch and Branch and heuristics

bound cut price /\

Single-solution based Population-based
metaheuristics metaheuristics

Figure 18: Taxonomy for methods solving combinatorial optimization problems (Talbi, 2009)

5.2 Complexity Theory

A key point in OR projects is to determine the difficulty of the underlying optimization problem,
respectively of a particular COP that needs to be solved; cf. (Dorigo and Stiitzle, 2004). Com-
plexity Theory has basically two main purposes. The first purpose is to determine the amount
of computational resources required to solve a computational problem to optimality. The OR
community discusses computational resources in the first place in terms of computational time
and secondly in terms of space (memory), which also are referred to as time complexity and space
complexity. The second purpose is to classify important problems according to their difficulty
(Allender et al., 2010). Sipser (2006) gives a detailed introduction to the theory of computation,
devoting much attention to Complexity Theory as a part of it.

Time Complexity The time complexity of a problem corresponds to the time complexity of
the best (fastest) algorithm known to solve that problem. And an algorithm’s time complexity is
defined by its maximum (worst-case) number of computational steps required to optimally solve a
problem instance with an arbitrary input size n (Talbi, 2009). Depending on the encoding scheme,
e.g. binary or unary encoding, the input size n of a certain instance is defined by the length of the
data string representing that particular instance. As a matter of fact, the unary encoding scheme
leads to a larger instance size compared to that under binary encoding (Pinedo, 2008).

The O-Notation The time complexity of an algorithm and thus of the relating problem, is given
by the time complexity function, a mathematical function of the input size n. The purpose of the

69

5 METAHEURISTIC OPTIMIZATION

time complexity function is not to obtain an exact computational step count, but to provide a
maximum upper bound on the required step count in terms of an asymptotic (worst-case) analysis
for arbitrary input sizes n. The O-Notation is usually used to formalize the worst-case time
complexity function of an algorithm or a problem.

With respect to OR problems, it is basically distinguished between two types of algorithms only:
polynomial-time bounded and exponential-time bounded algorithms. A polynomial-time (bounded)
algorithm is an algorithm with time complexity O(p(n)), whereby p(n) is a polynomial function of
n. In other words, the time that the algorithm needs to optimally solve an instance of size n grows
by means of the polynomial p(n) in the worst-case, which means the algorithm is polynomially
bounded. For example, O(n) grows linearly, O(n?) quadratically and O(n3) grows cubically; cf.
(Reingold, 2010). Exponential-time (bounded) algorithms have a time complexity O(c¢™), where ¢
is a real constant strictly superior to 1. Here the computation time grows exponentially with the
instance size n in the worst-case (Talbi, 2009); cf. (Dorigo and Stiitzle, 2004) and (Pinedo, 2008).

5.2.1 Decision Problems, Languages and Turing Machines

This section introduces some important terms in the context of OR and Complexity Theory, e.g.
decision problems, languages and Turing machines, laying the basis for understanding the following
sections.

Decision Problems In the context of Complexity Theory, COPs are stated in terms of decision
problems with a yes/no answer. The arising decision problem asks to determine the existence of
a solution for the corresponding COP with an objective value lower than a given threshold (for
a minimization problem). Consequently, the time complexity of the algorithm that produces the
correct yes/no answer to a decision problem then corresponds to the time complexity of the COP
related to that decision problem. Clearly, the bigger the problem instance, the longer the algorithm
needs to find the correct answer to the decision problem (Lenstra et al., 1977); cf. (Hedman, 2004;
Pinedo, 2008).

Language Recognition Decision problems are strongly related to languages in the context
of Theoretical Computer Science. A language recognition problem is a decision problem asking
whether a given string (a word) belongs to a particular language. Thus, any COP can be stated
in terms of a decision problem and decision problems can be interpreted as language recognition
problems (Jiang et al., 2010). And the latter (language recognition problems) are solvable by
deterministic and non-deterministic Turing machines (Lenstra et al., 1977).

Deterministic and Non-Deterministic Turing Machines The concept of Deterministic
Turing Machine (DTM) defines the three basic steps in any mechanical computation: a) the ability
to read and write on a storage medium, b) the ability to move on that medium, and ¢) the ability
to make simple logical decisions. Those abilities, appropriately combined, result in an algorithm
corresponding to a DTM, which is capable of deciding language recognition problems and thus
solving decision problems. A DTM is basically a state machine, characterized by an algorithm that
unambiguously defines a transition from one state to another (Jiang et al., 2010).

Beside DTMs, it is important to introduce the theoretical concept of Non-Deterministic Turing
Machines (NTMs). NTMs do not model physical computation devices, they model a virtual machine
without a physical representation in the real world. The reason is that a NTM is defined as a
state machine with ambiguous state transitions, characterized by state transfer relations describing
transitions from one state to a set of states, in contrast to the unambiguous transfer functions
implemented in DTMs. However, NTMs represent an elementary component in Complexity Theory,
since they are used to model real computational problems (Allender et al., 2010).

5.2.2 Complexity Classes P and NP

In order to classify problems with respect to their complexity, there exist complexity classes that
define polynomial and exponential bounds on time and space for deterministic and non-deterministic
machines. The OR community only focuses on the two classes P (DTIME) and NP (NTIME),

70

5 METAHEURISTIC OPTIMIZATION

which stand for deterministic polynomial time and non-deterministic polynomial time respectively
(Allender et al., 2010). Both classes P and NP cover problems solvable in a number of steps bounded
by a polynomial in the length of the input, but based on different types of Turing machines (DTM
and NTM) (Lenstra et al., 1977).

The complexity class P is defined for decision problems that can be solved by a DTM in
polynomial time, respectively in a number of steps bounded by a polynomial of problem instance
size. In other words, a DTM or an algorithm needs polynomial time to produce the correct yes/no
answer to a decision problem.

On the other hand, the complexity class NP is defined for decision problems that can be solved
by a NTM in polynomial time. To phrase it differently, the class NP covers decision problems for
which a DTM or an algorithm can verify a correct answer in polynomial time, independently of the
way it was generated.

Summarizing, algorithms in P solve their corresponding problems in polynomial time, whereas
algorithms in NP only verify an existing solution to the corresponding problem in polynomial time
(Pinedo, 2008); cf. (Talbi, 2009; Dorigo and Stiitzle, 2004).

5.2.3 NP-Completeness

The concept of NP-completeness builds the formal basis to distinguish between easy and hard
problems by defining a formal borderline between them.

An important concept underlying NP-completeness is the concept of problem reduction. A
problem P’ reduces to problem P if for any instance of P’ an equivalent instance of P can be
constructed. We talk about polynomial reducibility if P is constructed in polynomial bounded time,
which is then denoted by P’ o« P (Lenstra et al., 1977); cf. (Pinedo, 2008).

According to Lenstra et al. (1977), a decision problem P is NP-complete if P € NP and P’ o« P
for every P’ € NP. Informally, a decision problem P is NP-complete if a) P is in the NP class and
b) if all problems in NP polynomially reduce to P. A problem P, either a decision problem or an
optimization problem, is called NP-hard if it satisfies the second condition b only, i.e. all problems
in NP polynomially reduce to P (Lenstra et al., 1977); cf. (Hedman, 2004; Pinedo, 2008; Talbi,
2009; Korte and Vygen, 2012). By this definition, any NP-complete decision problem is NP-hard.
It has become common practice in the OR community to call optimization problems NP-hard if
their associated decision problems are NP-complete (Brucker, 2007; Talbi, 2009).

At this point the question arises how it can be shown that every problem in NP reduces to a
particular problem, especially considering the fact that there exists an infinite number of problems
in the NP-class. This credit must go to Cook (1971) who presents a generic reduction from Turing
machines to the Satisfiability Problem (SAT), which in turn first establishes NP-completeness for
SAT (Leung, 2004). The master reduction from Cook (1971) constructs for any instance of P € NP
an equivalent boolean expression in conjunctive normal form in polynomial bounded time (Lenstra
et al., 1977).

Starting from the fact that SAT is NP-complete, Karp (1972) proofs NP-completeness for a
large number of COPs by polynomial reduction, e.g. directed Hamiltonian path, Partition and
Knapsack (Leung, 2004). This strategy is used to locate the borderline that separates the easy
problems (in P) from the hard (NP-complete) ones. Furthermore, it is said that a minor change in
a problem parameter often transforms an easy problem into a hard one (Lenstra et al., 1977).

