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Abstract Die Halbleiterindustrie, als eine der größten und am schnellsten wachsenden Industrien
der Welt, arbeitet kontinuierlich an der Reduktion ihrer Produktionskosten für konstant
erschwingliche Produktpreise am Markt. Die Produktionslogistik spielt bei der Senkung der
Produktionskosten in Halbleiterwerken (waferfabs) eine entscheidende Rolle. Man geht davon
aus, dass Scheduling-Systeme in Kombination mit entsprechenden Optimierungsverfahren
die derzeit eingesetzten Dispatch-Systeme als state-of-the-art Steuerungsverfahren in naher
Zukunft ablösen werden. Insbesondere die Möglichkeit des Optimierens verschafft Scheduling-
Systemen gegenüber Dispatching-Systemen entscheidende Vorteile. Viele Autoren teilen
die Auffassung, dass exakte Optimierungsverfahren in Scheduling-Systemen nicht die erste
Methode der Wahl zu sein scheinen. Stattdessen werden oft Metaheuristiken und lokale
Suchverfahren zur Lösung von Scheduling-Problemen mit verschiedensten Randbedingungen
herangezogen. Sie liefern akzeptable Lösungen mit vertretbarem Zeitaufwand.

Diese Arbeit beschreibt ein Scheduling-Framework und dessen Implementierung für den
Einsatz als Batch-Scheduling System im Prozessbereich Diffusion/Oxidation in einer Halbleit-
erfabrik. Das Framework umfasst im Kern ein simulations-basiertes Scheduling-System mit
Variabler Nachbarschaftssuche (VNS) zur Optimierung. 9 Kapitel beleuchten ausführlich die
zugrundeliegenden theoretischen Hintergrnde und liefern gleichfalls wertvolle Erfahrungen
aus der industrienahen Entwicklung eines Scheduling-Systems unter Praxisbedigungen.

Der theoretische Teil dieser Arbeit lässt sich zweiteilen. Zum einen stellt die ausführliche
Literaturbersicht zum Thema Batch-Scheduling in der Halbleiterfertigung eine wesentliche
Säule dieser Arbeit dar. Zum anderen vervollständigt die detaillierte Einführung in das
Fachgebiet mit einer eingehenden Analyse der Komplexitätsklassen zu den wichtigsten Batch-
Scheduling Problemen den Theorieteil dieser Arbeit.

Der Fokus des praktischen Teils beleuchtet Aspekte aus Industrie und Forschung gleicher-
maßen. Das implementierte System vereinbart diese beiden Anwendungsgebiete zu gleichen
Teilen, in dem es einerseits der Forschung als Experimentiersystem dient und andererseits als
Prototyp in der Industrie funktioniert.

Das Experimentiersystem eröffnet die Möglichkeit akademische Fragestellungen aus dem
Bereich des metaheuristischen Batch-Schedulings zu beantworten. Die Experimente zeigen,
dass auch kleine Änderungen in den Ausgangsbedingungen zu bedeutenden Änderungen in
den Scheduling-Ergebnissen führen können. Es geht um die Frage, welchen Einfluss die
Eigenschaften des Scheduling-Problems und die Parameter der Scheduling-Methode auf die
Qualität der zu erreichenden Verbesserungen haben können. Darüber hinaus zeigen die
Experimente welche dieser Parameter zur Optimierung von Ablaufplänen zu favorisieren sind.

Der Prototyp wurde gezielt für die speziellen Anforderungen der Industrie entwickelt. Das
Design des Frameworks ermöglicht seine Nutzung als prototypisches Steuerungssystem im
operativen Betrieb, als Real-Time Scheduling-System. Design, Implementierung und Test
eines Scheduling-Systems sind anspruchsvolle Aufgaben. Die Installation eines solchen
Steuerungssystems im laufendem Betrieb ist jedoch weitaus herausfordernder. Diese Arbeit
beschreibt das implementierte Scheduling-System mit den wichtigsten Komponenten in
den Bereichen Modellierung, Simulation und Optimierung, sowie die darunter liegenden
Datenebenen mit Verbindung zum Fertigungsystem (MES) einer Halbleiterfabrik.

Key Words Batch Scheduling, Simulation-basiertes Scheduling, Variable Nachbarschaftssuche,
Halbleiterfertigung
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Abstract The semiconductor industry as one of the largest and fastest growing industries in the
world needs to continuously reduce production costs to provide affordable products. Factory
operations are likely to be major drivers to realize the necessary cost reductions in wafer
fabrication facilities (waferfabs). For example operational scheduling systems powered by
optimization techniques promise to replace dispatching systems as state-of-the-art control
systems in the near future. Especially the capability of optimization makes scheduling systems
superior to dispatching systems. Many authors share the opinion that exact optimization
methods do not seem to be the method of choice in real-world scheduling systems. Instead
metaheuristics and local search (LS) methods in particular are often used to solve scheduling
problems with a variety of complicating constraints, since these algorithms can obtain good
quality solutions within a reasonable time.

The core of this work revolves around the implementation of a scheduling framework developed
to deploy it as an operational batch scheduling system in the diffusion and oxidation area
of a waferfab. The implemented framework is essentially a simulation-based scheduling
system powered by Variable Neighborhood Search (VNS). This thesis provides the underlying
theoretical background and reports valuable practical experiences from implementing a
scheduling system in a real-world industrial environment.

The focus of the theoretical part lies on two topics. First an extensive literature review
about batch scheduling in wafer fabrication stands as one of the main pillars for this work.
Secondly a detailed introduction to the batch scheduling topic with a detailed analysis of the
complexity results of the most common batch scheduling problems completes the theoretical
background of this work.

The focus of the practical work lies between the poles of academia and industry. The
implemented framework is a balancing act between academia and industry since it basically
comprises two systems: the experimental system and the prototype.

On one hand the experimental system offers the capability to properly investigate academic
questions in the area of metaheuristic batch scheduling. The experiments show that even
slight changes in the experimental setup can result in considerable changes of the output. The
question is raised whether the problem instance’s characteristics or the scheduling method
settings have greater influence on the improvements. It is further shown by experiments how
to ideally parametrize a VNS scheme optimizing schedules.

On the other hand the framework’s prototype is purposefully designed and developed for
the needs in industry. The intention of the framework’s design is to provide a functioning
prototype that is suitable to run as a real-time scheduling system on the operational level.
Designing, implementing and testing a scheduling system is a demanding task, but deploying
it in a waferfab that relies on dispatching to that date is even more challenging. This thesis
describes the top-level scheduling system with all its modeling, simulation and optimization
functionalities and the underlying data level connected to the waferfab’s manufacturing
execution system (MES).

Key Words Batch Scheduling, Simulation-Based Scheduling, Variable Neighborhood Search,
Wafer Fabrication
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NP Complexity class for decision problems that can
be solved by a non-deterministic Turing machine
in a polynomial time.

∝ Reducibility between optimization/decision
problems in a polynomial bounded time.

?
= Equality is unknown.
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The electronics industry has become one of the largest industries in the world and manufacturing
of Integrated Circuits (ICs) is an important part of the global economy (Fowler and Rose, 2004;
Mönch et al., 2011a). The semiconductor manufacturing industry with an annual sales of more than
$250 billion worldwide at the end of 2007 is additionally considered as one of the fastest growing
industries in the world (Mathirajan et al., 2010).

A high profitability of manufacturing organizations is simply put the result of two factors: high
sales of products combined with low costs in manufacturing, at what low costs in manufacturing
is the result of a high level of productivity (Hopp and Spearman, 2001). The semiconductor
industry needs about a 30% cost per cm2 reduction every 10 years to keep the costs and products
affordable (Pillai, 2006). Since productivity improvements on the same wafer size have not yielded
the necessary cost reductions, semiconductor industry historically has changed over to the next
wafer size level approximately every 10 years. Today semiconductor manufacturer also focus on
introducing a new generation of improved process equipment with greatly increased productivity in
order to delay the next wafer size transition (Pillai, 2006).

In the past, most efforts to increase productivity and thus to reduce costs included a) decreasing
the size of the chips, b) increasing the wafer sizes, and c) improving the yield. Beyond these three,
considerable improvements of operational processes inside the semiconductor manufacturing system,
also covered with the term Factory Operations (FO), today and in near future are likely to be the
major drivers to realize the necessary cost reductions (Mönch et al., 2003, 2011a).

The International Technology Roadmap for Semiconductors (ITRS)1 frequently provides a
survey about recent and future developments in semiconductor industry (Cogez et al., 2007, 2011).

Key Performance Indicators (KPIs) Hopp and Spearman (2001) define basic performance
indicators in a production system, alternatively referred to as Key Performance Indicators (KPIs).
The Throughput (THP) of a production system is defined as the average output of the production
process per unit time (e.g. parts per hour), also referred to as THP rate. An upper limit on the
THP of a production system is its Capacity (CAPA). The utilization of a workstation can be seen
as the fraction of time the workstation is used explicitly for production. It can be computed as the
ratio of the arrival rate of the parts and its effective production rate. The effective production rate
is defined as the maximum average rate at what the workstation can process parts (considering the
effects of failures, setups, and all other detractors). The Work in Process/Progress (WIP) refers
to the inventory (all the products) between the start and end points of a product routing, i.e. all
the parts that have started but not have completed their processing. The Cycle Time (CT) is
defined for a given routing and refers to the time a part needs from its release at the beginning
of the routing until completing the last step at the end of the routing. Another basic goal of
manufacturing is On-Time Delivery (OTD), that is meeting due dates that usually directly refer to
customer orders.

Leachman and Hodges (1996) discuss a list of important metrics of semiconductor manufacturing
performance with real-life data. They examine various measures for CT, OTD, yield and productivity.
Leachman (2002) summarizes findings from benchmarking 10 200 mm manufacturing facilities.
Montoya-Torres (2006) provides an overview on the most commonly used performance evaluation
metrics in the semiconductor industry, mentioning relevant scientific works. The ITRS (Cogez
et al., 2007) reports various benchmark values in semiconductor fabrication facilities, e.g. for CT
and utilization. Godinho Filho and Uzsoy (2011) discuss dependencies among several KPIs.

1http://public.itrs.net/
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Factory Operations (FO) As stated before, FO are likely to be major drivers to realize the
necessary cost reductions (Mönch et al., 2011a). The primary goals of FO as a main pillar in
manufacturing management are: a) minimal WIP, b) short CTs, c) maximum utilization of resources
along with maximum THP, and d) high OTD (Hopp and Spearman, 2001); cf. (Cogez et al., 2007,
2011; Mönch et al., 2011a). Especially meeting due dates for optimal customer satisfaction along
with short CTs have become one of the most decisive factors for the success of semiconductor
manufacturers on the global market (Mönch et al., 2011a). The goal of production scheduling is to
strike a profitable balance between these conflicting objectives (Hopp and Spearman, 2001; Rose,
2006).

Operating Curve (Op curve) Little (1961) formulates a fundamental law for manufacturing
systems: the long-term average number of customers (L) in a stable system is equal to the long-term
average effective arrival rate (λ) multiplied by the average time a customer spends in the system
(W ); or expressed algebraically: L = λW . Given that the arrival rate is identical to the THP rate
over time in a balanced system, Little’s Law can also be stated as WIP = THP ×CT with respect
to the naming convention for manufacturing systems. Little’s Law implies that reducing CT and
reducing WIP is equivalent, provided that THP remains constant (Hopp and Spearman, 2001).

Aurand and Miller (1997) have developed the concept of the Operating Curve (Op curve) for
manufacturing systems, further clarifying the relationship between the normalized CT (x-factor)
and the machine utilization. Based on waiting line models from the Queuing Theory literature, the
Op curve methodology incorporates the effect of variability typical for manufacturing processes.
Hence, the Op curve provides a more clearer understanding of the relationship between the two
fundamental indicators of factory productivity, i.e. the product CT and the asset utilization. The
basic observation is that CT increases with an increasing utilization (respectively THP) and tends
to infinity as THP converges to CAPA.

Refer to Figure 1 visualizing the concept of Op curve at hand of an example.

Figure 1: Line performance curve (Martin, 1998); cf. (Aurand and Miller, 1997)

Maximizing Throughput (THP) The capital cost of the production equipment runs in many
billions of dollars and is 75% of the total factory capital costs, which drives the need to maximize
the utilization of resources (Gupta et al., 2006; Pillai, 2006).

Maximizing the machine utilization means a higher return on investment due to higher a
utilization of that capital equipment. The level of utilizing a manufacturing system can run with
reasonable WIP and CT depends on the level of variability, knowing that 100% utilization is
impossible. The higher the variability the manufacturing system shows, the lower is the utilization
that has to be compensated (Hopp and Spearman, 2001).

Aurand and Miller (1997) coin the term Continuous Flow Manufacturing (CFM) covering the
Op curve methodology proposed to benchmark and predict a manufacturing performance. One of
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the principle methods used to improve manufacturing asset utilization is CFM. The key focus of
CFM is to measure and manage the THP of machines by identifying and fixing problems in the
factory. As stated before, CT increases with an increasing utilization (THP) and tends to infinity
as THP converges to CAPA. This results in a trade-off between the costs of the reduced THP
required to achieve a given CT and the value of the increased productivity achieved by this CT
(Martin, 1998, 2000). The profitability in semiconductor manufacturing considerably depends on
the ability to interactively manage the trade-off between these two KPIs (Fayed and Dunnigan,
2007). Essentially, increasing THP leads to smaller costs per wafer and reducing CT results in
lower financial holding costs (Mönch et al., 2011a); cf. (Pinedo, 2005, 2008).

Minimizing Cycle Time (CT) Based on the observation that CT is a much more sensitive
indicator of CAPA problems than THP, Martin (1998) suggests Short Cycle Time Manufacturing
(SCM) to focus on CT measurements rather than on THP measurements. The reason is that CT
increases rapidly as the THP approaches the effective CAPA, since CT and THP share a non-linear
relationship as described with the Op curve. The central goal of SCM is to promote productivity
improvements by reducing CAPA loss components, resulting in a shift of the Op curve that is
tantamount to simultaneously improved THP and CT; cf. (Martin, 2000).

Reducing CTs directly a) leads to better responsiveness to the customer, b) maintains manufac-
turing flexibility, c) improves quality, d) reduces reliance on product demand forecasts, and e) leads
to better product shipment forecasts (Hopp and Spearman, 2001). Beyond those positive effects
on customer serviceability, CT has a significant impact on productivity learning (Martin, 1998).
Usually it is said that the big companies eat the small, but today the fast run over the slow since
the most important performance difference concerns speed in many aspects. Leading companies
a) introduce new process technology earlier, b) qualify the technology faster, c) ramp up the yield
and the volume more quickly, d) manage shorter CTs, and e) shorten process times on equipment
with higher THP (Leachman, 2002). It is further taken into consideration that rapid CTs promote
yield improvements, especially during the early stages of product and process life cycles (Wein,
1992; Cunningham and Shanthikumar, 1996). Moore (1998) describes an observation that was
henceforward referred to as Moore’s law. It says that the number of transistors in semiconductor
devices doubles approximately every two years between subsequent technology nodes. Thus the
number of chip layers continues to increase simultaneously. In order to prevent CT stagnation or
even degradation as a result of an increasing number of chip layers, it is of particular importance to
reinforce efforts to find breakthrough approaches that lead to continuous reductions in CT (Moore,
1998; Pillai, 2006); cf. (Cogez et al., 2007, 2011).

1.1 Motivation

Operations in a wafer fabrication facility (waferfab) account for more than 75% of the total CT
and are also the largest component of costs within the value chain of semiconductor manufacturing
(Mönch et al., 2011a). Scheduling (with sequencing rules) has a significant impact on the average CT,
but has a considerable less impact on the factory performance compared to the effect of the chosen
input control policy that is supposed to properly regulate the wafer starts in order to limit the WIP
in the factory (Wein, 1988; Johri, 1993). The management of waferfabs has become increasingly
interested in using effective production Planning, Scheduling and Control (PSC) techniques as a
vehicle to achieve a competitive advantage (Gupta et al., 2006). Mönch et al. (2003) state that
efficient PSC strategies currently create the best opportunity to improve operational processes in
order to realize the necessary cost reductions; cf. (Mönch et al., 2011a). Major investments in PSC
processes are made consistently by all major semiconductor manufacturing enterprises, including
Intel and Samsung (Pinedo, 2008).

Modeling, Simulation and Optimization It is very likely that highly sophisticated computer-
based techniques in the area of modeling, simulation and optimization will play a key role in the
next-generation manufacturing systems. Underpinning this, six observations from the simulation
viewpoint (Allen, 2011) and from the optimization viewpoint (Hansen et al., 2009) are summarized,
which represent the main contributors to the continuous success of modeling, simulation and
optimization:
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a) continuing pressure for organizational efficiency, b) improved access to low-level data through
new sensors and databases, c) enhanced visualization capabilities (realistic simulations), d) rapid
improvement in computer performances, e) continuous research progress in theory and design of
algorithms, and f) better communication of new ideas and integration in widely used complex
software systems. These observations give strong indications that there is a pervasive need to use
modeling, simulation and optimization for decision support, in particular for PSC techniques in
current and future manufacturing systems (Fowler and Rose, 2004).

Dispatching versus Scheduling Dispatching systems set the de facto standard in scheduling
and control of waferfabs, whereby which the APF RTD2 product is installed in most waferfabs
(Mönch et al., 2011a); cf. (Leachman, 2002).

Scheduling deals with the allocation of resources to tasks over given time periods and its goal
is to optimize one or more objectives (Pinedo, 2005, 2008). See (T’kindt and Billaut, 2006) for
alternative definitions of the scheduling paradigm.

Fordyce et al. (2008) discuss the fundamentals of the paradigm shift from dispatching to
scheduling in an IBM 300 mm fab, reporting substantial improvements in performance and
significantly reduced overhead to adapt to changing circumstances. A dispatching system typically
employs a set of simple priority rules, which are continuously further developed to complex rule-
based decision systems that truly do a reasonable job. However, compared to scheduling systems,
dispatching systems based on rules fundamentally lack a robust ability to: a) look across time,
b) look across tools at a tool set, c) create an anticipated sequence of events at a tool set over some
time horizon, d) establish a formal metric, and e) search alternatives.

Another reason stems from a continuous decrease of manual handling activities. With the shift
from 200 mm to 300 mm wafer size, automated material handling generally replaces manual handling
because of the increase in size and weight of the wafers. This fact additionally intensifies the
need for scheduling approaches and drives the integration of scheduling solutions with automated
material handling efforts taking the growing importance of automation into account (Chien et al.,
2008; Mönch et al., 2011a). Refer to Section 3.3 for a short introduction into automated material
handling in waferfabs.

In the past decades the standard wisdom was that the use of optimization in dispatch applications
is technically not feasible. This has begun to change driven by continuous improvements in
computing power and algorithms (Fordyce et al., 2008).

Technical Challenges Factors that generally complicate the scheduling process include: a) man-
ufacturing complexity, b) randomness and variability, c) long time horizons, d) data inconsistency
and availability, e) the lack of execution mechanisms, and f) the lack of a framework (Pinedo,
2008). From perspective of scheduling, a waferfab resembles a flexible job shop with various
specific characteristics that make the scheduling process inherently very complicated and of critical
importance (Pinedo, 2008). The operational control of semiconductor manufacturing facilities is a
challenge, as these systems are among the most complex manufacturing environments encountered
today (Gupta et al., 2006). Uzsoy et al. (1992b, 1994) give detailed descriptions of operational
processes in semiconductor manufacturing facilities, focusing on challenges related to PSC issues.
They highlight the following six factors that make PSC in the semiconductor industry particularly
difficult: a) complex product flows (recirculation), b) random yields, c) diverse equipment charac-
teristics, d) equipment downtime, e) production and development in shared facilities, and f) data
availability and maintenance; cf. (Wein, 1988; Johri, 1993; Gupta et al., 2006; Shanthikumar et al.,
2007) among others.

a) Complex product flows embody a high number of process steps, where a number of them
perform on the same production equipment and thus each lot may repeatedly visits a machine
multiple times. This kind of recirculation is also known as reentrant product flow. Even for a
fixed process route, the material flow is highly dynamic due to disturbing effects related to
scrap, on-hold, rework, and lot split/merge activities.

2http://www.appliedmaterials.com
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b) Random (wafer) yields are subject to uncertain process yields that vary due to environmental
conditions, i.e. problems with production equipment or material. Yield problems require a
large amount of engineering hold time on both lots and equipment as part troubleshooting
activities.

c) Diverse equipment characteristics are typically encountered in waferfabs. The characteristics
of the equipment vary widely, e.g. in nature of batch processing machines, sequence-dependent
setups, and the need for auxiliary resources.

d) Equipment downtimes state another critical issue since semiconductor manufacturing tech-
nology is extremely sophisticated. Semiconductor process equipment is often subject to
unpredictable failures and requires extensive preventive maintenance and calibration efforts in
order to maintain a certain level of process quality. Unpredictable equipment downtime is con-
sidered as the main contributor to uncertainty and variability in semiconductor manufacturing
operations.

e) Production and development in shared facilities mirror the problem of efficiently reconciling
production and engineering activities. Such facilities are also referred to as Research and
Development (R&D) waferfabs. Driven by the need to continuously develop new products
and processes, very often the same equipment is used for both production lots and engineering
lots.

f) Data availability and maintenance is connected with extremely time-consuming activities
tying considerable amounts of manpower. The sheer volume of data in a semiconductor
manufacturing facility requires highly skilled capabilities in data management.

Additional complexity arises with continuous product diversification. Waferfabs with a higher
product mix along with smaller lot sizes have become the norm, which makes the manufacturing
even more complex due to an increased number of coexisting process and product flows. These
so-called high-mix low-volume waferfabs find themselves confronted with profound impacts caused
by smaller lot sizes. For example, if the standard lot size of 25 wafers is reduced to a seven wafer
lot size across the entire fab, an 3.5× increase will occur in every lot-related activity in the factory.
High-mix low-volume waferfabs in particular create a critical need to better schedule the production
material in the factory in order to keep the fab running efficiently (Pillai, 2006). In (Cogez et al.,
2007) the ITRS explicitly mentions the need to reduce losses from the high-mix effect. Mönch et al.
(2011a) also note that scheduling is more complex in high-mix fabs.

Local Scheduling To our best knowledge, holistic waferfab-wide scheduling systems are not in
use until today. The reason is that full-factory scheduling methods seem to be too computationally
costly in comparison to dispatching methods. However, the lasting increase in computer efficiency
drives full-waferfab scheduling methods more competitive. In a sense simulation-based scheduling is
an intermediate concept between dispatching and true scheduling. Such scheduling systems based
on detailed deterministic simulation models derive schedules from using dispatching rules, sometimes
accompanied with search-based heuristics (Mönch et al., 2011a); cf. (Gupta and Sivakumar, 2002).
Refer to Section 4.6.3 for a short examination of simulation-based scheduling approaches.

Given the complexity and the size of waferfabs, it is common to differentiate between fab-wide
scheduling and detailed area scheduling (Chien et al., 2008). It is important to ensure consistency
between these two levels, respectively between global and local scheduling decisions (Bureau et al.,
2007). Scheduling a single machine group addressed to the single or parallel machine level has been
demonstrated in some successful implementations. Mönch et al. (2011a) mention some scheduling
approaches for specific work areas in semiconductor manufacturing, e.g. in the work areas related
to diffusion/oxidation, lithography, and dry etch processes.

Batch Processing (BP) In today’s leading waferfabs, most process and metrology equipment
has become Single-Wafer Processing (SWP) tool configurations, but diffusion and oxidation as
well as wet cleaning and some implantation operations are still subject to Batch Processing
(BP) to a large extend. Such BP operations are typically performed in Conventional Furnace
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Processors (CFPs). Refer to Section 3.2 for descriptions of common equipment types and Section 4.7
for equipment modeling approaches. Wafer fabrication involves numerous BP operations that
considerably determine the system performance in terms of THP, WIP and CT (Fowler et al.,
2002).

Historically, BP gained a significant output and cost efficiencies, but at the expense of long CTs.
Since SWP enables a higher operating efficiency for small-lot sizes in high-mix low-volume waferfabs,
there is a strong indication that BP will start to converge to SWP or Mini-Batch Processing (MBP)
in the future fab (Pillai, 2006); cf. (Schmidt et al., 2006; Stubbe, 2010).

The costs of equipment in a new wafer fab is over 75% of the total factory capital costs (Gupta
et al., 2006) and diffusion/oxidation processes are considered as the second costly process type,
following the lithography process in the first place (Richards, 2013). A typical waferfab contains
more than 70 different types of processing tools and the cost for a single machine can range between
$50,000 to $10,000,000 (Kurz and Mason, 2008)

Depending on the product, the total number of BP steps in the process flow ranges from 50-100
steps (Pillai, 2006) and accounts for over 30% of the overall processing time (Sha et al., 2004, 2007).
Compared to other process types, diffusion/oxidation operations at Batch Processing Machines
(BPMs) come with long processing time requirements of about 10 hours or more (Johri, 1993; Mehta
and Uzsoy, 1998; Mathirajan and Sivakumar, 2006b). For these reasons, the effective scheduling
of diffusion/oxidation operations via BPMs is of particular importance for managing waferfab
productivity (Mehta and Uzsoy, 1998).

1.2 Problem Description

A scheduling problem is basically a Combinatorial Optimization Problem (COP) with sequencing
and/or partitioning decisions. The task is to find a feasible and optimal schedule for a number of
jobs in a given machine environment. The resulting schedule is required to be feasible, i.e. the
set of given constraints is satisfied without any exception so that the schedule is immediately
executable on the shop floor. In contrast to the indispensable requirement of feasibility, optimality
of a schedule is not necessarily required. However, the scheduling method always seeks for the
optimal solution. The schedule will be regarded as optimal if no other feasible schedule with a
better objective value exists.

Albers and Brucker (1993) define batching problems as combinations of sequencing and parti-
tioning problems. The aspect of partitioning refers to the task of finding a partition of jobs into
batches. The sequencing problem is given by the task to find an order of batches with an optimized
objective value.

This work focuses on scheduling BP operations in the diffusion/oxidation area. Diffusion and
oxidation operations in the waferfab frontend constitute typical scheduling problems with BPMs.
Despite of the fact that from a technological point of view diffusion and oxidation do not belong to
the same process group, since oxidation is a film formation process (see Section 3.1.1) and diffusion
belongs to impurity doping processes (see Section 3.1.4), both are thermal processes typically
performed by BPMs in the same area (even by the same machines). The wafers of usually six to
twelve lots jointly undergo a diffusion/oxidation process in a cylindrical reactor (CFP). Among
other constraints, the diffusion/oxidation process performed on BPMs is typically characterized by
incompatible job families, i.e. jobs that belong to different families cannot be processed together
(Chandru et al., 1993b; Uzsoy, 1995; Mehta and Uzsoy, 1998; Mathirajan and Sivakumar, 2006b).

A large quantity of variants of this particular type of a BPM scheduling problem is studied in
literature. These variants usually define a simplified optimization model designed to mirror the
decision problem that appears on the shop-floor under real-world conditions. These batch scheduling
models enable researchers and practitioners to study the focused batch scheduling problem with
respect to a defined set of circumstances, i.e. in different machine environments, under varying sets
of constraints, and for several objective functions.

Graham et al. (1979) introduce the α | β | γ-notation to classify deterministic scheduling
problems by describing the specific characteristics of the scheduling problem in three fields: a) the
machine environment (α-field), b) the constraints of the problem (β-field), and c) the optimality
criterion (γ-field). Usually, the number of jobs is denoted by n, the number of machines by m, the
subscript j refers to a job and the subscript i refers to a machine (Graham et al., 1979); cf. (Leung,
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2004; Pinedo, 2005, 2008; T’kindt and Billaut, 2006). The α | β | γ-notation is used throughout the
rest of this work.

1.2.1 Job Properties

With a scheduling problem, the given task is to find a schedule for a number of jobs in a given
machine environment. A single job generally refers to a certain lot with some specific properties.
Since this work is focused on parallel machine environments, a single job thereby refers to a single
operation related to the lot that needs to process its next operation step according to its operation
sequence on one of the parallel machines. Depending on the structure of the underlying scheduling
model, a job may be characterized by a set of mandatory and optional parameters: a) a processing
time (time span/continuous), b) a weight (continuous), c) a due date (date/time), d) a job size
(integer), e) a release date (date/time), and f) a deadline (date/time); cf. (Leung, 2004; Pinedo,
2005, 2008; T’kindt and Billaut, 2006).

An information regarding the processing time of a job is generally mandatory, whereas the
weight, due date, job size, release date, and the deadline are considered as optional depending on
the problem structure. A note on processing times in the α | β | γ-notation is given only in the case
of additional restrictions, e.g. the processing time is identical. A notion of non-identical job sizes,
release dates and deadlines needs to be explicitly denoted in the β-field if existent. In contrast, due
dates and weights are usually not specied in this eld only in the case of additional restrictions.
Here, the objective function provides information about whether due dates or/and weights need to
be considered.

Section 8.1.3 discusses experiments that investigate the effect of the number of jobs in a
scheduling scenario.

Processing Time Generally, the processing time pij represents the processing time of job j on
machine i; cf. (Leung, 2004; Pinedo, 2005, 2008; T’kindt and Billaut, 2006).

The diffusion/oxidation process is characterized by incompatible job families, where the process
time of a batch is given by the job family, i.e. the process recipe on the machine. More specifically,
a family of jobs is assigned to a process recipe on a machine and the process time of a batch is
given by the running time of the related process recipe on that machine. Consequently all jobs of
the same family have identical processing times on a particular machine, but family processing
times may differ between machines due to different process recipes specifically designed for a
particular machine; cf. (Chandru et al., 1993b; Uzsoy, 1995; Mehta and Uzsoy, 1998; Mathirajan
and Sivakumar, 2006b). A note on processing times in the α | β | γ-notation is given only in the
case of additional restrictions, e.g. when the processing time is identical.

The processing time for a typical diffusion/oxidation process performed in a CFP takes four to
eight hours, but can also take more than ten hours; cf. (Johri, 1993; Mathirajan and Sivakumar,
2006b).

Loading and unloading a CFP with six to twelve lots takes a considerable amount of time,
roughly 30 minutes depending on the machine and the handling system. The time spent for loading
and unloading obviously depends on the number of jobs, but may be sufficiently considered as a
constant time accruing between processing two consecutive batches on a machine. From perspective
of modeling and scheduling load and unload times may be included in the processing time. A
typical CFP is equipped with a single reactor and thus is not capable to run a process during
(un)loading the machine; cf. (Yugma et al., 2008; Klemmt et al., 2011).

But there exist variants of CFPs with two or three reactor tubes. This type of CFP runs more
than one process simultaneously and thus offers to load and/or unload the machine while it is
processing; cf. (Johri, 1993).

Section 8.1.5 discusses experiments that investigate the effect of different distributions of
processing times in a scheduling scenario.

Weight The weight wj of job j is a priority factor reflecting the importance of the job in relation
to the other jobs in the system; cf. (Leung, 2004; Pinedo, 2005, 2008; T’kindt and Billaut, 2006).
Lots with higher priorities, sometimes called rocket lots or hot lots, usually refer to urgent customer
orders or important engineering activities. The existence of weights is not explicitly specified in
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the β-field, but the objective function provides information about whether weights need to be
considered.

Section 8.1.10 discusses experiments that investigate the effect of different numbers of priority
classes and weighting schemes in a scheduling scenario.

Due Date The due date dj of job j represents the date the job is expected or planned to complete
its process, e.g. the shipment date committed to the customer; cf. (Leung, 2004; Pinedo, 2005, 2008;
T’kindt and Billaut, 2006). It is common practice in waferfabs to set Operation Due Dates (ODDs)
for a lot once it enters the manufacturing system; cf. (Rose, 2002, 2003b,a). An ODD refers to a
precalculated due date assigned to each operation of a lot according to a product-specific process
sequence. Similar to job weights, the existence of due dates is not explicitly specified in the β-field,
but the objective function provides information about whether due dates need to be considered.

Section 8.1.9 discusses experiments that investigate the effect of different initial due date settings
in a scheduling scenario.

Job Size The standard lot size of 25 wafers is given by the maximum number of wafers the
carrier can hold. In most cases, a lot is filled to the maximum and carries 25 wafers. In fact, the
number of wafers in the lots differ due to a small-lot manufacturing policy or caused by accidental
effects that have lead to a removal of one or more wafers. The number of wafers, respectively the
job size is usually denoted with sj . The existence of non-identical job sizes needs to be explicitly
noted in the β-field. In this case, the batch scheduling problem is additionally constrained with
non-identical job sizes. If this note is not existent in the β-field, all jobs will be assumed to have
the identical size.

Section 8.1.8 discusses experiments that investigate the effect of different dedication schemes
with varying density factors in a scheduling scenario.

Release Date The release date rj of job j is the time the job arrives at the system, also referred
to as the ready time or arrival time. A job j can start its processing earliest at rj . If this symbol
is not present in β-field, then the processing of job j can start at any time, i.e. all the jobs are
available at time zero; cf. (Leung, 2004; Pinedo, 2005, 2008; T’kindt and Billaut, 2006).

Section 8.2.2 and Section 8.2.3 discuss experiments that investigate the effect of predicted job
arrivals in a scheduling scenario.

Deadline The deadline d̄j of job j represents the latest time at which job j must be completed;
cf. (Leung, 2004; Pinedo, 2005, 2008; T’kindt and Billaut, 2006). The existence of deadlines needs
to be explicitly mentioned in the β-field. If the symbol d̄j is present, then the jobs will be subject
to deadline constraints. Deadlines are also referred to as maximum time lags, time boundaries, or
time constraints (Yugma et al., 2008; Klemmt et al., 2011; Mönch et al., 2011a).

Completion Date The completion date refers to the time when the job finishes its processing
on the machine. With respect to a schedule, the completion date of job j is usually denoted with
Cj . The objective to be minimized is always a function of the completion times of the jobs; cf.
(Leung, 2004; Pinedo, 2005, 2008; T’kindt and Billaut, 2006).

1.2.2 Machine Environment

The α-field refers to the machine environment that basically defines the manufacturing system
underlying the scheduling problem. The simplest case refers to a manufacturing system with a
single machine only. The notion 1|· | · refers to a single machine scheduling problem, whereby the
symbol · stands for an unspecified field. Since manufacturing systems rarely consist of a single
machine, there exists a set of templates for machine environments represented in the α-field, e.g.
variants of open shops, job shops, flow shops, and parallel machines; cf. (Leung, 2004; Pinedo,
2005, 2008; T’kindt and Billaut, 2006).

A waferfab is typically organized in a number of work areas, given that each work area covers
a set of similar machines. In this context, the term similar roughly refers to the architecture of
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the machines as well as to the type of processes they provide. There exists a strong relationship
between the machine type and the process type since a specific process is often performed by a
specific type of machine (see Table 20).

For the entire machine pool in the fab, there exists a number of subsets of machines so that
each subset provides a disjunctive set of processes, also referred to as Closed Machine Sets (CMSs)
or work centers. Based on the shop floor layout, the machines of a single work center are often
located in near proximity, but may be also locally distributed on the shop floor. Section 3.4 briefly
examines shop floor layouts. For a typical waferfab such a CMS roughly counts up to several
dozens of machines that form a manufacturing entity from the viewpoint of production logistics. In
most cases a lot receives the process of succeeding operations in different work centers; cf. (Mönch
et al., 2011a).

Section 8.1.2 discusses experiments that investigate the effect of number of machines in a
scheduling scenario.

Parallel Machine Environments Most definitions of work centers in waferfabs represent
typical parallel machine scheduling problems, which are suitable to be separately considered and
solved as an independent system. In the basic parallel machine scheduling model, a job proceeds
four basic activities: a) entering the system, b) waiting for processing (queuing), c) performing the
process on a machine, and d) leaving the system.

The concept of parallel machines describes a manufacturing system consisting of a number
of machines in parallel where each job in the case of machine eligibility restrictions requires a
single operation on any of the parallel machines, or on a subset of them. Among parallel machine
scheduling problems, scheduling literature commonly differentiates between three types of parallel
machines: a) identical machines (Pm), b) uniform machines (Qm), and c) unrelated machines
(Rm). The parallel machine environments Pm, Qm, and Rm differ in their processing speed
concepts. Identical machines (Pm) have the same speed and a job needs the time pj on every
machine. Uniform machines (Qm) have different speeds si and a job j needs

pj

si
time on machine i.

Unrelated machines (Rm) can process different jobs at a different speed, i.e. machine i can process
job j at speed sij and a job j spends

pj

sij
time on machine i for processing; cf. (Leung, 2004; Pinedo,

2005, 2008; T’kindt and Billaut, 2006).

Diffusion/Oxidation Area Despite of the fact that the machines of a single work center perform
identical or at least similar processes, the machines may belong to different tool types and thus
show different characteristics. It is even be conceivable that a diffusion/oxidation work center has
a mixed structure in a sense that fundamentally different machines form the CMS, performing both
SWP and BP.

In this work, it is assumed that a diffusion/oxidation work center under study exclusively consists
of BPMs, i.e. CFPs. However, the machines may differ in their dedicated processes, processing
times, and batch sizes. The typical diffusion/oxidation process in a furnace is characterized by
incompatible job families, where a family of jobs is assigned to a process recipe on a machine and
the process time of a batch is given by the running time of the related process recipe on that
machine.

Since the family processing times may differ between machines due to different process recipes
specifically designed for a particular machine, the corresponding scheduling problem embodies
unrelated machines (Rm) and can be denoted with Rm | · | ·.

This work is dedicated to the scheduling problem with BPMs in the diffusion/oxidation area;
The implemented framework as well as the documented experiments exclusively deal with a parallel
unrelated BPMs environment. However, this work gives an extensive review of BPM scheduling
problems for single and parallel machine environments under varying constraints in Section 2.

1.2.3 Constraint Environment

The β-field further refines the scheduling problem by defining a set of constraints to be considered;
cf. (Leung, 2004; Pinedo, 2005, 2008; T’kindt and Billaut, 2006). It may contain multiple entries
or no entry at all.
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Pinedo (2005, 2008) distinguishes between hard and soft constraints. A hard constraint has to
be satisfied at all costs. A soft constraint basically refers to a preference. If any of the given hard
constraints is violated, the schedule will no longer be feasible and therefore not executable on the
shop floor. In this context, soft constraints basically refer to a kind of an objective function that
incorporates penalty costs in the case of violated soft constraints.

Generally, a scheduling problem is characterized by an arbitrary set of constraints depending
on the structure of the underlying model. The typical BPM scheduling problem in waferfabs is
bounded in a sense that the maximum batch size is limited by the maximum capacity of the BPM.
The typical (bounded) BPM scheduling problem in the diffusion/oxidation area is further subject
to a) non-identical job sizes, b) incompatible families, c) release dates, and d) machine eligibility
constraints. This work studies numerous variants of BPM scheduling models under varying sets
of these constraints. Moreover, the studied problem is further known to typically be subject to
deadlines and machine unavailability constraints, also referred to as machine breakdowns. However,
this work does not explicitly study the effects of breakdowns or deadlines. With the exception of
those mentioned constraints that typically appear in BPM models for diffusion/oxidation processes,
this work omits a) precedence constraints, b) preemptions, c) sequence dependent setup times,
d) recirculation, e) job splitting, and f) rejections among other constraints, which are not typical for
the focused problem, but are reported to be present in other BPM models (compare the literature
review in Section 2).

Parallel Batching (p-batch) The scheduling problem present at diffusion/oxidation furnaces is
obviously a typical parallel batch scheduling problem since the wafers of batched jobs simultaneously
undergo a thermal process inside the furnace reactor. Consequently the jobs in a batch have the
identical starting, processing, and completion time.

Brucker (2007) defines a parallel batch as a grouped set of jobs jointly processed on the same
machine and introduces the abbreviation p − batch that emerged to the widely accepted notion
for parallel batching problems in scheduling literature. Thus, the notion p− batch in the β-field
further refines the machine environment in a sense that parallel BP is allowed; cf. (Leung, 2004;
Pinedo, 2005, 2008; T’kindt and Billaut, 2006). The literature review in Section 2 exclusively covers
(bounded) p− batch problems.

Batch Size Constraints (b<n) Generally it is distinguished between bounded and unbounded
p − batch problems. The (maximum) size of a batch is commonly denoted with the parameter
b, whereby the bounded case b < n refers to those p− batch problems in which the batch size is
limited by the machine capacity; cf. (Leung, 2004; Pinedo, 2005, 2008; T’kindt and Billaut, 2006).

With respect to the focused p−batch problem in the diffusion/oxidation work area, it is required
to consider two types of batch size limits related to the machine capacity: the number of jobs/lots
and the number of wafers. Refer to Section 4.7.3 that introduces a general modeling concept for
waferfab production equipment; cf. (Kohn et al., 2010). On one hand, there exists a constraint on
the maximum number of lots in a batch; the maximum batch size in terms of jobs/lots is usually
limited by the number of load ports provided by the machine. On the other hand, the maximum
number of wafers in a batch is limited by the number of internal wafer slots offered by the furnace
reactor. A typical vertical batch furnace in a 200 mm waferfab with a standard lot size of 25 wafers
is equipped with eight load ports and provides space for up to 200 wafers. The maximum batch
sizes, both the wafer capacity limit and the maximum number of jobs, may differ between machines
due to different machine architectures and even between job families due to different process recipe
specifications. Clearly, neither of both limits is allowed to be exceeded by any batch; cf. (Yugma
et al., 2008; Klemmt et al., 2011).

In the majority of research focused on p − batch problems in the diffusion/oxidation area of
waferfab frontends, the maximum batch size b simply refers to the maximal number of jobs/lots
allowed for grouping for a batch. It is assumed that the job sizes are equal, i.e. the number of wafers
is identical among all the lots. The maximum batch size b in terms of jobs implicitly represents
the limit for the wafer capacity of the furnace reactor. More precisely, the maximum number of
jobs b is the ratio of the maximum wafer capacity and the standard lot size and b is assumed to be
equal to the number of load ports provided by the machine. Using the α | β | γ-notation the basic
bounded p− batch problem can be described with · | p− batch, b < n | ·.
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But most practitioners probably would consider ignoring the existence of non-identical job sizes
as an insufficient simplification. For some equipment types, the maximum job limit is even greater
than the number of load ports. This kind of machines offer a special reloading operating mode in
which it is possible to load the machine with a number of additional lots after transferring the
wafers of the lots on the load ports into the reactor. In this case, an empty carrier (its wafers
are already transferred into the reactor) on a load port is replaced by a filled one, which is then
unloaded to the reactor before the process begins. The motivation behind this special loading policy
is to improve managing the utilization of those BPMs in the presence of a non-negligible amount of
partially filled lots in the system. The importance of differentiating between both types of batch
size limits in the design of p− batch scheduling models for the diffusion/oxidation area is amplified
by the current trend to manufacture small lot sizes. The literature review in Section 2 exclusively
covers bounded p− batch problems. Section 8.1.6 discusses experiments that investigate the effect
of different batch sizes in a scheduling scenario.

Non-Identical Job Sizes (B, sj) As stated before, the number of wafers in the lots may differ.
In this case, the scheduling problem is additionally constrained with non-identical job sizes, which
imply that the sum of the wafers in a batch is limited by the maximum wafer capacity of the
machine. In this context, the maximum wafer capacity of the machine is denoted with B and the
size of a job with sj , whereupon both B and sj need to be mentioned in the β-field.

Originally, the typical p− batch problem characterized by non-identical job sizes stems from
heat-treatment operations present in waferfab backends, also referred to as burn-in operations.
Depending on the product type, the jobs may require a different number of boards that define
the size of the job. The capacity of the oven is given by the maximum number of boards it can
accommodate. This kind of scheduling problem is typically described with · | p− batch,B, sj | ·; cf.
(Kempf et al., 1998; Mathirajan and Sivakumar, 2006a).

The notion · | p− batch,B, sj | · applied for the focused diffusion/oxidation model would imply
that there effectively exists no load port limit, i.e. the machine provides a reloading operating
mode that allows the attached loading system to continue reloading additional lots until the wafer
capacity of the machine is reached.

To our best knowledge, the reloading operating mode is limited to a small number of additional
lots. Hence, the notion · | p − batch, b < n,B, sj | · is regarded as a proper description for the
diffusion/oxidation model with respect to machine capacity constraints. Following this notation,
b denotes the maximum number of jobs in a batch, B denotes the maximum number of wafers
in batch, and sj implies that the jobs are subject to non-identical sizes. The literature review in
Section 2 covers p− batch problems with and without non-identical job sizes. Section 8.1.8 discusses
experiments that investigate the effect of different dedication schemes with varying density factors
in a scheduling scenario.

Incompatible Job Families (fmls) The p − batch scheduling problem present in the oxida-
tion/diffusion area typically deals with incompatible job families (fmls). A job j belongs to a
certain job family and jobs from different families cannot be batched together. Jobs from different
families are incompatible since a job family relates to a certain process specification that defines
temperature, gas mixture and running time among other parameters in order to achieve a well-
defined chemical reaction. Moreover, a family of jobs is assigned to a process recipe on a machine
and the process time of a batch is given by the running time of the related process recipe on that
machine. Consequently all jobs of the same family have identical processing times on a particular
machine, whereby family processing times may differ between machines due to different process
recipes specifically designed for a particular machine; cf. (Chandru et al., 1993b; Uzsoy, 1995;
Ghosh and Gupta, 1997; Mehta and Uzsoy, 1998; Leung, 2004; Mathirajan and Sivakumar, 2006b;
Pinedo, 2008).

The notion fmls in the β-field refers to the constraint of incompatible job families. If the notion
fmls is missing in the beta-field, then any pair of jobs will be compatible and can be batched
together. The basic bounded p−batch scheduling model with incompatible families can be described
with · | p− batch, b < n, fmls | ·.

The literature review in Section 2 covers p− batch problems with and without incompatible
families. A special form of batch incompatibility constraints between jobs is given by graph
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compatibilities (Boudhar, 2003; Finke et al., 2008). The Section 8.1.4 discusses experiments that
investigate the effect of different numbers of job families in a scheduling scenario.

Machine Eligibility Restrictions (Mj) Machine eligibility restrictions (Mj) further refine the
machine environment with process dedications. A job j cannot be processed on any machine, but
only on any one belonging to a specific subset Mj . The set Mj denotes the set of machines that can
process job j. If the β-field does not contain Mj , job j can be processed on any one of the available
machines as defined in the default model of scheduling problems; cf. (Leung, 2004; Pinedo, 2005,
2008; T’kindt and Billaut, 2006).

In the context of the focused batch scheduling problem present in the diffusion/oxidation area,
machine eligibility restrictions manifest themselves in a mapping between job families and machines,
i.e. each job family is dedicated to one or more machines. More specifically, each job family is
linked to a process recipe that is qualified on a machine. Vice versa, an equipment is qualified
for a set of process recipes and thus offers processing for the corresponding set of job families.
Considering the fact that each job belongs to a job family, there exists a subset Mj of machines
that is capable of processing each job; cf. (Yugma et al., 2008; Klemmt et al., 2008, 2011).

Qualifying a process on a machine means to ensure that the desired process reliably performs
within a predened range of process parameters. By doing several tests it is possible to find out
whether the thickness of an oxide lm lies in-between a certain range after completing the process
for example. Qualifying a process on a machine can be very time- and resource-consuming, but
increases the flexibility of a work center and has a positive influence on the Op curve; cf. (Fayed and
Dunnigan, 2007; Johnzén et al., 2007, 2008, 2011). The terms equipment qualification, equipment
dedication and process dedication are often used synonymously in this context.

As mentioned before, the goal is to schedule a set of parallel machines, which typically form a
CMS qualified for a set of processes that is disjunctive to other process subsets from other CMSs;
cf. (Johri, 1993). The particular mapping between machines and qualified processes within a CMS
can be formulated as a matrix of machines and qualified processes on these machines, also referred
to as dedication matrix. The dedication matrix is characterized by a density factor. A dedication
density factor that equals one would describe homogenous CMS in which every job can be processed
on any machine, i.e. no restrictions exist. A factor below one would represent an inhomogeneous
CMS implying that a certain number of machines does not provide all the entire set of processes
available. Likewise, this work correspondingly deals with a matrix of machines and job families in
the scheduling model described.

A typical bounded p− batch scheduling problem with a machine eligibility restriction can be
suitably described with the notion · | p − batch, b < n,Mj | ·. A mapping Mj between jobs and
machines can be easily deduced from the dedication matrix between job families and machines and
from the membership of jobs to job families.

Beyond process dedications, the set of allowed machines Mj may be further constrained for a
job due to several reasons, e.g. strict policies in quality management or material flow control. For
example, additional constraints, set permanently or temporarily, may purposefully prohibit the
processing of a job only at a defined operation on a certain machine, or based on other combinations
of job attributes. Especially R&D waferfabs deal with several systems on several system layers in
order to allow or prohibit distinct process operations. In contrast, a job may be explicitly dedicated
to be processed on a single predefined machine at a certain operation, e.g. as a result of Advanced
Process Control (APC). With respect to diffusion/oxidation furnaces it is required to regularly
monitor the quality of the process by adding a number of non-productive wafers to a regular
product-batch. In this special case a job with control wafers is created and dedicated to a distinct
process on a machine.

However, finally each job is allowed to be processed on a set of machines Mj . Several authors
include machine eligibility constraints in their parallel batching models; cf. (Klemmt et al., 2008,
2011; Li and Qiao, 2008; Yugma et al., 2008; Li et al., 2009b).

Section 8.1.7 discusses experiments that investigate the effect different of dedication schemes
with varying density factors in a scheduling scenario.

Release Dates (rj) The release date rj of job j describes the time when the job j enters the
system, also referred to as ready time or arrival time. A job j can start its processing earliest at rj ;
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cf. (Leung, 2004; Pinedo, 2005, 2008; T’kindt and Billaut, 2006). If this symbol is not present in
β-field, then the processing of job j can start at any time, i.e. all the jobs will be available at time
zero. The notion · | p− batch, b < n, rj | · refers to a bounded scheduling problem with dynamic
arrivals.

The way researchers examine a deterministic parallel machine scheduling problems with arrivals
is in a sense detached from reality. First the focused parallel machine environment is simplified
to an independent manufacturing system though it is usually embedded into to a larger complex
manufacturing system, e.g. a work center in the diffusion/oxidation area is part of a waferfab.
Second, it is simply assumed that the arrival date is known, not considering that reliably predicting
arrival dates in a waferfab is a complex task. Refer to Section 4.6.1 for further information about
prediction and forecasting methods.

The existence of release dates in a scheduling model implicitly presupposes that a suitable
system for job arrival date predictions exists (Yugma et al., 2008). The capability of predicting job
arrivals first includes a suitable equipment model used to predict completion dates of currently
running jobs. Creating and maintaining equipment models that allow accurate completion date
predictions in short time is itself a tough task. This task will become even more difficult if it is
intended to predict completion dates of queued jobs at the preceding operation steps in addition
to currently running jobs. At this point short-term simulation models of high quality need to be
deployed.

After a job has completed its process at the preceding operation, and after unloading from
the machine, usually an Automated Material Handling System (AMHS) transfers the lot to its
destination, e.g. a material storage equipment located in a work area of the succeeding operation.
Once the predicted completion date at the previous operation is known, the arrival date to predict
additionally needs to incorporate transport and handling times that accrue due to AMHS activities.

The literature review in Section 2 covers p− batch problems with and without release dates.
Section 8.2.2 and Section 8.2.3 discuss experiments that investigate the effect of predicted job
arrivals in a scheduling scenario.

Deadlines (d̄j) The deadline d̄j of job j represents the latest time at which job j must be
completed. The existence of deadlines needs to be explicitly mentioned in the β-field; cf. (Leung,
2004; Pinedo, 2005, 2008; T’kindt and Billaut, 2006). The notion · | p− batch, b < n, dj | · refers to
a bounded scheduling problem with deadlines. Deadlines are also referred to as maximum time
lags, time boundaries, or time constraints; cf. (Yugma et al., 2008; Klemmt et al., 2011; Mönch
et al., 2011a).

Such time bounds typically occur between the wet etch/clean and furnace operations, but also
appear between other operations. The motivation behind is driven by quality concerns; the idea is
to prevent unintentional oxidation and contamination effects that might occur during waiting for
the next process. In the case of violated time bounds, the corresponding lot might be scrapped, but
at least needs an additional inspection and/or some sort of rework, e.g. has to visit a preceding
cleaning step again; cf. (Johri, 1993; Scholl and Domaschke, 1999, 2000; Klemmt and Mönch, 2012).
Several authors include deadlines in their parallel batching models; cf. (Ikura and Gimple, 1986;
Mönch et al., 2006a; Klemmt et al., 2008; Yugma et al., 2008; Bar-Noy et al., 2009; Klemmt et al.,
2011; Koehler and Khuller, 2013).

Machine Breakdowns (brkdwn) In the case of machine breakdowns (brkdwn) we face a
situation in which a number of machines may not be continuously available during the focused
time period. The machine is not available for regular processing due to scheduled or unscheduled
maintenance, or it is hold busy with engineering activities. The existence of periods in time where
machines are not available for processing is also referred to as machine availability constraints;
cf. (Leung, 2004; Pinedo, 2005, 2008; T’kindt and Billaut, 2006). The notion · | p − batch, b <
n, brkdwn | · refers to a bounded scheduling problem with breakdowns.

In a deterministic scheduling model the periods of unavailability are known in advance. Since
preemption is not allowed, a process batch is required to be completed before a period of unavail-
ability begins. Clearly, a process batch starts earliest after a breakdown period ends. Yugma
et al. (2008) and Klemmt et al. (2011) report the inclusion of machine breakdowns in their parallel
batching models.
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1.2.4 Scheduling Objectives

The top priority of any manufacturing organization is to gain a high profitability. A high level
of profitability relies on a number of subordinated performance indicators (Hopp and Spearman,
2001). The most important are: a) throughput (THP), b) cycle time (CT), and c) on-time delivery
(OTD); cf. (Mönch et al., 2011a).

In order to quantify these performance indicators, there exist numerous performance measures
that can serve as optimality criteria for scheduling problems in form of objective functions. The
γ-field refers to the optimality criterion chosen for the scheduling problem at hand. In practice, the
optimality criterion given by an objective function is often a composite of several basic performance
measures. In this case, the scheduling problem becomes a multi-objective optimization problem.
However, the objective to be minimized is always a function of the completion times of the jobs;
cf. (Leung, 2004; Pinedo, 2005, 2008; T’kindt and Billaut, 2006). In the following important
performance measures for scheduling problems are introduced, in particular those that are of
interest for batch scheduling problems.

Section 8.1.11 and Section 8.1.12 discuss experiments that investigate the the effect of different
objective functions and their relationships in a scheduling scenario.

Throughput (THP) Maximizing THP is often of utmost importance in many manufacturing
facilities. The THP of an entire facility is limited by its bottleneck machines, i.e. those machines
in the facility that have the lowest CAPA. The objective Makespan (Cmax) is closely related to the
THP objective. Cmax is equivalent to the completion time of the last job that leaves the system,
defined as max(C1, . . . , Cn), where Cj is the completion time of job j. Optimizing Cmax is of
particular importance when there is a finite number of jobs. Minimizing the Cmax in a parallel
machine environment implies balancing the work load over the various machines, which also leads
to a higher THP rate when there is a constant flow of jobs over time. Since THP and the utilization
are strongly connected, a shorter Cmax in turn implies a higher utilization; cf. (Leung, 2004;
Pinedo, 2005, 2008; T’kindt and Billaut, 2006). Minimizing Cmax results in larger values of THP
corresponding to a higher level of utilization, which in turn leads to smaller costs per wafer (Mönch
et al., 2011a).

Another THP-related performance measure that characterizes BP performance is the batching
coefficient. For a particular machine over a given time horizon, the batching coefficient is the ratio
of the average number of jobs in a batch and its maximum batch size (Yugma et al., 2008).

Cycle Time (CT) Improving CT is supposed to come with various positive effects, e.g. improved
yield (Wein, 1992; Cunningham and Shanthikumar, 1996), productivity learning (Martin, 1998),
and customer serviceability (Hopp and Spearman, 2001). The CT refers to the time a job spends in
a system until its processing is completed. The terms completion time, flow time, throughput time,
and lead time altogether most often synonymously refer to the term CT that is preferably used in
this work. The completion date Cj refers to the time when the job j finishes its processing on a
machine. With respect to a schedule, the completion date Cj also refers to the (CT) of the job j.

There are two important objective measures: the Total Cycle Time (TCT) and the Total
Weighted Cycle Time (TWCT). The TCT is defined as the sum of the completion times of the
jobs, denoted by

∑n
j=1 Cj . The TWCT represents the weighted counterpart of

∑n
j=1 Cj , defined as

the sum of weighted completion times of the jobs, denoted with
∑n

j=1 wjCj . Minimizing
∑n

j=1 Cj

and/or
∑n

j=1 wjCj results in lower total holding or inventory costs incurred by the schedule; cf.
(Leung, 2004; Pinedo, 2005, 2008; T’kindt and Billaut, 2006).

Another objective is given by the normalized CT (x-factor), originally defined in (Aurand and
Miller, 1997). The x-factor is defined as the ratio of the completion time of a job and its processing
time on the machine. Since the completion time is composed of the waiting/queuing time and the
processing time, the x-factor also represents the ratio between the waiting time and the processing
time. Yugma et al. (2008) employ the x-factor as a vehicle to minimize the CT.

On-Time Delivery (OTD) There are several important objectives that are related to due dates
intended to gain a high level of OTD, which in turn increases customer satisfaction. Typical OTD
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performance measures are a) Maximum Lateness (Lmax), b) Total Unit Penalties (TU), and c) Total
Tardiness (TT); cf. (Leung, 2004; Pinedo, 2005, 2008; T’kindt and Billaut, 2006).

Lmax is defined as max(L1, . . . , Ln) where the lateness of job j is then Lj = Cj − dj , given
that dj denotes the due date and Cj the completion date of job j. Minimizing Lmax is in a sense
equivalent to minimizing the worst performance of the schedule. TU refers to the total number of
tardy jobs is given by the sum of unit penalties incurred by the schedule, denoted with

∑n
j=1 Uj .

The unit penalty Uj of job j is defined as Uj = 1 if Cj > dj ; otherwise Uj = 0. The weighted
number of tardy jobs refers to the sum of Total Weighted Unit Penalties (TWU), denoted with∑n

j=1 wjUj , given that the different jobs carry different priority weights wj . This objective does
not focus on the question how tardy a job actually is, but on the question whether it is tardy or
not. However, minimizing

∑n
j=1 Uj may result in practically unacceptable schedules with some

jobs being very tardy. This concern is addressed with the due date related objective TT. The TT
is defined as the sum of all tardiness values (

∑n
j=1 Tj) where the tardiness Tj of job j is defined

as max(Cjdj , 0), which is identical to Tj = max(Lj , 0). The Total Weighted Tardiness (TWT)
(
∑n

j=1 wjTj) represents the weighted counterpart of
∑n

j=1 Tj , given that the different jobs carry
different priority weights wj .

Refer to Figure 2 for a graphical explanation of the definitions of lateness and tardiness.

(a) The lateness Lj of job j

(b) The tardiness Tj of job j

Figure 2: The lateness and the tardiness of a job (Pinedo, 2005, 2008)

1.3 Methodology

Dispatching systems set the de facto standard in scheduling and controlling waferfabs (Mönch
et al., 2011a); cf. (Leachman, 2002). In the past decades the standard wisdom was that the use of
optimization in dispatch applications is technically not feasible. This has begun to change, driven
by continuous improvements in computing power and algorithms. Especially the capability of
optimization makes scheduling systems superior to dispatching systems, respectively the ability to
search alternatives combined with a formal metric in terms of an objective function used to compare
alternative decisions. Today the real barrier is of cultural and not technical nature (Fordyce et al.,

15



1 INTRODUCTION

2008).
Pinedo (2004, 2005, 2008) first and foremost distinguishes between two types of scheduling

problems: deterministic scheduling and stochastic scheduling problems. Stochastic scheduling
usually deals with simple priority or dispatching rules providing immediate decisions in a real-time
control system. Deterministic scheduling emphasizes the aspect of optimization. Deterministic
scheduling models are used to evaluate the performance of optimization methods in solving scheduling
problems as a special form of COPs with the goal of minimizing or maximizing a given objective
function. Since deterministic scheduling problems belong to the class of COPs the same type
of solution methods come into operation. These methods are generally divided into exact and
approximate methods (compare Section 5).

Exact Methods The results from complexity theory enable us to distinguish between hard and
easy problems (see Section 5.2 for a detailed examination of the concept of NP-completeness). Most
scheduling problems belong to the class of NP-hard problems for which it is widely accepted that
no optimal method with polynomial run time exists. Since it is considered impossible to optimally
solve NP-hard scheduling problems of practical size in a reasonable time, research with practical
background focuses on approximate methods that can lead to feasible schedules with an acceptable
quality in considerable less time. The reason why problems are hard to solve can be found in their
complexity, their size, their specific structure, or a combination of these aspects; cf. (Talbi, 2009).

The most obvious idea to solve a COP is to just enumerate all feasible solutions. But due to
the complexity of most COPs, a simple complete enumeration will result in unacceptable high
computing times. The challenge is to develop efficient algorithms that perform better than a simple
enumeration (Lee, 2004).

The class of exact methods to solve COPs covers Mixed Integer Programming (MIP), Dynamic
Programming (DP), Constraint Programming (CP), and Branch and Bound (B&B). Commercial
software packages for mathematical programming (e.g. CPLEX3, Gurobi4, Xpress5) have seen
tremendous progress over the last decade in terms of capabilities for solving much larger problem
sizes (Méndez et al., 2006). However, for a considerable amount of optimization problems present
in academia and industry, it is intractable to obtain optimal solutions by the use of any exact
method in a reasonable time. The crucial point is that exact methods need large amounts of time
to optimally solve NP-hard problems of practical size. Consequently, the use of exact methods
becomes inapplicable in practice, where a responsible person has to make a decision as soon as
possible in order to achieve desirable results (Marti and Reinelt, 2011).

Many authors share the opinion that exact methods do not seem to be the method of choice
in real-world scheduling systems. Talbi (2009) notes that partial enumerative algorithms such
as B&B are limited to rather small instances and thus are not advisable to solve medium and
large instances. Potts and Strusevich (2009) notice a stagnation of research on B&B algorithms
(and other enumerative approaches), identifying the combinatorial growth of the solution space as
an obstacle to the exact solution of practical problems. Although Mönch et al. (2011a) consider
MIP and CP as important solution techniques, they argue that these techniques are assessed to be
too slow to be adopted in real-world implementations. Among others Dorigo and Stützle (2004),
propose approximate methods that trade optimality for efficiency, since the performance of exact
algorithms is not satisfactory and their applicability is often limited to rather small instances.

Approximate Methods In contrast to exact methods, approximate methods do not proof the
optimality of the obtained solutions; and by definition, this is what differentiates them from exact
methods. By not having the burden to proof optimality, approximate methods leave parts of the
state space unvisited and thus lead to near-optimal solutions in a reasonable time compared to
exact algorithms (Dorigo and Stützle, 2004; Talbi, 2009).

Especially for NP-hard problems, exact algorithms perform poor with respect to computing time.
Consequently, solving large instances with exact methods is practical impossible, i.e. would take
enormous amounts of time to obtain the optimal solution. Approximate methods trade optimality
for efficiency (Dorigo and Stützle, 2004); cf. (Talbi, 2009).

3http://www.ibm.com
4http://www.gurobi.com
5http://www.fico.com
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Approximate methods can be further divided into heuristics and approximation algorithms
(compare Section 5). A heuristic is any approach without a formal guarantee of performance.
Approximation algorithms guarantee that the obtained solution lies within a defined range of the
global optimum (Brucker, 2007; Talbi, 2009). An approximation algorithm for a certain problem
class guarantees that any obtained solution corresponds to an objective value for which a factor
defines the distance to the actual optimum (compare Section 6.4). Basically, Polynomial Time
Approximation Schemes (PTASs) and a Fully Polynomial Time Approximation Schemes (FPTASs)
form this group (Brucker, 2007; Chandru and Rao, 2010; Klein and Young, 2010).

Within the class of heuristics, it is basically distinguished between constructive heuristics and
search heuristics (Zäpfel et al., 2010); cf. (Talbi, 2009). Construction algorithms describe an incre-
mental procedure: starting from an empty initial solution, construction algorithms iteratively add
solution components until a complete solution is obtained without any backtracking. Constructive
heuristics are usually problem-specific, non-iterative, and create one single solution by applying
a set of rules based on problem-specific knowledge. This is the underlying concept of a typical
dispatching system. Search heuristics follow a certain search scheme that repeatedly examines
many different solutions for a given problem in order to find better solutions (Zäpfel et al., 2010);
cf. (Talbi, 2009).

Metaheuristics Search heuristics correspond to metaheuristics in a broader sense. Informally,
a metaheuristic states an algorithmic advancement of a simple heuristic, which is commonly
defined as a rule of thumb that leads to near-optimal solutions without complete knowledge of
the problem. Even though there is no universal definition for metaheuristics, it is widely accepted
that a metaheuristic is a general algorithmic framework that a) is generally problem-independent
and applicable to a wide set of different problems, b) describes an iterative upper-level strategy
that guides the operations of subordinate heuristics, c) combines different concepts for exploring
and exploiting the search space (diversification and intensification), often facilitated by the use of
randomness (Blum and Roli, 2003; Zäpfel et al., 2010).

In contrast to exact methods, metaheuristics lead to acceptable solutions in a reasonable
time; solution quality and computing time is generally not exactly defined, e.g. acceptable and
reasonable (Talbi, 2009). Metaheuristics primarily justify their use with a well-balanced performance
characteristic that describes a favorable trade-off between solution quality and computing time.

Most authors consistently distinguish between two classes of metaheuristics: trajectory methods
based on a single solution and population-based methods (Blum and Roli, 2003); cf. (Talbi, 2009;
Luke, 2009; Zäpfel et al., 2010; Marti and Reinelt, 2011; Baghel et al., 2012). Trajectory methods
(see Section 5.5) obtain improved solutions by repeatedly modifying an existing solution during the
search procedure, e.g. Local Search (LS) (Hill-Climbing), Simulated Annealing (SA), Threshold
Accepting (TA), Tabu Search (TS), Greedy Randomized Adaptive Search Procedure (GRASP),
Variable Neighborhood Search (VNS), Guided Local Search (GLS), and Iterated Local Search (ILS);
cf. (Blum and Roli, 2003; Talbi, 2009; Baghel et al., 2012; Boussäıd et al., 2013). Population-
based methods (see Section 5.6), operating on a set of solutions, create improved solutions by
recombining existing solutions e.g. Evolutionary Algorithms (EAs) (Genetic Algorithms (GAs),
EAs, Evolutionary Programming (EP), Genetic Programming (GP)), Scatter Search (SS), Ant
Colony Optimization (ACO), Particle Swarm Optimization (PSO) and Artificial Immune System
(AIS); cf. (Blum and Roli, 2003; Talbi, 2009).

Beyond trajectory methods and population-based methods, research spends a considerable
effort in developing hybrid metaheuristics, which refer to the idea of combining metaheuristics
with metaheuristics or other techniques for optimization. Hybridization aims to exploit the
complementary character of different optimization strategies. In fact, combining an appropriate set
of complementary algorithmic concepts can be the key for the design of high-performing search
methods (Blum et al., 2011). Another research direction with the goal to improve search efficiency
deals with parallelization. The idea of parallelizing metaheuristics is driven by two forces: the
complexity of computational problems and the rapid development in the technology of distributed
computing systems. Here, parallelism can help to reduce the computation time and the increase
solution quality (Alba, 2005).
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Metaheuristics versus Mixed Integer Programming (MIP) Metaheuristics and LS meth-
ods in particular are often the method of choice for real-life scheduling problems with a variety
of complicating constraints, since these algorithms can obtain good quality solutions within a
reasonable time (Méndez et al., 2006; Potts and Strusevich, 2009).

Several authors document the superiority of metaheuristics compared to MIP approaches in
experimental studies, in particular for batch scheduling problems. Xu et al. (2012) show that
ACO is more robust and consistently outperforms MIP, especially for large job instances. Melouk
et al. (2004), Chang et al. (2004) and Damodaran et al. (2007) describe experiments in which SA
consistently outperforms MIP with respect to solution quality and run time. Xu and Bean (2007),
Damodaran et al. (2006) and Chou and Wang (2008) provide experimental results indicating that
solution schemes based on GAs result in better objective values in shorter run times, especially for
larger problems. The experiments in (Klemmt et al., 2009) turn out that VNS outperforms MIP
with respect to solution quality and time; They find out that VNS performs faster than MIP while
providing high quality solutions at the same time.

Klemmt et al. (2011) show that MIP approaches are basically suitable for optimizing small or
medium batch scheduling problems, but combined with decomposition methods. However, even the
finding of a feasible solution can be a problem for bigger problem instances (Klemmt et al., 2008).
The commercial solver CPLEX is most often used as state-of-the-art solver for MIP formulations.
In awareness of the observation that even state-of-the-art MIP solver can only handle relatively
small problems, Klemmt et al. (2009) propose decomposition approaches in order to reduce the
problem complexity. Although Mönch et al. (2011a) consider MIP and CP as important solution
techniques, they argue that these techniques are assessed to be too slow to be adopted in real-world
implementations, compared to the vast academic literature about scheduling in semiconductor
manufacturing.

Variable Neighbourhood Search (VNS) From the No-Free-Lunch Theorems (NFLTs) it
can be informally deduced that no metaheuristic performs better than another across all possible
problems (Wolpert and Macready, 1997). Ho and Pepyne (2001) point out that specializing search
algorithms to the landscape structure of the focused problem class is the only way one strategy
can outperform another (see Section 5.3). Thus, it can be said that the choice of a particular
metaheuristic is less important than its actual implementation.

Since performance is a priori no decisive criterion for choosing a metaheuristic method, the
aspect of simplicity becomes more important. Simpler algorithms are easier to implement, maintain,
adapt, explain and analyze. This statement in general holds for the development of software
systems, and in particular for the design of metaheuristic algorithms. Indeed, simplicity results in
lower susceptibility to errors (Silberholz and Golden, 2009); cf. (Talbi, 2009).

VNS was first mentioned in (Mladenović and Hansen, 1997) and then examined in different
variants in (Hansen and Mladenović, 2001, 2003; Hansen et al., 2001, 2009). The basic idea is a
systematic change of the neighborhood during the search, typically established in two alternating
search phases, a descent search phase and a randomized perturbation phase. VNS is a relatively
new method among metaheuristics, but has attracted many researches to adopt it as solution
method for combinatorial optimization problems, e.g. for solving the Traveling Salesman Problem
(TSP) (Hu and Raidl, 2008; da Silva and Urrutia, 2010).

But in particular, VNS is used to solve scheduling problems. Implementations of VNS for batch
scheduling problems can be found in (Klemmt et al., 2009; Almeder and Mönch, 2011; Kohn and
Rose, 2012; Cakici et al., 2013; Kohn and Rose, 2013; Kohn et al., 2013). Single machine scheduling
problems are solved by VNS in (Wang and Tang, 2009; Kirlik and Oguz, 2012). VNS for parallel
machine scheduling problems is proposed in (Anghinolfi and Paolucci, 2007; de Paula et al., 2007;
Driessel and Mönch, 2009; Behnamian et al., 2009; Sevkli and Uysal, 2009; Driessel and Mönch,
2011; Bilyk and Mönch, 2012; Chen and Li Jun-qing, 2012). But also job shop problems are subject
to VNS approaches; cf. (Sevkli and Aydin, 2006; Pongchairrerks and Kachitvichyanukul, 2007;
Sevkli and Aydin, 2007; Aydin and Sevkli, 2008; Jie et al., 2008; Roshanaei et al., 2009; Adibi et al.,
2010; Jun-Qing et al., 2010; Yazdani et al., 2010).
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1.4 Goals and Structure of the Thesis

The main goal of this work is to implement a scheduling framework to be deployed as an operational
batch scheduling system in the diffusion and oxidation area of a waferfab frontend. The desired
scheduling framework additionally requires to offer the opportunity to deal with academic questions
beyond its intended use as a prototype in industry. Summarizing, the framework’s design needs
to enable two main purposes: a) operational scheduling on the shop floor (use as a prototype
to be deployed in the industry) and b) exhaustive studies in an experimental system (use as an
experimental system answering methodical questions).

On one hand the intention of the framework’s design is to provide a functioning prototype
that is suitable to run as a real-time scheduling system on the operational level. The goal is to
report valuable practical experiences from implementing a scheduling system into a real-world
industrial environment. On the other hand the framework needs to cover an experimental system
that offers the capability to properly investigate academic questions in the area of metaheuristic
batch scheduling. The goal here is to employ extensive experiments in order to closely examine a
particular metaheuristic (Variable Neighborhood Search) solving typical batch scheduling problems
in numerous variants.

Furthermore, this thesis claims to cover both aspects from theory and practice in nearly equal
measures. The theoretical part intends to facilitate the development of the framework by providing
the underlying (theoretical) background in more detail. The focus here lies on two topics. a) First
this work provides an extensive review about the current state-of-the-art in the area of batch
scheduling research. b) Second the theoretical groundwork of this work comprises a detailed analysis
of the complexity status of the most common batch scheduling problems.

The Prototype The main intention of the framework’s design is to provide a functioning
prototype that is suitable to serve as a real-time scheduling system on the operational level.

Both researchers and practitioners face the problem that the scheduling problems in academia
and industry are rarely identical. The practical problems from industry are typically afflicted
with many different constraints. Hence it is often necessary to design case-specific solutions
beyond those reported as standard in the scientific literature. Another challenge is to integrate
sophisticated scheduling solutions with the existing software structure. The development of real-
time simulation/optimization systems as well as their plug-and-play interoperability with existing
software is a grand challenge today (Fowler and Rose, 2004).

The main goal of the practical part is to design, implement, and test a proper scheduling system
in order to deploy it in a waferfab that relies on dispatching to that date. The resulting scheduling
framework requires to comprises two main components: a) a top-level scheduling system with all
its modeling, simulation and optimization functionalities and b) an underlying data level connected
to the waferfab’s Manufacturing Execution System (MES).

The Experimental System The second important intention of the framework’s design besides
a functioning prototype is to provide the capability of running massive amounts of experiments in
a comfortable fashion. The intended framework is required to offer the capabilities to analyze the
effect of the framework’s system factors on the system performance in a reproducible environment.
Designing, defining, executing and analyzing experiments as time-saving as possible is one of the
central functionalities of this framework.

The motivation behind this is that very little is known about the functioning of metaheuristics.
The reasons why metaheuristics work so well (and under what conditions) remain unidentified to
a large extend. The goal is to identify important factors affecting optimization results by use of
intense experimentation. For example, beyond the nature of the search scheme, it is known that a
search method’s performance also depends on the fine tuning of the algorithm’s control parameters
(Watson, 2009).

Another tasks of the desired experimental system is to determine the benefit which could be
expected from deploying a scheduling system in the real world. The experiments serve to provide
reliable numbers for economic benefits based on which a manager decides whether installing a
scheduling system is profitable.
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A question with more scientific background is that of the sources of the observed improvements
considered as optimization effects. The desired framework is required to facilitate answering the
question whether the problem instance’s characteristics or the scheduling method settings have
a greater impact on the improvements. The most important results expected to be the result of
the experiments fall in two categories: a) insights related to model characteristics and b) insights
related to method settings.

1.4.1 Structure of the Thesis

The theoretical groundwork facilitates the development of the framework and rounds out the thesis
with its practical focus on developing an experimental system and a prototype system. The focus
of the theoretical part lies on two topics. a) The current state-of-the-art in the area of batch
scheduling research (Section 2). b) A detailed analysis of the complexity status of the most common
batch scheduling problems (Section 6). A well structured system of sections leads topic-by-topic to
the main results of this work.

Figure 3 depicts the structure of the thesis comprising nine sections without appendices. The
visualized structure basically uses an analogy of a house with three floors: a) the fundamentals
(Section 1 and Section 2), b) the basic topics (Section 3 to Section 5), and c) the main topic
(Section 6 to Section 8). It ends up with the conclusions in Section 9, i.e. with the roof.

Section 1 and Section 2 provide the fundamentals of this work. The introduction in Section 1
clarifies the motivation, introduces the problem statement, and discusses the related methodology.
Section 2 provides an extensive literature review about batch scheduling in wafer fabrication as
one of the main pillars of this work. The review covers 170 publications in total, methodically
structured in 16 groups.

The second level introduces three basic topics required to fully understand the main part. It
begins with a brief overview of wafer fabrication and its most important aspects in Section 3.
Section 4 introduces the art of simulation as a key technique in modern manufacturing systems.
The theoretical groundwork is complemented with a short overview on the state-of-the-art in
metaheuristic optimization (Section 5).

The third level begins with theoretically examining the main topic: batch scheduling. Section 6
provides a detailed introduction to the batch scheduling topic with an detailed analysis of the
complexity results of the most common batch scheduling problems. Section 7 gives a detailed
description of the implemented framework, providing a top level description of data systems, data
transfer mechanisms and essential data procedures. Section 8 reports the insights resulting from
the experiments.

Finally, Section 9 comprises the main results of this work, organized in three main topic
areas: a) theoretical background and state-of-the-art (Section 9.1), b) valuable insights spawned by
experiments (Section 9.2), and c) experiences from implementing a prototype (Section 9.3).

Figure 3: Structure of the thesis
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2 Literature Review

Contents
2.1 Single Machine Batch Scheduling Problems . . . . . . . . . . . . . . 23

2.2 Parallel Machines Batch Scheduling Problems . . . . . . . . . . . . . 30

This section provides an extensive review of bounded parallel batch (p − batch) scheduling
problems, addressed for both single and parallel machine environments under varying sets of
constraints. Three constraints are identified as the most important and distinctive characteristics
among the vast number of literature related to p− batch scheduling problems: a) incompatible job
families (fmls), b) release dates (rj), and c) non-identical job sizes (B, sj).

The review covers 170 publications in total, methodically structured in 16 groups representing
different combinations of fmls, rj and B, sj for the single and the parallel machine environment;
cf. Table 1. For an overview on the entire set of literature sources see the tables in Appendix A. A
clear emphasis is put on deterministic scheduling problems. However, for the sake of completeness
stochastic scheduling models gain also recognition in the context of real-time control as well. The
reviewed works most often relate to p − batch scheduling problems found in waferfabs, whereas
minor publications are motivated by other industrial applications. The majority is either motivated
by frontend diffusion/oxidation operations or by backend burn-in operations.

