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Abstract

Due to the increasing threat of space debris to active satellites, space object catalogs must be build up
and maintained. Accurate and up-to-date catalog data allow the prediction of close conjunctions and
consecutively the planning of avoidance maneuvers.

Obijects in lower altitudes are typically observed with radars. Objects in higher orbits, such as the
geostationary one, are observed with optical telescopes due to the limiting range capabilities of radars.
The geostationary orbit is extensively used in various applications, e.g. communication, navigation, and
weather monitoring. Hence, it needs special protection and should be regularly scanned in order to
assure accuracy and currentness of data. The German Space Operations Center builds up a ground-based
telescope network for that purpose and to protect its own assets.

Due to the limited number of telescopes which regularly scan the complete region around the geosta-
tionary orbit in a limited observation time, each object can only be observed for a short duration. The
possible observation time is limited by the length of the night and visibility constraints such as clouds
covering the sky.

The short observation arcs, so-called tracklets, must be either associated to already cataloged objects
or used for an initial orbit determination to create new catalog entries. However, the tracklets contain
incomplete state information and cannot be used alone to calculate an orbital solution. Hence, they
are correlated against other tracklets, i.e. tested if they belong to a common object. After a successful
association, the tracklet pairs provide enough information to determine the full orbital state.

This thesis develops a methodology to perform this association and initial orbit determination using
the available information of two tracklets, namely the line-of-sight and its time derivative. The method
is formulated as an initial-value and boundary-value problem corresponding to the two orbital repre-
sentations. The association is performed by minimizing a loss function, which describes the statistical
distance between the measured arc and the combined orbital solution. If the minimum distance is below
a threshold, the two tracklets are associated.

The sensitivity to errors is compared for both formulations, where the symmetric boundary-value
formulation is shown to use the available information better and is generally more robust than the
initial-value formulation. It offers an easier calibration, i.e. a threshold can be defined, using a set of
observations, which assures that a certain percentage of the measurement distribution is successfully
associated. Additionally, the expected accuracy of the found solutions is assessed and shows promising
results as well. Lastly, an observability analysis is performed to find out which re-observation time is
advantageous for the successful association.

Keywords: space situational awareness, space debris, data association, initial orbit determination






Zusammenfassung

Die Gefahr durch die steigende Anzahl an Triimmerteilen in den Erdumlaufbahnen begriindet den Aufbau
und Erhalt eines Kataloges. Die genaue Erfassung von Objekten in der Erdumgebung ermdéglicht dann
die Vorhersage von gefdhrlichen Anndherungen zwischen Satelliten und Triimmern und die Planung der
nétigen Ausweichmandgver.

Objekte in niedrigen Bahnen kénnen von bodengebundenen Radarstationen detektiert werden. We-
gen der begrenzten Reichweite von Radarstationen werden weiter entfernte Objekte, wie z.B. auf der
geostationdren Umlaufbahn, stattdessen mit optischen Teleskopen beobachtet. Aufgrund seiner besonde-
ren Lage stellt der geostationére Orbit eine besonders schiitzenswerte Ressource da, die unverzichtbar
fiir den Betrieb von Kommunikations-, Wetter und Navigationssatelliten ist. Das Deutsche Raumfahrt-
Kontrollzentrum baut deswegen ein Teleskopnetzwerk auf, um die Umgebung des geostationédren Orbits
préazise und zeitaktuell zu erfassen und die eigenen Satelliten zu schiitzen.

Da der gesamte Bereich um die geostationidre Bahn von wenigen Teleskopen abgesucht wird und
gleichzeitig die Beobachtungszeit begrenzt ist, konnen nur kurze Messbégen von jedem Objekt gesammelt
werden. Die ndchtliche Beobachtungszeit variiert je nach Jahreszeit und wird zusétzlich durch schlechte
Beobachtungsverhiltnisse (z.B. Wolken) reduziert.

Die Messungen werden dann entweder einzelnen Objekten im Katalog zugeordnet oder sie erfordern
die Erstellung von neuen Katalogobjekten nach vorangehender Erstbahnbestimmung. Da die kurzen B6-
gen meist nicht fiir die Bestimmung aller Bahnelemente ausreichen, miissen mehrere Bégen miteinander
kombiniert werden. Dazu miissen sie jedoch vorher mit anderen Messbdgen korreliert werden, d.h. es
wird getestet, ob zwei Messungen zu einem Objekt gehéren. Wenn dieser Test erfolgreich ist, kann eine
gemeinsame Bahn berechnet werden.