5.2.4 Strong vs. Ordinary NP-Completeness

In order to determine the complexity of a problem, first a distinction between the membership of
P versus NP-completeness is made, respectively between easy and hard problems. But it is said
that this is only a coarse indicator because there are significant differences in complexity within
the class of NP-complete problems. Those differences lead back to the encoding scheme used to
specify the problem instance, i.e. unary versus binary encoding. Here it is distinguished between
two classes of NP-complete problems, respectively between unary NP-complete problems (NP-hard
in the strong sense) and binary NP-complete problems (NP-hard in the ordinary sense).

A problem that is NP-hard with respect to the binary encoding scheme but not under the unary
encoding scheme is said to be NP-hard in the ordinary sense or simply NP-hard. The class of

71

5 METAHEURISTIC OPTIMIZATION

NP-hard problems in the ordinary sense can be solved in polynomial time under unary encoding,
while it cannot be solved in polynomial time under binary encoding (pseudo-polynomial)

A problem that is NP-hard with respect to the unary encoding scheme is said to be NP-hard
in the strong sense or strongly N7P. Either under unary or binary encoding for strongly NP-hard
problems there are no polynomial time algorithms known to this date (Leung, 2004; Pinedo, 2008).

Pseudo-Polynomial Referring to the Knapsack problem, this paragraph claries the term pseu-
dopolynomial in the context of strong/ordinary NPcompleteness. Knapsack is NP-complete with
respect to a binary encoding. But there exists a polynomial bounded algorithm based on DP with
respect to unary encoding, respectively a pseudo-polynomial algorithm. Given the fact that unary
NP-completeness is not established, a binary NP-complete problem allows an unary polynomial
bounded solution (Lenstra et al., 1977). For the Knapsack problem, no algorithms are known
for solving it with respect to a binary encoding scheme in time bounded by a polynomial in the
input length. However, many practitioners consider Knapsack to be tractable. The reason is that
algorithms are known which solve it in time bounded by a polynomial in the input length and
the magnitude of the largest number in the given problem instance. Such algorithms whose time
complexity depends on the input length and another factor related to the instance, are referred to
as pseudo-polynomial algorithms (Garey and Johnson, 1978). In other words, an algorithm is said
to be pseudo-polynomial if it is not polynomial with respect to binary encoding, but polynomial
with respect to unary encoding (Lawler, 1977).

Summarizing, Knapsack was shown to the NP-hard only under binary encoding, it was not
shown to be NP-hard under unary encoding. It is no contradiction that a problem is NP-hard under
the binary encoding scheme, but solvable in polynomial time under the unary encoding scheme,
respectively in pseudo-polynomial time (Leung, 2004).

In contrast, the TSP is strongly NP-hard and (unless P # NP) there is no exact pseudo-
polynomial algorithm for any strongly NP-hard problem (Korte and Vygen, 2012).

5.2.5 The P = NP-Problem

As mentioned earlier, the class P is clearly a subclass of the class NP. But one of the most important
open issues in mathematics is the question whether P = NP (Pinedo, 2008). The Clay Mathematics

Institute® has chosen the P — NP-Problem as one of its seven Millennium Problems, each with a
reward of one million dollars for their solution (Hedman, 2004). It is a matter of fact that either all
NP-complete problems are solvable in polynomial time or none of them. To this date, no single
NP-complete problem is shown to be solvable in polynomial time (Leung, 2004); cf. (Dorigo and

Stiitzle, 2004; Pinedo, 2008). Lenstra et al. (1977) describe the P = NP-Problem by means of the
master reduction from Cook (1971) and state that P = NP if and only if SAT € NP, whereas SAT
can be replaced by any NP-complete problem. Consequently, if SAT € P then every NP-complete
problem is in P and finally P = NP. However, in general the OR community considers the equality
of P and NP as highly unlikely, which in turn means that a polynomial bounded algorithm for
one and thus for all NP-complete problems is highly unlikely to exist (Lenstra et al., 1977). See

Figure 19 for a plausible visualization of the P ~ NP-Problem.

5.3 The Search Space

The performance of metaheuristics is closely linked to the structure of the underlying search space.
Watson (2009) formally defines the search space L = (S, N, F') by the combination of a) the state
space S, b) the move operator IV, and c¢) the objective function F'. The search space can be seen as
a vertex-weighted directed graph in which each vertex represents a state with a weight equal to
the corresponding objective value and each edge describes a certain move operator that leads from
one state to another.

Shttp://www.claymath.org/

72

http://www.claymath.org/

5 METAHEURISTIC OPTIMIZATION

NP-Hard NP-Hard

NP-Complete
P=NP=
NP-Complete
g
P = NP P = NP

Figure 19: Euler diagram for P, NP, NP-complete, and NP-hard set of problems (wikipedia, 2014)

Terminology of Landscapes The OR community also refers to this graph as the fitness
landscape (Watson, 2009). Commonly, descriptions of landscape structures in OR make use of
geographical terms, e.g. valleys, plains, peaks, plateaus or basins. This geographical metaphor
enables us to visualize the quality of solutions in two or three dimensions, where the altitude of a
particular point in this system equals the objective value of the corresponding solution (Talbi, 2009).
Watson (2009) defines structural characteristics of a fitness landscape in terms of: a) the number
and/or distribution of local optima, b) the strength and size of local optima attractor basins, and
¢) the size and extension of the search space. Watson (2009) argues the lack of empirical evidence
to evaluate the importance of the mentioned landscape features. Deb et al. (1997) design a number
of fitness landscapes used as test functions in order to evaluate the performance of evolutionary
algorithms. Based on sets of generated fitness landscapes, providing knowledge of optimal solutions
and their neighborhood, they investigate the convergence properties of the tested algorithms. See
Figure 20 for four examples of quality /objective functions. Watson (2009) and Talbi (2009) also
present graphical representations of different landscape structures visualizing the search space.

Search Scheme vs. Search Space The interaction of a metaheuristic with the underlying
fitness landscape defines its performance. Since metaheuristics define strategies for searching
the landscapes, knowledge of their structure facilitates developing effective metaheuristics. This
knowledge opens the opportunity to adapt a metaheuristic search scheme in a targeted manner
(Watson, 2009). Incorporating landscape knowledge becomes in particular important with regard
to the statement made in (Talbi, 2009), saying that not only different optimization problems
correspond to different landscape structures, but also different instances of the same problem may
be characterized by varying landscape structures.

5.4 Metaheuristic Design

Despite of the existence of a vast variety of different metaheuristics, all of them share some similar-
ities. The basic design usually follows a black-box modeling approach, coupling the metaheuristic
with the underlying problem and decoupling the metaheuristic search scheme from model-internal
activities representing the behavior of the underlying problem. Another commonality (for modern
metaheuristics) is a algorithmic design that balances intensification and diversification in the search
behavior, enabling a metaheuristic to exploit (intensification) and explore (diversification) the
search space in an efficient and effective way. Recent developments in metaheuristic research
consider hybridization and parallelization as promising approaches, leading to improved search
performance. At this point, this work refers to the work of Talbi (2009) who examines the design
and implementation of metaheuristics more thoroughly.

A central issue for metaheuristics is the design of the appropriate neighborhood structure

73

5 METAHEURISTIC OPTIMIZATION

A

4 Unimodal 1 Needle in a Haystack

Noisy 4

\/w (or “Hilly” or “Rocky”)

Deceptive

Figure 20: Four examples of quality /objective functions (Luke, 2009)

(Baghel et al., 2012). As stated earlier, as part of preparatory work for designing and implementing
a metaheuristic for the problem at hand Hansen and Mladenovié¢ (2003) advise to analyze already
proposed metaheuristics and to identify algorithmic key ingredients used for the search, in particular
the structure of move operators (neighborhood design). Some other common issues include the
use of memory, randomization, and dynamic parameter adjustment (Baghel et al., 2012). Battiti
and Brunato (2009) refer to the strategy of dynamic parameter adjustment as to Reactive Search
Optimization, describing the integration of machine learning techniques into search heuristics in
terms of an online feedback loop for the self-tuning of critical parameters during the search process.
Similarly, Béck (1997b) proposes a self-adaptation approach for ESs, which dynamically evolves
the strategy/control parameters during the search. A unified algorithmic view on metaheuristics is
given in (Zapfel et al., 2010).