Prior some authors have presented literature reviews about batch scheduling problems. To our
best knowledge, Potts and van Wassenhove (1992) and Webster and Baker (1995) provide the
first reviews about batching problems, discussing early research in the field of batch scheduling
theory with focus on single-machine scheduling models. Potts and Kovalyov (2000) give an
extended review of batching problems in various machine environments and for several objectives,
putting emphasis on complexity results as well as on the efficiency and effectiveness of algorithms.
Mathirajan and Sivakumar (2003) especially review batch scheduling problems in semiconductor
manufacturing, classifying batching problems into 12 groups while distinguishing between stochastic
and deterministic problems. They refine their classification schemes and systematically organize
the published articles in an updated survey three years later (Mathirajan and Sivakumar, 2006b).

Table 1: Methodical literature review in 16 groups

machine constraints α | β | γ-notation section #publications
environment B, sj rj fmls

1 | · | ·

- - - 1 | p− batch, b < n | · 2.1.1 21
X - - 1 | p− batch,B, sj | · 2.1.2 24
- X - 1 | p− batch, b < n, rj | · 2.1.3 20
- - X 1 | p− batch, b < n, fmls | · 2.1.4 17
X X - 1 | p− batch,B, sj , rj | · 2.1.5 11
X - X 1 | p− batch,B, sj , fmls | · 2.1.6 7
- X X 1 | p− batch, b < n, rj , fmls | · 2.1.7 19
X X X 1 | p− batch,B, sj , rj , fmls | · 2.1.8 2

Pm | · | ·

- - - Pm | p− batch, b < n | · 2.2.1 2
X - - Pm | p− batch,B, sj | · 2.2.2 10
- X - Pm | p− batch, b < n, rj | · 2.2.3 5
- - X Pm | p− batch, b < n, fmls | · 2.2.4 7
X X - Pm | p− batch,B, sj , rj | · 2.2.5 10
X - X Pm | p− batch,B, sj , fmls | · 2.2.6 2
- X X Pm | p− batch, b < n, rj , fmls | · 2.2.7 22
X X X Pm | p− batch,B, sj , rj , fmls | · 2.2.8 7

170 (total)
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Machine Environment This review examines single machine models in Section 2.1 and parallel
machines models in Section 2.2. The grouping comprises eight variants of the basic single machine
problem 1 | p − batch, b < n | · and eight variants of the basic parallel machines problem
Pm | p− batch, b < n | ·; cf. Table 1.

Beyond single and parallel machine models and out of scope of this review, the area of scheduling
problems in flowshop environments with BPMs attracts a remarkable amount of researchers. Among
others, Ahmadi et al. (1992), Sung and Yoon (1997), Sung et al. (2000), Sung and Min (2001) and
Damodaran and Srihari (2004) deal with deterministic batch scheduling problems in flowshops. In
contrast, among others Gurnani et al. (1991, 1992), Neale and Duenyas (2000), van der Zee (2002),
Mason et al. (2007), and Ham and Fowler (2008) study batch scheduling problems in flowshops
under stochastic settings.

Primary Constraints Three primary constraints are used to establish a methodical grouping
with 16 classes for the literature: a) non-identical job sizes (B, sj), b) release dates (rj), and
c) incompatible job families (fmls). Refer to Table 1.

The combination of these three constraints result in eight model variants for each machine
model, i.e. eight variants for the single machine model and eight variants for the parallel machine
model. For example, the eight single machine models range from the basic model with no constraints
(1 | p − batch, b < n | ·) to the model with three constraints (1 | p − batch,B, sj , rj , fmls | ·). In
this way, there exist another eight corresponding parallel machine models, adding up to 16 model
variants in total.

From another point of view, there exist eight different models for each of these three char-
acterizing constraints (B, sj , rj and fmls), whereby the single machine model and the parallel
machine model count four variants each. There are eight models that deal with non-identical job
sizes (B, sj); the simplest case 1 | p− batch,B, sj | · (see Section 2.1.2) is first studied by Uzsoy
(1994). The grouping counts eight models that deal with release dates (rj). The simplest case
1 | p− batch, b < n, rj | · (see Section 2.1.3) wis first studied by Ikura and Gimple (1986), Lee et al.
(1992), and Webster and Baker (1995); cf. Brucker (2007). Consequently there exist eight models
that deal with incompatible job families (fmls). The simplest case 1 | p − batch, b < n, fmls | ·
(see Section 2.1.4) is first studied by Chandru et al. (1993b) and Uzsoy (1995), whereby Uzsoy
(1995) also examines the case with job arrivals.

Process Time Models There exist two basic model types: a) the longest job processing time
model (L) and b) the family processing time model (F).

The longest job processing time model (L) describes the case in which the jobs have arbitrary
processing times and the processing time of the batch is determined by the longest processing time
of its jobs. This kind of model is originally motivated by the backend burn-in operations. The
simplest case 1 | p− batch, b < n | · is first studied by Lee et al. (1992), Albers and Brucker (1993)
and Chandru et al. (1993a); cf. Brucker (2007).

The family processing time model (F) is usually motivated by diffusion or oxidation operations
that deal with incompatible job families. In this case, the processing time of a batch is given by the
corresponding job family and different job families have different processing times. As one of the
first, Chandru et al. (1993b) and Uzsoy (1995) study the simplest case 1 | p− batch, b < n, fmls | ·,
whereby Uzsoy (1995) considers the case with job arrivals 1 | p− batch, b < n, rj , fmls | ·. Fowler
et al. (1992a,b) and Weng and Leachman (1993) propose real-time control strategies that incorporate
future arrivals for the same problem under stochastic settings.

In general p− batch-scheduling problems formally characterized with incompatible job families
(fmls) correspond to the family processing time model (F). Minor works consider incompatible
job families (fmls) in conjunction with the longest processing time model (L); cf. (Boudhar, 2003;
Finke et al., 2008; Nong et al., 2008a; Sabouni and Jolai, 2010; Meng and Lu, 2011).

Some authors consider the special case with constant processing times (C), i.e. the processing
time is generally a constant that is identical for all jobs. For example, Webster and Baker (1995),
Ozturk et al. (2012), Li et al. (2012b), and Koehler and Khuller (2013) deal with deterministic
models characterized by constant processing times, whereas Ikura and Gimple (1986), Glassey and
Weng (1991), Fowler et al. (1992a), van der Zee et al. (1997), Korkmaz (2004) and van der Zee
(2007) discuss real-time-control strategies in stochastic environments.
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Methods and Objectives The focus of this review lies on deterministic offline scheduling models.
The solution approaches are basically distinguished into a) exact methods (E), b) heuristics (H),
c) metaheuristic (MH), and d) approximation algorithms (A); exact methods for special case(s) are
denoted with the character (*).

Despite of the fact that the emphasis is put on deterministic offline scheduling models, the review
also mentions deterministic scheduling models under online setting (#) and stochastic scheduling
models related to real-time control. For example, Chen et al. (2001), Nong et al. (2008b), Meng
and Lu (2011), Zhang et al. (2001a) and Li et al. (2012b,a) consider online-scheduling models. The
most important strategies in the area of real-time control (RTC) are discussed in Section 6.8 more
in detail.

This review aims to describe the objective function as accurately as possible, e.g. the objective
is to minimize makespan (Cmax). At least, the type of objective is determined, i.e. related to cycle
time (CT), related to on-time delivery (OTD) or composed of multiple objectives (MO).

Additional Constraints Beyond the three primary constraints (B, sj , rj , fmls), there exist
numerous constraints considered in conjunction with p− batch scheduling problems. This review
lists models with many different extensions, e.g. deadlines (d̄j), machine eligibility constraints
(Mj), sequence-dependent setup times (sdst), preemption (prmpt), rejection (rjct), reentrant jobs
(rntr), job splitting (jspl), graph compatibility (gc), secondary resources (sr), stochastic processing
times (spt), precedence constraints (prec), and machine breakdowns (brkdwn).

2.1 Single Machine Batch Scheduling Problems

Despite of the fact that scheduling a single machine is quite unattractive from practical point of
view, research is very interested in single machine models since they form sub problems for parallel
machine scheduling problems typically faced in industry; cf. (Mönch et al., 2011a). This section
covers eight variants of single BPM scheduling problems summarized in Table 2.

Table 2: Eight single machine scheduling problems

machine constraints α | β | γ-notation section
environment B, sj rj fmls

1 | · | ·

- - - 1 | p− batch, b < n | · 2.1.1
X - - 1 | p− batch,B, sj | · 2.1.2
- X - 1 | p− batch, b < n, rj | · 2.1.3
- - X 1 | p− batch, b < n, fmls | · 2.1.4
X X - 1 | p− batch,B, sj , rj | · 2.1.5
X - X 1 | p− batch,B, sj , fmls | · 2.1.6
- X X 1 | p− batch, b < n, rj , fmls | · 2.1.7
X X X 1 | p− batch,B, sj , rj , fmls | · 2.1.8

2.1.1 1 | p-batch, b<n | ·

The review begins with the basic bounded batch scheduling problem on a single BPM, denoted
with 1 | p− batch, b < n | ·. All publications describe the longest job processing time model (L),
with the exception of the model in (Webster and Baker, 1995) that deals with constant processing
times (C). See Table 3 for a tabular overview.

Makespan Minimizing Cmax on a single BPM can be solved optimally in polynomial time.
Brucker et al. (1998) and Sung and Choung (2000) present such algorithms with polynomial run
time; cf. Brucker (2007).

On-Time Delivery Lee et al. (1992) present polynomial algorithms for special cases of Lmax

and
∑
Uj ; cf. (Webster and Baker, 1995). Brucker and Kovalyov (1996) and Liu (2007) provide

polynomial and pseudo-polynomial DP approaches for special cases of
∑
wjUj ; cf. Brucker (2007).
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Brucker and Kovalyov (1996) also provide a FPTAS for the original, unrestricted problem
∑
wjUj .

The problem
∑
Tj can be solved polynomially if the processing times are constant (Brucker, 2007)

and pseudo-polynomially if the processing times and due dates are agreeable (Liu, 2007). Mönch
et al. (2006a) incorporate deadlines and describe a GA with the objective of minimizing the sum of
the absolute deviations of completion times from the due date, assuming that the jobs have the
same due date.

Cycle Time Webster and Baker (1995), Hochbaum and Landy (1997), Brucker et al. (1998) and
Poon and Yu (2004) provide polynomial and pseudo-polynomial algorithms for special cases of

∑
Cj .

For the unrestricted version, Chandru et al. (1993a) give a B&B algorithm, Hochbaum and Landy
(1997) describe an approximation algorithm, and Cai et al. (2002) and Deng et al. (2002) describe
PTASs. Chandru et al. (1993a) present a simple heuristic to solve the same problem. Turning to
the weighted variant, Albers and Brucker (1993), Webster and Baker (1995) and Brucker (2007)
present polynomial algorithms for special cases of

∑
wjCj and Uzsoy and Yang (1997) give a B&B

scheme as well as several heuristics for the original, unrestricted version. Chen et al. (2001) study
the same problem under online setting.

Multiple Objectives Sabouni and Jolai (2010) consider a special case of 1 | p− batch, b < n | ·
with jobs that belong to two different customers and simultaneously optimize for Cmax and Lmax.
In this case, the jobs belong to different customers, processed based on their individual criteria, i.e.
Cmax or Lmax. They optimally solve the problem with equal processing times.

Real-Time Control Neuts (1967) study the problem under stochastic settings and present the
well-known Minimum Batch Size (MBS) rule that aims on minimizing CT. Ganesan et al. (2004)
study the problem 1 | p− batch, b < n | · under stochastic setting and minimize the mean CT and
the maximum tardiness at the same time.

Table 3: Publications related to 1 | p-batch, b< n | ·

publication model method objective constraints

Neuts (1967) - RTC CT -
Lee et al. (1992) L E* OTD -

Albers and Brucker (1993) L E* CT -
Chandru et al. (1993a) L E, H CT -

Webster and Baker (1995) C E* OTD, CT -
Brucker and Kovalyov (1996) L E*, A OTD -
Hochbaum and Landy (1997) L E*, A CT -

Uzsoy and Yang (1997) L E, H CT -
Brucker et al. (1998) L E* CT -
Brucker et al. (1998) L E Cmax -

Sung and Choung (2000) L E Cmax -
Chen et al. (2001) L A# CT -

Cai et al. (2002) L A CT -
Deng et al. (2002) L A CT -

Ganesan et al. (2004) L RTC MO -
Poon and Yu (2004) L E CT -
Mönch et al. (2006a) L MH* OTD d̄j

Brucker (2007) L E Cmax -
Brucker (2007) L E* OTD, CT -

Liu (2007) L E* OTD -
Sabouni and Jolai (2010) L E* MO -

model:{longest job processing time (L), constant processing time (C)}; method:{exact method (E), heuristic (H), real-time control (RTC),
metaheuristic (MH), approximation algorithm (A), special case(s) (*), online setting (#)}; objectives:{makespan (Cmax), cycle time (CT),
on-time delivery (OTD), multiple objectives (MO)}; constraints:{deadlines (d̄j)}
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2.1.2 1 | p-batch, B, sj | ·

This section reviews the basic batch scheduling problem on a single BPM with non-identical job
sizes, denoted with 1 | p− batch,B, sj | ·. The mentioned publications deal with the longest job
processing time model (L), with the exception of the model in (van der Zee, 2007) that deals with
constant processing times (C). See Table 4 for a tabular overview.

Makespan Dupont and Dhaenens-Flipo (2002) and Parsa et al. (2010) propose B&B methods
to find solutions with optimal Cmax. Zhang et al. (2001b), Kashan et al. (2009) and Zhang and
Cao (2007) present approximation algorithms and Uzsoy (1994) and Parsa et al. (2010) provide
heuristics. Due to the complexity of the problem, several authors developed metaheuristics for it.
Mathirajan et al. (2004), Melouk et al. (2004) and Damodaran et al. (2007) present SA algorithms.
Damodaran et al. (2006) and Kashan et al. (2006a,b) propose GAs. Jia and Leung (2014), Cheng
et al. (2010) and Zhang et al. (2009b) give descriptions of methods based on the ACO concept,
whereby Cheng et al. (2010) consider stochastic processing times.

On-Time Delivery Malapert et al. (2012) present a CP approach for Lmax and Erramilli and
Mason (2008) minimize

∑
wjTj with MIP and SA.

Cycle Time Uzsoy (1994) presents a B&B scheme and heuristics for
∑
Cj . Jolai Ghazvini and

Dupont (1998) also describe a heuristic and Xu et al. (2008a,b) propose an ACO approach for the
same problem. Azizoglu and Webster (2000) propose a B&B scheme for

∑
wjCj .

Multiple Objectives Kashan et al. (2010) present different GAs for minimizing Cmax and Lmax

at the same time. Lu et al. (2009a) present a PSO algorithm that simultaneously minimizes Cmax

and
∑
Cj .

Table 4: Publications related to 1 |p-batch, B, sj | ·

publication model method objective constraints

Uzsoy (1994) L H Cmax -
Uzsoy (1994) L E, H CT -

Jolai Ghazvini and Dupont (1998) L H CT -
Azizoglu and Webster (2000) L E CT -

Zhang et al. (2001b) L A Cmax -
Dupont and Dhaenens-Flipo (2002) L E Cmax -

Mathirajan et al. (2004) L MH Cmax -
Melouk et al. (2004) L E, MH Cmax -

Damodaran et al. (2006, 2007) L MH Cmax -
Kashan et al. (2006a,b) L MH Cmax -
Zhang and Cao (2007) L A Cmax -

Erramilli and Mason (2008) L E, MH OTD -
Xu et al. (2008a,b) L MH CT -

Kashan et al. (2009) L A Cmax -
Lu et al. (2009a) L MH MO -

Zhang et al. (2009b) L MH Cmax -
Cheng et al. (2010) L MH Cmax spt

Kashan et al. (2010) L MH MO -
Parsa et al. (2010) L E, H Cmax -

Malapert et al. (2012) L E OTD -
Jia and Leung (2014) L MH Cmax -

model:{longest job processing time (L)}; method:{exact method (E), heuristic (H), metaheuristic (MH), approximation algorithm (A)};
objectives:{makespan (Cmax), cycle time (CT), on-time delivery (OTD), multiple objectives (MO)}; constraints:{stochastic processing
times (spt)}
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2.1.3 1 | p-batch, b<n, rj | ·

The basic bounded batch scheduling problem on a single BPM with release dates is denoted with
1 | p− batch, b < n, rj | ·. The publications describe the longest job processing time model (L), with
a few exceptions. Gupta et al. (2004) deal with the family processing time model (F) and Webster
and Baker (1995) discuss both the longest job processing time model (L) and the family processing
time model (F). Ikura and Gimple (1986) and Glassey and Weng (1991) restrict themselves to
constant processing times (C). See Table 5 for a tabular overview.

Makespan Ikura and Gimple (1986) and Sung et al. (2002) present polynomial algorithms for
special cases of Cmax. Ikura and Gimple (1986) also study the problem with deadlines. Lee and
Uzsoy (1999), Poon and Zhang (2000), Liu and Yu (2000) and Deng et al. (2003) give pseudo-
polynomial algorithms for special cases. Sung and Choung (2000) present a B&B scheme and
several heuristics for the general problem. Efficient heuristics can also be found in (Lee and Uzsoy,
1999) and (Liu and Yu, 2000), whereas Liu and Yu (2000) describe a heuristic with a defined
bound on performance. Poon and Zhang (2000) and Deng et al. (2003) provide PTASs. Zhang
et al. (2001a) study problem under online setting. Lu et al. (2009b) and Cao and Yang (2009)
incorporate job rejection in their models. Lu et al. (2009b) give polynomial and pseudo-polynomial
algorithms for special cases as well as a approximation algorithm and a PTAS. Cao and Yang
(2009) also present a PTAS for it.

On-Time Delivery Webster and Baker (1995), Baptiste (2000), Li and Lee (1997) and Lee et al.
(1992) show that special cases of Lmax can be solved in polynomial time. Wang and Uzsoy (2002)
present a GA combined with DP to solve the general version. Lee et al. (1992) and Lee and Pinedo
(1997) present polynomial algorithms for special cases of

∑
Uj . Baptiste (2000) and Brucker (2007)

consider the weighted variant
∑
wjUj , presenting algorithms with polynomial run time for special

cases.

Cycle Time Liu and Cheng (2005) give a PTAS for
∑
Cj and Webster and Baker (1995) present

a polynomial DP for a special case of the same problem. Baptiste (2000) and Brucker (2007) present
polynomial algorithms for special cases of the weighted version

∑
wjCj

Real-Time Control Glassey and Weng (1991) and van der Zee (2004) present look-ahead
strategies in a stochastic environment in order to reduce CTs.

2.1.4 1 | p-batch, b<n, fmls | ·

This section reviews the basic bounded batch scheduling problem with incompatible families on
a single BPM, denoted with 1 | p − batch, b < n, fmls | ·. The publications describe the family
processing time model (F), with a few exceptions. Boudhar (2003), Finke et al. (2008), Nong et al.
(2008b), Sabouni and Jolai (2010) and Meng and Lu (2011) deal with the the longest job processing
time model (L). See Table 6 for a tabular overview.

Makespan Uzsoy (1995) shows that minimizing Cmax is optimally solvable in polynomial time.
Nong et al. (2008b) and Meng and Lu (2011) study the problem under online setting and provide
approximation algorithms with a worst case ratio 2. Finke et al. (2008) and Boudhar (2003) study
the problem with compatibility graphs, whereupon both present polynomial algorithms for special
cases. Boudhar (2003) also gives a heuristic.

On-Time Delivery Uzsoy (1995) shows that minimizing Lmax is optimally solvable in polynomial
time. Dauzère-Pérès and Mönch (2013) provide a MIP formulation and a GA for minimizing

∑
Uj

and the weighted case
∑
wjUj . Jolai (2005) present polynomial and pseudo-polynomial algorithms

for special cases of
∑
Uj minimization. Liu and Zhang (2008) provide a DP method for minimizing∑

wjUj . Mehta and Uzsoy (1998) present a polynomial DP scheme for a special case and several
heuristics for the general case of

∑
Tj minimization. Devpura et al. (2001) and Perez et al. (2005)

propose several heuristics to solve the weighted case
∑
wjTj .
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Table 5: Publications related to 1 | p-batch, b< n, rj | ·

publication model method objective constraints

Ikura and Gimple (1986) C E* Cmax d̄j
Glassey and Weng (1991) C RTC CT -

Lee et al. (1992) L E* OTD -
Webster and Baker (1995) L, F E* OTD, CT -

Li and Lee (1997) L E* OTD -
Lee and Uzsoy (1999) L E*, H Cmax -

Baptiste (2000) L E* OTD, CT -
Liu and Yu (2000) L E*, A Cmax -

Poon and Zhang (2000) L E*, A Cmax -
Sung and Choung (2000) L E, H Cmax -

Zhang et al. (2001a) L A#*, A# Cmax -
Sung et al. (2002) L E* Cmax -

Wang and Uzsoy (2002) L MH OTD -
Deng et al. (2003) L E*, A Cmax -

Gupta et al. (2004) F RTC OTD -
van der Zee (2004) L RTC CT -

Liu and Cheng (2005) L A CT -
Brucker (2007) L E* OTD, CT -

Cao and Yang (2009) L A MO rjct
Lu et al. (2009b) L E*, A MO rjct

model:{longest job processing time (L), constant processing time (C), family processing time (F)}; method:{exact method (E), heuris-
tic (H), real-time control (RTC), metaheuristic (MH), approximation algorithm (A), special case(s) (*), online setting (#)}; objec-
tives:{makespan (Cmax), cycle time (CT), on-time delivery (OTD), multiple objectives (MO)}; constraints:{rejection (rjct),deadlines
(d̄j)}

Cycle Time Chandru et al. (1993b) propose a polynomial DP algorithm for a special case of
minimizing

∑
Cj . Uzsoy (1995) shows that minimizing the weighted case

∑
wjCj can be solved in

polynomial time.

Multiple Objectives Sabouni and Jolai (2010) consider a special case of 1 | p − batch, b <
n, fmls | · with jobs that belong to two different customers. The objective function simultaneously
optimizes for Cmax and Lmax, given that the jobs belong to different customers processed based on
their individual criteria, i.e. Cmax or Lmax. They optimally solve the problem with equal processing
times and give a heuristic for different processing times.

Real-Time Control Duenyas and Neale (1997) deal with random processing times and develop
a simple heuristic scheduling policy that minimizes waiting costs. Kim et al. (1998) and Kim et al.
(2001) propose batching rules that incorporate downstream and due date information. Akcali et al.
(2000) examine the performance of different loading and dispatching policies for batch processing.

2.1.5 1 | p-batch, B, sj, rj | ·

This section reviews the batch scheduling problem on a single BPM subject non-identical job sizes
and release dates, denoted with 1 | p− batch,B, sj , rj | ·. The mentioned publications deal with
the longest job processing time model (L), with the exception of the model in (van der Zee, 2007)
that deals with constant processing times (C). See Table 7 for a tabular overview.

Makespan MIP formulations for Cmax can be found in (Xu et al., 2012) and (Vélez-Gallego et al.,
2011). Li et al. (2005a) and Lu et al. (2010) present approximation algorithms for it, whereby Lu
et al. (2010) allow for job rejections. Zhou et al. (2013) and Vélez-Gallego et al. (2011) and Xu et al.
(2012) describe heuristics. Chou et al. (2006) present a GA and Xu et al. (2012) an ACO approach.

On-Time Delivery Mathirajan et al. (2010) give a SA algorithm and Chou and Wang (2008) a
GA with integrated DP for

∑
wjTj , and both present MIP formulations and heuristics for it.
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Table 6: Publications related to 1 |p-batch, b<n, fmls | ·

publication model method objective constraints

Chandru et al. (1993b) F E* CT -
Uzsoy (1995) F E Cmax, OTD, CT -

Duenyas and Neale (1997) F RTC CT spt
Kim et al. (1998) F RTC MO -

Mehta and Uzsoy (1998) F E*, H OTD -
Akcali et al. (2000) F RTC CT -

Devpura et al. (2001) F H OTD -
Kim et al. (2001) F RTC OTD -

Boudhar (2003) L E*, H Cmax gc
Jolai (2005) F E* OTD -

Perez et al. (2005) F H OTD -
Finke et al. (2008) L E* Cmax gc

Liu and Zhang (2008) F E OTD -
Nong et al. (2008b) L A# Cmax -

Sabouni and Jolai (2010) L E*, H MO -
Meng and Lu (2011) L A# Cmax -

Dauzère-Pérès and Mönch (2013) F E, MH OTD -
model:{longest job processing time (L), family processing time (F)}; method:{exact method (E), heuristic (H), real-time control (RTC),
metaheuristic (MH), approximation algorithm (A), special case(s) (*), online setting (#)}; objectives:{makespan (Cmax), cycle time
(CT), on-time delivery (OTD), multiple objectives (MO)}; constraints:{graph compatibility (gc), stochastic processing times (spt)}

Cycle Time Chang and Wang (2004) present a heuristic algorithm for
∑
Cj .

Multiple Objectives Wang and Chou (2013) describe an exhausted enumeration approach and
a GA to find pareto-optimal solutions with respect to Cmax and

∑
wjTj .

Real-Time Control van der Zee (2007) proposes a look-ahead strategy that deals with non-
identical sizes in order or minimize the average flow time in the long run in a stochastic environment.

Table 7: Publications related to 1 |p-batch, B, sj, rj | ·

publication model method objective constraints

Chang and Wang (2004) L H CT -
Li et al. (2005a) L A Cmax -

Chou et al. (2006) L MH Cmax -
van der Zee (2007) C RTC CT -

Chou and Wang (2008) L E, H, MH OTD -
Lu et al. (2010) L A Cmax rjct

Mathirajan et al. (2010) L E, H, MH OTD -
Vélez-Gallego et al. (2011) L E, H Cmax -

Xu et al. (2012) L E, H, MH Cmax -
Wang and Chou (2013) L E, MH MO -

Zhou et al. (2013) L H Cmax -
model:{longest job processing time (L), constant processing time (C)}; method:{exact method (E), heuristic (H), real-time control (RTC),
metaheuristic (MH), approximation algorithm (A)}; objectives:{makespan (Cmax), cycle time (CT), on-time delivery (OTD), multiple
objectives (MO)}; constraints:{rejection (rjct)}

2.1.6 1 | p-batch, B, sj, fmls | ·

This section reviews the bounded batch scheduling problem on a single BPM with incompatible
families and non-identical job sizes, denoted with 1 | p − batch,B, sj , fmls | ·. The mentioned
publications exclusively deal with the family processing time model (F). See Table 8 for a tabular
overview.
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Makespan Koh et al. (2005) give a mathematical formulation and propose a number of heuristic
algorithms as well as a GA to minimize Cmax. Kempf et al. (1998) examine heuristics for the
problem with secondary resource constraints, giving mathematical formulations for special cases.

On-Time Delivery Hoitomt and Luh (1992) present a heuristic based on relaxation, minimizing∑
wjT

2
j .

Cycle Time Koh et al. (2005) also give a mathematical formulation, heuristic algorithms including
a GA to minimize

∑
Cj and

∑
wjCj . Kempf et al. (1998) study the problem with secondary

resource constraints, providing mathematical formulations for special cases and heuristics for the
general case. Azizoglu and Webster (2001) present a B&B for

∑
wjCj . Dobson and Nambimadom

(1992, 2001) give a mathematical formulation for the same problem, a polynomial algorithm for a
special case and several heuristics for the general problem. Kashan and Karimi (2007) develop an
ACO method for

∑
wjCj minimization.

Table 8: Publications related to 1 |p-batch, B, sj, fmls | ·

publication model method objective constraints

Hoitomt and Luh (1992) F H OTD -
Kempf et al. (1998) F E*, H Cmax, CT sr

Azizoglu and Webster (2001) F E CT -
Dobson and Nambimadom (1992, 2001) F E, E*, H CT -

Koh et al. (2005) F E, H, MH Cmax, CT -
Kashan and Karimi (2007) F MH OTD -

model:{family processing time (F)}; method:{exact method (E), heuristic (H), metaheuristic (MH), special case(s) (*)}; objec-
tives:{makespan (Cmax), cycle time (CT), on-time delivery (OTD)}; constraints:{secondary resources (sr)}

2.1.7 1 | p-batch, b< n, rj, fmls | ·

This section reviews the bounded batch scheduling problem on a single BPM with incompatible
families and release dates, denoted with 1 | p− batch, b < n, rj , fmls | ·. The publications describe
the family processing time model (F), with a few exceptions. Boudhar (2003) and Nong et al.
(2008a) deal with the longest job processing time model (L). Fowler et al. (1992a) and Korkmaz
(2004) restrict themselves to constant processing times (C). See Table 9 for a tabular overview.

Makespan Uzsoy (1995) presents an efficient optimal algorithm for minimizing Cmax and Nong
et al. (2008a) develeop a PTAS for it.

On-Time Delivery Uzsoy (1995) describes several heuristics for Lmax. Jia et al. (2013) ad-
ditionally consider reentrant jobs, proposing a rolling horizon strategy that minimizes Lmax or∑
wjTj . Tangudu and Kurz (2006) present a B&B scheme for solving the

∑
wjTj-problem and

Kurz and Mason (2008) propose a heuristic for it. Li and Qiao (2008) and Guo et al. (2010) include
sequence-dependent setup times and both present algorithms based on ACO.

Cycle Time Korkmaz (2004) and Yao et al. (2012) present B&B schemes for the
∑
Cj-problem

and Tajan et al. (2011) solve it with DP. Korkmaz (2004) allows job splitting and proposes a
heuristic for the case with constant processing times. Jia et al. (2013) additionally consider reentrant
jobs, proposing a rolling horizon strategy that minimizes

∑
Cj .

Real-Time Control Several look-ahead strategies consider job families while minimizing CT
measures, e.g. (Fowler et al., 1992a,b), (Weng and Leachman, 1993), (Robinson et al., 1995),
(Duenyas and Neale, 1997), and (Tajan et al., 2008, 2011). (Duenyas and Neale, 1997) consider
stochastic process times. Similarly Gupta et al. (2004) stochastically examine the problem, but
propose a look-ahead batching rule that minimizes an objective function with earliness and tardiness
measures.
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Table 9: Publications related to 1 | p-batch, b< n, rj, fmls | ·

publication model method objective constraints

Fowler et al. (1992a,b) F RTC CT -
Weng and Leachman (1993) F RTC CT -

Robinson et al. (1995) F RTC CT -
Uzsoy (1995) F E Cmax -
Uzsoy (1995) F H OTD -

Duenyas and Neale (1997) F RTC CT spt
Boudhar (2003) L E*, H Cmax gc
Korkmaz (2004) C E, H CT jspl

Gupta and Sivakumar (2006) F RTC OTD, MO -
Tangudu and Kurz (2006) F E OTD -

Kurz and Mason (2008) F H OTD -
Li and Qiao (2008) F MH OTD sdst
Nong et al. (2008a) L A Cmax -
Tajan et al. (2008) F RTC CT -

Guo et al. (2010) F MH OTD sdst
Tajan et al. (2011) F RTC, E CT -

Yao et al. (2012) F E CT -
Jia et al. (2013) F H OTD, CT rntr

model:{longest job processing time (L), constant processing time (C), family processing time (F)}; method:{exact method (E), heuristic
(H), real-time control (RTC), metaheuristic (MH), approximation algorithm (A), special case(s) (*)}; objectives:{makespan (Cmax),
cycle time (CT), on-time delivery (OTD), multiple objectives (MO)}; constraints:{sequence dependent setup times (sdst), reentrant jobs
(rntr), job splitting (jspl), graph compatibility (gc), stochastic processing times (spt)}

2.1.8 1 | p-batch, B, sj, rj, fmls | ·

This section reviews the batch scheduling problem with incompatible families on a single BPM
subject to non-identical job sizes and release dates, denoted with 1 | p− batch,B, sj , rj , fmls | ·.
Nong et al. (2008a) deal with the longest job processing time model (L), whereas Gokhale and
Mathirajan (2011) ususes the family processing time model (F). See Table 10 for a tabular overview.

Makespan Nong et al. (2008a) present an approximation algorithm to minimize Cmax.

On-Time Delivery Gokhale and Mathirajan (2011) incorporate job splitting, presenting a
mathematical model and a few heuristics to minimize

∑
wjTj .

Cycle Time To our best knowledge, no publications exist neither for 1 | p−batch,B, sj , rj , fmls |∑
Cj , nor for the weighted case

∑
wjCj .

Table 10: Publications related to 1 |p-batch, B, sj, rj, fmls | ·

publication model method objective constraints

Nong et al. (2008a) L A Cmax -
Gokhale and Mathirajan (2011) F E, H OTD jspl
model:{longest job processing time (L), family processing time (F)}; method:{exact method (E), heuristic (H), approximation algorithm
(A)}; objectives:{makespan (Cmax), on-time delivery (OTD)}; constraints:{job splitting (jspl)}

2.2 Parallel Machines Batch Scheduling Problems

A waferfab is typically organized in a number of work areas, given that each work area covers a set
of similar machines. In this context, similarity roughly refers to the architecture of the machines as
well as to the type of processes they provide. For the entire machine pool in the fab, there exists
a number of subsets of machines so that each subset provides a disjunctive set of processes, also
referred to as CMSs or work centers. For a typical waferfab such a CMS roughly counts up to up
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to several dozens of machines that form a manufacturing entity from the viewpoint of production
logistics. Based on the shop floor layout, the machines of a single work center are often located in
near proximity, but may be also locally distributed on the shop floor.

The concept of parallel machines describes a manufacturing system consisting of a number of
machines in parallel where each job requires a single operation on any of the parallel machines,
or on a subset of them in the case of machine eligibility restrictions. For the sake of simplicity,
this review does not explicitly distinguish between the three common types of parallel machine
environments, i.e. identical machines (Pm), uniform machines (Qm), and unrelated machines
(Rm). Any parallel machine scheduling problem is simply classified as Pm-model with identical
machine speeds, formally omitting the fact that some authors actually consider Qm- or Rm-models
with different machine processing time concepts. This section covers eight scheduling problems
summarized in Table 11.

Table 11: Eight parallel machines scheduling problems

machine constraints α | β | γ-notation section
environment B, sj rj fmls

Pm | · | ·

- - - Pm | p− batch, b < n | · 2.2.1
X - - Pm | p− batch,B, sj | · 2.2.2
- X - Pm | p− batch, b < n, rj | · 2.2.3
- - X Pm | p− batch, b < n, fmls | · 2.2.4
X X - Pm | p− batch,B, sj , rj | · 2.2.5
X - X Pm | p− batch,B, sj , fmls | · 2.2.6
- X X Pm | p− batch, b < n, rj , fmls | · 2.2.7
X X X Pm | p− batch,B, sj , rj , fmls | · 2.2.8

2.2.1 Pm | p-batch, b< n | ·

This section begins with the basic bounded batch scheduling problem on parallel BPMs, denoted
with Pm | p− batch, b < n | ·. The mentioned publications exclusively deal with the longest job
processing time model (L). See Table 12 for a tabular overview.

Makespan To our best knowledge, no publications exist for the problem Pm | p− batch, b < n |
Cmax.

On-Time Delivery Mönch and Unbehaun (2007) describe three decomposition heuristics that
minimize the sum of the absolute deviations of completion times from the due date of all jobs,
given that all jobs are assumed to have the same due date.

Cycle Time Chandru et al. (1993a) present a heuristic that minimizes
∑
Cj .

Table 12: Publications related to Pm |p-batch, b<n | ·

publication model method objective constraints

Chandru et al. (1993a) L H CT -
Mönch and Unbehaun (2007) L H* OTD -
model:{longest job processing time (L)}; method:{heuristic (H), special case(s) (*)}; objectives:{cycle time (CT), on-time delivery
(OTD)}

2.2.2 Pm | p-batch, B, sj | ·

This section reviews the bounded batch scheduling problem on parallel BPMs with non-identical
job sizes, denoted with Pm | p− batch,B, sj | ·. The mentioned publications exclusively deal with
the longest job processing time model (L). See Table 13 for a tabular overview.
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Makespan Cheng et al. (2012), Cheng et al. (2013), Xu and Bean (2007), and Chang et al.
(2004) provide MIP formulations for Cmax minimization. Cheng et al. (2012) present a polynomial
approximation algorithm and Li et al. (2013) and Damodaran and Chang (2008) propose several
heuristics. Cheng et al. (2013) describe a method based on ACO, Chang et al. (2004) propose a SA
method, and Xu and Bean (2007) describe a GA. Kashan et al. (2008) compare a hybrid heuristic
based on a GA with SA. Beyond metaheuristics, Chen et al. (2011) use a clustering algorithm and
Shao et al. (2008a,b) describe a neural net to tackle the problem.

On-Time Delivery To our best knowledge, no publications exist for the problem Pm | p −
batch,B, sj | · with common objectives related to due dates.

Cycle Time Cheng et al. (2012) provide a MIP formulation and a polynomial approximation
algorithm for minimizing

∑
Cj .

Table 13: Publications related to Pm |p-batch, B, sj | ·

publication model method objective constraints

Chang et al. (2004) L E, MH Cmax -
Xu and Bean (2007) L E, MH Cmax -

Damodaran and Chang (2008) L H Cmax -
Kashan et al. (2008) L MH Cmax -
Shao et al. (2008a,b) L H Cmax -

Chen et al. (2011) L H Cmax -
Cheng et al. (2012) L E, A Cmax, CT -
Cheng et al. (2013) L E, MH Cmax -

Li et al. (2013) L H Cmax -
model:{longest job processing time (L)}; method:{exact method (E), heuristic (H), metaheuristic (MH), approximation algorithm (A)};
objectives:{makespan (Cmax), cycle time (CT)}

2.2.3 Pm | p-batch, b< n, rj | ·

This section reviews the bounded batch scheduling problem on parallel BPMs with release dates,
denoted with Pm | p− batch, b < n, rj | ·. The mentioned publications deal with the longest job
processing time model (L), with the exception of the model in (Koehler and Khuller, 2013) that
deals with constant processing times (C). See Table 14 for a tabular overview.

Makespan Li et al. (2005b) and Zhang et al. (2005) present PTASs for minimizing Cmax. Li
et al. (2012a) study the problem under online setting, describing a time window look-ahead model
that can foresee all the jobs that will arrive in given time segment.

On-Time Delivery Li et al. (2004) present a PTAS for minimizing Lmax.

Cycle Time To our best knowledge, no publications exist neither for Pm | p− batch, b < n, rj |∑
Cj nor for the weighted case Pm | p− batch, b < n, rj |

∑
wjCj .

Multiple Objectives Koehler and Khuller (2013) incorporate deadlines in their model with
identical processing times. They provide a polynomial DP algorithm for minimizing the number
of batches and Cmax at the same time as well as a a pseudo-polynomial algorithm for a general
batch-count-sensitive objective function.

2.2.4 Pm | p-batch, b< n, fmls | ·

This section reviews the bounded batch scheduling problem with incompatible families on parallel
BPMs, denoted with Pm | p − batch, b < n, fmls | ·. The mentioned publications deal with the
family processing time model (F), with the exception of the model in (Li et al., 2012b) that deals
with constant processing times (C). See Table 15 for a tabular overview.
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Table 14: Publications related to Pm |p-batch, b< n, rj | ·

publication model method objective constraints

Li et al. (2004) L A OTD -
Li et al. (2005b) L A Cmax -

Zhang et al. (2005) L A Cmax -
Li et al. (2012a) L A# Cmax -

Koehler and Khuller (2013) C E* Cmax d̄j
model:{longest job processing time (L), constant processing time (C)}; method:{exact method (E), approximation algorithm (A), special
case(s) (*), online setting (#)}; objectives:{makespan (Cmax), on-time delivery (OTD)}; constraints:{deadlines (d̄j)}

Makespan Uzsoy (1995) presents heuristics for minimizing Cmax.

On-Time Delivery Uzsoy (1995) presents heuristics for minimizing Lmax. Balasubramanian
et al. (2004) present a GA and Almeder and Mönch (2011), Raghavan and Venkataramana (2006),
Mönch and Almeder (2009) propose ACO methods for minimizing

∑
wjTj . Almeder and Mönch

(2011) additionally present a VNS scheme and compare both VNS and ACO with a GA. Li et al.
(2012b) study the online scheduling of jobs with equal processing times in order to maximize the
weighted number of early jobs, given that preemption is allowed.

Cycle Time Uzsoy (1995) presents heuristics for minimizing
∑
wjCj .

Real-Time Control Habenicht and Mönch (2003) investigate the performance of different
dispatching and scheduling heuristics in a stochastic environment in order to minimze

∑
wjTj .

Table 15: Publications related to Pm |p-batch, b<n, fmls | ·

publication model method objective constraints

Uzsoy (1995) F H Cmax, OTD, CT -
Habenicht and Mönch (2003) F RTC OTD -

Balasubramanian et al. (2004) F H, MH OTD -
Raghavan and Venkataramana (2006) F MH OTD -

Mönch and Almeder (2009) F MH OTD -
Almeder and Mönch (2011) F MH OTD -

Li et al. (2012b) C A#* OTD prmpt
model:{constant processing time (C), family processing time (F)}; method:{heuristic (H), real-time control (RTC), metaheuristic (MH),
approximation algorithm (A), special case(s) (*), online setting (#)}; objectives:{makespan (Cmax), cycle time (CT), on-time delivery
(OTD)}; constraints:{preemption (prmpt)}

2.2.5 Pm | p-batch, B, sj, rj | ·

This section reviews the batch scheduling problem on parallel BPMs with non-identical job sizes
and release dates, denoted with Pm | p− batch,B, sj , rj | ·. The mentioned publications deal with
the longest job processing time model (L), with exception of the model in (Ozturk et al., 2012) that
deals with constant processing times (C). See Table 16 for a tabular overview.

Makespan Chung et al. (2009) and Wang and Chou (2010) define MIP models to find the
minimum Cmax and Li (2012) presents an approximation algorithm. Chung et al. (2009), Damodaran
and Vélez-Gallego (2010) and Chen et al. (2010) propose heuristics. Chen et al. (2010) present a GA
and a method based on ACO and Wang and Chou (2010) compare a GA with SA. Damodaran and
Vélez-Gallego (2012) evaluate a SA approach and a GRASP (Damodaran et al., 2011). Ozturk et al.
(2012) consider the problem in the context of hospital sterilization services with equal processing
times, presenting a MIP formulation and a approximation scheme as well as polynomial algorithms
for two special cases.
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On-Time Delivery To our best knowledge, no publications exist for the problem Pm | p −
batch,B, sj , rj | · with common objectives related to due dates.

Cycle Time To our best knowledge, no publications exist neither for Pm | p− batch,B, sj , rj |∑
Cj nor for the weighted case Pm | p− batch,B, sj , rj |

∑
wjCj .

Multiple Objectives Xu et al. (2013) propose an ACO method in order to minimize the
bi-criteria objective consisting of Cmax and Lmax.

Real-Time Control Sahraeian et al. (2014) incorporate size-dependent setup times and compare
different heuristics in a stochastic environment in order to minimize Cmax.

Table 16: Publications related to Pm |p-batch, B, sj, rj | ·

publication model method objective constraints

Chung et al. (2009) L E, H Cmax -
Chen et al. (2010) L H, MH Cmax -

Damodaran and Vélez-Gallego (2010) L H Cmax -
Wang and Chou (2010) L E, MH Cmax -

Damodaran et al. (2011) L MH Cmax -
Damodaran and Vélez-Gallego (2012) L MH Cmax -

Li (2012) L A Cmax -
Ozturk et al. (2012) C E, E*, A Cmax -

Xu et al. (2013) L MH MO -
Sahraeian et al. (2014) L RTC Cmax -

model:{longest job processing time (L), constant processing time (C)}; method:{exact method (E), heuristic (H), real-time control (RTC),
metaheuristic (MH), approximation algorithm (A), special case(s) (*)}; objectives:{makespan (Cmax), multiple objectives (MO)}

2.2.6 Pm | p-batch, B, sj, fmls | ·

This section reviews the bounded batch scheduling problem on parallel BPMs with incompatible
families and non-identical job sizes, denoted with Pm | p− batch,B, sj , fmls | ·. The mentioned
publications exclusively deal with the family processing time model (F). See Table 17 for a tabular
overview.

Makespan Koh et al. (2004) present heuristics and a GA for minimizing Cmax.

On-Time Delivery To our best knowledge, no publications exist for the problem Pm | p −
batch,B, sj , fmls | · with objectives related to due dates.

Cycle Time Koh et al. (2004) present heuristics and a GA for minimizing
∑
Cj or

∑
wjCj .

Multiple Objectives Payman and Leachman (2010) propose algorithms based on Linear Pro-
gramming (LP) and Integer Programming (IP) and a heuristic-based algorithm in order to simulta-
neously improve multiple short-term production targets, while considering secondary resources.

Table 17: Publications related to Pm | p-batch, B, sj, fmls | ·

publication model method objective constraints

Koh et al. (2004) F H, MH Cmax, CT -
Payman and Leachman (2010) F H MO sr
model:{family processing time (F)}; method:{heuristic (H), metaheuristic (MH)}; objectives:{makespan (Cmax), cycle time (CT), mul-
tiple objectives (MO)}; constraints:{secondary resources (sr)}
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2.2.7 Pm | p-batch, b< n, rj, fmls | ·

This section reviews the bounded batch scheduling problem on parallel BPMs with incompatible
families and release dates, denoted with Pm | p − batch, b < n, rj , fmls | ·. The mentioned
publications deal with the family processing time model (F), with the exception of the model in
(van der Zee et al., 1997) that deals with constant processing times (C). See Table 18 for a tabular
overview.

Makespan To our best knowledge, no publications exist for the problem Pm | p − batch, b <
n, rj , fmls |

∑
Cmax.

On-Time Delivery Malve and Uzsoy (2007) present a GA and Chang et al. (2013) propose
a method based on PSO to minimize Lmax. Kim et al. (2010) present several heuristics for∑
Tj minimization. Bar-Noy et al. (2009) consider the problem with deadlines and present an

approximation algorithm maximizing the weight of the scheduled jobs. Mönch et al. (2006b) present
a heuristic in order to minimize

∑
wjTj . Mönch et al. (2005) propose a GA and Chiang et al.

(2010) describe a memory-based algorithm incorporating concepts from GAs for the same problem.
Klemmt et al. (2009) provide a MIP formulation and a VNS scheme for

∑
wjTj minimization

with machine eligibility constraints (Mj). Li et al. (2008, 2009a) present an ACO method that
additionally considers sequence-dependent setup times (and Mj).

Cycle Time Tajan et al. (2012) provide a mathematical formulation and a DP scheme for the
problem of minimizing the mean CT.

Multiple Objectives Reichelt and Mönch (2006) propose a method based on GAs that aims to
optimize

∑
wjTj and Cmax at the same time.

Real-Time Control Sha et al. (2004, 2007) present a look-ahead batch dispatching rule taking
due date information into consideration. Habenicht and Mönch (2003) describe a simple heuristic
that does not take future lot arrivals into account as well as a GA that does consider future arrivals,
focusing on

∑
wjTj . Several look-ahead rules that minimize CTs are proposed by van der Zee et al.

(1997, 2001), Fowler et al. (2000), van der Zee (2001), Solomon et al. (2002), Cigolini et al. (2002)
and Tajan et al. (2012), where Solomon et al. (2002) additionally consider the status of downstream
machines in a sense that minimizing sequence-dependent setup times is desired. Murray et al.
(2008) propose a batch scheduling heuristic that considers sequence-dependent setup times and
take future arrivals into account, evaluated in a stochastic environment. A total cost function is
used to combine two conflicting performance measures into one, i.e. total item queuing time and
total machine running time.

2.2.8 Pm | p-batch, B, sj, rj, fmls | ·

This section reviews the bounded batch scheduling problem with incompatible families on parallel
BPMs subject non-identical job sizes and release dates, denoted with Pm | p−batch,B, sj , rj , fmls |
·. The mentioned publications exclusively deal with the family processing time model (F). See
Table 19 for a tabular overview.

Makespan Klemmt et al. (2008) and Klemmt et al. (2011) examine MIP and simulation-based
optimization approaches for Cmax minimization under machine eligibility and deadline constraints,
whereby Klemmt et al. (2011) additionally consider machine breakdown periods in their model.

On-Time Delivery Mathirajan and Sivakumar (2006a) present a few greedy heuristics that
minimize

∑
wjTj . Klemmt et al. (2011) include machine eligibility constraints, deadlines and

machine breakdowns in their models, evaluating MIP and simulation-based optimization for
∑
wjTj

minimization. Gokhale and Mathirajan (2014) allow job splitting in their mathematical formulation
for minimizing

∑
wjTj , and present heuristics for it. Kohn and Rose (2012) use VNS to minimize
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Table 18: Publications related to Pm |p-batch, b<n, rj, fmls | ·

publication model method objective constraints

van der Zee et al. (1997) C RTC CT -
Fowler et al. (2000) F RTC CT -
van der Zee (2001) F RTC CT -

van der Zee et al. (2001) F RTC CT -
Cigolini et al. (2002) F RTC CT -

Solomon et al. (2002) F RTC CT sdst
Habenicht and Mönch (2003) F RTC, MH OTD -

Sha et al. (2004, 2007) F RTC OTD -
Mönch et al. (2005) F MH OTD -

Mönch et al. (2006b) F H OTD -
Reichelt and Mönch (2006) F MH MO -

Malve and Uzsoy (2007) F MH OTD -
Li et al. (2008) F MH OTD Mj , sdst

Murray et al. (2008) F RTC MO sdst
Bar-Noy et al. (2009) F A OTD d̄j
Klemmt et al. (2009) F E, MH OTD Mj

Li et al. (2009a) F MH OTD Mj , sdst
Chiang et al. (2010) F MH OTD -

Kim et al. (2010) F H OTD -
Tajan et al. (2012) F RTC CT -
Chang et al. (2013) F MH OTD -

model:{constant processing time (C), family processing time (F)}; method:{exact method (E), heuristic (H), real-time control (RTC),
metaheuristic (MH), approximation algorithm (A)}; objectives:{cycle time (CT), on-time delivery (OTD), multiple objectives (MO)};
constraints:{deadlines (d̄j), machine eligibility (Mj), sequence dependent setup times (sdst)}

∑
Tj while considering machine eligibility constraints and deadlines in their optimization model.

They analyze the effect of various factors that influence the optimization potential.

Cycle Time Cakici et al. (2013) present a MIP formulation and a VNS scheme in order to
minimize

∑
wjCj . Klemmt et al. (2008) include machine eligibility constraints and deadlines,

evaluating MIP and simulation-based optimization for minimizing
∑
Cj and

∑
wjCj . Kohn and

Rose (2012) consider machine eligibility constraints and deadlines in their optimization model based
on VNS. They analyze the effect of various factors that influence the optimization potential when
minimizing

∑
Cj . Kohn and Rose (2013) study the impact of accuracy in lot arrival prediction on

the objective
∑
Cj . Their model based on VNS incorporates machine eligibility constraints and

deadlines.

Multiple Objectives Li et al. (2009b) present an ACO method that optimizes
∑
wjTj and Cmax

at the same time, considering machine eligibility constraints and sequence-dependent setup times.
Yugma et al. (2008) include machine eligibility constraints, precedence constraints and deadlines
in their model. They propose a method based on LS and SA to simultaneously improve the total
number of moves, the batching coefficient and the x-factor. Kohn et al. (2013) experimentally
examine the relationship between various objectives and performance measures related to CT, OTD
and THP. The underlying VNS model involves machine eligibility constraints and deadlines.
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Table 19: Publications related to Pm |p-batch, B, sj, rj, fmls | ·

publication model method objective constraints

Mathirajan and Sivakumar (2006a) F H OTD -
Klemmt et al. (2008) F E, H Cmax, CT Mj , d̄j
Yugma et al. (2008) F MH MO Mj , d̄j , prec

Li et al. (2009b) F MH MO Mj , sdst
Klemmt et al. (2011) F E, H Cmax, OTD, CT Mj , d̄j , brkdwn

Kohn and Rose (2012) F MH OTD, CT Mj , d̄j
Cakici et al. (2013) F E, MH CT -

Kohn and Rose (2013) F MH CT Mj , d̄j
Kohn et al. (2013) F MH MO Mj , d̄j

Gokhale and Mathirajan (2014) F E, H OTD jspl
model:{family processing time (F)}; method:{exact method (E), heuristic (H), metaheuristic (MH), }; objectives:{makespan (Cmax),
cycle time (CT), on-time delivery (OTD), multiple objectives (MO)}; constraints:{deadlines (d̄j), machine eligibility (Mj), sequence

dependent setup times (sdst), job splitting (jspl), precedence (prec), breakdowns (brkdwn)}
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A semiconductor device is defined as a semiconductor product which has electric elements and
wiring, made to fulfill specific functions, according to SEMI International Standards (2009). Such
complex electric circuits are also known as IC, chip, microchip or die.

An IC contains minimum one semiconductor die, regardless whether it is on the way of fabrication
or completed, whether it is on the way of fabrication or completed, it has been diced, it is mounted
on some substrate or it is packaged. If it is packaged, the whole package is assumed as a device
and a device may have more than one die. Many dies are usually fabricated on a semiconductor
substrate at a time which is often referred to as wafer. The wafer is diced after completing the last
processing step and before packaging.

Flash-Memories as a specific type of Electrically Erasable Programmable Read-Only Memories
(EEPROMs), Dynamic Random Access Memories (DRAMs), Micro Processing Units (MPUs) and
Application Specific Integrated Circuits (ASICs) can be considered as few of the most important
semiconductor devices (Cogez et al., 2011).

Technology Trends in development and fabrication of semiconductor devices follow Moore’s
law. Moore’s law is the observation that over the history of computing hardware, the number of
transistors on semiconductor devices doubles approximately every two years (Moore, 1998).

Ferrell and Pratt (2000) state that for an IC manufacturer to remain continuously competitive,
the cost per unit area of manufacturing semiconductor devices must decrease continuously. The
competitive drive for cost reduction results in the scaling of semiconductor devices to ever smaller
dimensions as well as in the increase of wafer sizes. Both scaling effects have major influence on
semiconductor manufacturer production effectiveness.

According to the ITRS structure widths on substrates, e.g. the gate length, will continuously
decrease from approximately 20 nm in 2013 down to approximately 7 nm in 2025, with minor
differences among Flash, DRAM, MPU and ASIC devices (Cogez et al., 2011).

Simultaneously to the process of shrinking structure widths, the wafer diameter increases
continuously and until today has reached 300 mm in modern wafer fabrication facilities (waferfabs).
Intel, Samsung, and TSMC announced in May 2008 that they will work together with suppliers and
other semiconductor players to develop the 450 mm technology. These three companies scheduled
the first production ramp-ups until 2016 (Cogez et al., 2011). Schaller (2004) presents a case study
of the ITRS that investigates technological innovations in the semiconductor industry.

Fabrication The semiconductor device manufacturing process covers numerous process steps
—from a bare silicon substrate to a fully functional semiconductor device. The semiconductor
manufacturing process is commonly structured into five phases: a) wafer fabrication, b) wafer test
(wafer probe), c) assembly, d) packaging, and e) final test. The wafer fabrication and the wafer
test are often summarized with the term frontend. Correspondingly, the term backend frames the
assembly, packaging, and the final test.

Wafer fabrication summarizes all processing steps creating fully functional dies out of a bare
silicon substrate. The wafer test comprises several testing procedures that ensure faultless dies,
respectively identifies defect dies on the wafer. After testing wafers are diced and go through
assembly. At the end of which each die is wired and packed. The resulting semiconductor devices
are then exposed to high temperatures (aged) and finally tested again, before they are shipped
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to the customer. See Figure 4 for a flow diagram visualizing the basic phases in semiconductor
manufacturing.

This work exclusively focuses on wafer fabrication, respectively the frontend.

Figure 4: Flow diagram of semiconductor manufacturing (Frantsuzov, 2011); cf. (Mönch et al.,
2009)

Facility Hopp and Spearman (2001) define basic terms in manufacturing. A workstation is
a collection of one or more machines that perform (essentially) identical functions. The term
workstation is also often referred to as work center or CMS, whereas the latter puts focus on
identical functions provided by the machines. A routing defines the sequence of process steps
provided by workstations passed through by a product or part. In wafer fabrication a part relates
to a carrier, also known as cassette or lot. A carrier or cassette describes an open structure that
holds one or more substrates (SEMI International Standards, 2009). SEMI E11 (2000) provides
carrier specifications for 125 mm, 150 mm, and 200 mm plastic and metal carrier. The term Front
Opening Unified Pod (FOUP) refers to a closed structure that holds 300 mm wafers; (SEMI E47,
2000) provides specifications for FOUPs. An order is a request from a customer for a particular
product, in a particular quantity, to be delivered on a particular date. A job in wafer fabrication
refers to a single lot at a certain stage of production, waiting for the next process step to be carried
out on a suitable equipment as a part of a work center. A scheduler or dispatcher system controls
the material flow in a waferfab, assigning jobs to machines at any point in time.

Contamination Control Semiconductor devices are very vulnerable to many types of contami-
nants. Especially particles coming from workers, generated by equipment and present in processing
chemicals, create risk of defects on the device. Defects occur when particles located at critical areas
on the wafer surface destroy the device functioning, for example by interrupting electrical signals
or altering electrical properties.

With respect to high production yields semiconductor manufacturer pursue a total cleanroom
strategy. A proper cleanroom design and a filtering technology provide particle-poor air with
constant environmental conditions for production. These controlled environmental conditions
include the temperature, pressure, humidity of the air and the composition of the gases (van Zant,
2004). Compared to the outdoor air, the shop floor is under constant overpressure, preventing any
particle or gas from uncontrolled penetrating the cleanroom. Workers get entry and exit through
air locks and wear special clothing covering the body. The shop floor is constantly fed with clean air
through complex filtering systems at the ceiling. At the same time the cleanroom air is constantly
extracted by continuous suction through a perforated floor. In consequence a laminar air flow
from the ceiling to the floor is established, preventing particles to hover through the cleanroom.
The number of particles allowed in cleanrooms is defined by the International Organization for
Standardization (ISO) in ISO 14644-1 (1999). Today wafer fabrication facilities using non-closed
wafer carriers require the cleanroom standard ISO 1. ISO 1 ensures that one cubic meter of air does
not count not more than 10 particles equal or larger than 0.1um and not more than two particles
equal or larger than 0.2um (Ferrell and Pratt, 2000).
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Computer Integrated Manufacturing (CIM) Modern semiconductor manufacturing systems
manage interoperability of tens of dozens of sub-systems that fulfill specific functions as a part
of the Computer Integrated Manufacturing (CIM) framework. From technical view, the CIM
framework in terms of a technical system is often referred to as MES.

A typical factory network combines a) the AMHS, b) production equipment, c) scheduler and/or
dispatcher system, d) and many other factory systems (Ferrell and Pratt, 2000). Figure 5 depicts a
conceptual view of the factory system.

In order to ensure interoperability among these systems, standards have been developed that
provide guidelines for system architecture and communication. SEMI E81 (2000) describes a
CIM framework as a software infrastructure that creates a common environment for integrating
applications and sharing information in a semiconductor factory. SEMI E96 (2000) defines standards
for the technical architecture that enable application components to cooperate in a CIM/MES
environment, needed for an improved component interoperability, substitutability and extensibility.

Figure 5: Conceptual view of the factory system (Ferrell and Pratt, 2000)

3.1 Unit Processes

Semiconductor manufacturing consists of a series of sequential process steps. The process flow
in Complementary Metal Oxide Semiconductor (CMOS) technology counts 600 to 1200 single
process steps, still rising. Starting with raw wafers as the basic raw material, the chip grows with
each layer, also called photo-layer. After processing each wafer contains hundreds of identical
rectangular chips. The chips are separated by sawing or laser cutting. The various processing steps
fall into five general categories: a) film formation, b) lithography, c) etching, d) impurity doping,
and e) non-value processes.

Figure 6 illustrates the interrelationship between these major process categories. This cyclic
process flow is the reason for reentrant flows in a waferfab (May and Spanos, 2006). Semiconductor
Manufacturing Technology (SEMATECH), an association of member companies cooperating in
key areas of semiconductor technology, presents a 300 mm aluminum process flow for 180 nm
technology, covering six metal layers, 21 masks, 43 tool types, and 316 steps. The raw process time
for this process flow is 8.9 days (Campbell and Ammenheuser, 2000).

3.1.1 Film Formation

Film formation describes any process that modifies the wafers’ surface. Many different kinds of
thin films are used to fabricate semiconductor devices, including thermally grown oxide films,
deposited dielectric films and deposited metal films. Deposition is any process that grows, coats
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Figure 6: Flow diagram for a generic IC process sequence (May and Spanos, 2006)

or otherwise transfers material onto the wafer. Thermal oxidation processes create an oxide layer
on the wafer surface. Planarization that belongs to the removal processes also modifies the wafer
surface by partly removing films and thus falls into this category. Film formation is often followed
by photolithography or impurity doping (May and Spanos, 2006).

Thermal Oxidation A dioxide film functions as an insulator in a number of device structures or
as a barrier to diffusion or implantation during device fabrication. Semiconductors can be oxidized
by various methods, and among these, thermal oxidation is the most important for silicon devices.
Thermal oxidation employs oxidants under high temperature to transform (oxidize) a bare silicon
surface to silicon dioxide, which is actually grown out of the substrate surface. Commonly there
exist three types of equipment for this kind of process: a) the vertical furnace, b) the horizontal
furnace, and c) the Rapid Thermal Processor (RTP); whereas vertical furnaces play the most
important role (May and Spanos, 2006). Singh et al. (2003) point the reduction of CT and process
activation energy as the two distinct advantages of RTP over CFP, respectively vertical and
horizontal batch furnaces.

Deposition Deposition is a process that transfers a metal material onto the wafer in thin films.
Most common depositing technologies rely on the principles of physical, chemical or electrochemical
vapor deposition. Physical Vapor Deposition (PVD) of metals is mostly accomplished by sputtering
today. Sputtering is a process in which ions of an inert gas such as argon are electrically accelerated
in a high vacuum toward a target of pure metal, such as tantalum or copper. Upon impact, the
argon ions sputter off the target material, which is then deposited as a thin film on the silicon wafer.
Chemical Vapor Deposition (CVD) is the traditional method used to deposit dielectric films on
wafers. CVD occurs when a gas mixture is passed over a heated substrate and chemical reactions
are initiated. The process is conducted in CVD reactors and can be performed at atmospheric
pressure or at low pressure. Plasma-Enhanced Chemical Vapor Deposition (PECVD) uses high
energetic plasma to initiate the chemical reaction. Electrochemical Deposition (ECD) is a wet
chemistry process that is often used to build conductive wires on the wafer (May and Spanos, 2006).

Planarization Chemical-Mechanical Polishing (CMP) is used to create a planar surface on the
wafer. This may be necessary in order to set up the wafer for the next processing steps. The process
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uses a chemical slurry in conjunction with a polishing pad. The pad is pressed on the wafer and
rotated with different axes. This removes material and tends to even out any irregular topography,
making the wafer flat or planar (May and Spanos, 2006).

3.1.2 Photolithography

The processes of pattern transfer and pattern generation are generally referred to as photolithography.
In lithography a structure from a mask is transferred on the substrate by the use of a photoresist.
Simplified, the lithography process contains three steps: a) coating, b) exposure, and c) development.
Between these three main steps the wafer goes through several bake-steps heating the wafer in
order to harden the photoresist. At the beginning, the wafer is coated with a chemical liquid called
photoresist, which is spun onto the wafer surface. Then the photoresist is selectively exposed to
ultraviolet light in an optical lithographic system, transferring the structure of a mask onto the
wafer surface. The photoresist development is usually done by flooding the wafer with the developer
solution. If a positive photoresist is used, the exposed regions of the resist are dissolved in the
developer, whereas the unexposed regions remain. As a result, an exact copy of the mask structure
is formed by the remaining photoresist on the surface. Photolithography is generally followed by
etching, which in turn is often followed by another impurity doping or film formation process.
Finally, the remaining photoresist is removed from the surface, stripped away by a chemical liquid
or burned to ashes by an oxygen plasma (May and Spanos, 2006).

3.1.3 Etching

After the photolithography process, a specific pattern made of photoresist covers the wafer surface.
To produce complex electric circuits, these resist patterns must be transferred into the underlying
layers. The pattern transfer is accomplished by an etching process that selectively removes unmasked
portions of a layer. Etching processes are conducted in a wet or dry ambient. Wet etching processes
use liquid etchants to remove material from the surface, whereas the wafer undergoes a sequence of
baths with liquid etchants. Dry etching uses plasma to remove material from the wafer surface.
Wet chemical etching is used extensively in semiconductor processing, but modern wafer fabrication
process sequences avoid wet etching and use plasma etching instead. The etching process is often
followed by impurity doping (May and Spanos, 2006).

3.1.4 Impurity Doping

Doping technologies are used to modify electrical properties of the substrate. Diffusion and ion
implantation are the two key methods of impurity doping. Originally diffusion processes were
used to bring dopants into the substrate. Later ion implantation is conducted to modify electrical
properties (May and Spanos, 2006).

Diffusion The diffusion process is conducted in a furnace. Under high temperature atoms from
another material diffuse into the wafer surface. The diffusion effect is accomplished by placing
semiconductor wafers in a high-temperature furnace and passing a gas mixture that contains the
desired dopant through it. This step is followed by a drive-in diffusion process —a thermal annealing
process which serves to activate the implanted dopants (May and Spanos, 2006).

Ion Implantation In the ion implantation process the energetic dopant ions are implanted
into the semiconductor by means of an ion beam. Ions of a certain material are accelerated to
a high energy level in an electrical field and impacted into the wafer. The main advantages of
ion implantation are its more precise control, its reproducibility of impurity dopings and its lower
processing temperature compared with those of the diffusion process (May and Spanos, 2006).

3.1.5 Non-Value Processes

Non-value adding process steps are the key factors to ensure quality and trace yields. Since particles
on a wafer surface may lead to defect chips, the process flow involves cleaning processes decreasing
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the number of particles on the wafer surface. Process steps in metrology ensure that processes
follow their specifications (May and Spanos, 2006).

Cleaning Cleaning processes are needed to keep the surface clean from particles. The wafer
undergoes a sequence of baths with liquids in order to remove particles from the surface. After
cleaning particle-measuring processes are conducted. Cleaning is performed especially before
proceeding high-temperature processes (May and Spanos, 2006).

Metrology Metrology processes are the key factors to monitor the quality of value-adding pro-
cesses. Process monitoring enables operators and engineers to detect problems early on to minimize
their impact and thus ensures producing reliable, high-quality devices repeatably. Manufacturing
line monitors consist of extremely sophisticated metrology equipment that can be divided into
tools characterizing the state of features on the semiconductor wafers themselves and those ones
that describe the status of the fabrication equipment operating on those wafers. Equipment state
measurements ensure that the process equipment works as desired. The measurements, performed
on wafers after a process, characterize physical parameters, such as film thickness, uniformity
and feature dimensions; or electrical parameters, such as resistance and capacitance. Based on
these observations, it is possible to derive appropriate actions that help to adjust the process
equipment. Wafer state measurements are conducted multiple times in a process flow in order to
detect problems and ensure high quality. Such investigations include visual inspections as well as
sophisticated physical and electrical measurements of various characteristics that describe the state
of a wafer (May and Spanos, 2006).

3.2 Process Equipment

Generally an equipment is a mechanical entity in the factory which plays a role in the manufacturing
process, i.e. for processing, transport, and/or storage of material. As long as the focus lies on on
wafer fabrication, the term equipment is used as a synonym for machines processing wafers, also
called wafer fabrication equipment or process equipment (SEMI International Standards, 2009).

During the years, numerous equipment architectures have been developed and introduced
into waferfabs. Semiconductor manufacturer make use of tens of dozens of different equipment
types in a single facility. Each equipment is designed to fulfill a particular function, thought for
modifying wafer surface or layers by physical or (electro)chemical reactions. The architecture of a
specific equipment type is often dictated by the process, which is intended to be carried out by
the equipment. Table 20 shows a mapping between unit processes and equipment types. Mönch
et al. (2011a) presents a similar mapping between common process types and certain processing
characteristics, such as the equipment type or area specific constraints.

From the scheduling expert’s view, the basic principle the equipment processes lots/wafers is of
particular interest, especially internal wafer flows. The job processing behavior may substantially
differ among equipment types, since they represent different construction schemes, which result in
varying THP rates and processing times.

Table 20: Mapping between unit processes and equipment types

process type equipment type
process group unit process single-wafer batch furnace wet bench cluster tool
film formation thermal oxidation x x (CFP)

deposition x
planarization x

lithography x
etching dry x

wet x x
impurity doping diffusion x (RTP) x (CFP)

ion implantation x (MBP)
non-value cleaning x x

metrology x
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SEMI Standards Despite of these differences, but also exactly for that reason, Semiconductor
Equipment and Materials International (SEMI) provides a set of standards. SEMI E10 (2000)
contains specifications for measuring reliability, availability and maintainability performance in
order to establish a common basis for communication between users and suppliers of semiconductor
manufacturing equipment. SEMI E30 (2000) provides a Generic Model for Communications and
Control of Manufacturing Equipment (GEM). SEMI E4 (2000) contains the SEMI Equipment
Communications Standard Part 1 (SECS-I) that defines a communication interface suitable for
the exchange of messages between semiconductor processing equipment and a host. This standard
does not define the data contained within a message. For that purpose, the SEMI Equipment
Communications Standard Part 2 (SECS-II) defines the details of the interpretation of messages in
(SEMI E5, 2000).

3.2.1 Single-Wafer Processing Equipment

The SWP equipment commonly stands for types of wafer fabricating equipment that process
wafers individually. The single wafer equipment is capable of processing one single wafer at a time.
Consequently wafers are processed in a strict sequential manner —one after another. The sequential
processing scheme holds for processing jobs the same. The single wafer equipment provides short
CTs due to its architecture. This is especially beneficial for waferfabs dealing with small lot sizes.
Depending on the type of process, there exists additional wafer capacity inside the equipment, for
example for cooling or heating functions. Cleaning processes, measurements and rapid thermal
processes are usually performed in this type of equipment.

This equipment usually provides two load ports (19), one for the job in process and one for
buffering the next job for process. The Equipment Front End Module (EFEM) (15) includes an
atmospheric robot (20) for moving wafers between load ports and single wafer load locks (16A,
16B). The EFEM can also be fitted with a wafer aligner (21), used to detect the wafer orientation
(notch). The reactor (13) can perform a process for a single wafer at a time. Figure 7 illustrates
the basic architecture of an SWP equipment. Singh et al. (2003) concern with the impact of SWP
on semiconductor manufacturing. They particularly point out the reduction of CT as distinct
advantage of SWP compared to BP. In the same line Stubbe (2010) regards the conversion of batch
processes to mini-batch or single-wafer processes in combination with small lot sizes as a promising
strategy to reduce CTs. Moslehi et al. (1992) present an overview of various SWP techniques.

Figure 7: Single wafer processing equipment architecture (Stevens and Jakubiec, 2002)

3.2.2 Cluster Tool

The term cluster tool is widely spread and describes an equipment type that combines a number of
process modules together, combining several process modules to a single system. Figure 8 illustrates
the basic architecture. A cluster tool effectively combines a number of process chambers to a
single machine. The typical (circular) cluster tool is basically composed of a mainframe and an
attached EFEM. The mainframe consists of a central wafer handling robot connected to the process
chambers and a number of load locks offering access to the mainframe. The EFEM comprises a
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number of load ports and a wafer handler, which enables the wafer transfer between load ports and
load locks.

The procedure performed to process a lot follows a defined sequence of activities. After the
carrier is put on the load port, the EFEM’s handler sequentially transfers the wafers to the load
lock, which then pumps to a vacuum. Thereafter the mainframe’s handling robot transports one
wafer after another to a free process chamber. According to the recipe, a wafer possibly visits more
than one chamber before it eventually returns to the load lock. At the time when the last wafer of
a lot returns to the load lock, the load lock vents to the atmosphere. Lastly the EFEM’s handler
transfers processed wafers back to the carrier. Finally the carrier is removed from the load port in
order to continue with the next operation.

Obviously cluster tools are made to process lots in parallel, since they comprise multiple load
locks and several chambers, which may offer different processes. But strictly speaking, the internal
processing mode, either sequential or parallel, is firstly determined by the combination of lots
recipes performed and secondly depending on the internal wafer scheduling policy. The recipe
defines the internal wafer routing, meaning the sequence of specific chambers to visit. Different
recipes commonly represent different process setups, either manifesting in different wafer routing
sequences or at least in the same wafer routing sequences with differing chamber process times.

Cluster tools are typically used to perform CVD, PVD, or CMP processes. Newest architectures
count more than one mainframe, combined to a line, where each mainframe is connected to process
chambers, also known as linear cluster tools (Park and Morrison, 2011). This kind of equipment
internally provides a kind of flow line. In photolithography such complex linear cluster tools
combine coating, exposure, developing and baking processes into one fabricating entity. Yi et al.
(2007) and van der Meulen (2007) discuss the advantages of linear cluster tools with respect to
their effect on THP and CT.

Figure 8: Cluster tool architecture (Yoshida et al., 2007)

3.2.3 Batch Furnace

Batch furnaces may be the most known representatives of equipment performing batch operations.
Diffusion and oxidation processes are commonly performed by batch furnaces. A number of lots
is formed to a batch, grouped to a single job where all wafers and lots are started together and
processed simultaneously by the use of the same process program (recipe). The equipment usually
provides a single process chamber performing the heat treatment. An internal wafer handling
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system moves wafers from lots on the load ports into the quartz boat, which is then moved into
the process chamber. Common quartz boats, respectively batch furnaces, offer space for up to
200 wafers. Batch furnaces commonly provide internal buffer for non-productive wafer needed
for processing. There exist horizontal and vertical furnaces and the vertical furnace is the most
frequent one. Some variants of semiconductor BP furnaces provide two boats offering the capability
to process two batches in parallel, as shown in Figure 9.

Figure 9: Vertical batch furnace architecture (van den Berg and Den Hartog, 2004)

3.2.4 Wet Bench

A typical wet bench is capable to process a certain number of lots in parallel, whereas the wafers
undergo a specific sequence of baths with liquids. A wet bench usually performs etching and
cleaning processes. Wet benches provide BP, similar to batch furnaces. Up to four lots are formed
to a batch and go through the sequence of tanks together, whereas only one batch occupies a tank
at a time. After a lot is loaded on the load port (36), a wafer handling system (34) moves the
wafers to an internal wafer carrier (38) that forms the batch. This way, wafers from up to four
lots are grouped together in order to proceed the following tank sequence together. An internal
carrier handling system (42) transfers the wafer carrier from tank to tank (40). See Figure 10 for
an illustrated example.

Figure 10: Wet bench architecture (Su et al., 2004)
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3.3 Automated Material Handling

The AMHS frames devices for material movement and storage, combining various components to a
fully automated system providing transport between process equipment. In the 200 mm wafer era
automated wafer handling has limited use in the semiconductor industry. With the shift to 300
mm wafers automation becomes necessary and a key factor to maximize the productivity due to
the increased weight and size of 300 mm wafers (Nazzal and Bodner, 2003). The key focus lies
on increasing the throughput of transports, reducing the average delivery times and improving
the reliability (Cogez et al., 2007). In (Cogez et al., 2011) ITRS additionally recommends actions
that focus on a more interactive control for an accurate scheduled delivery. Agrawal and Heragu
(2006) also point out that the newer 300 mm waferfabs place a high level of emphasis on AMHSs
as important tools to reduce CTs; they discuss various approaches for automated material handling
in waferfabs.

Automating the wafer transport system in waferfabs involves several levels of automation.
Nazzal and Bodner (2003) distinguish between four types of automation: a) material storage,
b) automated lot transport, c) equipment automation, and d) Material Control System (MCS)
coordinating the efforts of the various automation systems.

SEMI (2000) provides an overview of factory automation requirements and design. The examples
in this document have been applied in a working semiconductor 200 mm waferfab. Accordingly,
Heinrich and Deutschländer (2012) discuss challenges, present summarized rules and show the
advantages of automation for a low-volume high-mix 200 mm facility.

3.3.1 Storage, Transport and Equipment Automation

Wafer fabrication factories will require the baseline capabilities of stocker storage and material
transport. These stocker and transport systems will be required to be fully integrated with each
other and the factory MES in order to realize the full vision of cost effective automated material
transport to and from production equipment (SEMI E102, 2000). AMHS storage equipment, also
known as stocker, is a mini environment offering material storage capacity for regular use, and in
case of cleanroom exceptions as safety device. Nazzal and Bodner (2003) list common technologies
for transporting lots: a) Overhead Hoist Transport (OHT), b) Continuous Flow Transport (CFT),
c) Automated Guided Vehicles (AGVs), d) Rail Guided Vehicles (RGVs), and e) Personnel Guided
Vehicles (PGVs).

OHT is established in facilities where Overhead Hoist Vehicles (OHVs) are suspended from
ceiling-mounted rail mechanisms and are capable of delivering to/retrieving from stocker ports and
process tools from directly overhead. Overhead Shuttles (OHSs) connect stocker equipment, while
carrying usually two lots. CFT is established through the use of a conveyor system. AGVs stand for
movement platforms with automatic guidance capability and on-board robots for loading/unloading.
RGVs name automated vehicles that move in a straight line along a fixed path on an in-floor rail.
PGVs designate ground based manually moved transporters (see Figure 11).

Typically, AMHSs used in waferfabs are based on discrete vehicle-based overhead systems such
as OHVs. Conveyor-based CFT implementations are starting to gain support with the expectations
that CFT systems will be capable of handling high-volume manufacturing transport requirements
(Nazzal and El-Nashar, 2007). Heinrich et al. (2008) discuss the advantages of a CFT system with
respect to automation and its extendability to direct tool loading. Beyond wafer fabrication, Vis
(2006) discusses literature related to design and control issues of AGV systems at manufacturing,
distribution, transshipment and transportation systems.