Die Zuordnung der einzelnen Messungen und die dazugehorige Erstbahnbestimmung wird in die-
ser Arbeit als Optimimierungsproblem formuliert und numerisch geldst. Dabei werden zwei mégliche
Ansitze jeweils mit einer anderen Parametrisierung des Problems verfolgt. Einmal wird die Bahn {iber
die Randwerte und einmal {iber einen Startwert parametrisiert. Fiir die Zuordnung wird eine statistische
Distanz zwischen beobachteten Messungen und gemeinsamer Bahnlgsung minimiert. Wenn das Ergebnis
der Minimierung unter einem Schwellwert liegt, gehtren die Beobachtungen zueinander.

Anschlielend werden die beiden entwickelten Methoden mit einer Sensitivitdtsanalyse verglichen.
Dabei stellt sich heraus, dass die Randwertformulierung robuster ist und die Informationen aus den Mes-
sungen besser nutzt. Die Methode kann mit Messdatensdtzen kalibriert werden, d.h. es wird sichergestellt,
dass ein definierter Prozentsatz der Messungen erfolgreich zugeordnet werden kann. Zusétzlich wird die
Genauigkeit der Bahnlosungen untersucht. Die Resultate sind vielversprechend und ermdoglichen eine
erfolgreiche Katalogisierung. Zuletzt wird noch eine Beobachtbarkeitsanalyse durchgefiihrt, welche opti-
male Zeitpunkte zur Wiederbeobachtung berechnet und damit eine erfolgreiche Zuordnung erleichtert.

Schlagworter: Weltraumiiberwachung, Weltraumschrott, Korrelation, Erstbahnbestimmung
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1. Introduction

Satellites are a valuable and important infrastructure with impacts on various applications and services.
Uncontrolled defunct satellites, upper stages, and other debris populating the Earth-bound orbits pose a
threat to active satellites. The debris is caused by explosions and collisions but also due to mission related
practice. That is, leaving rocket bodies of upper stages behind and dropping covers and other material
after placing the satellite in its destined orbit.

Comprehensive and frequently updated databases of all possibly hazardous objects orbiting the
Earth are required to guarantee safe operation in the future. This thesis deals with one of the major
tasks during the build-up and maintenance of such a catalog, namely the correlation of observations.
Observation correlation describes the process of finding a positive or negative relationship between
different observations or between new measurements and cataloged objects (Everitt and Skrondal, 2010,
pp- 23, 107). If the relationship is positive, the observations and catalog entries originate from the same
observed object. The process is also denoted as data association (Bar-Shalom et al., 2004) or linkage
(Milani et al., 2011). The successful association of observations increases the accuracy of the cataloged
states and thus allows their operational use.

The orbits around Earth are commonly classified into different types, where the most common ones
are the low, medium height, and the geostationary orbit. Each type is used for different applications
due to the special characteristics of each domain. Likewise, each domain requires different sensors and
surveillance methods. While lower orbits can readily be observed with radars, this is not the case for the
much higher geostationary orbit due to the limited range capability of most radars. Hence, higher orbits
are observed using optical telescopes. Optical observations come with certain challenging properties, such
as missing information on the distance and a high sensitivity to bad viewing conditions. These particular
challenges are the motivation of this work, i.e. the special case of correlating optical observations with
each other and obtain an orbital solution.

This introduction will extend this motivation by first listing benefits and uses of the geostationary orbit.
After highlighting its importance and the threat by debris, current space surveillance efforts are outlined.
The already mentioned research task is explained in more detail with a comprehensive literature review.
The review compares the different published approaches along with their advantages and shortcomings.
This helps to identify and also justify the contribution of this work. Lastly, the general structure of the
thesis is described with a brief summary of all chapters.

1.1 Geostationary satellites

The geostationary orbit is an equatorial, circular, and geosynchronous orbit at approximately 35,786
km altitude. The special characteristics of this orbital height has been already identified by H. Poto¢nik
(Noordung, 1929). An object in this orbit revolves around Earth in one sidereal day, i.e. the same period as
the Earth is rotating around itself in space-fixed coordinates (around 23 hours, 56 minutes, 4.09 seconds).
This configuration causes an unique geometry: the satellites remain at a fixed location on the sky for an
observer on Earth.
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Three important applications of this orbit type are:

1. Telecommunication: The constant position w.r.t. to an on-ground observer allows a simple fixed
antenna pointing. The benefits of this geometry were already described by Clarke, (1945). It enables
uninterrupted data transfer with no need of antenna steering. Consequently, transmitting and receiving
hardware is cheaper. Multiple satellites distributed around the Earth provide a global data coverage.
Geostationary communication satellites are extensively used by commercial but also military operators.
Companies like Inmarsat and Thuraya provide voice and data communication to special satellite
phones or transceivers. They offer access to the internet and other services in remote places (e.g. in
maritime environment) or in regions lacking of infrastructure (e.g. rural areas). Commercial companies
such as SES ASTRA, Eutelsat, Intelsat, and others broadcast television and radio stations.