Parejo et al. (2011) recently presented a comparative study of Metaheuristic Optimization
Frameworks (MOFs). The metric used for evaluating the MOF's incorporates various important
features that range from different metaheuristic techniques covered to documentation and user
interface. There exist many MOFs that can speed up optimization projects and reduce their costs
significantly; cf. (Talbi, 2009).

Properties One of the elementary properties characterizing metaheuristics is that they are
generally problem-independent and applicable to a wide set of different problems (Zéapfel et al.,
2010).

Blum and Roli (2003) outline some fundamental properties of metaheuristics: metaheuristics
a) efficiently explore the search space in order to find (near-)optimal solutions, b) include techniques
ranging from simple LS procedures to complex learning processes, ¢) are approximate and usually
non-deterministic, d) may incorporate mechanisms to avoid getting trapped in confined areas of
the search space (escape from local optima), e) permit an abstract level description in their basic
concepts, f) use domain-specific knowledge in the form of heuristics controlled by the upper level
strategy, and g) use search experience (memory) to guide the search in its more advanced variants.
Hansen and Mladenovi¢ (2001) condense the desirable properties of metaheuristics into seven terms:
a) simplicity, b) coherence, c) efficiency, d) effectiveness, e) robustness, f) user-friendliness, and
¢) innovation.

According to Prestwich (2008), many modern metaheuristics have the property of Probabilistic
Approximate Completeness (PAC), which means that the probability of finding a solution tends
to 1 as search time tends to infinity. PAC synonymously stands for metaheuristic’s capability to

74

5 METAHEURISTIC OPTIMIZATION

escape from any local minimum.

5.4.1 Black-Box Modeling

In contrast to mathematical programming techniques, e.g. LP and/or IP/MIP, no analytical
formulation in terms of an unambiguous mathematical notation is required to apply metaheuristics.
Common to all metaheuristics, the underlying model representation is simply considered as a
black-box that returns an objective/quality value while considering the constraints given by the
problem under study, based on the decision variables repeatedly modified by the metaheuristic
applied. For the application of metaheuristics it does not matter how the objective value is produced
(Talbi, 2009). See Figure 21 visualizing the described black-box concept.

Black box

Metaheuristic

A

Quality

Figure 21: Black-box scenario for the objective function (Talbi, 2009)

Simulation(-Based) Optimization In those cases where simulation models are required to
evaluate an objective function, i.e. due to stochastic effects, analytical methods based on explicit
mathematical formulations are no longer an option (Talbi, 2009). Especially for stochastic problems,
analytical models are often inadequate and simulation models provide a more suitable method
(Hillier and Lieberman, 2001). Simulation-based optimization, or simply simulation optimization,
describes the interaction between a simulation system, acting as a black-box that evaluates an
objective function and an optimization method, e.g. a metaheuristic that manipulates the simulation
system variables in a targeted manner. Beside analytical optimization models solved either by
exact methods or approximate methods, simulation-based optimization powered by metaheuristics
is another important branch in OR; cf. (Talbi, 2009). Fu et al. (2005) provide a descriptive review
of the main approaches in the area of simulation optimization.

5.4.2 Intensification vs. Diversification

There are two basic concepts that determine the behavior of a metaheuristic: intensification and
diversification. These two forces naturally act contrary to each other, but also complement each
other at the same time (Blum and Roli, 2003). Intensification (exploitation) relates to metaheuristic
components/activities that aim on (intensively) searching for new optima in a certain area of the
search space. Diversification (exploration) means that a metaheuristic is capable of searching
a maximum number of different regions of the search space. Exploring the search space by
diversification avoids search procedures from concentrating on non-promising regions, which consist
of solutions with low optimization potential. With respect to diversification, escaping from local
optima is probably the most important capability for metaheuristics to provide (Talbi, 2009).

In literature there is a broad consensus about the observation that high-performing metaheuristics
not only incorporate mechanisms supporting both the effects of intensification and diversification,
but also provide an appropriate balance between them. In addition to this, a metaheuristic may
adjust its parameters dynamically, emphasizing its preference for intensification or diversification
depending on the progress of the search process (Blum and Roli, 2003); cf. (Zépfel et al., 2010).

According to (Talbi, 2009), metaheuristics based on the single-solution approach are naturally
more oriented on intensification, whereas population-based metaheuristics generally show a higher
affinity to diversification.

Refer to Figure 22 showing the design space of a metaheuristic.

75

5 METAHEURISTIC OPTIMIZATION

Random search Population-based Single-solutio.n based | ocal search
metaheuristics metaheuristics
Diversification Design space of a metaheuristic Intensification

Figure 22: Design space of a metaheuristic (Talbi, 2009)

The I&D Frame Blum and Roli (2003) introduce the I&D frame in order to put algorithmic or
functional components of metaheuristics (I&D components) into relation to each other, considering
their effect on intensification and/or diversification during the search process. Despite of the fact
that metaheuristics differ in their search strategies, the implemented mechanisms/components are
all based on intensification and diversification, even if the paradigm behind is completely different.
Blum and Roli (2003) emphasize that 1&D components can have both an intensification and a
diversification effect on the search procedure. The I&D frame describes a triangle where each
corner corresponds to one of three basic characteristics associated with 1&D components: objective
guided (OQ), non-objective guided (NOG), and randomness (R). The corner OG covers 1&D
components that are exclusively guided by the objective function. 1&D components near to the
corner NOG are guided by functions other than the objective function, e.g. mechanisms based
on memory or problem-specific knowledge. The corner R refers to 1&D components that simply
employ randomness. It can be concluded that the corner OG stands for maximum intensification
and minimum diversification, whereas the corners NOG and R come with maximum diversification
and minimum intensification (Blum and Roli, 2003).
See Figure 23 that visualizes the 1&D frame as described.

NOG NOG NOG

oG

No use of the objective function

<
<

Diversification Intensification

Figure 23: The I&D frame (Blum and Roli, 2003)

5.4.3 Hybridization

Hybrid metaheuristics refer to the idea of combining metaheuristics with other techniques for
optimization. Hybridization aims to exploit the complementary character of different optimization
strategies. In fact, combining an appropriate set of complementary algorithmic concepts can be the
key for the design of high-performing search methods (Blum et al., 2011). The OR community
shares the common understanding that well-designed hybrids often perform substantially better
than classic metaheuristics. However, a more complex hybrid algorithm does not automatically
perform better, since appropriate tuning of the methods parameter becomes more difficult as the
method’s complexity increases (Raidl et al., 2009).

In literature, basically two groups of hybrid metaheuristics are discussed: hybrids with other
metaheuristics and hybrids with exact methods. Prominent examples for metaheuristics combined
with exact methods are tree-search-based methods such as B&B, DP, LP, MIP, and CP (Blum
et al., 2011); cf. (Raidl et al., 2009; Talbi, 2009; Baghel et al., 2012). Hybridizing metaheuristics
with exact methods aims to combine the complementary strengths of complete and incomplete
search (Prestwich, 2008). However, combining metaheuristics with each other is more popular,
usually seeking to combine the advantages of trajectory methods and population-based methods
into a single hybrid metaheuristic. By design population-based methods perform better in terms of

76

5 METAHEURISTIC OPTIMIZATION

identifying promising search space areas (diversification), whereas trajectory methods are better in
exploring promising search space areas (intensification) (Blum and Roli, 2003).

For more thorough insights into hybrid metaheuristics see (Blum et al., 2008) and (Talbi, 2009).
Puchinger and Raidl (2005) present a survey on combining exact algorithms and metaheuristics to
solve COPs. Blum et al. (2011) provide a recent survey on some of the most important topic lines
of hybridization.