SEMI Standards Semiconductor factories equipped with an AMHS require an integrated soft-
ware system to realize automated material movement. This AMHS integration system must be
interoperable with AMHS equipment, production equipment integration systems and other factory
systems. In order to achieve this goal, the AMHS integration system must conform to standard
communication protocols, state models and interfaces (Ferrell and Pratt, 2000). Refer to Figure 5
for a conceptual view of a factory system. SEMI E88 (2000) establishes a Specific Equipment
Model (SEM) for AMHS storage equipment. SEMI E84 (2000) and SEMI E23 (2000) provides
guidelines and defines communications associated with the material hand-off operations between
the production equipment and the components of the AMHS, for example AGV, RGV and OHV.
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SEMI E106 (2000) focuses on the complex interdependencies among the the SEMI standards for
300 mm physical interfaces and carriers. SEMI E101 (2000) provides a functional structure model
of an EFEM that handles carriers and substrates at the interface between the AMHS and the
process equipment.

Figure 11: Examples of AMHS equipment (SEMI E84, 2000)

3.4 Factory Layout

In a typical wafer fab, there often are dozens of process flows and several hundred machines.
Machines are expensive, ranging in price from a couple of hundred thousand dollars to over thirty
million dollars per tool. The economic necessity to reduce capital spending dictates that such
machines are shared by all jobs requiring the particular processing operation provided by the
machine. This results in a manufacturing environment that is characterized by reentrant flows
(Mönch et al., 2011a).

Layout and modeling results show that the size of 300 mm factories may be significantly
larger than of current 200 mm factories. This footprint is highly dependent on the layout chosen
(Quinn and Bass, 1999). The layout study is important because the layout largely determines the
initial investment and production efficiency of a plant compared with other downstream activities.
While approximately one billion U.S. dollars was necessary for a new semiconductor fab in 1995,
manufacturers today need to invest two to three times more for the same type of facility. In
addition, layout is difficult and expensive to modify once it is set up (Chung and Jang, 2007).

There exists a variety of layout strategies in production, giving a scheme how to organize
equipment on the shop floor. These layouts either orientate on the process or on the product or
provide a trade-off between both. Four basic layout strategies emerged within the last 20 years:
a) farm layout, b) serial layout, c) cellular layout, and d) ballroom layout.

Drira et al. (2007) provide a recent survey on layout problems found in several types of
manufacturing systems. They suggest a general framework to analyze various layout concepts
depending on manufacturing system features. Jerbi and Chtourou (2012) particularly compares
cthe cellular and functional layout.

3.4.1 Farm Layout

The design of waferfabs for high volume production has traditionally been dominated by the
functional or process layout, where work centers consist of groups of similar or identical machines
that are capable of performing the same type of unit process. This kind of process-oriented layout
is also known as farm layout, bay layout or reentrant layout. The farm layout is still most
common due to several advantages. The four most important ones are: a) flexibility in scheduling
and robustness to machine breakdowns, b) lower machine requirements and consequently lower
capital investment cost, c) less need for clean room space due to close proximity of the machines,
and d) easier organization of the supply of gases and chemicals on the shop floor in cause of
a homogeneous equipment set in a bay. Unfortunately, these advantages also lead to complex,
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reentrant product flows (Hase et al., 1994). Appendix D visualizes the material flow around a
single work center in the furnace area, showing the set of connected work center that sends to and
receives material from the focused work center.

SEMATECH Layout Study In (Quinn and Bass, 1999) and (Campbell and Ammenheuser,
2000) SEMATECH analyzes variants of the farm layout and presents a comparison based on
simulation. Three layout configurations have been designed for this project: a) Farm, b) Hybrid,
c) and Modified Hybrid.

In the Farm layout all similar tools are placed together in the same bay or set of bays. Thus,
there is a separate set of bays to hold the metrology tools. The Hybrid layout is derived from the
Farm layout by distributing metrology tools among the bays. If up to three metrology steps follow
a step that utilizes a tool within a given bay, the necessary metrology tools are located in that bay.
In the Modified Hybrid layout, ashers and wet benches are also distributed among the various bays
in addition to the metrology tool redistributions.

Based on their experiments, they propose the Hybrid layout and point out a list of advantages
in their simulation studies: a) The Hybrid layout outperforms the Farm layout in terms of CT and
average WIP level, for average and standard deviation measures. b) The Hybrid layout shows the
lowest values for standard deviation measured for CT and WIP. c) The Modified Hybrid layout
shows the best results for average WIP and average CT, outperforming the Hybrid layout in terms
of average values, although resulting in the highest values for CT and WIP standard deviation.
d) Additionally, the Hybrid layout resulted in the smallest footprint, fewest bays and lowest factory
area per wafer starts per week. Since simulation runs were made with only one process flow, a single
aluminum 180 nm logic process flow with 316 steps, the results could not be directly transferred to
a multi-product waferfab.

3.4.2 Serial Layout

The serial layout concept is clearly product-oriented, offering dedicated process equipment for
each operation required. This flow line layout yields a simple, linear product flow with short CTs,
but leads to extremely high machine requirements (and more clean room space) compared to the
reentrant layout. In the light of high capital investments, this layout is unlikely to be a practical
alternative (Hase et al., 1994). Nevertheless, there exist recent attempts to establish flow line
concepts in wafer fabrication, at least partially in suitable sections, e.g. in the wafer test area (Keil
et al., 2011; Eberts et al., 2012).

3.4.3 Cellular Layout

The cellular layout concept groups machines that are dedicated to performing operations related to
a fixed number of mask layers. Cellular layouts can be seen as an intermediate stage between the
bay layout and the flow line. The idea is to establish partial flow lines for certain layers, whereas
an entire mask layer is fabricated in a cell. Consequently one cell offers unit processes for a fixed
number of mask layers. They examine the performance of several different cellular and functional
layouts using simulation experiments. Despite of the fact that the simulation model is quite simple,
e.g. includes only one product, the authors point out the benefits of cellular manufacturing. In
particular, they emphasize that cellular layouts requiring only modestly higher capital investment
can yield significantly lower CTs in heavily loaded waferfabs. They also expect that the cellular
concept results in a) reduced setup time due to fewer operations being processed on a given piece
of equipment, b) yield improvement due to fewer changeovers, c) less down time as operators
take on maintenance functions, and d) simpler material handling due to machines in the cells
being in close proximity. But, as a result of their simulation results, they state that the presence
of unreliable machinery causes the performance of cellular layouts to deteriorate (Hase et al.,
1994, 1997). Similarly, Chang and Chang (1998) propose a layer-based approach that groups the
equipment of continuous process layers in the same area or cell. They discuss the layer-based layout
approach based on a simulation model that contains one logic product with 16 layers, created in
245 steps.
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3.4.4 Ballroom Layout

The ballroom layout is proposed by industry to increase the flexibility and productivity of the
traditional bay layout. The ballroom layout involves larger rooms than the bay layout and connects
the machines in a room by one combined OHT/OHS loop. This is a functional layout that provides
even higher routing and product mix change flexibility than bay-based layouts. This layout increases
the direct inter-bay transportation, and reduces the transportation time and the initial investment
costs (Chung and Jang, 2007). Refer to Figure 12 visualizing a variant of a ballroom layout.

Figure 12: Integrated ballroom layout (Chung and Jang, 2007)
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Modeling and Simulation gains rising importance for almost any kind of industry and science.
Informally, Modeling and Simulation (M&S) as a multidisciplinary field in science, provides methods
based on computer technology to imitate artificial and/or real systems. The books by Law and
Kelton (2000) and Woolfson and Pert (1999) provide early introductions to simulation modeling and
analysis. For more recent books that deal with M&S, see (Sokolowski and Banks, 2009; El Sheikh
et al., 2008; Chung, 2004). Crosbie (2010) presents a survey on grand challenges in M&S today.
Wainer (2009) and Banks (2009) point out various advantages of M&S.

Informally, M&S techniques are used to computationally imitate the behavior of any kind of
system. Maier and Rechtin (2000) define a system as a set of different elements so connected
or related as to perform a unique function not performable by the elements alone. A system
has components, relationships and implicitly a boundary, that separates it from the rest of the
environment (Krygiel, 1999). According to ISO/IEC 15288 (2008) a system may be configured
with one or more of the following system elements: a) hardware, b) software, c) data, d) humans,
e) processes, f) procedures, g) facilities, h) materials, and i) naturally occurring entities.

Law and Kelton (2000) identify a number of ways to study a system: a) experimentation with
the actual system or with a model of the system, b) investigation based on physical or mathematical
models, and c) modeling approaches based on analytical or simulation solutions (see Figure 13).
Among mathematical models, Wainer (2009) further distinguishes between analytical, numerical
and simulation approaches.

Advantages and Disadvantages of Simulation In addition to numerous economical benefits,
such as reduction in CT of R&D activities, M&S develops an understanding by observing how a
system operates (Banks, 2009). Among all advantages, the capability to compress and expand
time to allow the user to speed up or slow down the system’s behavior can be seen as the most
powerful one. Banks (2009) notes to bear in mind that simulation modeling and analysis can be
time consuming and requires special training needed for building simulation models. Similarly
Shanthikumar et al. (2007) mention that simulation requires an enormous amount of input data
and substantial resources to maintain and update the model. Due to the stochastic nature of
(most) simulation models, multiple replications are needed to perform a confident statistical
analysis. Therefore, it can be difficult and extremely time-consuming to explore what-if questions
(Shanthikumar et al., 2007).

4.1 Modeling

Models are used when the real system cannot be engaged because a) it may not be accessible, b) it
may be dangerous to engage the system, c) it may be unacceptable to engage the system, or d) the
system may simply not exist (Banks, 2009).

Banks (2009) and Petty (2009) both stress that a model is an abstraction from something,
intended to serve for a specific application and thus providing a suitable description from a certain
point of view. Depending on the viewpoint, some characteristics are considered important while
others are omitted.
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Figure 13: Taxonomy to study a system (Law and Kelton, 2000; Goti, 2010)

Model Typology Petty (2009) broadly groups models into two types: conceptual and executable.
Conceptual models document those aspects of the real system that are to be represented and those
that are to be omitted. The conceptual model may include mathematical equations, flowcharts,
Unified Modeling Language (UML) diagrams, data tables, or simply textual descriptions. The
executable model is intended to simulate the real system as specified in the conceptual model.
The executable model may be a physical model or a mathematical representation, respectively a
computer program. Another classification distinguishes models with respect to techniques used
for modeling. Fishwick (1995) proposes four categories: a) conceptual modeling, b) declarative
modeling, c) functional modeling, and d) spatial modeling.

Mathematical Models Mathematical models can be seen as a set of mathematical equations
and logical relationships (Abu-Taieh and El Sheikh, 2008). Among mathematical models, Wainer
(2009) further distinguishes between a) analytical, b) numerical and c) simulation approaches.
Analytical models provide formal representations that allow us to study the variables of interest in
a mathematical system, e.g. a system of differential equations. For models of a higher complexity,
respectively for those for which no analytical solution is available, numerical methods are introduced.
With respect to continuous problem formulations, respectively those with temporal dimensions,
numerical methods employ discretization in order to calculate model variables at predefined time
steps. The solution obtained by numerical approximation comes with errors, since it is impossible
to calculate every possible combination of the models variables in a reasonable time. In the area of
computer simulation, traditional numerical models were converted into computer-based solutions

—the model is basically a computer program. Velten (2009) gives an introduction into mathematical
modeling and simulation.

4.2 Simulation

Since computer simulation attracts many researchers, numerous definitions have been emerged
for the term computer simulation; cf. (Abu-Taieh and El Sheikh, 2008; Paul and Balmer, 1993;
Banks, 2009). Despite of the fact that those definitions may differ within a range, most of those
definitions put emphasis on the temporal aspect of simulation. Sokolowski (2009) and Petty (2009)
for example, simply define simulation as the process of executing a model over time. More precisely,
simulation adds a temporal aspect to a static model by depicting how the system being modeled
changes over time.
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Applications Banks (2009) groups simulation applications into five categories: a) training,
b) decision support, c) understanding, d) education and learning, and e) entertainment.

With respect to the focused use case, Pedrielli et al. (2012) list nine important application areas
for simulation: a) commerce, b) manufacturing, c) supply chains, d) health services and biomedicine,
e) simulation in environmental and ecological systems, f) city planning and engineering, g) aerospace
vehicle and air traffic simulation, h) business administration and management, and i) military
applications. Simulation for manufacturing and supply chains is discussed in (Merkuryev, 2009),
for health services and biomedicine in (Sokolowski and Banks, 2011), and Adamy (2003) deals with
simulation in military applications. In that line Sokolowski and Banks (2009) and Wainer (2009)
give numerous examples of simulation models for a wide range of application areas.

4.2.1 Model Typology

Any simulation model is developed for a specific purpose. It shows specific characteristics depending
on the targeted system to be modeled and on the chosen simulation method applied. The behavior
of a simulation model is generally characterized by the following three aspects: a) static or dynamic,
b) discrete or continuous (in time and/or variables), and c) deterministic or stochastic.

Static vs. Dynamic Models Despite of the fact that most definitions for simulation consider
the aspect of modeling time as elementary (dynamic models), Goti (2010) states, that M&S also
frames models without any components related to time (static models).

Discrete vs. Continuous Models Within the group of dynamic simulation models, Sokolowski
(2009) distinguishes between two types of systems: a) discrete in which the variables change
instantaneously at separate points in time, and b) continuous where the state variables change
continuously with respect to time. Pedrielli et al. (2012) and Abu-Taieh and El Sheikh (2008)
further distinguish between two groups among discrete system simulation systems: a) time-based
discrete simulation and b) Discrete Event Simulation (DES). In time-based discrete simulation
(also known as time-slice approach) variables change at predened points in time as the simulation
moves forward in equal time intervals. In DES variables change event-based, respectively whenever
a new event occurs. In (Abu-Taieh and El Sheikh, 2008) and (Hrúz and Zhou, 2007) one can find a
classification scheme with four types of simulation models. This classification scheme emerges when
the discrete or continuous nature is determined for time as well as for model variables separately.
Then variables in the model change in four ways: a) continuously at any point of time (continuous
time), b) continuously at discrete time events, c) discretely at any point of time (continuous time),
or d) discretely at discrete time events. Wainer (2009) presents a mapping between common M&S
techniques and those four groups.

Deterministic vs. Stochastic Models Beside the discrete and continuous nature of model
variables and time, there is another feature of importance that characterizes simulation models:
the behavior of the system can be deterministic or stochastic. Simulation models may make use
of randomness in order to create stochastic effects, which in turn enable the model to imitate
system behavior on a certain level of abstraction. Deterministic simulation models always lead to
identical results, provided that the simulation system runs under identical conditions. In contrast,
the results of stochastic simulations are not exactly predictable in cause of intended random effects
that represent a specific behavior (Abu-Taieh and El Sheikh, 2008).

4.2.2 Technologies

Allen (2011) provides an extensive listing of common M&S techniques with additional information,
e.g. the basic principle and relevance for certain applications. Zimmermann (2008) emphasizes
the importance of Stochastic Discrete Event Systems (SDES), but also mentions popular model
classes like Queuing Theory and Petri nets (with stochastic extensions). Queuing Theory employs
stochastic processes to model waiting lines under consideration of stochastic effects; cf. (Stewart,
2009; Gautam, 2008; Willig, 1999; Nyhuis and Wiendahl, 2009). Variants of Markov chains are
usually used to create queuing models, which may represent manufacturing systems or parts of
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it (Xu et al., 2008a). Compared with simulation, analytical approaches based on Littles law and
Queuing Theory can be much faster in achieving reasonable results. Littles law states that there
exists a proportional relationship between WIP and CT in a queuing system Little (1961). Queuing
models provide CT estimations based on the stochastic analysis of the arrival process and the service
process (Shanthikumar et al., 2007). Hrúz and Zhou (2007) discuss numerous variants of Petri
nets. Another interesting branch in simulation technology is established by agent-based systems,
i.e. multi-agent systems. Those systems establish distributed simulation based on communication
among autonomous agents; cf. (Jennings and Wooldridge, 1998; Weiss, 1999; Bussmann et al.,
2004; Allen, 2011).

Discrete Event Simulation (DES) DES is one of the most important approaches in the area
of M&S. The nature of DES systems generally is a) dynamic (model varies over time), b) discrete
(in time and variables), and c) stochastic (as it employs randomness). Sokolowski (2009) formally
defines DES as the variation in a model caused by a chronological sequence of events acting on
it. Events are instantaneous occurrences that may cause variations or changes in the state of a
system. The state of a system is defined as one or more variables that completely describe a system
at any given moment in time. A system clock keeps track of the simulation time and may be
used to trigger events. Allen (2011) draws a bright future for both discrete event simulation and
agent-based modeling. He lists four factors that will contribute to their widespread application:
a) continuing pressures for organizational efficiency, b) improved access to low-level data through
new sensors and databases, c) enhanced visualization capabilities as simulations become more
realistic, and d) increasing computational efficiencies from faster computers. For deeper insights
into DES and for interesting reviews over recent developments in this field, see (Wainer, 2009; Goti,
2010; Wainer and Mosterman, 2011; Allen, 2011; Pedrielli et al., 2012).

4.3 Simulation Project Life Cycles

Any successful simulation project involves skills in both simulation and project management.
Robinson and Bhatia (1995) discuss important activities in a simulation project. Structured courses
of activities, also known as (simulation) project life cycles, have been proposed for M&S studies in
(Balci, 1994, 1998, 2012; Robinson and Bhatia, 1995; Wainer, 2009).

Wainer (2009) summarizes important activities to be performed during a simulation project. For
simplification these activities are grouped into five phases: a) problem formulation and conceptual
modeling, b) data collection, c) modeling and simulation, d) experimentation and output analysis,
and e) validation and verification. Wainer (2009) further points out that this sequence of steps does
not have to be interpreted as strictly sequential. It is highly recommended to follow the proposed
steps in a cyclic manner as to achieve incremental developments in each phase.

4.4 Validation and Verification

Wainer (2009) describes Validation and Verification (V&V) as follows: Verification is related to
the internal consistency between the conceptual and the executable model, and makes sure that the
simulation model is implemented as specified (Did we build the model right?). Validation focusses
on the correspondence between model and reality, respectively checks whether simulation results
are consistent with the system under study (Did we build the right model?). Refer to Figure 14 for
a graphical representation of entities and activities in the area of V&V.

According to Balci (1994), Wainer (2009) and Petty (2009) V&V techniques can be grouped
into four categories: a) informal, b) static, c) dynamic, and d) formal.

Activities Among others, Petty (2009) describes a very detailed model for the relationships
among the entities analyzed or developed during a simulation project. He defines activities to be
carried out within the process of V&V. Sargent (2010) proposes a more simple model in which
three activities play key roles: a) conceptual model validation, b) computerized model verification,
and c) operational validation
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Conceptual model validation is determining that the assumptions underlying the conceptual
model are correct and the models representation of the problem entity is reasonable for the intended
purpose of the model (Sargent, 2010).

Computerized model verification ensures that the implementation of the conceptual model
is correct, respectively is conform to the specifications made in the conceptual model. Usually,
techniques from software engineering verify that the executable model is implemented as intended,
where rudimentary stepwise code debugging would probably one of the simplest forms (Sargent,
2010).

Operational validation is determining whether the simulation model’s output has the accuracy
required for the model’s intended purpose. At the latest in this stage, crucial modeling problems
will show up in form of inaccuracies, either related a) to invalid data, b) implementation errors in
the executable model, or c) even wrong assumptions in the conceptual model (Sargent, 2010).

Data Validity Invalid data are often reason for failing simulation modeling projects. It is usually
difficult, time consuming, and costly to obtain appropriate, accurate, and sufficient data. Data are
needed for a) building the conceptual model, b) validating the model, and c) performing experiments
with the validated model. In order to ensure high-quality data, one should develop good procedures
for a) collecting and maintaining data, b) testing the collected data using techniques such as internal
consistency checks, and c) screening the data for outliers and determining if the outliers are correct
(Sargent, 2010).

Accreditation Petty (2009) discusses the process of accrediting a model, in addition to the
V&V activities: Accreditation is the official certification by a responsible authority that a model
is acceptable for use for a specific purpose. The term accreditation is often used in conjunction
with verification and validation, even though it is an entirely different sort of process. While
verification and validation are technical in nature, accreditation is a nontechnical decision process.
Consequently V&V is often extended to Validation, Verification and Accreditation (VVA).

Figure 14: Validation and Verification (Sargent, 2010)

4.5 Input Data Management

Missing data and low data quality is a major barrier in transferring results from academic into
real-world applications (Mönch et al., 2011b). Especially the huge amounts of data available in
the todays operative systems justify the need for data mining techniques to be used to deal with
missing or erroneous data. Sargent (2010) discusses data validity as an integral part of V&V and
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emphasizes the importance of appropriate, accurate, and sufficient data for a successful simulation
project. Robinson and Bhatia (1995) simply classify data into three categories: a) available, b) not
available but collectable, and c) available and not collectable.

Skoogh and Johansson (2008) identify four major problems related to Input Data Management
(IDM) during simulation projects; the data problems we face are often due to: a) too many
measurements in cause of insufficiently specified data accuracy, b) late additional rounds of data
gathering as a consequence of missing actions verifying that all data would be found, c) failing
of raw data gathering caused by not properly chosen and clearly defined gathering methods, and
d) many iterations in data collection as a result of an inefficient validation process.

To overcome these challenges it is highly recommended to develop effective methodologies in the
area of IDM, especially in DES that require enormous amounts of data. For example, Bengtsson
et al. (2009) describe methodologies for IDM in DES. Another structured methodology for the
input data management process that covers identification, collection, and preparation of input
data for simulation models is available in (Skoogh and Johansson, 2008). They propose a clear
mode of operation for handling input data, intending to increase both the rapidity and the quality
in the input data phase of simulation projects. The proposed scheme comprises the following
sequence of activities: 1. identify and define relevant parameters, 2. specify accuracy requirements,
3. identify available data, 4. choose methods for gathering of not available data, 5. create data
sheets, 6. compile available data, 7. gather not available data, 8. prepare statistical or empirical
representation, and 9. validate data representations.

Automated Model Generation The process of data collection is extremely time consuming
and hence automating it would be highly advantageous (Robertson and Perera, 2002). Mathewson
(1984), probably as one of the first, deals with the idea of an automated model generation, in
particular for DES systems. Since then, a considerable amount of literature about challenges
and solution approaches related to the idea of automated modeling has been published. Son and
Wysk (2001) also present an architecture to automatically generate a simulation model. They
describe a methodology to collect static and dynamic information from shop floor control systems,
illustrated with examples of different manufacturing systems. In particular data coupling between
the data world of the production is considered as a challenging task, and Horn et al. (2005) present
a concept to integrate a simulation-based real-time production planning system in wafer fabrication.
Especially for online simulation systems, automated generation of simulation models becomes
necessary to ensure (near) real-time capabilities. Noack et al. (2010) discuss a data architecture
used to automatically create an online simulation model for an entire waferfab. With respect to
large-scale simulation models, huge amounts of data from different databases and other data sources
need to be processed properly; cf. (Randell and Bolmsjö, 2001; Mueller et al., 2007).

Data Cleaning The success of automated modeling is based on valid data. Though entirely
valid data are rarely the case, automated modeling is strongly related to data cleaning procedures.

Rahm and Hai Do (2000) classify data quality problems that are addressed by data cleaning
and provide an overview of the main solution approaches. Data cleaning is especially required
when integrating heterogeneous data sources. In particular, simulation projects for complex
manufacturing facilities (e.g. waferfabs) typically deal with numerous, heterogeneous data schemes.
Schema matching is the task to produce a mapping between elements of minimum two data schemes
that might be heterogeneous in their structures, and is a basic problem in many database application
domains Rahm and Bernstein (2001), to which large-scale simulation projects definitely belong to.

Fang et al. (1991), Bright et al. (1994) and Rahm and Bernstein (2001) discuss strategies to
tackle heterogeneity in connected databases.

4.6 Simulation in Waferfabs

Semiconductor manufacturers are constantly under pressure to reduce CT and OTD. Accurate CT
estimation can greatly support production planning and scheduling of waferfabs. However, this
question is not easy to answer due to complicated tool specifications and process flows (Shanthikumar
et al., 2007).
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Fowler and Rose (2004) state that there is a need for the pervasive use of M&S for decision
support in current and future manufacturing systems. They identify four grand challenges that
need to be addressed by the simulation community to realize this vision; M&S particularly needs:
a) an order of magnitude reduction in problem-solving cycles, b) real-time, simulation-based
problem-solving capability, c) true plug-and-play interoperability of simulations and supporting
software, and d) to convince the management to sponsor M&S projects. Between those four
convincing the management to sponsor modeling and simulation projects is the biggest challenge.

In addition, grand challenges in M&S are discussed in (Fowler and Rose, 2004) for complex
manufacturing systems and in (Mönch et al., 2011b) for discrete event logistics systems. Uzsoy
et al. (1992b) give a review of simulation performance evaluation in semiconductor industry. Chien
et al. (2008) review the role of modeling and analysis in semiconductor manufacturing, presenting
expert’s views on the challenges and successes of modeling and analysis.

Wafer fabrication poses challenging difficulties in developing simulation models, in particular
due to two reasons: complicated tool specifications and varying process flows (Shanthikumar et al.,
2007). First, service processes on tool sets are subject to high variation due to a) multiple products
and operations on the same tool set, b) requirements of cascading and setups, c) restrictions such
as dedication and waiting for metrology verification, d) variable batch sizes, and e) scheduled and
non-scheduled downtimes of equipment.

Second, process flows involve hundreds of operations with many reentrant processes. Thus,
process flows, even for identical products, vary due to a) unforeseeable effects like scrap, on-hold,
and rework, b) multiple products accompanied with lot split and lot merge, c) engineering lots that
compete with production lots for resources (in R&D waferfabs), and d) random order arrivals and
product replacements as a result of fast market demand changes.

Queuing Theory vs. DES In accordance to the two basic approaches to study a model of
a system, analytical modeling and simulation, there exist two prevailing methods for waferfab
performance evaluation: Queuing Theory and DES. Both approaches have their justification, are
extensively used in practice and complement each other (Uzsoy et al., 1992b). A decision for or
against one of both is recommended to be driven by the profile of requirements given by the use
case(s).

Analytical modeling may be a better choice for simple queuing systems, whereas simulation is
often used to analyze the complex queuing systems in which analytical methods become intractable
or unacceptable due to too inaccurate outputs (Fishwick and Park, 2009). Queuing models are
used for fast, approximate analyses and simulation models are developed for detailed studies which
take considerably longer (Uzsoy et al., 1992b); cf. (Shanthikumar et al., 2007).

Uzsoy et al. (1992b) report that the values of the parameters of interest obtained from the
queuing models deviated from the values obtained from simulation by between 7% and 20%.
However, the run times observed for the queuing approach were much shorter than the simulation
run times.

Shanthikumar et al. (2007) proceed with two aspects that make exploring what-if question by
simulation difficult and extremely time-consuming: First, simulation requires an enormous amount
of input data and substantial resources to maintain and update the model. Second,based on the
nature of simulation modeling, multiple replications are needed to perform confident statistical
analysis.

Likewise, one can find arguments against applying Queuing Theory. One of the Queuing
Theory’s major issues in practical applications is: Queuing Theory assumes a stationary status
of the system and real fab operation is never in a stationary status (steady-state), but at any
time in a transient state (Shanthikumar et al., 2007). Shanthikumar et al. (2007) survey the
application of Queuing Theory for waferfabs and Govil and Fu (1999) survey the contributions and
applications of Queuing Theory in the field of discrete part manufacturing. Uzsoy et al. (1992b)
provide an extensive list of simulation models applied in semiconductor manufacturing and also
present examples of queuing models. Kumar and Kumar (2000) provide an instruction to the
application of queuing models to the design and analysis of waferfabs.
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4.6.1 Forecasting

Forecasting generates expectations of the future in order to evaluate alternate policies (Hopp and
Spearman, 2001). The development of advanced forecasting techniques is an important aspect in
the area of modeling and analysis in semiconductor manufacturing (Chien et al., 2008). There is
one basic distinction between forecasting methods: a) qualitative forecasting using the expertise
of people, rather than precise mathematical models, and b) quantitative forecasting based on
some kind of mathematical model (Hopp and Spearman, 2001). Among quantitative forecasting
models, Hopp and Spearman (2001) further distinguish between: a) causal models predicting a
future parameter as a function of other parameters, and b) time series models predicting a future
parameter as a function of past values of that parameter. A commonly used classification scheme
distinguishes forecast methods with respect to their forecast horizon: a) long-term forecasts to
support strategic decisions (months to years), b) mid-term forecasts to support tactical decisions
(weeks to months), and c) short-term forecasts to support operational decisions (days to weeks).

In that context, Hopp and Spearman (2001) state the following three well-known and generally
applicable laws of forecasting: a) Forecasts are always wrong! b) Detailed forecasts are worse than
aggregate forecasts! c) The further into the future, the less reliable the forecast will be!

Long-Term Forecasting Long-term forecasting is usually performed as offline study, and the
simulation experiments are conducted as steady-state simulation. Uzsoy et al. (1992b) provide an
extensive list of simulation models applied in semiconductor manufacturing. Simple factory models
show essentially the same behavior as a complete factory (Rose, 1999b). Rose (2000) investigates
model accuracy of simple waferfab models and proposes model improvements in (Rose, 2007).
Long-term forecasts are used to predict up to two years of fab operations (Bosch and Wright,
2008). Gißrau (2013) presents a DES system developed for a highly customer oriented ASIC factory.
In order to improve model accuracy, researchers investigate specific topics in connection with
waferfab simulation modeling. For example, modeling machine breakdowns in waferfab models is
an important task, discussed in (Rose, 2004; Scholl, 2008)

Long-term forecasting is a suitable use case for analytical approaches, e.g. Queuing Theory
(see Section 4.6). For example, Schelasin (2011) outlines a method based on Queuing Theory
together with targeted historical data to estimate CT. Becker (2003) presents a simulation model of
a complete waferfab using Petri nets. A promising branch in forecasting technologies employs data
mining techniques. Based on measured and calculated process metrics (such as WIP at specific
operations, lot priority, product type, etc.), data mining algorithms feed models used to predict,
e.g. CT (Backus et al., 2006). Predictions based on data mining algorithms perform better when
being combined with domain knowledge (Chien et al., 2005). Another idea to enhance forecasting
schemes based on data mining methods, is to implement clustering methods, which support the
system to specifically threat product groups, tool sets, process types etc. according to their specifics.
This way, Mosinski et al. (2011) implement a lot delivery forecast based on time series in a waferfab
with wide product range. Neural networks have also been investigated. Usually back-propagation
networks are trained with historical data to generate forecasts (Yu and Huang, 2002; Chen, 2007).
Based on neural networks, Liao and Wang (2004) generate delivery time estimates for 300 mm
AMHS operations.

Short-Term Forecasting For short-term forecasting, DES is the option of choice, since an-
alytical approaches based on Queuing Theory lack the required level of detail; cf. Section 4.6.
Simulating short terms is naturally characterized by a transient behavior. In most cases, it is
desired to setup those systems as online implementations, which continuously synchronize with the
activities on the shop floor in order to instantly provide short-term forecasts. Weigert et al. (1999)
investigate the basic principles of process accompanying simulation. They discuss a method for
synchronization and adaptation of the simulation model while the manufacturing process continues.
High fidelity simulation systems that provide reliable short-term forecasts are highly desired to be
applied in operational planning, scheduling, and control of manufacturing; cf. Smith et al. (1994);
Reijers and van der Aalst (1999); Werner and Weigert (2002); Bagchi et al. (2008). The existence
of actual data is essential to any short-term simulation system. Online simulation systems have
direct access to the current fab state and and thus provide the capability to generate predictions in
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(near) real-time; cf. Drake and Smith (1996); Potoradi et al. (2002). High fidelity combined with
the ability for fast responses, makes online short-term forecasting highly beneficial for operational
planning, scheduling, and control of manufacturing systems But, implementing such a simulation
system is a crucial task. Scholl (2008); Scholl et al. (2010, 2011); Noack et al. (2011) describe an
online simulation model for short-term lot arrival forecasting in a mature 200 mm waferfab. They
discuss challenges, solution approaches and important modeling issues; cf. Noack (2012).

4.6.2 What-If Studies

Considerable effort has gone into the development of simulation models for waferfabs and their use
to analyze the effects of different control strategies and equipment configurations (Uzsoy et al.,
1992b). Simulation models also serve as vehicle to investigate product mix changes, fabrication
layouts, and the effect of lot sizes. Simulation studies that are carried out to answer certain
questions in order to facilitate understanding of the relation between cause and effect, are also
known as what-if-studies.

Dispatching Rule Evaluation Rule-based dispatching rules constitute one of the most powerful
tools to control material flows. Early simulation studies on how certain dispatching rules affect
factory performance are presented in (Uzsoy et al., 1992a; Waikar et al., 1995; Holthaus and
Rajendran, 1997; Mittler and Schoemig, 1999). The effect of various dispatching rules on CT and
OTD have been assessed by use of DES systems for example in (Kim et al., 2001; Rose, 2001,
2002, 2003a,b; Hung and Chang, 2002; Sunkara and Rao, 2003; Dominic et al., 2004; Mönch and
Zimmermann, 2004). More recent DES studies about dispatching control strategies are available in
(Sha et al., 2006; Valente, 2007; Ko et al., 2010; Chiang and Fu, 2012; Gißrau, 2013; Zhou and
Rose, 2009, 2010, 2012).

Layout Studies Layout studies are considered as an important activity in the waferfab planning
phase, motivated by the fact that the layout is difficult and expensive to modify once it is set up
(Chung and Jang, 2007). Hase et al. (1994, 1997) and Chang and Chang (1998) present DES studies
in which they study cellular, reentrant, layer-based layouts and variants of them for waferfabs.
In (Campbell and Ammenheuser, 2000) and (Quinn and Bass, 1999) one can find factory layout
studies accompanied with AMHS modeling for modern 300 mm waferfabs. More recent studies on
issues related to factory layout and automation are presented in (El-Kilany, 2004) and (Chung and
Jang, 2007).

Lot Release Strategies Lot release strategies intend to keep the WIP in waferfabs under a
critical level and thus prevent the increase in CT; cf. Little’s Law (Little, 1961). Popular workload
control strategies are presented in (Rose, 1999a) and (Sivakumar et al., 2008). Recently, Fredendall
et al. (2010) investigate the effect of lot release strategies via simulation.

Lot-Sizing Lot sizing is considered to be a promising strategy for CT reduction, especially for
high-mix, low-volume factories. Combining Queuing Theory and simulation together as one unified
approach, Potoradi and Winz (1999) make a general observation concerning lot sizes. For areas
of the factory that are highly utilized, a larger lot size is required to meet THP. For areas less
utilized, a smaller lot size can be implemented to minimize CT. Since the process time depends on
the lot size for a wide range of machine types, it is beneficial to match the lot size and machine
configuration (Schmidt et al., 2006). The effect of matching lot sizes and machine configurations
considerably depends on loading situations at factory bottlenecks (Wang and Wang, 2007). Stubbe
(2010) examines the effect of small lot sizes on CT in combination with a conversion of batch
processes to mini-batch or single-wafer processes. Especially for batch processes, lot sizing plays
a key role in performance evaluation. One can find related simulation studies in (Rummel, 2000;
Bonnin et al., 2003).

59



4 MODELING AND SIMULATION

4.6.3 Simulation-Based Scheduling

Simulation-based scheduling systems place highest requirements upon simulation. Scheduling
systems require an online simulation that provides detailed forecasts with high accuracy in a very
short time. Qiao et al. (2012b) review simulation-based scheduling approaches for wafer fabrication
and introduce a simulation-based modular planning and scheduling system for a waferfab. Smith
et al. (1994), Drake and Smith (1996) and Sivakumar (1999) present early scheduling systems based
on DES in complex manufacturing environments, e.g. wafer fabrication. More simulation-based
scheduling systems used for shop floor planning, control and scheduling are presented in (Werner
and Weigert, 2002; Potoradi et al., 2002; Chong et al., 2003b; Mönch et al., 2003; Klemmt, 2012).
Chong et al. (2003a) and Fowler et al. (2003) describe simulation-based scheduling approaches
that focus on factory bottlenecks. Horn et al. (2006), Horn (2008) and Weigert et al. (2009)
discuss their experiences during the development of a simulation-based scheduling system for a
semiconductor backend facility. A simulation-assisted approach for scheduling and rescheduling
complex production system configurations is investigated in (Dangelmaier et al., 2006, 2007). Wu
and Wysk (1989) and Zhang et al. (2009a) describe their strategies to dynamically choose suitable
dispatching rules based on the results provided by DES.

4.7 Wafer Fabrication Equipment Modeling

Equipment models form one of the central pillars to evaluate waferfab performance (planning and
simulation) and to control material flow (sophisticated dispatching and scheduling in particular).
Generally it is distinguished between two types of equipment models: a) simplified equipment
models based on an analytical approach that is sufficiently fast enough to be implemented as a
basic component in a simulation/dispatching/scheduling system, and b) detailed simulation models
used for performance analysis, in most cases applied to study complex cluster tools.

Since detailed simulation models perform too slow to be applied for fab simulation, most research
activities try to develop fast, analytical models with higher accuracy. Conventional equipment
models used for long-term simulation applications usually consist of information about THP and
may include additional information for BP. Simulation especially for short horizons and optimization
solutions (e.g. lot scheduling), need more detailed models that mimic the equipments processing
behavior more precisely. Beyond rather simple THP models, capacity equipment limitations as well
as predicting accurate processing times become points of interest in the field of equipment modeling.
The demand for detailed equipment models separately focusing on capacity-related and temporal
aspects of lot processing is growing, driven by upcoming simulation and optimization applications.

Automated Parametrization The need for more detailed models with high accuracy remarkably
increases the modeling effort. Building equipment models is usually done by hand and takes large
amounts of time due to manually searching multiple data sources and analyzing surveys addressed
to experts. In spite of the fact that modern MESs track huge amounts of data generated on
the shop floor, not all needed modeling information are directly accessible. Compared to expert
interviews, the idea of automated modeling based on given MES data promises considerable time
savings and even new information that can increase equipment model quality. Self-creating and
self-parameterizing equipment models as a result of automating the modeling process using data
mining techniques as far as possible would considerably increase efficiency of today’s modeling
policies.

4.7.1 Analytical Models

Any waferfab simulation system incorporates a kind of analytical model. Shikalgar et al. (2003)
discuss a realistic way of representing cluster tools in a simulation model of the entire line. Most
publications focus on modeling modern cluster tools, because of their modeling complexity and
growing importance in industry. Morrison (2011a,b) discusses linear and affine models that
are commonly used to model equipment THP in waferfab simulations. He focuses on clustered
photolithography and multi-cluster tools and develops flow line models that allow for diverse
products, wafer lots and wafer location dependent setups. The processes in photolithography are
often performed by linear cluster tools, Yi et al. (2007) analyze steady-state THP and scheduling
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for those with with single-blade robots. Analytical models need to consider the effect of parallel
chambers and their interrelation with small lot sizes, having that focus. Schmidt et al. (2006)
evaluate modeling methods for small lot sizes for cluster tools with parallel chambers.

Wood et al. (1994); Wood (1996) lay the basis for analytical cluster tool models. They introduce
an analytical modeling approach used for THP modeling and process time estimations. It is used
for cluster tools that include internal wafer handling and processing times and additionally provides
bottleneck conditions for serial and parallel processing modes.

Perkinson et al. (1994, 1996) present an analysis of the relationship between process times,
transport times, and maximum THP in an individual cluster tool, discussing the effect of redundant
chambers and chamber revisitation process sequences on the THP. Gupta et al. (2008) verify the
models described in (Perkinson et al., 1994, 1996) by use of simulation.

In the field of automated modeling, Lange et al. (2008) present an approach for automated
generation of equipment THP models by analyzing internal equipment events, basically combining
the approaches of (Wood et al., 1994; Wood, 1996) and (Perkinson et al., 1994, 1996); cf. (Lange,
2008). A method for automated semiconductor equipment modeling and model parameter estimation
using MES data is presented in (Kohn et al., 2010; Kohn and Rose, 2011). Frantsuzov (2011)
validates automatically created equipment models, their applicability and accuracy, using various
sets of real-life data from wafer fabrication. Also based on event data, Hosoe et al. (2007) investigate
estimating tool processing time with high accuracy.

Niedermayer and Rose (2003) observe the influence of recipe combinations and the impact of
start delays and present the idea of using slow down factors mirroring dynamic interrelationships
inside a cluster tool. In the following, Unbehaun and Rose (2006) have continued developing the
idea (of using slow down factors) and present a model as well as a method to predict process times
at cluster tools. Niedermayer and Rose (2003) and Unbehaun and Rose (2006) both evaluate their
results by use of DES models mirroring the ideal equipment behavior in real world. With respect to
real-world data, Kohn and Rose (2011) present an approach to automatically create an analytical
process time model. They consider the effect of small lot size as well as the slow down effect. Other
simulaton models employ regression spline meta-models (Ruppert et al., 2000) or Petri nets (Qiao
et al., 2012a).

4.7.2 Simulation Models

Cluster tools are usually subject to simulation models, since analytical models lack of accuracy
due to the highly complex internal processing behavior. Early simulation models for cluster tools
are discussed in (Pierce and Drevna, 1992; LeBaron and Pool, 1994). More sophisticated models
reproduce the flow of wafers through a cluster tool more accurately (Becker, 2007). For example
Park and Morrison (2011) develop a simulation of cluster tools with realistic parameters, which
incorporates rolling setups and wet cleans. LeBaron and Hendrickson (2000) present a flexible
and sufficiently accurate cluster tool simulation model. Simulation models support cluster tool
performance evaluation in order to provide reliable THP values for factory capacity planning.
Koehler et al. (1999) describe the application of simulation for analyzing cluster tool CTs and
cluster tool capacity planning.

Another use case is driven by industrial engineering, simulation models facilitate identifying
internal bottlenecks, e.g. a slow moving wafer handler. Once a bottleneck is identified, it is possible
to initiate appropriate measures that improve cluster tool’s THP. Swe et al. (2006) present a
simulation model for cluster tools. They discuss the factors that influence CT. Christopher (2008)
shows the effect of load lock dedication on a sample multi-process chamber tool.

A further application is given by the need to validate analytical models —Gupta et al. (2008)
verify the models described in (Perkinson et al., 1994, 1996) by use of simulation. Detailed
simulation models also serve as a suitable vehicle to evaluate dispatching and scheduling strategies
for cluster tools. For example, Dümmler (2004) deals with modeling and optimization of cluster
tools in semiconductor manufacturing. The use of slow down factors and their application to cluster
tool scheduling is discussed in (Niedermayer and Rose, 2003; Unbehaun and Rose, 2006, 2007).
Various scheduling methods are subject to simulation studies. Oechsner and Rose (2005) deal with
filtered beam search and recipe comparison and Jung and Lee (2012) employ timed Petri nets.
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4.7.3 Modeling Equipment Capacity (External Behavior)

Kohn et al. (2010) present a system of quantities that classifies capacity-related equipment model
parameters according to their relationship to three dimensions and three units. These dimensions
and units refer to physical components of the production system as well as to logical entities being
part of the material flow control system. A set of capacity-related equipment parameters is arranged
into an ordinal system with the goal to create a helping structure and a better understanding for
shop floor manufacturing operations.

On one hand, three unit types build an ordinal scale of this system of quantities when ordering
them by their logical relationships, namely a) wafer, b) lot, and c) batch. The lowest unit in a
frontend semiconductor fabrication facility and also in this system of quantities is defined as a
single silicon substrate, termed as a wafer in this paper. A single lot constitutes the next greater
unit within this ordinal system and is defined as a group of one or more wafers of the same type.
Obviously both units, wafer and lot, have a physical context in this system. The largest unit is
defined by a single batch and has a logical meaning in contrast to the both units mentioned before.
A (parallel) batch is commonly defined as a group of lots to be simultaneously processed on a
machine, e.g. CFPs such as vertical and horizontal furnaces. Due to the fact that the lots in a
batch collectively share the same process resource, the lots have equal starting and finishing times.

On the other hand, three dimensions describe the size of a physical or logical entity with a
capacity-related meaning, namely a) lot size, b) batch size, and c) equipment size. First, the size
of a lot, given in the number of wafers, is commonly known as lot size and identically termed in
this system. Second, the common term batch size is used to describe the size of a batch and can
be set either in the number of lots or wafers. The last dimension, equipment size, describes the
equipment’s process capacity. The process capacity is defined as the maximum number of units
that can be processed simultaneously throughout the equipment and can be expressed in units of
batch, lot and wafer.

As a result of these presented dimensions and units, six meaningful capacity-related model
parameters emerge: a) lot size in wafers (LSW), b) batch size in lots (BSL), c) batch size in wafers
(BSW), d) equipment size in batches (ESB), e) equipment size in lots (ESL), and f) equipment size
in wafers (ESW). The dimension lot size can only be meaningfully described with the number of
wafers within the lot carrier (LSW). The dimension batch size is usually defined by a maximum
number of lots (BSL). In some cases the compilation of lots to a batch is additionally limited by the
sum of the lots wafers (BSW). The dimension equipment size can either be limited by the number
of simultaneously processed batches (ESB), the number of simultaneously processed lots (ESL), the
number of wafers that could be processed in parallel (ESW) or by a combination of all of them. In
some cases there exists a mathematical relationship between the values of these model parameters.
One can see that this system shows an ordinal character for both dimensions that combine physical
and logistic entities of the production system.

Refer to Figure 15 for a graphical representation of the described capacity model.

Figure 15: System of capacity-related parameters to model wafer fabrication equipment (Kohn
et al., 2010)
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4.7.4 Modeling Processing Time (Internal Behavior)

A common approach to classify wafer fabrication equipment is to distinguish equipment with respect
to their processing time behavior, respectively the relationship between lot size and process time.
Among others, Schmidt et al. (2006) describe three semiconductor tool types. Hosoe et al. (2007)
extend these three types by one another special form of SWP. In (Scholl et al., 2010) one can find
five types of equipment. They furthermore distinguish between different cluster tools. Schmidt
et al. (2006) evaluate modeling methods for small lot sizes for cluster tools with parallel chambers.

Here it is basically distinguished between: a) Single wafer tools process single wafers; the process
time is a linear function of the lot size. b) Batch tools process batches of one or multiple lots; the
process time is a constant exclusively depending on the type of process (recipe). c) X-piece tools
(mini-batch-tool) process batches of x wafers; the lot size is smaller than the standard lot size and
the process time is a step function of lot size. d) Integrated processing where cluster tools process
multiple lots in parallel, sequential or mixed mode; the process time is hard to predict.

Refer to Figure 16 for a graphical representation of the described processing time models.

Figure 16: Raw process time (RPT) of different tool types dependent on lot size Schmidt et al.
(2006)

Single-Wafer Processing (SWP) Typical SWP equipment is characterized by a linear rela-
tionship between the process time and the lot size. A simple Ax+B model sufficiently predicts
process time for a certain recipe, where x denotes the lot size; the slope of the line A and the offset
B depend on internal equipment configuration, e.g. chamber process speeds. In most cases, the
machine only contains one single process chamber that is capable of processing one single wafer at a
time. Consequently, the wafers of a job are processed sequentially and thus the lot size affects the
process time directly. The data analysis shows that processing time additionally depends on the job
recipe. Moslehi et al. (1992) present an overview of various single-wafer integrated semiconductor
device processing.

Batch Processing (BP) BPMs are characterized by a process time that is equal for all the jobs
that constitute the batch. The process time minimum depends on the recipe chosen for the process,
but is independent from the lot size. A typical batch process in wafer fabrication is performed
in CFP machines, i.e. vertical and horizontal furnaces. But also wet benches provide batching
capability, processing up to two lots in a batch simultaneously.

X-Piece Processing The operation of X-piece processing machines is similar to the operation of
BPMs. They are alternatively called mini-batch equipment. This type of equipment is characterized
by a step-function between process time and lot size, whereas the equipment only processes one
single job at a time. Internally, the equipment performs BP with wafers. A bunch of wafers from a
single job is internally processed simultaneously and these mini-batches of wafers are processed in
sequence. The behavior of a step-function arises in case the lot size is greater than the mini-batch

63



4 MODELING AND SIMULATION

size of the machine, then it takes several mini-batch cycles to finish processing an entire job. For
this kind, equipment for ion implantation is representative, where up to 13 wafers are exposed to
ion beams on a rotating disc; consequently, it requires two mini-batch cycles to process a regular
lot with 25 wafers.

Integrated Processing Especially modeling and simulation of integrated processing equipment
(cluster tools) is a crucial task; cf. (Mönch et al., 2011a). The processing behavior is hard to predict
due to a complex arrangement of interacting wafer handlers and process chambers, controlled by
internal dispatching or scheduling systems. Early configurations comprise one mainframe connected
to a number of process chambers, which are extended to architectures that combine two mainframes
with numerous process chambers. Most recent cluster tool designs lead to linear cluster tools that
promise to be advantageous in THP and CT over their predecessors. For the simplest cluster tool
architecture with one mainframe, two load-locks and a number of process chambers two processing
schemes stand out, sequential and parallel processing. A cluster tool may switch between both
processing modes with the recipe(s) chosen to process the jobs. On one hand, the parallel processing
mode in which simultaneously processed lots slow each other down. The internal scheduler threats
the lots equally, the lots compete for internal resources and thus slow each other down. On the
other hand, the sequential processing mode in which the succeeding lot waits for the preceding lot
to finish. Simply, the preceding lot is always preferred by the scheduler, while the secondly started
lot is strictly forced to wait.
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Optimization is the process of selecting the best alternative among a given set of options. It covers
scientific methods for decision making in order to optimize one or more objectives in a constrained
environment (Baghel et al., 2012). The science branch Operations Research (OR) is concerned
with methodologies for optimization, respectively decision making. Most of the definitions of OR
emphasize that OR problems have an interdisciplinary character and that OR methods make use
of mathematical models to facilitate the process of decision making (Ravindran, 2008). At this
point this work refers to (Hillier and Lieberman, 2001) for a comprising introduction to OR, to
(Ravindran, 2008) for a more detailed view on OR with respect to management science and to
(Russell and Norvig, 1995) for a very detailed description of methods in the wide area of Artificial
Intelligence (AI) that is naturally connected to OR. In the OR community metaheuristics play an
increasingly important role in the area of methods discussed for solving optimization problems.

Project Guidelines Talbi (2009) emphasizes that decision making must be tackled in a rational
way and describes four basic steps that need to be processed during an OR study: a) formulate
the problem, b) model the problem, c) optimize the problem, and d) implement a solution (see
Figure 17). By formulating the problem the internal and external factors and the objective(s)
are outlined. Then, during the modeling phase, an abstract mathematical model is built for the
problem, involving simplifications and approximations in order to reduce the complexity. After
modeling the problem a suitable method for solving it hast to be found. Finally, the obtained
solution is implemented and tested by practitioners in the real environment. In a line with the life
cycles in software development and simulation studies, the course of actions in OR projects is rarely
linear, but often cyclic (Talbi, 2009). At this point, this work refers to (Hillier and Lieberman,
2001) for a similar OR project guideline, comprising six phases.

Especially for metaheuristics, Hansen and Mladenović (2003) propose four important activities
to provide the underpinnings before developing a solution based on metaheuristics for a given
problem: a) evaluate the difficulty/complexity of the problem and, if possible, the complexity of
the best-known exact algorithm, b) evaluate the performance of previous algorithms and determine
the largest instances solved exactly, c) evaluate the performance of previous metaheuristics applied
to this problem in terms of size, error and computing time, and d) analyze already proposed
metaheuristics and identify algorithmic key ingredients used for search, e.g. neighborhoods; cf.
(Talbi, 2009).

Optimization Problem The term problem generally refers to a task or question, defining the
environment in which a decision has to be chosen, usually with unspecified values. In contrast, the
term (problem) instance refers to a certain variant of a problem with specified values (Dorigo and
Stützle, 2004).

In the following a formal description of optimization problems is given, corresponding to the
description given in (Baghel et al., 2012); cf. (Talbi, 2009). An optimization problem P = (S, f)
consists of two components linked with each other: the state space S and the objective function
f . The state space S, alternatively referred to as search space or solution space, contains the
entire set of feasible solutions, where each solution s satisfies the constraints. The state space S is
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Figure 17: Guidelines for optimization projects (Talbi, 2009)

defined by a set of variables X = {x1, . . . , xn}, their corresponding variable domains D1, . . . , Dn,
and a set of constraints among the variables in X; S = {s = {(x1, v1), . . . , (xn, vn)} | vi ∈ Di}.
The objective function f : S → R assigns to every feasible solution s ∈ S an objective value f(s)
indicating the quality of the solution, formally defined as a real number. Given the fact that we
usually focus on minimization problems, the problem is to find a solution s∗ ∈ S with the smallest
possible objective value f(s∗). The solution s∗ is then considered as the best solution, respectively
the optimal solution or global optimum; f(s∗) ≤ f(s)∀s ∈ S.

Combinatorial Optimization Similar to simulations models, the optimization problems we
face in the area of OR can either be programmed with real valued variables or with discrete
variables. Those entirely based on discrete variables belong to the class of COPs. Solving a COP
means to choose the best solution from a finite set of possible solutions (Baghel et al., 2012).

The TSP and the Knapsack problem are probably the most common representatives in the
class of COPs. The TSP is the problem of finding a minimum length circuit of a graph, where each
node of the graph is only visited once (Hamiltonian circuit). The Knapsack problem is the task
to select a subset of items from a given set of items, each assigned with a value and a resource
requirement, in such a way that they fit into a knapsack of limited capacity, while the sum of item
values is maximized (Dorigo and Stützle, 2004). For more detailed information about problems
and methods in the area of combinatorial optimization, see (Lee, 2004), (Du and Pardalos, 2005),
(Vasudev, 2007), (Paschos, 2008), and (Korte and Vygen, 2012).

Stochastic Combinatorial Optimization Another distinction is given by the existence of
uncertainty or stochastic effects in the optimization model: optimization problems can either be
deterministic or stochastic. Stochastic Combinatorial Optimization Problems (SCOPs) include
uncertain, stochastic, and dynamic information in their mathematical formulations. Most real-world
problems come with uncertainties and information about the problem is partially unknown. The
lack of detailed information is responded by modelers with assumptions on probability distributions
that describe parts of the problem stochastically. In consequence, the optimization problems become
even more difficult (Bianchi et al., 2009).

Shortcomings of Exact Methods The most obvious idea to solve a COP is to just enumerate
all feasible solutions. But due to the complexity of combinatorial problems, simple complete
enumeration will result in too long computing times that are not acceptable in practice. The
challenge is to develop efficient algorithms that perform better than simple enumeration (Lee,
2004).

For a considerable amount of optimization problems present in academia and industry, it is
intractable to obtain optimal solutions by the use of exact methods in a reasonable time. The
crucial point is that exact methods need large amounts of time to solve that kind of problems
to optimality. Consequently, the use of exact methods becomes inapplicable for most practical
applications, where a responsible person has to make a decision as soon as possible in order to
achieve desirable results (Marti and Reinelt, 2011). The reason why problems are hard to solve can
be found in their complexity, their size, their specific structure, or a combination of all aspects; cf.
(Talbi, 2009).
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Advantages of Metaheuristics In contrast, metaheuristics lead to acceptable solutions in a
reasonable time; solution quality and computing time is generally not exactly defined, i.e. acceptable
and reasonable. In this context, the specific use case defines the range of acceptable solutions
and determines up to which deadline computing times are still reasonable. But, a crucial issue
is that metaheuristics do not provide the capability to evaluate the solution quality with respect
to optimality. Compared to exact optimization algorithms that guarantee the optimality of the
obtained solutions and to approximation algorithms that provide at least a value for the distance to
the optimum metaheuristics generally lack performance in that point (Talbi, 2009). Metaheuristics
primarily justify their use with a well-balanced performance characteristic that describes a favorable
trade-off between solution quality and computing time.

Another point that justifies the use of metaheuristics instead of exact methods is given by
optimization problems that deal with uncertainty and stochastic effects (SCOPs). For that class
of noisy problems, uncertainty and robustness cannot be modeled analytically and thus non-
deterministic optimization models are used (Talbi, 2009). In consequence SCOPs become even
more difficult, exact methods become inefficient with respect to computing time and metaheuristics
emerge as the more attractive alternative, especially for SCOPs (Bianchi et al., 2009).

Further References For a more comprehensive and detailed view on metaheuristics, this work
refers to (Blum and Roli, 2003), (Gendreau and Potvin, 2009), (Luke, 2009), (Moscato and Cotta,
2009), (Talbi, 2009), and (Zäpfel et al., 2010), whereas (Talbi, 2009) deserves special mention.
Khajehzadeh et al. (2011), Parejo et al. (2011), Baghel et al. (2012), and Boussäıd et al. (2013)
present surveys reviewing recent developments in the field of metaheuristic optimization methods.

5.1 Taxonomy

This section briefly outlines the methods available for solving COPs/SCOPs, while following a
taxonomy identical to the one presented in Talbi (2009). See Figure 18 for a graphical visualization
of the taxonomy described in the following.

Exact vs. Approximate Methods There exist two fundamentally different classes of methods
available to solve combinatorial problems: exact and approximate methods. Exact algorithms are
characterized by the ability to proof the optimality of the obtained solutions; and by definition this
is what distinguishes them from approximate methods (Dorigo and Stützle, 2004; Talbi, 2009). In
this context, Prestwich (2008) refers to complete and incomplete search, which correspond to exact
and approximate methods, emphasizing that exact methods completely search the state space while
approximate methods only search parts of it.

By not having the burden to proof the optimality, approximate methods leave parts of the
state space unvisited and thus lead to near-optimal solutions in a reasonable time compared to
exact algorithms. Especially for NP-hard problems exact algorithms perform poor with respect to
computing time. Consequently solving large instances with exact methods is practical impossible,
i.e. would take enormous amounts of time to obtain the optimal solution. Approximate algorithms
trade optimality for efficiency (Dorigo and Stützle, 2004); cf. (Talbi, 2009). Obviously complete
and incomplete search have complementary strengths and weaknesses (Prestwich, 2008).

Heuristics vs. Approximation Algorithms Approximate methods can be further divided
into heuristics and approximation algorithms. A heuristic is any approach without a formal
guarantee of performance. Approximation algorithms guarantee that the obtained solution lies
within a defined range of the global optimum (Brucker, 2007; Talbi, 2009).

Constructive Heuristics vs. Search Heuristics Within the class of heuristics, it is basically
distinguished between constructive heuristics and search heuristics (Zäpfel et al., 2010); cf. (Talbi,
2009). Construction algorithms describe an incremental procedure: starting from an empty initial
solution, they iteratively add solution components until a complete solution is obtained without any
backtracking. In its simplest version the solution components are added in a random order. More
sophisticated construction algorithms follow a greedy strategy by adding the solution components,
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which means that at each step a solution component is chosen from a ranked list based on some
heuristic information, instead of a simple random choice (Dorigo and Stützle, 2009). Constructive
heuristics are usually problem-specific, non-iterative, and create one single solution by applying a
set of rules based on problem-specific knowledge.

Search heuristics follow a certain search scheme that repeatedly examines many different
solutions for a given problem in order to find better solutions (Zäpfel et al., 2010); cf. (Talbi, 2009).

Metaheuristics Search heuristics correspond to metaheuristics in a broader sense. Brucker
(2007) defines any approach without a formal guarantee of performance as a heuristic. Informally, a
metaheuristic states an algorithmic advancement of a simple heuristic, which is commonly defined
as a rule of thumb that leads to near-optimal solutions without complete knowledge of the problem.
There is no single and universal definition for the term metaheuristic, there exist numerous of them.

However, it seems that there evolved a widely accepted understanding of metaheuristics in
academia: a metaheuristic is a general algorithmic framework that a) is generally problem-inde-
pendent and applicable to a wide set of different problems, b) describes an iterative upper-level
strategy that guides the operations of subordinate heuristics, c) combines different concepts for
exploring and exploiting the search space (diversification and intensification), often facilitated by
the use of randomness (Blum and Roli, 2003; Zäpfel et al., 2010).

Trajectory Methods vs. Population-Based Methods Most authors consistently distin-
guish between two classes of metaheuristics: trajectory methods (based on a single solution) and
population-based methods (Blum and Roli, 2003); cf. (Luke, 2009; Talbi, 2009; Zäpfel et al., 2010;
Marti and Reinelt, 2011; Baghel et al., 2012). The number of solutions used to obtain new solutions
in every cycle of search is the distinguishing factor between the methods. More precisely, it is
distinguished between search methods that operate on a single solution and those that operate on
multiple solutions.

Trajectory methods obtain improved solutions by repeatedly modifying an existing solution
during the search procedure, e.g. LS (Hill-Climbing), SA, TA, TS, GRASP, VNS, GLS, and ILS;
cf. (Blum and Roli, 2003; Talbi, 2009; Baghel et al., 2012; Boussäıd et al., 2013).

Population-based methods, operating on a set of solutions, create improved solutions by
recombining existing solutions e.g. EAs (GAs, EAs, EP, GP), SS, ACO, PSO and AIS; cf. (Blum
and Roli, 2003; Talbi, 2009).

Hybrid Metaheuristics Beyond these basic groups, another class of algorithms has recently
emerged: hybrid (meta)heuristics. Hybrid methods merge two or more search methods (i.e.
metaheuristics) or only aspects of them as a new approach, in a sense that the resulting search
procedure combines the strengths of different search methods (Baghel et al., 2012); cf. (Blum and
Roli, 2003).

Hyper-Heuristics Hyper-heuristics cover automated methodologies for selecting or generating
low-level (meta)heuristics. They intend to automate the design and adaptation of heuristic methods
in order to produce more generally applicable search methodologies. The idea behind is that
searching over a space of heuristics may be more effective than directly searching the underlying
problem space. In this context, it is distinguished between two main categories: heuristic selection
and heuristic generation (Burke et al., 2009). In the area of Evolutionary Computation (EC), this
approach is referred to as meta-evolutionary approach.

Alternative Taxonomies Underpinning the observation that metaheuristics are subject to vital
research, there exist different ways to classify metaheuristics, depending on the characteristics used
for the distinction. Beyond subdividing between population-based methods and single-solution
search, alternative taxonomies classify metaheuristics by distinguishing between a) nature-inspired
and non-nature inspired methods, b) dynamic and static objective functions, c) one neighborhood
structure and various neighborhood structures, d) memory usage and memory-less methods, e) de-
terministic and stochastic search, and f) iterative versus greedy search schemes (Blum and Roli,
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2003; Talbi, 2009); cf. (Zäpfel et al., 2010; Marti and Reinelt, 2011) for more alternative taxonomies
used to classify metaheuristics.

For example, Zäpfel et al. (2010) put emphasis on the strategy used to obtain new solutions and
propose three groups of heuristic search algorithms: a) repeated solution construction, b) repeated
solution modification, and c) repeated solution recombination. Here, repeated solution modification
methods relate to trajectory methods and the methods based on repeated solution recombination
refer to population-based methods. In contrast to the widely accepted two-group taxonomy
(trajectory and population-based methods), Zäpfel et al. (2010) mention GRASP and ACO as parts
of a third category, namely methods based on repeated solution construction. These methods always
create new solutions from scratch (by construction). Unfortunately, important metaheuristics such
as VNS, GLS, Evolution Strategies (ESs), and PSO remain unclassified in this taxonomy.

Figure 18: Taxonomy for methods solving combinatorial optimization problems (Talbi, 2009)

5.2 Complexity Theory

A key point in OR projects is to determine the difficulty of the underlying optimization problem,
respectively of a particular COP that needs to be solved; cf. (Dorigo and Stützle, 2004). Com-
plexity Theory has basically two main purposes. The first purpose is to determine the amount
of computational resources required to solve a computational problem to optimality. The OR
community discusses computational resources in the first place in terms of computational time
and secondly in terms of space (memory), which also are referred to as time complexity and space
complexity. The second purpose is to classify important problems according to their difficulty
(Allender et al., 2010). Sipser (2006) gives a detailed introduction to the theory of computation,
devoting much attention to Complexity Theory as a part of it.

Time Complexity The time complexity of a problem corresponds to the time complexity of
the best (fastest) algorithm known to solve that problem. And an algorithm’s time complexity is
defined by its maximum (worst-case) number of computational steps required to optimally solve a
problem instance with an arbitrary input size n (Talbi, 2009). Depending on the encoding scheme,
e.g. binary or unary encoding, the input size n of a certain instance is defined by the length of the
data string representing that particular instance. As a matter of fact, the unary encoding scheme
leads to a larger instance size compared to that under binary encoding (Pinedo, 2008).

The O-Notation The time complexity of an algorithm and thus of the relating problem, is given
by the time complexity function, a mathematical function of the input size n. The purpose of the

69



5 METAHEURISTIC OPTIMIZATION

time complexity function is not to obtain an exact computational step count, but to provide a
maximum upper bound on the required step count in terms of an asymptotic (worst-case) analysis
for arbitrary input sizes n. The O-Notation is usually used to formalize the worst-case time
complexity function of an algorithm or a problem.

With respect to OR problems, it is basically distinguished between two types of algorithms only:
polynomial-time bounded and exponential-time bounded algorithms. A polynomial-time (bounded)
algorithm is an algorithm with time complexity O(p(n)), whereby p(n) is a polynomial function of
n. In other words, the time that the algorithm needs to optimally solve an instance of size n grows
by means of the polynomial p(n) in the worst-case, which means the algorithm is polynomially
bounded. For example, O(n) grows linearly, O(n2) quadratically and O(n3) grows cubically; cf.
(Reingold, 2010). Exponential-time (bounded) algorithms have a time complexity O(cn), where c
is a real constant strictly superior to 1. Here the computation time grows exponentially with the
instance size n in the worst-case (Talbi, 2009); cf. (Dorigo and Stützle, 2004) and (Pinedo, 2008).

5.2.1 Decision Problems, Languages and Turing Machines

This section introduces some important terms in the context of OR and Complexity Theory, e.g.
decision problems, languages and Turing machines, laying the basis for understanding the following
sections.

Decision Problems In the context of Complexity Theory, COPs are stated in terms of decision
problems with a yes/no answer. The arising decision problem asks to determine the existence of
a solution for the corresponding COP with an objective value lower than a given threshold (for
a minimization problem). Consequently, the time complexity of the algorithm that produces the
correct yes/no answer to a decision problem then corresponds to the time complexity of the COP
related to that decision problem. Clearly, the bigger the problem instance, the longer the algorithm
needs to find the correct answer to the decision problem (Lenstra et al., 1977); cf. (Hedman, 2004;
Pinedo, 2008).

Language Recognition Decision problems are strongly related to languages in the context
of Theoretical Computer Science. A language recognition problem is a decision problem asking
whether a given string (a word) belongs to a particular language. Thus, any COP can be stated
in terms of a decision problem and decision problems can be interpreted as language recognition
problems (Jiang et al., 2010). And the latter (language recognition problems) are solvable by
deterministic and non-deterministic Turing machines (Lenstra et al., 1977).

Deterministic and Non-Deterministic Turing Machines The concept of Deterministic
Turing Machine (DTM) defines the three basic steps in any mechanical computation: a) the ability
to read and write on a storage medium, b) the ability to move on that medium, and c) the ability
to make simple logical decisions. Those abilities, appropriately combined, result in an algorithm
corresponding to a DTM, which is capable of deciding language recognition problems and thus
solving decision problems. A DTM is basically a state machine, characterized by an algorithm that
unambiguously defines a transition from one state to another (Jiang et al., 2010).

Beside DTMs, it is important to introduce the theoretical concept of Non-Deterministic Turing
Machines (NTMs). NTMs do not model physical computation devices, they model a virtual machine
without a physical representation in the real world. The reason is that a NTM is defined as a
state machine with ambiguous state transitions, characterized by state transfer relations describing
transitions from one state to a set of states, in contrast to the unambiguous transfer functions
implemented in DTMs. However, NTMs represent an elementary component in Complexity Theory,
since they are used to model real computational problems (Allender et al., 2010).

5.2.2 Complexity Classes P and NP

In order to classify problems with respect to their complexity, there exist complexity classes that
define polynomial and exponential bounds on time and space for deterministic and non-deterministic
machines. The OR community only focuses on the two classes P (DTIME) and NP (NTIME),
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which stand for deterministic polynomial time and non-deterministic polynomial time respectively
(Allender et al., 2010). Both classes P and NP cover problems solvable in a number of steps bounded
by a polynomial in the length of the input, but based on different types of Turing machines (DTM
and NTM) (Lenstra et al., 1977).

The complexity class P is defined for decision problems that can be solved by a DTM in
polynomial time, respectively in a number of steps bounded by a polynomial of problem instance
size. In other words, a DTM or an algorithm needs polynomial time to produce the correct yes/no
answer to a decision problem.

On the other hand, the complexity class NP is defined for decision problems that can be solved
by a NTM in polynomial time. To phrase it differently, the class NP covers decision problems for
which a DTM or an algorithm can verify a correct answer in polynomial time, independently of the
way it was generated.

Summarizing, algorithms in P solve their corresponding problems in polynomial time, whereas
algorithms in NP only verify an existing solution to the corresponding problem in polynomial time
(Pinedo, 2008); cf. (Talbi, 2009; Dorigo and Stützle, 2004).

5.2.3 NP-Completeness

The concept of NP-completeness builds the formal basis to distinguish between easy and hard
problems by defining a formal borderline between them.

An important concept underlying NP-completeness is the concept of problem reduction. A
problem P ′ reduces to problem P if for any instance of P ′ an equivalent instance of P can be
constructed. We talk about polynomial reducibility if P is constructed in polynomial bounded time,
which is then denoted by P ′ ∝ P (Lenstra et al., 1977); cf. (Pinedo, 2008).

According to Lenstra et al. (1977), a decision problem P is NP-complete if P ∈ NP and P ′ ∝ P
for every P ′ ∈ NP. Informally, a decision problem P is NP-complete if a) P is in the NP class and
b) if all problems in NP polynomially reduce to P . A problem P , either a decision problem or an
optimization problem, is called NP-hard if it satisfies the second condition b only, i.e. all problems
in NP polynomially reduce to P (Lenstra et al., 1977); cf. (Hedman, 2004; Pinedo, 2008; Talbi,
2009; Korte and Vygen, 2012). By this definition, any NP-complete decision problem is NP-hard.
It has become common practice in the OR community to call optimization problems NP-hard if
their associated decision problems are NP-complete (Brucker, 2007; Talbi, 2009).

At this point the question arises how it can be shown that every problem in NP reduces to a
particular problem, especially considering the fact that there exists an infinite number of problems
in the NP-class. This credit must go to Cook (1971) who presents a generic reduction from Turing
machines to the Satisfiability Problem (SAT), which in turn first establishes NP-completeness for
SAT (Leung, 2004). The master reduction from Cook (1971) constructs for any instance of P ∈ NP

an equivalent boolean expression in conjunctive normal form in polynomial bounded time (Lenstra
et al., 1977).

Starting from the fact that SAT is NP-complete, Karp (1972) proofs NP-completeness for a
large number of COPs by polynomial reduction, e.g. directed Hamiltonian path, Partition and
Knapsack (Leung, 2004). This strategy is used to locate the borderline that separates the easy
problems (in P) from the hard (NP-complete) ones. Furthermore, it is said that a minor change in
a problem parameter often transforms an easy problem into a hard one (Lenstra et al., 1977).

5.2.4 Strong vs. Ordinary NP-Completeness

In order to determine the complexity of a problem, first a distinction between the membership of
P versus NP-completeness is made, respectively between easy and hard problems. But it is said
that this is only a coarse indicator because there are significant differences in complexity within
the class of NP-complete problems. Those differences lead back to the encoding scheme used to
specify the problem instance, i.e. unary versus binary encoding. Here it is distinguished between
two classes of NP-complete problems, respectively between unary NP-complete problems (NP-hard
in the strong sense) and binary NP-complete problems (NP-hard in the ordinary sense).

A problem that is NP-hard with respect to the binary encoding scheme but not under the unary
encoding scheme is said to be NP-hard in the ordinary sense or simply NP-hard. The class of
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NP-hard problems in the ordinary sense can be solved in polynomial time under unary encoding,
while it cannot be solved in polynomial time under binary encoding (pseudo-polynomial)

A problem that is NP-hard with respect to the unary encoding scheme is said to be NP-hard
in the strong sense or strongly NP. Either under unary or binary encoding for strongly NP-hard
problems there are no polynomial time algorithms known to this date (Leung, 2004; Pinedo, 2008).

Pseudo-Polynomial Referring to the Knapsack problem, this paragraph claries the term pseu-
dopolynomial in the context of strong/ordinary NPcompleteness. Knapsack is NP-complete with
respect to a binary encoding. But there exists a polynomial bounded algorithm based on DP with
respect to unary encoding, respectively a pseudo-polynomial algorithm. Given the fact that unary
NP-completeness is not established, a binary NP-complete problem allows an unary polynomial
bounded solution (Lenstra et al., 1977). For the Knapsack problem, no algorithms are known
for solving it with respect to a binary encoding scheme in time bounded by a polynomial in the
input length. However, many practitioners consider Knapsack to be tractable. The reason is that
algorithms are known which solve it in time bounded by a polynomial in the input length and
the magnitude of the largest number in the given problem instance. Such algorithms whose time
complexity depends on the input length and another factor related to the instance, are referred to
as pseudo-polynomial algorithms (Garey and Johnson, 1978). In other words, an algorithm is said
to be pseudo-polynomial if it is not polynomial with respect to binary encoding, but polynomial
with respect to unary encoding (Lawler, 1977).

Summarizing, Knapsack was shown to the NP-hard only under binary encoding, it was not
shown to be NP-hard under unary encoding. It is no contradiction that a problem is NP-hard under
the binary encoding scheme, but solvable in polynomial time under the unary encoding scheme,
respectively in pseudo-polynomial time (Leung, 2004).

In contrast, the TSP is strongly NP-hard and (unless P 6= NP) there is no exact pseudo-
polynomial algorithm for any strongly NP-hard problem (Korte and Vygen, 2012).

5.2.5 The P
?
= NP-Problem

As mentioned earlier, the class P is clearly a subclass of the class NP. But one of the most important
open issues in mathematics is the question whether P = NP (Pinedo, 2008). The Clay Mathematics

Institute6 has chosen the P
?
= NP-Problem as one of its seven Millennium Problems, each with a

reward of one million dollars for their solution (Hedman, 2004). It is a matter of fact that either all
NP-complete problems are solvable in polynomial time or none of them. To this date, no single
NP-complete problem is shown to be solvable in polynomial time (Leung, 2004); cf. (Dorigo and

Stützle, 2004; Pinedo, 2008). Lenstra et al. (1977) describe the P
?
= NP-Problem by means of the

master reduction from Cook (1971) and state that P = NP if and only if SAT ∈ NP, whereas SAT
can be replaced by any NP-complete problem. Consequently, if SAT ∈ P then every NP-complete
problem is in P and finally P = NP. However, in general the OR community considers the equality
of P and NP as highly unlikely, which in turn means that a polynomial bounded algorithm for
one and thus for all NP-complete problems is highly unlikely to exist (Lenstra et al., 1977). See

Figure 19 for a plausible visualization of the P
?
= NP-Problem.

5.3 The Search Space

The performance of metaheuristics is closely linked to the structure of the underlying search space.
Watson (2009) formally defines the search space L = (S,N, F ) by the combination of a) the state
space S, b) the move operator N , and c) the objective function F . The search space can be seen as
a vertex-weighted directed graph in which each vertex represents a state with a weight equal to
the corresponding objective value and each edge describes a certain move operator that leads from
one state to another.

6http://www.claymath.org/
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Figure 19: Euler diagram for P, NP, NP-complete, and NP-hard set of problems (wikipedia, 2014)

Terminology of Landscapes The OR community also refers to this graph as the fitness
landscape (Watson, 2009). Commonly, descriptions of landscape structures in OR make use of
geographical terms, e.g. valleys, plains, peaks, plateaus or basins. This geographical metaphor
enables us to visualize the quality of solutions in two or three dimensions, where the altitude of a
particular point in this system equals the objective value of the corresponding solution (Talbi, 2009).
Watson (2009) defines structural characteristics of a fitness landscape in terms of: a) the number
and/or distribution of local optima, b) the strength and size of local optima attractor basins, and
c) the size and extension of the search space. Watson (2009) argues the lack of empirical evidence
to evaluate the importance of the mentioned landscape features. Deb et al. (1997) design a number
of fitness landscapes used as test functions in order to evaluate the performance of evolutionary
algorithms. Based on sets of generated fitness landscapes, providing knowledge of optimal solutions
and their neighborhood, they investigate the convergence properties of the tested algorithms. See
Figure 20 for four examples of quality/objective functions. Watson (2009) and Talbi (2009) also
present graphical representations of different landscape structures visualizing the search space.

Search Scheme vs. Search Space The interaction of a metaheuristic with the underlying
fitness landscape defines its performance. Since metaheuristics define strategies for searching
the landscapes, knowledge of their structure facilitates developing effective metaheuristics. This
knowledge opens the opportunity to adapt a metaheuristic search scheme in a targeted manner
(Watson, 2009). Incorporating landscape knowledge becomes in particular important with regard
to the statement made in (Talbi, 2009), saying that not only different optimization problems
correspond to different landscape structures, but also different instances of the same problem may
be characterized by varying landscape structures.

5.4 Metaheuristic Design

Despite of the existence of a vast variety of different metaheuristics, all of them share some similar-
ities. The basic design usually follows a black-box modeling approach, coupling the metaheuristic
with the underlying problem and decoupling the metaheuristic search scheme from model-internal
activities representing the behavior of the underlying problem. Another commonality (for modern
metaheuristics) is a algorithmic design that balances intensification and diversification in the search
behavior, enabling a metaheuristic to exploit (intensification) and explore (diversification) the
search space in an efficient and effective way. Recent developments in metaheuristic research
consider hybridization and parallelization as promising approaches, leading to improved search
performance. At this point, this work refers to the work of Talbi (2009) who examines the design
and implementation of metaheuristics more thoroughly.

A central issue for metaheuristics is the design of the appropriate neighborhood structure
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Figure 20: Four examples of quality/objective functions (Luke, 2009)

(Baghel et al., 2012). As stated earlier, as part of preparatory work for designing and implementing
a metaheuristic for the problem at hand Hansen and Mladenović (2003) advise to analyze already
proposed metaheuristics and to identify algorithmic key ingredients used for the search, in particular
the structure of move operators (neighborhood design). Some other common issues include the
use of memory, randomization, and dynamic parameter adjustment (Baghel et al., 2012). Battiti
and Brunato (2009) refer to the strategy of dynamic parameter adjustment as to Reactive Search
Optimization, describing the integration of machine learning techniques into search heuristics in
terms of an online feedback loop for the self-tuning of critical parameters during the search process.
Similarly, Bäck (1997b) proposes a self-adaptation approach for ESs, which dynamically evolves
the strategy/control parameters during the search. A unified algorithmic view on metaheuristics is
given in (Zäpfel et al., 2010).