2. Meteorology: The geostationary orbit also offers a fixed view from space on the Earth surface (illustrated
in Figure 1.1). Almost a complete hemisphere is visible from an orbit with this altitude. This allows
frequent observations of the atmosphere without the need to wait for the next satellite pass over the
region of interest. The atmospheric data collected by meteorological satellites, such as Meteosat (see
Figure 1.2) or GOES, are the source of information for weather forecasting methods. They predict the
daily weather but also catastrophic disasters (e.g. hurricanes). Based on the predictions the local
population can be warned and evacuated from critical areas.

3. Navigation: Global navigation satellite systems (typically located on medium Earth orbits around 20,000
km altitude) supply geospatial positioning for public and military services. They are used for navigation
in, amongst other domains, maritime, aviation, and automotive environment. So called augmentation
systems (e.g. EGNOS, WAAS, MSAS) provide external information to assure accuracy, reliability, and
availability of such systems (Kee et al., 1991). The satellites are positioned in the geostationary orbit
in order to guarantee constant access to this data. Additionally, navigation satellites orbiting on
inclined geosynchronous orbits increase the visibility locally (e.g. the Japanese QZSS system) while
also providing augmentation services. Geosynchronous orbits share the same revolution period with
geostationary orbits but do not stay stationary at the sky. They stay in a fixed longitude range but
also reach higher latitudes, which improves the observation conditions. Circular geosynchronous
orbits intersect with the geostationary ring and are consequently also monitored when protecting the
geostationary domain.

Figure 1.1: Illustration of three geostationary satellites and an
upper rocket stage on an eccentric geostationary transfer orbit.
Due to the same rotation period, the broadcasting beam of the
satellite (illustrated in light gray) constantly covers the same re-
gions/hemisphere.
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Figure 1.2: The left side shows an artistic view of a second generation Meteosat satellite, developed by ESA and
EUMETSAT (copyright by ESA and Ducros). The right side illustrates the close proximity operations in geostationary
slots.

To summarize the list: geostationary satellites are an essential infrastructure required by various
applications and services. That is why the orbit is considered a limited natural resource, comparable
to frequency bands, and is similarly organized and restricted by the International Telecommunications
Union (ITU). The ITU organizes the World Administrative Radio Conference and since 1977 allocates and
assigns longitude slots (cf. Soop, (1994)). The size of the assigned slots is typically 0.1° in longitude and
latitude, which corresponds to around 100 km in along-track and cross-track direction. Satellite operators
fly multiple satellites co-located within one slot for redundancy and better coverage (Dorsey et al., 1986).
The situation is illustrated in Figure 1.2. The extensive exploitation of the geostationary orbit and the
resulting dense population causes challenging difficulties for the correlation tasks performed in this work.
The problem will be analyzed in Chapter 9.

The object density and growing interest in the orbit is illustrated in Figure 1.3. The left side shows the
annual increase in launches, while the right side shows the geostationary domain as seen from Earth. The
latter illustrates the density along European longitudes. The density of objects is considerably smaller
than for the lower orbits (even considering the limited size of the region) and hence also the collision
risk is smaller. Refer to the book by Klinkrad, (2006) and the text by Kessler, (1994) for density estimates,
risk analyses, and growth models. The collision probability specifically for the geostationary domain
is provided by Flury, (1991). Even if two objects collide the resulting cloud of fragments will not be as
large comparably to events on lower orbits considering the same mass due to smaller relative velocities.
In contrast to lower orbits, however, objects and defunct satellites will not automatically decay. The
decelerating effect of the atmosphere acts as a natural sink in lower altitudes and causes the satellite
to re-enter and eventually burn up in the atmosphere or hit the Earth’s surface. Additionally, objects in
lower orbits perform end-of-life maneuvers to accelerate the decay. Such maneuvers are economically
unfeasible for higher orbits and thus retired satellites are placed in disposal orbits instead. In the disposal
strategy described by Flury, (1991), satellites are typically placed a few hundred km above the geostationary
ring. Re-entry maneuvers are unfeasible as too much propellent w.r.t. to object mass is required to
reach the Earth atmosphere. Various ideas are proposed to remove hazardous objects from orbits. In
the geostationary orbit defunct satellites are pushed away to the disposal orbits or repaired if possible
(Hirzinger et al., 2004). The robotics involved in the servicing must be mature enough to guarantee a
success. Otherwise even more debris will be created by the mission.
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Figure 1.3: The number of launches per year of cataloged geostationary satellites (left). Data is obtained from the
publicly available two-line element catalog on space-track.org. The right side shows active geostationary objects as
seen from Central Europe (South view)

Operators regularly have to maneuver their satellites to safer orbits when facing close-proximity
approaches with debris. Maneuver decisions are taken considering the collision probability. Maneuvers
waste fuel and thus shorten the life-time of satellites. The German Space Operations Center (GSOC)
got alerted by 21 encountering objects in the years 2011-2013 for their geostationary satellites and had
to perform one avoidance maneuver in 2012 to circumvent a collision with a non-operational satellite
(see summary by Aida et al., (2014) for more details). Large uncertainties attached to the cataloged debris
states unnecessarily increase the false alarm rate. Precise orbits of objects must be therefore known in
order to detect dangerous close approaches and evaluate the realistic collision probability.