5.4.4 Parallelization

The idea of parallelizing metaheuristics is driven by two forces: the complexity of computational
problems and the rapid development in technology of distributed computing systems. On one
hand, despite of the fact that metaheuristics facilitate reducing computation times significantly,
computational problems are often NP-hard and remain computational expensive. Here, parallelism
can help to reduce the computation time and increase the solution quality (Alba, 2005). Similarly,
Talbi (2009) identifies four main goals of parallel and distributed computing: @) speed up the search,
b) improve the quality of the obtained solutions, ¢) improve the robustness, and d) solve large-scale
problems. On the other hand, the rapid development of technology in designing (multicore-
Jprocessors and networks leads to architectures suitable for the design and implementation of
parallel metaheuristics (Talbi, 2009). Compared to single-solution based methods, population-based
metaheuristics seem to be more appropriate for parallelism, since they already manage a set of
parallel solutions by design (Luke, 2009).

For more detailed descriptions of distributed computing see (Kshemkalyani and Singhal, 2008).
Crainic and Toulouse (2009) present a survey on parallel metaheuristic strategies, and Alba (2005)
describe parallel approaches for a) LS, b) SA, ¢) TS, d) GRASP, e) VNS, f) models of EAs (in
particular GAs, ESs, and GP), g) ACO, and h) SS.

5.5 Trajectory Methods

Trajectory methods, also referred to as single-solution based methods, are simply characterized by
an iterative search scheme that operates on a single solution. Trajectory methods start from an
initial solution and iteratively move from the current solution to another one in the search space,
improving the initial solution step by step. They describe a trajectory in the search space. In
contrast to population-based metaheuristics, trajectory methods are naturally more oriented on
intensification than on diversification (Talbi, 2009). For more detailed descriptions see (Blum and
Roli, 2003; Talbi, 2009; Baghel et al., 2012; Boussaid et al., 2013), whereas Boussaid et al. (2013)
present a recent survey on single-solution based metaheuristics.

Trajectory methods mainly encompass: a) LS, b) SA, ¢) TA, d) TS, ¢) GRASP, f) VNS, g) GLS,
and h) ILS (Blum and Roli, 2003; Talbi, 2009; Baghel et al., 2012; Boussaid et al., 2013).

Local Search (LS) LS is likely the simplest metaheuristic method. Starting at a given initial
solution, LS repeatedly replaces the current solution by a neighbor that improves the objective
function. The search determinates when a local optimum is reached, meaning that all candidate
neighbors are worse than the current solution with respect to the objective function (Talbi, 2009).
See Figure 24 visualizing the concept of LS.

In this context, the term neighbor refers to a slightly modified solution obtained in each step
of LS. And the finite set of modified solutions (neighbors) that can be obtained usually by many
different modifications (moves) is also referred to as solution’s neighborhood (Z#pfel et al., 2010).
The definition of an appropriate neighborhood structure usually embeds problem-specific knowledge
and is a crucial point for the performance of LS algorithms. The neighborhood of a solution is
defined as the set of solutions that can be reached from that solution in one single step (Dorigo
and Stiitzle, 2009).

LS is also referred to as iterative improvement, since each move is only performed if the resulting
solution is better than the current solution (Blum and Roli, 2003). Another common term for LS
is Hill-Climbing, where informally spoken, the algorithm climbs up the hill until the peak (local
optimum) is reached (Luke, 2009).

7

5 METAHEURISTIC OPTIMIZATION

LS methods have two main disadvantages: they get easily trapped in local minima and the
result strongly depends on the initial solution (Dorigo and Stiitzle, 2009; Talbi, 2009). To overcome
the problem of getting trapped in local minima, several techniques have been developed, adding
mechanisms to LS (Blum and Roli, 2003). Another critical point is given by highly multi-modal
objective functions, where LS is usually not an effective method to use. However, LS works well in
the presence of more or less similar local optima with respect to the objective value and/or in those
cases where not too many local optima exist (Talbi, 2009).

A Objective

Initial solution

/

Final solution

N

L
Search space

Figure 24: Basic Local Search (Talbi, 2009)

Best-Improvement vs. First-Improvement In general, it is distinguished between two basic
types of LS, namely first-improvement and best-improvement. First-improvement LS explores
the neighborhood and chooses the first solution improving the incumbent. Best-improvement first
exhaustively explores the entire neighborhood and then returns the neighboring solution with the
lowest objective function value (Blum and Roli, 2003).

First-improvement LS relies on the assumption that a certain neighborhood comprises many
improving solutions and determining the best is not absolutely necessary. Advantageous of first-
improvement LS is that it is less computationally expensive compared to best-improvement LS,
but the solution quality may improve more slowly during the search and thus it may require more
iterations to reach the nearest local optimum. The decision which scheme to prefer depends on
the problem and the computational effort needed to generate one single neighbor, respectively the
entire neighborhood (Zapfel et al., 2010). Resende and Ribeiro (2009) observe that quite often
both strategies lead to the same solution, whereas the first-improving strategy requires smaller
computation times. Furthermore they notice that the best-improving strategy tends to converge to
bad local optima in early phases of the search.

In (Hansen and Mladenovié¢, 2003; Dorigo and Stiitzle, 2009; Hansen et al., 2009; Talbi, 2009;
Zapfel et al., 2010) one will find pseudocodes for the LS method and its variants with respect to
the best-improvement and first-improvement strategy. For parallel designs and implementations of
LS see (Alba, 2005).

Section 8.3.3 deals with experiments investigating the two LS strategies embedded in different
VNS variants.

Escaping from Local Optima The disadvantage of LS is its convergence toward local optima.
See Figure 25 for an adequate visualization of local and global optima. The strategies that have been
proposed to escape from local optima are classified in four groups: a) iterating from different initial
solutions, b) accepting non-improving neighbors, ¢) changing the neighborhood, and d) changing
the objective function (Talbi, 2009).

The strategies that iterate from different initial solutions are commonly encompassed by the
group of multi-start methods, e.g. ILS and GRASP. Approaches based on the idea of accepting
non-improving neighbors allow degrading moves from one solution to another in order to escape from
a local optimum, e.g. SA, T'S and TA. Another idea is to change the neighborhood structure during
the search, e.g. VNS strategies. The fourth group frames strategies perturbing the objective function

78

5 METAHEURISTIC OPTIMIZATION

in order to enable the search to leave valleys around local optima, e.g. GLS. Beyond changing the
neighborhood structure and changing the objective function, relaxing certain constraints given by
the underlying optimization problem at hand states another strategy that modifies the search space
(Talbi, 2009).

A Objective

/

Local optima
Local optima

\Local and global optima

N

Search space

Figure 25: Local and global optima (Talbi, 2009)

Multi-Start Methods Especially with the example of multi-start methods, the meaning of the
desired balance between diversification and intensification becomes obvious. Since LS is naturally
focused on intensification by extensively exploiting the neighborhood of solutions, there is a striking
need for diversification to overcome local optimality. Multi-start methods achieve diversification by
repeatedly restarting LS from a new initial solution once a region has been entirely explored. Hence,
the solution space is strategically sampled where each (LS) iteration leads to a local optimum
and the best among them is considered as the best overall solution of the algorithm. The basic
multi-start strategy in its simplest version restarts LS with randomly generated initial solutions
(Marti et al., 2009; Marti and Reinelt, 2011; Marti et al., 2013).

Termination Conditions Beyond simple LS performing a deterministic search that finishes with
a local optimum, most of the metaheuristics perform a non-deterministic search that incorporates
randomness. They need for appropriate stopping conditions preventing endless search. Possible
termination conditions include: @) the maximum computing time, b) the maximum number of
iterations, ¢) a solution s with f(s) less than a predefined threshold value, or d) the maximum
number of iterations without any improvements (Blum and Roli, 2003).

5.5.1 Iterated Local Search (ILS)

ILS is essentially a multi-start procedure that focuses the search on already known local optima.
Its success lies in the biased sampling of this set of local optima. ILS performs better than random
restart, even in its most naive implementation (Lourenco et al., 2009). ILS can be seen as an
improved version of basic LS with random restarts. The basic idea underlying ILS is that local
optima often exist in near proximity to each other. The assumption/observation is that restarting
LS in the near of already known local optima often outperforms just trying new locations entirely
at random (Luke, 2009).

The basic idea of ILS stems from the observation that the performance of a LS method strongly
depends on the initial solution. The basic multi-start LS randomly generates initial solutions in
every restart cycle and thus successive initial solutions are neither related to each other nor related
to the local optima found during the search. ILS improves the basic multi-start LS by considering
a perturbed local optimum as initial solution in the succeeding restart cycle. After performing LS
to an initial solution, the resulting local optimum is stochastically perturbed, followed by another
LS cycle using the perturbed local optimum as initial solution (Talbi, 2009). Figure 26 shows the
basic principle of ILS; cf. (Blum and Roli, 2003; Lourenco et al., 2009) for similar visualizations.
Talbi (2009) provides pseudocode for ILS.