Parejo et al. (2011) recently presented a comparative study of Metaheuristic Optimization
Frameworks (MOFs). The metric used for evaluating the MOFs incorporates various important
features that range from different metaheuristic techniques covered to documentation and user
interface. There exist many MOFs that can speed up optimization projects and reduce their costs
significantly; cf. (Talbi, 2009).

Properties One of the elementary properties characterizing metaheuristics is that they are
generally problem-independent and applicable to a wide set of different problems (Zäpfel et al.,
2010).

Blum and Roli (2003) outline some fundamental properties of metaheuristics: metaheuristics
a) efficiently explore the search space in order to find (near-)optimal solutions, b) include techniques
ranging from simple LS procedures to complex learning processes, c) are approximate and usually
non-deterministic, d) may incorporate mechanisms to avoid getting trapped in confined areas of
the search space (escape from local optima), e) permit an abstract level description in their basic
concepts, f) use domain-specific knowledge in the form of heuristics controlled by the upper level
strategy, and g) use search experience (memory) to guide the search in its more advanced variants.
Hansen and Mladenović (2001) condense the desirable properties of metaheuristics into seven terms:
a) simplicity, b) coherence, c) efficiency, d) effectiveness, e) robustness, f) user-friendliness, and
g) innovation.

According to Prestwich (2008), many modern metaheuristics have the property of Probabilistic
Approximate Completeness (PAC), which means that the probability of finding a solution tends
to 1 as search time tends to infinity. PAC synonymously stands for metaheuristic’s capability to
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escape from any local minimum.

5.4.1 Black-Box Modeling

In contrast to mathematical programming techniques, e.g. LP and/or IP/MIP, no analytical
formulation in terms of an unambiguous mathematical notation is required to apply metaheuristics.
Common to all metaheuristics, the underlying model representation is simply considered as a
black-box that returns an objective/quality value while considering the constraints given by the
problem under study, based on the decision variables repeatedly modified by the metaheuristic
applied. For the application of metaheuristics it does not matter how the objective value is produced
(Talbi, 2009). See Figure 21 visualizing the described black-box concept.

Figure 21: Black-box scenario for the objective function (Talbi, 2009)

Simulation(-Based) Optimization In those cases where simulation models are required to
evaluate an objective function, i.e. due to stochastic effects, analytical methods based on explicit
mathematical formulations are no longer an option (Talbi, 2009). Especially for stochastic problems,
analytical models are often inadequate and simulation models provide a more suitable method
(Hillier and Lieberman, 2001). Simulation-based optimization, or simply simulation optimization,
describes the interaction between a simulation system, acting as a black-box that evaluates an
objective function and an optimization method, e.g. a metaheuristic that manipulates the simulation
system variables in a targeted manner. Beside analytical optimization models solved either by
exact methods or approximate methods, simulation-based optimization powered by metaheuristics
is another important branch in OR; cf. (Talbi, 2009). Fu et al. (2005) provide a descriptive review
of the main approaches in the area of simulation optimization.

5.4.2 Intensification vs. Diversification

There are two basic concepts that determine the behavior of a metaheuristic: intensification and
diversification. These two forces naturally act contrary to each other, but also complement each
other at the same time (Blum and Roli, 2003). Intensification (exploitation) relates to metaheuristic
components/activities that aim on (intensively) searching for new optima in a certain area of the
search space. Diversification (exploration) means that a metaheuristic is capable of searching
a maximum number of different regions of the search space. Exploring the search space by
diversification avoids search procedures from concentrating on non-promising regions, which consist
of solutions with low optimization potential. With respect to diversification, escaping from local
optima is probably the most important capability for metaheuristics to provide (Talbi, 2009).

In literature there is a broad consensus about the observation that high-performing metaheuristics
not only incorporate mechanisms supporting both the effects of intensification and diversification,
but also provide an appropriate balance between them. In addition to this, a metaheuristic may
adjust its parameters dynamically, emphasizing its preference for intensification or diversification
depending on the progress of the search process (Blum and Roli, 2003); cf. (Zäpfel et al., 2010).

According to (Talbi, 2009), metaheuristics based on the single-solution approach are naturally
more oriented on intensification, whereas population-based metaheuristics generally show a higher
affinity to diversification.

Refer to Figure 22 showing the design space of a metaheuristic.
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Figure 22: Design space of a metaheuristic (Talbi, 2009)

The I&D Frame Blum and Roli (2003) introduce the I&D frame in order to put algorithmic or
functional components of metaheuristics (I&D components) into relation to each other, considering
their effect on intensification and/or diversification during the search process. Despite of the fact
that metaheuristics differ in their search strategies, the implemented mechanisms/components are
all based on intensification and diversification, even if the paradigm behind is completely different.
Blum and Roli (2003) emphasize that I&D components can have both an intensification and a
diversification effect on the search procedure. The I&D frame describes a triangle where each
corner corresponds to one of three basic characteristics associated with I&D components: objective
guided (OG), non-objective guided (NOG), and randomness (R). The corner OG covers I&D
components that are exclusively guided by the objective function. I&D components near to the
corner NOG are guided by functions other than the objective function, e.g. mechanisms based
on memory or problem-specific knowledge. The corner R refers to I&D components that simply
employ randomness. It can be concluded that the corner OG stands for maximum intensification
and minimum diversification, whereas the corners NOG and R come with maximum diversification
and minimum intensification (Blum and Roli, 2003).

See Figure 23 that visualizes the I&D frame as described.

Figure 23: The I&D frame (Blum and Roli, 2003)

5.4.3 Hybridization

Hybrid metaheuristics refer to the idea of combining metaheuristics with other techniques for
optimization. Hybridization aims to exploit the complementary character of different optimization
strategies. In fact, combining an appropriate set of complementary algorithmic concepts can be the
key for the design of high-performing search methods (Blum et al., 2011). The OR community
shares the common understanding that well-designed hybrids often perform substantially better
than classic metaheuristics. However, a more complex hybrid algorithm does not automatically
perform better, since appropriate tuning of the methods parameter becomes more difficult as the
method’s complexity increases (Raidl et al., 2009).

In literature, basically two groups of hybrid metaheuristics are discussed: hybrids with other
metaheuristics and hybrids with exact methods. Prominent examples for metaheuristics combined
with exact methods are tree-search-based methods such as B&B, DP, LP, MIP, and CP (Blum
et al., 2011); cf. (Raidl et al., 2009; Talbi, 2009; Baghel et al., 2012). Hybridizing metaheuristics
with exact methods aims to combine the complementary strengths of complete and incomplete
search (Prestwich, 2008). However, combining metaheuristics with each other is more popular,
usually seeking to combine the advantages of trajectory methods and population-based methods
into a single hybrid metaheuristic. By design population-based methods perform better in terms of
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identifying promising search space areas (diversification), whereas trajectory methods are better in
exploring promising search space areas (intensification) (Blum and Roli, 2003).

For more thorough insights into hybrid metaheuristics see (Blum et al., 2008) and (Talbi, 2009).
Puchinger and Raidl (2005) present a survey on combining exact algorithms and metaheuristics to
solve COPs. Blum et al. (2011) provide a recent survey on some of the most important topic lines
of hybridization.

5.4.4 Parallelization

The idea of parallelizing metaheuristics is driven by two forces: the complexity of computational
problems and the rapid development in technology of distributed computing systems. On one
hand, despite of the fact that metaheuristics facilitate reducing computation times significantly,
computational problems are often NP-hard and remain computational expensive. Here, parallelism
can help to reduce the computation time and increase the solution quality (Alba, 2005). Similarly,
Talbi (2009) identifies four main goals of parallel and distributed computing: a) speed up the search,
b) improve the quality of the obtained solutions, c) improve the robustness, and d) solve large-scale
problems. On the other hand, the rapid development of technology in designing (multicore-
)processors and networks leads to architectures suitable for the design and implementation of
parallel metaheuristics (Talbi, 2009). Compared to single-solution based methods, population-based
metaheuristics seem to be more appropriate for parallelism, since they already manage a set of
parallel solutions by design (Luke, 2009).

For more detailed descriptions of distributed computing see (Kshemkalyani and Singhal, 2008).
Crainic and Toulouse (2009) present a survey on parallel metaheuristic strategies, and Alba (2005)
describe parallel approaches for a) LS, b) SA, c) TS, d) GRASP, e) VNS, f) models of EAs (in
particular GAs, ESs, and GP), g) ACO, and h) SS.

5.5 Trajectory Methods

Trajectory methods, also referred to as single-solution based methods, are simply characterized by
an iterative search scheme that operates on a single solution. Trajectory methods start from an
initial solution and iteratively move from the current solution to another one in the search space,
improving the initial solution step by step. They describe a trajectory in the search space. In
contrast to population-based metaheuristics, trajectory methods are naturally more oriented on
intensification than on diversification (Talbi, 2009). For more detailed descriptions see (Blum and
Roli, 2003; Talbi, 2009; Baghel et al., 2012; Boussäıd et al., 2013), whereas Boussäıd et al. (2013)
present a recent survey on single-solution based metaheuristics.

Trajectory methods mainly encompass: a) LS, b) SA, c) TA, d) TS, e) GRASP, f) VNS, g) GLS,
and h) ILS (Blum and Roli, 2003; Talbi, 2009; Baghel et al., 2012; Boussäıd et al., 2013).

Local Search (LS) LS is likely the simplest metaheuristic method. Starting at a given initial
solution, LS repeatedly replaces the current solution by a neighbor that improves the objective
function. The search determinates when a local optimum is reached, meaning that all candidate
neighbors are worse than the current solution with respect to the objective function (Talbi, 2009).
See Figure 24 visualizing the concept of LS.

In this context, the term neighbor refers to a slightly modified solution obtained in each step
of LS. And the finite set of modified solutions (neighbors) that can be obtained usually by many
different modifications (moves) is also referred to as solution’s neighborhood (Zäpfel et al., 2010).
The definition of an appropriate neighborhood structure usually embeds problem-specific knowledge
and is a crucial point for the performance of LS algorithms. The neighborhood of a solution is
defined as the set of solutions that can be reached from that solution in one single step (Dorigo
and Stützle, 2009).

LS is also referred to as iterative improvement, since each move is only performed if the resulting
solution is better than the current solution (Blum and Roli, 2003). Another common term for LS
is Hill-Climbing, where informally spoken, the algorithm climbs up the hill until the peak (local
optimum) is reached (Luke, 2009).
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LS methods have two main disadvantages: they get easily trapped in local minima and the
result strongly depends on the initial solution (Dorigo and Stützle, 2009; Talbi, 2009). To overcome
the problem of getting trapped in local minima, several techniques have been developed, adding
mechanisms to LS (Blum and Roli, 2003). Another critical point is given by highly multi-modal
objective functions, where LS is usually not an effective method to use. However, LS works well in
the presence of more or less similar local optima with respect to the objective value and/or in those
cases where not too many local optima exist (Talbi, 2009).

Figure 24: Basic Local Search (Talbi, 2009)

Best-Improvement vs. First-Improvement In general, it is distinguished between two basic
types of LS, namely first-improvement and best-improvement. First-improvement LS explores
the neighborhood and chooses the first solution improving the incumbent. Best-improvement first
exhaustively explores the entire neighborhood and then returns the neighboring solution with the
lowest objective function value (Blum and Roli, 2003).

First-improvement LS relies on the assumption that a certain neighborhood comprises many
improving solutions and determining the best is not absolutely necessary. Advantageous of first-
improvement LS is that it is less computationally expensive compared to best-improvement LS,
but the solution quality may improve more slowly during the search and thus it may require more
iterations to reach the nearest local optimum. The decision which scheme to prefer depends on
the problem and the computational effort needed to generate one single neighbor, respectively the
entire neighborhood (Zäpfel et al., 2010). Resende and Ribeiro (2009) observe that quite often
both strategies lead to the same solution, whereas the first-improving strategy requires smaller
computation times. Furthermore they notice that the best-improving strategy tends to converge to
bad local optima in early phases of the search.

In (Hansen and Mladenović, 2003; Dorigo and Stützle, 2009; Hansen et al., 2009; Talbi, 2009;
Zäpfel et al., 2010) one will find pseudocodes for the LS method and its variants with respect to
the best-improvement and first-improvement strategy. For parallel designs and implementations of
LS see (Alba, 2005).

Section 8.3.3 deals with experiments investigating the two LS strategies embedded in different
VNS variants.

Escaping from Local Optima The disadvantage of LS is its convergence toward local optima.
See Figure 25 for an adequate visualization of local and global optima. The strategies that have been
proposed to escape from local optima are classified in four groups: a) iterating from different initial
solutions, b) accepting non-improving neighbors, c) changing the neighborhood, and d) changing
the objective function (Talbi, 2009).

The strategies that iterate from different initial solutions are commonly encompassed by the
group of multi-start methods, e.g. ILS and GRASP. Approaches based on the idea of accepting
non-improving neighbors allow degrading moves from one solution to another in order to escape from
a local optimum, e.g. SA, TS and TA. Another idea is to change the neighborhood structure during
the search, e.g. VNS strategies. The fourth group frames strategies perturbing the objective function
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in order to enable the search to leave valleys around local optima, e.g. GLS. Beyond changing the
neighborhood structure and changing the objective function, relaxing certain constraints given by
the underlying optimization problem at hand states another strategy that modifies the search space
(Talbi, 2009).

Figure 25: Local and global optima (Talbi, 2009)

Multi-Start Methods Especially with the example of multi-start methods, the meaning of the
desired balance between diversification and intensification becomes obvious. Since LS is naturally
focused on intensification by extensively exploiting the neighborhood of solutions, there is a striking
need for diversification to overcome local optimality. Multi-start methods achieve diversification by
repeatedly restarting LS from a new initial solution once a region has been entirely explored. Hence,
the solution space is strategically sampled where each (LS) iteration leads to a local optimum
and the best among them is considered as the best overall solution of the algorithm. The basic
multi-start strategy in its simplest version restarts LS with randomly generated initial solutions
(Marti et al., 2009; Marti and Reinelt, 2011; Marti et al., 2013).

Termination Conditions Beyond simple LS performing a deterministic search that finishes with
a local optimum, most of the metaheuristics perform a non-deterministic search that incorporates
randomness. They need for appropriate stopping conditions preventing endless search. Possible
termination conditions include: a) the maximum computing time, b) the maximum number of
iterations, c) a solution s with f(s) less than a predefined threshold value, or d) the maximum
number of iterations without any improvements (Blum and Roli, 2003).

5.5.1 Iterated Local Search (ILS)

ILS is essentially a multi-start procedure that focuses the search on already known local optima.
Its success lies in the biased sampling of this set of local optima. ILS performs better than random
restart, even in its most naive implementation (Lourenco et al., 2009). ILS can be seen as an
improved version of basic LS with random restarts. The basic idea underlying ILS is that local
optima often exist in near proximity to each other. The assumption/observation is that restarting
LS in the near of already known local optima often outperforms just trying new locations entirely
at random (Luke, 2009).

The basic idea of ILS stems from the observation that the performance of a LS method strongly
depends on the initial solution. The basic multi-start LS randomly generates initial solutions in
every restart cycle and thus successive initial solutions are neither related to each other nor related
to the local optima found during the search. ILS improves the basic multi-start LS by considering
a perturbed local optimum as initial solution in the succeeding restart cycle. After performing LS
to an initial solution, the resulting local optimum is stochastically perturbed, followed by another
LS cycle using the perturbed local optimum as initial solution (Talbi, 2009). Figure 26 shows the
basic principle of ILS; cf. (Blum and Roli, 2003; Lourenco et al., 2009) for similar visualizations.
Talbi (2009) provides pseudocode for ILS.
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The degree of perturbation is a crucial point for the performance to expect and indeed interacts
with the structure of the search space. A too low degree of perturbation might not enable the
system to escape from local optima, while a too high degree results in a search behavior similar to
random restart LS (Blum and Roli, 2003).

Figure 26: Iterated Local Search (ILS) (Talbi, 2009)

5.5.2 Guided Local Search (GLS)

In contrast to other metaheuristics that simply use randomness to escape from local optima, GLS
exploits structural information of solutions obtained during search. GLS selects features present in
a local optimum and augments the objective function with penalties corresponding to the selected
features.

At the beginning all penalties are initialized to zero and whenever the search settles in a local
optimum, GLS increases the penalties for those features present in the current optimum. As a
result of the modified objective value worsened by feature penalties, the search leaves the current
optimum and moves to another, probably better one. The penalties are updated dynamically during
the search. Refer to Figure 27 for a graphical representation of the GLS concept; cf. (Blum and
Roli, 2003) for another picture.

In contrast to the majority of metaheuristics, the diversification process in GLS is directed and
deterministic rather than undirected and random (Voudouris et al., 2009); cf. (Blum and Roli,
2003; Talbi, 2009; Zäpfel et al., 2010). The critical point is to define the solution features that
capture important structural properties of the solutions.

Talbi (2009) gives pseudocode for GLS.

Figure 27: Guided Local Search (GLS) (Talbi, 2009)
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5.5.3 Simulated Annealing (SA)

SA basically performs in the same way as basic LS, but allows non-improving moves according
to a probability function (Marti and Reinelt, 2011). Improving solutions are always accepted,
while a fraction of non-improving solutions are accepted in order to escape from local optima. The
probability of accepting non-improving solutions depends on a temperature parameter decreasing
with each iteration (Nikolaev and Jacobson, 2009). The probability of accepting non-improving
moves depends on two factors: the degree of deterioration in terms of the objective value difference
and the temperature. The probability function combines the degree of deterioration and the
temperature: the higher the deterioration in the objective value, the lower the probability to accept
a non-improving move at a fixed temperature. Hereby, the probability of accepting worsened
solutions decreases with decreasing temperature controlled by the cooling schedule. In the beginning
of the search, the probability of accepting non-improving moves is high and thus permits the
exploration of the search space, but slowly decreases with ongoing search and finally leads the
search to converge to a (local) minimum (Blum and Roli, 2003). In the end, when the temperature
is adequately low, SA only allows improving moves and thus stops at a local optimum (Baghel
et al., 2012). See Figure 28 for a graphical example.

The SA method has two important control components: the acceptance probability function
deciding whether to accept a non-improving solution at a certain iteration or not and the cooling
schedule determining the temperature at each step (Talbi, 2009). The cooling schedule is a critical
issue to parametrize. If the cooling happens too rapid, i.e. the temperature almost immediately
approaches zero, non-improving moves become very unlikely and SA degrades to basic LS. On the
contrary, a too slow cooling schedule means that SA would undesirable perform similar to random
search in the beginning of the search (Zäpfel et al., 2010).

Alba (2005) describe parallel SA concepts. For pseudocodes see (Talbi, 2009; Zäpfel et al., 2010;
Zomaya and Kazman, 2010).

Figure 28: Simulated Annealing (SA) (Talbi, 2009)

5.5.4 Threshold Accepting (TA)

TA may be viewed as the deterministic variant of SA. TA allows non-improving moves in a sense
that an accepted solution in each step is not worse than the current solution by more than a given
threshold. The threshold parameter, corresponding to the temperature in SA, is updated following
an annealing schedule decreasing the threshold with the number of iterations performed during the
search (Talbi, 2009).

The threshold value is used to decide whether worse solutions are accepted or not. By accepting
deteriorations in solution quality, an LS algorithm becomes capable of leaving local optima in order
to find new (better) ones (Zäpfel et al., 2010).

It is said that TA performs faster than SA, because TA is not burdened by the generation of
random numbers and exponential functions, which are used to decide for or against accepting a
worsened solution within the SA concept (Talbi, 2009).

Talbi (2009) and Zäpfel et al. (2010) present pseudocodes for TA.
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5.5.5 Tabu Search (TS)

TS basically employs best-improvement LS enhanced with a memory structure, accepting non-
improving solutions in order to escape from local optima. The characteristic feature of TS is the
use of memory.

TS performs almost identical to basic LS, moving from one improving solution to the next
until a local optimum is reached. When the deterministic LS ends up with a local optimum, TS
allows a non-improving move by selecting the best solution out of all non-improving solutions in
the local optimums neighborhood previously investigated by best-improvement LS. It cannot be
excluded that this strategy generates cycles in a sense that previous visited solutions are selected
again. Therefore, TS memorizes the recent search trajectory and discards the neighbors that have
been previously visited, forcing the search to explore the search space beyond the area in vicinity
of the local optimum visited as last (Talbi, 2009). TS updates the memory (tabu list) with recently
considered solutions and refuses the search to return until they are sufficiently far in the past (Luke,
2009). The search terminates if a stopping criterion is met or if all the solutions in the current
neighborhood are forbidden by the tabu list (Blum and Roli, 2003).

Depending on the tabu list length, TS can be time and space consuming, since storing all
visited solutions needs space and checking the tabu list in every cycle requires time (Talbi, 2009).
The length of the tabu list is the important control parameter. Small tabu lists let the search
concentrate on small areas of the search space, whereas large tabu lists force the search to explore
larger regions of the search space (Blum and Roli, 2003).

To generalize memory-based methods, the term Adaptive Memory Programming (AMP) de-
scribes methods that use advanced memory strategies to guide a search. In this context, TS is
covered by AMP (Marti et al., 2013).

In (Talbi, 2009; Zäpfel et al., 2010) one will find pseudocodes for the TS algorithm. Alba (2005)
describe approaches for its parallelization.

5.5.6 Variable Neighborhood Search (VNS)

VNS was first mentioned in (Mladenović and Hansen, 1997) and then examined in different
variants in (Hansen and Mladenović, 2001, 2003; Hansen et al., 2001, 2009). The basic idea
behind is a systematic change of the neighborhood during the search, typically established in two
alternating search phases, a descent LS phase and a randomized perturbation phase (shaking).
This introductory definition holds for the basic VNS scheme and the general VNS scheme discussed
later. In compliance with the concept of intensification and diversification, VNS basically exploits
deterministic LS in a descent phase investigating local optima, whereas the perturbation phase
employs randomness in order to escape from the corresponding valley (Hansen et al., 2009).

According to (Hansen et al., 2009), VNS is based on three simple facts: a) a local minimum
with respect to one particular neighborhood structure is not necessarily so for another, b) a global
minimum is a local minimum with respect to all possible neighborhood structures, and c) for many
problems, local minima with respect to one or several neighborhoods are relatively close to each
other.

Section 8.3 deals with experiments investigating different VNS variants with varying settings in
order to determine favorable method settings.

Variants The concept of VNS is reflected in four basic variants: a) Variable Neighborhood Descent
(VND), b) Reduced Variable Neighborhood Search (RVNS), c) Basic Variable Neighborhood Search
(BVNS), and d) General Variable Neighborhood Search (GVNS) (Hansen and Mladenović, 2003;
Hansen et al., 2009).

In the concept of VNS, VND and RVNS are considered as the basic building blocks, whereas
BVNS and GVNS describe more sophisticated two-level compositions of them. VND is designed as
a deterministic LS scheme aimed on intensification. It is used in the descent search phase of GVNS.
In contrast, RVNS is entirely stochastic aiming for diversification and establishing the randomized
perturbation phase (shaking) in GVNS and BVNS. Despite of their simplicity, both VND and
RVNS justify to be applied as independent search methods.

Beyond the four basic schemes (VND, RVNS, BVNS and GVNS), especially for solving large
problem instances, extensions have been proposed, in particular Skewed Variable Neighborhood
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Search (SVNS) and Variable Neighborhood Decomposition Search (VNDS). VNDS describes a
two-level search scheme enhanced through decomposition, aimed at increasing the precision and
at reducing the solution time for decomposable problems. SVNS is designed to efficiently explore
valleys far from the incumbent solution, employing a concept for distances between solutions
(Hansen and Mladenović, 2001).

In this context, Pisinger and Ropke (2009) propose Large Neighborhood Search (LNS), which
belongs to the class of Very Large Scale Neighborhood Search (VLSN) algorithms. VLSN algorithms
are based on the observation that searching a large neighborhood results in finding local optima
of high quality compared to the search in smaller neighborhoods. Indeed, searching a large
neighborhood is time consuming and hence various filtering techniques are used to limit the search.
In LNS the neighborhoods are implicitly defined by methods (often heuristics), used to gradually
improve an initial solution by alternately destroying and repairing the incumbent solution.

For a parallel design of VNS see (Alba, 2005).
Refer to Figure 29 visualizing the basic concept of VNS.

Figure 29: Variable neighborhood Search (Talbi, 2009)

5.5.7 Greedy Randomized Adaptive Search Procedure (GRASP)

GRASP is a multi-start metaheuristic consisting of two phases: construction and LS. Beginning
with a randomized construction phase building a feasible solution, LS investigates its neighborhood
in the second phase until a local minimum is found. The best solution among all multi-start
iterations is kept as the final result (Feo and Resende, 1995; Resende and Ribeiro, 2003).

Talbi (2009) notices that the search iterations are completely independent from each other
and hence there is no search memory as in TS; cf. (Baghel et al., 2012). One will find annotated
bibliographies of the GRASP literature in (Festa and Resende, 2002, 2009b,a).

Typical for construction algorithms, GRASP starts from an empty solution. The construction
phase builds an initial solution by iteratively adding partial solution components, selected from
a Restricted Candidate List (RCL) in each iteration. The construction phase is characterized by
both a greedy and a probabilistic aspect. The greedy aspect manifests itself in the way the RCL is
created/updated in every construction step. The probabilistic aspect corresponds to the selection
strategy, randomly choosing a partial solution element from the RCL in each step. In each step
of the construction phase, the RCL is formed by the set of the remaining solution components
ranked according to a greedy evaluation function, which is usually a simple heuristic incorporating
problem-specific knowledge. The solution element that is finally used to extend the existing partial
solution is then chosen randomly from the RCL. The construction phase plays an essential role in
creating biased starting solutions of high-quality for the LS (Resende and Ribeiro, 2009).

The length of the RCL is an important control parameter, determining the degree of variation
established in the construction phase. In the case that the RCL length equals one, the construction
phase would repeatedly return an identical solution entirely determined by the evaluation function
used to update the RCL. Considerably too long RCL length would degrade GRASP to a simple
random-restart LS procedure (Zäpfel et al., 2010).

The neighborhood search in the LS phase may be implemented using either a best-improving
or a first-improving strategy. It was observed that quite often both strategies lead to the same
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final solution, whereas the first-improving strategy requires smaller computation times. In addition,
that best-improving strategy tends to converge to bad local optima in early phases of the search
(Resende and Ribeiro, 2009).

For GRASP pseudocodes see (Feo and Resende, 1995; Resende and Ribeiro, 2009; Talbi, 2009;
Zäpfel et al., 2010). Alba (2005) discuss parallel GRASP.

5.6 Population-Based Methods

In contrast to trajectory methods based on a single-solution, population-based methods iteratively
operate on a set of numerous solutions, improving the solution set usually referred to as population.
As they deal with a population of solutions in each iteration, they provide a natural, intrinsic way for
the exploration of the search space (Blum and Roli, 2003). Similarly, Talbi (2009) also emphasizes
that that population-based metaheuristics in comparison to trajectory methods generally show a
higher affinity to diversication. There is a characterizing feature of population-based methods that
makes them differ from parallelized trajectory methods: the solutions within a population usually
affect each other while the search progresses (Luke, 2009).

EC covers a popular set of population-based metaheuristics, jointly characterized by the
underlying idea to adapt principles from genetics and evolution in biology. An algorithm belonging
to EC is referred to as EA. The GA is probably the most popular among them (Luke, 2009). Beyond
EC, the class of population-based metaheuristics also covers a) ACO, b) PSO, c) SS, d) Bee Colony
Optimization (BCO), e) Estimation of Distribution Algorithms (EDAs), and f) AISs (Blum and
Roli, 2003); cf. (Talbi, 2009; Baghel et al., 2012). As the method’s names indicate, nature-inspired
approaches play a predominant role in the class of population-based metaheuristics.

The following sections are devoted to EAs, ACO, PSO, and SS. Since BCO, EDAs, and AISs
are not covered in the next sections, the reader is referred to (Teodorovic, 2009) for BCO, to (Blum
and Roli, 2003) for EDAs, and to (Greensmith et al., 2009) for AISs.

Swarm Intelligence (SI) In this context, Swarm Intelligence (SI) is often discussed in connection
with a considerable amount of population-based methods, emphasizing the idea of producing
computational intelligence by adapting concepts of social interaction in swarms that exist in nature
(Boussäıd et al., 2013). A swarm is considered as a group of cooperating individuals/agents with a
certain behavioral pattern to achieve some goal(s). The most discussed SI models include ACO and
PSO. SI models exhibit three general properties: a) each entity of the swarm is made of a simple
agent, b) communication among agents is generally indirect and short, c) cooperation among agents
is realized in a distributed manner without a centralized control mechanism (Lim et al., 2009). For
more thorough descriptions and recent innovations in SI see (Bonabeau et al., 1999; Lim and Jain,
2009).

5.6.1 Evolutionary Computation (EC)

EC employs the theory of evolution in nature as an algorithm. EC basically covers a) GAs, b) EP,
c) ESs, and d) GP (Ashlock, 2006); cf. (de Jong et al., 1997; Bäck, 1997a; Blum and Roli, 2003;
Talbi, 2009; Marti and Reinelt, 2011).

An algorithm belonging to EC is referred to as EA. In EC the set of solutions is referred to as
population. A single solution is called individual. Recombined individuals are known as parents
and the resulting individual is called offspring or child (Zäpfel et al., 2010).

EC is inspired by the concept of evolution, nature’s capability to evolve living beings well
adapted to their environment. At each iteration/generation, EAs apply a number of operators to
the individuals of the current population in order to generate the individuals of the next generation’s
population (reproduction). There exist two types of operators used to generate new individuals:
recombination and mutation operators. The driving force in EC is given by appropriate selection
and replacement strategies, preferring individuals with a higher fitness (solutions with better
objective values). The fitter the individual, the higher is the probability to be chosen as a member
of the next generation’s population. This notion of competition corresponds to the principle of
survival of the fittest in natural evolution (Blum and Roli, 2003). The basic procedure that produces
a new population in each generation is visualized in Figure 30.
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The main search components for designing an evolutionary algorithm are as follows: a) repre-
sentation, b) population initialization, c) objective function, d) selection strategy, e) reproduction
strategy, f) replacement strategy, and g) stopping criteria (Talbi, 2009).

For more thorough insights into EC see (Bäck, 1997a; Ashlock, 2006; Lachowicz and Miekisz,
2009), whereas Ashlock (2006) gives a pseudocode for EAs among others. For recent surveys and
thorough descriptions of EC with focus on multi-objective optimization see (Coello Coello, 1998a,b,
1999; Zitzler et al., 2001; Ghosh and Dehuri, 2004; Obayashi, 2007; Zhou et al., 2011). Alba (2005)
describe parallel models of EAs.

Figure 30: A generation in Evolutionary Algorithms (Talbi, 2009)

Evolutionary Programming (EP) EP was originally proposed to operate on discrete rep-
resentations of finite state machines, but most of the present variants are used for continuous
optimization problems (Blum and Roli, 2003). The common idea behind EP, as in ES, is to use
mutation and selection, without employing recombination (Reeves, 2009); cf. (Bäck, 1997a; Porto,
1997). This emphasis on mutation operations generates diversity among the population of solutions,
prevents entrapment in local minima, and maintains a high degree of correlation between parent
and offspring behavior (Porto, 1997). In contrast to GAs, waiving recombination operators in the
concept of EP basically stems from the realization that a sum of optimal parts rarely leads to
an optimal overall solution. EP (and ESs) allow(s) for simultaneous modification of all decision
variables by mutation at the same time (Porto, 1997).

Evolutionary Strategies (ESs) As EP, most variants of ESs are used for continuous optimiza-
tion problems (Blum and Roli, 2003). In contrast to GAs, the traditional ES does not make use of
recombination, instead they only use mutation for reproduction (Zäpfel et al., 2010); cf. (Reeves,
2009). Underpinned by the facts that the ES exclusively relies on mutation and initially even did
not use a population of solutions, the idea behind ESs is generally closer in concept to neighborhood
search methods, respectively variants of LS (Reeves, 2009). Another specificity is given by the
selection operator that is originally deterministic. In addition, a distinguishing characteristic is
that ESs also evolve control parameters in a kind of self-adaptation during the search process
(Bäck, 1997a); cf. (Talbi, 2009). Since they are originally designed for continuous optimization
problems, the self-adapting behavior automatically adjusts the step widths that determine the
amount of variation of the parameters during the search (Zäpfel et al., 2010). Rudolph (1997) gives
a pseudocode for ESs and Alba (2005) describe parallel variants.

Genetic Algorithms (GA) GAs are originally proposed and mainly applied to solve COPs
(Blum and Roli, 2003). It is fair to say that GAs are probably the most discussed methods in the
area of EC and encapsulate the most important concepts present in EC (Reeves, 2009). The concept
of GAs is characterized by a strong emphasis on recombination as the most important search
operator, whereas mutation is used with small probabilities in order to modify the individuals only
slightly. The selection operator is usually stochastic. GAs often rely on a binary representation
of individuals (Bäck, 1997a). This emphasis on recombination draws contrast to the concepts
of EP and ES (Reeves, 2009); cf. (Eshelman, 1997). GAs usually use a probabilistic selection
operator that is originally the proportional selection (Talbi, 2009). In the concept of GAs an
individual representing a solution is usually encoded as a string, which is originally of binary form
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(Reeves, 2009). It turned out that the binary encoding is impractical for many problems and the
solution representation has been extended to include character based encoding, real-valued encoding,
and even tree representations (Marti and Reinelt, 2011); cf. (Eshelman, 1997). In addition to
common EA parameters (population size, initialization methods, fitness definition, selection and
replacement strategies, and recombination and mutation operators), recent approaches employ
additional information, e.g. the aging of individuals (Reeves, 2009). For GA pseudocode examples
see (Eshelman, 1997; Reeves, 2009; Zäpfel et al., 2010). Alba (2005) investigates parallel GAs.

Genetic Programming (GP) The central idea of GP is to employ concepts of EC for automat-
ically evolving executable computer programs (Langdon et al., 2009). In contrast to other EAs, in
GP the evolving individuals are themselves programs that solve a given task. The theory of GP is
considerably less developed than in ES and GA (Talbi, 2009). An individual in GP that represents
the program to evolve is usually expressed as syntax tree rather than as lines of code. The variables
and constants in the program to evolve are leaves of the tree, called terminals, whereas arithmetic
operations are internal nodes of the tree, referred to as functions (Langdon et al., 2009). The
major difference to other EAs is that the population and the individuals are stored in variable-sized
trees (Ashlock, 2006). In GP evaluating the fitness of an individual means to execute the evolved
computer programs in order to determine their quality with respect to a given task (Kinnear et al.,
1997). Langdon et al. (2009) give a GP pseudocode and Alba (2005) deal with parallel GP.

Meta-Evolutionary Approach For the design of a particular EA various control parameters
need to be defined, i.e. population size, initialization methods, fitness definition, selection and
replacement strategies, and recombination and mutation (Reeves, 2009); cf. (Talbi, 2009).

Freisleben (1997) mentions a meta-evolutionary approach, describing a two-level concept in
which a meta-level EA operates on a population of base-level EAs solving the problem at hand.
The idea behind is to use a meta-level EA that determines the best settings for the base-level EAs.
More in general and not exclusively linked to EAs, this approach is also combined with the term
hyper-heuristics.

5.6.2 Ant Colony Optimization (ACO)

ACO is inspired from the foraging behavior of real ants, which indirectly communicate with each
other via pheromone trails (Dorigo and Blum, 2005). The ACO concepts stems from the observation
that an ant colony is able to discover the shortest path to locations of food sources in vicinity of
their nest, even in complex scenarios with multiple paths. Despite of the fact that an individual ant
has very limited skills, the whole ant colony successfully copes with the task of finding the shortest
paths to food sources, enabled by a cooperation that is characteristic to SI (Zäpfel et al., 2010).

The ACO is considered as a distributed, stochastic search method based on the indirect
communication of a colony of (artificial) ants, mediated by (artificial) pheromone trails. ACO is a
population-based metaheuristic with single individuals (ants) that use a probabilistic construction
scheme to create solutions, while exploiting an indirect form of memory of previous performance.
In particular, the iteratively modified pheromone trails reflecting the ants search experience are
used to probabilistically construct solutions (Dorigo and Stützle, 2004).

The randomized construction heuristic implemented in ACO makes probabilistic decisions
as a function of some heuristic information about the problem instance and the dynamically
acquired search experience (memory) in terms of artificial pheromone trails. In contrast to other
construction methods (GRASP), ACO employs a cumulated search experience for constructing
solutions. Facilitating diversification, a stochastic component in ACO enables the ants to build a
wide variety of different solutions compared greedy construction heuristics (Dorigo and Stützle,
2009).

The use of ACO is particularly proposed to solve NP-hard problems, dynamic shortest-path
problems, and problems in which the computational architecture is spatially distributed (Dorigo
and Stützle, 2004). Dorigo and Stützle (2009) list numerous ACO applications.

Dorigo and Stützle (2009) point out that coupling ACO with LS algorithms improves ACO’s
performance as the two approaches perform complementary. On one hand, ACO serves as a
generator for appropriate initial solutions for LS algorithms. On the other hand, the improved
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results by LS are used to enhance the search experience (pheromone trails), which in turn facilitates
the construction of new initial solutions. Neumann et al. (2009) also discuss ACO’s hybridization
with LS.

For ACO-pseudocode see (Dorigo and Blum, 2005; Dorigo and Stützle, 2009; Talbi, 2009; Zäpfel
et al., 2010). Alba (2005) investigate parallel ACO concepts.

5.6.3 Particle Swarm Optimization (PSO)

PSO is another stochastic population-based metaheuristic inspired from SI, characterized by a
coordinated behavior using local movements emerges without any central control (Talbi, 2009).
PSO is a stochastic optimization technique similar to EC, but unlike EAs, PSO does not utilize
recombination, mutation or selection for producing new solutions. Instead, PSO establishes a form
of directed modification in response to new discoveries about the search space, while maintaining a
single static set of solutions (Luke, 2009); cf. (Lim et al., 2009).

Initially, a set of solutions is randomly distributed in the search space, also referred to as particle
swarm. Every particle knows a) its actual value determined by an objective function, b) its own
best objective value from history (locally best solution), c) the best objective value of the whole
swarm (globally best solution) and d) its own velocity (Zäpfel et al., 2010); cf. (Baghel et al., 2012).
In each iteration cycle of the search, every particle is modified under consideration of its actual
objective value, its locally best solution, the globally best solution, its own velocity, and a bit of
random noise (Luke, 2009). Consequently, the entire swarm moves in the direction of the globally
best value, and thus explores the solution space in a directed fashion (Zäpfel et al., 2010). Figure 31
visualizes the described concept.

PSO is explicitly proposed for multi-modal problems, whereas the search space has multiple
global optima or one global optimum with many local optima (Barrera and Coello Coello, 2009). But
originally, PSO was designed to solve continuous optimization problems (Talbi, 2009). Reyes-Sierra
and Coello Coello (2006) present a survey on PSO solving problems with multiple objectives. Talbi
(2009) presents a pseudocode.

Figure 31: Particle Swarm Optimization (PSO) (Talbi, 2009)

5.6.4 Scatter Search (SS)

SS is a population-based metaheuristic operating on a set of solutions setting emphasis on re-
combination. SS was first introduced as a heuristic for IP problems (Marti and Reinelt, 2011).
According to related EC/OR literature, SS is not covered by EC, but nevertheless considered as an
evolutionary metaheuristic that employs deterministic recombination in a population of solutions
in order to obtain better solutions (Resende et al., 2009). The specificity of SS is to establish a
balance between diversification and intensification by explicitly controlling the diversity of the
population (Zäpfel et al., 2010).

In contrast to EAs that generally employ randomization to establish diversification, SS relies on
the premise that a systematic design for creating new solutions is generally superior to randomness;
and thus SS makes only limited use of randomization. The quality of a particular solution
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is determined by its objective value and by its degree of diversity (Resende et al., 2009); cf.
(Luke, 2009). The generalized form of SS is called Path Relinking providing unifying principles
for recombining solutions based on generalized path constructions (Blum and Roli, 2003). For
pseudocodes see (Talbi, 2009; Zäpfel et al., 2010) and for parallel approaches (Alba, 2005).

5.7 Benchmarking

Benchmarking stands for comparing the performance of different solution methods by use of
(publicly) available sets of instances of a certain optimization problem, referred to as benchmarks.
The use of identical problem instances allows comparing the solution quality gained by different
methods in different technical environments (hardware and/or software). When comparing a new
metaheuristic to existing ones, it is advantageous to test on the problem instances already tested
by previous papers (Silberholz and Golden, 2009).

Comparing metaheuristics may include numerous performance indicators that may be grouped
into the following categories: a) solution quality, b) computational effort, c) robustness. d) simplicity
(Talbi, 2009). Depending on the specific use case, the solution quality (effectiveness) and the
computational effort (efficiency) are probably the most important indicators for the performance
of (meta)heuristics. Beyond those, in the second line, development cost, ease of use, flexibility
(wide applicability) and maintainability may be considered as additional indicators evaluating
metaheuristics (Talbi, 2009).

Solution Quality The solution quality of a heuristic is determined by comparing its solution
for a certain problem instance with another solution obtained by another method (for the same
instance). Basically, there exist four types of solutions compared with each other: a) the optimum
solution, b) a lower/upper bound, c) the best known solution, or d) the actual implemented solution.

If an optimal solution is available, it is obviously reasonable to use it as the reference. If no
optimal solution is available, then lower/upper bounds may serve as reference. And in those cases
where neither the global optimum is known nor a lower/upper bound exists, the comparison is
performed with the best solution known to this date. The best known solutions may be obtained
by other heuristics or by truncated exact methods. Another option is to simply use the solution
that is currently implemented in order to determine the quality of the method under study (Talbi,
2009); cf. (Marti and Reinelt, 2011). Refer to Figure 32 that shows the gaps to optimize.

Figure 32: Four types of solutions used for benchmarking (Talbi, 2009)

Computational Effort The computational effort needs to be spend to reach a certain level
of solution quality and is the second important performance measure beside the solution quality
itself; cf. (Silberholz and Golden, 2009). At the same time, run time comparisons are some of
the most difficult comparisons to make. Measuring computation times is critical due to the fact
that the measurements depend on the characteristics of the underlying experimental system, e.g.
a) the hardware involved, b) the operating system, c) the programming language of choice, and
d) the compiler (options) used for executing the code. For that reason it might be more suitable in
certain situations to use computer system independent performance measures, such as the number
of objective function evaluations (Talbi, 2009). Based on computing time measurements it is
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possible to experimentally determine the convergence speed of heuristics in order to facilitate the
development of heuristics that gain high improvements in very short time. Ovacik and Uzsoy
(1995) discuss the trade-off between solution quality and computation time.

Robustness Robustness describes the (in)sensitivity of the obtained solutions to input variable
changes that occur after the solution has been found. Robust algorithms lead to stable solutions with
low variability for optimization problems with such uncertainties, e.g. changes in input variables
slightly modifying the original problem Another view on robustness is particularly concerned
with non-deterministic search methods that employ randomness in their strategies (stochastic
search). Since the obtained solutions may vary for identical instances, in this context, robustness
indicates a low level of deviation over different runs of the algorithm on the same instance (Talbi,
2009). Greenberg and Morrison (2008) investigate problems and strategies in the area of robust
optimization more thoroughly.

Simplicity The simplest solution is most often the best. This statement in general holds for
the development of software systems and in particular for the design of metaheuristic algorithms.
Simpler algorithms are easier to implement, maintain, adapt, explain and analyze (Silberholz and
Golden, 2009). Indeed, simplicity results in lower susceptibility to errors. Silberholz and Golden
(2009) mention the steps of the pseudocode or the lines of the written code as reasonable metrics,
but argues they depend on the used language and the author’s style. Another metric describing the
complexity of an algorithm is the number of parameters used to set up the method.

5.7.1 Benchmark Results for Example Problems

This section exemplary cites the results reported for three problem types among many others. It
can be summarized that among the mentioned benchmark studies no generally superior search
scheme emerges. However, with respect to a particular problem class, researchers report about the
differences among their tested implementations of common search schemes.

For the NP-hard linear ordering problem (LOP), Marti and Reinelt (2011) and Marti et al.
(2012) compare the performance of TS, a memetic algorithm, VNS, SA, SS, GRASP, a GA, and
ILS. They observe the best performance for the memetic algorithm, ILS and TS and an acceptable
performance for VNS, SS, GRASP, while SA and the GA are classified as poor.

Based on a single-machine scheduling problem, Ibaraki (1997) compares the performance of
a GA, genetic LS, multi-start LS, GRASP, SA, and TS. Ibaraki (1997) observes that genetic LS
is much more efficient than GA. Further, genetic LS, GRASP, SA, and TS behave more or less
similarly and genetic LS and SA perform slightly better than TS and GRASP.

Hansen and Mladenović (2001) present a comparison between GRASP, VNS and TS for a
variant of the SAT problem. They observe that VNS and TS perform better than GRASP and TS
does slightly better than basic VNS.

Azimi (2004) examine timetabling problems, comparing SA, TS, GAs and ACO with each other.
They find that ACO works better on these problems.

Durillo et al. (2010) analyze the convergence speed of seven state-of-the-art metaheuristics for
multi-objective benchmark problems. Among those studied methods, one will can find PSO, GA
and SS. The results show that PSO is among the most promising approaches to deal with.

5.7.2 No-Free-Lunch Theorems (NFLTs)

Wolpert and Macready (1997) introduce the NFLTs roughly saying that the average performance of
any pair of algorithms across all possible problems is identical, even if one of them is random search.
The NFLTs can be visualized with a matrix in which the rows represent problems, the columns stand
for search strategies and the entries describe the performance of the strategies over the problems.
Basically NFLTs dictate that all rows have the same average (Ho and Pepyne, 2001). Wolpert and
Macready (1997) demonstrate the danger of comparing algorithms by their performance on a small
sample of problems and emphasize the importance of incorporating problem-specific knowledge
into search schemes. Ho and Pepyne (2001) point out that specializing search algorithms to the
landscape structure of the focused problem class is the only way one strategy can outperform
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another. Many studies on the analysis of landscapes of different optimization problems have shown
that not only different problems correspond to different structures but also different instances of
the same problem (Talbi, 2009).

5.7.3 Comparative Testing

The dominant procedure in developing new search methods in OR is comparative/competitive
testing. A new search strategy or a modification of an existing strategy is implemented and the
resulting performance is compared with that of existing algorithms. Most researchers typically
focus on demonstrating rather than analyzing algorithm performance in their work (Watson, 2009).
As a result, the conditions that cause good or worse solutions often remain unclear. However, the
improved algorithm’s performance observed in experiments is usually ascribed to the enhancements
made to the algorithm. Since there is no proof for this causal relationship, according to Watson
(2009), it cannot be ruled out that the observed increase in improvement is probably a result of
a) the fine tuning of the algorithm or associated parameters, b) implementation tricks, or c) flaws
in the comparative methodology. In the same line Hooker (1995) argues that the strategy of
competitive testing lacks deeper insights about cause-effect relationships between an algorithm and
its performance. And more clearly, Cohen (1995) states that explaining the performance is better
than demonstrating performance.
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Scheduling is a decision-making process that deals with the allocation of resources to tasks over
given time periods and its goal is to optimize one or more objectives (Pinedo, 2005, 2008); cf.
(T’kindt and Billaut, 2006) for alternative definitions of the scheduling paradigm.

Generally, batching problems can be seen as a combination of sequencing and partitioning
problems. On one hand, the aspect of partitioning notes the task to find a partition of jobs into
batches. On the other hand, the aspect of sequencing states the task to find a sequence of batches
(Albers and Brucker, 1993). Brucker (2007) defines a parallel batch as a grouped set of jobs jointly
processed on the same machine. There exist two types of process batches: serial batches and
parallel batches. The abbreviations s− batch for serial batching and p− batch for parallel batching
have emerged to widely accepted notions for batching problems in scheduling literature (Brucker,
2007).

A serial process batch refers to a sequence of single jobs that belong to the same process family.
The jobs are produced serially (one at a time) on the workstation, which changes over to the next
process family after finishing the last job of the current serial batch and before producing the first
job of the next serial batch. The concept of serial batching reflects the fact that changing the
setup of a workstation from one family to another may take some time, i.e. idle time in which the
machine is unavailable for production. The size of a serial batch is naturally unlimited (Brucker,
2007); cf. (Hopp and Spearman, 2001; Leung, 2004; Pinedo, 2005, 2008; T’kindt and Billaut, 2006).

It is distinguished between bounded and unbounded batching problems within the class of
p − batch problems. The maximum size of a batch is commonly denoted with the parameter b,
whereas the bounded case is denoted with b < n and b = ∞ refers to the unbounded case. The
bounded case b < n refers to those batching problems in which the batch size is limited by the
machine capacity. The unbounded (easier) case b =∞ does not define a limit on the batch size
and usually occurs when the size of the jobs is very small compared to the capacity of the machine.
The notion b = 1 refers to a conventional scheduling environment without batching, i.e. a machine
with unit capacity (Leung, 2004; Pinedo, 2005, 2008; T’kindt and Billaut, 2006).

Typical Use Cases The majority of BPMs performs heat treat operations, simultaneously
exposing a number of material items to high temperature in a type of furnace for several hours; cf.
(Hopp and Spearman, 2001; Leung, 2004; Pinedo, 2005, 2008; T’kindt and Billaut, 2006).

With the focus on waferfabs, there exist two predominant bounded p − batch scheduling
problems: frontend diffusion/oxidation operations and backend burn-in operations. However,
bounded p − batch problems can also be found in deposition processes and cleaning operations
(Mönch et al., 2011a).

Diffusion and oxidation operations in the waferfab frontends are typical p− batch scheduling
problems. The wafers of usually six to twelve jobs jointly undergo a diffusion/oxidation process
in a cylindrical reactor. Once the process has been started, no jobs can be removed or added
until the processing is completed, i.e. no preemption is allowed. The diffusion/oxidation process
is characterized by the existence of incompatible families: jobs that belong to different families,
also called recipes, cannot be processed together. The process time of the batch is given by the job
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family (recipe). Consequently all jobs of the same family require the same processing time. The
batch scheduling problems present in the oxidation/diffusion area usually deal with incompatible
job families where all jobs of the same family (recipe) have identical processing times (Mathirajan
and Sivakumar, 2006b); cf. (Chandru et al., 1993b; Uzsoy, 1995; Ghosh and Gupta, 1997; Mehta
and Uzsoy, 1998).

Another typical p− batch scheduling problem is given by burn-in operations in the waferfab
backends. The IC chips are loaded onto boards, placed in an oven and then stressed electrically
and thermally in order to force the failure of weak or fragile devices. The burn-operation in the
waferfab backends is characterized by the existence of non-identical job sizes. Depending on the
product type, the jobs may require a different number of boards that define the size of the job. The
capacity of the oven is given by the maximum number of boards it can accommodate. In addition,
the boards are often product-specific and therefore of a kind of limited secondary resource. Each
IC chip has a minimum burn-in time, and the processing time of the entire batch is given by the
longest minimum burn-in time among all the jobs in the batch. Batching jobs of different product
types is usually allowed since an IC chip may be longer exposed to the process than specified with
the minimum burn-in time. Similar to the diffusion process, preemption is usually not allowed
(Mathirajan and Sivakumar, 2006b); cf. (Uzsoy, 1994; Jolai Ghazvini and Dupont, 1998; Kempf
et al., 1998).

Scheduling Models Pinedo (2004, 2005, 2008) identifies three types of scheduling problems:
a) offline deterministic scheduling, b) stochastic scheduling, and c) onl-ine deterministic scheduling.
(Pinedo, 2004, 2005, 2008) first and foremost distinguishes between deterministic scheduling and
stochastic scheduling. Deterministic scheduling is then further divided into offline deterministic
and online deterministic scheduling problems.

Stochastic scheduling refers to models used to evaluate simple heuristics, e.g. relatively simple
priority or dispatching rules, suitable to provide immediate decisions in a real-time control system.
This type of scheduling model is also referred to as infinite horizon model, emphasizing the fact
that this model type is typically examined with a large number of jobs in the long run; cf. (Neale
and Duenyas, 2000; Tajan et al., 2012).

Deterministic scheduling models most often serve to evaluate the performance of optimization
methods in solving scheduling problems as a special form of COPs. Most of the research in
this area deals with polynomial time algorithms, complexity proofs, exact (usually enumerative)
algorithms, worst case analyses, heuristics, and metaheuristics (Pinedo, 2004, 2005, 2008). This
type of scheduling model is also referred to as finite horizon model, emphasizing the fact that this
model type is a priori limited in its run time by a (small) finite number of jobs indirectly; cf. (Neale
and Duenyas, 2000; Tajan et al., 2012).

The offline deterministic scheduling model presupposes that all information regarding the
problem is known a priori, i.e. before any decision is made. Given that all the problem data (e.g.
the number of jobs, processing times, release dates, due dates, weights, etc.) are known in advance,
the decision-making scheduling system seeks for a solution of a COP with the goal to minimize or
maximize an objective function.

The online deterministic scheduling paradigm prohibits any knowledge about the scheduling
problem at the outset. Neither knowledge about statistical distributions for processing times or job
arrivals nor the number of jobs that is going to be released is known in advance. The information
is released gradually to the decision-making scheduling system. The arrival of a job becomes known
when the job enters the system, that is when the job is presented to the decision-making system.
Depending on the model, the processing time either becomes known in the moment the job is
released or only when the job is completed (Pinedo, 2004, 2005, 2008).

Another variant of on-line scheduling is semi-online scheduling where some, but not all, infor-
mation regarding future job releases is known (Pinedo, 2008). This kind of online model is also
referred to as look-ahead model, which allows the semi-online algorithm to foresee a given number
of jobs before their actual arrivals (Li et al., 2012a).

Pruhs et al. (2004) further examine research in the area of online scheduling models. They
define three types: a) the online-time paradigm, b) the online-time-nonclairvoyance paradigm, and
c) the online-list paradigm.
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Scheduling Methods Dispatching systems set the de facto standard in the scheduling and
control of waferfabs (Mönch et al., 2011a); cf. (Leachman, 2002). In the past decades the standard
wisdom was that the use of optimization in dispatch applications is technically not feasible. Driven
by continuous improvements in computing power and algorithms this has begun to change (Fordyce
et al., 2008).

According to Hansen et al. (2009), the growing success of optimization methods is mainly a
result of: a) the progress in mathematical programming theory and algorithmic design, b) the
rapid improvements in computer performances, and c) a better communication of new ideas and
integration in widely used software.

A dispatching system typically employs a set of simple priority rules, which are continuously
further developed to complex rule-based decision systems that truly do a reasonable job. However,
compared to scheduling systems, dispatching systems based on rules fundamentally lack a robust
ability to: a) look across time, b) look across tools at a tool set, c) create an anticipated sequence of
events at a tool set over some time horizon, d) establish a formal metric, and e) search alternatives.
Especially the capability of optimization makes scheduling systems superior to dispatching systems,
respectively the ability to search alternatives combined with a formal metric in terms of an objective
function used to compare alternative decisions (Fordyce et al., 2008).

Most scheduling problems belong to the class of NP-hard problems for which it is widely accepted
that no optimal method with polynomial run time exists. The most obvious idea to solve a COP is
to just enumerate all feasible solutions. But due to the complexity of most COPs, a simple complete
enumeration will result in unacceptable high computing times. The challenge is to develop efficient
algorithms that perform better than a simple enumeration (Lee, 2004). See Section 6.3 for a review
of exact methods developed to optimally solve BPM scheduling problems. Since it is considered
as impossible to optimally solve NP-hard scheduling problems of a practical size in a reasonable
time, research with practical background focuses on approximate methods that can lead to feasible
schedules with an acceptable quality in considerable less time; cf. (Talbi, 2009).

In contrast to exact methods, approximate methods do not proof the optimality of the obtained
solutions. By not having the burden to proof optimality, approximate methods leave parts of the
state space unvisited and thus lead to near-optimal solutions in a reasonable time compared to
exact algorithms (Dorigo and Stützle, 2004; Talbi, 2009).

Especially for NP-hard problems, exact algorithms perform poor with respect to computing time.
Consequently, solving large instances with exact methods is practical impossible, i.e. would take
enormous amounts of time to obtain the optimal solution. Approximate methods trade optimality
for efficiency (Dorigo and Stützle, 2004); cf. (Talbi, 2009). Approximate methods can be further
divided into heuristics and approximation algorithms. See Section 6.4 for a review of approximation
algorithms developed for BPM scheduling problems.

Within the class of heuristics, it is basically distinguished between constructive heuristics
and search heuristics (Zäpfel et al., 2010); cf. (Talbi, 2009). Construction algorithms describe
an incremental procedure: starting from an empty initial solution, they iteratively add solution
components until a complete solution is obtained without any backtracking. Constructive heuristics
are usually problem-specific, non-iterative, and create one single solution by applying a set of rules
based on problem-specific knowledge. See Section 6.5 for a review of constructive heuristics applied
to BPM scheduling problems. This is the underlying concept of a typical dispatching system.

Search heuristics follow a certain search scheme that repeatedly examines many different
solutions for a given problem in order to find better solutions (Zäpfel et al., 2010); cf. (Talbi, 2009).
Search heuristics correspond to metaheuristics in a broader sense. Informally, a metaheuristic states
an algorithmic advancement of a simple heuristic, which is commonly defined as a rule of thumb
that leads to near-optimal solutions without complete knowledge of the problem. In contrast to
exact methods, metaheuristics lead to acceptable solutions in a reasonable time: solution quality
and computing time is generally not exactly defined, i.e. acceptable and reasonable (Talbi, 2009).
Metaheuristics primarily justify their use with a well-balanced performance characteristic that
describes a favorable trade-off between solution quality and computing time. See Section 6.6 for a
review of metaheuristics applied to BPM scheduling problems.

Reviews Leung (2004), Pinedo (2005, 2008), T’kindt and Billaut (2006) and Brucker (2007)
discuss the theory of scheduling profoundly. They give detailed explanations of scheduling algorithms
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and their applications in manufacturing. Potts and Strusevich (2009) explore the historical
developments in scheduling theory, reviewing 50 years of scheduling while highlighting the main
topics of scheduling research.

Uzsoy et al. (1992b, 1994) review research about shop-floor control and production planning in
semiconductor industry. Gupta et al. (2006) explore the role of operational planning and control of
semiconductor wafer production. More recently, Mönch et al. (2009, 2011a) review problems and
solution techniques in scheduling waferfab operations and point out future challenges.

Potts and van Wassenhove (1992) and Webster and Baker (1995) provide the first reviews about
batching problems, discussing early research in the field of batch scheduling theory with focus on
single-machine scheduling models. Potts and Kovalyov (2000) give an extended review of batching
problems in various machine environments and for several objectives, putting emphasis on complexity
results as well as on the efficiency and effectiveness of algorithms. Mathirajan and Sivakumar (2003)
especially review batch scheduling problems in semiconductor manufacturing, classifying batching
problems into 12 groups while distinguishing between stochastic and deterministic problems. They
refine their classification schemes and systematically organize the published articles in an updated
survey three years later (Mathirajan and Sivakumar, 2006b). Mönch et al. (2011a) briefly survey
parallel batching problems within a discussion about problems, solution techniques, and future
challenges in scheduling semiconductor manufacturing operations. Beyond semiconductor industries,
Méndez et al. (2006) discuss scheduling problems in batch plants, e.g. in a polymer batch plant
and a steel-making casting plant.

The following publications do not claim to provide a review but do review research related to
their works. Perez et al. (2005) present related works about batching problems with and without
incompatible families in different machine environments, i.e. single and parallel environments
among others. Koh et al. (2005) concentrate on BP problems with incompatible families and
different sizes in a single machine environment. Damodaran and Vélez-Gallego (2012) put emphasis
on parallel machine problems, considering incompatible families and different sizes in their review.
Chung and Jang (2009) and Gokhale and Mathirajan (2011, 2014) list batching problems in different
machine environments, considering unequal ready times and job sizes. Ozturk et al. (2012) present
an overview on single and parallel machine problems with and without release dates.

6.1 Scheduling and Control Systems

Depending on the focused time horizon, decision-making in manufacturing is generally organized in
three types of activities: a) planning for long terms (strategy), b) scheduling for medium terms
(tactic), and c) control for short terms (operation) (Hopp and Spearman, 2001); cf. (Uzsoy et al.,
1992b; Pinedo, 2005, 2008; Foote and Murty, 2008).

The exact definition of the time scale between long, medium and short terms differs depending
on the type of manufacturing. For a high-tech industry such as semiconductor industry it is
reasonable to define a) weeks as the long-term time scale (planning), b) hours as the middle-term
time scale (scheduling), and c) seconds as the short-term time scale (control). Based on this
refinement, control is concerned with immediate actions in real time, also referred to as real-time
control (Monfared and Yang, 2007); cf. (Hopp and Spearman, 2001). Refer to Figure 33 that shows
the time horizons for planning, scheduling and control functions.

Beyond the time horizon criterion and connected with it, uncertainty is another index of
differentiation between planning, scheduling and control. It is quite reasonable that uncertainty in
decisions increases with an increasing time horizon. Hence, control decisions are more certain than
the scheduling and planning decisions (Monfared and Yang, 2007). Méndez et al. (2006) note that
a critical issue is to guarantee consistency and optimality between these different decision levels.

The scope of this work excludes planning issues related to long terms and focus on scheduling
and control for medium and short terms with an emphasis on scheduling powered by optimization.
In particular this work examines the p− batch scheduling problem in the diffusion/oxidation area
addressed in a parallel machines environment. The focused problem is described in Section 1.2.

At any point in time, the decision-making system faces a COP to solve, which basically involves
three activities: a) batching, b) sequencing, and c) partitioning. The batching decision itself is a
partitioning problem, referring to the problem of finding groups of jobs to be processed together as
a batch. The sequencing problem asks for an optimal processing order of the jobs. In the case of
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minimum two idle machines, the sequencing problem is accompanied with a partitioning problem
asking for a proper mapping between the jobs and the machines. The COP in form of a scheduling
problem requires a solution in terms of a feasible schedule, i.e. a sequence of batches partitioned to
the machines, so that the schedule to be executed is optimal with respect to a defined objective
function.

Figure 33: Time horizons for planning, scheduling and control functions (Monfared and Yang, 2007)

Real-Time Control Systems A real-time control system continuously senses the system state
variables, deriving proper activities in real-time in order to keep the system running as desired
(Monfared and Yang, 2007). Decision-making and subsequent activity is either triggered by events
or by repeatedly checking the status of the system (polling), e.g. the machine status. Typically
more than one machine is available for processing each job, i.e. a set of parallel machines.

The standard strategy in waferfab dispatching systems is to use a round-robin procedure that
controls the machines. It breaks down the scheduling problem for a number of parallel machines to
a simpler single machine sequencing problem. The round-robin procedure cyclically checks idleness
of the machines and repeatedly selects the next job for processing according to an ordered list of
jobs as a result of a priority-based rule. Whenever a machine is ready for processing again, the
top-priority jobs are assigned to it.

The sequencing problem is tackled with priority-rules creating an ordered list of jobs sorted by
some defined job attributes (e.g. due date). The batching problem is most often indirectly solved
as a result of the sequencing decision in a sense that the top priority job defines the next batch
to process. Partitioning in terms of mapping jobs/batches to machines is basically an effect of
randomness and not explicitly controlled. A top-priority job in the first place of an ordered list
is simply assigned to the machine that first becomes free, i.e. first completes its current process.
If two idle machines are available, the round-robin procedure will determine which machine is to
choose. Refer to Figure 34 depicting an illustration of a working real-time control system.

Scheduling Systems The classical approach to scheduling comprises two activities in succession:
constructing the schedule and executing the schedule. The schedule is constructed before a work
period begins and then is automatically executed in the real world during that period. This approach
is also referred to as ”schedule, then execute” approach. The scheduling system is basically composed
of two independently acting sub-systems: The scheduling system that repeatedly generates an
optimized schedule and the execution system that derives activities from the schedule in order to
implement the schedule on the shop floor. Whenever a decision has to be taken, i.e. a machine
completes a process and is ready for production again, the upcoming decision is derived from the
schedule computed before. This approach is reasonable on a coarse time scale, since reports from
industries such as semiconductor fabrication estimate the effective useful life of a schedule as an
hour or less.

As time proceeds the shop floor state continuously changes with occurring events, resulting in
deviations between the initial schedule and the actual state of the shop floor. These deviations
make it impossible to execute the initial schedule any further. When applying a scheduling system
on the shop floor, the scheduling system repeatedly solves a deterministic scheduling problem
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Figure 34: Illustration of a working real-time control system (Monfared and Yang, 2007)

in order to constantly provide a feasible (up-to-date) schedule to be executed on the shop floor
(van Dyke Parunak, 1995). Refer to Figure 35 that visualizes the rolling horizon philosophy for
periodical rescheduling.

Figure 35: The rolling horizon philosophy for periodical rescheduling (Liao et al., 1996)

Rescheduling In an ideal scheduling environment the factory operations on the shop-floor follow
a valid and optimal schedule at any time. But in the real-world an optimal schedule is likely to
loose optimality or even becomes infeasible after it is constructed (i.e. when it gets online) due to
the fact that the manufacturing system changes continuously as time proceeds.

Monfared and Yang (2007) give examples of disturbances that trigger control, scheduling and
planning activities. Events that disturb control decisions may relate to late material arrival, varying
process times, or machine breakdowns among others. Events that detract schedules may refer to
new job arrivals, changes in due dates or priorities among others. Noack et al. (2011) analyze the
frequency of events in a 200 mm high-mix waferfab, e.g. reporting that an unscheduled machine
breakdown occurs every 6.6 minutes.
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The theoretical approach to scheduling is often not directly applicable due to the dynamic
characteristics of the actual situation: its applicability is limited to those situations that are
fundamentally static and behave exactly like the models (McKay et al., 1988).

Given that the period of time between generating and executing the schedule is not negligible,
the probability to process a schedule as exactly as planned is very low in the moment the schedule
has to be applied The quality of a schedule is valid before the schedule becomes online, but then the
problem is to maintain a feasible solution with a good quality. In such a context, it is required to
modify the proposed schedule in order to permanently provide a feasible solution at any time. This
is due to various sources of uncertainty we face in a real-world context, e.g. machines can break
down or processing times are not perfectly known, among many others (T’kindt and Billaut, 2006).

For the reason of simplication when creating a schedule, it is assumed that the situation on
the shop oor will remain unchanged throughout the entire time horizon. However, industrial
environments are typically highly dynamic and the proposed initial schedule can quickly become
infeasible after the occurrence of unforeseen events, e.g. machine breakdown/startup, changes in
resource availabilities, or changes in processing/setup times among many others (Méndez et al.,
2006).

Whenever a schedule becomes infeasible, the schedule needs to be constructed again in order to
maintain schedule feasibility. Rescheduling should be performed in a smooth way in a sense that
two consecutively constructed schedules share similarities in order to keep the impact of periodically
changing schedules on the shop floor manageable (Liao et al., 1996).

A certain level of stability and continuity improves building up confidence in the schedules
constructed for execution. A strategy to avoid time-expensive, full-scale rescheduling is to allow
only limited changes to the scheduling decisions already made at the beginning of the time horizon
(Méndez et al., 2006).

Rescheduling approaches in complex production systems address aspects of stability and real-
time control in order to regain feasibility and quality of deviated schedules in real-time without
affecting coordination problems on the shop floor (Dangelmaier et al., 2006, 2007). Refer to Figure 36
that visualizes the real-world state evolution and interaction with the rescheduling system.

Figure 36: Real-world state evolution and interaction with the rescheduling system (Dangelmaier
et al., 2007)

Robust Optimization It is a matter of fact that the quality of a schedule is valid before the
schedule becomes online and the problem is to maintain a feasible solution with a good quality
throughout its online status. A non-feasible schedule can be modified very quickly in real-time in
order to regain feasibility. But if the initial schedule is very sensitive to changes, the quality of the
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schedule may deteriorate remarkably. It is highly desired to construct robust schedules that are
not too sensitive to changes with respect to quality. In this context, the decision-maker tends to
search for a compromise between the quality and the robustness of a schedule.

The classical scheduling approach that does not take uncertainty into account and only aims on
quality is also referred to as a predictive scheduling approach. Scheduling approaches that explicitly
deal with uncertainties either belong to the class of proactive or reactive approaches. Proactive
approaches take knowledge of uncertainty into account when constructing a schedule. Reactive
approaches revise the schedule in real-time whenever the schedule is subject to unexpected events
(T’kindt and Billaut, 2006).

A relevant group in the research area that deals with optimization problems including uncertainty
in their models corresponds to the class of SCOPs. Bianchi et al. (2009) survey SCOPs that deal
with partially unknown problem data, i.e. with probability distributions as input data. Robust
optimization refers to problem solving with uncertainties, taking into account that a solution
remains acceptable after slight changes of the decision variable values (Talbi, 2009). Greenberg
and Morrison (2008) discuss robust optimization models, in particular the mean-risk model, the
recourse model, and the chance-constrained model.

6.2 Complexity Review

A significant amount of research in the area of complexity theory focuses on boundaries of polynomial
time and NP-hard problems. Scheduling theory seeks to define the borderline between the hardest
or the most general problems that still can be solved in polynomial time and the simplest or least
general problems that are NP-hard, either in the ordinary sense or strongly (i.e. under binary or
unary encoding) (Pinedo, 2008). The table in Appendix B provides an overview on the entire set of
p− batch problem variants and their complexity status.

Timkovsky (2004) identifies six complexity status results: a scheduling problem is either
a) polynomially solvable (is in P), b) pseudo-polynomially solvable, but neither polynomial solvability
nor NP-hardness is established, c) NP-hard, but neither pseudo-polynomial solvability nor strong
NP-hardness is established, d) ordinarily NP-hard, i.e. pseudo-polynomially solvable and NP-hard,
e) strongly NP-hard, or f) the complexity status is open.

Generally, complexity results of scheduling problems presume that the number of machines is
fixed. Based on this assumption, a polynomial algorithm runs in polynomial time with respect to
the number of jobs but is not necessarily polynomial in the number of machines. If a problem is
said to be NP-hard, either in the ordinary sense or strongly, then NP-hardness holds for a fixed
number of machines (Pinedo, 2008).

It is shown that slight modifications of a (batch) scheduling problem may turn NP-hardness
into polynomial solvability or vice versa (Albers and Brucker, 1993). There exist some common
simplifications in form of additional constraints that change the structure of a problem, which in
turn may change its complexity status. A scheduling problem in its general, unrestricted form
allows for arbitrarily set processing times, weights, due dates, release dates and other variables.
But processing times as well as other variables may be restricted, for example, in a sense that
all jobs have the same processing time. Identical processing times are then denoted with pj = p.
Similarly, it may be required that all jobs have the same weight (wj = w), due date (dj = d),
deadline (d̄j = d̄), and/or release date (rj = r). In these cases, it is said that the variable is
no longer arbitrary but common to all jobs. Another simplification is given by the constraint of
agreeable variables. For example, a scheduling problem with agreeable processing times and due
dates implies that the job with the smallest processing time also shows the smallest due date value,
i.e. pi < pj implies that di < dj (1 ≤ i < j ≤ n). These simplifications often have strong influence
on the complexity of a problem; cf. (Lawler, 1977; Graham et al., 1979; Leung, 2004; Pinedo, 2005,
2008).

Pinedo (2008) also states that models that are NP-hard in a deterministic setting often allow a
simple priority policy to be optimal in a stochastic setting.

Landmark Publications in Complexity Theory for Scheduling Important cornerstones
in complexity theory research and a remarkable number of complexity results known today is based
on the works of Lenstra et al. (1977), Lawler (1977), Garey and Johnson (1978) and Graham et al.
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(1979) who present landmark results in this field. Lenstra et al. (1977) are one of the first ones who
examine the complexity status of machine scheduling problems, presenting polynomial bounded
algorithms or establishing unary/binary NP-completeness for a number of basic scheduling problems.
In the same vein Lawler (1977) studies complexity results with focus on the encoding scheme,
presenting a pseudo-polynomial algorithm for sequencing jobs to minimize TT on a single machine
with unit capacity. Garey and Johnson (1978) provide a standard framework for stating and
proving strong NP-completeness results. Graham et al. (1979) give the first reviews on deterministic
scheduling problems, examining several basic problems and their complexity status.

Lageweg et al. (1982) describe a computer program that provides a record of the known
complexity results machine scheduling problems as a result of a listing of complexity results and
reduction rules.

Scheduling Complexity Reviews Potts and Strusevich (2009) review major research achieve-
ments in the first 50 years of scheduling, providing a chronological review of the most important
works in the development of scheduling algorithms. Chen et al. (1999) provide a detailed review of
machine scheduling, summarizing complexity results and algorithms for many scheduling problems.
Comprehensive studies in the area of scheduling in general can be found in (Leung, 2004; Pinedo,
2005, 2008; T’kindt and Billaut, 2006). Brucker and Knust (2014) maintain a continuously updated
webpage7 with complexity results of the most common machine scheduling problems.

Potts and van Wassenhove (1992) are one of the first ones who provide a review especially
for scheduling problems with a focus on complexity results. Nearly at the same time, Albers and
Brucker (1993) examine the complexity of one-machine batching problems. Potts and Kovalyov
(2000) provide a more recent review on complexity results for batch scheduling problems. Liu
(2007) studies many variants of bounded and unbounded batch scheduling problems with focus on
complexity results, also summarizing time complexities for bi-criterion scheduling on a single batch
machine.

6.2.1 Complexity Hierarchies

Reduction rules provide an important methodical vehicle in determining the complexity status of
scheduling problems, i.e. by reducing a scheduling problem to another for which the complexity
status is known. Graham et al. (1979) originally present such reduction rules for scheduling
problems.

Given that an algorithm for one scheduling problem can be applied to another scheduling
problem as well, it is possible to derive complexity results between different problems. For example,
1 ||

∑
Cj is a special case of 1 ||

∑
wjCj and a procedure for 1 ||

∑
wjCj can clearly also be used

to solve 1 ||
∑
Cj . In complexity terminology it is then said that 1 ||

∑
Cj reduces to 1 ||

∑
wjCj ,

usually denoted by 1 ||
∑
Cj ∝ 1 ||

∑
wjCj . Based on this concept a chain of reductions between

some scheduling problems can be established. However, there exist many problems that are not
comparable with one another, underpinned by the fact that no suitable reduction rules exist that
can be used to map a problem to another (Pinedo, 2005, 2008). Obviously, a p− batch scheduling
problem with batch size identical to one is equivalent to the corresponding standard single machine
problem with unit capacity. Thus NP-hardness results for single machine problems are also valid
for p− batch problems with bounded batch size (Brucker, 2007). Refer to Figure 37 showing the
basic reduction rules that are most important.

Unfortunately, there exist quite similar p− batch scheduling problems that are not reducible to
each other. This might lead to some confusions. The reason is that we face different processing time
models: the longest job processing time model and the family processing time model. The longest
job processing time model describes the case in which the jobs have arbitrary processing times and
the processing time of the batch is determined by the longest processing time of its jobs. This
kind of model is originally motivated by the backend burn-in operations. The family processing
time model is usually motivated by diffusion/oxidation operations that deal with incompatible job
families. In this case, the processing time of a batch is given by the corresponding job family and
different job families have different processing times.

7http://www.informatik.uni-osnabrueck.de/knust/class/
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Let us consider a few examples to make the difference clear. Based on the longest job processing
time model, Brucker et al. (1998) show that 1 | p− batch, b < n, rj | Cmax is unary NP-hard. Yuan
et al. (2004) also assume that the processing time of a batch is equal to the maximum processing
time among the jobs in the batch, but additionally incorporates incompatible job families. They
proof that 1 | p−batch, b < n, rj , fmls | Cmax is strongly NP-hard, even for the unbounded case. In
contrast, Uzsoy (1995) presents a polynomial algorithm for 1 | p−batch, b < n, rj , fmls | Cmax. The
difference is that Uzsoy (1995) employs the family processing time model in which the processing
time is equal for all jobs of the same family.

Another difference in complexities arises with the Lmax objective. Brucker et al. (1998) show
that 1 | p − batch, b < n | Lmax is unary NP-hard whereas 1 | p − batch, b < n, fmls | Lmax is
solvable in polynomial time (Uzsoy, 1995).

Similar observations are made for the TT and TU objectives. By reduction to 1 | p− batch, b <
n | Lmax, it is deduced that 1 | p − batch, b < n |

∑
Uj and 1 | p − batch, b < n |

∑
Tj are unary

NP-hard, given that the longest job processing time model is applied. With respect to the family
processing model, unary NP-hardness is established for 1 | p − batch, b < n, fmls |

∑
Uj in (Liu

and Zhang, 2008) and for 1 | p− batch, b < n, fmls |
∑
Tj in (Mehta and Uzsoy, 1998).

Consequently, the complexity results based on family processing time models are not transferable
to problems that use the longest job processing time model and vice versa. The results indicate
that family processing times simplify the scheduling problem compared to the longest processing
time model.

Figure 37: Complexity hierarchies (Pinedo, 2008) (cf. (Graham et al., 1979))

6.2.2 Makespan

Brucker et al. (1998) and Sung and Choung (2000) show that 1 | p− batch, b < n | Cmax can be
solved optimally in polynomial time; cf. (Brucker, 2007).
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Release Dates The existence of release dates makes the problem harder to solve. Brucker
et al. (1998) proof that 1 | p − batch, b < n, rj | Cmax is unary NP-hard. They show that
1 | p− batch, b < n, rj | Cmax is an equivalent mirror image problem of 1 | p− batch, b < n | Lmax,
which is shown to be NP-hard in the strong sense even if b = 2 based upon a reduction from
the unary NP-complete problem 3-Partition; cf. (Brucker, 2007). Liu and Yu (2000) proof that
1 | p− batch, b < n, rj | Cmax is binary NP-hard even for the case with two distinct release dates
by reduction to the Partition problem.