79

5 METAHEURISTIC OPTIMIZATION

The degree of perturbation is a crucial point for the performance to expect and indeed interacts
with the structure of the search space. A too low degree of perturbation might not enable the
system to escape from local optima, while a too high degree results in a search behavior similar to
random restart LS (Blum and Roli, 2003).

A Objective

Initial solution .
Perturbation
----------- *

First local optimum

Final solution

N
>

Search space

Figure 26: Iterated Local Search (ILS) (Talbi, 2009)

5.5.2 Guided Local Search (GLS)

In contrast to other metaheuristics that simply use randomness to escape from local optima, GLS
exploits structural information of solutions obtained during search. GLS selects features present in
a local optimum and augments the objective function with penalties corresponding to the selected
features.

At the beginning all penalties are initialized to zero and whenever the search settles in a local
optimum, GLS increases the penalties for those features present in the current optimum. As a
result of the modified objective value worsened by feature penalties, the search leaves the current
optimum and moves to another, probably better one. The penalties are updated dynamically during
the search. Refer to Figure 27 for a graphical representation of the GLS concept; cf. (Blum and
Roli, 2003) for another picture.

In contrast to the majority of metaheuristics, the diversification process in GLS is directed and
deterministic rather than undirected and random (Voudouris et al., 2009); cf. (Blum and Roli,
2003; Talbi, 2009; Zapfel et al., 2010). The critical point is to define the solution features that
capture important structural properties of the solutions.

Talbi (2009) gives pseudocode for GLS.

A Objective

Objective penalization

First local optimum

Second local optimum

»

»
Search space

Figure 27: Guided Local Search (GLS) (Talbi, 2009)

80

5 METAHEURISTIC OPTIMIZATION

5.5.3 Simulated Annealing (SA)

SA basically performs in the same way as basic LS, but allows non-improving moves according
to a probability function (Marti and Reinelt, 2011). Improving solutions are always accepted,
while a fraction of non-improving solutions are accepted in order to escape from local optima. The
probability of accepting non-improving solutions depends on a temperature parameter decreasing
with each iteration (Nikolaev and Jacobson, 2009). The probability of accepting non-improving
moves depends on two factors: the degree of deterioration in terms of the objective value difference
and the temperature. The probability function combines the degree of deterioration and the
temperature: the higher the deterioration in the objective value, the lower the probability to accept
a non-improving move at a fixed temperature. Hereby, the probability of accepting worsened
solutions decreases with decreasing temperature controlled by the cooling schedule. In the beginning
of the search, the probability of accepting non-improving moves is high and thus permits the
exploration of the search space, but slowly decreases with ongoing search and finally leads the
search to converge to a (local) minimum (Blum and Roli, 2003). In the end, when the temperature
is adequately low, SA only allows improving moves and thus stops at a local optimum (Baghel
et al., 2012). See Figure 28 for a graphical example.

The SA method has two important control components: the acceptance probability function
deciding whether to accept a non-improving solution at a certain iteration or not and the cooling
schedule determining the temperature at each step (Talbi, 2009). The cooling schedule is a critical
issue to parametrize. If the cooling happens too rapid, i.e. the temperature almost immediately
approaches zero, non-improving moves become very unlikely and SA degrades to basic LS. On the
contrary, a too slow cooling schedule means that SA would undesirable perform similar to random
search in the beginning of the search (Zépfel et al., 2010).

Alba (2005) describe parallel SA concepts. For pseudocodes see (Talbi, 2009; Zépfel et al., 2010;
Zomaya and Kazman, 2010).

A Objective

Higher probabilty Lower probabilty
to accept the move x’ to accept the move X: initial solution
A - x": neighbor solution

N
>

Search space

Figure 28: Simulated Annealing (SA) (Talbi, 2009)

5.5.4 Threshold Accepting (TA)

TA may be viewed as the deterministic variant of SA. TA allows non-improving moves in a sense
that an accepted solution in each step is not worse than the current solution by more than a given
threshold. The threshold parameter, corresponding to the temperature in SA, is updated following
an annealing schedule decreasing the threshold with the number of iterations performed during the
search (Talbi, 2009).

The threshold value is used to decide whether worse solutions are accepted or not. By accepting
deteriorations in solution quality, an LS algorithm becomes capable of leaving local optima in order
to find new (better) ones (Zépfel et al., 2010).

It is said that T'A performs faster than SA, because TA is not burdened by the generation of
random numbers and exponential functions, which are used to decide for or against accepting a
worsened solution within the SA concept (Talbi, 2009).

Talbi (2009) and Zépfel et al. (2010) present pseudocodes for TA.

81

5 METAHEURISTIC OPTIMIZATION

5.5.5 Tabu Search (TS)

TS basically employs best-improvement LS enhanced with a memory structure, accepting non-
improving solutions in order to escape from local optima. The characteristic feature of TS is the
use of memory.

TS performs almost identical to basic LS, moving from one improving solution to the next
until a local optimum is reached. When the deterministic LS ends up with a local optimum, TS
allows a non-improving move by selecting the best solution out of all non-improving solutions in
the local optimums neighborhood previously investigated by best-improvement LS. It cannot be
excluded that this strategy generates cycles in a sense that previous visited solutions are selected
again. Therefore, T'S memorizes the recent search trajectory and discards the neighbors that have
been previously visited, forcing the search to explore the search space beyond the area in vicinity
of the local optimum visited as last (Talbi, 2009). TS updates the memory (tabu list) with recently
considered solutions and refuses the search to return until they are sufficiently far in the past (Luke,
2009). The search terminates if a stopping criterion is met or if all the solutions in the current
neighborhood are forbidden by the tabu list (Blum and Roli, 2003).

Depending on the tabu list length, TS can be time and space consuming, since storing all
visited solutions needs space and checking the tabu list in every cycle requires time (Talbi, 2009).
The length of the tabu list is the important control parameter. Small tabu lists let the search
concentrate on small areas of the search space, whereas large tabu lists force the search to explore
larger regions of the search space (Blum and Roli, 2003).

To generalize memory-based methods, the term Adaptive Memory Programming (AMP) de-
scribes methods that use advanced memory strategies to guide a search. In this context, TS is
covered by AMP (Marti et al., 2013).

In (Talbi, 2009; Zapfel et al., 2010) one will find pseudocodes for the TS algorithm. Alba (2005)
describe approaches for its parallelization.

5.5.6 Variable Neighborhood Search (VNS)

VNS was first mentioned in (Mladenovi¢ and Hansen, 1997) and then examined in different
variants in (Hansen and Mladenovié, 2001, 2003; Hansen et al., 2001, 2009). The basic idea
behind is a systematic change of the neighborhood during the search, typically established in two
alternating search phases, a descent LS phase and a randomized perturbation phase (shaking).
This introductory definition holds for the basic VNS scheme and the general VNS scheme discussed
later. In compliance with the concept of intensification and diversification, VNS basically exploits
deterministic LS in a descent phase investigating local optima, whereas the perturbation phase
employs randomness in order to escape from the corresponding valley (Hansen et al., 2009).

According to (Hansen et al., 2009), VNS is based on three simple facts: a) a local minimum
with respect to one particular neighborhood structure is not necessarily so for another, b) a global
minimum is a local minimum with respect to all possible neighborhood structures, and ¢) for many
problems, local minima with respect to one or several neighborhoods are relatively close to each
other.

Section 8.3 deals with experiments investigating different VNS variants with varying settings in
order to determine favorable method settings.

Variants The concept of VNS is reflected in four basic variants: a) Variable Neighborhood Descent
(VND), b) Reduced Variable Neighborhood Search (RVNS), ¢) Basic Variable Neighborhood Search
(BVNS), and d) General Variable Neighborhood Search (GVNS) (Hansen and Mladenovi¢, 2003;
Hansen et al., 2009).

In the concept of VNS, VND and RVNS are considered as the basic building blocks, whereas
BVNS and GVNS describe more sophisticated two-level compositions of them. VND is designed as
a deterministic LS scheme aimed on intensification. It is used in the descent search phase of GVNS.
In contrast, RVNS is entirely stochastic aiming for diversification and establishing the randomized
perturbation phase (shaking) in GVNS and BVNS. Despite of their simplicity, both VND and
RVNS justify to be applied as independent search methods.

Beyond the four basic schemes (VND, RVNS, BVNS and GVNS), especially for solving large
problem instances, extensions have been proposed, in particular Skewed Variable Neighborhood

82

5 METAHEURISTIC OPTIMIZATION

Search (SVNS) and Variable Neighborhood Decomposition Search (VNDS). VNDS describes a
two-level search scheme enhanced through decomposition, aimed at increasing the precision and
at reducing the solution time for decomposable problems. SVNS is designed to efficiently explore
valleys far from the incumbent solution, employing a concept for distances between solutions
(Hansen and Mladenovié, 2001).

In this context, Pisinger and Ropke (2009) propose Large Neighborhood Search (LNS), which
belongs to the class of Very Large Scale Neighborhood Search (VLSN) algorithms. VLSN algorithms
are based on the observation that searching a large neighborhood results in finding local optima
of high quality compared to the search in smaller neighborhoods. Indeed, searching a large
neighborhood is time consuming and hence various filtering techniques are used to limit the search.
In LNS the neighborhoods are implicitly defined by methods (often heuristics), used to gradually
improve an initial solution by alternately destroying and repairing the incumbent solution.

For a parallel design of VNS see (Alba, 2005).

Refer to Figure 29 visualizing the basic concept of VNS.

A Objective

Initial solution

Landscape 1 (neighborhood 1)

,"./

“\ <€——_ Landscape 2 (neighborhood 2)
Second local optimum First local optimum
(landscape 2) —> (landscape 1)

>
Search space

Figure 29: Variable neighborhood Search (Talbi, 2009)

5.5.7 Greedy Randomized Adaptive Search Procedure (GRASP)

GRASP is a multi-start metaheuristic consisting of two phases: construction and LS. Beginning
with a randomized construction phase building a feasible solution, LS investigates its neighborhood
in the second phase until a local minimum is found. The best solution among all multi-start
iterations is kept as the final result (Feo and Resende, 1995; Resende and Ribeiro, 2003).

Talbi (2009) notices that the search iterations are completely independent from each other
and hence there is no search memory as in TS; cf. (Baghel et al., 2012). One will find annotated
bibliographies of the GRASP literature in (Festa and Resende, 2002, 2009b,a).

Typical for construction algorithms, GRASP starts from an empty solution. The construction
phase builds an initial solution by iteratively adding partial solution components, selected from
a Restricted Candidate List (RCL) in each iteration. The construction phase is characterized by
both a greedy and a probabilistic aspect. The greedy aspect manifests itself in the way the RCL is
created /updated in every construction step. The probabilistic aspect corresponds to the selection
strategy, randomly choosing a partial solution element from the RCL in each step. In each step
of the construction phase, the RCL is formed by the set of the remaining solution components
ranked according to a greedy evaluation function, which is usually a simple heuristic incorporating
problem-specific knowledge. The solution element that is finally used to extend the existing partial
solution is then chosen randomly from the RCL. The construction phase plays an essential role in
creating biased starting solutions of high-quality for the LS (Resende and Ribeiro, 2009).

The length of the RCL is an important control parameter, determining the degree of variation
established in the construction phase. In the case that the RCL length equals one, the construction
phase would repeatedly return an identical solution entirely determined by the evaluation function
used to update the RCL. Considerably too long RCL length would degrade GRASP to a simple
random-restart LS procedure (Zapfel et al., 2010).

The neighborhood search in the LS phase may be implemented using either a best-improving
or a first-improving strategy. It was observed that quite often both strategies lead to the same

83

5 METAHEURISTIC OPTIMIZATION

final solution, whereas the first-improving strategy requires smaller computation times. In addition,
that best-improving strategy tends to converge to bad local optima in early phases of the search
(Resende and Ribeiro, 2009).

For GRASP pseudocodes see (Feo and Resende, 1995; Resende and Ribeiro, 2009; Talbi, 2009;
Zapfel et al., 2010). Alba (2005) discuss parallel GRASP.

5.6 Population-Based Methods

In contrast to trajectory methods based on a single-solution, population-based methods iteratively
operate on a set of numerous solutions, improving the solution set usually referred to as population.
As they deal with a population of solutions in each iteration, they provide a natural, intrinsic way for
the exploration of the search space (Blum and Roli, 2003). Similarly, Talbi (2009) also emphasizes
that that population-based metaheuristics in comparison to trajectory methods generally show a
higher affinity to diversication. There is a characterizing feature of population-based methods that
makes them differ from parallelized trajectory methods: the solutions within a population usually
affect each other while the search progresses (Luke, 2009).

EC covers a popular set of population-based metaheuristics, jointly characterized by the
underlying idea to adapt principles from genetics and evolution in biology. An algorithm belonging
to EC is referred to as EA. The GA is probably the most popular among them (Luke, 2009). Beyond
EC, the class of population-based metaheuristics also covers a) ACO, b) PSO, ¢) SS, d) Bee Colony
Optimization (BCO), e) Estimation of Distribution Algorithms (EDAs), and f) AISs (Blum and
Roli, 2003); cf. (Talbi, 2009; Baghel et al., 2012). As the method’s names indicate, nature-inspired
approaches play a predominant role in the class of population-based metaheuristics.

The following sections are devoted to EAs, ACO, PSO, and SS. Since BCO, EDAs, and AISs
are not covered in the next sections, the reader is referred to (Teodorovic, 2009) for BCO, to (Blum
and Roli, 2003) for EDAs, and to (Greensmith et al., 2009) for AISs.

Swarm Intelligence (SI) In this context, Swarm Intelligence (SI) is often discussed in connection
with a considerable amount of population-based methods, emphasizing the idea of producing
computational intelligence by adapting concepts of social interaction in swarms that exist in nature
(Boussaid et al., 2013). A swarm is considered as a group of cooperating individuals/agents with a
certain behavioral pattern to achieve some goal(s). The most discussed SI models include ACO and
PSO. SI models exhibit three general properties: a) each entity of the swarm is made of a simple
agent, b) communication among agents is generally indirect and short, ¢) cooperation among agents
is realized in a distributed manner without a centralized control mechanism (Lim et al., 2009). For
more thorough descriptions and recent innovations in SI see (Bonabeau et al., 1999; Lim and Jain,
2009).

5.6.1 Evolutionary Computation (EC)

EC employs the theory of evolution in nature as an algorithm. EC basically covers a) GAs, b) EP,
¢) ESs, and d) GP (Ashlock, 2006); cf. (de Jong et al., 1997; Béck, 1997a; Blum and Roli, 2003;
Talbi, 2009; Marti and Reinelt, 2011).

An algorithm belonging to EC is referred to as EA. In EC the set of solutions is referred to as
population. A single solution is called individual. Recombined individuals are known as parents
and the resulting individual is called offspring or child (Zapfel et al., 2010).

EC is inspired by the concept of evolution, nature’s capability to evolve living beings well
adapted to their environment. At each iteration/generation, EAs apply a number of operators to
the individuals of the current population in order to generate the individuals of the next generation’s
population (reproduction). There exist two types of operators used to generate new individuals:
recombination and mutation operators. The driving force in EC is given by appropriate selection
and replacement strategies, preferring individuals with a higher fitness (solutions with better
objective values). The fitter the individual, the higher is the probability to be chosen as a member
of the next generation’s population. This notion of competition corresponds to the principle of
survival of the fittest in natural evolution (Blum and Roli, 2003). The basic procedure that produces
a new population in each generation is visualized in Figure 30.

84

5 METAHEURISTIC OPTIMIZATION

The main search components for designing an evolutionary algorithm are as follows: a) repre-
sentation, b) population initialization, ¢) objective function, d) selection strategy, e) reproduction
strategy, f) replacement strategy, and g¢) stopping criteria (Talbi, 2009).