Liu and Yu (2000), Poon and Zhang (2000) and Deng et al. (2003) present pseudo-polynomial
algorithms for the case with distinct release dates, i.e. a fixed number of release dates. Poon and
Zhang (2000) additionally consider the case with distinct processing times and distinct release
times. Sung et al. (2002) present a DP algorithm with polynomial run time when the number of
processing times is fixed. Also Lee and Uzsoy (1999) present polynomial and pseudo-polynomial
algorithms for several special cases of 1 | p− batch, b < n, rj | Cmax.

The simple First-Only-Empty (FOE) algorithm (Ikura and Gimple, 1986) is optimal for the
case with equal processing times, i.e. the process time of a batch is constant and independent of the
batch size. The idea of this algorithm is to process the jobs by making only the first batch partially
empty; the rest of batches are full, which results in a minimum number of batches. FOE solves
1 | p − batch, b < n, rj , pj = p | Cmax in polynomial run time. Additionally, Ikura and Gimple
(1986) present a polynomial algorithm for the same problem with deadlines where the release dates
deadlines are agreeable (1 | p− batch, b < n, rj , d̄j , pj = p, agreeable(rj , d̄j) | Cmax)

However, the unbounded p− batch scheduling problem is easier to solve. There exist polynomial
algorithms for the unbounded problem 1 | p− batch, rj | Cmax (Poon and Zhang, 2000; Liu, 2007).
Furthermore, Liu et al. (2003) establish the pseudo-polynomial solvability of the unbounded batch
machine scheduling problem with job release dates and any regular objective, i.e. 1 | p− batch, rj | ·
is pseudo-polynomially solvable for any regular objective.

If the (bounded) problem is subject to incompatible families, i.e. relies on the family processing
time model, then the problem also looses NP-hardness; Uzsoy (1995) shows that the problem
1 | p− batch, b < n, rj , fmls | Cmax can be solved polynomially.

Non-Identical Job Sizes Similar to release dates, the existence of non-identical job sizes makes
the problem harder to solve. Uzsoy (1994) shows that 1 | p − batch,B, sj | Cmax is strongly
NP-hard, since the problem with identical processing times is equivalent to the bin packing problem,
which is strongly NP-hard. This complexity result is very important within the scope of this
complexity review since the NP-hardness proof is also valid for the case with constant processing
times. This means that this complexity result also holds for the other batch scheduling problems
with non-identical job sizes, in particular for those based on the family processing time model.

Incompatible Job Families Given that the problem relies on the family processing time
model, the existence of incompatible families makes the problem easier. Uzsoy (1995) shows
that the problem 1 | p − batch, b < n, fmls | Cmax and the related version with job arrivals
(1 | p− batch, b < n, rj , fmls | Cmax) can be solved polynomially.

However, Yuan et al. (2004) establish strong NP-hardness for the unbounded single machine
parallel batch scheduling problem with incompatible family jobs and release dates to minimize Cmax

when the the processing time of a batch is equal to the maximum processing time among the jobs in
the batch. Thus Yuan et al. (2004) also proof that the bounded case 1 | p−batch, b < n, fmls | Cmax

is strongly NP-hard with respect to the longest-processing time model.

Parallel Machines Garey and Johnson (1978) show that P || Cmax is NP-hard in the strong
sense, which implies that the corresponding bounded batching problem P | p− batch, b < n | Cmax

is at least as hard to solve. The proof for the complexity of P || Cmax is given by a reduction
from the 3-Partition problem (Leung, 2004) The strongly NP-hard problem becomes NP-hard in
the ordinary sense when the number of parallel machines is limited to two at maximum, since
P2 || Cmax is reducible to the Partition problem (Leung, 2004; Pinedo, 2008).
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6.2.3 Maximum Lateness

Finding whether there is a feasible solution to the bounded problem in which the jobs have deadlines
is NP-complete in the strong sense even if b = 2. The proof is based upon a reduction from the
unary NP-complete problem 3-Partition (Brucker et al., 1998); cf. (Brucker, 2007). This implies
that 1 | p− batch, b < n | Lmax is unary NP-hard.

But there exist polynomial algorithms for some special cases. Lee et al. (1992) show that the
problem 1 | p − batch, b < n, pj = p | Lmax can be solved polynomially. In this case a full batch
schedule leads to the optimum when the jobs are sequenced in order of smallest to largest due
date (Webster and Baker, 1995). Lee et al. (1992) also present a polynomial algorithm for the
problem with agreeable processing times and due dates. In the same vein the unbounded model is
in P (Brucker et al., 1998); (Brucker, 2007)

Release Dates Cheng et al. (2001) show that the unbounded case 1 | p − batch, rj | Lmax is
ordinary NP-hard; cf. (Liu, 2007). The problem 1 | p− batch, rj | Lmax is proved to be NP-hard
under the binary encoding even if the processing times and deadlines are agreeable. The proof
is based on a reduction from the Partition problem. However, its complexity under the unary
encoding scheme remains open. Cheng et al. (2001) propose polynomial algorithms for several
special cases of 1 | p− batch, rj | Lmax. Furthermore, Liu et al. (2003) establish pseudo-polynomial
solvability for 1 | p− batch, rj | · with any regular objective.

The bounded case 1 | p− batch, b < n, rj | Lmax is unary NP-hard, since Lenstra et al. (1977)
proof strong NP-hardness for the corresponding unit capacity problem 1 | rj | Lmax; cf. (Pinedo,
2008). It can be said that 1 | rj | Lmax ∝ 1 | p − batch, b < n, rj | Lmax. Another variant of
reduction is given by the complexity result for minimizing Cmax. As stated before, Brucker et al.
(1998) establish strong NP-hardness for 1 | p− batch, b < n, rj | Cmax; cf. (Brucker, 2007). Given
that minimizing Cmax is easier than minimizing Lmax, it is deduced that 1 | p− batch, b < n, rj |
Cmax ∝ 1 | p− batch, b < n, rj | Lmax. Li and Lee (1997) proof that 1 | p− batch, b < n, rj | Lmax

is strongly NP-hard even with agreeable release times and due dates. They show that the problem
is solvable in polynomial time when the processing times are also agreeable with the release times
and due dates of the jobs. Polynomial solvability is also achieved when the processing times are
constant (Webster and Baker, 1995; Baptiste, 2000; Cheng et al., 2001). Similarly, Lee et al. (1992)
present a polynomial algorithm for constant processing times in conjunction with agreeable release
dates and due dates.

Non-Identical Job Sizes The problem 1 | p− batch,B, sj | Lmax is strongly NP-hard. Uzsoy
(1994) show that 1 | p− batch,B, sj | Cmax is strongly NP-hard, since the problem with identical
processing times is equivalent to the strongly NP-hard bin packing problem. Applying the reduction
rules, it is deduced that 1 | p− batch,B, sj | Cmax ∝ 1 | p− batch,B, sj | Lmax.

Incompatible Job Families Uzsoy (1995) describes a polynomial algorithm for 1 | p−batch, b <
n, fmls | Lmax, assuming identical processing times of jobs of the same family. This is in contrast
to the complexity result for 1 | p− batch, b < n | Lmax based on the longest processing time model
for which Brucker et al. (1998) proof strong NP-hardness; cf. (Brucker, 2007).

Parallel Machines P | p−batch, b < n | Lmax is strongly NP-hard by reduction to P || Cmax for
which Garey and Johnson (1978) proof NP-hardness; (Lee et al., 1992). Brucker et al. (1998) proof
strong NP-hardness for 1 | p− batch, b < n | Lmax that also reduces to P | p− batch, b < n | Lmax.
Lin and Jeng (2004) present a DP algorithm with pseudo-polynomial run time The computational
complexities become pseudo-polynomial when the number of machines is fixed. Liu (2007) and
Liu et al. (2009) examine the complexity status for the problem of minimizing Lmax on parallel
unbounded BPM. It is proven that minimizing any due date related objective on parallel unbounded
BPM is strongly NP-hard (Liu, 2007) even if the release dates and deadlines are agreeable (Liu
et al., 2009)
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6.2.4 Tardiness

The problem 1 | p−batch, b < n |
∑
Tj is strongly NP-hard by reduction to 1 | p−batch, b < n | Lmax

for which Brucker et al. (1998) present the complexity proof based upon a reduction from the
unary NP-complete problem 3-Partition; cf. (Brucker, 2007). Obviously the weighted case
1 | p− batch, b < n |

∑
wjTj is then strongly NP-hard, too.

In the case of agreeable processing times and due dates, Liu (2007) proves that the problem
1 | p− batch, b < n |

∑
Tj is binary NP-hard even if the machine capacity is two. Brucker (2007)

presents a polynomial DP algorithm for the case with identical processing times 1 | p− batch, b <
n, pj = p |

∑
Tj . Liu (2007) further shows that minimizing 1 | p− batch, b < n |

∑
wjTj remains

strongly NP-hard when processing times and due dates are agreeable.
It is interesting to know that even the related unit capacity machine problems are NP-hard as

well as the corresponding unbounded batch problems. Lawler (1977) proofs unary NP-hardness
for 1 ||

∑
wjTj . The unweighted variant 1 ||

∑
Tj is still NP-hard in the ordinary sense, i.e.

binary NP-hard, but pseudo-polynomially solvable (Leung, 2004; Pinedo, 2008). The unbounded
problem 1 | p − batch |

∑
Tj is ordinary NP-hard, i.e. binary NP-hard (Liu et al., 2003) and

pseudo-polynomially solvable (Brucker et al., 1998). In the same vein, 1 | p − batch |
∑
wjTj is

ordinary NP-hard, i.e. binary NP-hard (Brucker et al., 1998) by reduction from the Partition
problem but not strongly NP-hard since (Baptiste et al., 2004) show that a pseudo-polynomial
algorithm exists.

Release Dates The problem 1 | p− batch, b < n, rj |
∑
Tj is unary NP-hard, since Lenstra et al.

(1977) proof strong NP-hardness for the corresponding unit capacity problem 1 | rj | Lmax. A chain
of reductions may have the form 1 | rj | Lmax ∝ 1 | p− batch, b < n, rj | Lmax ∝ 1 | p− batch, b <
n, rj |

∑
Tj ∝ 1 | p− batch, b < n, rj |

∑
wjTj .

The problem looses NP-hardness when the processing times are restricted to be equal; minimizing∑
Tj with identical processing times and release dates (1 | p− batch, b < n, rj |

∑
Tj) can be solved

polynomially (Baptiste, 2000; Brucker, 2007).
However, the unbounded cases 1 | p − batch, rj |

∑
Tj and 1 | p − batch, rj |

∑
wjTj share

ordinary NP-hardness; cf. (Liu, 2007). On one hand, Cheng et al. (2001) proof binary NP-hardness
for the easier problem 1 | p − batch, rj | Lmax with agreeable processing times and deadlines
(reduction to the Partition problem). On the other hand, Liu et al. (2003) establish the pseudo-
polynomial solvability of the unbounded batch machine scheduling problem with job release dates
and any regular objective.

Non-Identical Job Sizes The problems 1 | p − batch,B, sj |
∑
Tj and 1 | p − batch,B, sj |∑

wjTj are strongly NP-hard. Starting from the strongly NP-hard problem 1 | p− batch,B, sj |
Cmax (Uzsoy, 1994), it is deduced by applying the reduction rules that 1 | p − batch,B, sj |
Cmax ∝ 1 | p − batch,B, sj | Lmax ∝ 1 | p − batch,B, sj |

∑
Tj ∝ 1 | p − batch,B, sj |

∑
wjTj .

Given that non-identical job sizes do not make the problem easier, the strongly NP-hard problem
1 | p− batch, b < n | Lmax can also be reduced to 1 | p− batch,B, sj |

∑
Tj and 1 | p− batch,B, sj |∑

wjTj .

Incompatible Job Families Mehta and Uzsoy (1998) show that 1 | p−batch, b < n, fmls |
∑
Tj

is NP-hard in the strong sense, in particular if the number of families and the batch machine
capacity are arbitrary. But, they propose a DP algorithm with polynomial run time when the
number of job families and the batch machine capacity are fixed. Based on the reduction rules, it
follows that 1 | p− batch, b < n, fmls |

∑
Tj ∝ 1 | p− batch, b < n, fmls |

∑
wjTj .

Parallel Machines The problem P | p− batch, b < n |
∑
Tj is strongly NP-hard by reduction

to the strong NP-hard problem P || Cmax (Garey and Johnson, 1978) via P ||
∑
Lmax ∝ P |

p− batch, b < n |
∑
Lmax. Obviously P | p− batch, b < n |

∑
Tj ∝ P | p− batch, b < n |

∑
wjTj .
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6.2.5 Unit Penalties

Minimizing
∑
Uj on a single unbounded BPM is polynomially solvable whereas minimizing the

weighted case
∑
wjUj is binary NP-hard (Brucker et al., 1998); cf. (Baptiste, 2000; Brucker, 2007)

Brucker et al. (1998) proof binary NP-hardness for 1 | p− batch |
∑
wjUj by a reduction from the

binary NP-complete problem Partition. In fact 1 | p− batch |
∑
wjUj is said to be NP-hard in the

ordinary sense since Baptiste et al. (2004) show that a pseudo-polynomial algorithm exists, which
means that it is not strongly NP-hard (unless P=NP); cf. (Brucker, 2007).

It is also interesting to know that the corresponding unit capacity machine problem 1 ||
∑
wjUj

is proved to be NP-hard with respect to binary encoding and can be solved pseudo-polynomially
(Lawler, 1977). The proof is based on a reduction to the NP-hard Knapsack problem that is
equivalent to the special case of 1 ||

∑
wjUj with all due dates being equal (Pinedo, 2008).

The bounded case 1 | p−batch, b < n |
∑
Uj is strongly NP-hard by reduction to 1 | p−batch, b <

n | Lmax for which Brucker et al. (1998) present the complexity proof based upon a reduction from
the unary NP-complete problem 3-Partition; cf. (Brucker, 2007). However, special cases can be
solved polynomially. Lee et al. (1992) give algorithms with polynomial run time for special cases of
1 | p− batch, b < n |

∑
Uj , i.e. for the case with identical processing times and for the case with

agreeable processing times and due dates.
The problem 1 | p− batch, b < n |

∑
wjUj is unary NP-hard since 1 | p− batch, b < n |

∑
Uj ∝

1 | p − batch, b < n |
∑
wjUj . The problem becomes easier when assuming some restrictions.

In the case of agreeable processing times and due dates the problem loses strong NP-hardness;
The problem 1 | p− batch, b < n, agreeable(pj , dj) |

∑
wjUj is ordinary NP-hard since Liu (2007)

propose a pseudo-polynomial time algorithm for it.
NP-hardness can be still maintained with identical due dates. Hochbaum and Landy (1994)

give a proof for 1 | p− batch, b < n, dj = d |
∑
wjUj by a reduction from the Knapsack problem as

well as pseudo-polynomial DP approach for it, i.e. 1 | p− batch, b < n, dj = d |
∑
wjUj is NP-hard

in the ordinary sense; cf. (Brucker and Kovalyov, 1996; Liu, 2007)
Polynomial solvability is achieved with identical processing times or with identical weights;

1 | p− batch, b < n, pj = p |
∑
wjUj can be solved in polynimal time (Hochbaum and Landy, 1994;

Brucker, 2007) as well as 1 | p − batch, b < n,wj = w |
∑
wjUj (Hochbaum and Landy, 1994;

Brucker and Kovalyov, 1996).

Release Dates The problem 1 | p− batch, b < n, rj |
∑
Uj is unary NP-hard, since Lenstra et al.

(1977) proof strong NP-hardness for the unit capacity problem 1 | rj | Lmax; cf. (Pinedo, 2008).
A chain of reductions may be established with 1 | rj | Lmax ∝ 1 | rj |

∑
Uj ∝ 1 | p − batch, b <

n, rj |
∑
Uj ∝ 1 | p − batch, b < n, rj |

∑
wjUj . The problem 1 | p − batch, b < n, rj |

∑
Uj still

remains strongly NP-hard with agreeable release dates and due dates, but becomes polynomial
time solvable when the processing times are also agreeable with the release times and due dates of
the jobs (Li and Lee, 1997). The problem 1 | p− batch, b < n, rj |

∑
wjUj with identical processing

times is also solvable in polynomial time (Baptiste, 2000); cf. (Lee et al., 1992; Brucker, 2007).
The unbounded problem is pseudo-plynomially solvabel since Liu et al. (2003) establish pseudo-

polynomial solvability for 1 | p− batch, rj | · with any regular objective; cf. Liu (2007).

Non-Identical Job Sizes 1 | p − batch,B, sj |
∑
Uj is strongly NP-hard. Uzsoy (1994) show

that 1 | p−batch,B, sj | Cmax is strongly NP-hard, since the problem with identical processing times
is equivalent to the bin-packing problem that is strongly NP-hard. A chain of reduction may be
have the form 1 | p−batch,B, sj | Cmax ∝ 1 | p−batch,B, sj | Lmax ∝ 1 | p−batch,B, sj |

∑
Uj ∝

1 | p − batch,B, sj |
∑
wjUj . Given that the existence of non-identical jobs sizes definitely not

makes the problem easier, another chain arises when starting from the Lmax result: 1 | p−batch, b <
n | Lmax ∝ 1 | p− batch, b < n |

∑
Uj ∝ 1 | p− batch,B, sj |

∑
Uj ∝ 1 | p− batch,B, sj |

∑
wjUj .

Incompatible Job Families The problem 1 | p − batch, b < n, fmls |
∑
Uj is strongly NP-

hard. Jolai (2005) present a proof for NP-hardness based on the id-encoding, Liu (2007) shows
binary NP-hardness, and Liu and Zhang (2008) finally establish strong/unary NP-hardness for
it. Thus the weighted case

∑
wjUj also belongs to the class of unary NP-hard problems since

1 | p− batch, b < n, fmls |
∑
Uj ∝ 1 | p− batch, b < n, fmls |

∑
wjUj ; cf. (Liu, 2007).
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Jolai (2005) present a pseudo-polynomial algorithm for the special case of 1 | p − batch, b <
n, fmls |

∑
Uj with a common due date job for each family as well as a polynomial DP algorithm

when the number of job families is fixed.

Parallel Machines The problem P | p− batch, b < n |
∑
Uj is strongly NP-hard by reduction to

P || Cmax for which Garey and Johnson (1978) proof NP-hardness; P || Cmax ∝ P | p− batch, b <
n | Cmax ∝ P | p − batch, b < n | Lmax ∝ P | p − batch, b < n |

∑
Uj ∝ P | p − batch, b < n |∑

wjUj . Another chain of reductions exists when starting from the strong NP-hardness proof for
1 | p− batch, b < n | Lmax (Brucker et al., 1998): 1 | p− batch, b < n | Lmax ∝ P | p− batch, b <
n | Lmax ∝ P | p− batch, b < n |

∑
Uj ∝ P | p− batch, b < n |

∑
wjUj .

Lin and Jeng (2004) present a pseudo-polynomial DP for P | p− batch, b < n |
∑
Uj when the

number of machines is fixed.

6.2.6 Cycle Time

The complexity of the problems of minimizing
∑
Cj and

∑
wjCj on a single BPM remains open

(Brucker et al., 1998); cf. (Liu, 2007; Brucker and Knust, 2014). However, there exist pseudo-
polynomial algorithms for special cases of 1 | p − batch, b < n |

∑
Cj (Hochbaum and Landy,

1997; Brucker et al., 1998; Poon and Yu, 2004). In the case of identical processing times even
the weighted case 1 | p − batch, b < n, pj = p |

∑
wjCj becomes polynomially solvable since a

full batch schedule leads to the optimum when jobs are sequenced in order of largest to smallest
weight (Albers and Brucker, 1993; Webster and Baker, 1995); cf. (Brucker, 2007). Furthermore,
the unbounded problem 1 | p− batch |

∑
wjCj is in P (Brucker et al., 1998), too.

Release Dates The existence of release dates makes the problem harder to solve. The problem
1 | p−batch, b < n, rj |

∑
Cj is unary NP-hard even if b = 1 (Brucker et al., 1998), i.e. 1 | rj |

∑
Cj

is unary NP-hard (Lenstra et al., 1977).
The problem looses NP-hardness when the processing times are equal. Webster and Baker

(1995) present a DP algorithm with polynomial run time for 1 | p − batch, b < n, rj |
∑
Cj and

Baptiste (2000) give polynomial DP a algorithm for 1 | p− batch, b < n, rj |
∑
wjCj ; cf. (Brucker,

2007).
It is also interesting to know that even the unbounded cases remain NP-hard. The problem

1 | p− batch, rj |
∑
Cj is NP-hard with respect to id-encoding (Liu, 2007; Liu et al., 2010). The

problem 1 | p − batch, rj |
∑
wjCj is ordinary NP-hard in the ordinary sense (Liu, 2007), i.e.

binary NP-hard by reduction to the Partition problem (Deng et al., 2004) and pseudo-polynomially
solvable since Liu et al. (2003) establish pseudo-polynomial solvability of the unbounded batch
machine scheduling problem with job release dates and any regular objective.

Non-Identical Job Sizes Similar to release dates, the existence of non-identical job sizes makes
the problem harder to solve. Uzsoy (1994) show that 1 | p− batch,B, sj |

∑
Cj is strongly NP-hard,

even in the case of identical processing times. Thus the weighted case is also strongly NP-hard
since 1 | p− batch,B, sj |

∑
Cj ∝ 1 | p− batch,B, sj |

∑
wjCj . It is important to note that this

complexity result is valid for identical processing times, which makes it also applicable for the
problems based on the family processing time model, i.e. 1 | p− batch,B, sj , fmls |

∑
Cj .

Incompatible Job Families Uzsoy (1995) show that 1 | p − batch, b < n, fmls |
∑
wjCj

is polynomially solvable; cf. (Liu, 2007). Obviously, the same procedure is applicable to the
unweighted case; 1 | p− batch, b < n, fmls |

∑
Cj ∝ 1 | p− batch, b < n, fmls |

∑
wjCj However,

Chandru et al. (1993b) give a DP algorithm for the problem 1 | p− batch, b < n, fmls |
∑
Cj with

polynomial run time when the number of job families is fixed.

Parallel Machines As to the single machine problem, the complexity status of P | p− batch, b <
n |

∑
Cj remains open. In contrast, the weighted variant P | p− batch, b < n |

∑
wjCj is unary

NP-hard by reduction to the strongly NP-hard unit capacity problem P ||
∑
wjCj (T’kindt and

Billaut, 2006); cf. (Brucker and Knust, 2014).
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6.3 Exact Methods

The most obvious idea to solve a COP is to just enumerate all feasible solutions. For example, Wang
and Chou (2013) describe an exhaustive enumeration in order to solve a single BPM scheduling
problem with a bi-criterion objective, i.e. 1 | p − batch, b < n,B, sj , rj | Cmax,

∑
wjTj . But due

to the complexity of most COPs, a simple complete enumeration will result in unacceptable high
computing times. The challenge is to develop efficient algorithms that perform better than a simple
enumeration (Lee, 2004).

The class of exact methods to solve COPs covers MIP, DP, CP, and B&B. Commercial software
packages for mathematical programming, e.g. CPLEX, Gurobi, and Xpress have seen tremendous
progress over the last decade in terms of capabilities for solving much larger problem sizes (Méndez
et al., 2006).

However, for a considerable amount of optimization problems present in academia and industry,
it is intractable to obtain optimal solutions by the use of any exact method in a reasonable time.
The crucial point is that exact methods need large amounts of time to optimally solve NP-hard
problems of practical size. Consequently, the use of exact methods becomes inapplicable for most
systems in practice, where a responsible person has to make a decision as soon as possible in order
to achieve desirable results (Marti and Reinelt, 2011). See the table in Appendix C for an overview
of run times of exact methods for common batch scheduling problems.

Many authors share the opinion that exact methods do not seem to be the method of choice
in real-world scheduling systems. Talbi (2009) notes that partial enumerative algorithms such
as B&B are limited to rather small instances and thus are not advisable to solve medium and
large instances. Potts and Strusevich (2009) notice a stagnation of research on B&B algorithms
(and other enumerative approaches), identifying the combinatorial growth of the solution space as
an obstacle to the exact solution of practical problems. Although Mönch et al. (2011a) consider
MIP and CP as important solution techniques, they argue that these techniques are assessed to be
too slow to be adopted in real-world implementations. Dorigo and Stützle (2004), among others,
propose approximate methods that trade optimality for efficiency, since the performance of exact
algorithms is not satisfactory and their applicability is often limited to rather small instances.

Klemmt et al. (2011) show that MIP approaches are basically suitable for optimizing batch small
or medium scheduling problems, but only combined with decomposition methods. In awareness of
the observation that even state-of-the-art MIP solver can only handle relatively small problems,
Klemmt et al. (2009) propose decomposition approaches in order to reduce the problem complexity.
The commercial solver CPLEX is most often used as state-of-the-art solver for MIP formulations.
However, even the finding of a feasible solution can be a problem for bigger problem instances
(Klemmt et al., 2008).

6.3.1 Dynamic Programming (DP)

DP is a mathematical technique providing a systematic procedure for determining the optimal
sequence of decisions. It transforms a problem into a sequence of interrelated sub problems arranged
in stages, employing problem-specific knowledge to a certain degree. DP is based on the principle of
optimality for dynamic programming, meaning that an optimal decision in a certain stage depends
on that state only and is independent of the policy decisions adopted in previous stages (Hillier and
Lieberman, 2001); cf. (Ventura, 2008). The strategy is to avoid a total enumeration of the search
space by pruning partial decision sequences that cannot lead to the optimal solution (Talbi, 2009).
In other words, DP systematically explores the solution space without unnecessary repetitions
(Reingold, 2010). Given that the problem instance is not too large, DP is known to solve NP-hard
problems (e.g. Knapsack) in pseudo-polynomial time (Brucker, 2007).

To our best knowledge, DP approaches exist only for single BPMs scheduling problems, but
not for parallel BPMs. There exist DP algorithms developed for both the burn-in model and the
diffusion/oxidation model, i.e. for the longest job processing time model (compatible job families)
and for the family processing time model (incompatible job families). For both model types DP
approaches that consider dynamic arrivals have been developed. The majority of DP algorithms is
developed for special (simplified) cases in order to establish polynomial or pseudo-polynomial run
time.
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Brucker and Kovalyov (1996) propose a polynomial DP algorithm for 1 | p − batch, b < n |∑
wjUj with equal weights. Brucker et al. (1998) prove that a DP scheme solves 1 | p− batch, b <

n |
∑
Cj in polynomial time for fixed b where b > 1. Moreover, the problem 1 | p− batch, b < n | ·

with identical processing times can be solved polynomially by DP algorithms for the objectives∑
wjCj ,

∑
Tj , and

∑
wjUj (Brucker, 2007).

Special cases of the related problem with release dates (1 | p − batch, b < n, rj | ·) are also
solvable in polynomial time by DP. Sung et al. (2002) propose a DP algorithm for 1 | p− batch, b <
n, rj | Cmax with polynomial run time when the number of job families is fixed. Webster and Baker
(1995) and Baptiste (2000) examine the problem 1 | p− batch, b < n, rj | · with identical processing
times, i.e. 1 | p − batch, b < n, rj , pj = p | ·. For this problem type, there exist polynomial DP
approaches leading to optimal solutions with minimum

∑
Cj (Webster and Baker, 1995), Lmax

(Webster and Baker, 1995; Baptiste, 2000),
∑
wjUj (Baptiste, 2000), and

∑
wjCj (Baptiste, 2000).

Koehler and Khuller (2013) present a polynomial DP approach for 1 | p− batch, b < n, rj | · with
identical processing times and deadlines, minimizing Cmax and the number of batches at the same
time.

Let us now consider the problems with incompatible job families. Liu and Zhang (2008) present a
DP approach solving 1 | p− batch, b < n, fmls |

∑
wjUj without any additional restrictions. When

the number of families is fixed, there exist polynomial DP algorithms for solving 1 | p− batch, b <
n, fmls |

∑
Cj (Chandru et al., 1993b) and 1 | p− batch, b < n, fmls |

∑
Uj (Jolai, 2005). Mehta

and Uzsoy (1998) show that a DP approach polynomially solves 1 | p− batch, b < n, fmls |
∑
Tj

when the number of job families and the batch machine capacity are fixed.
Taking job arrivals into account, Tajan et al. (2011) develop a DP algorithm for 1 | p−batch, b <

n, rj , fmls |
∑
Cj .

6.3.2 Branch and Bound (BnB)

Partial enumeration methods, such as A* and B&B, basically employ tree search accompanied
with strategies for pruning non-expedient subtrees, which do not contain any optimal solution.
Facilitated by lower/upper bounds B&B methods eliminate a large number of feasible solutions,
Today’s general purpose IP/MIP software employs B&B methods to a large extend (Chandru and
Rao, 2010); cf. (Talbi, 2009).

To our best knowledge, B&B approaches exist only for single BPMs scheduling problems, but not
for parallel BPMs. Chandru et al. (1993a) develop a B&B for the problem 1 | p−batch, b < n |

∑
Cj

and Uzsoy and Yang (1997) consider the weighted case 1 | p− batch, b < n |
∑
wjCj . Sung and

Choung (2000) include release dates, presenting a B&B for 1 | p− batch, b < n, rj | Cmax

A remarkable amount of B&B schemes involves non-identical job-sizes (1 | p− batch,B, sj | ·).
Uzsoy (1994) present a B&B algorithm for 1 | p− batch,B, sj |

∑
Cj and Azizoglu and Webster

(2000) additionally include job weights, i.e. solve 1 | p − batch,B, sj |
∑
wjCj with a B&B

scheme. Both Dupont and Dhaenens-Flipo (2002) and Parsa et al. (2010) propose B&B schemes
for 1 | p− batch,B, sj | Cmax.

Lets turn to the family processing time model, i.e. to those models with incompatible job
families. Based on the family processing model, Azizoglu and Webster (2001) consider non-
identical job sizes in combination with incompatible families, proposing a B&B algorithm for
1 | p− batch,B, sj , fmls |

∑
wjCj . Korkmaz (2004) and Yao et al. (2012) include job arrivals and

solve 1 | p − batch, b < n, rj , fmls |
∑
Cj with B&B schemes, whereby Korkmaz (2004) assume

constant processing times. Similarly, but for different objective, Tangudu and Kurz (2006) present
a B&B method for solving 1 | p− batch, b < n, rj , fmls |

∑
wjTj .

6.3.3 Mixed Integer Programming (MIP)

IP deals with mathematical models in which all of the decision variables are restricted to discrete
values, respectively integer values. IP is used to solve discrete optimization problems, respectively
COPs concerned with routing, scheduling, layout, and network design. These models consist of
linear equations and inequalities on integer valued decision variables.

There exists a wide range of proprietary (and non-proprietary) software in terms of packages
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and libraries wherein a general-purpose solver based on B&B is the driving engine, e.g. CPLEX8,
Gurobi9, and Xpress10.

If an IP model also allows continuous variables, both integer and continuous variables coexist,
this model is referred to as MIP model (Chandru and Rao, 2010); cf. (Hillier and Lieberman, 2001;
Weng, 2008). MIP models generalize LP and IP models.

MIP models exist for both single BPM and parallel BPMs scheduling problems. The majority
of them deals with non-identical jobs sizes.

Melouk et al. (2004) and Damodaran et al. (2006, 2007) give MIP formulations for the problem
1 | p− batch,B, sj | Cmax. Erramilli and Mason (2008) propose one for 1 | p− batch,B, sj |

∑
wjTj .

Chang et al. (2004), Xu and Bean (2007), Cheng et al. (2012) and Cheng et al. (2013) consider
a related parallel machine case, i.e. P | p − batch,B, sj | Cmax and Cheng et al. (2012) solve
P | p− batch,B, sj |

∑
Cj .

Chou and Wang (2008) and Mathirajan et al. (2010) include job release dates, solving 1 |
p− batch,B, sj , rj |

∑
wjTj with MIP. Vélez-Gallego et al. (2011) and Xu et al. (2012) examine

1 | p− batch,B, sj , rj | Cmax. Chung et al. (2009), Wang and Chou (2010) and Ozturk et al. (2012)
consider the related parallel machine case P | p − batch,B, sj , rj | Cmax, whereby Ozturk et al.
(2012) assume equal processing times.

Let us turn to the family scheduling model. Dauzère-Pérès and Mönch (2013) present a MIP
formulation for 1 | p− batch, b < n, fmls |

∑
Uj and the weighted variant

∑
wjUj . Dobson and

Nambimadom (2001) solve 1 | p− batch,B, sj , fmls |
∑
wjCj with MIP and Koh et al. (2005) give

a MIP formulation for 1 | p− batch,B, sj , fmls | · with the objectives Cmax,
∑
Cj and

∑
wjCj .

Klemmt et al. (2009) develop a MIP formulation for the problem P | p− batch, b < n, rj , fmls |∑
wjTj with machine eligibility constraints. Klemmt et al. (2008, 2011) develop MIP models

for P | p − batch,B, sj , rj , fmls | · with machine eligibility constraints and deadlines in their
models, minimizing Cmax,

∑
Cj ,

∑
wjCj , or

∑
wjTj . Cakici et al. (2013) provides a MIP for

P | p− batch,B, sj , rj , fmls |
∑
wjCj .

Kempf et al. (1998) and Gokhale and Mathirajan (2011, 2014) consider special cases. Gokhale
and Mathirajan (2011) allows job splitting for the problem 1 | p− batch,B, sj , rj , fmls |

∑
wjTj

and present a MIP for the same problem with parallel machines in (Gokhale and Mathirajan,
2014). Kempf et al. (1998) examine the model 1 | p− batch,B, sj , fmls | · with secondary resources,
minimizing Cmax and

∑
Cj .

6.3.4 Constraint Programming (CP)

CP is based on tree search and logical implications, whereas the underlying model consists of a set
of variables with values out of a finite domain of integers, linked by a set of constraints. The CP
paradigm basically models the properties of the desired solution. In general, declarative models in
CP are more compact than MIP models, which does not mean that CP models generally perform
better than MIP models. The efficiency of CP/MIP models and their solvers mainly depends on
the structure of the problem and in particular on the model. In general, it is said that CP models
perform better for tight constrained problems such as scheduling problems than for problems with
a large number of feasible solutions (Talbi, 2009); cf. (Pinedo, 2008).

CP approaches still represent a minority in the area of scheduling. Malapert et al. (2012)
describe the use of CP in order to solve the problem 1 | p− batch,B, sj | Lmax. They show that
CP clearly outperforms other exact approaches based on mathematical formulation or B&B.

Kanet et al. (2004) examine CP approaches for scheduling problems more in detail. It could
be shown that CP methods are particularly suitable to solve scheduling problems that involve
sequencing and resource constraints. However, their applicability for solving more general scheduling
problems remain controversial (Méndez et al., 2006).

8http://www.ibm.com
9http://www.gurobi.com

10http://www.fico.com
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6.4 Approximation Algorithms

An approximation algorithm for a certain problem class guarantees that any obtained solution
corresponds to an objective value for which a factor p defines the distance to the actual optimum.
For minimization problems, p is defined as p = 1 + ε with ε > 0 (Brucker, 2007; Chandru and Rao,
2010; Klein and Young, 2010). An approximation algorithm that exclusively generates solutions
with a worst-case ratio p, respectively leading to solutions having an objective value not worse than a
factor p times the optimum, is referred to as p-approximation algorithm. An approximation scheme
frames a number of p-approximation algorithms for a given problem class. If an approximation
algorithm solves a problem under online setting, its performance is given with a worst-case ratio
compared to the offline case.

A PTAS is an approximation scheme with a time complexity that is polynomial in the input
size (Pinedo, 2008; Talbi, 2009). Since the definition of a PTAS only requires polynomial time
complexity in the input size, a PTAS may have a time complexity that grows exponentially in 1

ε :
if ε decreases, the computation time will increase dramatically (Pinedo, 2008).

A FPTAS is a PTAS with an additional constraint that bounds its time complexity. FPTAS
is an approximation scheme with a time complexity that is polynomial in the input size as well
as in 1

ε (Pinedo, 2008; Talbi, 2009). With regard to worst-case approximations, an FPTAS is the
strongest possible result that one can obtain for a NP-hard problem (Pinedo, 2008).

Brucker and Kovalyov (1996) give a FPTAS for 1 | p − batch, b < n |
∑
wjUj . Hochbaum

and Landy (1997) give an approximation algorithm for 1 | p− batch, b < n |
∑
Cj and Cai et al.

(2002) and Deng et al. (2002) give a PTAS for it. Chen et al. (2001) develop an approximation
scheme for 1 | p − batch, b < n |

∑
wjCj under online setting. Liu and Yu (2000) propose an

algorithm with performance bound for 1 | p − batch, b < n, rj | Cmax. Poon and Zhang (2000)
and Deng et al. (2003) propose PTAS for the same problem. Liu and Cheng (2005) give a PTAS
for 1 | p − batch, b < n, rj |

∑
Cj . Cao and Yang (2009) and Lu et al. (2009b) examine the

problem 1 | p− batch, b < n, rj | · with rejections. They provide PTASs for an objective function
that involves Cmax and penalty costs for rejections. Zhang et al. (2001a) study the problem
1 | p− batch, b < n, rj | Cmax under online setting, providing algorithms with performance bounds.
Li et al. (2005a) present an approximation algorithm for 1 | p − batch,B, sj , rj | Cmax. Zhang
et al. (2001b), Zhang and Cao (2007) and Kashan et al. (2009) give approximation algorithms for
1 | p− batch,B, sj | Cmax.

Li et al. (2004) present a PTAS for Pm | p−batch, b < n, rj | Lmax. Li et al. (2005b) and Zhang
et al. (2005) give PTAS for Pm | p − batch, b < n, rj | Cmax Li et al. (2012a) give an algorithm
with performance bound for the problem Pm | p − batch, b < n, rj | Cmax under online setting,
allowing their algorithm to use information from a time window look ahead. Li (2012) and Ozturk
et al. (2012) present approximation algorithms for Pm | p− batch,B, sj , rj | Cmax, whereby Ozturk
et al. (2012) assumes identical processing times. Cheng et al. (2012) give polynomial approximation
algorithm for Pm | p− batch,B, sj | Cmax and Pm | p− batch,B, sj |

∑
Cj .

Li et al. (2012b) provide a competitive ratio for their online algorithm solving a variant of
Pm | p− batch, b < n, fmls | · with the objective total weighted earliness. Bar-Noy et al. (2009)
study the problem Pm | p− batch, b < n, rj , fmls | · with deadlines, providing an approximation
algorithm that maximizes the weight of the scheduled jobs.

Nong et al. (2008b) and Meng and Lu (2011) present online approximation algorithms for
1 | p − batch, b < n, fmls | Cmax. Although their models consider incompatible job families, the
processing time of the batch equals the longest processing time of the jobs in the batch. Nong
et al. (2008a) provide approximation algorithms for 1 | p − batch, b < n, rj , fmls | Cmax and
1 | p− batch,B, sj , rj , fmls | Cmax.

6.5 Heuristics

Constructive heuristics are the method of choice to create solutions for deterministic scheduling
problems in a very short time. Construction algorithms describe an incremental procedure. Starting
from an empty initial solution, they iteratively add solution components until a complete solution is
obtained without any backtracking. At each step an additional solution component is chosen from a
ranked list based on some heuristic information. Constructive heuristics are usually problem-specific

109



6 BATCH SCHEDULING

and non-iterative, they create one single solution by applying a set of rules based on problem-specific
knowledge; cf. (Dorigo and Stützle, 2009; Talbi, 2009; Zäpfel et al., 2010).

Among others Leung (2004), Pinedo (2005, 2008) and T’kindt and Billaut (2006) examine
various relatively simple priority or dispatching rules for solving deterministic scheduling models.
Blackstone et al. (1982), Haupt (1989) and Kemppainen (2005) give surveys of dispatching rules.

Dispatching rules can be classified in various ways, depending on the type of information used
for job prioritization. For example, it is distinguished between local queue information and global
shop information. Local rules only use information related to the machine or tool group for decision
making, whereas global rules involve additional information from other machines or even from the
entire shop floor; cf. (Haupt, 1989; Dabbas and Fowler, 2003; Pinedo, 2008). Another distinction is
made between time-independent (static) and time-dependent (dynamic) rules. Static rules are just
a function of the job and/or of the machine data whereas dynamic rules imply that the priority of
jobs may change as time proceeds cf. (Haupt, 1989; Pinedo, 2008). Dispatching rules may be further
classified according to the type of attributes used to create an ordered list of jobs; (Blackstone et al.,
1982; Haupt, 1989; Dabbas and Fowler, 2003). Blackstone et al. (1982) distinguish between: a) rules
involving processing time, b) rules involving due dates, c) rules involving shop characteristics or
job characteristics other than processing times or due dates, d) rules involving one or more of the
first three categories (composite rules).

6.5.1 Basic Rule-Based Heuristics

There exist numerous rule-based algorithms for various problems, ranging from the simplest sorting
schemes to quite complex heuristic algorithms. In this section, three basic dispatching rules are
briefly introduced.

First In First Out (FIFO) One of the simplest rules is to process jobs in the order of their
arrival. This rule is also referred to as First In First Out (FIFO) rule (Rose, 1998), Earliest Release
Time First (ERT) rule (Sung and Choung, 2000), Earliest Start Time First (EST) rule (T’kindt
and Billaut, 2006), Earliest Release Date First (ERD) rule, or First Come First Served (FCFS)
rule (Pinedo, 2008). FIFO attempts to equalize the waiting times of the jobs.

Ikura and Gimple (1986) propose the FOE algorithm to solve batching problems. The idea of
the FOE algorithm is to create as many full batches as possible, while only allowing the first batch
to be partially empty. FOE leads to an optimal solution for 1 | p− batch, b < n, rj , pj = p | Cmax

when the jobs are scheduled in FIFO order; cf. (Webster and Baker, 1995; Sung and Choung,
2000).

Shortest Processing Time (SPT) Among the most traditional rules, we find simple local rules
that use job information such as processing time. For example, the Shortest Processing Time (SPT)
rule schedules jobs according to their processing time, i.e. the job with smallest processing time
is processed first. The SPT rule leads to optimal schedules for 1 ||

∑
Cj and P ||

∑
Cj (Leung,

2004; T’kindt and Billaut, 2006; Pinedo, 2008). Webster and Baker (1995) note that a full batch
schedule leads to optimum for the problem 1 | p− batch, b < n, pj = p |

∑
Cj

The Weighted Shortest Processing Time (WSPT) rule extends SPT by involving job weights,
leading to a job ranking in decreasing order of

wj

pj
. The WSPT rule is optimal for 1 ||

∑
wjCj

(Leung, 2004; Pinedo, 2008); cf. (T’kindt and Billaut, 2006). Webster and Baker (1995) note that
a full batch schedule leads to the optimum for the problem 1 | p− batch, b < n, pj = p |

∑
Cj when

the jobs are sequenced in order of the largest to the smallest weight.

Earliest Due Date (EDD) There exist several rules involving due date information, e.g. Critical
Ratio (CR), Minimum Slack (MS) and Earliest Due Date (EDD) among many others. EDD, as one
of the most popular rules, sequences the jobs in increasing order of their due date dj . A schedule
created with the EDD rule is optimal for the problem 1 ||

∑
Lmax (T’kindt and Billaut, 2006); cf.

(Leung, 2004; Pinedo, 2008).
Webster and Baker (1995) note that a full batch schedule leads to optimum for the problem

1 | p− batch, b < n, pj = p |
∑
Lmax when the jobs are sequenced in order of the smallest to the

largest due date, i.e. by the EDD rule. The Weighted Earliest Due Date (WEDD) rule extends
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EDD by involving job weights, leading to a job ranking in decreasing order of
wj

dj
. Kemppainen

(2005) presents a ranking of dispatching rules according to the weighted mean tardiness objective.

6.5.2 Batch Apparent Tardiness Cost (BATC)

The Batch Apparent Tardiness Cost (BATC) rule plays a prominent role in this work as it is one
of the most known heuristic rules to solve batching problems with due dates.

Vepsalainen and Morton (1987) develop the Apparent Tardiness Cost (ATC) rule for minimizing
the weighted tardiness in job shops. The ATC rule is a composite dispatch rule that basically
combines the WSPT rule and the MS rule. The performance of ATC depends on the value of the
look-ahead parameter k (Valente, 2007). Valente (2007) discusses how to improve the performance
of the ATC dispatch rule by determining the look-ahead parameter value with the help of workload
data.

Several authors extend the ATC rule in order to solve batch scheduling problems, at what the
proposed rules are called BATC rules. Mehta and Uzsoy (1998) probably present the first variant
of BATC in order to solve the problem 1 | p− batch, b < n, fmls |

∑
Tj . Balasubramanian et al.

(2004) describe a BATC rule that considers weights, intended to solve the problem P | p−batch, b <
n, fmls |

∑
wjTj .

Habenicht and Mönch (2003) and Mönch et al. (2006b) focus on the problem P | p− batch, b <
n, rj , fmls |

∑
wjTj , developing extensions of ATC that incorporate job arrivals and weights.

Habenicht and Mönch (2003) investigate the performance of certain modifications of the ATC
dispatching rule and extend this approach by considering future lot arrivals. Mönch et al. (2006b)
propose to use inductive decision trees and neural networks for estimating the look-ahead parameter
k due to the lack of a closed formula. Klemmt et al. (2011) discuss different variants of the BATC
rule for the problem R | p− batch, b < n,B, sj, rj , fmls | · with machine eligibility constraints and
deadlines, minimizing Cmax,

∑
wjTj or

∑
wjCj .

6.5.3 More Problem-Specific Batching Heuristics

This section provides an overview on problem-specific batching heuristics beyond the basic dispatch-
ing and priority-based rules discussed in the previous section. It follows the same problem-based
grouping used in the literature review and lists numerous heuristic approaches for 16 batch scheduling
problem types.

1 | p-batch, b< n | · Chandru et al. (1993a) give a heuristic for minimizing
∑
Cj and Uzsoy and

Yang (1997) give consider the weighted case
∑
wjCj .

1 | p-batch, b< n, rj | · Lee and Uzsoy (1999) and Sung and Choung (2000) present heuristics
for minimizing | Cmax.

1 | p-batch, B, sj, rj | · Chang and Wang (2004) propose a heuristic for |
∑
Cj minimization.

Chou and Wang (2008) and Mathirajan et al. (2010) provide heuristics in order to minimize∑
wjTj . Vélez-Gallego et al. (2011), Xu et al. (2012) and Zhou et al. (2013) present heuristics for

a minimum Cmax.

1 | p-batch, b< n, B, sj | · Uzsoy (1994) and Parsa et al. (2010) present heuristic solutions for
the objective Cmax and Uzsoy (1994) for

∑
Cj . Jolai Ghazvini and Dupont (1998) consider the

same problem, but with the objective function that minimizes mean flow times.

Pm | p-batch, b< n | · Chandru et al. (1993a) give a heuristic for the objective
∑
Cj . Mönch

and Unbehaun (2007) present three decomposition heuristics that minimizes the difference between
earliness and tardiness of the jobs, while assuming that the due dates are equal.

Pm | p-batch, b< n, rj | · To our best knowledge, no heuristic algorithms are presented for the
problem Pm | p− batch, b < n, rj | · in particular.
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Pm | p-batch, B, sj, rj | · Chung et al. (2009), Chen et al. (2010) and Damodaran and Vélez-
Gallego (2010) present heuristics for minimizing Cmax.

Pm | p-batch, b< n, B, sj | · Damodaran and Chang (2008) and Li et al. (2013) present several
heuristics for the objective Cmax. Shao et al. (2008a,b) propose to use a neural net and Chen et al.
(2011) present a clustering algorithm for the same problem.

Pm | p-batch, b< n, fmls | · Uzsoy (1995) presents heuristics for the problem with the objectives
Cmax, Lmax and

∑
wjCj and Balasubramanian et al. (2004) develop a BATC-variant for minimizing∑

wjTj .

Pm | p-batch, b< n, rj, fmls | · Habenicht and Mönch (2003) and Mönch et al. (2006b) examine
variants of BATC for minimizing

∑
wjTj . Kim et al. (2010) give a heuristic for the unweighted

case
∑
Tj .

Pm | p-batch, B, sj, rj, fmls | · Klemmt et al. (2011) discuss different variants of the BATC
rule for the problem R | p − batch, b < n,B, sj, rj , fmls | · with machine eligibility constraints
and deadlines, minimizing Cmax,

∑
wjTj or

∑
wjCj . Mathirajan and Sivakumar (2006a) and

Gokhale and Mathirajan (2014) describe a few greedy heuristics for
∑
wjTj , whereby Gokhale and

Mathirajan (2014) allows job splitting.

Pm | p-batch, B, sj, fmls | · Koh et al. (2004) examine heuristics for the objectives Cmax,
∑
Cj

and
∑
wjCj and Payman and Leachman (2010) discuss a heuristic solution for the problem with

secondary resources and a multi-objective function.

1 | p-batch, b< n, fmls | · Mehta and Uzsoy (1998) probably present the first variant of BATC in
order to minimize

∑
Tj . Devpura et al. (2001) and Perez et al. (2005) give a heuristic for the weighted

case
∑
wjTj . Boudhar (2003) examine a heuristic solution for the objective Cmax with compatibility

graph constraints. Sabouni and Jolai (2010) discuss a special case of 1 | p− batch, b < n, fmls | ·
where the objective is minimize Lmax and Cmax at the same time.

1 | p-batch, b< n, rj, fmls | · Uzsoy (1995) presents heuristics for the Lmax objective. Boudhar
(2003) examines a heuristic solution for the objective Cmax with compatibility graph constraints.
Korkmaz (2004) minimize

∑
Cj . Kurz and Mason (2008) examine

∑
wjTj . Jia et al. (2013)

consider reentrant jobs and present job-family-oriented algorithm based on a rolling horizon control
strategy that minimizes

∑
wjCj ,

∑
wjTj and Lmax.

1 | p-batch, B, sj, rj, fmls | · Gokhale and Mathirajan (2011) allows job splitting for the problem
1 | p− batch,B, sj , rj , fmls |

∑
wjTj and present heuristics for it.

1 | p-batch, B, sj, fmls | · Hoitomt and Luh (1992) minimize
∑
Tj with heuristics. Dobson and

Nambimadom (2001) minimize mean weighted flow time for the problem the same problem. Koh
et al. (2005) study heuristics for the objectives Cmax,

∑
Cj and

∑
wjCj . Kempf et al. (1998)

develop heuristics for the problem with secondary resources, minimizing Cmax and
∑
Cj .

6.6 Metaheuristics

Metaheuristics, and LS methods in particular, are often the methods of choice for solving real-life
scheduling problems with a variety of complicating constraints, since these algorithms can obtain
good quality solutions within a reasonable time (Méndez et al., 2006; Potts and Strusevich, 2009).
Several authors document the superiority of metaheuristics compared to MIP based approaches
in experimental studies, in particular for batch scheduling problems. From the NFLTs it can be
informally deduced that no metaheuristic performs better than another across all possible problems
(Wolpert and Macready, 1997). Ho and Pepyne (2001) point out that specializing search algorithms
to the landscape structure of the focused problem class is the only way one strategy can outperform
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another (refer to Section 5.3). Thus, it can be said that the choice of a particular metaheuristic is
less important than its actual implementation.

However, some authors compare metaheuristics with each other and report results which
indicate that one metaheuristic, respectively its implementation, outperforms another for a given
set of problem instances. The majority of metaheuristic implementations developed to solve batch
scheduling problems follows the paradigms of ACO, SA and GA. In comparison, VNS, PSO, GRASP
and other metaheuristics represent a minority in this area.

6.6.1 Ant Colony Optimization (ACO)

Neto and Filho (2012) provide a review regarding ACO applied to scheduling problems in general,
providing guidelines for implementation and directions for future research.

A considerable amount of works focuses on problems with the makespan objective. Jia and
Leung (2014) and Cheng et al. (2010) develop a metaheuristic algorithm based on ACO for the
problem 1 | p − batch,B, sj |

∑
Cmax. Cheng et al. (2010) consider fuzzy processing times and

demonstrate that the ACO algorithm outperforms GA and SA in all instances. Xu et al. (2008a,b)
describe an ACO algorithm for the same problem with

∑
wjCj objective. Cheng et al. (2013)

present an ACO method for parallel machines, in particular solving P | p− batch,B, sj |
∑
Cmax.

Xu et al. (2012) and Zhou et al. (2013) study ACO for the problem 1 | p− batch,B, sj , rj |
∑
Cmax.

Xu et al. (2012) show that ACO is more robust and consistently outperforms MIP, especially for
large job instances. Their results also show that the ACO algorithm outperforms an implementation
of a GA, especially for large job instances. Zhou et al. (2013) also compare their ACO with a GA.
Chen et al. (2010) compare ACO with GA for the problem P | p− batch,B, sj , rj |

∑
Cmax. Their

results show that the GA is able to obtain better solutions when dealing with small-job instances
compared to ACO, whereas ACO dominates GA in large-job instances.

Besides the works that focus on makespan, there are works presenting ACO algorithms for
other objectives, e.g for OTD. Xu et al. (2013) develop an ACO method for the problem P |
p − batch,B, sj , rj | · in order to minimize

∑
Cmax and

∑
Lmax at the same time. Kashan and

Karimi (2007) analyze the performance of ACO for 1 | p − batch,B, sj |
∑
wjCj . Almeder and

Mönch (2011) compare ACO, VNS and a GA with each other for instances of the problem Pm |
p− batch, b < n, fmls |

∑
wjTj . Mönch and Almeder (2009) and Raghavan and Venkataramana

(2006) discuss ACO approaches for the same problem. Mönch and Almeder (2009) note that that
the ACO approach slightly outperforms the GA with respect to solution quality, while requiring
considerably less computational time than GA. Guo et al. (2010) and Li and Qiao (2008) propose a
ACO method for the problem Pm | p− batch, b < n, rj , fmls |

∑
wjTj with sequence dependent

setup times The same model is then extended with machine eligibility constraints in (Li et al.,
2008), (Li et al., 2009a) and (Li et al., 2009b), where Li et al. (2009b) minimize

∑
wjTj and Cmax

at the same time.

6.6.2 Simulated Annealing (SA)

Melouk et al. (2004), Mathirajan et al. (2004) and Damodaran et al. (2007) develop SA algorithms
for the problem 1 | p − batch,B, sj | Cmax. In particular, Melouk et al. (2004) and Damodaran
et al. (2007) state that SA outperforms CPLEX in their experiments. Erramilli and Mason (2008)
describe a SA scheme for 1 | p − batch,B, sj |

∑
wjTj . Chang et al. (2004) and Kashan et al.

(2008) study SA algorithms for P | p − batch,B, sj | Cmax. Chang et al. (2004) note that SA
outperforms CPLEX on most of the instances and Kashan et al. (2008) compare SA with a hybrid
GA. Mathirajan et al. (2010) solve the problem 1 | p− batch,B, sj , rj |

∑
wjTj with SA and claim

that the SA algorithm consistently finds a robust solution in a reasonable amount of computation
time. Damodaran and Vélez-Gallego (2012) compare SA with GRASP (Damodaran et al., 2011)
for the problem 1 | p− batch,B, sj , rj | Cmax. Their computational experiments show that the SA
approach is comparable to GRASP with respect to solution quality, and less computationally costly.
Wang and Chou (2013) propose a SA scheme that solves 1 | p−batch,B, sj , rj |

∑
wjTj . Wang and

Chou (2010) compare SA, GA and MIP with each other for the problem P | p− batch,B, sj , rj |
Cmax. Yugma et al. (2008) present a solution scheme based on SA in order to solve a variant of
P | p− batch,B, sj , rj | · with deadlines and machine eligibility constraints in order to minimize a
multi-objective function.
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6.6.3 Genetic Algorithms (GAs)

Mönch et al. (2006a) study the problem 1 | p − batch, b < n | · with deadlines and equal due
dates, providing a GA that minimizes earliness and tardiness. Wang and Uzsoy (2002) develop a
GA combined with DP for the problem 1 | p− batch, b < n, rj | Lmax. Damodaran et al. (2006),
Kashan et al. (2006a,b) study the performance of GA for the problem 1 | p− batch,B, sj | Cmax.
Kashan et al. (2006b) claim that the GA significantly outperforms the SA in terms of both quality
of solutions and required run times. The results in (Damodaran et al., 2006) indicate that the
GA is able to arrive at better makepan with shorter run times compared to a SA approach and a
commercial solver. Kashan et al. (2010) develop a GA for the problem 1 | p− batch,B, sj | · with a
bi-criterion objective involving Cmax and Lmax. Koh et al. (2005) develop a GA for the problem
1 | p − batch,B, sj , fmls | · minimizing Cmax,

∑
Cj or

∑
wjCj . Koh et al. (2004) consider the

same objectives for the related parallel machine problem P | p− batch,B, sj , fmls | ·. Chou et al.
(2006) and Zhou et al. (2013)present GAs for the problem 1 | p− batch,B, sj , rj | Cmax, whereby
Zhou et al. (2013) compare the performance of the GA with ACO among other heuristics. Chou
and Wang (2008) develop a GA combined with DP for the problem 1 | p− batch,B, sj , rj |

∑
wjTj ,

claiming that their implementation outperforms MIP for large-job problems. Dauzère-Pérès and
Mönch (2013) describe a GA for the problem 1 | p− batch, b < n, fmls | · with the objectives

∑
Tj

and
∑
wjTj .

Besides single machine problems, there are works that propose GAs for solving problems with
parallel machines. Xu and Bean (2007) and Kashan et al. (2008) develop GAs for the problem
P | p− batch,B, sj | Cmax where Kashan et al. (2008) compare their implementation with a variant
of SA. Xu and Bean (2007) claim that their implementation of the GA outperforms CPLEX in
terms of solutions and computation times, especially for larger problems. Chen et al. (2010) and
Wang and Chou (2010) develop GA for the problem P | p − batch,B, sj , rj | Cmax. Chen et al.
(2010) show that the GA is able to obtain better solutions when dealing with small-job instances
compared to ACO, whereas ACO dominates GA in large-job instances and Wang and Chou (2010)
compare GAs with MIP and SA. Balasubramanian et al. (2004) and Almeder and Mönch (2011)
study the performance of GAs for problem Pm | p− batch, b < n, fmls |

∑
wjTj , where Almeder

and Mönch (2011)compare GAs with ACO and VNS. Malve and Uzsoy (2007) present a GA for
the problem P | p− batch, b < n, rj , fmls | Lmax. Habenicht and Mönch (2003) and Mönch et al.
(2005) develop GAs for the problem P | p− batch, b < n, rj , fmls |

∑
wjTj . Reichelt and Mönch

(2006) develop a GA for the problem P | p − batch, b < n, rj , fmls | · with a multi-component
objective involving Cmax and

∑
wjTj .

6.6.4 Variable Neighborhood Search (VNS)

Almeder and Mönch (2011) state that the VNS approach outperforms the ACO and the GA approach
with respect to time and solution quality for the problem Pm | p − batch, b < n, fmls |

∑
wjTj .

Cakici et al. (2013) evaluate the performance of VNS for the problem Pm | p−batch,B, sj , rj , fmls |∑
wjCj . Klemmt et al. (2009) dscribe an implementation of VNS for the problem Pm | p−batch, b <

n, rj , fmls |
∑
wjTj with machine eligibility constraints. The experiments in (Klemmt et al.,

2009) turn out that VNS outperforms MIP with respect to solution quality and time; they find
that VNS performs faster than MIP while providing at the same time high quality solutions.
Various experiments that concern the performance of VNS under varying settings for the problem
Pm | p− batch, b < n, rj , fmls | · are reported in (Kohn and Rose, 2012, 2013; Kohn et al., 2013).

6.7 Decomposition Methods

Pinedo (2008) describes four types of decomposition methods: a) machine-based decomposition,
b) job-based decomposition, c) time-based decomposition, and d) hybrid decomposition methods
that combine the three preceding decomposition types. In awareness of the observation that even
state-of-the-art MIP solver can only handle relative small problems, decomposition approaches are
proposed in order to reduce the problem complexity (Klemmt et al., 2009).

Machine-Based Decomposition Methods Machine-based decomposition is often used in flow
shop, job shop, and open shop environments. For example, the shifting bottleneck technique
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decomposes a shop scheduling problem into a number of single machine scheduling problems. The
resulting single machine scheduling problems are then solved in order of their importance in a sense
that the most critical machine is scheduled first (Pinedo, 2008). Fowler et al. (2003) present a
modification of the shifting bottleneck heuristic for scheduling wafer fabrication facilities. In the
light of parallel machine environments, it might be necessary to reduce the number of machines by
dividing the set of machines into a number of subsets, preferably CMSs with disjunctive processes.
It is quite easy to identify CMSs with simple iterative procedures if existent. However, in practice
a particular CMS might be still too large to be solved efficiently and thus needs to be split into
machine sets with overlapping processes. In this case COP arises with the task to find a number of
subordinated machine groups so that the number of process overlaps is minimized. This problem is
related to the cell formation problem in manufacturing. The cell formation problem attempts to
group machines and part families in dedicated manufacturing cells such that the number of voids
and exceptional elements in cells are minimized (Paydar and Saidi-Mehrabad, 2013); cf. (Elbenani
et al., 2012; Modrak and Semanco, 2012).

Job-Based Decomposition Methods Generally a job-based decomposition method refers to
the idea of creating sub problems that correspond to a reduced number of jobs or operations. By
iteratively inserting jobs into a partial schedule, one sub problem after another is solved (Pinedo,
2008). For the parallel machine scheduling problem, job-based decomposition methods mean to
define a number of consecutive groups of an ordered job list. As a result each sub problem refers
to a group of jobs. The procedure begins to solve the scheduling problem with the first group
comprising the top-priority jobs and proceeds with the remaining job-groups. cf. (Klemmt et al.,
2009)

Time-Based Decomposition Methods Time-based decomposition methods are also known as
rolling horizon or time-window procedures (Pinedo, 2008). Ovacik and Uzsoy (1995) originally
present a family of rolling horizon heuristics for a parallel machine scheduling problem. Time-based
decomposition methods create sub problems along the time axis. A partial schedule is generated
up to a given point in time, ignoring everything that could happen afterwards. The focused time
window is then shifted to the next time frame at which the next sub problem is solved. For
most problems, this strategy indirectly reduces the number of jobs and thus reduces the problem
complexity (Pinedo, 2008); cf. Klemmt et al. (2009)

Hybrid Decomposition Methods Klemmt et al. (2009) combine machine-based, time-based
and job-based decomposition procedures into a hybrid approach. Based on a time-window decom-
position scheme, machine-based decomposition is used in a sense that only machines (in a time
window) with availability times lower than a limited time horizon are regarded. Additionally, the
number of jobs to be scheduled in each time window is reduced by selecting a limited number of
jobs to be scheduled from an ordered priority list. Jobs that are not regarded in a time window are
then simply delayed to the following time-window.

6.8 Real-Time Control Strategies

Real-time control strategies, such as simple rule-based dispatching approaches, are typically
experimentally examined with stochastic scheduling models. The stochastic scheduling model
defines a finite number of jobs that have to be scheduled. The job properties, such as processing
times, release dates and due dates are a priori not exactly known. These are random variables for
which only their distributions are known in advance. The actual processing times become known
only at the completion of the processing. Likewise, the release dates and due dates become known
only at the actual occurrence of the release or due date. The decision-making system follows a
control policy in order to minimize a given objective function in expectation, knowing only the
probability distributions of the data in advance. Stochastic scheduling models provide a framework
for evaluating relatively simple priority or dispatching rules in the context of real-time control
(Pinedo, 2004, 2005, 2008). This type of scheduling model is also referred to as infinite horizon
model, emphasizing the fact that this model type is usually examined with a large number of jobs
in the long run (Neale and Duenyas, 2000; Tajan et al., 2012).
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The stochastic scheduling model is closely related to research in Queuing Theory since emphasis
is put on probability distributions of important variables, such as job release dates. The jobs
stochastically enter the system over time and the performance of the studied control policy is
then examined over a sufficiently long period of time. Studying a system under the assumption
of continuous arrivals to a practically infinite horizon, i.e. over a long period of time, thus
experimentally mirrors the system behavior studied by the Queuing Theory of manufacturing
systems.

Since real-time control requires ad-hoc decisions to instantly trigger activities on the shop floor,
long computation times to make decisions cannot be accepted in view of an effective operational
control policy. The predominant control system in waferfabs is still the rule-based dispatching
concept providing reliable real-time capability through simple heuristics (e.g. priority rules) that
instantly lead to immediate decisions in a few seconds. The software system of choice is most often
the APF RTD product11 (Mönch et al., 2011a); cf. (Leachman, 2002)

Akcali et al. (2000) show that the loading policy has a more significant effect on flow time and
due date performance than the dispatching policy. In other words: the decision to start or to delay
a non-full batch is more important than the choice of the jobs.

Whenever a BPM completes a process and becomes available again, a scheduling decision has to
be taken in order to proceed. This involves two sub-decisions: a dispatching decision and a loading
decision. The dispatching decision determines which jobs have to be processed next (on which
machine), referring to the prioritization of the jobs that are put together in a batch. The loading
decision determines how many lots to put into the batch, considering the trade-off between starting
the batch or waiting for more lots to arrive. Especially the loading decision further complicates
the scheduling task at hand. On one hand, if there are less jobs available than the capacity of the
machine allows, starting a partial batch immediately would lead to a waste of machine utilization.
On the other hand, delaying the process start in order to wait for arriving jobs increases the queuing
time for the lots that are currently waiting for processing (Akcali et al., 2000). BP is always a
trade-off between machine utilization and CT of the jobs (Sha et al., 2004, 2007).

The dispatching/loading rules for controlling BPMs in real-time fall into two categories: threshold
strategies and look-ahead strategies. A threshold strategy decides with knowledge about the current
situation only, without any further information. Look-ahead strategies further incorporate known
near-future arrivals into the decision process; cf. (Cha et al., 2012; van der Zee et al., 1997).

Reviews Mathirajan and Sivakumar (2003) review batch scheduling problems in semiconductor
manufacturing, classifying batching problems into 12 groups while distinguishing between stochastic
and deterministic problems. They refine their classification schemes and systematically organize
the published articles in an updated survey three years later (Mathirajan and Sivakumar, 2006b).
Robinson et al. (2000), van der Zee (2000, 2003) and Cha et al. (2012) particularly examine real-time
control strategies for BPMs in industry, where Robinson et al. (2000) and Cha et al. (2012) focus
on semiconductor manufacturing. Robinson et al. (1995), van der Zee et al. (1997, 2001), Sha et al.
(2004, 2007) do not provide reviews in the classical meaning, but do provide reviews with literature
related to real-time control of BPMs in their works.

6.8.1 Threshold Strategy

Neuts (1967) proposes the MBS rule, which is often used as a benchmark rule in experimental
studies and probably the default control strategy in most waferfabs due to its simplicity. The
MBS rule defines a threshold policy that allows starting processing only if a certain number of
jobs above a given threshold is present, otherwise the machine remains idle. The batch process
is delayed until the given threshold is reached. Akcali et al. (2000) experimentally examine the
performance of different loading and dispatching policies for BP operations of a semiconductor
waferfab. They particularly study the effect of MBS control, pointing out that the average flow
time is a convex function of the threshold value of the loading policy. On one hand, a too low
threshold level decreases the BPM utilization and increases the CT dramatically. On the other
hand, a threshold level that is too high significantly increases the CTs. They particularly examine
the effect of thresholds in low volume products. Refer to Figure 38 depicting the MBS rule behavior.

11http://www.appliedmaterials.com
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Figure 38: The MBS rule behavior (Glassey and Weng, 1991); cf. (Hopp and Spearman, 2001)

The optimal control policy for a single unbounded BPM, using only information about the
current state of the system, is a MBS policy with an optimal threshold limit, which needs to be
adjusted whenever system conditions change (Weiss, 1979; Robinson et al., 2000). Weiss (1979)
presents an algorithm for finding the optimal control limit that minimizes the long run average
waiting times. Avramidis et al. (1998) also develop computational procedures to minimize the
expected long-run-average number of jobs in the system under threshold policies. Sung and Choung
(1999) propose a neural network model that determines the optimal batch size in order to minimize
CTs. Gurnani et al. (1991, 1992) compute the critical MBS threshold for a two stage serial batch
system with the serial stage (e.g. photolithography) feeding the batch stage (e.g. furnace). Aalto
(2000) shows that MBS control is the optimal operating policy for a single bounded BPM. Fowler
et al. (2002) develop closed-form formulas used to determine optimum batch sizes for a system with
multiple BPMs and multiple incompatible products. They propose a GA to find an optimum batch
size for all products such that the total expected CT of any item is minimized. Phojanamongkolkij
et al. (2002) and Phojanamongkolkij and Ghrayeb (2005) propose the use of an analytical queuing
model to determine MBS thresholds in order minimize the sum of the weighted CTs of multiple
products with different weights.

6.8.2 Look-Ahead Strategies

Modern waferfabs manage large amounts of information about the current state of the system, and
thus principally provide capabilities to predict future arrivals with certain accuracy to a certain
extend (Robinson et al., 2000). The Dynamic Batching Heuristic (DBH) is considered as the first
published control policy that exploits the knowledge of future arrivals with the intention to reduce
CTs at BPMs. Even in the presence of prediction errors incorporating future arrivals into the
decision process leads to considerable improvements (Glassey and Weng, 1991; Robinson et al.,
2000; van der Zee, 2007; Tajan et al., 2011; Kohn and Rose, 2013).

Section 8.2.2 and Section 8.2.3 discuss experiments that investigate the effect of predicted job
arrivals in a scheduling scenario.

Dynamic Batching Heuristic (DBH) Glassey and Weng (1991) demonstrate that the use of
forecasting information reduces the average CT of lots arriving at a BPM. Compared to MBS, the
improvement depends on the traffic intensity. The observed improvement under extreme conditions
(very low or very high traffic) is nearly zero, because DBH then operates like MBS in a sense that
it starts only one lot in very light traffic and max batch sizes in very heavy traffic. In contrast,
CTs can be reduced about 50% in moderate traffic scenarios (30% to 70% utilization).

Next Arrival Control Heuristic (NACH) Fowler et al. (1992a,b) propose the Next Arrival
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Control Heuristic (NACH), demonstrating how the knowledge of future arrivals can be used to
control a BPM, studying the multi-product case in particular. NACH, as well as all its variants,
is aimed on minimizing the CT and only considers the next arrival. Fowler et al. (2000) further
develop NACH in order to be applicable in the more general multiple products-multiple server
case. Solomon et al. (2002) extend NACH in a sense that it additionally incorporates the setup
status of downstream machines into the decision process. Another variant of NACH tries to control
the inventory coming into the batch operation, demonstrating the benefit of pulling the jobs from
upstream operations based on the needs at the batch operations. The idea is to control the feeding
workstation with the goal that the batches arrive at the batch operation just in time so that
unnecessary waiting time is reduced (Ham and Fowler, 2008).

Minimum Cost Rate Heuristic (MCR) Weng and Leachman (1993) describe the Minimum
Cost Rate Heuristic (MCR) as an extension of the DBH, applied for the multi-product case on a
single BPM. The major difference between DBH and MCR is the chosen look-ahead horizon. The
DBH uses a fixed duration that limits the look-ahead horizon, i.e. the processing time. The MCR
heuristic uses the processing time plus any prior waiting time as the scheduling horizon. Their
experiment shows that MCR outperforms NACH, DBH, and MBS with respect to the average total
queue length in the multiple product case.

Rolling Horizon Cost Rate (RHCR) Robinson et al. (1995) present the Rolling Horizon
Cost Rate (RHCR), a control strategy that uses both upstream and downstream information.
Their results confirm that significant improvements in CT can be realized by exploiting upstream
information.

Dynamic Job Assignment Heuristic (DJAH)/Dynamic Scheduling Heuristic (DSH)
The look-ahead strategy Dynamic Job Assignment Heuristic (DJAH) presented in (van der Zee
et al., 1997) deals with multiple types of products being processed by a number of identical machines,
additionally accounting for setup costs for a machine. The goal is to minimize the average CT per
product in the long run. DJAH is then further extended to the online scheduling approach Dynamic
Scheduling Heuristic (DSH); cf. (van der Zee, 2001; van der Zee et al., 2001). The proposed DSH
creates a schedule for unrelated parallel machines, instead of just focusing on the machines available
at the decision moment as discussed in previous studies. DJAH is also adapted to to control burn-in
ovens in semiconductor manufacturing (van der Zee, 2004) and presented with an extension that is
capable to manage non-identical job sizes (van der Zee, 2007).

Model Predictive Control (MPC) Tajan et al. (2008, 2011) propose an online heuristic-based
on Model Predictive Control (MPC) in order to reduce CTs for a single BPM with incompatible
families. Their experiments show that the MPC-approach outperforms NACH in the multi-product
case with respect to CT improvements. They also point out the potential benefits of controlling the
upstream machines in a sense that an increased correlation in the job families is a way to effectively
reduce CTs. Tajan et al. (2012) extend the MPC approach for a parallel machine environment.

Time-Limited Next Arrival (TLNA) Murray et al. (2008) present the Time-Limited Next
Arrival (TLNA) heuristic that controls a set of parallel BPMs with setup times. TLNA takes
future arrivals into account and aims on setup reduction, while trying to minimize a cost function
consisting of the two conflicting performance measures total item queuing time and total machine
running time.

Batch Apparent Tardiness Cost (BATC) Vepsalainen and Morton (1987) develop the ATC
rule for minimizing the weighted tardiness in job shops. Several authors extended the ATC rule in
order to solve batch scheduling problems, whereby the proposed rules are called BATC rules. See
Section 6.5.2.
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Look Ahead Batching (LAB) Gupta et al. (2004); Gupta and Sivakumar (2006) propose a
Look-Ahead Batching (LAB) method demonstrating the benefit of using knowledge about the
arrival times and due dates of future coming lots for the single BPM scheduling problem. The goal
is to minimize three due date objectives simultaneously: earliness, tardiness, and their square sum.
The steady-state simulation results show that exploiting the knowledge of future arrivals and their
due dates leads to a significant reduction in the earliness/tardiness measures for tight and loose
due date settings at two different utilization levels. Results have shown a significant reduction in
these due date performance measures, especially for low traffic intensities.

More Real-Time Control Strategies Sha et al. (2004, 2007) develop a due date oriented
look-ahead batching rule (LBCR) that considers the due date in order to raise delivery rates
and reduce the average tardiness. They evaluate the proposed LBCR rule in a parallel machine
environment, comparing it with other batching rules. Sahraeian et al. (2014) examine the ERT
(Equalization of Runout Time) rule in order to minimize the Cmax in a parallel machine environment
with size dependent setup times and release times. Duenyas and Neale (1997) propose a batching
heuristic applicable for a single BPM with random processing times in order to minimize the
long-run average cost per unit time. They examine the static case where all jobs are available
simultaneously and the dynamic case with job arrivals. Cigolini et al. (2002) propose a look-ahead
procedure for scheduling several products on parallel batching machines.
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This section gives a brief description of the implemented framework designed to enable two main
purposes: a) operational scheduling on the shop floor and b) exhaustive studies in an experimental
system.

It provides a top level description of data systems, data transfer mechanisms and essential data
procedures. The focus lies on data management —the extracting and transferring of data from and
between scheduling sub systems.

The structure of this section is as follows: the core functionalities encapsulated in a structure
of separated code packages and their basic interactions are described in Section 7.1. Section 7.2
investigates the VNS schemes implemented as an essential part of the framework. The framework’s
design stays abreast of two use cases: a) the use as an experimental system answering methodical
questions and b) the use as a prototype to be deployed in the industry. Section 7.4 contains a
description of the prototype and Section 7.3 describes the experimental system. Both subsystems
share essential components of the framework despite of their differences that require case-specific
adjustments in the written code.

Similar Frameworks Deployed in Industry The research literature provides a considerable
number of descriptions of scheduling systems that have been successfully introduced in manufacturing
systems such as waferfabs. The majority of those systems is based on simulation (DES) and makes
use of an optimization method, e.g. heuristics or mathematical programming.

Liao et al. (1996) present the development of a daily scheduling tool based on IP for a R&D
waferfab pilot line. Some general insights gained from developing scheduling systems for the
industry are presented in (van der Krogt et al., 2009). More recently Bixby et al. (2006) and
Fordyce et al. (2008) describe their efforts in developing and deploying a scheduling system in a
300 mm IBM waferfab.

Other reports only focus on parts of the manufacturing system. For example, Yugma et al.
(2008) and Yurtsever et al. (2009) describe successful developments of batch scheduling systems in
the diffusion area. In addition, many approaches target the scheduling problem in the backend of
semiconductor manufacturers. Sivakumar (1999) describes a simulation-based scheduling system
implemented in a semiconductor backend site. Similarly Horn (2008) presents a scheduling system
based on DES for a backend-site; cf. (Weigert et al., 2009). Potoradi et al. (2002) describe the
development of a DES system to a schedule weekly production in the assembly plant of a major
semiconductor manufacturer.

Persson et al. (2006) present a successful application of simulation-based multi-objective op-
timization of another complex real-world scheduling problem that does not stem from wafer
fabrication. See (Pinedo, 2008) for more examples of successful implementations of scheduling
systems; cf. (Mönch et al., 2011a).

Similar Frameworks as Prototypes Beyond the success stories about scheduling systems
successfully implemented in the real world, the research literature provides many promising
descriptions of prototypes and concepts for scheduling systems designed to schedule waferfabs or
parts of it. See (Gupta and Sivakumar, 2002; Habenicht and Mönch, 2003; Fowler et al., 2003;
Mönch et al., 2003; Ham et al., 2009; Klemmt, 2012; Qiao et al., 2012a)

For more concepts of scheduling systems that are not explicitly designed to work in a waferfab
but contain fruitful points of references in the area of scheduling complex facilities see (Wu and
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Wysk, 1989; Smith et al., 1994; Drake and Smith, 1996; Chong et al., 2003a,b; Kumar and Nottestad,
2006; Monfared and Yang, 2007; Dangelmaier et al., 2006, 2007)

7.1 Code Packages

The framework primarily consists of a simulation-based optimization system developed to solve
scheduling problems with BPMs in waferfab frontends. The underlying system covers various BPM
scheduling problems that differ in their sets of constraints and objectives. An implementation of a
generalized concept of VNS offers numerous search variants, including most of those mentioned
in the related literature. The difference between these variants is basically the balance between
exploitation and exploration of the search space, beside countless different parameter combinations
to choose.