For more thorough insights into EC see (Béck, 1997a; Ashlock, 2006; Lachowicz and Miekisz,
2009), whereas Ashlock (2006) gives a pseudocode for EAs among others. For recent surveys and
thorough descriptions of EC with focus on multi-objective optimization see (Coello Coello, 1998a,b,
1999; Zitzler et al., 2001; Ghosh and Dehuri, 2004; Obayashi, 2007; Zhou et al., 2011). Alba (2005)
describe parallel models of EAs.

Selection
Population >» Parents

A

Reproduction:
recombination, mutation

y

Replacement

Offsprings

Figure 30: A generation in Evolutionary Algorithms (Talbi, 2009)

Evolutionary Programming (EP) EP was originally proposed to operate on discrete rep-
resentations of finite state machines, but most of the present variants are used for continuous
optimization problems (Blum and Roli, 2003). The common idea behind EP, as in ES, is to use
mutation and selection, without employing recombination (Reeves, 2009); cf. (Béck, 1997a; Porto,
1997). This emphasis on mutation operations generates diversity among the population of solutions,
prevents entrapment in local minima, and maintains a high degree of correlation between parent
and offspring behavior (Porto, 1997). In contrast to GAs, waiving recombination operators in the
concept of EP basically stems from the realization that a sum of optimal parts rarely leads to
an optimal overall solution. EP (and ESs) allow(s) for simultaneous modification of all decision
variables by mutation at the same time (Porto, 1997).

Evolutionary Strategies (ESs) As EP, most variants of ESs are used for continuous optimiza-
tion problems (Blum and Roli, 2003). In contrast to GAs, the traditional ES does not make use of
recombination, instead they only use mutation for reproduction (Zapfel et al., 2010); cf. (Reeves,
2009). Underpinned by the facts that the ES exclusively relies on mutation and initially even did
not use a population of solutions, the idea behind ESs is generally closer in concept to neighborhood
search methods, respectively variants of LS (Reeves, 2009). Another specificity is given by the
selection operator that is originally deterministic. In addition, a distinguishing characteristic is
that ESs also evolve control parameters in a kind of self-adaptation during the search process
(Béck, 1997a); cf. (Talbi, 2009). Since they are originally designed for continuous optimization
problems, the self-adapting behavior automatically adjusts the step widths that determine the
amount of variation of the parameters during the search (Zéapfel et al., 2010). Rudolph (1997) gives
a pseudocode for ESs and Alba (2005) describe parallel variants.

Genetic Algorithms (GA) GAs are originally proposed and mainly applied to solve COPs
(Blum and Roli, 2003). It is fair to say that GAs are probably the most discussed methods in the
area of EC and encapsulate the most important concepts present in EC (Reeves, 2009). The concept
of GAs is characterized by a strong emphasis on recombination as the most important search
operator, whereas mutation is used with small probabilities in order to modify the individuals only
slightly. The selection operator is usually stochastic. GAs often rely on a binary representation
of individuals (Béack, 1997a). This emphasis on recombination draws contrast to the concepts
of EP and ES (Reeves, 2009); cf. (Eshelman, 1997). GAs usually use a probabilistic selection
operator that is originally the proportional selection (Talbi, 2009). In the concept of GAs an
individual representing a solution is usually encoded as a string, which is originally of binary form

85

5 METAHEURISTIC OPTIMIZATION

(Reeves, 2009). It turned out that the binary encoding is impractical for many problems and the
solution representation has been extended to include character based encoding, real-valued encoding,
and even tree representations (Marti and Reinelt, 2011); cf. (Eshelman, 1997). In addition to
common EA parameters (population size, initialization methods, fitness definition, selection and
replacement strategies, and recombination and mutation operators), recent approaches employ
additional information, e.g. the aging of individuals (Reeves, 2009). For GA pseudocode examples
see (Eshelman, 1997; Reeves, 2009; Zépfel et al., 2010). Alba (2005) investigates parallel GAs.

Genetic Programming (GP) The central idea of GP is to employ concepts of EC for automat-
ically evolving executable computer programs (Langdon et al., 2009). In contrast to other EAs, in
GP the evolving individuals are themselves programs that solve a given task. The theory of GP is
considerably less developed than in ES and GA (Talbi, 2009). An individual in GP that represents
the program to evolve is usually expressed as syntax tree rather than as lines of code. The variables
and constants in the program to evolve are leaves of the tree, called terminals, whereas arithmetic
operations are internal nodes of the tree, referred to as functions (Langdon et al., 2009). The
major difference to other EAs is that the population and the individuals are stored in variable-sized
trees (Ashlock, 2006). In GP evaluating the fitness of an individual means to execute the evolved
computer programs in order to determine their quality with respect to a given task (Kinnear et al.,
1997). Langdon et al. (2009) give a GP pseudocode and Alba (2005) deal with parallel GP.

Meta-Evolutionary Approach For the design of a particular EA various control parameters
need to be defined, i.e. population size, initialization methods, fitness definition, selection and
replacement strategies, and recombination and mutation (Reeves, 2009); cf. (Talbi, 2009).

Freisleben (1997) mentions a meta-evolutionary approach, describing a two-level concept in
which a meta-level EA operates on a population of base-level EAs solving the problem at hand.
The idea behind is to use a meta-level EA that determines the best settings for the base-level EAs.
More in general and not exclusively linked to EAs, this approach is also combined with the term
hyper-heuristics.

5.6.2 Ant Colony Optimization (ACO)

ACO is inspired from the foraging behavior of real ants, which indirectly communicate with each
other via pheromone trails (Dorigo and Blum, 2005). The ACO concepts stems from the observation
that an ant colony is able to discover the shortest path to locations of food sources in vicinity of
their nest, even in complex scenarios with multiple paths. Despite of the fact that an individual ant
has very limited skills, the whole ant colony successfully copes with the task of finding the shortest
paths to food sources, enabled by a cooperation that is characteristic to SI (Zapfel et al., 2010).

The ACO is considered as a distributed, stochastic search method based on the indirect
communication of a colony of (artificial) ants, mediated by (artificial) pheromone trails. ACO is a
population-based metaheuristic with single individuals (ants) that use a probabilistic construction
scheme to create solutions, while exploiting an indirect form of memory of previous performance.
In particular, the iteratively modified pheromone trails reflecting the ants search experience are
used to probabilistically construct solutions (Dorigo and Stiitzle, 2004).

The randomized construction heuristic implemented in ACO makes probabilistic decisions
as a function of some heuristic information about the problem instance and the dynamically
acquired search experience (memory) in terms of artificial pheromone trails. In contrast to other
construction methods (GRASP), ACO employs a cumulated search experience for constructing
solutions. Facilitating diversification, a stochastic component in ACO enables the ants to build a
wide variety of different solutions compared greedy construction heuristics (Dorigo and Stiitzle,
2009).

The use of ACO is particularly proposed to solve NP-hard problems, dynamic shortest-path
problems, and problems in which the computational architecture is spatially distributed (Dorigo
and Stiitzle, 2004). Dorigo and Stiitzle (2009) list numerous ACO applications.

Dorigo and Stiitzle (2009) point out that coupling ACO with LS algorithms improves ACO’s
performance as the two approaches perform complementary. On one hand, ACO serves as a
generator for appropriate initial solutions for LS algorithms. On the other hand, the improved

86

5 METAHEURISTIC OPTIMIZATION

results by LS are used to enhance the search experience (pheromone trails), which in turn facilitates
the construction of new initial solutions. Neumann et al. (2009) also discuss ACO’s hybridization
with LS.

For ACO-pseudocode see (Dorigo and Blum, 2005; Dorigo and Stiitzle, 2009; Talbi, 2009; Zapfel
et al., 2010). Alba (2005) investigate parallel ACO concepts.

5.6.3 Particle Swarm Optimization (PSO)

PSO is another stochastic population-based metaheuristic inspired from SI, characterized by a
coordinated behavior using local movements emerges without any central control (Talbi, 2009).
PSO is a stochastic optimization technique similar to EC, but unlike EAs, PSO does not utilize
recombination, mutation or selection for producing new solutions. Instead, PSO establishes a form
of directed modification in response to new discoveries about the search space, while maintaining a
single static set of solutions (Luke, 2009); cf. (Lim et al., 2009).