The framework is purposefully designed and implemented in order to operate two use cases:
a) providing a proper environment to evaluate scheduling methods in experimental studies and
b) offering the capability to serve as a prototype on the operational level of manufacturing. The
first use case is to provide an experimental framework that offers to evaluate methods and problems
under various settings comfortably. The latter satisfies industrial needs in terms of a functioning
prototype that is fully connected to and properly operating with the waferfab’s MES. Both use
cases need different data structures and specific code routines managing their specialties. The core
of the framework is a simulation-based scheduling system with optimization capabilities powered
by VNS.

The framework basically consists of two main layers: a logic layer and a data layer. On one
hand it covers the source code for the simulation-based scheduling engine with all its components
realizing the modeling, simulation, and optimization tasks. On the other hand it comprises the
underlying data infrastructure comprising the database, raw data preprocessing, data transferring,
model loading and storing functionalities.

The developed scheduling system attains the status of a prototype on an operational level,
providing the capability to load and validate a currently existing problem instance with actual
data from the waferfab’s databases. After loading a snapshot with actual data from the MES the
scheduling procedure creates an improved schedule that in turn is written back to the MES for
execution. See Section 7.4 for a description of the prototype.

In addition to implemented real-world and real-time features a model generator offers to create
user-defined model instances of scheduling problems with specific characteristics. A database
establishes the data management that is necessary to run the experimental system in an effective
and comfortable fashion. Since large simulation/optimization experiments often suffer from a lack
of computing power and time availability, the framework delegates extensive studies to a High
Performance Computing (HPC) cluster with 64 cores connected to the database. The entire system
is written in C#, with a larger focus on code comprehensibility than on computation speed. See
Section 7.3 that describes the experimental system.

The core functionalities are designed and implemented with the ulterior motive to be used for
both use cases, i.e. for the experimental system and the prototype.

The framework is organized in 10 main code packages: a) DISPATCHING, b) EXPERIMEN-
TATION, c) PROTOTYPE, d) MODELING, e) GUI, f) OBJECTIVES, g) VNS, h) SCHED-
ULER, i) SIMULATION, and j) SUPPORT. The packages DISPATCHING, MODELING,
OBJECTIV ES, V NS, SCHEDULER, and SIMULATION are used in both use cases whereas
the package EXPERIMENTATION only covers functionalities with experimental background
and the package PROTOTY PE exclusively covers the prototype designed for the industrial
application. Refer to Figure 39 for the package view of the framework.

Package DISPATCHING The package DISPATCHINGcontains a selection of implemen-
tations of well known dispatching rules. The dispatcher mainly operates on the model instance
(covered with the package MODELING), simply comparing attributes of jobs in order to create
ordered job lists. Refer to Section 6.5.1 for a brief introduction to dispatching rules.

Package EXPERIMENTATION The package EXPERIMENTATION comprises the def-
initions of every experiment described in Section 8. It defines each single run including the method
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Figure 39: The package view of the framework

settings and the model instances, which are either loaded from the benchmark model or provided
by the model generator. This package also provides the functionality that transfers the model
instances as well as the running descriptions for each run of an experiment to the database. See
Section 7.3 for a more detailed description of the experimental system.

Package PROTOTYPE The package PROTOTY PE contains a number of routines especially
designed to satisfy the requirements for an industrial prototype. It fetches the data from the
database and creates the model instance that mirrors the real world at that time instant. It
triggers the scheduling engine and manages transferring the final schedule back to the database.
See Section 7.4 for a more detailed description of the prototype.

Package MODELING The package MODELING contains the elementary objects such as
machines and jobs among others, forming a model instance of a particular scheduling problem.
This package covers the code core of the entire framework. Most of the other packages operate on
the model instance defined in the package MODELING. The framework provides two options
for creating a model instance: a) generating a model instance from experiment descriptions and
b) loading a model instance from a snapshot of real-world data.

If the model instance is loaded with real-world data, a validating procedure will make the model
instance validate itself. The model instance offers to be serialized in order to be directly stored
on a file system or in a database in its object-oriented form. As the core of the framework, the
package MODELING provides an elaborate object-oriented architecture that covers the atomic
model instance of a particular scheduling problem. It contains all the information framed by objects
necessary to create and optimize a schedule for a given problem. Each object stands for a physical
or logical entity in the manufacturing process and is somehow connected to another object.

The objects can be divided into two types: a) the objects that describe the facility (e.g. routes,
operations, and machines) and b) the objects that describe the scenario (e.g. lots and jobs). The
altogether initialized und properly linked objects represent a model instance on which the simulation
engine and the optimization procedures operate. Figure 40 only describes a simplified representation
of the source code, although gives a brief insight into the core of the framework.

Package GUI The Graphical User Interface (GUI) defined in the package GUI offers rudimen-
tary capabilities to visualize results and exemplary data related to the experiments. It also provides
graphical procedures that visualize aspects of model instances, e.g. the distribution of machine
attributes or job attributes; cf. Section 7.3.2 for a brief treatise about model generation.
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Figure 40: The simplified class diagram of the framework’s package MODELING

Package OBJECTIVES The package OBJECTIV ES frames multiple objective functions as
well as several strategies that combine multiple measurements into one objective function. The
multi-objective functions facilitate the hierarchical and the weighted linking of several objectives
as well as the pareto scheme. This package also comprises an implementation of the Analytical
Hierarchical Process (AHP), helping to identify proper weights for the subordinated objectives. See
(Saaty, 1987, 1990, 1994) for the AHP and compare Section 1.2.4 for a brief review of the basic
objectives that are typically subject of the optimization process.

Package VNS The package V NS contains all the functions related to the VNS scheme, com-
prising the implementations of the neighborhoods and the different search schemes described in
the research literature. It further provides space for the search tracing components that when
attached to a single run instance keep trace of every single move during the search procedure. See
Section 7.2 for a more detailed description of the implemented VNS schemes.

Package SCHEDULING The package SCHEDULING represents a central code package of
the framework. It combines the various packages and their functionalities to a powerful scheduling
engine. The Time Window Decomposition (TWD) technique is used to decompose the model
instance into a sequence of sub problems The Scheduling package combines all the subordinated
packages that provide basic functionalities such as modeling, simulation and optimization. At the
same time it serves as an interface to the top-level packages that manage the experimental system
and the prototype.

Package SIMULATION The package SIMULATION contains the analytic models offering
a fast equipment simulation capability. The main purpose is to simulate the processing of jobs on
machines for short horizons. A time-based simulation concept transforms an ordered job queue in
front of a particular machine into an exact job schedule with fixed start and completion times for
the jobs. Refer to Section 4.7 for equipment modeling techniques.

Package SUPPORT The package SUPPORT provides functions and procedures often used
in different packages. It basically deals with: a) data input and output procedures, b) mathematical
functions, and c) visualization capabilities creating graphs and diagrams. The data input and
output procedures provide the functionality to communicate with databases and operate on file
systems in order to manage the data transfer. The mathematical functions are usually combinatorial
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procedures and statistical functions. The implemented visualization procedures create graphs and
diagrams representing complex data sets properly.

7.2 VNS Implementations

This simulation-based optimization framework employs VNS to create improved schedules with
respect to the focused objectives. The concept of VNS, first described by Mladenović and Hansen
(1997) and thereafter adapted by several researchers for a multitude of applications, proposes
the definition of problem-specific neighborhood structures disassembling large scale optimization
problems, i.e. COPs.

The basic idea behind is a systematic change of the neighborhood operator during the search,
typically established in two alternating search phases: a descent LS phase and a randomized
perturbation phase (shaking). See (Hansen and Mladenović, 2001, 2003; Hansen et al., 2001, 2009)
for more detailed information.

The framework comprises an implementation of VNS as an abstraction of the originally proposed
search schemes, which allows us to freely configure two nested search levels. Both levels can be
parametrized independently from each other, where each search level defines a set of neighborhood
structures, the LS procedure (first-improvement or best-improvement), and the shaking policy
managing the shaking range (either constant or increasing).

Neighborhoods A neighborhood represents problem-specific knowledge by defining a certain kind
of modification applied to a certain solution or parts of it. Each defined neighborhood constitutes a
smaller partial problem offering the possibility to find improved solutions in an adequate time even
for large COPs.

The neighborhood structure creates subspaces of the entire search space by encapsulating a
certain set of operations used to modify the schedule. The search procedures in this framework are
based on six neighborhoods: a) split a batch, b) merge two batches, c) swap two batches, d) move
a batch, e) swap two jobs, and f) move a job.

Each neighborhood provides the capability to return a neighbored solution of another by defining
LS procedures following the first-improvement or the best-improvement strategy. Section 8.3.2
discusses experiments that investigate the effect of the different neighborhoods in the search schemes
and Section 8.3.3 deals with experiments investigating the two LS strategies embedded in different
VNS variants.

The implemented neighborhoods are defined as follows:

Split a Batch The idea behind is to split a batch into two whereby one partial batch remains at
its original position and the other one is assigned to another machine. Splitting a batch is
simply achieved by defining a split index that refers to the job number in the batch. Any job
below the split index remains at the original position in the original batch and the remaining
jobs form a new batch assigned to a new machine.

Merge Two Batches Merging two batches means to transfer a number of jobs from one batch
to another. It is even possible that two batches unite completely. The implementation simply
considers the possible combinations of two batches, trying to move jobs from one batch to
another.

Swap Two Batches Swapping two batches means that two batches exchange their positions
in the schedule. This might imply that they even swap the machines they are assigned to.
The procedure considers all the possible combinations of two batches, trying to swap their
positions.

Move a Batch This neighborhood checks for each batch if another position on the schedule leads
to a better schedule. The procedure simply tries to insert a certain batch at a new position
on the schedule, even on another machine.

Swap Two Jobs Swapping jobs corresponds to the idea of swapping batches, but on the level of
jobs. This neighborhood tries to exchange two jobs from different batches. This might imply
that swapped jobs also change the machine.
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Move a Job Moving a job simply refers to the transfer of a job from one batch to another. This
is the neighborhood with the smallest impact on the entire schedule.

VNS Schemes This framework comprises the implementations of five basic variants of the VNS
concept: a) VND, b) RVNS, c) BVNS, d) GVNS, and e) VNDS. Refer to (Hansen and Mladenović,
2001, 2003; Hansen et al., 2001, 2009).

VND and RVNS are considered as the basic building blocks, whereas BVNS, GVNS, and VNDS
describe more sophisticated two-level compositions of them. VND repeats sequentially exploring
neighborhood structures (searching for the best neighbor) of an incumbent solution until no longer
an improvement is obtained. In contrast, RVNS does not perform LS; it randomly selects new
neighbors changing the neighborhoods.

BVNS, GVNS and VNDS combine a LS scheme improving the incumbent solution with the
ability to escape from local optima by the use of random movements in the solution space (shaking).
Starting from an initial solution, a LS phase is continued until no longer an improvement is obtained.
Without any knowledge about the optimal solution (global optimum), it must be assumed that
the LS results always represent non-optimal solutions (local optima). The current solution is
randomly modified in the shaking phase in order to escape from the local optimum. The shaking
step tolerating deteriorations is subsequently followed by a LS procedure hopefully leading to a
better solution.

The framework’s implementation of the search schemes offers the option to use different
neighborhoods for the shaking phase and for the LS phase. It is possible to define hundreds of
different VNS search schemes by combining strategies and different parameter. The range of
possible method settings covers deterministic variants that only employ LS as well as stochastic
variants that manage to escape from local optima. These variants basically differ in the balance
between exploring and exploiting search space. Additionally, the system supports multi-objective
optimization, whereas multiple objectives are combined a) hierarchically, b) with weights, or
c) equally in order to improve pareto fronts.

Since heuristic search procedures such as VNS operate on given solutions, it is required to provide
an initial schedule as the start solution for each problem instance. The framework uses dispatching
rules executed in a simulation system to generate initial schedules, which also provide the reference
objective measures for analyzing improvements gained by optimization in the aftermath.

7.2.1 Variable Neighborhood Descent (VND)

The VND search method describes a neighborhood search scheme that changes neighborhoods in a
deterministic way without any random effects. VND search differs from classical LS procedures: it
employs multiple neighborhoods for improving a solution instead of using a single operator. The
idea behind is that using multiple neighborhood structures increases the probability to find a global
optimum (Hansen et al., 2009).

VND search in its original form is based on the best-improvement LS scheme that is also known
as the steepest descent heuristic. It basically consists of two steps cyclically performed until no
longer an improvement is obtained: a) exhaustive LS around the incumbent solution and b) moving
to the best neighbor.

VND search first explores the current neighborhood N(x) of the current solution x and identifies
the best neighbor x′. Second VND search determines whether x′ improves x and thus how to
proceed. If x′ is better than x, the search will restart exploring the first neighborhood using
the improved solution x′ as x. If x′ does not improves x, the search will continue with the next
neighborhood. When implementing the neighborhoods it is important to bear the complexity of the
neighborhood operations in mind because exploring some neighborhood structures might be very
time-consuming for some instances (Hansen and Mladenović, 2003); cf. (Talbi, 2009).

The principle of the VND algorithm is visualized in Figure 41. See Figure 42 for the pseudocode;
cf. (Hansen and Mladenović, 2001, 2003).

7.2.2 Reduced VNS (RVNS)

The LS component is often the most time-consuming ingredient of VNS variants. The RVNS waives
LS and randomly creates solutions in increasingly far neighborhoods (Hansen and Mladenović,
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Figure 41: The principle of the variable neighborhood descent algorithm (Talbi, 2009)

Figure 42: The pseudocode for the VND algorithm (Hansen et al., 2009)

2001).
RVNS is originally designed to manage large valleys surrounding a local optimum. The

original description assumes that the neighborhoods are nested, which means that the sequence of
neighborhoods implies that each neighborhood contains the previous one.

RVNS basically consists of two steps cyclically performed until the stopping criterion is met:
a) shake and b) move.

The procedure is as follows: Each cycle begins with selecting a new random solution x′ around
the incumbent solution x using the current neighborhood. If x′ improves x, the search will be
recentered and started again with the first neighborhood; otherwise the search proceeds to the next
neighborhood. After all neighborhoods have been considered, the search restarts with randomly
selecting a solution from the first neighborhood. The procedure is repeated until a stopping
condition is satisfied (Hansen and Mladenović, 2003). It is recommended to use RVNS for very
large instances for which LS is very costly (Hansen et al., 2009).

Refer to Figure 43 for the pseudocode; cf. (Hansen and Mladenović, 2003).

Figure 43: The pseudocode for the RVNS algorithm (Hansen et al., 2009)

7.2.3 The Basic VNS (BVNS)

The BVNS method combines deterministic and stochastic changes of neighborhoods. It enriches
a LS procedure such as best-improvement LS with a shaking procedure that randomly selects
solutions within the current neighborhood in order to escape from a local optimum obtained by the
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LS scheme. Both the LS and the shaking step operate on the same neighborhood in every iteration,
i.e. on the same search level. BVNS basically comprises three steps cyclically performed until the
stopping criterion is met: a) shake, b) LS and c) move.

The procedure is as follows: Every cycle starts with randomly selecting a neighbored solution
using the current neighborhood operating on the incumbent solution x. This is referred to as the
shaking step, which leads to x′. Then the LS phase explores the result of the shaking step x′,
determining x′′ that mirrors the best solution in the current neighborhood. If x′′ improves x, the
search is will be recentered with x′′ and the procedure will begin again with the first neighborhood.
Otherwise the cycle will proceed with the next neighborhood (Hansen et al., 2009).

See Figure 44 for the pseudocode; cf. (Hansen and Mladenović, 2001, 2003).

Figure 44: The pseudocode for the BVNS algorithm (Hansen et al., 2009)

7.2.4 General VNS (GVNS)

GVNS combines VND with RVNS, which means that the resulting search scheme comprises a
LS component as well as the shaking procedure. GVNS differs from BVNS in that the LS phase
does not necessarily use the same neighborhood as the shaking phase in every cycle. The search is
organized in two search levels; the first level performs the shaking procedure whereas the second
level performs LS by VND. Each iteration is composed of three steps: a) shake, b) LS with VND
and c) move.

First the initial solution x is shaked, meaning that a solution is randomly selected from the
current neighborhood in the first level, resulting in solution x′. Then VND is used as a LS procedure
in order to generate the solution x′′. If x′′ improves x, the search will be restarted with the first
neighborhood. Otherwise the shaking procedure will try another random shaking move using the
next neighborhood (Talbi, 2009).

Figure 45 shows the pseudocode; cf. (Hansen and Mladenović, 2003; Talbi, 2009).

Figure 45: The pseudocode for the GVNS algorithm (Hansen et al., 2009)
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7.2.5 Variable Neighborhood Decomposition Search (VNDS)

The framework contains a variant of the VNDS adjusted for the focused use case so that the
actual implementation differs from the original description of VNDS. The implemented variant of
VNDS represents a two-level VNS scheme operating on two search levels that probably comprise
two different neighborhood sequences similar to the described implementation of GVNS. The
first level comprises a shaking step and a first-improving LS procedure. The second search level
separately performs BVNS between the shaking phase and the first-improving local-search on the
first level. VNDS basically comprises four steps cyclically performed until the stopping criterion is
met: a) shake, b) BVNS, c) LS, and d) move.

The procedure is as follows: Every cycle starts with a shaking step on the incumbent solution x
in order to create x′. On the second search level the BVNS procedure tries to improve x′ leading to
x′′. The current cycle ends up with x′′′ as a result of the final first-improving LS step on the first
search level. If x′′′ improves x, the search will be recentered with x′′′ and the procedure will begin
again with the first neighborhood; otherwise the cycle will proceed with the next neighborhood
(Hansen et al., 2009); cf. (Hansen and Mladenović, 2001; Hansen et al., 2001).

Refer to Figure 46 showing the pseudocode; cf. (Hansen and Mladenović, 2001, 2003).

Figure 46: The pseudocode for the VNDS algorithm (Hansen et al., 2009)

7.3 The Experimental System

Designing and defining experiments as well as managing their execution is one of the central
functionalities of this framework. The experimental system is purposefully designed and implemented
to comfortably manage a remarkable amount of experiments. The driving force is to extend the
framework with functionalities that make defining, executing and analyzing experiments as time-
saving as possible. The experimental system basically comprises three components: a) the admin
system, b) the database, and c) the HPC cluster.

The admin system initializes the database and the HPC machine, ensuring that their interplay
results in a powerful experimental system that is capable of running thousands of experiments in a
comfortable way. On one hand the admin system deploys the code of the scheduling engine to the
HPC cluster and prepares its operating system for running a certain experiment. On the other
hand the admin system transfers the experiment input data to the database from which the HPC
machine requests its running descriptions. A model generator as a part of the admin system creates
user-defined model instances with specific characteristics.

The database maintains the data management that is necessary to run the experimental system
in an effective and comfortable fashion. It provides access to the experimental data that entails
the input parameters including the model instances as well as the output results including the
schedules. The database stores the descriptions of the experiments and the results of every single
run. Each experiment usually consists of thousands of run descriptions related to the serialized
model instances created with the model generator. The result of each run is at least a short
summary of performance indicators derived from the created schedule. In addition it is possible to
store the complete schedule with start and completion times of the jobs as well as the entire search
trace with many additional information for each run. The experimental system is limited to model
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instances that do not exceed 5 GB in their compressed size, which equals the maximum size for a
Character Large Object (CLOB) in the database.

The HPC cluster offers the computing power needed to handle the large amount of experiment
runs defined in the designs of the experiments. Since large simulation/optimization experiments
often suffer from a lack of computing power and the time availability, the framework delegates
extensive studies to a HPC cluster with 64 cores connected to the database. The HPC system is
actually a DELL Blade Server with eight computing nodes, each with two Quad-Core E5450 Xeon
CPUs (2,8Ghz) and 16GB memory per node, operated by Microsoft HPC Windows 2008 (64bit).
Thus, the experiments were carried out on 64 cores running in parallel most of the time.

7.3.1 The Database Structure

The table structure comprises nine tables structured in two groups, i.e. input data and output data.
The tables are hierarchically connected via primary and foreign keys, which enable a cascading
deletion of related data sets in different tables. See Figure 47 for an overview.

Table EXPERIMENT ADMIN The administration table EXPERIMENT ADMIN serves
as the anchor in the database. It contains the basic information of the experiment while
connecting the input data tables and the output data tables.

Table EXPERIMENT INPUT The table EXPERIMENT INPUT only serves as an ad-
ministration table that manages several input data sets for one experiment. The idea
behind stems from an experience gained during developing and testing: in some cases it
might be desired to run a particular experiment with another input data set generated with
slight changes. The table is linked to the input data tables EXPERIMENT MODEL,
EXPERIMENT METHOD, and EXPERIMENT BENCHMARK.

Table EXPERIMENT MODEL The (serialized) model instance with all its characterizing
features is stored in the input data table EXPERIMENT MODEL. It contains the
serialized model object representing an instance of the scheduling problem. The table is
rounded out with various information about this particular model instance, e.g. the number
of machines and jobs among many others.

Table EXPERIMENT METHOD The table EXPERIMENT METHOD provides the set-
tings for the scheduler. This table defines the method settings for each single run, e.g. the
type of the initial solution and the maximum computational deadline among many other
parameters refining the search scheme.

Table EXPERIMENT BENCHMARK The benchmark instances used to evaluate the effect
of different method settings on the search performance are stored in the table EXPERI-
MENT BENCHMARK. It holds the serialized model instances of the benchmark as well as
its characteristics and solutions for several methods with different settings.

Table EXPERIMENT OUTPUT The table EXPERIMENT OUTPUT only serves as an
administration table that offers the opportunity to run a particular experiment more than
once, e.g. with different versions of the scheduling engine. The experience in developing and
testing a scheduling system advises to compare the results of different code versions based on
identical benchmark instances. The table EXPERIMENT OUTPUT is linked to the output
data tables EXPERIMENT PERFORMANCE, EXPERIMENT SCHEDULE, and
EXPERIMENT TRACE.

Table EXPERIMENT PERFORMANCE The table EXPERIMENT PERFORMANCE
receives a summary from every single scheduling run, including various KPIs derived from
the schedule and some brief information about the optimization run, e.g. run times. Storing a
summary with some analyzed KPIs for each run makes storing the entire schedule superfluous
and thus saves space and time. The final result of each optimization run, the schedule, is
only stored if needed.
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Table EXPERIMENT SCHEDULE The table EXPERIMENT SCHEDULE collects the
schedules from each scheduling instance if desired. If the schedules are available for a number
of experiment’s runs, it will be possible to derive more detailed information for the analysis,
e.g. a specific distribution for the CT.

Table EXPERIMENT TRACE The table EXPERIMENT TRACE stores the data that
describes the search behavior via traced search moves. Tracing a search is very memory-
intensive since the search schemes perform many hundred thousand operations within a few
minutes. The implemented search trace option provides insights into the search behavior and
thus facilitates the development and the improvement of search schemes. See Section 8.3.6
for a short discussion about the search behavior of VNS.

Figure 47: The data table structure of the experimental system

7.3.2 Model Generation

Generating models is one of the central functionalities provided by the experimental system that
is part of the framework. The model generator is designed to create a set of independent model
instances that show equal characteristics, but also differ slightly from each other. It sets the model
variables using random numbers drawn from parametrized statistical distributions in order to create
the model instances as defined in the experiment’s description. Generating the model instances for
an experiment is done in two phases: a) defining the model characteristics followed by b) creating
the model instances as defined.

Defining the Model Instances There are numerous parameters that characterize a model
instance and which need to be specified at the outset. Describing a model begins with setting
the number of machines and jobs, and the utilization level if job arrivals are allowed. Then the
description of the manufacturing facility is refined by defining the number of job families, the
dedication scheme, the process times, the deadlines, and the batch sizes. It is noteworthy to say
that the descriptions do not explicitly describe the later characteristic of every single machine but
define the characteristic of the entire work center in terms of parametrized statistical distributions
of machine characteristics. Setting the attributes of the jobs completes the description of an
experiment’s model instances. Just as with defining the machines, the characteristics of the jobs
are drawn from parametrized statistical distributions that define the probability for a value for the
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number of wafers, the priority class and its weight, the initial tardiness, and the arrival date. See
Figure 48 that shows a snapshot from the framework visualizing the characteristics of a certain
model instance.

Creating the Model Instances After dening the characteristics of the experiment’s model, the
creation of a defined number of independent model instances per model description begins. As
dened in the model description, a set of independent model instances refers to a number of model
instances with identical characteristics, but with a considerable number of differences on a more
detailed model level. The differences among independent model instances stem from the fact that
the model values on the machine and the job level are drawn from statistical distributions randomly
created for every model instance individually. The point is that even if two statistical distributions
are identical, e.g. both are normally distributed with identical average and variance, their actual
values in the final array will not be. The experiments show that the differences among independent
model instances created from identical descriptions can have a remarkable effect on the analyzed
performance; cf. Section 8.2.1 and Section 8.2.2 for discussions about corresponding experiments.

Figure 48: A snapshot from the framework visualizing the characteristics of a certain model instance

7.3.3 Administration and Data Flow

The admin system initializes the HPC cluster and transfers the experiment’s input data to the
database from which the HPC requests the running information for each of its runs. The HPC
machine executes the optimization runs and stores the results in the database.

The communication between the HPC machine and the database works as follows: Whenever
a computing core becomes free on the HPC machine, a new optimization run is triggered. Each
optimization run proceeds with: a) retrieving the input data defined for the optimization run from
the database, b) performing the optimization run with defined parameters, and c) writing back the
results to the database.

See Figure 49 visualizing the data flow of the experimental system.

Initializing the HPC Machine The HPC machine performs the entire computation of all the
optimization runs specified in the experiments. After deploying the code to the machine, the HPC
manages an executable variant of the scheduling engine on all its cores and a plan of optimization run
executions is defined. Every optimization run is initialized with another identifier used to request
the run-specific information from the database, i.e. the model instance and method descriptions
stored in the database for each run. The HPC operating system executes one optimization run
after another, starting the next run whenever one of its 64 cores becomes free.
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Transferring the Experiment The admin system comprises functionalities for defining the
experiments as well as for transferring them to the database. Each optimization as a part of an
experiment solves a particular model instance with a certain method. The number of optimization
runs is equal to the number of models times the number of methods, given that every run is
executed once (no replications). An experiment basically consists of two components: a) a number
of model instances to be solved and b) a number of scheduling methods with specific settings. A
remarkable amount of source codes implements functionalities for generating the model instances
with specific characteristics for an experiment; cf. Section 7.3.2. Less but still considerable efforts
have to be spent to manage different variants of the VNS schemes with alterable settings, which
form the second component of an experiment beside the model instances. In contrast to the models
every single method is exactly defined with all its parameters, e.g. the dispatching policy creating
the initial solution, the distribution of the neighborhoods as well as the VNS scheme operating
on these neighborhoods, and the stopping criterion in form of a maximum computation time or a
maximum number of allowed moves.

Loading the Scheduling Model The optimization run instance requests its running information
from the database, i.e. requests the model instance and the method settings. The model instance
is stored and transferred in form of a string of characters representing the object-oriented model
instance in a serialized form. The model loading procedures offer the capability to create an object
model out of the transferred character string. This transformation procedure is also referred to
as deserialization. The scheduling procedures begins after deserializing the model instance and
initializing the VNS method as specified.

Executing the Optimization Run After loading the scheduling model, the scheduling engine
first creates the initial solution using the specified dispatching rule and subsequently applies the VNS
scheme described with the method settings. The VNS scheme optimizes the initial solution with
respect to the objective function until the stopping criterion is met. The result of the optimization
run is finally written back to the database.

Writing the Scheduling Results After executing the optimization run, the optimization run’s
result at least comprises a short summary of the KPIs derived from the schedule and sometimes
the schedule itself. It is also possible to trace the search from beginning to the end, returning a
complete documentation of all search moves. The results are then written back to the database for
further analysis.

Analyzing the Scheduling Results Finally the admin system retrieves the experimental results
for analysis from the database after the HPC machine performed the last optimization run defined
in a particular experiment. The results stored in the database need to be processed by proper data
queries in order to bring the data in a form that is suited to answer the questions stated by the
experiment. Thus every experiment requires adapted data queries that make the results readable
for analysis. The last step is to visualize the preprocessed experiment’s data in diagrams that
facilitate the analyzing and understanding of the experiment and its results.

7.4 The Prototype

Developing a prototype that captures the basic problem is an essential part of most technical
research projects. An early prototype facilitates the ongoing research activities by providing
practical experiences, acquiring the knowledge required to fully understand the problem with all its
practical aspects. Both researchers and practitioners face the problem that the scheduling problems
in the real world differ from the theoretical problem descriptions in academia. Hence practitioners
are forced to develop customized solutions that finally fit to a specific real-world problem.

Another challenge is to integrate sophisticated scheduling solutions with the existing software
structure, while generating a minimum of additional overhead. The amount of work that is needed
to integrate new functionalities into a system is a decisive factor (van der Krogt et al., 2009).
Fowler and Rose (2004) state that the development of real-time simulation/optimization systems
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Figure 49: The data flow of the experimental system

as well as their plug-and-play interoperability with existing software is a grand challenge today.
As a result of their experiences from launching a scheduling project, Fordyce et al. (2008) state
that the biggest obstacle is no longer technology, but social order. Informally this means that the
innovator trying to change the system will have those for his critics who are well off under the
existing order of things.

The standard SEMI E105 (2000) gives a provisional specification of a scheduling component
embedded in a manufacturing system. The specification roughly defines the interacting components,
interfaces and required information to run a scheduling system. The scheduling component generally
supports factory operations related to machines and material. It uses knowledge about product
demand, equipment and material state, process flows, THP bottlenecks, operational policy, and
many other types of information.

This section briefly describes the prototype as part of the framework with all its main components
and functionalities. The first step in any project is to analyze the problem with its requirements. It
begins with investigating the focused machines and their processes. Analyzing the latest active
dispatching rule variant with all its special features reveals most of the requirements and constraints
that need to be considered in a scheduling system. This prototype project is aimed at a small
BPM work center with CFPs used for oxidation and diffusion processes. The scheduling problem is
characterized with various constraints, e.g. machine eligibility constraints, time bounds, unequal
job sizes, maximum batch size constraints (lots/wafer), and incompatible job families. The objective
function usually comprises multiple components. For a detailed problem description see Section 1.2.

MRP, ERP, MES, and CIM Originally the idea of using computers for scheduling and
inventory control is referred to as Material Requirements Planning (MRP). The MRP paradigm
then evolved to Manufacturing Resources Planning (MRP II), which in turn merges into Enterprise
Resource Planning (ERP). Finally the term ERP has emerged victorious as a synonym for any
software controlling all company’s operations, e.g. manufacturing, distribution, accounting, finances,
and personnel. The MES can be seen as a software component within a MRP/ERP system. It
automatically records, controls, triggers and executes manufacturing activities on the shop floor
(Hopp and Spearman, 2001). Beside MRP and ERP the term CIM is often used.

Pinedo (2005, 2008) classifies information processing components of a manufacturing system,
creating a hierarchy of components and discussing their relationships. The scheduling function takes
place within an enterprise-wide information system that comprises a network of computers and
databases connected with any type of equipment on the shop floor. Today the software that controls
such an elaborate information system is typically referred to as an ERP system. See Figure 50
depicting an information flow diagram in a manufacturing system; cf. (Hopp and Spearman, 2001)
for a discussion of components in a planning and control system.
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Figure 50: Information flow diagram in a manufacturing system (Pinedo, 2008)
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7.4.1 Administration and Data Flow

Establishing the data transfer from the MES to the scheduling database is one of the most time-
consuming activities during the development and the deployment of a scheduling system. The
data that is required to create a model of the underlying scheduling problem is often distributed
in many different data tables of the MES and other related databases. The high complexity of
the data infrastructure in combination with the large volume of data leads to a considerable need
of manpower developing software and managing data with all its problems. The data flow of the
framework is based on dozens of data reports that extract, filter, analyze and merge data sets
from different sources. This implementation of a prototype establishes a data flow between the
three components: a) scheduling engine, b) scheduling database, and c) MES. See Figure 51 for a
visualization of the information flow.

The scheduling engine comprises the simulation-based optimization system that generates
improved schedules with the model data provided by the database. The scheduling database
serves as a data storage and interface between the scheduling engine and the MES. It provides
the model data that mirrors the situation on the shop floor as well as the optimized schedule
generated to be executed. The MES in this concept refers to the data infrastructure that traces
and controls the activities on the shop floor, i.e. provides updated input data for the scheduler and
executes the schedule as proposed. The main data processing activities can be summarized in four
groups: a) initializing the scheduling system (cf. Section 7.4.3), b) extracting the snapshot data
(cf. Section 7.4.4), c) loading and validating the model (cf. Section 7.4.5), and d) generating and
executing the schedule (cf. Section 7.4.6).

System initialization and administration frames all the activities necessary to prepare the
scheduling system before the first schedule is generated, e.g. processing all the static data such as
machine information and process routes. A very time-consuming part of the initialization procedure
is fetching the static data (master data) from the MES, e.g. machine and process information.
During the ongoing operations it is required to adjust settings and update input data in order to
keep the system running as desired in view of changing circumstances. See Section 7.4.3 for a brief
description of the system initialization routines.

The scheduling procedure itself comprises the last three steps cyclically performed in sequence:
a) extracting the snapshot data (cf. Section 7.4.4), b) loading and validating the model (cf.
Section 7.4.5), and c) generating and executing the schedule (cf. Section 7.4.6). The scheduling
procedure continuously repeats the three actions in a cycle, resulting in a regularly updated schedule
with high reliability if the interval is short.

The data extraction procedure fetches the required up-to-date information from the MES and
transfers it to the designated scheduling database. The extracted real-time information represents
the current status of the shop floor, including status information about machines and lots. The
database completes the current real-time data with additional master data information needed for
scheduling procedure, e.g. batch constraints and process times among many others. Additionally
predictions such as job completion dates and job arrivals merge the current shop-floor status and
the master data to the final model data that represents the scheduling problem. See Section 7.4.4
for a short description of the data extraction issues. The scheduling procedure finishes with
generating an improved schedule using the model data and the optimization functionalities provided
by the VNS implementation. See Section 7.4.5 for a brief introduction into the model loading
and validating procedures. The schedule execution procedure operates independently from the
scheduling procedure in asynchronous fashion. It repeatedly checks for the latest schedule as a part
of the dispatching system, trying to realize it on the shop floor as proposed. See Section 7.4.6 for
more details.

7.4.2 Data Structure

The massive amounts of data can be roughly divided into static data (master data) and dynamic
data (snapshot data). The static data refers to information that changes rarely such as basic
machine information or process flows. The dynamic data refers to objects in manufacturing that
change their state more frequently such as lots.

The table structure (Figure 52) comprises twelve tables hierarchically structured in three
groups and connected via primary and foreign keys, which enable a cascading deletion of related
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Figure 51: The data flow of the prototype

data sets in different tables. The three tables MODEL ADMIN , MASTERDATA ADMIN
and SNAPSHOT ADMIN are only used for organizational issues, where each table mirrors a
data level. The root table MODEL ADMIN on the first level serves as an anchor for the table
MASTERDATA ADMIN that in turn connects the table SNAPSHOT ADMIN on the third
level. See Figure 52 for an overview.

Making snapshots in short time intervals combined with the master data related to the machines
and the process routes leads to a considerable amount of data, adding up to huge amounts of
data when continuously running such a scheduling system day by day. The steadily increasing
data volume requires an elaborated technique for deleting old data sets. A proper setting of
primary and foreign keys ensures that the data tables remain consistent after carrying out clean-up
activities. For example, deleting a model entry in the table MODEL ADMIN results in deleting
the related master data set(s) in the table MASTERDATA ADMIN that in turn triggers a
cascading deletion of all related snapshots in the table SNAPSHOT ADMIN .

Model Data Level The model data level comprises four tables describing the model on the top
level: a) table MODEL ADMIN, b) table MODEL EQUIPMENT, c) table MODEL ROUTES, and
d) table MODEL UPSTREAM. The table MODEL ADMIN provides the root entry for every model
and the tables MODEL EQUIPMENT, MODEL ROUTES, and MODEL UPSTREAM are directly
connected with the root table MODEL ADMIN, forming the administrative level of information
describing the problem. The administrative data level simply lists the machines and the process
routes that need to be considered for the focused work area; it basically defines the use case and its
boundaries. Appendix D visualizes the boundaries of a exemplary model by showing the material
flow around the focused furnace work center, showing the set of connected work center that sends
to and receives material from the focused work center.

Master Data Level The master data level comprises three tables containing the static data:
a) table MASTERDATA ADMIN, b) table MASTERDATA PROCESS, and c) table MASTER-
DATA TRANSPORT. The table MASTERDATA ADMIN orchestrates the master data organized
in two tables: table MASTERDATA PROCESS and table MASTERDATA TRANSPORT. The
table MASTERDATA PROCESS provides all the data related to a process on a machine (process
dedications, batch sizes, processing times, etc.). The table MASTERDATA TRANSPORT stores
estimated transport times needed to predict job arrivals. The tables MASTERDATA PROCESS
and MASTERDATA TRANSPORT are linked to the table MASTERDATA ADMIN that itself is
linked to the table MODEL ADMIN. This table structure offers to have one or more master data
sets on the master data level for each model defined on the administrative data level. It is possible
to let the master data or parts of it changing while the scheduler continuously operates without
any synchronization problems.
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Snapshot Data Level The third data level manages the snapshots; a snapshot refers to a data
set that reflects the current state of the focused manufacturing system. The snapshot data level com-
prises five tables: a) table SNAPSHOT ADMIN, b) table SNAPSHOT IN STATUS EQUIPMENT,
c) table SNAPSHOT IN STATUS LOT, d) table SNAPSHOT OUT SCHEDULE, and e) table
SNAPSHOT OUT ERROR. The snapshot data level has its anchor in the table SNAPSHOT ADMIN
that is connected to the table MASTERDATA ADMIN . This means that any snapshot be-
longs to a master data set that in turn belongs to a certain model. Vice versa, a model may
have multiple master data sets where each master data set is related to several snapshots. Each
snapshot contains the input data that is used to create the model instance feeding the schedul-
ing routine. The input data provides information about the current states of the machines in
the table SNAPSHOT IN STATUS EQUIPMENT as well as about the states of the lots
in the table SNAPSHOT IN STATUS LOT . Beside the input data, a snapshot is addition-
ally linked with the output data resulting from the scheduling procedure, i.e. the generated
schedule in the table SNAPSHOT OUT SCHEDULE and the error messages in the table
SNAPSHOT OUT ERROR.

Figure 52: The data table structure of the prototype system

7.4.3 Initializing the Scheduling System

Initializing the scheduling system basically comprises two main activities: a) define the model
boundaries and b) provide the master data.

Defining the Model Boundaries (Model Data Level) Preparing the scheduling system for
operation begins with defining the boundaries of the model, e.g. determining the focused machines
and the process routes. A list of machines defines the work center that is intended to be scheduled.
The table MODEL EQUIPMENT stores the work center’s machine list for each model. A list of
process routes implicitly defines the jobs to be scheduled. The process routes are stored in the table
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MODEL ROUTES with every single process step. The machine information of the focused work
center combined with the process route information of the jobs not only define the work center but
also build the basis for creating the upstream model that defines the preceding set of machines and
processes.

The upstream model is used to create look-ahead information for predicting job arrivals to be
incorporated into the scheduling decisions. The table MODEL UPSTREAM contains the data
that mirrors the relationships between processes and machines along the process routes.

Providing the Master Data (Master Data Level) Once the model with its boundaries is
defined, the initialization phase of the scheduling system finishes with acquiring the master data
that completes the model description. Processing the master data is usually very time-consuming
because of the high level of technological complexity and the large amounts of data processed in a
waferfab’s MES. The master data corresponds to the machines and their processes, e.g. providing
information about machine and process dedications, batch sizes, and processing times. The static
data related to processes and machines is part of the master data level and stored in the table
MASTERDATA PROCESS. The table MASTERDATA TRANSPORT provides transport
times that estimate the time a lot needs to move from one equipment to another on average. The
transport times mirror an important information for job arrival predictions.

7.4.4 Extracting the Snapshot Data

The scheduling procedure begins with ascertaining the status of the machines and the jobs. Their
current status combined with the master data basically form the scheduling problem. A series of
data reports is arranged in a kind of a master report managing the execution of the subordinated
data reports in their intended order. The data reports preprocess the data in order provide a final
snapshot data set from which the model instance for the current scheduling problem is generated.
The master report with all its subordinated data reports gathers the data that is required to build
the model instance for the scheduling problem at hand. The result of the snapshot is stored in
the tables SNAPSHOT IN STATUS EQUIPMENT and SNAPSHOT IN STATUS LOT
where the first table provides information about the machines (e.g. completion dates among
others) and the latter supplies information regarding the jobs (e.g. arrival), as their names indicate.
Creating a snapshot for a small work center (e.g. with five machines) approximately takes less
than 2 minutes, including all the report-based data preprocessing activities and the transfer to the
database.

Machine Status Report (Snapshot Level) The actual machine status, e.g. the machine
is currently idle or processing, is a central information for the scheduler. The machine status
report covers the machines that belong to the focused work center as well as to the upstream
machines (all the machines that produce jobs having their next process on one of the machines
in the focused work center). The table SNAPSHOT IN STATUS EQUIPMENT provides the
machine-related status information including the prediction of the completion dates of currently
running jobs.

Job Status Report (Snapshot Level) The table SNAPSHOT IN STATUS LOT offers
place for all the job-related data, basically mirroring the current dispatching list showing the jobs
available for processing. It contains all the jobs that need to be scheduled on the focused work
center, i.e. the jobs already waiting for the process and the jobs that are currently in process at an
upstream machine. The table SNAPSHOT IN STATUS LOT is completed with master data
such as batch constraints and processing times, which are essential for creating and optimizing a
schedule.

7.4.5 Loading and Validating the Model

Based on the extracted snapshot data a model is created. Creating a model instance from the real
world comprises three activities: a) loading the model, b) validating the model, and c) reporting
validation results.
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Loading the Model The task is to create an object-oriented model instance from a relational
database consisting of a number of tables with distributed model data. The model loading procedure
creates a number of objects from the database and links them together. The objects properly
connected with each other mirror the underlying scheduling problem and provide the basis on
which the scheduling engine operates. The model loading procedure computes the data row by row
and table by table, where every row corresponds to at least one object. It is ensured that each
object is unique, initialized with all the information provided by the raw data stored in the tables.
The result is a model instance that contains a number of inter-connected model objects, e.g. jobs,
machines, and processes. The model loading procedure merges the master data and the snapshot
data into one model instance. Here the problem arises that both usually stem from different data
reports executed at different times and thereby probably mirroring partially different states of the
fab. When combining these different data sources it cannot be ruled out that problems occur. Thus
a procedure needs to be implemented that validates the model in order to ensure an error-free
model instance for the scheduling engine.

Three Main Sources of Typical Data Problems The extracted snapshot data in the database
does not always exactly represent the status of the shop floor. The real-world data sets are subject
to errors and thus validation procedures need to be installed in order to derive valid model instances
from the data. Data errors in a typical scheduling project can be mapped into one of the three
classified error sources: a) the complexity of the data infrastructure, b) the human element, and
c) excursions on the shop floor.

a) The complexity of the data infrastructure with many interacting data systems causes that
executing data reports comes with errors that lead to unwanted effects. Preprocessing the
data involves several subsystems, multiple databases and various preprocessing routines
operating on different data levels and system levels in order to provide the data as specified.
If one subsystem does not function properly, the data sets will have errors, e.g. will show
missing attributes or rows.

b) The human element is another source of erroneous data. Every piece of written source code
operating on the data and manipulating it is erroneous in a sense that it is not functioning
as desired in every situation, which might lead to serious problems. However, most of these
errors in development remain undetected and will never show up in a critical situation. The
data complexity in a waferfab’s MES leads to a situation in which data experts need to spend
much effort to gain the experience and the knowledge that is required to correctly interpret
the data mirrored by millions of rows stored in dozens of data tables with several hundred
attributes. As a consequence it is simply not possible to test every single situation that could
occur. One can say that the data maintained by humans is always faulty, e.g. not kept
up-to-date in every case. For example, it is not very uncommon that data policies lack proper
data cleaning procedures, e.g. a specific data set created some time for a specific purpose but
never deleted after its use ended. Thus databases often contain so-called dead data entries
for which no one cares, but which can impede data analysis and its valid application.

c) In addition excursions on the shop floor such as process failures lead to erroneous data sets.
Machine failures can produce unusual sequences of events that finally correspond to unusual
data sets. An input data set that is different than expected can lead to erroneous data sets
generated by the data preprocessing routines.

Validating the Model Data problems are considered to be a major barrier for transferring
results from academia into a real-world application. Therefore researchers focus on techniques
related to data validation and data mining in order to deal with missing or erroneous data (Mönch
et al., 2011a,b).

This framework uses an object-oriented data validation procedure, ensuring that the input
data satisfies necessary data quality standards. Validating the model instance follows after the
model loading procedure is completed. Since faulty data leads to faulty objects, it must be ensured
that the created model instance is free of any errors. This is important because creating a valid
schedule that is ready for execution on the shop floor clearly requires valid model instances first.
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But detecting errors and outlier is a complicated issue. In the first line it is required to define
whether an object is valid or not. The validity of an object in this framework not only depends on
its own attributes but also on the status of its related objects. It turns out that an arbitrary object
as part of the model instance can be considered as valid if there is no invalid object related to it.

The model loading procedure first ensures that each object itself is considered as valid and
second that it is exclusively linked to valid objects. The validating procedure employs rules that
define the acceptable range of attributes, finally defining valid or invalid objects. Similar rules
exist for the relationship between the objects. These rules (implemented by every object) enable
each object to validate itself by determining its validity and undertaking proper actions (such
as removing references to invalid objects) that can restore its validity. The validation procedure
cyclically checks all the objects of their validity until no more invalid object is detected. The
objects detected as invalid are removed in every cycle and so are their references from other objects.
Removing invalid objects and references might lead to fragmented objects that do not play a role
in the model instance because they are isolated in a sense that they do not show any reference to
another object; thus isolated objects are removed. The validation procedure ensures that every
valid object building up the model instance is characterized by attributes set to proper values.
In addition valid attributes exclusively refer to other valid objects. Whenever an object must be
removed the validating procedure records the reasons for its removal in order to identify the error
sources in the preceding data preprocessing stages. The validation algorithm implemented in every
object is roughly as follows: a) check whether all attributes were set to a value (no NULL entries),
b) check whether the attribute values satisfy their validity constraints (e.g. a number lies within a
given range), c) check whether the referenced objects satisfy the first two aspects (internal validity),
and d) remove invalid references and restart the validation procedure if necessary.

Reporting Validation Results The validation report contains any removed object and a short
description of the reasons that lead to its removal. In the aftermath it becomes possible to trace
the errors by identifying the sources of the objects’ invalidity. Such a reporting capability is
indispensable when trying to ensure that valid model instances result from probably error-prone
data. The table SNAPSHOT OUT ERROR stores the results of the validation procedure.

7.4.6 Generating and Executing the Schedule

The initial solution is provided by a classical dispatching rule, e.g. a variant of BATC. The
computational deadline is set in accordance to the size of the work center, which means that more
machines recommend a higher computational time limit. See Section 8.3 for a discussion of the
best method settings; it deals with experiments investigating numerous parameters.

The objective function bears in mind that several objectives play a role in practice. First and
foremost the triplet of THP, CT and OTD is used in the first place, considering that jobs can
have different weights mirroring their priority. Beyond these three it is additionally of particular
importance to avoid time-bound violations. The question is how to combine these objectives.
There are three basic strategies for combining multiple objectives: a) using a hierarchical structure,
b) using weights, and c) using the pareto scheme; cf. (Kohn et al., 2013). By supporting the
weighted variant, the AHP affords an appropriate opportunity to define a multi-objective function
by determine the weights of the components.

The top priority goal is always to prevent infeasible solutions, e.g. in cause of violated time
bounds. In the case that the scheduling procedure is not capable of finding a schedule without any vi-
olated time bound, the scheduler reports an error written to the table SNAPSHOT OUT ERROR.
A warning report frequently checks whether the table SNAPSHOT OUT ERROR contains any
warnings that point to critical jobs, e.g. those that probably violate their time bounds in near
future. A warning system is required to inform the responsible people on the shop floor in order to
facilitate the exception handling. A transparent documentation of the errors helps determining and
eliminating sources of such disturbing irregularities in the early phases of a scheduling project.

The result in form of a schedule is written to the table SNAPSHOT OUT SCHEDULE,
which serves as a kind of data gateway to the MES where the schedule is then directly accessible
on the shop floor. Transferring the optimized schedule to the MES constitutes the final step in the
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entire scheduling procedure that subsequently restarts its cycle with extracting the data for the
next snapshot.

Executing the schedule as created might expose problems. The reason is that the current schedule
is based on a snapshot mirroring the state on the shop floor a few minutes ago. Unfortunately there
is the danger that the status of the machines and the jobs have changed during the last scheduling
cycle, which means that the proposed schedule is no longer executable as initially calculated. There
exist various problems that might occur, e.g. the status of a machine has unexpectedly changed and
is not available for processing any longer. An unexpected change of a job’s status may also lead to
an invalid schedule, e.g. when a predicted job is subject to some transport problems for example.
Refer to Section 6.1 that points to the topic of rescheduling strategies and robust optimization.

The proposed schedules need to be properly communicated to the responsible experts in order to
facilitate their believe in a functioning scheduling system. The visualization of the latest scheduling
result via Gantt-charts remarkably facilitates the user acceptance, but only if the results appear
reasonable. This framework uses a software developed from project partners in order to create
Gantt-charts; cf. (Lange et al., 2009). See Figure 53 for an exemplary Gantt-chart generated with
the prototype.

Figure 53: An exemplary Gantt-chart generated with the framework
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One might think of four basic methodologies to evaluate the benefit of a scheduling system in
comparison to a dispatching system: a) online evaluation in reality, b) offline evaluation in parallel
with current real-world data, c) offline evaluation with historical real-world data, and d) offline
evaluation via a simulation system.

Hopp and Spearman (2001) note that it is important to remember that a manufacturing system
consists of equipment, logic, and human resources. Especially the human element in operations
management needs to be considered when designing, implementing, and finally taking a scheduling
system into operation. A functional system also provides a real benefit for the professionals who
are dealing with it on a daily basis.

Online Evaluation in Reality A very straightforward strategy is to implement and deploy a
scheduling system and to compare the performance of the work center in focus before and after the
deployment. The problem with this strategy is that two dierent time frames in production are very
rarely comparable due to a multitude of disturbing inuences impacting on the performance of a
system because of the situation continuously changing on the shop oor. Therefore it cannot be ruled
out that the two manufacturing situations (before and after) describe completely different production
scenarios with different characteristics, e.g. with different utilization levels or product mixes. This
involves the danger that a comparison of different time frames with different characteristics results
in misleading conclusions concerning the benefit of the evaluation.

In addition start-up difficulties that typically occur in the early stages of system deployment
can disparage the benet of an evaluation. Furthermore the process of developing and deploying
a scheduling system is associated with high efforts and costs. Managers usually spare expenses
especially when they are not convinced that the system will bring a return. Fowler and Rose (2004)
argue that the biggest challenge today is to persuade the management to sponsor modeling and
simulation projects instead of classic manufacturing methods such as lean manufacturing and six
sigma; cf. (Halevi, 2001) for an overview on 110 manufacturing methods. However, evaluating a
prototype system under real-world conditions is often the first choice since it generates the most
reliable results compared to the alternatives.

Offline Evaluation in Parallel with Current Real-World Data One might think of an-
other evaluation strategy: running the scheduling system offline in parallel without touching the
dispatching system on the shop floor. The idea behind this is to compare the real-world decisions of
the dispatching system with the virtual decisions of the scheduling system running parallel in the
background in order to derive some measures that estimate the expected benefit. Unfortunately
this strategy will not work properly because the offline scheduling system continuously needs to be
synchronized with its dispatching pendant in the real world in order to create two aligned data
sets. Otherwise the simulation will diverge from reality due to differing dispatching/scheduling
decisions. On the other hand, aligning the scheduling data set means at the same time neglecting
the virtual scheduling decisions and the result would not warrant a reliable analysis of benefits.

Offline Evaluation with Historical Real-World Data Another offline evaluation method
is based on data sets from history. This requires technical capabilities to trace the production
process with many details in order to reproduce the manufacturing history in the simulation system.
This strategy faces two main problems. First the amount of historical data with the required
level of detail is rather small, which leads to experimental results with less reliability compared to
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experiments with —theoretically endless —amounts of generated data. The second problem is that,
despite of a high level of details, not every activity that influenced the production in history can be
properly traced. The lack of details leads to remarkable inaccuracies in the evaluation analysis.

Offline Evaluation via a Simulation System Another reasonable way to compare a dis-
patching system with a scheduling policy is to strictly use a simulation approach. Simulation
systems enable reproducible experiments with stable and predictable conditions. Critics argue that
a simulation system is too far away from reality and not enough shop floor specifics are considered.

Motivation for the Design of Experiments Despite of the widespread success of metaheuris-
tics very little is known about their functioning, i.e. their interaction with the search space. The
reasons why metaheuristics work so well (and under what conditions) remain unidentified to a
large extend.

Actually many factors determine the performance of an algorithm. On one hand, the model
clearly defines the range of the improvements. That is the reason why methods are usually
compared with each other by using identical benchmark model instances solved by the methods
to be compared. On the other hand, it is obvious that the nature of the search scheme, i.e. its
algorithmic components and search features, determines the performance of the search method.
But beyond these two important aspects, it is known that a search method’s performance also
depends on the fine tuning of the algorithm’s control parameters and the realization of the actual
implementation among other factors (Watson, 2009).

Hooker (1995) argues that the competitive testing paradigm that is present in the algorithmic
research community is not suited to create that sort of insight that is required to develop more effec-
tive algorithms on the long run. The competitive testing paradigm describes the commonly accepted
way algorithmic scientists present new findings that improve the state-of-the-art. Researchers
typically focus on demonstrating the superior performance of their search scheme compared to
another, rather than analyzing the algorithm’s performance in order to find where the improvements
stem from. Most often it is considered to be sufficient to show that one algorithm outperforms
another, but not why (Watson, 2009). In the same line Potts and Strusevich (2009) state that a
better understanding of the metaheuristics’ mode of operation can provide the knowledge that is
necessary to design high-performing search schemes.

Hansen and Mladenović (2003) mention promising areas of research that offer opportunities to
improve the performance of VNS: a) initialization, b) inventory of neighborhoods, c) distribution of
neighborhoods, d) ancillary tests, e) use of memory, f) parallel VNS, g) hybrids, h) using VNS within
exact algorithms, i) artificial intelligence, j) enhancing graph theory with VNS, and k) solutions
with bounds on the error. This chapter takes a closer look at a selection of these issues.

In addition to experimental studies that are somewhat detached from reality, it is necessary
to design the studies staying in touch with the real-world fabrication environment. It is of great
importance to analyze and to understand the practical situations in which operation planning and
control strategies come into use. By thoroughly analyzing the problem in practice it is possible
to describe the nature of important problem parameters such as processing times or important
objectives. For example, it is inherently necessary to know about the maximum problem size
encountered in practice (Gupta et al., 2006).

The experimental results are discussed in three sections. Section 8.1 deals with the static
scheduling model without job arrivals, examining the effect of the very basic problem parameters
that characterize a problem instance. Section 8.2 extends the model with dynamic job arrivals,
covering important aspects that play a role when optimizing scheduling models with job arrivals.
Section 8.3 puts focus on the method, evaluating various method settings on the basis of a set of
benchmarks

8.1 Static Models

This section deals with experiments that investigate the relationship between model characteristics
and the improvement in the objective gained by optimization. It investigates some interesting effects
from selected view points chosen from the experimental results. The experiments in this section
investigate the settings of the model instances in order to clarify the model-related circumstances
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under which a certain level of improvement is observed. The idea behind this is the observation
that optimization improvements depend on the model instance to a large extend, respectively on
its characteristics.

The Default Settings for Model and Method The problem under study belongs to the class
of parallel BPMs scheduling problems with incompatible job families. It can be seen as a scheduling
problem with unrelated machines since the processing times for a job also depend on the actual
machine. The processing time for a job is determined by the processing time of the related job
family on a certain machine which means that the processing time for a distinct job family can
differ on the machines.

The default model contains 8 machines and 120 jobs to schedule. None of the models in this
section deal with job arrivals, i.e. all the jobs are available at time zero. For each design point,
respectively for each parameter combination, 30 independent model instances are solved; there are
30 problem instances at each design point. Every single experiment is based on a modification of
the default model, varying up to four parameters at the same time in order to study their relations
to other factors and measures.

Generally VNS is a two-level search scheme combining a LS phase and a perturbation phase.
The series of experiments discussed in this section exclusively employs VND as the search method,
which deterministically leads to a local optimum. The method setting defines six neighborhoods:
a) split a batch, b) merge two batches, c) swap two batches, d) move a batch, e) swap two jobs,
and f) move a job. Refer to Section 7.2 for a detailed description of the implemented VNS variants.

The run time measure of the VND procedure serves as an estimate for the complexity of the
problem, respectively for its size. It represents the time required by the VND search algorithm
to identify a local optimum in the search space. VND terminates if no more modifications in any
neighborhood lead to any further improvement. It is assumed that a longer VND run time refers to
a larger search space generated by a problem instance of higher complexity. In another way, it
is assumed that the number of moves that the algorithm requires to identify the first optimum
corresponds to the size of the entire problem, respectively its complexity.

The maximum computing time is limited to a 10 minute maximum. The search always evaluates
the objective value of the first optimum for all problem instances regardless of their size since VND
operates deterministically. There is only one exception: those model instances for which VND is
not capable of identifying a local optimum within the maximum deadline of 10 minutes. If the VND
procedure is not finished within the 10 minute deadline, i.e. no local optimum was found in time,
the algorithm stops and the current solution, which is the best known at this time, is returned.

VND can be considered as a deterministic (best improvement) LS strategy operating on a
limited set of neighborhoods specifically designed to solve the BPM problem. There are two reasons
justifying the decision to apply a deterministic VNS variant, instead of choosing a stochastic one,
which has been proven to outperform deterministic approaches. On one hand the deterministic
behavior of VND reduces the total number of experimental runs, since there is no need to run
multiple replications that guarantee a certain level of statistical reliability, in contrast to stochastic
VNS derivatives. On the other hand deterministic LS provides a better understanding of scheduling
complexity with regard to the size of the problem instances. Examining measured computing
times and/or number of search moves, combined with an analysis of improvements by optimization
related to performance measures, clarifies whether local optima can be found for certain problems
or not, in compliance to given computational deadlines.

The dispatching schemes SPT and EDD generate the initial solutions. The SPT rule is used
when the objective is to minimize CT. The EDD rule is used when the experiment deals with OTD,
i.e. the objective is to minimize tardiness, lateness, or unit penalties. The dispatching interval is
set to five minutes, which means that every five minutes the dispatching procedure is executed,
which probably results in a new job/batch started. The initial solution serves as a reference point
for the optimization procedure at the same time, which means that the improvement is always
given as the ratio of the values of the optimized solution to the dispatching solution. Refer to
Table 21 for the default settings.

The Experiments This section describes the results of nine experiments, each taking a closer
look at a certain factor or a set of factors.

144



8 EXPERIMENTAL STUDIES

Table 21: Default settings for the series of experiments related to the static model

factor level

basic model parameter machines 8
jobs 120

machine parameter

job families 8
dedication density 1(uniform)
processing times U(240, 480)
batch size (lots) 8
batch size (wafers) 200

job parameter

job sizes sj = 25
job priorities wj ∈ U(1, 5)
job due dates dj ∈ rj +N(12, 12)
job arrivals rj = 0

model instances per parameter combination 30

method parameter

initial solution EDD (TT) / SPT (TCT)
objective(s) TCT/TT
VNS type VND
deadline 10 min

The first experiment E.1 is focusing on the method run times that mirror the problem’s
complexity. Various factors determine the complexity of the problem, respectively its size. The
experiment E.1’s intention is to determine the computational complexity of certain problem instances
quantitatively by measuring the time required to identify a local optimum by VND. The search
method VND in the experiment E.1 uses a random schedule as initial solution and minimizes either
Cmax, TCT, TWCT, TT, or TWT. The experiment E.2 puts emphasis on the objectives TCT
and TT, analyzing the improvement in the objectives and its dependency on other factors. The
experiment E.3 is designed to study the effect of the batch size.

The experiments E.1, E.2 and E.3 investigate different combinations of numbers of machines,
jobs, job families, as well as different process time schemes. The problem can be formally denoted
with Rm | p− batch, b < n, fmls | ·. The models cover either 4, 8, 12, or 16 machines. Similarly
there are four model variants with different numbers of jobs, i.e. 120, 160, 200, or 240 jobs; the
jobs belong to 4, 8, 12, or 16 job families. Furthermore, the models differ in their processing
time schemes: U(120, 480), U(240, 480), or U(360, 480). For example, U(240, 480) means that the
processing times for the job families on the machines are uniformly distributed between 240 and
480 minutes. Especially the experiments E.1 and E.2 provide run time measurements that help to
determine the computational boundaries of the experiments, creating some guidelines towards the
design of the following experiments.

The experiment E.4 evaluates the effect of machine eligibility constraints, using models with
different dedication density factors for the problem Rm | p− batch, b < n, fmls,Mj | ·. Another
important constraint is examined in the experiment E.5 that is designed to study the effect of job
sizes; the problem is denoted with Rm | p− batch,B, sj | ·. The experiment E.6 analyzes the effect
of proper due date settings and the experiment E.7 examines different number of job priority classes.
The relationship between multiple objectives is the focus of the experiments E.8 and E.9. The
experiment E.8 studies the correlation between the objectives, whereas the experiment E.9 provides
results for bi-criteria optimization scenarios. The experiments E.6, E.7, E.8 and E.9 examine the
problem Rm | p− batch, b < n, fmls | · with different objective functions.

All the model instances in the experiments E.3 to E.9 are designed to allow the VND algorithm
to find a local optimum for the analyzed problem within the given time limit of 10 minutes. In
contrast the experiments E.1 and E.2 contain model instances of larger sizes that prevent VND
from finding a local optimum within 10 minutes. The appendix contains all information for each
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experiment regarding the exact design of the experiment and the analyzing charts of improvements,
run times and traced search moves.

Refer to Table 22 for an overview on the experiments carried out.

Table 22: Overview of the experiments related to the static model

experiment studied factors model instances total runs

E.1 machines, jobs, families, process time 5760 28800
E.2 machines, jobs, families, process time 5760 11520
E.3 batch sizes, families, process time 4320 8640
E.4 families, dedication density 1200 2400
E.5 families, job sizes 960 1920
E.6 due dates 810 2430
E.7 priorities 750 1500
E.8 objectives (correlation) 360 2880
E.9 pareto-objectives 360 5400

8.1.1 Objective Function

The objective function as one of the most important factors characterizes a scheduling problem
in a remarkable way and inherently determines its complexity. From the complexity theory it is
known that some objectives are easier to minimize than others, e.g. minimizing Cmax is easier
than minimizing TT. This fact is also mirrored by the computing times. For example, the run
time for Cmax is strictly shorter than that for TT. Similarly, the computing times show that
minimizing TCT is easier than minimizing TWCT. Strictly speaking, the experiments show that
the VND search settles earlier into an optimum when minimizing TCT compared to the TWCT
case. The experiments E.1, E.2 and E.6 provide scheduling results and run times for the problem
Rm | p− batch, b < n, fmls | · with various objectives.

However the current state-of-the-art in complexity theory still leaves questions unanswered. For
example, the results from the complexity theory do not provide a direct reduction path between
Cmax and TCT, which means that it is not prooven which objective is harder to solve. But when
comparing the run times of TCT and Cmax with each other, it becomes obvious that minimizing
TCT clearly requires more time. This observation provides indication that problems with the TCT
objective are harder to solve than those with the Cmax objectives. The experiments also show that
the run times for TWCT and TWT appear to be nearly identical. Refer to Figure 54, Figure 56,
Figure 59, and Figure 61; cf. Appendix E.1.

For designing and running experiments it is of essential importance to own some key data about
model sizes and run times of basic problems with typical objectives. The experiment E.2 shows the
results for the objectives TCT and TT, compared to SPT and EDD dispatching. The run times for
TCT stay below the maximum limit of 10 minutes in all cases, which means that VND is capable of
finding a local optimum for all model instances within that time. VND identifies a local optimum
for even the probably most complex design point with 16 machines and 240 jobs within 10 minutes.
When analyzing the experiment E.2’s results it becomes obvious that minimizing TT requires more
time than minimizing TCT, confirming the results known from the complexity theory (TCT ∝
TT). It is easy to create a scenario in which searching 10 minutes is not enough to identify a first
local optimum. VND finds a local optimum for the objective TT within 10 minutes only if the
number of jobs is below 120 for the case with 16 machines. Refer to the figures in Appendix E.2.

Other interesting observations can be made when comparing typical objectives that aim at OTD.
The experiment E.6 compares due date related objectives with each other in different scenarios.
Minimizing Lmax takes the shortest run times and minimizing TT shows the longest run times,
whereas minimizing TU is in between both. However, no complexity reduction rule exists between
the objectives TT and TU. The observation that minimizing TU takes less time than minimizing
TT provides indication that solving problems with unit penalties are easier to solve than those
with TT. See Figure 62; cf. Appendix E.6.
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8.1.2 Number of Machines

The number of machines determines the size of a problem in a way that the algorithm’s run time
generally increases with an increasing number of machines. The problem apparently becomes harder
to solve with an increasing number of alternatives resulting from more machines. Refer to the
experiment E.1 that provides scheduling results and run times for the problem Rm | p− batch, b <
n, fmls | · with various objectives; cf. Appendix E.1. It turns out that VND takes no more than
10 minutes to reach a local optimum for a typical scheduling problem with 16 machines when the
number of jobs is below 120. Figure 54 also represents the experiment E.1’s results; it shows the
results of a series of model instances in which the smallest model counts 4 machines with 120 jobs
and the biggest model contains 16 machines with 240 jobs.

In a similar way Li et al. (2008, 2009a) observe that more machines require longer computation
time.
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Figure 54: Run times for the objective functions depending on the number of machines (experiment
E.1)

The experiments indicate that the number of machines has a relatively strong effect on the
optimization results. The improvement in the objectives, i.e. TCT and TT, increases with an
increasing number of machines as long as the maximum computation time limit is not exceeded.
In relation the experiments indicate that the number of machines has a stronger effect on the
optimization results than the number of jobs. There is another observation regarding the objective
functions: the TCT objective shows a higher sensitivity to the number of machines than the TT
objective. Refer to Figure 55 depicting the results related to the problem Rm | p − batch, b <
n, fmls | · with the objectives

∑
Cj and

∑
Tj ; cf. Appendix E.2.

Similarly, Li et al. (2008, 2009a) evaluate a variant of a BPM scheduling problem, finding
that more machines lead to a more significant improvement of the objective TWT. In the same
line Tajan et al. (2012) show that the improvement in CT increases with decreasing number of
processors.

The observation that a model with more machines leads to better results points to a certain
advantage of the scheduling paradigm compared to dispatching: the partitioning effect. The
classical dispatching approach does not look across machines and therefore fails in finding a proper
mapping between machines in parallel and the jobs waiting in front of them. The results clearly
indicate that a higher number of machines leads to greater improvements in the objective as long
as the size of the problem remains manageable. As a result the conclusion can be drawn that
scheduling a work center is more worthwhile when it contains more machines.

The next observations additionally support the point of view that setting reasonable computa-
tional deadlines for certain model instances is a key factor for deploying a scheduling system. In
the case of exceeding computing times the improvement in the objective approaches zero, e.g. the
improvement in TT is nearly zero when trying to find an optimized schedule for 240 jobs on 12
machines or more. Interestingly, the improvement dramatically shrinks despite of the fact that the
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run time increases rapidly. This observation is a strong argument for the assumption stating that
the search space becomes too large for being searched effectively. Consequently, it becomes obvious
that increasing run times do not lead to better results in every case. But as long as the procedure
is not aborted due to the maximum run time limit, i.e. the method identifies a local optimum, the
improvements increase with increasing run time, respectively with increasing problem size. Refer
to the figures in Appendix E.2.GGRAPH

[DataSet1] C:\Workspace\Dissertation\3 Experiments\_1MC_2\1MC_2_CT.sav

MACHINES

161284

C
Y

C
L

E
 T

IM
E

1,000

,950

,900

,850

,800

GGRAPH

JOBS

240200160120

C
Y

C
L

E
 T

IM
E

1,000

,950

,900

,850

,800

GGRAPH

Page 1

(a) total cycle time

GGRAPH

[DataSet1] C:\Workspace\Dissertation\3 Experiments\_1MC_2\1MC_2_T.sav

MACHINES

161284

T
A

R
D

IN
E

S
S

1,000

,900

,800

,700

,600

,500

GGRAPH

JOBS

240200160120

T
A

R
D

IN
E

S
S

1,000

,900

,800

,700

,600

,500

GGRAPH

Seite 1

(b) total tardiness

Figure 55: Improvements depending on the number of machines (experiment E.2)

8.1.3 Number of Jobs

Besides the number of machines, the number of jobs determines the size of a problem. The problem
becomes apparently harder to solve with an increasing number of alternatives resulting from more
jobs, which generally cause an increase in run time. When comparing the factors machines and
jobs it becomes obvious that the number of the jobs has a stronger effect on the run times than
the number of the machines. This observation probably serves as an indication that sequencing is
computational more expensive than partitioning.

It turns out that finding an optimum with VND for problems with 160 jobs and four machines
takes less than 10 minutes in all cases, respectively for all objectives under study. The experiment
E.1 is designed to evaluate the effect of the number of machines based on the problem Rm |
p− batch, b < n, fmls | · with various objectives. Refer to Figure 56; cf. Appendix E.1.

In the same line Tajan et al. (2011) note that the computational time increases rapidly with an
increasing number of jobs and Li et al. (2008, 2009a) also mention that more jobs require longer
computation time.
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Figure 56: Run times for objective functions depending on the number of jobs (experiment E.1)

Another important observation reveals interesting differences regarding the objective functions
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and their relationship to the number of the jobs. The improvement in TCT decreases with an
increasing number of jobs and the best results emerge for the scenario with 16 machines and
120 jobs. In contrast to the TCT objective the improvement in minimizing TT increases with
an increasing number of jobs as long as the computational deadline is not exceeded. In cases of
exceeded computing times the improvement in the objective approaches zero, e.g. the improvement
in TT is nearly zero when trying to find an optimized schedule for 240 jobs on 12 machines or more.
But as long as the procedure is not aborted due to the maximum run time limit, i.e. the method
identifies a local optimum, the improvements increase with increasing run time. This means the
improvements respectively increase with an increasing number of jobs, which directly represents an
increasing problem size.

The experiment E.2 investigates the problem Rm | p− batch, b < n, fmls | · with the objectives∑
Cj and

∑
Tj , providing run time measures that depend on the number of jobs. Refer to Figure 57;

cf. Appendix E.2.
The complexity-increasing effect of the number of jobs is observed multiple times in literature.

For example Dobson and Nambimadom (2001) experimentally show that the number of the jobs
affect the performance of their solution schemes.
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Figure 57: Improvements depending on the number of jobs (experiment E.2)

8.1.4 Number of Job Families

The constraint of incompatible job families is one of the main characteristics of the focused
scheduling problem. It is interesting to know how the number of job families, in particular in
relation to the number of machines, effects the search process and its results.

The experiments show that the search behavior clearly depends on the number of job families.
Interestingly the behaviors observed in conjunction with changing numbers of job families also
changes with the objective. The objectives TT and TCT are studied more in detail through
the experiment E.2 in order to figure out their dependency on the number of job families. The
experimental results provide indication that the job families show no significant effects in the case
of the TCT objective; the improvement in CT seems to remain unaffected by the number of job
families despite of the observation that the run time slightly increases with the number of job
families. The experiment E.2 investigates the problem Rm | p − batch, b < n, fmls | · with the
objectives

∑
Cj and

∑
Tj in order to examine the effect of the number of job families. Refer to

Figure 58; cf. Appendix E.2.
Similar statements can be found in the related literature. Dobson and Nambimadom (2001)

present experimental results showing that the number of families does not affect the performance
of their solution schemes. But Tajan et al. (2008, 2012) note that the reduction in CT is typically
larger with more job families.

In contrast to the TCT objective the TT objective depends considerably on the number of job
families. It can be observed that the improvement in TT increases with the number of job families
in the case of four machines. Interestingly this behavior turns around in the case of additional
machines, e.g. for the case of 12 and 16 machines the TT improvement decreases with the number
of job families. However in most cases the run times decrease with the number of job families when
minimizing TT, which indicates that the number of alternatives decreases as well. Since Figure 58
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shows no clear behavioral trend regarding the number of job families, refer to the diagrams in
Appendix E.2.

The effect of the number of job families is discussed further in the context of batch sizes (Sec-
tion 8.1.6), machine eligibility constraints (Section 8.1.7), and non-identical job sizes (Section 8.1.8).
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Figure 58: Improvements depending on the number of job families (experiment E.2)

Especially the run time behavior depending on the number of job families changes with the
objective function. For example the run time increases with an increasing number of job families
when the objective is to minimize Cmax or TCT. In contrast the run time decreases with an
increasing number of job families when the objective is TT, TWT or TWCT. The experiment E.1
investigates the problem Rm | p− batch, b < n, fmls | · with various objectives. Refer to Figure 59;
cf. Appendix E.1.

Similar observations derive from other research work. Yao et al. (2012) state that problems
with a large number of job families are more difficult than those with a small number of job
families. Their experiments show that solving problems with larger number of job families is more
time-consuming compared to those with less job families. Li et al. (2008, 2009a) also show that
more job families require longer computation time. On the contrary Azizoglu and Webster (2001)
find that an increased number of job families makes problems easier to solve because there are
fewer jobs per family and consequently fewer possible solutions, which makes the problem less
computationally intense.
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Figure 59: Run times for objective functions depending on the number of job families (experiment
E.1)
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8.1.5 Process Time

The processing time is naturally one of the most decisive factors. The variety in the processing
times of the jobs is clearly a source of optimization potential, offering numerous alternatives to
create a schedule. The experiments question the way the processing time has an impact on the
search procedure; the influence on the objectives is of particular interest.

The relationship between the process time scheme and the improvement in TCT and TT is
studied further in the experiment E.2. The experimental results suggest that the process time
scheme influences the level of improvement in a way that a higher variance in the processing
time causes greater improvements in TCT. The same effect, albeit weaker, is observable for the
objective TT. The greatest improvements are gained for the cases with highly variant processing
times, which seem to assist greater improvements by increasing the number alternatives in the
scheduling decisions. The experiments clearly show that this effect is stronger for the objective
TCT than for the objective TT. The experiment E.2 evaluates the effect of different process time
schemes for the problem Rm | p− batch, b < n, fmls | · with the objectives

∑
Cj and

∑
Tj . Refer

to Figure 60; cf. Appendix E.2. In addition the experiment E.3 that deals with batch sizes in
Section 8.1.6 provides results underpinning the observation that higher variances in processing
times lead to greater improvements in the objectives; the experiment E.3 is based on the problem
Rm | p− batch, b < n, fmls | · with the objectives

∑
Cj and

∑
Tj .
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Figure 60: Improvements depending on the process time scheme (experiment E.2)

The experiment E.1 shows that the run times remain unaffected by the processing time scheme
in most cases, with one exception: the run times slightly decrease with decreasing processing time
variance when minimizing TCT is the objective. The TCT objective particularly depends on the
process time scheme, i.e. on the distribution of the processing times. Many different processing
times caused by a wide range in the processing time distribution lead to many different possible
combinations in the schedule, whereas a lower processing time variance decreases the number of
alternatives. This thesis is underpinned by the results from the experiment E.1 designed to study
the effect of the processing time in the case of the problem Rm | p − batch, b < n, fmls | · with
various objectives. Refer to Figure 61; cf. Appendix E.1.

The specific role of processing times is a question in other research works. Sung et al. (2002)
note that the computational burden on their proposed algorithm dramatically increases with the
number of different processing times.

8.1.6 Batch Sizes

The experiment E.3 is designed to investigate the effect of the batch size on the search behavior. It
is intended to clarify the relationship between the improvement of the objectives (TCT and TT)
and the distribution of the batch sizes.

The experiment E.3 focuses on minimizing TCT or TT, comparing the results with SPT and
EDD dispatching. It is designed to evaluate the effect of different batch sizes based on the problem
Rm | p− batch, b < n, fmls | · with the objectives

∑
Cj TCT and

∑
Tj TT. The maximum batch

size varies between two and eight, chosen from the array (2, 4, 6, 8). There are three batch
size factors chosen from the array (0, 0.5, 1.0), defining different levels of uniform batch size
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Figure 61: Run times for the objective functions depending on the process time scheme (experiment
E.1)

distributions. Every design point is characterized by a maximum batch size value and a batch size
factor. For example the design point with a maximum batch size of eight and a batch size factor
of 0.5 corresponds to model instances with batch sizes that range from four to eight (distributed
uniformly). A batch size factor that equals one leads to model instances where all batch sizes are set
to the maximum batch size value, i.e. chosen from the array (2, 4, 6, 8). Using this experimental
design, it is possible to investigate the effect of the absolute maximum batch size value as well as
the distribution of the batch sizes.

The experiment shows that the improvements both in TCT and TT strictly increase with
increasing batch sizes. Adversely, the improvements decrease with smaller batch sizes. Furthermore,
the improvement for the batch size factor 1.0 is higher than for factor 0.5, which indicates that a
higher maximum batch size level leads to greater improvements. The biggest improvements can
be observed for the case with a constant maximum batch size of eight. Interestingly there is no
improvement in CT for the smallest batch size models despite of the fact that the run time is
relatively high. Refer to Figure 62; cf. Appendix E.3.

The related literature documents similar observations. Li et al. (2008, 2009a) find that bigger
machine capacity leads to a better improvement of the TWT. However, Lee and Uzsoy (1999) focus
on Cmax minimization and find that their heuristic methods’ performance decreases with increasing
machine capacity.