Initially, a set of solutions is randomly distributed in the search space, also referred to as particle
swarm. Every particle knows a) its actual value determined by an objective function, b) its own
best objective value from history (locally best solution), ¢) the best objective value of the whole
swarm (globally best solution) and d) its own velocity (Zépfel et al., 2010); cf. (Baghel et al., 2012).
In each iteration cycle of the search, every particle is modified under consideration of its actual
objective value, its locally best solution, the globally best solution, its own velocity, and a bit of
random noise (Luke, 2009). Consequently, the entire swarm moves in the direction of the globally
best value, and thus explores the solution space in a directed fashion (Zépfel et al., 2010). Figure 31
visualizes the described concept.

PSO is explicitly proposed for multi-modal problems, whereas the search space has multiple
global optima or one global optimum with many local optima (Barrera and Coello Coello, 2009). But
originally, PSO was designed to solve continuous optimization problems (Talbi, 2009). Reyes-Sierra
and Coello Coello (2006) present a survey on PSO solving problems with multiple objectives. Talbi
(2009) presents a pseudocode.

. Particle

v ‘\ New position of
A the particle
\ '

Velocity of the

O /O P — particle

Decision space

Figure 31: Particle Swarm Optimization (PSO) (Talbi, 2009)

5.6.4 Scatter Search (SS)

SS is a population-based metaheuristic operating on a set of solutions setting emphasis on re-
combination. SS was first introduced as a heuristic for IP problems (Marti and Reinelt, 2011).
According to related EC/OR literature, SS is not covered by EC, but nevertheless considered as an
evolutionary metaheuristic that employs deterministic recombination in a population of solutions
in order to obtain better solutions (Resende et al., 2009). The specificity of SS is to establish a
balance between diversification and intensification by explicitly controlling the diversity of the
population (Zépfel et al., 2010).

In contrast to EAs that generally employ randomization to establish diversification, SS relies on
the premise that a systematic design for creating new solutions is generally superior to randomness;
and thus SS makes only limited use of randomization. The quality of a particular solution

87

5 METAHEURISTIC OPTIMIZATION

is determined by its objective value and by its degree of diversity (Resende et al., 2009); cf.
(Luke, 2009). The generalized form of SS is called Path Relinking providing unifying principles
for recombining solutions based on generalized path constructions (Blum and Roli, 2003). For
pseudocodes see (Talbi, 2009; Zépfel et al., 2010) and for parallel approaches (Alba, 2005).

5.7 Benchmarking

Benchmarking stands for comparing the performance of different solution methods by use of
(publicly) available sets of instances of a certain optimization problem, referred to as benchmarks.
The use of identical problem instances allows comparing the solution quality gained by different
methods in different technical environments (hardware and/or software). When comparing a new
metaheuristic to existing ones, it is advantageous to test on the problem instances already tested
by previous papers (Silberholz and Golden, 2009).

Comparing metaheuristics may include numerous performance indicators that may be grouped
into the following categories: a) solution quality, b) computational effort, ¢) robustness. d) simplicity
(Talbi, 2009). Depending on the specific use case, the solution quality (effectiveness) and the
computational effort (efficiency) are probably the most important indicators for the performance
of (meta)heuristics. Beyond those, in the second line, development cost, ease of use, flexibility
(wide applicability) and maintainability may be considered as additional indicators evaluating
metaheuristics (Talbi, 2009).

Solution Quality The solution quality of a heuristic is determined by comparing its solution
for a certain problem instance with another solution obtained by another method (for the same
instance). Basically, there exist four types of solutions compared with each other: a) the optimum
solution, b) a lower/upper bound, ¢) the best known solution, or d) the actual implemented solution.

If an optimal solution is available, it is obviously reasonable to use it as the reference. If no
optimal solution is available, then lower/upper bounds may serve as reference. And in those cases
where neither the global optimum is known nor a lower/upper bound exists, the comparison is
performed with the best solution known to this date. The best known solutions may be obtained
by other heuristics or by truncated exact methods. Another option is to simply use the solution
that is currently implemented in order to determine the quality of the method under study (Talbi,
2009); cf. (Marti and Reinelt, 2011). Refer to Figure 32 that shows the gaps to optimize.

Gap to optimize

B S kb bbb >
D bbbl > Objective
O > function
1 1]] l »

] I 1 1 T Ll

Lower bound Optimal solution ~ Best known solution ~ Solution found Requirement

<
Improvement compared to requirements
or already implemented solution

Figure 32: Four types of solutions used for benchmarking (Talbi, 2009)

Computational Effort The computational effort needs to be spend to reach a certain level
of solution quality and is the second important performance measure beside the solution quality
itself; cf. (Silberholz and Golden, 2009). At the same time, run time comparisons are some of
the most difficult comparisons to make. Measuring computation times is critical due to the fact
that the measurements depend on the characteristics of the underlying experimental system, e.g.
a) the hardware involved, b) the operating system, ¢) the programming language of choice, and
d) the compiler (options) used for executing the code. For that reason it might be more suitable in
certain situations to use computer system independent performance measures, such as the number
of objective function evaluations (Talbi, 2009). Based on computing time measurements it is

88

5 METAHEURISTIC OPTIMIZATION

possible to experimentally determine the convergence speed of heuristics in order to facilitate the
development of heuristics that gain high improvements in very short time. Ovacik and Uzsoy
(1995) discuss the trade-off between solution quality and computation time.

Robustness Robustness describes the (in)sensitivity of the obtained solutions to input variable
changes that occur after the solution has been found. Robust algorithms lead to stable solutions with
low variability for optimization problems with such uncertainties, e.g. changes in input variables
slightly modifying the original problem Another view on robustness is particularly concerned
with non-deterministic search methods that employ randomness in their strategies (stochastic
search). Since the obtained solutions may vary for identical instances, in this context, robustness
indicates a low level of deviation over different runs of the algorithm on the same instance (Talbi,
2009). Greenberg and Morrison (2008) investigate problems and strategies in the area of robust
optimization more thoroughly.

Simplicity The simplest solution is most often the best. This statement in general holds for
the development of software systems and in particular for the design of metaheuristic algorithms.
Simpler algorithms are easier to implement, maintain, adapt, explain and analyze (Silberholz and
Golden, 2009). Indeed, simplicity results in lower susceptibility to errors. Silberholz and Golden
(2009) mention the steps of the pseudocode or the lines of the written code as reasonable metrics,
but argues they depend on the used language and the author’s style. Another metric describing the
complexity of an algorithm is the number of parameters used to set up the method.

5.7.1 Benchmark Results for Example Problems

This section exemplary cites the results reported for three problem types among many others. It
can be summarized that among the mentioned benchmark studies no generally superior search
scheme emerges. However, with respect to a particular problem class, researchers report about the
differences among their tested implementations of common search schemes.

For the NP-hard linear ordering problem (LOP), Marti and Reinelt (2011) and Marti et al.
(2012) compare the performance of TS, a memetic algorithm, VNS, SA, SS, GRASP, a GA, and
ILS. They observe the best performance for the memetic algorithm, ILS and TS and an acceptable
performance for VNS, SS;, GRASP, while SA and the GA are classified as poor.

Based on a single-machine scheduling problem, Ibaraki (1997) compares the performance of
a GA, genetic LS, multi-start LS, GRASP, SA, and TS. Ibaraki (1997) observes that genetic LS
is much more efficient than GA. Further, genetic LS, GRASP, SA, and TS behave more or less
similarly and genetic LS and SA perform slightly better than TS and GRASP.

Hansen and Mladenovié¢ (2001) present a comparison between GRASP, VNS and TS for a
variant of the SAT problem. They observe that VNS and TS perform better than GRASP and TS
does slightly better than basic VNS.

Azimi (2004) examine timetabling problems, comparing SA, TS, GAs and ACO with each other.
They find that ACO works better on these problems.

Durillo et al. (2010) analyze the convergence speed of seven state-of-the-art metaheuristics for
multi-objective benchmark problems. Among those studied methods, one will can find PSO, GA
and SS. The results show that PSO is among the most promising approaches to deal with.

5.7.2 No-Free-Lunch Theorems (NFLTS)

Wolpert and Macready (1997) introduce the NFLTs roughly saying that the average performance of
any pair of algorithms across all possible problems is identical, even if one of them is random search.
The NFLTSs can be visualized with a matrix in which the rows represent problems, the columns stand
for search strategies and the entries descr<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>