Despite of the fact the optimization procedures for TCT and TT display similar behavior with
respect to the improvement in the objectives, there are differences in the run time behavior. The
run time for the TT objective increases with increasing batch size whereas the run time for the TCT
objective shows the greatest values for the smallest batch sizes. However, the improvement for the
scenarios with the smallest batch sizes draw near zero. Consequently, the algorithm performs a
considerable amount of search activities but does not gain considerable improvements compared to
those models with greater batch sizes; cf. Appendix E.3.

The observations in the related literature can be seen as standing in contrast to the results from
the experiment E.3. Sung and Choung (2000) and Sung et al. (2002) find that the method’s running
time increases with increasing batch sizes when Cmax is minimized. Yao et al. (2012) examine a
problem with CT objective, stating that the problems with a large batch size are consistently harder
to solve than those with the small batch size. Li et al. (2008, 2009a) find that bigger machine
capacity leads to lower computation time when TWT is minimized.

The run time for the TT objective increases with the number of job families for small batch
sizes (2, 4) and seems to decrease with the number of job families for greater batch sizes (6, 8).
The run time for the TCT objective increases with the number of job families for the smallest
batch size models (2), but remains diffusively unaffected by the job families for greater batch sizes.
Refer to the experiment E.3 for another view on the effect of the job families. The experiment also
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Figure 62: Improvements depending on the batch size and the objective function (experiment E.2)

shows that the range in the processing times also influences the improvements: a higher variance
in processing times leads to higher improvements in the objectives; cf. Appendix E.3.

8.1.7 Dedication Density

The experiment E.4 investigates machine eligibility constraints mirrored by a density factor in
the models. It is designed to evaluate the effect of the density factor at the case of the problem
Rm | p − batch, b < n, fmls,Mj | · with the objectives

∑
Cj and

∑
Tj . Machine eligibility

constraints define a set of machines that are allowed to process a certain job family. The mapping
between a machine and a job family is also known as dedication, i.e. the process is dedicated to
a machine. The density factor describes the ratio between the number of the actual dedications
and all possible dedications. A density factor identical to one would mean that every job family is
allowed to process on every machine, whereas a lower density factor implies that some job families
are forbidden on certain machines.

The experiment E.4 focuses on the objectives TCT or TT with a density factor ranging from
0.1 to 1.0. In addition the number of job families is varied in order to study potential correlation
between job families and machine eligibility constraints.

The experiment shows that the effect of the dedication density also depends on the objective.
The observed behavior for the objective TCT differs from that documented for the objective TT.
The average improvement in TCT increases with an rising density factor, which means that a
uniform work center without any process dedications provides the best environment to minimize CT
by optimization. In contrast the average improvement in TT decreases with an increasing density
factor, which means that a higher number of process restrictions supports tardiness optimization.
Refer to Figure 63; cf. Appendix E.4.

However, the spread in the improvement decreases for both objectives with increasing density
factors. The variance for the objective TT is generally higher than that for the objective TCT,
especially for low dedication factors. The reason for the varying spread in the improvements
probably lies in the particular model instance, i.e. the specific structure of the mapping between
machines and job families. The actual mapping between machines and job families, favorable or
unfavorable, for those model instances with low density factors determines whether there is high or
low improvement to be optimized. Consequently for some models there is not much to minimize
while other models offer more optimization potential, even for the case with identical dedication
factors.

For both objectives, TCT and TT, the run time increases with increasing density factor. This
can be seen as an indication for the thesis that a higher density factor implies fewer forbidden
machine-job combinations and therefore increases the number of alternatives that in turn increases
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the complexity and the search method’s run times. Refer to the run time diagrams in Appendix E.4.
The experiment E.4 also investigates the role of the number of job families in the context of

machine eligibility constraints. Again the behavior between the objectives differs with respect to
improvements and run times. The improvement in TCT seems to evolve independently from the
number of job families, whereas the improvement in TT obviously depends on the job families.
Refer to Figure 63; cf. Appendix E.4.

Despite of the observation that the TCT improvements show no dependency on the job family,
the run times show an interesting pattern that indicates a linkage between search method and job
families. On one hand the run times decrease with increasing job families for low dedication density
factors and on the other hand the run times increase with increasing job families for high density
factors. When minimizing TT the run time decreases with an increasing number of job families for
most of the cases. Refer to the run time diagrams in Appendix E.4
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Figure 63: Improvements depending on the dedication density (experiment E.4)

8.1.8 Job Sizes

The experiment E.5 was designed to investigate the effect of the job sizes. It is designed to evaluate
the effect of the job sizes in the case of the problem Rm | p− batch, b < n, fmls,Mj | · with the
objectives

∑
Cj (TCT) and

∑
Tj (TT). In the context of small lot size manufacturing policies it is

interesting to know whether the job size plays a considerable role in a scheduling system.
The experiment E.5 covers eight different job size schemes accompanied by four different job

family schemes. The size of the jobs is uniformly distributed between a minimum threshold chosen
from the array (3, 6, 9, . . . , 24) and the maximum size of 25 wafers. The different variants are
simply denoted in the diagrams with the minimum threshold value. Consequently there are two
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extreme design points existing out of eight variants. On one hand the model instances in which the
job size is uniformly distributed between 3 and 25 are denoted with the number 3 in the model.
This model implies that many jobs with non-identical and small sizes need to be scheduled. On the
other hand those model instances where the job size ranges between 24 and 25 wafers are denoted
with 24 in the diagram. In this case no small lots exist in the model since all lots count either 24 or
the maximum number of 25 wafers. The objective is either minimizing TT or TCT.

The search method behaves contrary for the focused objectives with respect to different job size
models. With respect to the objective TCT the experiment shows that the improvement decreases
with increasing job size. Put it another way, where more small lots need to be scheduled there can
be more improvement in TCT expected by optimization. If the goal is TT minimization then the
behavior turns around in a means that the improvement in TT increases with increasing job size
in most cases. There is one exception when minimizing TT: if the number of job families equals
four then the improvement decreases with increasing job size. This means that a high number of
small lots does not positively contribute to the goal of minimizing TT of the scheduled jobs when
the number of job families is above four in this scenario. Refer to Figure 64; cf. Appendix E.5.
Similarly, Dobson and Nambimadom (2001) show that the size of the jobs affects the performance
of their solution schemes.

Both the run times and the number of traced search moves increase with increasing job size for
both objectives. But there is one exception in the run time behavior when minimizing TT: if the
number of job families is identical to four the run time tends to decrease with increasing job size
unless the minimum job size threshold is below 15. From that point onwards he run time tends to
increase again. Refer to Appendix E.5.

In the related literature similar observations can be found. Azizoglu and Webster (2001)
show that an increasing job size variation is associated with higher computing times. Dupont
and Dhaenens-Flipo (2002) note that where there is a greater variety of job sizes there are more
problems that are difficult to solve, given that the problem instance is not too small.

The experiment offers more results that are suitable to investigate the effect of the job families
in the context of non-identical jobs sizes. The results indicate that the relationship between the
improvement gained by optimization and the job families changes with different job size scenarios.
Interestingly the search method’s behavior depends on the objective, i.e. differs between both
objectives. The improvement TCT decreases with an increasing number of job families. This effect
is more obvious for small job size scenarios and less apparent for those job size scenarios with fewer
small jobs. In contrast the TT improvement increases with the number of job families in most
cases. The greatest improvements show up for the models with 16 job families and nearly no small
jobs. There is an exception present for the lower half of the jobs size scenarios, respectively those
models with more small lots. In those cases the improvement in TT is greater when the number
of job families is four compared to the relating eight and twelve job family cases. This behavior
directly corresponds to the measured run times: the longest run times are observed for the models
with four job families accompanied with many small lots. Refer to Figure 64; cf. Appendix E.5

8.1.9 On-Time Delivery

The experiment E.6 takes a closer look at due date related objectives; it employs the problem
Rm | p− batch, b < n, fmls | ·. Especially the setting of the due dates, e.g. tight or loose, is under
investigation. Furthermore it is taking a step into the direction of multi-objective optimization by
figuring out how due date related objectives affect each other. For example the question is raised
what happens with the Lmax if the optimizer minimizes TT.

The experiment E.6 studies three objectives related to due dates: a) Lmax, b) TT, and c) TU.
But the central goal of this experiment is to examine the effect of the initial mean and variance
settings of the due dates on the improvements in the objectives. The due dates are drawn from
a normal distribution with varying mean and variance. A negative due date means that the job
is already too late and a positive due date indicates that the job still has the opportunity to be
scheduled in time. The due date mean value ranges from -48 to +48 hours in steps of 12 hours and
the variance is either set to 12, 24 or 36 hours. The optimization results are compared to the EDD
dispatching solution that simultaneously serves as the initial solution.

The experiment shows that the initial setting of the due dates affects the optimization results
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Figure 64: Improvements depending on the job sizes (experiment E.5)
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considerably. Defining the distribution from which the initial due dates are drawn during the
model generation procedure implicitly determines the improvements gained by optimization in the
aftermath.

It is highly desired to choose a favorable value range for setting the due dates in order to
create a model characteristic that allows considerable improvements through optimization. In other
words, unfavorable model settings exist for which no optimization method will be likely to generate
acceptable results, which are suitable for discussion. The experiment shows for the objectives TT
and TU that a due date mean value between zero and twelve hours delivers the best results. The
best improvement results for the Lmax objectives are observed for mean values of 36 and 48 hours.
However, the improvement generally decreases in the area of the extremes, i.e. when the due dates
are too tight or too loose. Common for all three objectives is that the model scenarios with the
lowest variance in the initial tardiness show the highest improvements in all cases.

Further interesting observations can be made when comparing the objectives with others, in
particular their effect on the other due date related performance measures. Minimizing Lmax has
nearly no effect on the other objectives; it only affects the Lmax. Minimizing TT simultaneously
leads to less TU and has nearly no effect on the Lmax with one exception: Lmax slightly increases
for scenarios with very tight due dates. Minimizing TU adversely affects the distribution of both
the TT values and the Lmax. Refer to Figure 65 and the diagrams in Appendix E.6.

The run times basically evolve synchronously with the improvements; they decrease with
an increasing absolute due date mean value. It becomes obvious that minimizing TT and TU
takes more time than minimizing Lmax. This underpins the fact that minimizing Lmax is the
easiest problem between these three with respect to the findings from the complexity theory. The
experiment shows that the initial due date setting influences their run times and hereby gives
indication when it is easier to minimize TT or TU.
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Figure 65: Improvements depending on the initial due date setting and the objectives (experiment
E.6)

8.1.10 Priorities

Job priorities play a very important role in the scheduling of waferfabs. Usually the goal is to
minimize TWCT and/or TWT, taking into account that some high-priority jobs are more important
than others. Consequently it becomes necessary to incorporate job weights when minimizing the
objectives.

The experiment E.7 is designed to investigate the search behavior with respect to different job
priorities. It is based on the problem Rm | p− batch, b < n, fmls | · with the objectives

∑
wjCj

(TWCT) and
∑
wjTj (TWT). Initially the question is raised whether the search behavior and its
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results change with different numbers of priority classes. It is interesting to know if there is a
situation, i.e. with few or many priority groups, where the effect of optimization is improved or
impaired. Furthermore the experiment intends to clarify whether the value of the weighting factor
has an influence.

The experiment E.7 covers model instances with different numbers of priority classes ranging
from 2 to 10, chosen from the array (2, 4, 6, 8, 10). In addition the priority weight factor is varied
in the same way, ranging from two to ten in steps of two. The objective is to minimize TWCT or
TWT.

The experiment shows that the improvement in TWCT and TWT increases with a rising
number of priority groups, albeit slightly. On the contrary the priority weight factor shows no clear
pattern of influence. See Figure 66 and the diagrams in Appendix E.7. The frequency diagram in
Figure 67 clearly shows that the resulting solution describes a schedule in which the high-priority
jobs are processed first.

The run time generally increases with an increasing number of priority classes; cf. Appendix E.7.
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Figure 66: cycle time improvements depending on the number of the job priority settings (experiment
E.7)
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Figure 67: Frequency diagram for the cycle time with priority classes (experiment E.7)

8.1.11 Correlation Between Objectives

The experiment E.8 takes a closer look at the correlation factors between the objectives at hand
of the problem Rm | p− batch, b < n, fmls | · with several objectives. The performance measures
are mutually interconnected; some of them are closely interlinked with each other, while others
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are not. It is common knowledge that those relationships exist, but very little is known about
the dimensions of these relationships. The experiment E.8 is designed to analyze the correlations
between a selection of important measures/objectives in order to develop a better understanding.

The objectives under study are: a) Cmax, b) TCT, c) TWCT, d) Lmax, e) TT, f) TWT, g) TU,
and h) TWU. The idea behind this is to optimize for a specific objective, and then to calculate
the correlation factors through Pearson’s method between the focused objective and the remaining
measures. The resulting matrix of correlation factors provides exact values that indicate the
direction and the strength of the inter dependencies between any combination of two measures.

According to Pearson it is possible to derive a few observations from the calculated matrix of
correlation factors that represent the strongest interconnections, given in decreasing order of their
size of impact. Figure 68 shows the experimental results. There are four main observations: a) The
basic objectives correlate with their weighted versions (0.8+). b) OTD measures correlate, but
Lmax is exceptional (0.7+). c) The TCT and the Cmax share a loose relationship (0.5-0.6). d) The
TCT slightly improves OTD measures (0.3-0.4).

a) The objectives correlate with their weighted versions. the basic objectives such as TCT
and TT are naturally strongly connected with their weighted counterparts TWCT and TT
respectively. TWT and TT show high values around 0.9 for their correlation factors against
each other, in both directions. Likewise it is possible to observe correlation factors above 0.7
between TWCT and TCT.

b) The OTD measures generally correlate, but the Lmax is somehow exceptional (0.7+). The due
date related objectives TT and TU share a strong connection with each other, characterized
with a correlation factor above 0.7. The corresponding weighted variants TWU and TWT
also positively affect the unweighted counterparts TT and TU. Interestingly the objective
Lmax is widely isolated within the set of the due date related objectives.

c) The TCT and the Cmax share a loose relationship (0.5-0.6). The objectives related to THP
positively affect CT measures. Minimizing Cmax results into lower TCT, indicated by a
correlation value around 0.6. It is possible to observe a slightly lower impact on TWCT,
where the correlation factor is approximately 0.5.

d) The CT objectives slightly improve OTD measures (0.3-0.4). Minimizing TCT has a mini-
mizing effect on due date related objectives, e.g. TU (0.3), TWU (0.3), TT (0.4), and TWT
(0.3).

8.1.12 Pareto Objectives

In practice it is most often the intention to minimize multiple objectives. The experiment E.9 is
designed to analyze bi-criteria objective functions, which combine two criteria equivalent to each
other (pareto scheme). The underlying problem can be described with Rm | p−batch, b < n, fmls | ·.
The resulting bi-criteria objective function considers solutions as improved if both measures show
improvements, accepting that one of them remains unchanged. Nevertheless, the problem arises
that different objectives can contradict each other. For example Koehler and Khuller (2013) state
that there are instances where minimizing TCT and Cmax simultaneously is impossible. Rose (2002)
notes that minimizing CTs and maximizing OTD are conflicting goals.

This experiment considers 10 different bi-criteria objective functions in pareto fashion, each
composed of two components out of a) Cmax, b) TCT, c) TT, d) Lmax, and e) TU. Consequently,
the following 10 pareto scenarios are examined: a) Cmax and Lmax, b) Cmax and TT, c) Cmax and
TU, d) TCT and Cmax, e) TCT and Lmax, f) TCT and TT, g) TCT and TU, h) TT and Lmax,
i) TT and TU, and j) TU and Lmax. The models are optimized in three directions for each scenario,
i.e. in the directions of the two basic objectives and in the direction defined by the corresponding
pareto function. Every optimization run uses schedules obtained by a random dispatching rules as
the initial solution and for the reference in order to maintain fair starting points for all objective
functions. The results shown in the figures (Appendix E.9) are given in relation to the initial
solution.
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Figure 68: Correlation factors between objectives (experiment E.8)

The experiments show that two the objectives either agree or disagree, whereas some combina-
tions behave neutrally. The combined pareto objective often orientates on one of both objectives and
some pareto objectives nearly behave identical to a single objective. For example minimizing Cmax

and TT as single objectives can lead to contradictory results, whereas simultaneously minimizing
both in pareto fashion performs well. Figure 69 shows that minimizing Cmax may deteriorate TT
and minimizing TT clearly increases Cmax in most cases. The pareto objective combines both very
well and even discovers new optima in Cmax. Refer to Appendix E.9 for visualizations of the 10
pareto scenarios.

8.2 Dynamic Models

Incorporating future job arrivals into the decision making process remarkably empowers optimizing
schedules for scheduling problems with BPMs, e.g. in a waferfab’s furnace area. Especially the
decision when to start a batch is important in two respects. On hand it is beneficial to delay a
batch in order to wait for one or more lots arriving soon. On the other hand when having the
knowledge that no further lots are to arrive soon, it is better to start a smaller batch immediately.
Taking a decision in either of the both directions requires the knowledge of future job arrivals
predicted for a certain time horizon.

If no knowledge about future job arrivals exists the decision whether to start a job is also
referred to as batch loading policy. For example the MBS policy is a simple and popular BPM
control policy. The problem with the MBS policy is to determine the optimal or near-optimal batch
sizes, bearing in mind that optimal batch sizes change with the level of utilization. Determining
proper values for the batch sizes particularly becomes problematic in a multi-product fabrication
characterized by incompatible job families.

So called look-ahead strategies overcome the problem of finding suitable batch sizes by includ-
ing upstream information about the next arriving jobs into the decision process. This section
experimentally examines the use of job arrivals as one of the most important aspects in a batch
scheduling system.
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Figure 69: Minimizing makespan and total tardiness as single objectives and in pareto fashion
(experiment E.9)

The Default Settings for Model and Method The basic model comprises 8 machines and
480 jobs to schedule. The utilization level varies between 0.7, 0.8 and 0.9 and the arrivals are
uniformly distributed from zero to the expected Cmax. 30 independent model instances in each
design point ensure that the results are considered as representative and resistant to single model
effects.

The scheduling procedure is accompanied by a TWD scheme; cf. Section 8.2.1 for corresponding
experiments. The TWD interval equals 10 minutes which means that the TWD procedure creates
a new scheduling problem every 10 minutes. The VND search starts with a FIFO schedule for each
sub problem and minimizes TCT within maximal 30 seconds per time frame. The method setting
defines six neighborhoods: a) split a batch, b) merge two batches, c) swap two batches, d) move a
batch, e) swap two jobs, and f) move a job. See Table 23 for the default settings.

The Experiments The discussions in this section refer to six experiments used to evaluate
important factors in the case of problem instances with dynamic job arrivals. The experiments E.10
and E.11 investigate the TWD scheme, respectively the effect of the width of the time window. The
experiments E.12, E.13 and E.14 take a closer look at the look-ahead horizon. Since no prediction
is free of errors the experiment E.15 determines the effect of errors in job arrival predictions. The
experiments E.10 to E.15 deal exclusively with the problem Rm | p− batch, b < n, rj , fmls |

∑
Cj .

Refer to Table 24 for an overview on the experiments carried out.

8.2.1 Time Window Decomposition (TWD)

TWD is an essential decomposition technique used to disassemble scheduling problems on the
timeline into smaller sub problems, each sequentially and separately solved by an optimization
procedure. Hereby it is possible to evaluate scheduling methods for large problem instances with
practical relevance.

The experiments E.10 and E.11 examine the effect of TWD, more precisely the effect of the
width of a time window on the TCT. It turns out that the optimization results rely on the time
window size. The experiment E.10 ranges the time window value from 10 to 90 minutes in steps of
10 minutes. The experiment E.11 provides results for a tighter time window value grid where the
value is incrementally increased from 10 to 90 minutes.

One might assume that the smallest time window, considered synonymously to an event based
simulation like DES, would lead to the best results in any case. But this is not unconditionally
true, as proven by the experimental results. It is true so far as the TCT tends to increase with an
increasing time window size. The following linkage between time window size and TCT can be
seen: the larger the time window the lower is the probability to start a certain job or batch just at
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Table 23: Default settings for the series of experiments related to the dynamic model

factor level

basic model parameter
machines 8
jobs 480
utilization 0.7, 0.8, 0.9

machine parameter

job families 8
dedication density 1(uniform)
processing times U(240, 480)
batch size (lots) 8
batch size (wafers) 200

job parameter

job sizes sj = 25
job priorities -
job due dates -
job arrivals rj ∈ U(0, Cmax)
job arrival errors -

model instances per parameter combination 30

method parameter

initial solution FIFO
objective(s) TCT
VNS type VND
deadline 30 sec
time window interval 10
look-ahead horizon 90

Table 24: Overview of the experiments related to the dynamic model

experiment studied factors model instances total runs

E.10 utilization, interval 90 810
E.11 utilization, interval 90 7290
E.12 utilization, look-ahead 90 720
E.13 utilization, look-ahead 90 810
E.14 utilization, look-ahead 90 7290
E.15 utilization, look-ahead, arrival errors 3240 19440
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the moment of its arrival. Given that no look-ahead information is used the scheduling procedure
is limited to those jobs that arrived before the current time window begins. Consequently the
jobs that arrive during the current time window cannot be scheduled before the next time window
begins. Refer to Figure 70; cf. Appendix E.10 and the model-specific diagrams in Appendix E.11 in
particular.

Applying decomposition techniques such as TWD is linked to uncertainties with regard to the
optimization potential. TWD can have strong effects on the results, which can change with the
interval width in particular. There are values for the time window size that lead to considerably
better results than the smallest possible time unit does. This is an interesting result. Since the
scheduling system deals with discrete events, e.g. discrete job arrivals over time, it is reasonable
that varying time window sizes can lead to varying results. The results show that the smallest
time window does not necessarily lead to the best result with respect to the focused objective. The
time window size in conjunction with randomly distributed job arrivals strongly effects the results.
It can be deduced from the experiments that decreasing intervals tend to lead to better results on
average, but not necessarily for a single model instance. Consequently it is not necessary to choose
the smallest time window that comes with long run times in order to achieve the best results. It
is often sufficient to choose an acceptable small time window, which enables good results within
acceptable run times. Refer to Figure 70; cf. Appendix E.10 and the model-specific diagrams in
Appendix E.11 in particular.

It is also remarkable that applying an optimization technique in conjunction with TWD does
not always lead to improvements. The experiments show the phenomenon that some values for the
time window interval lead to solutions outperformed by their corresponding dispatching reference.
In fact the pure dispatching solution performs better than optimization combined with TWD. This
is of special interest because the pure dispatching solution (without TWD) is obtained by the
identical dispatching rule used to create the initial solution for the optimization procedure.

The following paragraph intends to give a reasonable explanation for this phenomenon. TWD
disassembles the given scheduling problem, creating a sequence of sub problems solved and optimized
sequentially. Each scheduling decision taken within a time window (sub problem) has an effect on
the next sub problem in sequence. Every decision once taken remains effective for all succeeding
sub problems. The key point is that an optimized solution for a single sub problem may cause
unfavorable situations (compared to the non-optimized dispatching solution) leading to a sequence
of sub problems where the optimization procedure does not compensate for the early scheduling
decisions. As a result the final solution is not improved, but corrupted by the optimization
activities compared to the pure dispatching solution. The improvements realized by applying VND
vary between -10% and +20%, although the overall improvement is positive. Small changes in
decomposition intervals may lead to significant changes in the results.

The crux of the matter is that a lack of information makes finding the optimal solution nearly
impossible. The observed interrelationship between job arrivals and interval length points to the
discrete nature of the entire system as well as to a structural weakness of scheduling approaches
using TWD. Proper studies designed to generate reliable statements on the optimization potentials
need to frame a sufficiently high number of independent model instances evaluated with varying
time window sizes when TWD is applied. Especially for industrial applications (or cost-benefit
calculations via simulation) it is hard to gather an adequate number of real-world models from
history in order to evaluate the discussed scheduling methods to be introduced to production
systems. Refer to Figure 70; cf. Appendix E.10 and the model-specific diagrams in Appendix E.11
in particular.

Obviously the run times depend considerably on the time window interval, respectively its
width. The total run time increases with decreasing time window interval. Consequently the lowest
total run time occurs for the widest time interval. The reason is quite simple: the smaller the time
window the more time windows arise and subsequently more optimization problems need to be
solved. Furthermore the run time increases with the utilization level since a higher utilization level
corresponds to a higher number of jobs per time window, which in turn increases the size and the
complexity of the problem. However the number of moves does not depends on the time window
width but only on the utilization level. Refer to Figure 71; cf. Appendix E.10 and Appendix E.11.

Another observation stems from the fact that an increasing utilization level implies that the
number of jobs to be scheduled per time window increases. That is the reason why the run times
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Figure 70: Cycle time improvements depending on the time window interval (experiment E.10)

as well as the number of traced search moves also increase with the utilization level. Refer to
Appendix E.10 and the model-specific diagrams in Appendix E.11 in particular.
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Figure 71: Run times depending on the time window interval (experiment E.10)

8.2.2 Look-Ahead Horizon

The term look-ahead stands synonymously for the scheduling’s or control system’s capability to
incorporate predicted information about future job arrivals into the decision process. The look-ahead
horizon defines the maximal time span to which expected job arrivals can be taken into account.

The experiments E.12, E.13 and E.14 show that the look-ahead horizon strongly effects the
scheduling results, respectively the improvements gained by optimization. The experiments were
carried out by applying TWD with a time window interval of 10 minutes. The process time is
uniformly distributed between 240 and 480 minutes.

The results show that information about arriving jobs empowers the scheduling method re-
markably. Figure 72 depicts a clear trend towards increasing improvements accompanied by an
increasing look-ahead horizon for the small scale horizons .

The results show that the improvement gained by VND compared to FIFO dispatching tends to
steadily increase with an increasing look-ahead horizon below 450 minutes. For look-ahead horizon
values greater than 450 minutes the improvement degrades. This improvement decrease is most
likely due to the fact that the problem instances become too large; the time deadline of 30 seconds
is exceeded, triggering the optimization procedure to stop searching before a local optimum can be
found. The observed improvements in TCT stay below 20% with a mean value below 10%. Refer
to Figure 72.
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It is remarkable that the results also show negative improvements around -10% for individual
look-ahead horizon values. A negative improvement mirrors a case in which the pure dispatching
solution has a better objective value than the solution obtained by the search procedure. The
reason is that the search procedure in conjunction with TWD and look-ahead information iteratively
generates partial schedules with improved objectives. Unfortunately the partial schedules that
are finally connected result in a schedule with impaired objective value compared to the pure
dispatching solution. Refer to Section 8.2.1 discussing the same effect for the TWD procedure.

The frequency of optimized schedules that perform worse than pure dispatching (without
look-ahead) is higher for short look-ahead horizons. Therefore it is recommendable to choose a
proper look-ahead horizon that is long enough. Otherwise the improvement in TCT would draw
towards zero despite the use of an optimization method. Refer to Figure 72; cf. Appendix E.12,
Appendix E.13 and Appendix E.14.

The run time increases with increasing look-ahead horizon since the scheduling problem increases
with the number of upcoming jobs in that time horizon. The limit of 30 seconds computing time
per time window is reached for the look-ahead horizon of 630 minutes. From this point on the
algorithm fails to discover a local optimum and is forced to abort by returning the current solution.
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(a) big scale horizons (experiment E.12)
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(b) small scale horizons (experiment E.13)

Figure 72: Cycle time improvements depending on the look-ahead horizon

8.2.3 Arrival Errors

Equivalent to the related dispatching approaches the batch scheduling strategies benefit extensively
from look-ahead information, which provides information on predicted job arrivals over a certain
time horizon. Unfortunately any prediction, regardless of the scope or intention, comes with errors
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—and so does job arrival prediction.
Following the three laws of forecasting (Hopp and Spearman, 2001) any prediction comes

with errors due to the fact that models used for prediction are always simplified abstractions.
The lack of modeled system behavior, considered as negligible model details for the sake of model
simplicity, unevitably results in prediction errors. Motivated by the fact that look-ahead information
contributes remarkably to optimization potentials and by the fact that predictions are generally
erroneous, the impact of look-ahead prediction errors on solution quality is of particular interest.

Usually studies discussing BPM scheduling problems with dynamic arrivals take those arrivals as
fail-safe in their models. Due to the fact that look-ahead information is widely considered to be the
largest source of optimization potentials in BPM scheduling problems and taking into account that
any prediction is erroneous, the impact of prediction errors on scheduling benefits is of particular
interest for practitioners. This section evaluates the impact of job arrival prediction errors on the
solution quality, respectively their influence on optimization potentials.

The TWD scheme is extended in a way that predicted arrivals may be subject to disturbances
in order to evaluate the effect of errors in job arrival predictions. Therefore the implemented model
contains two dates for every job arrival: a) the predicted arrival date and b) the disrupted date
that is finally used for schedule evaluation. The arrival dates are exposed to a normal distribution
of offset errors, which may add a positive or negative delay to the originally predicted arrival. The
prediction error depends on the actual look-ahead horizon for the predicted arrival. The prediction
error for a certain job is calculated as the product of the time of the predicted arrival and a factor
taken from a normal distribution. This calculation takes the fact into account that the further
a predicted event lies in the future, the worse the prediction will be in terms of the accuracy.
According to TWD any new time window is considered as a new scheduling problem. The VND
search procedure improves the schedule by taking the predicted job arrivals without errors into
consideration. Then the improved schedule is simulated again in order to incorporate the erroneous
arrival dates.

The experiment E.15 defines 108 model types that vary in the utilization level, the arrival error
scheme and the look-ahead horizon. The utilization level is set to 0.7, 0.8 or 0.9. There are 36
arrival error schemes, where 6 levels for the mean value and 6 levels for standard deviation value
have been examined. The mean error varies between zero and 0.5 of the average processing time,
respectively chosen from the array (0.0, 0.1, 0.2, 0.3, 0.4, 0.5). The value for the standard deviation
also lies between zero and 0.5 of the average processing time, where the value belongs to the array
(0.0, 0.1, 0.2, 0.3, 0.4, 0.5). Additionally the look-ahead horizon varies from zero to 90 minutes,
chosen from (15, 30, 45, 60, 75, 90). For each model type 30 independent instances are created,
which result in 3240 problem instances in total. The entire experiment takes 19440 optimization
runs without those runs that provide the reference solutions. It provides noteworthy results that
are used to discuss the effect of prediction errors on optimization potential.

When analyzing the experimental results the following observations can be made. First in
accordance with previous studies the experiment shows greater improvements for higher look-ahead
horizons, confirming the results in the experiments E.12, E.13 and E.14. Higher mean error values
result in slightly lower improvements as expected. Interestingly the decrease in the improvement
caused by arrival errors is very low. The effect of the standard deviation in the error distribution
shows no clear behavioral trend in the visualized results. It is concluded that the level of variability
has both positive (too early arrival) and negative (too late arrival) effects that neutralize each
other. Furthermore the diagram shows that the level of utilization generates no difference in the
improvement, neither for short look-ahead horizons nor for long look-ahead horizons. Refer to
Appendix E.15; cf. Figure 73

Similarly Tajan et al. (2011) still observe significant improvements in TCT when the predicted
arrival times are erroneous. It is commonly accepted that look-ahead control strategies are not very
sensitive to errors in job arrival predictions, implying that job arrival predictions do not need to
be very accurate to be useful (Glassey and Weng, 1991; Robinson et al., 2000; van der Zee, 2007).
However it is clear that improving quality of predictions has a positive effect on the scheduling
system.
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Figure 73: Cycle time improvements depending on the errors in job arrival prediction (experiment
E.15)

8.3 Method and Benchmarks

This section investigates VNS more in detail, examining various method settings and their effect
on the performance. The goal is to figure out which search method components contribute most
effectively to the observed improvements, respectively which method setting performs best.

The Benchmark Models and The Default Method Settings The experiments investigated
in this section make use of 90 model instances selected from a set of benchmark models described
in (Doleschal, 2010). The selected benchmark instances describe the problem to schedule 80 jobs
on 3, 4, or 5 parallel BPMs. The model instances differ in their characteristics, e.g. describe
different utilization scenarios. The model instances formally belong to the class of problems denoted
with Rm | p − batch, b < n, rj , fmls,Mj |

∑
wjTj . The experiments have in common that the

initial solution is generated via BATC dispatching and the objective is TWT. The dispatching
interval is set to five minutes, which means that every five minutes the dispatching procedure is
executed, which probably results in a new job/batch started. The computational deadline is set to
three minutes. The experiments are designed to study the five common VNS schemes: a) VND,
b) RVNS, c) BVNS, d) GVNS, and e) VNDS. The search is performed through the use of the six
neighborhoods: a) split a batch, b) merge two batches, c) swap two batches, d) move a batch,
e) swap two jobs, and f) move a job.

This sequence of neighborhoods defines the default order of the neighborhoods iteratively
visited during the search procedure. Since the search performs stochastically in most settings the
experiment determines five replications per run in order to sufficiently cover stochastic effects on
the analysis. The optimization results are given in relation to the initial solution (BATC) and in
relation to the best CPLEX solution (with maximum run time of three minutes) taken from the
benchmark data.

See Table 25 for a brief description of the benchmark models.

The Experiments This section comprises 12 experiments that take a closer look at the factors
that influence the search performance of VNS. The first experiment E.16 investigates the role of the
initial solution. The experiments E.17, E.18, E.19, and E.20 deal with the role of the neighborhoods
as essential components in the VNS concept. Based on the results from the experiments E.21, E.22,
and E.23 the LS phase is put into focus, whereby experiment E.22 takes a closer look at VNS
schemes. The experiments E.21 and E.23 investigate LS with focus on different neighborhoods.
The experiment E.24 provides results that help to discuss the shaking phase and the experiment
E.25 and E.26 examine varying deadlines. The experiment E.27 is meant to document the search
procedure in order to provide some measures suitable to characterize the search in a dynamic
context.

Refer to Table 26 for an overview on the experiments carried out.
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Table 25: Description of the benchmark models

factor level count

machines 3, 4, 5 3
jobs 80 1
utilization 0.7, 0.8, 0.9 3

job families 4 1
dedication density machine specific dedication schemes (app. 0.7) 1
processing times 2(20%), 4(20%), 10(30%), 16(20%), 20(10%) 1
batch size (lots) B1 = 3, B2 = 4, B3 = 6, B4 = 4, B5 = 2 1
batch size (wafers) B1 = 75, B2 = 100, B3 = 150, B4 = 100, B5 = 50 1

job sizes sj = 25 1
job priorities 0.3(75%), 0.6(20%), 1.0(5%) 1
job due dates dj ∈ rj + U(0, Cmax) 1
job arrivals rj ∈ U(0, Cmax) 1

problem parameter combinations 9
model instances per parameter combination 10
total number of model instances 90

Table 26: Overview of the experiments related to the benchmark studies

experiment studied factors method settings total runs

E.16 initial solution, VNS schemes 75 28349
E.17 neighborhoods, VNS schemes 108 48600
E.18 neighborhoods, VNS schemes 27 12150
E.19 neighborhoods, VNS schemes 12 5400
E.20 neighborhoods 720 64800
E.21 local search, neighborhoods 18 1620
E.22 LS, VNS schemes 10 4500
E.23 LS, neighborhoods 6 2700
E.24 shaking range 18 8100
E.25 computational deadline 57 25650
E.26 VNS schemes, computational deadline 15 67500
E.27 GVNS search trace 2 18000
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8.3.1 Initial Solution

The initial solution is generally one of the decisive factors in any metaheuristic optimization
procedure. The experiment E.16 is designed to investigate the effect of the initial solution generated
with dispatching according to the BATC rule further. Several authors discuss variants of BATC; cf.
Section 6.5.2. The BATC rule requires the determination of a control parameter k. The question is
raised which BATC factor leads to the best solutions and how strong the effect of the initial BATC
solution on the final result is. The control parameter k is also known as the look-ahead factor.

The experiment E.16 investigates the performance of five variants of VNS, i.e. VND, RVNS,
BVNS, GVNS, VNDS. The initial solution is generated with the BATC rule using a k value
chosen from the array (0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1, 1.5, 2, 2.5, 3). A variant of BATC
with a k value identical to 1.5 is denoted with BATC-1.5 in the diagrams. The experiment
additionally comprises a more sophisticated BATC dispatching variant with varying k value,
notated with BATC-VK. It evaluates five different solutions generated with k values from the
array (0.3, 0.4, 0.5, 0.6, 0.7) and returns the best.

Mehta and Uzsoy (1998) use k values ranging from 0.5 to 4.0 in their experiments. The BATC
rule in the experiment E.16 performs best when the k value is between 0.4 and 0.6. However the
differences between the results are rather minor. When comparing the results generated with VNS
optimization, it becomes obvious that the VNS schemes that use BATC-VK lead to the best results.
Comparing the single k factor variants, the methods for different initial solutions seem to perform
nearly identical. But there is a noteworthy behavior: the results with the k value between 0.4 and
0.6 (beside BATC-VK) are characterized with less impaired results compared to the other variants.
Refer to Figure 74; cf. Appendix E.16

The results imply that the VNS scheme is more important than the initial BATC solution.
GVNS leads to the best results directly followed by VNDS, BVNS and VND in that order; RVNS
shows the worst results. Refer to the diagrams in Appendix E.16.

Hansen and Mladenović (2003) note that the performance of VNS depends very little on the initial
solution. Their observation is based on a VNS implementation for the minimum sum-of-squares
clustering problem.

VND settles at a local optimum within 60 seconds in most cases. RVNS, BVNS, GVNS, VNDS
perform stochastically, continuously trying to improve the solution until the maximum deadline
of three minutes is reached. Interestingly the stochastic search schemes (RVNS, BVNS, GVNS,
VNDS) perform different numbers of search moves until they are all terminated after running for
three minutes. BVNS shows the highest number of moves performed within three minutes, closely
followed by VNDS and GVNS. Then RVNS shows a considerably lower number of moves and VND
clearly achieves the minimum number of moves. Refer to the run time diagrams in Appendix E.16.
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Figure 74: Total weighted tardiness improvement depending on the initial BATC solution (experi-
ment E.16)
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8.3.2 Neighborhoods

The definition of neighborhoods is a central element within the VNS concept. Although the basic
VNS concept is relatively simple the different VNS schemes offer numerous possibilities to combine
the neighborhoods in many ways. It is of particular interest how to include the neighborhood
implementations in a VNS scheme. The question is raised whether a favorable neighborhood method
setting exists.

Hansen and Mladenović (2003) emphasize the importance of designing adequate neighborhoods
customized for the present problem. They recommend to continue spending a considerable effort
on systematic studies of the best distributions of the neighborhoods, finding points of references
that help to properly setup the different search levels and search phases; cf. (Resende and Ribeiro,
2009).

The implementation of the VNS concept comprises two search levels where each search level
consists of a LS phase and a shaking phase. Both search levels may operate on different sets of
neighborhoods. The different VNS schemes mentioned in the literature (e.g. BVNS, GVNS, and
VNDS) describe different strategies of using the two search levels, trying to properly combine LS
with shaking actions. BVNS, GVNS, and VNDS differ from each other in the way they use the
two search levels. BVNS performs LS and shaking on the first search level and neglects the second
level. GVNS performs the shaking phase operating on the first search level whereas the LS phase
operates with the neighborhoods on the second level. VNDS performs LS and shaking on both
levels. Section 7.2 describes the framework’s VNS implementations more in detail.

The experiments E.17, E.18, E.19 and E.20 are designed to evaluate the contribution of the
neighborhood implementations on the optimization process. The framework under study comprises
six neighborhood implementations: a) split a batch, b) merge two batches, c) swap two batches,
d) move a batch, e) swap two jobs, and f) move a job.

The experimental design covers VNS variants with different neighborhoods and/or sets of them
assigned to the two search levels as part of the VNS schemes VND, BVNS, GVNS, and/or VNDS.
The experiment E.17 investigates the performance of single neighborhoods, covering 36 different
variants in which each search level contains a single neighborhood. One neighborhood out of
the six is chosen for both, the first search level and second search level. The experiments E.18
and E.19 evaluate various combinations of neighborhoods, whereas experiment E.19 additionally
puts focus on the neighborhood sequence. The experiments E.17, E.18 and E.19 frame the VNS
schemes BVNS, GVNS, and VNDS for every of the mentioned combinations of neighborhoods. The
experiment E.20 takes a closer look at the role of the sequence of the neighborhoods, respectively
the order the neighborhoods that are visited during the search procedure. The VND is used as a
search scheme in this case.

The results of the experiment E.17 show that some neighborhood combinations perform better
than others. The best results are achieved with the VNS methods that move jobs, swap jobs, or
merge batches. On the contrary splitting, moving, and swapping batches leads to less favorable
results. This observation is underpinned by the search movements traced for the neighborhoods
and their combinations. Splitting, moving and swapping batches accounts for considerably fewer
search steps than the job-based neighborhoods operating with single jobs, i.e. move/swap jobs
and merge batches. The results show that merging batches takes the largest amount of time and
leads to the greatest improvements besides moving jobs from one batch to another. Considering
all neighborhood combinations it turns out that no VNS scheme clearly outperforms another. It
depends on the neighborhood combination if one VNS scheme performs better than another. Refer
to the diagrams in Appendix E.17.

The experiment E.18 evaluates the combinations of three pairs of two neighborhoods. Better
results occur for neighborhood combinations involving the two pairs split/merge batches and
move/swap jobs. Between those the best results are displayed if the second search level operates on
the job level, i.e. uses job swapping and job moving. VNDS often performs equally or better than
GVNS, which in turn outperforms BVNS in most cases. Refer to Figure 75; cf. Appendix E.18. The
experiment E.21 investigates neighborhoods in the light of different LS schemes. See Section 8.3.3
and Appendix E.21. In contrast Cakici et al. (2013) claim that repositioning the batches instead of
jobs yields better results.

The experiment E.19 shows that the neighborhood sequence has nearly no effect on the
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Figure 75: Total weighted tardiness Improvement depending on the neighborhood structure
(experiment E.18)

performance of the VNS procedures. There is a very slight advantage for those method settings
that start their search in the second level with moving and swapping jobs. Refer to the diagrams
in Appendix E.19.

The experiment E.20 tests the VND scheme with 720 different neighborhood sequences, which
simply represent all possible ordered sequences of the six neighborhoods. The difference between
all these combinations of neighborhood sequences shows a maximum of 1% improvement. The run
time results show that better improvements most often correspond to a higher number of search
moves. Refer to Figure 76 and the diagrams in Appendix E.20. The experiment E.23 investigates
neighborhood sequences in the light of different LS schemes. See Section 8.3.3 and Appendix E.23.

Zäpfel et al. (2010) state that the neighborhoods are typically ordered by increasing size of the
neighborhood space. Hu and Raidl (2006) argue it is often critical to find a well-performing order
of neighborhoods. They present a variant of VND search that dynamically changes the order of
neighborhoods during the search procedure, presenting computational results indicating that their
implementation requires substantially less time for finding solutions of comparable quality.

8.3.3 Local Search (LS)

Generally there are two basic LS schemes: a) best improvement search and b) first improvement
search. The first improvement search policy moves to the next solution whenever a new improved
solution is found. The best improvement LS procedure exhaustively explores the area around the
current solution; first evaluating all possible solutions around the incumbent solution and then
choosing the best solution to move on with. Section 5.5 describes the LS concept and typical issues
related to it more in detail. The following experiments are designed to clarify which LS policy
performs better under which settings.

The experiments E.21, E.22, and E.23 put focus on the LS phase. The experiment E.21
investigates LS in the light of neighborhoods and the experiment E.22 takes a closer look at different
VNS variants. The experiment E.23 additionally examines the sequence of neighborhoods with
respect to the LS policies. The experiment E.21 and E.23 make use of the VND search scheme,
whereas E.22 compares different VNS schemes in conjunction with different LS policies.

The results of the experiment E.21 show no distinct difference in the solution quality between
the two LS policies, i.e. between best improvement search and first improvement search. But
the experiment does show that three neighborhoods outperform the remaining, i.e. merge two
batches, swap two jobs and move a job. These three best-performing neighborhoods also show
the highest run times since they perform considerably more moves to the optimum until VND
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Figure 76: Total weighted tardiness improvement depending on the neighborhood sequence (experi-
ment E.20)

terminates. This result is presented in accordance with the results in Section 8.3.2 examining the
role of the neighborhoods in particular. When comparing the run times it becomes obvious that the
best-improvement procedure needs more time than the first-improvement method. However their
performance in terms of solution quality is nearly identical. Refer to Figure 77; cf. Appendix E.21.

The results of the experiment E.22 confirm the results of the experiment E.21 despite of the
fact that the experiment E.21 uses VND and the experiment E.22 investigates BVNS, GVNS, and
VNDS. The experiment E.22 also shows no clear difference in the performance between the two LS
schemes under study, i.e. between best-improvement search and first-improvement search. The
only difference is the number of moves the methods perform until the computational deadline
is reached. The first-improvement LS scheme performs more moves than the best-improvement
LS scheme, which indicates that the first-improvement LS scheme is capable of exploring more
search space. However the first-improvement strategy does not outperforms the best-improvement
strategy in terms of solution quality. Refer to the diagrams in Appendix E.22.

The third experiment examines the role of a LS policy in conjunction with two different
neighborhood sequences. The first sequence is the default sequence used for all other experiments:
1) split a batch, 2) merge two batches, 3) swap two batches, 4) move a batch, 5) swap two jobs,
and 6) move a job. The second sequence is exactly the reverse order. The experiment shows
that the default neighborhood sequence slightly outperforms the reverse, but the LS has no effect
neither for the one nor for the other sequence. Refer to the diagrams in Appendix E.23 as well as
in Appendix E.19 and Appendix E.20; cf. Section 8.3.2.

Based on the experiments it is concluded that the first-improvement LS scheme seems to lead
to the same results in less time compared to best-improvement LS. Similarly Resende and Ribeiro
(2009) observe that both search strategies lead to the same solution while the first-improving
strategy requires less computing time. They also state that it is more likely that the best-improving
strategy converges earlier to a bad local minimum.

8.3.4 Shaking

The shaking procedure enables VNS to escape from local optima. The default shaking procedure
describes one single random operation performed on the current solution, which is then used to
start a LS procedure again.

The experiment E.24 is designed to find out if multiple shaking moves instead of one single
shaking move can improve the VNS procedure. Employing the geographical terminology in
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Figure 77: Total weighted tardiness improvement depending on the neighborhood structure
combined with different local search scheme (experiment E.21)

metaheuristics search, the idea behind this can be described as the assumption that a single shaking
move may not be sufficient to escape from the valley that contains the current local optimum.

However the results clearly show that multiple shaking moves do not improve the search
procedure. Unfortunately it becomes obvious that multiple shaking moves seem to slightly worsen
the search performance by leading to a slightly increased number of worse solutions.

The VNS schemes achieve the best results if the shaking phase performs a single random
movement as originally described in the literature. Refer to Figure 78; cf. Appendix E.24.
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Figure 78: Total weighted tardiness improvement depending on the shaking range (experiment
E.24)

8.3.5 Computational Deadline

The maximal time a search algorithm is allowed to search for improved solutions clearly influences
the quality of the solution. It is widely accepted and observed in experiments that the improvements
gained by optimization enhance with increasing run time. This experiment examines the effect of
the computational deadline, evaluating the improvements that can be achieved especially with
longer run times.

The experiment E.25 covers method settings that allow the VNS schemes BVNS, GVNS, and
VNDS to search for a given amount of time ranging from 2 to 20 minutes. The experiment E.26
describes a similar experiment, but with fewer variants of computing time levels ranging from one
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minute to five minutes. However the experiment E.26 deals with much more replication runs for
each design point; 50 replication runs are performed for each run in order to find out if the range
of the quality of the solutions changes.

The observed improvements increase with increasing run time as expected, but not as strong as
someone would expect. The difference between the shortest and the longest run time scenario is
below 3%. Another interesting observation points to a difference in the search behavior between the
search schemes. Generally BVNS is outperformed by GVNS and VNDS in all cases. Interestingly
GVNS outperforms VNDS especially for shorter run times, whereas the difference between both
seems to decrease with longer run times. Refer to Figure 79; cf. Appendix E.25.
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Figure 79: Total weighted tardiness improvement depending on the computational deadline
(experiment E.25)

The results from the experiment E.26 show no obvious differences compared to the experiment
E.25, despite of the fact that the experiment E.26 performs 10 times the replication runs of
experiment E.25. The distributions of the solution quality levels remain unchanged, indicating that
a significantly increased number of replication runs does not provide more insights.

Identical to the experiment E.25, the improvement by optimization is heightened with increasing
computing time (in E.26). Interestingly the increase in improvement develops more strongly with
computing time for the case with five machines compared to the cases with fewer machines. Refer
to Figure 80; cf. Appendix E.26.

8.3.6 Search Space

In contrast to the other sections describing experiments, this section focuses on the search procedure
carrying to analyzing the final solutions generated by the search schemes with specific settings.
Knowledge about the problem structure as well as the search method’s functioning facilitates the
understanding of the search scheme and hereby helps to improve the algorithms further.

The experiment E.27 provides different views on the search behavior by showing traces along
the search from the beginning to the end. It is an approach to visualize the search space and to
describe the components that lead to enhanced solutions more in detail. The implementation is
capable of tracing every single step during the search, e.g. identifying an optimum or performing a
shaking step. 100 complete traces were created for the GVNS method with two different initial
solutions, applied on the 90 benchmark models. The GVNS procedure is allowed to run 10 minutes,
tracing all activities that lead to the final solution.

The diagrams in Appendix E.27 show a distribution of the visited solutions for the first five
model instances in a coordinate system that is meant to represent the search space. It visualizes
1. the initial solution, 2. every local optimum, 3. the results of shaking steps, and 4. the final
solutions for 100 runs for each model. The objective value that is drawn on the vertical axis and
the horizontal axis describes a factor that represents the similarity of the solution to the best
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Figure 80: Total weighted tardiness improvement depending on the computational deadline
(experiment E.26)

benchmark solution, i.e. the solution distance factor. The solution distance factor for two identical
solutions equals one, which means that every job is scheduled on the same machine and all the jobs
are sequenced in the same order. This way it is possible to visualize the distance from a particular
solution to the best known solution taken from the benchmark data.

The diagrams show that the runs with the initial random solution (RND) show a wider
distribution of solutions. Previous experiments show that it is recommended to use a more problem-
specific policy such as the BATC rule. However using random as the initial solution does not lead
to impaired solutions in every case. It depends on the model and the structure of the problem.
The results show that optimization runs with a random solution can lead to better solutions than
those solutions starting from a BATC solution in some cases. Compare the part in the diagrams in
Appendix E.27 that relates to the model identifier with number 3.

Another interesting observation is that the search space contains solutions of good quality
(comparable to the optimal solutions) that show relatively high solution distance factors, which
means that optimal solution (best known) is not very similar. It is interesting to know that nearly
optimal solutions do not necessarily have to be strongly similar to the optimal solution.

Figure 81 shows the number of improvement moves that are required to identify an optimum.
It is easy to see that identifying the first optimum (starting from the initial solution) requires
considerably more moves than finding the following optima later during at search. It takes minimum
20 improvement moves to settle at the first optimum. From then on it takes a maximum of 20
moves to get from one optimum to the next.

The number of moves required to reach the next optimum decreases with the increasing optimum
level in the diagram. But this does not necessarily mean that the more local optima are found
fewer moves are required to move to the next. This is presumably not the case, assuming that
the effect in the diagram does not correctly represents the search behavior during the end of the
search; the number of analyzed moves most probably decreases due to the search beeing terminated
after 10 minutes and therefore a small number of runs actually achieves more than 10 optima in
sequence. Consequently the number of improvement moves depicted in the diagram decreases with
the local optima found. However the diagram in Figure 81 provides strong indication that finding
an optimum in the early phase of search requires a quite stable number of improvement moves.

Furthermore the diagram in Figure 81 shows no difference for the two different initial solutions
(BATC and RND) with one exception: identifying the first optimum takes fewer moves when the
initial solution is problem-specific such as BATC rather than random (RND).

Figure 82 shows the number of shaking steps that are required to get from one optimum to the
next. Clearly it requires no shaking step to identify the first optimum, which is the direct result of
the first LS procedure.

In the early phase of the search it can be stated that identifying the third optimum requires
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Figure 81: The number of improving moves required to get to the next optimum (experiment E.27)

more shakes than it takes finding the second optimum. From then on the number of required shakes
continuously decreases. The reason for the decrease is the same as for the number of improvement
moves that decrease with the number of optima found: the search is terminated after 10 minutes
and therefore fewer runs reach more than 10 optima. Refer to Figure 82.
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Figure 82: The number of shaking tries required to get to the next optimum (experiment E.27)
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The core of this work revolves around the implementation of a scheduling framework developed to
deploy it as an operational batch scheduling system in the diffusion and oxidation area of a waferfab
frontend. This thesis covers both aspects from theory and practice in nearly equal measures. It
provides the underlying theoretical background and reports valuable practical experiences from
implementing a scheduling system into a real-world industrial environment.

The focus of the theoretical part lies on two topics. a) First this work provides an extensive
review about the current state-of-the-art in the area of batch scheduling research. b) Second the
theoretical groundwork of this work comprises a detailed analysis of the complexity status of the
most common batch scheduling problems.

The focus of the practical work is located between the poles of academia and industry. The
implemented framework is a balancing act between academia and industry since it basically
comprises two systems: a) the experimental system and b) the prototype system. On one hand the
framework satisfies the needs from academia with an experimental system that offers the capability
to properly investigate academic questions in the area of metaheuristic batch scheduling. On the
other hand the framework contains a prototype that is purposefully designed and developed to
satisfy the needs posed by industry. The original intention of the framework’s design is to provide
a functioning prototype that is suitable to run as a real-time scheduling system on the operational
level.

The main results of this work and related outlooks are organized in three main topic areas:
a) theoretical background and state-of-the-art (Section 9.1), b) valuable insights spawned by
experiments (Section 9.2), and c) experiences from implementing a prototype (Section 9.3).

9.1 Theoretical Background and State-of-the-Art

The groundwork for this thesis and the basis for implementing the scheduling framework is mainly
build of a) a literature review about batch scheduling, b) the state-of-the-art for metaheuristics,
and c) a review on the complexity status of the most common batch scheduling problems.

An extensive literature review about batch scheduling in wafer fabrication stands as one of the
main pillars of this work (Section 2). The theoretical groundwork is complemented with a short
overview on the state-of-the-art in metaheuristic optimization (Section 5). A detailed introduction
to the batch scheduling topic with an detailed analysis of the complexity results of the most common
batch scheduling problems completes the theoretical background of this work (Section 6).

Literature Review about Batch Scheduling The vast literature review about batch schedul-
ing problems and solution approaches in Section 2 provides a representative overview on the
state-of-the-art in this field. The review covers 170 publications in total, methodically structured in
16 groups representing different combinations of constraints for the single and the parallel machine
environment. Refer to the overview tables in Appendix A to see all researched literature sources at
a glance. Section 6 does investigate the current state of research in batch scheduling further, more
thoroughly examining the different solution approaches to batch scheduling problems.

The literature provides a variety of simple and more sophisticated rule-based approaches that
are easy to implement and that lead to acceptable solutions of good quality. These priority-based
heuristics offer themselves for being directly implemented in dispatching systems with relatively
low effort.

Beyond simple rules there are various studies where exact methods such as MIP, DP, CP,
and B&B solve batch scheduling problems, whereby DP and B&B steadily become less important
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and MIP formulations seem to be the most promising approach due to the success of powerful
commercial software packages. The use of CP in this field is in the early stages and therefore poses
as one of the interesting areas of future research. However all exact methods have in common that
their use is limited to rather small instances and so are not advisable to be adopted in real-world
implementations. Appendix C contains an extensive overview of run times of exact methods for
common batch scheduling problems.

The literature complementarily provides a considerable amount of solution variants based on
metaheuristics. The majority of solutions employ ACO, SA or GAs, whereas solution schemes based
on VNS represent a minority. Unfortunately the literature provides no clear indication whether a
specific metaheuristic generally performs better than another. By analyzing only the experimental
results reported in the literature it is not possible to identify a superior metaheuristic for batch
scheduling problems. As a matter of fact metaheuristic search schemes outperform simple rules by
design, i.e. by investing computational effort. Interestingly there are reliable points of reference
saying that metaheuristics outperform exact methods, which are most often represented by the
state-of-the-art solver CPLEX.

A synopsis of the literature review reveals some important perspectives for future work. It is
striking that a minority of works deals with multiple objectives that are a characteristic for typical
scheduling problems present in waferfabs, especially for those with BPMs. Another important
aspect refers to critical constraints such as time bounds, which can lead to invalid solutions; this
aspect remains underrepresented in literature and is clearly demanding for proper strategies in
the real world. Despite of the fact that many authors compare different methods in their works,
there is a glaring lack of public benchmark instances with high practical relevance that offer
the opportunity to compare different methods under real-world conditions. This would enable
practitioners to identify the advantages and disadvantages of different methods in certain use
cases more effectively. Finally it is undeniably the case that technical documentations including
contemplations of economical benefits about successfully installed implementations for scheduling
problems in the real world are still considered as an exception, albeit with growing tendencies.
A rising number of such reports would create confidence, accelerating the success of scheduling
solutions in the industries.

State-of-the-Art for Metaheuristics It is popularly accepted in the OR community that the
performance of metaheuristics is closely linked to the structure of the underlying search space.
The interaction of a metaheuristic with the problem’s underlying fitness landscape defines its
performance, whereby the knowledge of the fitness landscape’s structure facilitates developing
effective metaheuristics. Unfortunately there is a lack of knowledge and empirical evidence to
determine landscape features in the area of OR. The experiment in Section 8.3.6 describes an
attempt to determine the search space of problem instances. Further efforts in this field, developing
meaningful concepts of the search space and gathering more information about its structure, would
help to develop better metaheuristics.

The idea that effective metaheuristics balance intensification and diversification efforts in their
search behavior is a widely shared notion today. These two forces naturally act contrary to each
other, but also complement each other at the same time. Intensification (exploitation) relates
to metaheuristic components/activities that aim at (intensively) searching for new optima in a
certain area of the search space. Diversification (exploration) means that a metaheuristic is capable
of searching a maximum number of different regions of the search space. Developing a better
understanding of the interaction between the two forces hints to a promising direction of future
research.

Recent developments in metaheuristic research consider hybridization and parallelization as
promising approaches, leading to an improved search performance. Hybrid metaheuristics refer to
the idea of combining metaheuristics with other techniques for optimization. Hybridization aims to
exploit the complementary character of different optimization strategies whereas parallelism can
help to reduce the computation time and increase the solution quality by using the technology
of distributed computing systems. Especially the concept of parallelization seems to offer great
opportunities for method enhancements in the future, particularly in the light of rapidly growing
computing power.

The NFLTs roughly say that the average performance of any pair of algorithms across all possible
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problems is identical, even if one of them is random search. This means that no metaheuristic
generally performs better than another at the outset, but a certain implementation of a metaheuristic
can outperform another for a distinct set of problems; cf. Section 5.7.2.

The dominant procedure in developing new search methods in OR is comparative/competitive
testing. The performance of an algorithm depends on various aspects, e.g. the fine tuning of
parameters and the actual implementation. It is argued that the strategy of competitive testing
lacks deeper insights into cause-effect relationships between an algorithm and its performance. In
this context it can be said that explaining the performance is better than demonstrating performance;
cf. Section 5.7.3. It is justifiable for the stated reasons to ask for more explaining studies in the
future, which focus on the internal functioning of search methods. Refer to Section 5 for more
detailed information about the state-of-the-art of metaheuristics and Section 8 for a description of
the experiments carried out.

Complexity Status of Batch Scheduling Problems A significant amount of research in the
area of complexity theory has focused on boundaries of polynomial time and NP-hard problems.
Section 6 and the table in Appendix B provides an overview on the entire set of p− batch problem
variants and their complexity status.

The complexity status is determined for almost all problems with a few exceptions. Most of the
focused batch scheduling problems belong to the class of NP-hard problems, whereas a minority
is polynomially solvable. The complexity status of the problems 1 | p − batch, b < n |

∑
Cj ,

1 | p− batch, b < n |
∑
wjCj , and P | p− batch, b < n |

∑
Cj still remains open.

The processing time model is a scheduling model’s decisive characteristic determining its
complexity. The longest job processing time model (ljpt) can be seen as the standard model if no
further constraining information is provided. The family processing time model (fpt) is usually
accompanied by the constraint of incompatible job families (fmls). But the constraint fmls does
not always imply the family processing time model. Vice versa the missing incompatible job family
constraint fmls does not always imply the longest job processing time model (ljpt). The underlying
model would be denoted clearer with an additional tag in the formal description, e.g. ljpt and fpt
in combination with p− batch. The complexity results show that the family processing time (fpt)
model is easier to solve than the ljpt model.

The problem 1 | p− batch, b < n, rj | Cmax is unary NP-hard on the basis that the longest job
processing time model (ljpt) is assumed. If the problem is subject to incompatible families, i.e.
relies on the family processing time model (fpt), then the problem looses NP-hardness; it is shown
that the problem 1 | p− batch, b < n, rj , fmls | Cmax can be solved polynomially (if fpt is in use).

The problem 1 | p− batch, b < n | Lmax is NP-hard in the strong sense even if b = 2; proven
for the ljpt model. But there is a polynomial algorithm for 1 | p − batch, b < n, fmls | Lmax,
assuming identical processing times of jobs of the same family (fpt). This is quite in contrast to
the complexity result for the original problem without job families (1 | p − batch, b < n | Lmax)
that is proven to be strongly NP-hard when applying the the longest processing time model (ljpt).

9.2 Valuable Insights Generated by Experiments

Experimentation is an indispensable tool for understanding and subsequently improving a system
and methods. The implemented framework is designed to be used as an experimental system
that offers the capability to properly investigate academic questions. It offers the capabilities to
analyze the effect of the framework’s system factors on the system performance in a reproducible
environment.

The intended use as an experimental system poses many different requirements to the design and
the development of the system. Carrying out a larger number of experiments requires sophisticated
capabilities in model generation, execution management, and the analysis of experimental results.
Especially the execution management of thousands of optimization runs on high-performance
machines with multiple cores requires elaborate data management capabilities. Loading various
benchmark model instances requires additional effort during the development besides the substantial
efforts in establishing the ability for generating and utilizing user-defined models.

One of the key tasks of the experimental system is to determine the benefit which could be
expected from deploying a scheduling system in the real world. The experiments serve to provide

179



9 CONCLUSIONS AND OUTLOOKS

reliable numbers for economic benefits based on which a manager decides whether installing a
scheduling system is profitable. Unfortunately the results of simulation and optimization studies
depend on the initial assumptions to a large extend. The benefit in numbers is often not a question
of the internal system’s performance rather than a question of the initial experimental settings.
The experiments show that even slight changes in the experimental setup can result in considerable
changes of the output. Researchers tend to highlight the accomplishments and the merits of
their systems/methods while often understating the disadvantageous aspects observed during
experimenting. The results of any experiment need to be treated with caution since the absolute
numbers always mirror a certain set of experimental settings only. Provisioning a wide range of
public benchmark instances with high practical relevance would help the evaluation of different
scheduling approaches in distinct situations in the future.

One of the main goals in the scheduling community is to define new effective search strategies,
identifying effective algorithmic components as parts of superior search schemes. It is common
practice to ascribe the observed improvements in the objective value to the search method and
its algorithmic improvements. But the obvious question is that of the sources of the observed
improvements considered as optimization effects. The experiments pose the question whether the
problem instance’s characteristics or the scheduling method settings have a greater impact on the
improvements. A promising aspect of future works would be to investigate the effect of important
control parameters further along in order to clarify the sources of vast optimization potentials.

For designing the experiments it is of importance to know the time a LS scheme requires to
identify a local optimum. The complexity of a problem mirrored by the run time of a deterministic
LS scheme such as VND depends on the objective function as well as on the number of machines
and jobs. The experience with the run time results and the knowledge about local optima helps to
determine the size of model instances. Proper model sizes in combination with suitable computational
deadlines ensure that the observations reflect the search behavior in its entirety.

The most important results and valuable insights spawned by the experiments are summarized
in the following two paragraphs: a) insights related to model characteristics (Section 9.2.2) and
b) insights related to method settings (Section 9.2.1).

9.2.1 Insights Related to Model Characteristics

The experiments pose the question whether the problem instance’s characteristics or the scheduling
method settings have a greater influence on the improvements. Confronted with this question
several experiments were carried out in order to identify the origins of the observations better. The
described experiments investigate the effect of the structure of a model instance with its model
characteristics on the objective function. They are designed to identify the main contributors to the
enhancements gained with the optimization procedure. It turns out that the structure of the model
instance with its characteristics has a major influence on the optimization results. Some model
characteristics promote high optimization values while others only lead to minor enhancements.

An interesting question for future studies would be to find out if the observations in this work
can be confirmed by further studies in identical or similar scheduling environments. It would be of
further interest whether similar observations can be made for another optimization method beyond
VNS, e.g. for other metaheuristics or even for the class of exact methods.

Objective Function The experiments reveal considerable differences regarding the benefits cre-
ated for distinct objective functions. For example minimizing TT generally shows greater
improvements in numbers than minimizing TCT. The TT improvements rise up to 40%
whereas the biggest improvements in TCT do not exceed 20% compared to the referenced
solutions that are both created with very simple dispatching rules, i.e. EDD (TT) and SPT
(TCT).

Another result refers to the experimental run time data from which conclusions regarding the
complexity of objective functions can be drawn. Given that the run time of the deterministic
LS routine VND serves as a point of reference for the problem’s complexity it is possible to
compare the complexities of problems. The run times indicate for example that the problems
with the objective TCT are harder to solve than those with the objective Cmax, although no
complexity reduction rule exists between both. The run time results also make it obvious that
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minimizing TT and TU takes more time than minimizing Lmax, underpinning the fact that
minimizing Lmax is the easiest problem between these three with respect to the findings from
the complexity theory. But the run time results provide no indication that solving problems
with TU is easier than those with TT or vice versa. There are no reduction rules in place for
their relationship but the experiments show that the initial due date setting influences their
run times and hereby gives indication when it is easier to minimize TT or TU.

Refer to Section 8.1.1 and Section 8.1.9 for a discussion on the corresponding experiments.

Number of Machines The experiments indicate that the number of machines has a relatively
strong effect on the optimization results. The results clearly indicate that a higher number of
machines leads to greater improvements in the objective as long as the size of the problem
remains manageable. Therefore the conclusion can be drawn that scheduling a work center
is more worthwile when it contains more machines. It is likely that this observation can be
reduced to the the partitioning effect of the scheduling procedure. In contrast the classical
dispatching approach does not look across machines and subsequently lacks finding a proper
mapping between machines in parallel and the jobs waiting in front of them. Refer to
Section 8.1.2 for a discussion on the corresponding experiments.

Number of Jobs As it is with the number of machines the problem apparently becomes harder to
solve with an increasing number of alternatives resulting from more jobs. But the experiments
indicate that the number of jobs does not have tremendous effect on the optimization results
compared to the number of machines. However the number of jobs has a stronger effect
on the run times than the number of the machines. This observation probably serves as
an indication that sequencing is computational more expensive than partitioning. Refer to
Section 8.1.3 for a discussion on the corresponding experiments.

Number of Job Families The number of job families, as one of the main factors, has a consider-
able effect on the search behavior. Interestingly the search behaviors observed in conjunction
with changing numbers of job families depend on the objective. The experimental results show
that the number of job families has no significant effects on the objective TCT. In contrast
the search behavior observed for the objective TT considerably depends on the number of job
families. It can be observed that the improvement in TT increases with the number of job
families in the case of four machines. Interestingly this behavior turns around in the case of
additional machines, e.g. for the case of 12 and 16 machines the TT improvement decreases
with the number of job families.

Refer to Section 8.1.4 for a discussion on the corresponding experiments. The effect of the job
families is discussed further in the context of batch sizes (Section 8.1.6), machine eligibility
constraints (Section 8.1.7), and non-identical job sizes (Section 8.1.8).

Process Time The processing time is naturally one of the most decisive factors. The experimental
results suggest that the process time scheme influences the level of improvement in a way that
a higher variance in processing time causes greater improvements in TCT. The same effect,
albeit weaker, is observable for the objective TT. The greatest improvements are gained for
the cases with highly variant processing times, which seem to assist greater improvements
by increasing the number alternatives in the scheduling decisions. The experiments clearly
show that this effect is stronger for the objective TCT than for the objective TT. Refer to
Section 8.1.5 for a discussion on the corresponding experiments.

Batch Sizes The experiments show that the improvements both in TCT and TT strictly increase
with increasing batch sizes; vice versa, the improvements decrease with smaller batch sizes.
The improvement for the scenarios with the smallest batch sizes tend to zero. Despite of
the fact the optimization procedures for TCT and TT behave similar with respect to the
improvement in the objectives, there are differences in the run time behavior. The run
time for the objective TT increases with increasing batch size whereas the run time for the
objective TCT shows the greatest values for the smallest batch sizes. Refer to Section 8.1.6
for a discussion on the corresponding experiments.
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Dedication Density The experiments expose that the effect of the dedication density also depends
on the objective, saying that the observed behavior for the objective TCT differs from that
documented for the objective TT. The average of the TCT improvement increases with
increasing density factor, whereas the average TT improvement decreases with increasing
density factor. This means that a uniform work center without any process dedications
provides the best environment to minimize CTs by optimization. In contrast a higher number
of process restrictions supports TT optimization. Refer to Section 8.1.7 for a discussion on
the corresponding experiment.

Job Sizes Similarly to the effect observed for the dedication scheme, the search method behaves
contrary for the objectives TT and TCT with respect to different job size models. The
experiments show that if more small lots need to be scheduled more improvement in CT can
be expected by optimization. The behavior turns around when the goal is TT minimization
in a sense that the improvement in TT increases with increasing job size in most cases. Put it
another way this observation indicates that minimizing tardiness leads to higher improvements
in the case of less small jobs. Refer to Section 8.1.8 for a discussion on the corresponding
experiment.

Initial Due Dates The experiment shows that the initial setting of the due dates considerable
affects the optimization results. Defining the distribution from which the initial due dates
are drawn during the model generation procedure implicitly determines the improvements
gained by optimization. In fact there are unfavorable model settings existing for which no
optimization method will probably generate acceptable results suitable for discussion. The
experiment shows that a due date mean value between zero and twelve hours shows the best
results for the objectives TT and TU. The improvement generally decreases in the area of the
extremes, i.e. when the due dates are too tight or too loose. Generally the model scenarios
with the lowest variance in the initial tardiness show the highest improvements in all cases.
Refer to Section 8.1.9 for a discussion on the corresponding experiment.

Job Priorities Job priorities play a very important role for the scheduling of waferfabs. The
experiment shows that the improvement in TWCT and TWT increases with increasing
number of priority groups, albeit slightly. On the contrary the priority weight factor shows
no clear pattern of influence. Refer to Section 8.1.10 for a discussion on the corresponding
experiment.

Correlation between Objectives One of the main differences between the scheduling problems
in the real world and academic scheduling studies is that the real-world needs to manage
multi-objective functions. The experiments provide a correlation study between the basic
objectives. The experimental results show four main observations: a) The basic objectives
correlate with their weighted versions (0.8+). b) The OTD measures correlate, but Lmax is
exceptional (0.7+). c) The TCT and the Cmax share a loose relationship (0.5-0.6). d) The
TCT slightly improves OTD measures (0.3-0.4). Refer to Section 8.1.11 for a discussion on
the corresponding experiment.

Pareto Optimization Section 8.1.12 discusses an experiment that is designed to analyze bi-
criteria objective functions, which combine two criteria equivalent to each other (pareto
scheme). The experiments show that the two objectives either agree or disagree, whereas
some combinations behave neutrally. The combined pareto objective often orientates on one
of both objectives and some pareto objectives nearly behave identical to a single objective.
Multi-objective optimization is still an underrepresented type of problem that deserves more
attention.

Look-Ahead Horizon The results show that information about arriving jobs empowers the
scheduling method remarkably and that the improvement tends to steadily increase with
an increasing look-ahead horizon below a certain threshold of several hours. For look-ahead
horizon values greater than this threshold the improvement degrades due to the fact that
the problem instances become too large. Refer to Section 8.2.2 for a discussion on the
corresponding experiments.
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Arrival Errors An important conclusion drawn from the experiments is that higher mean error
values result in slightly lower improvements as expected. Interestingly the decrease in the
improvement caused by arrival errors is very low. It is commonly accepted that look-ahead
control strategies are not very sensitive to errors in job arrival predictions, implying that job
arrival predictions do not need to be very accurate to be useful. Refer to Section 8.2.3 for a
discussion on the corresponding experiments.

9.2.2 Insights Related to Method Settings

The OR community thrives on the theory that no metaheuristic generally performs better than
another at the outset, though a certain implementation of a metaheuristic can outperform another
for a distinct set of problems (NFLTs); cf. Section 5.7.2. This means that a search scheme designed
for a specific type of problem needs to be adjusted with favorable settings. A favorable setting is
one that balances intensification and diversification efforts in the search behavior. This section
summarizes the results from the experiments carried out to identify a superior VNS scheme by
investigating the effect of basic search components and settings. Refer to Section 5 for more detailed
information about the state-of-the-art of metaheuristics and Section 7.2 for a description of the
implemented VNS variants in this framework.

As a result from summarizing the results it is possible to conclude on a few aspects pointing
to interesting directions of future research. For example, it would be interesting to know if the
observations made for the batch scheduling problem in this work can be made for other scheduling
problems with comparable results. Another unresolved issue refers to the actual implementation of
the neighborhoods and the search schemes on the code level; very little is known about the effect of
certain programming concepts and data structures, which in fact determine the performance of
each implementation of a certain search scheme.

Search Schemes The experiments reveal considerable differences in performance for the basic
VNS variants studied in this work. The VNS concept comprises five basic search schemes, e.g.
GVNS, VNDS, BVNS, VND and RVNS. GVNS and VNDS lead to the best results followed by
BVNS and VND in that order; the variant RVNS shows the worst results. Generally BVNS
is outperformed by GVNS and VNDS in almost every case. Interestingly GVNS outperforms
VNDS especially during shorter run times, whereas the difference between both seems to
decrease with longer run times. However in some cases VNDS performs equally or even better
than GVNS. Refer to Section 8.3.2, Section 8.3.4, and Section 8.3.5 for discussions on the
corresponding experiments.

Initial Solution An important outcome of the experiments is that the initial solution has a
considerable effect on the VNS method’s performance, though it is not that important as
often discussed in the literature. A considerable amount of experiments deals with the BATC
dispatching rule. The BATC rule requires determination of a control parameter k and the
experiments show that VNS performs best when the k value is between 0.4 and 0.6. The
results indicate that the VNS search scheme is more important than the initial BATC solution.
Refer to Section 8.3.1 for a discussion on the corresponding experiment.

Neighborhoods The structure of the neighborhoods is one of the most urgent issues to solve
when designing a VNS procedure. The results show that some neighborhood combinations
perform better than others. The best results are achieved with those VNS variants that move
jobs, swap jobs, or merge batches. On the contrary splitting, moving and swapping batches
leads to less favorable results. One experiment evaluates the combinations of three pairs of
two neighborhoods. Better results occur for neighborhood combinations involving the two
pairs split/merge batches and move/swap jobs. Between those the best results occur if the
second search level operates on the job level, i.e. uses job swapping and job moving.

The neighborhood sequence has nearly no effect on the performance of the VNS procedures.
There is a very small advantage for those method settings that start their search on the
second level with moving and swapping jobs. One experiment tests the VND scheme with
720 neighborhood sequences, which simply represent all possible ordered sequences of the six
neighborhoods. The difference between all these combinations of neighborhood sequences
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records a maximum improvement of 1%. Refer to Section 8.3.2 for a discussion on the
corresponding experiments.

Local Search (LS) Finding proper settings for the LS components within metaheuristics is
another critical issue that determines the search method’s performance. The experiments
show no clear difference in performance between the two classical LS schemes under study,
i.e. between best-improvement search and first-improvement search. The only difference is
the number of moves the methods perform until the computational deadline is reached. The
first-improvement LS scheme performs more moves than the best-improvement LS scheme,
which indicates that the first-improvement LS scheme is capable of exploring more search
space. However the first-improvement strategy does not outperform the best-improvement
strategy in terms of solution quality.

When comparing the run times it becomes obvious that the best-improvement procedure
needs more time than the first-improvement method. However their performance in terms of
solution quality is nearly identical. Refer to Section 8.3.3 for a discussion on the corresponding
experiments.

Shaking Shaking is another crucial aspect regarding the design of VNS methods. The basic VNS
schemes specify a single shaking step in the perturbation phase. The experimental results
clearly show that multiple shaking moves do not improve the search procedure. Unfortunately
it becomes obvious that multiple shaking moves seem to impair the search performance
slightly by leading to a marginally increased number of worse solutions. It turns out that
the VNS schemes achieve the best results if the shaking phase performs a single random
movement as originally described in the literature. Refer to Section 8.3.4 for a discussion on
the corresponding experiment.

Computational Deadline Assessing an appropriate computational deadline is a key factor to
the settings of any metaheuristic, presupposing data-founded knowledge about the size of
the underlying scheduling problem. The experiments show that the observed improvements
rise with increasing run time as expected, but not as strong as someone would expect. The
difference between the shortest and the longest run time scenario lies below 3%. Refer to
Section 8.3.5 for a discussion on the corresponding experiment.

Time Window Decomposition (TWD) TWD is used to disassemble scheduling problems on
the timeline into smaller sub problems. The time window size is a decisive factor that
influences the optimization results. The experiments show that the CT tends to increase with
an increasing time window size.

But the results also show that the smallest time window does not necessarily lead to the best
objective value. There are values existing for the time window size that lead to considerably
better results than the smallest possible time unit does. Even slight changes in the time
window interval, e.g. adjacent time window intervals, can lead to totally different solutions.

Moreover it turned out that applying an optimization technique in conjunction with TWD
does not always lead to improvements. The experiments show the phenomenon that some
values for the time window interval lead to solutions outperformed by their corresponding
dispatching reference. There are some unfavorable experimental settings that can lead to
negative changes in the objective value compared to the referenced dispatching solution
in a few cases. In this special case the pure dispatching solution performs better than
optimization combined with TWD. Refer to Section 8.2.1 and Section 8.2.2 for a discussion
on the corresponding experiments.

9.3 Valuable Experiences from Implementing the Prototype

The second main intention of the framework’s design besides the capability of running experiments
is to provide a functioning prototype that is suitable to serve as a real-time scheduling system on
the operational level. The prototype is purposefully designed and developed for the needs posed by
the industry.
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Unfortunately the problems in academia and industry are rarely identical. The prototype code
and the code for the experimental system share basic core functionalities, but fairly large parts of
both are made of very problem-specific implementations. The practical problems from industry
are typically afflicted with many different constraints. It is often necessary to design case-specific
solutions for some special constraints beyond those standard constraints reported in the literature.
The objective function usually comprises multiple objectives, whereby some of them can have a
special character and do not belong to the standard measures typically used. Academia and industry
would benefit from more detailed descriptions of urgent industrial problems; these descriptions
would assist finding better solutions for the real world in the future.

Designing, implementing and testing a scheduling system is a tough task, but deploying it
in a waferfab that relies on dispatching to that date is even harder. The scheduling framework
essentially comprises two main components: a) the top-level scheduling system with all its modeling,
simulation and optimization functionalities and b) the underlying data level connected to the
waferfab’s MES. Both parts, the top-level system with its sophisticated scheduling capabilities and
the underlying data level are causing approximately equal amounts of work during the development
of the entire system.

The following enumeration summarizes the main experiences and lessons drawn from the
development of the prototype.

Data Structure and Data Flow The massive amounts of data can be roughly divided into
a) static data (master data) and b) dynamic data (snapshot data). Static data refers to
information that changes rarely such as basic machine information or process flows. Dynamic
data refers to objects in manufacturing that change their state more frequently such as
lots. The table structure comprises twelve tables structured into three groups hierarchically
connected via primary and foreign keys, which enables a cascading deletion of related data
sets in different tables.

Establishing the data transfer from the MES to the scheduling database is one of the most
time-consuming activities during the development and the deployment of a scheduling system.
The data that is required to create a model from the scheduling problem is often distributed
in many different data tables of the MES and other related databases. The high complexity
of the data infrastructure in combination with the huge volume of data leads to considerable
demand of manpower developing proper software and managing data with all its problems.
The data flow of the framework is based on dozens of data reports that extract, filter, analyze
and merge data sets from different sources.

Loading and Validating Models The scheduling procedure begins with ascertaining the status
of the machines and the jobs on the data level. Their current status combined with the master
data basically form the scheduling problem. A series of data reports is arranged in a kind of
master report managing the execution of the subordinated data reports in the intended order.

The extracted snapshot data in the database does not always exactly represent the status
of the shop floor. The real-world data sets are subject to errors and validation procedures
need to be installed in order to derive valid model instances from the data. Data errors in
a typical scheduling project can be traced back to one of the three classified error sources:
a) the complexity of the data infrastructure, b) the human element, and c) excursions on the
shop floor.

Data problems are considered to be a major obstacle while transferring results from academia
into a real-world application. Therefore researchers focus on techniques related to data
validation and data mining in order to deal with missing or erroneous data sets. This
framework uses an object-oriented data validation procedure, ensuring that the input data
satisfies the data quality standards.

Exception Handling on the Shop Floor An operational scheduling system in industry must
ensure that the result of the computation is always a valid schedule. Since the real-world
data comes with errors proper validation procedures need to be implemented. This is an
important point especially in the case of critical constraints and strict computation time limits.
Nevertheless a scheduling system (as well as a dispatching system) needs decent exception
handling strategies that manage dysfunctions on the shop floor.
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Experts’ Support Developing a scheduling system is a tough task, but deploying a scheduling
system in the real world is another matter. The team needs reliable assistance from all
the people involved, from the shop floor level to the management level. Unfortunately a
scheduling system comes in touch with nearly all experts in the area of factory operations. A
scheduling project without serious support provided by the affected people will be doomed
to fail. It is of essential importance to convince experts and their managers to support the
scheduling project on all factory levels, especially on the data level and on the factory floor.

Equipment Models Equipment models form one of the central pillars when installing a scheduling
system on the shop floor. Especially batch scheduling systems benefit from look-ahead
capabilities predicting job arrivals for a certain time horizon. But modeling wafer fabrication
equipment in order to predict processing behavior is another difficult task. Conventional
analytic equipment models used for long-term simulation applications usually consist of
information about THP and may include additional information for BP. A scheduling system
needs more detailed models that mimic the equipment’s processing behavior more precisely.
Especially predicting accurate processing times comes into focal points in the field of equipment
modeling.

Optimization Method One of the main components of a scheduling system is the optimization
procedure that seeks for optimized schedules as a core component in the prototype. Once the
decision for a optimization system is made the question is whether an exact or metaheuristic
method comes into operation.

Many studies show that exact methods are still restricted to small use cases even when
state-of-the-art solvers are in use. It is shown by various examples that metaheuristics
can outperform exact solution schemes. Consequently exact methods need to be applied in
combination with decomposition techniques, e.g. machine-based decomposition. At this point
it is necessary to remember that the improvement by optimization depends considerably on
the number of machines building the work center; the optimization potential rises with the
number of machines. Reducing the work center’s size by using machine based decomposition
in order to apply exact methods will have a detracting effect in the opposite direction.

To our best knowledge there is no proprietary software existing that offers implementations
of metaheuristics to be used for industrial applications. The only alternative there is then to
develop a metaheuristic scheduling system in-house, which is probably not feasible due to
internal guidelines or not possible due to the lack of qualified personnel. In contrast exact
methods come with commercial solver packages supported by prestigious companies.
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Colony Optimization and Swarm Intelligence, volume 5217 of Lecture Notes in Computer Science,
pages 219--226. Springer Berlin Heidelberg, 2008. ISBN 978-3-540-87526-0. URL http://dx.

doi.org/10.1007/978-3-540-87527-7_20.

Li Li, F. Qiao, and Q. D. Wu. Aco-based multi-objective scheduling of parallel batch processing
machines with advanced process control constraints. The International Journal of Advanced Manu-
facturing Technology, 44(9-10):985--994, 2009b. ISSN 0268-3768. doi: 10.1007/s00170-008-1904-8.
URL http://dx.doi.org/10.1007/s00170-008-1904-8.

Shuguang Li. Makespan minimization on parallel batch processing machines with release times and
job sizes. Journal of Software, 7(6), 2012. URL http://ojs.academypublisher.com/index.

php/jsw/article/view/jsw070612031210.

Shuguang Li, Guojun Li, and Shaoqiang Zhang. Minimizing maximum lateness on identical parallel
batch processing machines. In Kyung-Yong Chwa and J.IanJ Munro, editors, Computing and
Combinatorics, volume 3106 of Lecture Notes in Computer Science, pages 229--237. Springer
Berlin Heidelberg, 2004. ISBN 978-3-540-22856-1. doi: 10.1007/978-3-540-27798-9 26. URL
http://dx.doi.org/10.1007/978-3-540-27798-9_26.

Shuguang Li, Guojun Li, Xiaoli Wang, and Qiming Liu. Minimizing makespan on a single batching
machine with release times and non-identical job sizes. Operations Research Letters, 33(2):
157--164, 2005a. ISSN 0167-6377. doi: 10.1016/j.orl.2004.04.009. URL http://dx.doi.org/10.

1016/j.orl.2004.04.009.

Shuguang Li, Guojun Li, and Shaoqiang Zhang. Minimizing makespan with release times on
identical parallel batching machines. Discrete Applied Mathematics, 148(1):127--134, 2005b.
ISSN 0166-218X. doi: 10.1016/j.dam.2004.11.004. URL http://www.sciencedirect.com/

science/article/pii/S0166218X04003695.

209

http://dx.doi.org/10.1016/S0377-2217(95)00376-2
http://dx.doi.org/10.1016/S0377-2217(95)00376-2
http://dx.doi.org/10.1016/S0167-5060(08)70743-X
http://dx.doi.org/10.1016/S0167-5060(08)70743-X
http://www.sciencedirect.com/science/article/pii/0377221795003320
http://www.sciencedirect.com/science/article/pii/0377221795003320
http://dx.doi.org/10.1109/COASE.2009.5234191
http://dx.doi.org/10.1109/COASE.2008.4626455
http://dx.doi.org/10.1109/COASE.2008.4626455
http://dx.doi.org/10.1007/978-3-540-87527-7_20
http://dx.doi.org/10.1007/978-3-540-87527-7_20
http://dx.doi.org/10.1007/s00170-008-1904-8
http://ojs.academypublisher.com/index.php/jsw/article/view/jsw070612031210
http://ojs.academypublisher.com/index.php/jsw/article/view/jsw070612031210
http://dx.doi.org/10.1007/978-3-540-27798-9_26
http://dx.doi.org/10.1016/j.orl.2004.04.009
http://dx.doi.org/10.1016/j.orl.2004.04.009
http://www.sciencedirect.com/science/article/pii/S0166218X04003695
http://www.sciencedirect.com/science/article/pii/S0166218X04003695


Wenhua Li, Zhenkun Zhang, and Sufang Yang. Online algorithms for scheduling unit length jobs
on parallel-batch machines with lookahead. Information Processing Letters, 112(7):292--297,
2012a. ISSN 0020-0190. doi: 10.1016/j.ipl.2012.01.002. URL http://www.sciencedirect.com/

science/article/pii/S0020019012000191.

Wenjie Li, Zhenkun Zhang, Hailing Liu, and Jinjiang Yuan. Online scheduling of equal-length
jobs with incompatible families on multiple batch machines to maximize the weighted number
of early jobs. Information Processing Letters, 112(12):503--508, 2012b. ISSN 0020-0190. doi:
10.1016/j.ipl.2012.03.015. URL http://dx.doi.org/10.1016/j.ipl.2012.03.015.

XiaoLin Li, YanLi Huang, Qi Tan, and Huaping Chen. Scheduling unrelated parallel batch
processing machines with non-identical job sizes. Computers & Operations Research, 40(12):2983-
-2990, 2013. ISSN 0305-0548. doi: 10.1016/j.cor.2013.06.016. URL http://www.sciencedirect.

com/science/article/pii/S0305054813001731.

Da-Yin Liao and Chia-Nan Wang. Neural-network-based delivery time estimates for priori-
tized 300-mm automatic material handling operations. IEEE Transactions on Semiconductor
Manufacturing, 17(3):324--332, 2004. ISSN 0894-6507. doi: 10.1109/TSM.2004.831533. URL
http://dx.doi.org/10.1109/TSM.2004.831533.

Da-Yin Liao, Shi-Chung Chang, Kuo-Wei Pei, and Chi-Ming Chang. Daily scheduling for r&d
semiconductor fabrication. Semiconductor Manufacturing, IEEE Transactions on, 9(4):550--561,
1996. ISSN 0894-6507. doi: 10.1109/66.542170. URL http://dx.doi.org/10.1109/66.542170.

Chee Peng Lim and Lakhmi C. Jain. Advances in swarm intelligence. In Chee Peng Lim, Lakhmi C.
Jain, and Satchidananda Dehuri, editors, Innovations in swarm intelligence. Springer, Berlin,
2009. ISBN 978-3-642-04224-9.

Chee Peng Lim, Lakhmi C. Jain, and Satchidananda Dehuri, editors. Innovations in swarm
intelligence. Springer, Berlin, 2009. ISBN 978-3-642-04224-9. doi: 10.1007/978-3-642-04225-6.
URL http://dx.doi.org/10.1007/978-3-642-04225-6.

B. M. T. Lin and A. A. K. Jeng. Parallel-machine batch scheduling to minimize the maximum
lateness and the number of tardy jobs. International Journal of Production Economics, 91(2):
121--134, 2004. ISSN 0925-5273. doi: 10.1016/j.ijpe.2003.07.003. URL http://dx.doi.org/10.

1016/j.ijpe.2003.07.003.

John D. C. Little. A proof for the queuing formula. Operations Research, 9(3):383--387, 1961. doi:
10.1287/opre.9.3.383. URL http://dx.doi.org/10.1287/opre.9.3.383.

L. L. Liu, C. T. Ng, and T. C. Edwin Cheng. Scheduling jobs with release dates on parallel batch
processing machines. Discrete Applied Mathematics, 157(8):1825--1830, 2009. ISSN 0166-218X.
doi: 10.1016/j.dam.2008.12.012. URL http://dx.doi.org/10.1016/j.dam.2008.12.012.

L. L. Liu, C. T. Ng, and T. C. Edwin Cheng. On scheduling unbounded batch processing
machine(s). Computers & Industrial Engineering, 58(4):814--817, 2010. ISSN 0360-8352. doi:
10.1016/j.cie.2010.02.003. URL http://dx.doi.org/10.1016/j.cie.2010.02.003.

Lili Liu. Batch scheduling problems. PhD thesis, The Hong Kong Polytechnic University, Hong
Kong, 2007. URL http://hdl.handle.net/10397/4138.

Lili Liu and Feng Zhang. Minimizing number of tardy jobs on a batch processing machine
with incompatible job families. In Computing, Communication, Control, and Management,
2008. CCCM ’08. ISECS International Colloquium on, volume 3, pages 277--280, 2008. doi:
10.1109/CCCM.2008.107. URL http://dx.doi.org/10.1109/CCCM.2008.107.

Zhaohui Liu and T. C. Edwin Cheng. Approximation schemes for minimizing total (weighted)
completion time with release dates on a batch machine. Theoretical Computer Science, 347
(1--2):288--298, 2005. ISSN 0304-3975. doi: 10.1016/j.tcs.2005.07.028. URL http://www.

sciencedirect.com/science/article/pii/S0304397505004640.

210

http://www.sciencedirect.com/science/article/pii/S0020019012000191
http://www.sciencedirect.com/science/article/pii/S0020019012000191
http://dx.doi.org/10.1016/j.ipl.2012.03.015
http://www.sciencedirect.com/science/article/pii/S0305054813001731
http://www.sciencedirect.com/science/article/pii/S0305054813001731
http://dx.doi.org/10.1109/TSM.2004.831533
http://dx.doi.org/10.1109/66.542170
http://dx.doi.org/10.1007/978-3-642-04225-6
http://dx.doi.org/10.1016/j.ijpe.2003.07.003
http://dx.doi.org/10.1016/j.ijpe.2003.07.003
http://dx.doi.org/10.1287/opre.9.3.383
http://dx.doi.org/10.1016/j.dam.2008.12.012
http://dx.doi.org/10.1016/j.cie.2010.02.003
http://hdl.handle.net/10397/4138
http://dx.doi.org/10.1109/CCCM.2008.107
http://www.sciencedirect.com/science/article/pii/S0304397505004640
http://www.sciencedirect.com/science/article/pii/S0304397505004640


Zhaohui Liu and Wenci Yu. Scheduling one batch processor subject to job release dates. Discrete
Applied Mathematics, 105(1--3):129--136, 2000. ISSN 0166-218X. doi: 10.1016/S0166-218X(00)
00181-5. URL http://www.sciencedirect.com/science/article/pii/S0166218X00001815.

Zhaohui Liu, Jinjiang Yuan, and T. C. Edwin Cheng. On scheduling an unbounded batch machine.
Operations Research Letters, 31(1):42--48, 2003. ISSN 0167-6377. doi: 10.1016/S0167-6377(02)
00186-4. URL http://www.sciencedirect.com/science/article/pii/S0167637702001864.

Helena R. Lourenco, Olivier C. Martin, and Thomas Stützle. Iterated local search: Framework and
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José Antonio Parejo, A. Ruiz-Cortés, Sebastián Lozano, and Pablo Fernández. Metaheuris-
tic optimization frameworks: A survey and benchmarking. Soft Computing, 16(3):527--561,
2011. ISSN 1433-7479. doi: 10.1007/s00500-011-0754-8. URL http://dx.doi.org/10.1007/

s00500-011-0754-8.

K. Park and James R. Morrison. Cluster tool design comparisons via simulation. In Proceedings
of the 2011 Winter Simulation Conference (WSC), pages 1872--1882, 2011. doi: 10.1109/WSC.
2011.6147901. URL http://dx.doi.org/10.1109/WSC.2011.6147901.

N. Rafiee Parsa, Behrooz Karimi, and Ali Husseinzadeh Kashan. A branch and price algorithm to
minimize makespan on a single batch processing machine with non-identical job sizes. Computers
& Operations Research, 37(10):1720--1730, 2010. ISSN 0305-0548. doi: 10.1016/j.cor.2009.12.007.
URL http://dx.doi.org/10.1016/j.cor.2009.12.007.

Vangelis Th. Paschos. Combinatorial optimization and theoretical computer science: Interfaces
and perspectives : 30th anniversary of the LAMSADE. ISTE and Wiley, London and Hoboken
and NJ, 2008. ISBN 978-1-84821-021-9.

Ray J. Paul and David W. Balmer. Simulation modelling. Chartwell-Bratt, Bromley, 1993. ISBN
0862382807.

Mohammad Mahdi Paydar and Mohammad Saidi-Mehrabad. A hybrid genetic-variable neighbor-
hood search algorithm for the cell formation problem based on grouping efficacy. Computers
& Operations Research, 40(4):980--990, 2013. ISSN 0305-0548. doi: 10.1016/j.cor.2012.10.016.
URL http://www.sciencedirect.com/science/article/pii/S0305054812002286.

216

http://dx.doi.org/10.1109/WSC.2011.6147898
http://dx.doi.org/10.1016/j.orl.2007.01.007
http://dx.doi.org/10.1016/j.ijpe.2006.12.061
http://dx.doi.org/10.1080/00207549508904867
http://dx.doi.org/10.1080/00207549508904867
http://dx.doi.org/10.1080/00207543.2011.641358
http://dx.doi.org/10.1007/s00500-011-0754-8
http://dx.doi.org/10.1007/s00500-011-0754-8
http://dx.doi.org/10.1109/WSC.2011.6147901
http://dx.doi.org/10.1016/j.cor.2009.12.007
http://www.sciencedirect.com/science/article/pii/S0305054812002286


Jula Payman and Robert C. Leachman. Coordinated multistage scheduling of parallel batch-
processing machines under multiresource constraints. Operations Research, 58(4-Part-1):933--947,
2010. doi: 10.1287/opre.1090.0788. URL http://dx.doi.org/10.1287/opre.1090.0788.

Giulia Pedrielli, Tolio Tullio, Walter Terkaj, and Marco Sacco. Distributed modeling of discrete
event systems. In Eldin Wee Chuan Lim, editor, Discrete Event Simulations, pages 3--46. InTech,
2012. ISBN 978-953-51-0741-5. doi: 10.5772/50350. URL http://dx.doi.org/10.5772/50350.

Imelda C. Perez, John W. Fowler, and W. Matthew Carlyle. Minimizing total weighted tardiness
on a single batch process machine with incompatible job families. Computers & Operations
Research, 32(2):327--341, 2005. ISSN 0305-0548. doi: 10.1016/S0305-0548(03)00239-9. URL
http://dx.doi.org/10.1016/S0305-0548(03)00239-9.

Terry L. Perkinson, Peter K. McLarty, Ronald S. Gyurcsik, and Ralph K. Cavin. Single-wafer
cluster tool performance: an analysis of throughput. IEEE Transactions on Semiconductor
Manufacturing, 7(3):369--373, 1994. ISSN 0894-6507. doi: 10.1109/66.311340. URL http:

//dx.doi.org/10.1109/66.311340.

Terry L. Perkinson, Ronald S. Gyurcsik, and Peter K. McLarty. Single-wafer cluster tool perfor-
mance: an analysis of the effects of redundant chambers and revisitation sequences on throughput.
IEEE Transactions on Semiconductor Manufacturing, 9(3):384--400, 1996. ISSN 0894-6507. doi:
10.1109/66.536110. URL http://dx.doi.org/10.1109/66.536110.

Anna Persson, Henrik Grimm, Amos Ng, Thomas Lezama, Jonas Ekberg, Stephan Falk, and Peter
Stablum. Simulation-based multi-objective optimization of a real-world scheduling problem. In
Proceedings of the 38th Conference on Winter Simulation, WSC ’06, pages 1757--1764. Winter
Simulation Conference, 2006. ISBN 1-4244-0501-7. URL http://dl.acm.org/citation.cfm?

id=1218112.1218431.

Mikel D. Petty. Verification and validation. In John A. Sokolowski and Catherine M. Banks,
editors, Principles of modeling and simulation, pages 121--147. John Wiley, Hoboken and N.J,
2009. ISBN 978-0-470-28943-3.

Nipa Phojanamongkolkij and Omar Ghrayeb. Batch size determination for wafer fabrication using
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Literature review of batch scheduling (without incompatible job families)

machine environment
parallel machines (P ) single machine (1)

job release dates (rj) job release dates (rj)
yes no yes no

publication method objective publication method objective publication method objective publication method objective

(no)

Pm | p− batch, b < n, rj | · Pm | p− batch, b < n | · 1 | p− batch, b < n, rj | · 1 | p− batch, b < n | ·

no

Li et al. (2004) A OTD Chandru et al. (1993a) H CT Ikura and Gimple (1986) E* Cmax Neuts (1967) RTC CT
Li et al. (2005b) A Cmax Mönch and Unbehaun (2007) H* OTD Glassey and Weng (1991) RTC CT Lee et al. (1992) E* OTD

Zhang et al. (2005) A Cmax Lee et al. (1992) E* OTD Albers and Brucker (1993) E* CT
Li et al. (2012a) A# Cmax Webster and Baker (1995) E* OTD, CT Chandru et al. (1993a) E, H CT

Koehler and Khuller (2013) E* Cmax Li and Lee (1997) E* OTD Webster and Baker (1995) E* OTD, CT
Lee and Uzsoy (1999) E*, H Cmax Brucker and Kovalyov (1996) E*, A OTD

Baptiste (2000) E* OTD, CT Hochbaum and Landy (1997) E*, A CT
Liu and Yu (2000) E*, A Cmax Uzsoy and Yang (1997) E, H CT

Poon and Zhang (2000) E*, A Cmax Brucker et al. (1998) E* CT
Sung and Choung (2000) E, H Cmax Brucker et al. (1998) E Cmax

Zhang et al. (2001a) A#*, A# Cmax Sung and Choung (2000) E Cmax

Sung et al. (2002) E* Cmax Chen et al. (2001) A# CT
Wang and Uzsoy (2002) MH OTD Cai et al. (2002) A CT

Deng et al. (2003) E*, A Cmax Deng et al. (2002) A CT
Gupta et al. (2004) RTC OTD Ganesan et al. (2004) RTC MO
van der Zee (2004) RTC CT Poon and Yu (2004) E CT

Liu and Cheng (2005) A CT Mönch et al. (2006a) MH* OTD
Brucker (2007) E* OTD, CT Brucker (2007) E Cmax

Cao and Yang (2009) A MO Brucker (2007) E* OTD, CT
non-

incompatible Lu et al. (2009b) E*, A MO Liu (2007) E* OTD
Sabouni and Jolai (2010) E* MO

identical

job
Pm | p− batch,B, sj, rj | · Pm | p− batch,B, sj | · 1 | p− batch,B, sj, rj | · 1 | p− batch,B, sj | ·

yes

job

families
Chung et al. (2009) E, H Cmax Chang et al. (2004) E, MH Cmax Chang and Wang (2004) H CT Uzsoy (1994) H Cmax sizes

(fmls)
Chen et al. (2010) H, MH Cmax Xu and Bean (2007) E, MH Cmax Li et al. (2005a) A Cmax Uzsoy (1994) E, H CT

Damodaran and Vélez-Gallego (2010) H Cmax Damodaran and Chang (2008) H Cmax Chou et al. (2006) MH Cmax Jolai Ghazvini and Dupont (1998) H CT
(B, sj)Wang and Chou (2010) E, MH Cmax Kashan et al. (2008) MH Cmax van der Zee (2007) RTC CT Azizoglu and Webster (2000) E CT

Damodaran et al. (2011) MH Cmax Shao et al. (2008a) H Cmax Chou and Wang (2008) E, H, MH OTD Zhang et al. (2001b) A Cmax

Damodaran and Vélez-Gallego (2012) MH Cmax Shao et al. (2008b) H Cmax Lu et al. (2010) A Cmax Dupont and Dhaenens-Flipo (2002) E Cmax

Li (2012) A Cmax Chen et al. (2011) H Cmax Mathirajan et al. (2010) E, H, MH OTD Mathirajan et al. (2004) MH Cmax

Ozturk et al. (2012) E, E*, A Cmax Cheng et al. (2012) E, A Cmax, CT Vélez-Gallego et al. (2011) E, H Cmax Melouk et al. (2004) E, MH Cmax

Xu et al. (2013) MH MO Cheng et al. (2013) E, MH Cmax Xu et al. (2012) E, H, MH Cmax Damodaran et al. (2006) MH Cmax

Sahraeian et al. (2014) RTC Cmax Li et al. (2013) H Cmax Wang and Chou (2013) E, MH MO Kashan et al. (2006a) MH Cmax

Zhou et al. (2013) H Cmax Kashan et al. (2006b) MH Cmax

Damodaran et al. (2007) MH Cmax

Zhang and Cao (2007) A Cmax

Erramilli and Mason (2008) E, MH OTD
Xu et al. (2008a) MH CT
Xu et al. (2008b) MH CT

Kashan et al. (2009) A Cmax

Lu et al. (2009a) MH MO
Zhang et al. (2009b) MH Cmax

Cheng et al. (2010) MH Cmax

Kashan et al. (2010) MH MO
Parsa et al. (2010) E, H Cmax

Malapert et al. (2012) E OTD
Jia and Leung (2014) MH Cmax

model:{longest job processing time (L), constant processing time (C), family processing time (F)};

method: {exact method (E), heuristic (H), real-time control (RTC), metaheuristic (MH), approximation algorithm (A), special case(s) (*), online setting (#)};

objectives:{makespan (Cmax), cycle time (CT), on-time delivery (OTD), multiple objectives (MO)};

constraints:{preemption (prmpt), rejection (rjct), deadlines (d̄j), machine eligibility (Mj), sequence dependent setup times (sdst), reentrant jobs (rntr), job splitting (jspl), graph compatibility (gc), secondary resources (sr), stochastic processing times (spt), precedence (prec), breakdowns (brkdwn) }
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machine environment
parallel machines (P ) single machine (1)

job release dates (rj) job release dates (rj)
yes no yes no

publication method objective publication method objective publication method objective publication method objective

(yes)

Pm | p− batch, b < n, rj, fmls | · Pm | p− batch, b < n, fmls | · 1 | p− batch, b < n, rj, fmls | · 1 | p− batch, b < n, fmls | ·

no

van der Zee et al. (1997) RTC CT Uzsoy (1995) H Cmax , OTD, CT Fowler et al. (1992a) RTC CT Chandru et al. (1993b) E* CT
Fowler et al. (2000) RTC CT Habenicht and Mönch (2003) RTC OTD Fowler et al. (1992b) RTC CT Uzsoy (1995) E Cmax , OTD, CT
van der Zee (2001) RTC CT Balasubramanian et al. (2004) H, MH OTD Weng and Leachman (1993) RTC CT Duenyas and Neale (1997) RTC CT

van der Zee et al. (2001) RTC CT Raghavan and Venkataramana (2006) MH OTD Robinson et al. (1995) RTC CT Kim et al. (1998) RTC MO
Cigolini et al. (2002) RTC CT Mönch and Almeder (2009) MH OTD Uzsoy (1995) E Cmax Mehta and Uzsoy (1998) E*, H OTD

Solomon et al. (2002) RTC CT Almeder and Mönch (2011) MH OTD Uzsoy (1995) H OTD Akcali et al. (2000) RTC CT
Habenicht and Mönch (2003) RTC, MH, H OTD Li et al. (2012b) A#* OTD Duenyas and Neale (1997) RTC CT Devpura et al. (2001) H OTD

Sha et al. (2004) RTC OTD Boudhar (2003) E*, H Cmax Kim et al. (2001) RTC OTD
Mönch et al. (2005) MH OTD Korkmaz (2004) E, H CT Boudhar (2003) E*, H Cmax

Mönch et al. (2006b) H OTD Gupta and Sivakumar (2006) RTC OTD, MO Jolai (2005) E* OTD
Reichelt and Mönch (2006) MH MO Tangudu and Kurz (2006) E OTD Perez et al. (2005) H OTD

Malve and Uzsoy (2007) MH OTD Kurz and Mason (2008) H OTD Finke et al. (2008) E* Cmax

Sha et al. (2007) RTC OTD Li and Qiao (2008) MH OTD Liu and Zhang (2008) E OTD
incompatible Li et al. (2008) MH OTD Nong et al. (2008a) A Cmax Nong et al. (2008b) A# Cmax

Murray et al. (2008) RTC MO Tajan et al. (2008) RTC CT Sabouni and Jolai (2010) E*, H MO non-
job Bar-Noy et al. (2009) A OTD Guo et al. (2010) MH OTD Meng and Lu (2011) A# Cmax

Klemmt et al. (2009) E, MH OTD Tajan et al. (2011) RTC, E CT Dauzère-Pérès and Mönch (2013) E, MH OTD identical
families Li et al. (2009a) MH OTD Yao et al. (2012) E CT

Chiang et al. (2010) MH OTD Jia et al. (2013) H OTD, CT job
(fmls) Kim et al. (2010) H OTD

Tajan et al. (2012) RTC CT sizes
Chang et al. (2013) MH OTD

(B, sj)

Pm | p− batch,B, sj, rj, fmls | · Pm | p− batch,B, sj, fmls | · 1 | p− batch,B, sj, rj, fmls | · 1 | p− batch,B, sj, fmls | ·

yes

Mathirajan and Sivakumar (2006a) H OTD Koh et al. (2004) H, MH Cmax , CT Nong et al. (2008a) A Cmax Hoitomt and Luh (1992) H OTD
Klemmt et al. (2008) E, H Cmax , CT Payman and Leachman (2010) H MO Gokhale and Mathirajan (2011) E, H OTD Kempf et al. (1998) E*, H Cmax , CT
Yugma et al. (2008) MH MO Azizoglu and Webster (2001) E CT

Li et al. (2009b) MH MO Dobson and Nambimadom (1992) E, E*, H CT
Klemmt et al. (2011) E, H Cmax , OTD, CT Dobson and Nambimadom (2001) E, E*, H CT

Kohn and Rose (2012) MH OTD, CT Koh et al. (2005) E, H, MH Cmax , CT
Cakici et al. (2013) E, MH CT Kashan and Karimi (2007) MH OTD

Kohn and Rose (2013) MH CT
Kohn et al. (2013) MH MO

Gokhale and Mathirajan (2014) E, H OTD

model:{longest job processing time (L), constant processing time (C), family processing time (F)};

method: {exact method (E), heuristic (H), real-time control (RTC), metaheuristic (MH), approximation algorithm (A), special case(s) (*), online setting (#)};

objectives:{makespan (Cmax), cycle time (CT), on-time delivery (OTD), multiple objectives (MO)};

constraints:{preemption (prmpt), rejection (rjct), deadlines (d̄j), machine eligibility (Mj), sequence dependent setup times (sdst), reentrant jobs (rntr), job splitting (jspl), graph compatibility (gc), secondary resources (sr), stochastic processing times (spt), precedence (prec), breakdowns (brkdwn) }
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Complexities of Batch Scheduling Problems

machine environment
parallel machines (P ) single machine (1)

job release dates (rj) job release dates (rj)
yes no yes no

objective complexity proof objective complexity proof objective complexity proof objective complexity proof

no

Pm | p− batch, b < n, rj | · Pm | p− batch, b < n | · 1 | p− batch, b < n, rj | · 1 | p− batch, b < n | ·

no

Cmax NP-hard Pm || Cmax (Garey and Johnson, 1978) Cmax NP-hard Pm || Cmax (Garey and Johnson, 1978) Cmax NP-hard (Brucker et al., 1998) Cmax Polynomial (Brucker et al., 1998)
Lmax NP-hard 1 | rj | Lmax (Lenstra et al., 1977) Lmax NP-hard Pm || Cmax (Garey and Johnson, 1978) Lmax NP-hard 1 | rj | Lmax (Lenstra et al., 1977) Lmax NP-hard (Brucker et al., 1998)∑
Uj NP-hard 1 | rj | Lmax (Lenstra et al., 1977)

∑
Uj NP-hard Pm || Cmax (Garey and Johnson, 1978)

∑
Uj NP-hard 1 | rj | Lmax (Lenstra et al., 1977)

∑
Uj NP-hard 1 | p− batch, b < n | Lmax (Brucker et al., 1998)∑

wjUj NP-hard 1 | rj | Lmax (Lenstra et al., 1977)
∑
wjUj NP-hard Pm || Cmax (Garey and Johnson, 1978)

∑
wjUj NP-hard 1 | rj | Lmax (Lenstra et al., 1977)

∑
wjUj NP-hard 1 | p− batch, b < n | Lmax (Brucker et al., 1998)∑

Tj NP-hard 1 | rj | Lmax (Lenstra et al., 1977)
∑
Tj NP-hard Pm || Cmax (Garey and Johnson, 1978)

∑
Tj NP-hard 1 | rj | Lmax (Lenstra et al., 1977)

∑
Tj NP-hard 1 | p− batch, b < n | Lmax (Brucker et al., 1998)∑

wjTj NP-hard 1 ||
∑
wjTj (Lawler, 1977)

∑
wjTj NP-hard 1 ||

∑
wjTj (Lawler, 1977)

∑
wjTj NP-hard 1 ||

∑
wjTj (Lawler, 1977)

∑
wjTj NP-hard 1 ||

∑
wjTj (Lawler, 1977)∑

Cj NP-hard 1 | rj |
∑
Cj (Lenstra et al., 1977)

∑
Cj open (Brucker and Knust, 2014)

∑
Cj NP-hard 1 | rj |

∑
Cj (Lenstra et al., 1977)

∑
Cj open (Brucker and Knust, 2014) non-∑

wjCj NP-hard 1 | rj |
∑
Cj (Lenstra et al., 1977)

∑
wjCj NP-hard Pm ||

∑
wjCj (Brucker and Knust, 2014)

∑
wjCj NP-hard 1 | rj |

∑
Cj (Lenstra et al., 1977)

∑
wjCj open (Brucker and Knust, 2014) identical

job

Pm | p− batch,B, sj, rj | · Pm | p− batch,B, sj | · 1 | p− batch,B, sj, rj | · 1 | p− batch,B, sj | ·

yes

sizes
(B, sj)

Cmax NP-hard Pm || Cmax (Garey and Johnson, 1978) Cmax NP-hard Pm || Cmax (Garey and Johnson, 1978) Cmax NP-hard 1 | p− batch,B, sj | Cmax (Uzsoy, 1994) Cmax NP-hard (Uzsoy, 1994)
Lmax NP-hard 1 | rj | Lmax (Lenstra et al., 1977) Lmax NP-hard Pm || Cmax (Garey and Johnson, 1978) Lmax NP-hard 1 | rj | Lmax (Lenstra et al., 1977) Lmax NP-hard 1 | p− batch,B, sj | Cmax (Uzsoy, 1994)∑
Uj NP-hard 1 | rj | Lmax (Lenstra et al., 1977)

∑
Uj NP-hard Pm || Cmax (Garey and Johnson, 1978)

∑
Uj NP-hard 1 | rj | Lmax (Lenstra et al., 1977)

∑
Uj NP-hard 1 | p− batch,B, sj | Cmax (Uzsoy, 1994)∑

wjUj NP-hard 1 | rj | Lmax (Lenstra et al., 1977)
∑
wjUj NP-hard Pm || Cmax (Garey and Johnson, 1978)

∑
wjUj NP-hard 1 | rj | Lmax (Lenstra et al., 1977)

∑
wjUj NP-hard 1 | p− batch,B, sj | Cmax (Uzsoy, 1994)∑

Tj NP-hard 1 | rj | Lmax (Lenstra et al., 1977)
∑
Tj NP-hard Pm || Cmax (Garey and Johnson, 1978)

∑
Tj NP-hard 1 | rj | Lmax (Lenstra et al., 1977)

∑
Tj NP-hard 1 | p− batch,B, sj | Cmax (Uzsoy, 1994)

incompatible

∑
wjTj NP-hard 1 ||

∑
wjTj (Lawler, 1977)

∑
wjTj NP-hard 1 ||

∑
wjTj (Lawler, 1977)

∑
wjTj NP-hard 1 ||

∑
wjTj (Lawler, 1977)

∑
wjTj NP-hard 1 ||

∑
wjTj (Lawler, 1977)∑

Cj NP-hard 1 | rj |
∑
Cj (Lenstra et al., 1977)

∑
Cj NP-hard 1 | p− batch,B, sj |

∑
Cj (Uzsoy, 1994)

∑
Cj NP-hard 1 | rj |

∑
Cj (Lenstra et al., 1977)

∑
Cj NP-hard (Uzsoy, 1994)

job

∑
wjCj NP-hard 1 | rj |

∑
Cj (Lenstra et al., 1977)

∑
wjCj NP-hard Pm ||

∑
wjCj (Brucker and Knust, 2014)

∑
wjCj NP-hard 1 | rj |

∑
Cj (Lenstra et al., 1977)

∑
wjCj NP-hard 1 | p− batch,B, sj |

∑
Cj (Uzsoy, 1994)

families

yes

Pm | p− batch, b < n, rj, fmls | · Pm | p− batch, b < n, fmls | · 1 | p− batch, b < n, rj, fmls | · 1 | p− batch, b < n, fmls | ·

no

(fmls)
Cmax NP-hard Pm || Cmax (Garey and Johnson, 1978) Cmax NP-hard Pm || Cmax (Garey and Johnson, 1978) Cmax Polynomial (Uzsoy, 1995) Cmax Polynomial (Uzsoy, 1995)
Lmax NP-hard 1 | rj | Lmax (Lenstra et al., 1977) Lmax NP-hard Pm || Cmax (Garey and Johnson, 1978) Lmax NP-hard 1 | rj | Lmax (Lenstra et al., 1977) Lmax Polynomial (Uzsoy, 1995)∑
Uj NP-hard 1 | rj | Lmax (Lenstra et al., 1977)

∑
Uj NP-hard Pm || Cmax (Garey and Johnson, 1978)

∑
Uj NP-hard 1 | rj | Lmax (Lenstra et al., 1977)

∑
Uj NP-hard (Liu and Zhang, 2008)∑

wjUj NP-hard 1 | rj | Lmax (Lenstra et al., 1977)
∑
wjUj NP-hard Pm || Cmax (Garey and Johnson, 1978)

∑
wjUj NP-hard 1 | rj | Lmax (Lenstra et al., 1977)

∑
wjUj NP-hard 1 | p− batch, b < n, fmls |

∑
Uj (Liu and Zhang, 2008)∑

Tj NP-hard 1 | rj | Lmax (Lenstra et al., 1977)
∑
Tj NP-hard Pm || Cmax (Garey and Johnson, 1978)

∑
Tj NP-hard 1 | rj | Lmax (Lenstra et al., 1977)

∑
Tj NP-hard (Mehta and Uzsoy, 1998)∑

wjTj NP-hard 1 ||
∑
wjTj (Lawler, 1977)

∑
wjTj NP-hard 1 ||

∑
wjTj (Lawler, 1977)

∑
wjTj NP-hard 1 ||

∑
wjTj (Lawler, 1977)

∑
wjTj NP-hard 1 ||

∑
wjTj (Lawler, 1977)∑

Cj NP-hard 1 | rj |
∑
Cj (Lenstra et al., 1977)

∑
Cj open (Brucker and Knust, 2014)

∑
Cj NP-hard 1 | rj |

∑
Cj (Lenstra et al., 1977)

∑
Cj Polynomial (Uzsoy, 1995) non-∑

wjCj NP-hard 1 | rj |
∑
Cj (Lenstra et al., 1977)

∑
wjCj NP-hard Pm ||

∑
wjCj (Brucker and Knust, 2014)

∑
wjCj NP-hard 1 | rj |

∑
Cj (Lenstra et al., 1977)

∑
wjCj Polynomial (Uzsoy, 1995) identical

job

Pm | p− batch,B, sj, rj, fmls | · Pm | p− batch,B, sj, fmls | · 1 | p− batch,B, sj, rj, fmls | · 1 | p− batch,B, sj, fmls | ·

yes

sizes
(B, sj)

Cmax NP-hard Pm || Cmax (Garey and Johnson, 1978) Cmax NP-hard Pm || Cmax (Garey and Johnson, 1978) Cmax NP-hard 1 | p− batch,B, sj | Cmax (Uzsoy, 1994) Cmax NP-hard 1 | p− batch,B, sj | Cmax (Uzsoy, 1994)
Lmax NP-hard 1 | rj | Lmax (Lenstra et al., 1977) Lmax NP-hard Pm || Cmax (Garey and Johnson, 1978) Lmax NP-hard 1 | rj | Lmax (Lenstra et al., 1977) Lmax NP-hard 1 | p− batch,B, sj | Cmax (Uzsoy, 1994)∑
Uj NP-hard 1 | rj | Lmax (Lenstra et al., 1977)

∑
Uj NP-hard Pm || Cmax (Garey and Johnson, 1978)

∑
Uj NP-hard 1 | rj | Lmax (Lenstra et al., 1977)

∑
Uj NP-hard 1 | p− batch,B, sj | Cmax (Uzsoy, 1994)∑

wjUj NP-hard 1 | rj | Lmax (Lenstra et al., 1977)
∑
wjUj NP-hard Pm || Cmax (Garey and Johnson, 1978)

∑
wjUj NP-hard 1 | rj | Lmax (Lenstra et al., 1977)

∑
wjUj NP-hard 1 | p− batch,B, sj | Cmax (Uzsoy, 1994)∑

Tj NP-hard 1 | rj | Lmax (Lenstra et al., 1977)
∑
Tj NP-hard Pm || Cmax (Garey and Johnson, 1978)

∑
Tj NP-hard 1 | rj | Lmax (Lenstra et al., 1977)

∑
Tj NP-hard 1 | p− batch,B, sj | Cmax (Uzsoy, 1994)∑

wjTj NP-hard 1 ||
∑
wjTj (Lawler, 1977)

∑
wjTj NP-hard 1 ||

∑
wjTj (Lawler, 1977)

∑
wjTj NP-hard 1 ||

∑
wjTj (Lawler, 1977)

∑
wjTj NP-hard 1 ||

∑
wjTj (Lawler, 1977)∑

Cj NP-hard 1 | rj |
∑
Cj (Lenstra et al., 1977)

∑
Cj NP-hard 1 | p− batch,B, sj |

∑
Cj (Uzsoy, 1994)

∑
Cj NP-hard 1 | rj |

∑
Cj (Lenstra et al., 1977)

∑
Cj NP-hard 1 | p− batch,B, sj |

∑
Cj (Uzsoy, 1994)∑

wjCj NP-hard 1 | rj |
∑
Cj (Lenstra et al., 1977)

∑
wjCj NP-hard Pm ||

∑
wjCj (Brucker and Knust, 2014)

∑
wjCj NP-hard 1 | rj |

∑
Cj (Lenstra et al., 1977)

∑
wjCj NP-hard 1 | p− batch,B, sj |

∑
Cj (Uzsoy, 1994)

NP-hard stands for NP-hard in the strong case for all cases, i.e. NP-hardness proven under the unary encoding scheme
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Reported Run times of Exact Algorithms Solving Batch Scheduling Problems

size constraints
objective

run time (min)
machines jobs B, sj rj fmls others min max method CPU/RAM source

1 10 X - - -
∑
Cj << 1 BnB IBM PS/6000 Azizoglu and Webster (2000)

1 10 X - - -
∑
wjCj << 1 BnB IBM PS/6000 Azizoglu and Webster (2000)

1 10 - X X - Cmax << 1 DP IBM Pentium 200MHz Sung et al. (2002)
1 10 X - - - Cmax < 1 < 11 CPLEX Pentium IV 2.2GHz / 512MB RAM Melouk et al. (2004)
1 10 X - - - Cmax < 1 < 11 CPLEX Pentium III 500MHz / 261MB RAM Damodaran et al. (2006)
1 10 X X - - Cmax << 1 < 1 CPLEX Pentium IV 2.99 GHz / 3GB RAM Xu et al. (2012)
1 10 X X - pj = p Cmax < 1 CPLEX Intel Core2 Duo 3Ghz / 3.25 GB RAM Ozturk et al. (2012)

1 15 X - - -
∑
Cj << 1 BnB IBM PS/6000 Azizoglu and Webster (2000)

1 15 X - - -
∑
wjCj << 1 BnB IBM PS/6000 Azizoglu and Webster (2000)

1 15 X - X -
∑
wjCj << 1 BnB IBM PS/6000 Azizoglu and Webster (2001)

1 15 X X - -
∑
wjTj > 166 > 300 CPLEX Power Mac G5 / 2GB RAM Chou and Wang (2008)

1 15 X X - pj = p Cmax < 1 CPLEX Intel Core2 Duo 3Ghz / 3.25 GB RAM Ozturk et al. (2012)

1 18 - X X -
∑
Cj << 1 BnB Intel Core2 Duo 2.0 GHz 2GB RAM Yao et al. (2012)

1 20 X - - -
∑
wjCj < 1 BnB IBM PS/6000 Azizoglu and Webster (2000)

1 20 X - X -
∑
wjCj << 1 < 1 BnB IBM PS/6000 Azizoglu and Webster (2001)

1 20 - X X - Cmax << 1 < 1 DP IBM Pentium 200MHz Sung et al. (2002)
1 20 X - - - Cmax > 30 > 30 CPLEX Pentium IV 2.2GHz / 512MB RAM Melouk et al. (2004)
1 20 X - - - Cmax > 30 > 30 CPLEX Pentium III 500MHz / 261MB RAM Damodaran et al. (2006)
1 20 X - - - Cmax > 3 > 30 CPLEX Pentium IV 1.89GHz / 256MB RAM Damodaran et al. (2007)
1 20 X - - - Cmax << 1 < 1 BnP Pentium IV 2.4GHz / 512MB RAM Parsa et al. (2010)
1 20 X X - - Cmax > 5 > 30 CPLEX Pentium IV 2.99 GHz / 3GB RAM Xu et al. (2012)
1 20 X X - pj = p Cmax < 1 CPLEX Intel Core2 Duo 3Ghz / 3.25 GB RAM Ozturk et al. (2012)

1 24 - X X -
∑
Cj << 1 < 1 BnB Intel Core2 Duo 2.0 GHz 2GB RAM Yao et al. (2012)

1 25 X - - -
∑
Cj < 1 > 30 BnB IBM PS/6000 Azizoglu and Webster (2000)

1 25 X - - -
∑
wjCj > 3 > 30 BnB IBM PS/6000 Azizoglu and Webster (2000)

1 25 X - X -
∑
wjCj << 1 < 2 BnB IBM PS/6000 Azizoglu and Webster (2001)

1 25 X X pj = p Cmax < 1 < 1 CPLEX Intel Core2 Duo 3Ghz / 3.25 GB RAM Ozturk et al. (2012)

1 30 X - X -
∑
wjCj << 1 > 30 BnB IBM PS/6000 Azizoglu and Webster (2001)

1 30 - X X - Cmax << 1 > 15 DP IBM Pentium 200MHz Sung et al. (2002)

1 40 X - - - Cmax < 1 > 30 BnB Pentium II 266MHz Dupont and Dhaenens-Flipo (2002)
1 40 - X X - Cmax << 1 > 15 DP IBM Pentium 200MHz Sung et al. (2002)
1 40 X - - - Cmax << 1 > 30 BnP Pentium IV 2.4GHz / 512MB RAM Parsa et al. (2010)
1 40 - X X -

∑
Cj < 1 < 12 BnB Intel Core2 Duo 2.0 GHz 2GB RAM Yao et al. (2012)

-
1 50 X - - - Cmax > 30 CPLEX Pentium IV 2.2GHz / 512MB RAM Melouk et al. (2004)
1 50 X - - - Cmax > 30 CPLEX Pentium III 500MHz / 261MB RAM Damodaran et al. (2006)
1 50 X - - - Cmax > 30 CPLEX Pentium IV 1.89GHz / 256MB RAM Damodaran et al. (2007)
1 50 X X - -

∑
wjTj > 120 CPLEX Power Mac G5 / 2GB RAM Chou and Wang (2008)

1 50 X X - - Cmax > 30 CPLEX Pentium IV 2.99 GHz / 3GB RAM Xu et al. (2012)

1 60 X - - - Cmax < 1 > 30 BnB Pentium II 266MHz Dupont and Dhaenens-Flipo (2002)
1 60 X - - - Cmax << 1 > 30 BnP Pentium IV 2.4GHz / 512MB RAM Parsa et al. (2010)
1 60 - X X -

∑
Cj > 5 < 28 BnB Intel Core2 Duo 2.0 GHz 2GB RAM Yao et al. (2012)

1 75 X - - - Cmax > 60 CPLEX Pentium IV 1.89GHz / 256MB RAM Damodaran et al. (2007)

1 80 X - - - Cmax < 1 > 30 BnB Pentium II 266MHz Dupont and Dhaenens-Flipo (2002)
1 80 X - - - Cmax < 1 > 30 BnP Pentium IV 2.4GHz / 512MB RAM Parsa et al. (2010)

1 100 X - - - Cmax < 1 > 30 BnB Pentium II 266MHz Dupont and Dhaenens-Flipo (2002)
1 100 X - - - Cmax > 300 CPLEX Pentium IV 2.2GHz / 512MB RAM Melouk et al. (2004)
1 100 X - - - Cmax > 300 CPLEX Pentium III 500MHz / 261MB RAM Damodaran et al. (2006)
1 100 X X - -

∑
wjTj > 120 CPLEX Power Mac G5 / 2GB RAM Chou and Wang (2008)

1 100 X - - - Cmax < 1 > 30 BnP Pentium IV 2.4GHz / 512MB RAM Parsa et al. (2010)
1 100 X X - - Cmax > 30 CPLEX Pentium IV 2.99 GHz / 3GB RAM Xu et al. (2012)

2 7 X X - - Cmax < 1 < 71 CPLEX Pentium IV 3.2GHz PC Chung et al. (2009)
2 10 X - - - Cmax < 1 > 60 CPLEX Pentium IV 2.2-GHz / 512 MB RAM Chang et al. (2004)
2 10 X X - pj = p Cmax < 1 CPLEX Intel Core2 Duo 3Ghz / 3.25 GB RAM Ozturk et al. (2012)
2 15 X - - - Cmax < 1 > 60 CPLEX Pentium III 997 MHz / 512MB RAM Xu and Bean (2007)
2 15 X X - - Cmax > 4 > 480 CPLEX Pentium IV 3.2GHz PC Chung et al. (2009)
2 15 X X - pj = p Cmax < 1 CPLEX Intel Core2 Duo 3Ghz / 3.25 GB RAM Ozturk et al. (2012)
2 20 X X - - Cmax > 300 CPLEX Power Mac G5 / 2GB RAM Wang and Chou (2010)
2 20 X X - pj = p Cmax < 5 CPLEX Intel Core2 Duo 3Ghz / 3.25 GB RAM Ozturk et al. (2012)
2 25 X - - - Cmax > 60 CPLEX Pentium IV 2.2-GHz / 512 MB RAM Chang et al. (2004)
2 25 X X - pj = p Cmax < 10 CPLEX Intel Core2 Duo 3Ghz / 3.25 GB RAM Ozturk et al. (2012)
2 50 X - - - Cmax > 60 CPLEX Pentium IV 2.2-GHz / 512 MB RAM Chang et al. (2004)
2 50 X - - - Cmax > 60 CPLEX Pentium III 997 MHz / 512MB RAM Xu and Bean (2007)
2 100 X - - - Cmax > 60 CPLEX Pentium III 997 MHz / 512MB RAM Xu and Bean (2007)
2 100 X X - - Cmax > 600 CPLEX Power Mac G5 / 2GB RAM Wang and Chou (2010)

3 7 X X - - Cmax < 1 < 723 CPLEX Pentium IV 3.2GHz PC Chung et al. (2009)
3 10 X X - pj = p Cmax < 1 CPLEX Intel Core2 Duo 3Ghz / 3.25 GB RAM Ozturk et al. (2012)
3 15 X X - - Cmax > 13 > 480 CPLEX Pentium IV 3.2GHz PC Chung et al. (2009)
3 15 X X - pj = p Cmax < 1 CPLEX Intel Core2 Duo 3Ghz / 3.25 GB RAM Ozturk et al. (2012)
3 20 X X - pj = p Cmax < 8 CPLEX Intel Core2 Duo 3Ghz / 3.25 GB RAM Ozturk et al. (2012)
3 25 X X - pj = p Cmax < 20 CPLEX Intel Core2 Duo 3Ghz / 3.25 GB RAM Ozturk et al. (2012)

4 10 X - - Cmax < 1 > 60 CPLEX Pentium IV 2.2-GHz / 512 MB RAM Chang et al. (2004)
4 10 X X - pj = p Cmax < 1 CPLEX Intel Core2 Duo 3Ghz / 3.25 GB RAM Ozturk et al. (2012)
4 15 X - - - Cmax < 1 > 60 CPLEX Pentium III 997 MHz / 512MB RAM Xu and Bean (2007)
4 15 X X - pj = p Cmax < 1 CPLEX Intel Core2 Duo 3Ghz / 3.25 GB RAM Ozturk et al. (2012)
4 20 X X - - Cmax < 1 > 300 CPLEX Power Mac G5 / 2GB RAM Wang and Chou (2010)
4 20 X X - pj = p Cmax > 5 < 6 CPLEX Intel Core2 Duo 3Ghz / 3.25 GB RAM Ozturk et al. (2012)
4 25 X - - - Cmax > 60 CPLEX Pentium IV 2.2-GHz / 512 MB RAM Chang et al. (2004)
4 25 X X X Mj , d̄j

∑
Cj 660 CPLEX - Klemmt et al. (2008)

4 25 X X - pj = p Cmax < 16 CPLEX Intel Core2 Duo 3Ghz / 3.25 GB RAM Ozturk et al. (2012)
4 50 X - - - Cmax > 60 CPLEX Pentium IV 2.2-GHz / 512 MB RAM Chang et al. (2004)
4 50 X - - - Cmax > 60 CPLEX Pentium III 997 MHz / 512MB RAM Xu and Bean (2007)
4 100 X - - - Cmax > 60 CPLEX Pentium III 997 MHz / 512MB RAM Xu and Bean (2007)
4 100 X X - - Cmax > 600 CPLEX Power Mac G5 / 2GB RAM Wang and Chou (2010)

5 30 X X X Mj , d̄j Cmax 300 CPLEX - Klemmt et al. (2008)
5 30 X X X Mj , d̄j

∑
Cj > 1440 CPLEX - Klemmt et al. (2008)

6 20 X X - - Cmax < 1 > 300 CPLEX Power Mac G5 / 2GB RAM Wang and Chou (2010)
6 40 X X X Mj , d̄j Cmax CPLEX - Klemmt et al. (2008)
6 40 X X X Mj , d̄j

∑
Cj > 1440 CPLEX - Klemmt et al. (2008)

6 100 X X - - Cmax > 600 CPLEX Power Mac G5 / 2GB RAM Wang and Chou (2010)
8 60 X X X Mj , d̄j

∑
Cj > 1440 CPLEX - Klemmt et al. (2008)

8 60 X X X Mj , d̄j Cmax 30 CPLEX - Klemmt et al. (2008)
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D Material Flow
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Visualization of the material flow around a typical furnace workcenter
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E Experiments

243



E.1 Experiment E.1

Design of experiment E.1

factor level count

machines 4, 8, 12, 16 4
jobs 120, 160, 200, 240 4

job families 4, 8, 12, 16 4
dedication density 1(uniform) 1
processing times U(120, 480), U(240, 480), U(360, 480) 3
batch size (lots) 8 1
batch size (wafers) 200 1

job sizes sj = 25 1
job priorities wj ∈ U(1, 5) 1
job due dates dj ∈ rj +N(12, 12) 1
job arrivals rj = 0 1

problem parameter combinations 192
model instances per parameter combination 30
total number of model instances 5760

initial solution random 1
objective(s) Cmax, TCT, TT, TWCT, TWT 5
VNS type VND 1
deadline 10 min 1

number of methods and settings 5
replications per run 1
total number of runs 28800
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E.2 Experiment E.2

Design of experiment E.2

factor level count

machines 4, 8, 12, 16 4
jobs 120, 160, 200, 240 4

job families 4, 8, 12, 16 4
dedication density 1(uniform) 1
processing times U(120, 480), U(240, 480), U(360, 480) 3
batch size (lots) 8 1
batch size (wafers) 200 1

job sizes sj = 25 1
job priorities - 1
job due dates dj ∈ rj +N(12, 12) 1
job arrivals rj = 0 1

problem parameter combinations 192
model instances per parameter combination 30
total number of model instances 5760

initial solution EDD (TT) / SPT (TCT) 1
objective(s) TCT, TT 2
VNS type VND 1
deadline 10 min 1

number of methods and settings 2
replications per run 1
total number of runs 11520
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E.3 Experiment E.3

Design of experiment E.3

factor level count

machines 8 1
jobs 120 1

job families 4, 8, 12, 16 4
dedication density 1(uniform) 1
processing times U(120, 480), U(240, 480), U(360, 480) 3
batch size (lots) (0, 0.5, 1) × (2, 4, 6, 8) 12
batch size (wafers) unlimited 1

job sizes sj = 25 1
job priorities - 1
job due dates dj ∈ rj +N(12, 12) 1
job arrivals rj = 0 1

problem parameter combinations 144
model instances per parameter combination 30
total number of model instances 4320

initial solution EDD (TT) / SPT (TCT) 1
objective(s) TCT, TT 2
VNS type VND 1
deadline 10 min 1

number of methods and settings 2
replications per run 1
total number of runs 8640
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E.4 Experiment E.4

Design of experiment E.4

factor level count

machines 8 1
jobs 120 1

job families 4, 8, 12, 16 4
dedication density 0.1,0.2, . . . , 0.9,1.0 10
processing times U(240, 480) 1
batch size (lots) 8 1
batch size (wafers) 200 1

job sizes sj = 25 1
job priorities - 1
job due dates dj ∈ rj +N(12, 12) 1
job arrivals rj = 0 1

problem parameter combinations 40
model instances per parameter combination 30
total number of model instances 1200

initial solution EDD (TT) / SPT (TCT) 1
objective(s) TCT, TT 2
VNS type VND 1
deadline 10 min 1

number of methods and settings 2
replications per run 1
total number of runs 2400
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E.5 Experiment E.5

Design of experiment E.5

factor level count

machines 8 1
jobs 120 1

job families 4, 8, 12, 16 4
dedication density 1 (uniform) 1
processing times U(240, 480) 1
batch size (lots) unlimited 1
batch size (wafers) 200 1

job sizes U(3, 25), U(6, 25), U(9, 25), . . . , U(24, 25) 8
job priorities - 1
job due dates dj ∈ rj +N(12, 12) 1
job arrivals rj = 0 1

problem parameter combinations 32
model instances per parameter combination 30
total number of model instances 960

initial solution EDD (TT) / SPT (TCT) 1
objective(s) TCT, TT 2
VNS type VND 1
deadline 10 min 1

number of methods and settings 2
replications per run 1
total number of runs 1920
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E.6 Experiment E.6

Design of experiment E.6

factor level count

machines 8 1
jobs 120 1

job families 8 1
dedication density 1(uniform) 1
processing times U(240, 480) 1
batch size (lots) 8 1
batch size (wafers) 200 1

job sizes sj = 25 1
job priorities - 1
job due dates dj ∈ rj +N(−48,−36, . . . , 48; 12, 24, 36) 27
job arrivals rj = 0 1

problem parameter combinations 27
model instances per parameter combination 30
total number of model instances 810

initial solution EDD 1
objective(s) Lmax, TT, TU 3
VNS type VND 1
deadline 10 min 1

number of methods and settings 3
replications per run 1
total number of runs 2430

277



GGraph

[DatenSet1] 

T
A

R
D

IN
E

S
S

1,400

1,300

1,200

1,100

1,000

,900

T
A

R
D

IN
E

S
S

1,400

1,300

1,200

1,100

1,000

,900

DUE DATE MEAN

483624120-12-24-36-48

T
A

R
D

IN
E

S
S

1,400

1,300

1,200

1,100

1,000

,900

O
B

JE
C

T
IV

E

L
ateness

T
ardiness

U
nitPenalty

36
24
12

DUE DATE VARIANCE

GGraph

[DatenSet1] 
M

A
X

IM
U

M
 L

A
T

E
N

E
S

S 1,500

1,000

,500

,000

M
A

X
IM

U
M

 L
A

T
E

N
E

S
S 1,500

1,000

,500

,000

DUE DATE MEAN

483624120-12-24-36-48

M
A

X
IM

U
M

 L
A

T
E

N
E

S
S 1,500

1,000

,500

,000

O
B

JE
C

T
IV

E

L
ateness

T
ardiness

U
nitPenalty

36
24
12

DUE DATE VARIANCE

GGraph

[DatenSet1] 

Seite 1

Experiment E6: lateness improvements

278



GGraph

[DatenSet1] 
T

A
R

D
IN

E
S

S

1,400

1,300

1,200

1,100

1,000

,900

T
A

R
D

IN
E

S
S

1,400

1,300

1,200

1,100

1,000

,900

DUE DATE MEAN

483624120-12-24-36-48

T
A

R
D

IN
E

S
S

1,400

1,300

1,200

1,100

1,000

,900

O
B

JE
C

T
IV

E

L
ateness

T
ardiness

U
nitPenalty

36
24
12

DUE DATE VARIANCE

GGraph

[DatenSet1] 

M
A

X
IM

U
M

 L
A

T
E

N
E

S
S 1,500

1,000

,500

,000

M
A

X
IM

U
M

 L
A

T
E

N
E

S
S 1,500

1,000

,500

,000

DUE DATE MEAN

483624120-12-24-36-48

M
A

X
IM

U
M

 L
A

T
E

N
E

S
S 1,500

1,000

,500

,000

O
B

JE
C

T
IV

E

L
ateness

T
ardiness

U
nitPenalty

36
24
12

DUE DATE VARIANCE

GGraph

[DatenSet1] 

Seite 1

Experiment E6: tardiness improvements

279



U
N

IT
 P

E
N

A
L

T
IE

S

1,200

1,100

1,000

,900

,800

,700

U
N

IT
 P

E
N

A
L

T
IE

S

1,200

1,100

1,000

,900

,800

,700

DUE DATE MEAN

483624120-12-24-36-48

U
N

IT
 P

E
N

A
L

T
IE

S

1,200

1,100

1,000

,900

,800

,700

O
B

JE
C

T
IV

E

L
ateness

T
ardiness

U
nitPenalty

36
24
12

DUE DATE VARIANCE

GGraph

[DatenSet1] 

R
U

N
T

IM
E

 (
s)

150,00

100,00

50,00

,00

R
U

N
T

IM
E

 (
s)

150,00

100,00

50,00

,00

DUE DATE MEAN

483624120-12-24-36-48

R
U

N
T

IM
E

 (
s)

150,00

100,00

50,00

,00

O
B

JE
C

T
IV

E

L
ateness

T
ardiness

U
nitPenalty

36
24
12

DUE DATE VARIANCE

GGraph

[DatenSet1] 

Seite 2

Experiment E6: unit penalty improvements

280



U
N

IT
 P

E
N

A
L

T
IE

S

1,200

1,100

1,000

,900

,800

,700

U
N

IT
 P

E
N

A
L

T
IE

S

1,200

1,100

1,000

,900

,800

,700

DUE DATE MEAN

483624120-12-24-36-48

U
N

IT
 P

E
N

A
L

T
IE

S

1,200

1,100

1,000

,900

,800

,700

O
B

JE
C

T
IV

E

L
ateness

T
ardiness

U
nitPenalty

36
24
12

DUE DATE VARIANCE

GGraph

[DatenSet1] 
R

U
N

T
IM

E
 (

s)

150,00

100,00

50,00

,00

R
U

N
T

IM
E

 (
s)

150,00

100,00

50,00

,00

DUE DATE MEAN

483624120-12-24-36-48

R
U

N
T

IM
E

 (
s)

150,00

100,00

50,00

,00

O
B

JE
C

T
IV

E

L
ateness

T
ardiness

U
nitPenalty

36
24
12

DUE DATE VARIANCE

GGraph

[DatenSet1] 

Seite 2

Experiment E6: run times for improving objectives related to due dates

281



M
O

V
E

S

800000

600000

400000

200000

0

M
O

V
E

S

800000

600000

400000

200000

0

DUE DATE MEAN

483624120-12-24-36-48

M
O

V
E

S

800000

600000

400000

200000

0

O
B

JE
C

T
IV

E

L
ateness

T
ardiness

U
nitPenalty

36
24
12

DUE DATE VARIANCE

     

   
 SAVE OUTFILE='C:\Users\Robert\Desktop\3OTD.sav' 

  /COMPRESSED.

Seite 3

Experiment E6: moves for improving objectives related to due dates

282



E.7 Experiment E.7

Design of experiment E.7

factor level count

machines 8 1
jobs 120 1

job families 8 1
dedication density 1(uniform) 1
processing times U(240, 480) 1
batch size (lots) 8 1
batch size (wafers) 200 1

job sizes sj = 25 1
job priorities (classes) 2, 4, 6, 8, 10 5
job priorities (weights) wj ∈ U(1; 2, 4, 6, 8, 10) 5
job due dates dj ∈ rj +N(12, 12) 1
job arrivals rj = 0 1

problem parameter combinations 25
model instances per parameter combination 30
total number of model instances 750

initial solution WEDD (TT) / WSPT (TCT) 1
objective(s) TWCT, TWT 2
VNS type VND 1
deadline 10 min 1

number of methods and settings 2
replications per run 1
total number of runs 1500
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E.8 Experiment E.8

Design of experiment E.8

factor level count

machines 8 1
jobs 120 1

job families 4, 8, 12, 16 4
dedication density 1(uniform) 1
processing times U(120, 480), U(240, 480), U(360, 480) 3
batch size (lots) 8 1
batch size (wafers) 200 1

job sizes sj = 25 1
job priorities wj ∈ U(1; 5) 1
job due dates dj ∈ rj +N(12, 12) 1
job arrivals rj = 0 1

problem parameter combinations 12
model instances per parameter combination 30
total number of model instances 360

initial solution random 1
objective(s) Cmax, Lmax, TCT, TU, TT, TWCT, TWU, TWT 8
VNS type VND 1
deadline 10 min 1

number of methods and settings 8
replications per run 1
total number of runs 2880
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E.9 Experiment E.9

Design of experiment E.9

factor level count

machines 8 1
jobs 120 1

job families 4, 8, 12, 16 4
dedication density 1(uniform) 1
processing times U(120, 480), U(240, 480), U(360, 480) 3
batch size (lots) 8 1
batch size (wafers) 200 1

job sizes sj = 25 1
job priorities wj ∈ U(1; 5) 1
job due dates dj ∈ rj +N(12, 12) 1
job arrivals rj = 0 1

problem parameter combinations 12
model instances per parameter combination 30
total number of model instances 360

initial solution random 1
objective(s) Cmax, Lmax, TCT, TU, TT, TWCT, TWU, TWT 15
VNS type VND 1
deadline 10 min 1

number of methods and settings 15
replications per run 1
total number of runs 5400
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E.10 Experiment E.10

Design of experiment E.10

factor level count

machines 8 1
jobs 480 1
utilization 0.7, 0.8, 0.9 3

job families 8 1
dedication density 1(uniform) 1
processing times U(240, 480) 1
batch size (lots) 8 1
batch size (wafers) 200 1

job sizes sj = 25 1
job priorities - 1
job due dates - 1
job arrivals U(0, Cmax) 1
job arrival errors - 1

problem parameter combinations 3
model instances per parameter combination 30
total number of model instances 90

initial solution FIFO 1
objective(s) TCT 1
VNS type VND 1
deadline 30 sec 1
time window interval 10, 20, 30, . . . , 90 min 9
look-ahead horizon 90 1

number of methods and settings 9
replications per run 1
total number of runs 810
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E.11 Experiment E.11

Design of experiment E.11

factor level count

machines 8 1
jobs 480 1
utilization 0.7, 0.8, 0.9 3

job families 8 1
dedication density 1(uniform) 1
processing times U(240, 480) 1
batch size (lots) 8 1
batch size (wafers) 200 1

job sizes sj = 25 1
job priorities - 1
job due dates - 1
job arrivals U(0, Cmax) 1
job arrival errors - 1

problem parameter combinations 3
model instances per parameter combination 30
total number of model instances 90

initial solution FIFO 1
objective(s) TCT 1
VNS type VND 1
deadline 30 sec 1
time window interval 10, 11, 12, . . . , 90 min 81
look-ahead horizon 90min 1

number of methods and settings 81
replications per run 1
total number of runs 7290
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E.12 Experiment E.12

Design of experiment E.12

factor level count

machines 8 1
jobs 480 1
utilization 0.7, 0.8, 0.9 3

job families 8 1
dedication density 1(uniform) 1
processing times U(240, 480) 1
batch size (lots) 8 1
batch size (wafers) 200 1

job sizes sj = 25 1
job priorities - 1
job due dates - 1
job arrivals U(0, Cmax) 1
job arrival errors - 1

problem parameter combinations 3
model instances per parameter combination 30
total number of model instances 90

initial solution FIFO 1
objective(s) TCT 1
VNS type VND 1
deadline 30 sec 1
time window interval 10 1
look-ahead horizon 90, 180, 270, . . . ,720 8

number of methods and settings 8
replications per run 1
total number of runs 720
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E.13 Experiment E.13

Design of experiment E.13

factor level count

machines 8 1
jobs 480 1
utilization 0.7, 0.8, 0.9 3

job families 8 1
dedication density 1(uniform) 1
processing times U(240, 480) 1
batch size (lots) 8 1
batch size (wafers) 200 1

job sizes sj = 25 1
job priorities - 1
job due dates - 1
job arrivals U(0, Cmax) 1
job arrival errors - 1

problem parameter combinations 3
model instances per parameter combination 30
total number of model instances 90

initial solution FIFO 1
objective(s) TCT 1
VNS type VND 1
deadline 30 sec 1
time window interval 10 1
look-ahead horizon 10, 20, 30, . . . , 90 9

number of methods and settings 9
replications per run 1
total number of runs 810
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E.14 Experiment E.14

Design of experiment E.14

factor level count

machines 8 1
jobs 480 1
utilization 0.7, 0.8, 0.9 3

job families 8 1
dedication density 1(uniform) 1
processing times U(240, 480) 1
batch size (lots) 8 1
batch size (wafers) 200 1

job sizes sj = 25 1
job priorities - 1
job due dates - 1
job arrivals U(0, Cmax) 1
job arrival errors - 1

problem parameter combinations 3
model instances per parameter combination 30
total number of model instances 90

initial solution FIFO 1
objective(s) TCT 1
VNS type VND 1
deadline 30 sec 1
time window interval 10 1
look-ahead horizon 1, 2, 3, . . . , 90 81

number of methods and settings 81
replications per run 1
total number of runs 7290
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E.15 Experiment E.15

Design of experiment E.15

factor level count

machines 8 1
jobs 480 1
utilization 0.7, 0.8, 0.9 3

job families 8 1
dedication density 1(uniform) 1
processing times U(240, 480) 1
batch size (lots) 8 1
batch size (wafers) 200 1

job sizes sj = 25 1
job priorities - 1
job due dates - 1
job arrivals U(0, Cmax) 1
job arrival errors N(mean, stdv) 36

problem parameter combinations 108
model instances per parameter combination 30
total number of model instances 3240

initial solution FIFO 1
objective(s) TCT 1
VNS type VND 1
deadline 30 sec 1
time window interval 10 1
look-ahead horizon 15, 30, 45, 60, 75, 90 6

number of methods and settings 6
replications per run 1
total number of runs 19440
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Experiment E15: cycle time improvements depending on the errors in job arrival prediction (view1)
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Experiment E15: cycle time improvements depending on the errors in job arrival prediction (view2)
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E.16 Experiment E.16

Design of experiment E.16

factor level count

total number of model instances 90

initial solution BATC 1
BATC parameter 0.1, 0.2, 0.3, . . . , 1, 1.5, 2, 2.5, 3 15
reference solution initial solution 1
objective(s) TWT 1
VNS type VND, RVNS, BVNS, GVNS, VNDS 5
deadline [min] 3 1

neighborhoods default neighborhood sequence 1

number of methods and settings 75
replications per run 5
total number of runs 33750
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Experiment E16: moves required for total weighted tardiness improvements depending on the initial solution
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E.17 Experiment E.17

Design of experiment E.17

factor level count

total number of model instances 90

initial solution BATC 1
BATC parameter best of (0.3, 0.4, 0.5, 0.6, 0.7) 1
reference solution initial solution 1
objective(s) TWT 1
VNS type BVNS, GVNS, VNDS 3
deadline [min] 3 1

first level neighborhoods six default neighborhoods 6
second level neighborhoods six default neighborhoods 6

number of methods and settings 108
replications per run 5
total number of runs 48600
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Experiment E17: moves required for total weighted tardiness improvements depending on the neighbourhood structure
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E.18 Experiment E.18

Design of experiment E.18

factor level count

total number of model instances 90

initial solution BATC 1
BATC parameter best of (0.3, 0.4, 0.5, 0.6, 0.7) 1
reference solution initial solution 1
objective(s) TWT 1
VNS type BVNS, GVNS, VNDS 3
deadline [min] 3 1

first level neighborhoods Batch-Split+Merge, Batch-Swap+Move, JobSwap+Move 3
second level neighborhoods Batch-Split+Merge, Batch-Swap+Move, JobSwap+Move 3

number of methods and settings 27
replications per run 5
total number of runs 12150
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Experiment E18: moves required for total weighted tardiness improvements depending on the neighbourhood structure
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E.19 Experiment E.19

Design of experiment E.19

factor level count

total number of model instances 90

initial solution BATC 1
BATC parameter best of (0.3, 0.4, 0.5, 0.6, 0.7) 1
reference solution initial solution 1
objective(s) TWT 1
VNS type BVNS, GVNS, VNDS 3
deadline [min] 3 1

first level neighborhoods default order, reverse order 2
second level neighborhoods default order, reverse order 2

number of methods and settings 12
replications per run 5
total number of runs 5400
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Experiment E19: total weighted tardiness improvements depending on the neighbourhood structure (Benchmark)
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Experiment E19: moves required for total weighted tardiness improvements depending on the neighbourhood structure
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E.20 Experiment E.20

Design of experiment E.20

factor level count

total number of model instances 90

initial solution BATC 1
BATC parameter best of (0.3, 0.4, 0.5, 0.6, 0.7) 1
reference solution initial solution 1
objective(s) TWT 1
VNS type VND 1
deadline [min] 3 1

neighborhoods all possible sequences 720

number of methods and settings 720
replications per run 1
total number of runs 64800
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E.21 Experiment E.21

Design of experiment E.21

factor level count

total number of model instances 90

initial solution BATC 1
BATC parameter best of (0.3, 0.4, 0.5, 0.6, 0.7) 1
reference solution initial solution 1
objective(s) TWT 1
VNS type VND 1
deadline [min] 3

first level neighborhoods default neighborhood sequence 6
first level LS none, first neighbor, best neighbor 3

number of methods and settings 18
replications per run 1
total number of runs 1620
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Experiment E21: moves required for total weighted tardiness improvements depending on the local search scheme
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E.22 Experiment E.22

Design of experiment E.22

factor level count

total number of model instances 90

initial solution BATC 1
BATC parameter best of (0.3, 0.4, 0.5, 0.6, 0.7) 1
reference solution initial solution 1
objective(s) TWT 1
VNS type BVNS, GVNS, VNDS 3
deadline [min] 3 1

first level neighborhoods default neighborhood sequence 1
first level LS none, first neighbor, best neighbor 3

second level neighborhoods default neighborhood sequence 1
second level LS none, first neighbor, best neighbor 3

number of methods and settings 10
replications per run 5
total number of runs 4500
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Experiment E22: total weighted tardiness improvements depending on the local search scheme (Benchmark)
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Experiment E22: moves required for total weighted tardiness improvements depending on the local search scheme
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E.23 Experiment E.23

Design of experiment E.23

factor level count

total number of model instances 90

initial solution BATC 1
BATC parameter best of (0.3, 0.4, 0.5, 0.6, 0.7) 1
reference solution initial solution 1
objective(s) TWT 1
VNS type VND 1
deadline [min] 3

first level neighborhoods default order, reverse order 2
first level LS none, first neighbor, best neighbor 3

number of methods and settings 6
replications per run 5
total number of runs 2700
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Experiment E23: total weighted tardiness improvements depending on the local search scheme (BATC)
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E.24 Experiment E.24

Design of Experiment E.24

factor level count

total number of model instances 90

initial solution BATC 1
BATC parameter best of (0.3, 0.4, 0.5, 0.6, 0.7) 1
reference solution initial solution 1
objective(s) TWT 1
VNS type BVNS, GVNS, VNDS 3
deadline [min] 3

neighborhoods default neighborhood sequence 1
shaking steps 0, 1, 2, 3, 4, 5 6

number of methods and settings 18
replications per run 5
total number of runs 8100
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Experiment E24: total weighted tardiness improvements depending on the shaking range (Benchmark)
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E.25 Experiment E.25

Design of experiment E.25

factor level count

total number of model instances 90

initial solution BATC 1
BATC parameter best of (0.3, 0.4, 0.5, 0.6, 0.7) 1
reference solution initial solution 1
objective(s) TWT 1
VNS type BVNS, GVNS, VNDS 3
deadline [min] 2,3,4, . . . , 20 19

neighborhoods default neighborhood sequence 1
shaking steps 1 1

number of methods and settings 57
replications per run 5
total number of runs 25650
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E.26 Experiment E.26

Design of experiment E.26

factor level count

total number of model instances 90

initial solution BATC 1
BATC parameter best of (0.3, 0.4, 0.5, 0.6, 0.7) 1
reference solution initial solution 1
objective(s) TWT 1
VNS type BVNS, GVNS, VNDS 3
deadline [min] 1,2,3,4,5 5

neighborhoods default neighborhood sequence 1
shaking steps 1 1

number of methods and settings 15
replications per run 50
total number of runs 67500
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E.27 Experiment E.27

Design of experiment E.27

factor level count

total number of model instances 90

initial solution random (RND), BATC 2
BATC parameter best of (0.3, 0.4, 0.5, 0.6, 0.7) 1
reference solution initial solution 1
objective(s) TWT 1
VNS type GVNS 1
deadline [min] 10 1

neighborhoods default neighborhood sequence 1
shaking steps 1 1

number of methods and settings 2
replications per run 100
total number of runs 18000
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Experiment E27: visualization of search traces (view1)
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Experiment E27: visualization of search traces (view2)
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