Space surveillance

The US Joint Space Operations Center (JSpOC) maintains a database of space objects and alerts operators
whenever a close conjunction with other spacecrafts or debris is predicted. The US space surveillance
system, consisting of radar facilities as well as optical telescopes, delivers the necessary data to build
up the catalog. JSpOC provides so-called two-line elements to the public through the space-track.org
platform. However, the provided elements do not describe the actual orbit with sufficient accuracy as an
approximate low-fidelity force model is used to represent the motion of the satellites. Furthermore, the
orbital data comes with no information about the uncertainty. This hinders critical probability-based
decisions such as maneuvers.

Russia operates a similar network within their space control system. The international surveillance
sensors are summarized and analyzed by Weeden, (2015, pp. 990-997). The International Scientific Optical
Network (ISON), headed by the Keldysh Institute for Applied Mathematics in Moscow, tracks near-Earth
objects using telescopes distributed all over the world (Molotov et al., 2008). The institute recently started
to publish orbital data of objects in high altitudes together with the Interstate Joint-Stock corporation
“Vympel”.

GSOC collaborates with AIUB to build up a telescope network in order to protect the own assets in the
geostationary region. This will allow to plan maneuvers independently of external information. The own
catalog will contain precise orbits but also the uncertainty information necessary to perform decisions.
The first telescope will be placed in Sutherland, South Africa, and covers the European longitude range
together with the ZImSMART telescope located in Zimmerwald. The telescope setup is explained in detail
in Chapter 3. For more details and first experience refer to (Fiedler et al., 2015). Both telescopes are shown
in Figure 1.4.

The telescopes are placed on the northern and southern hemisphere in order to improve the visibility
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Figure 1.4: Left photograph shows the ZimSMART telescope located in Zimmerwald, Switzerland (copyright by AIUB).
Right one shows preliminary setup of the GSOC telescope which will be placed in Sutherland.

conditions. As the nights are longer in Winter the possible overall observation time is increased. Visibility is
not only constrained by the length of the night but also by the weather and other factors. The dependency
on good visibility conditions is a major difference between optical and radar observations. The latter
can be performed even with clouds in the way and during night and day. Objects in lower orbits can be
consequently observed multiple times a day (depending on altitude) even by one sensor. Due to limited
resources, i.e. a limited number of observation sites, and the sensitivity to good visibility conditions,
observation time is constrained. When maintaining a complete database, every object position must be
updated frequently. Hence, the complete orbital domain must be observed on a regular basis. Considering
the limited time, only short sequences of measurements, called tracklets, can be collected for each object.
Optical tracklets are formed by linking object detections from subsequent frames with each other. Due to
the short time gap between the frames, the linking can be achieved with a reasonable confidence level.
The information in individual tracklets is insufficient for initial orbit determination. This necessitates a
need to associate multiple tracklets and constitutes a key motivation for the research in this thesis.

1.2 Research objective

When surveying the geostationary orbit, each object is observed for short durations (a few seconds up to a
few minutes). This provides good knowledge on the line-of-sight and its approximate time derivative, or
angles and angular-rates respectively. The latter describes the velocity of the satellite perpendicular to the
line-of-sight axis. The angular acceleration of the object, i.e. a change in the rates, can not be accurately
observed if only a small fraction of the orbit is covered.

The objects observed in the collected images are unknown, unless they are purposely tracked with prior
information on the orbit. Consequently, the observations must be correlated with already existing catalog
entries or they must be used to create new catalog objects. The latter task is commonly denoted as initial
orbit determination. Initial orbit determination using optical observations is in principle a well known
problem and has already been performed centuries ago for celestial objects, e.g. planets and asteroids.
The traditional methods developed by Gauss and Laplace can be applied to objects on Earth-bound
orbits. But they require a sufficiently long observation arc with well distributed measurements. If that
is not fulfilled, finding an orbital solution becomes an ill-conditioned problem, i.e. small errors in the
measurements lead to completely different orbits. This makes the classical methods practically unusable
for short-arc tracklets.

As one tracklet does not provide enough information, the principle task of this thesis is to combine the
information of two tracklets to obtain an orbital solution. This task comprises two steps. The observation
arcs are correlated with each other, i.e. tested if they originate from a common object. In case they do, the
combined solution must be found.
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1.3 Literature review

Many research ideas and approaches for tracklet association originate from the asteroid observation
community. They are faced with the same issues, namely short observation arcs. Due to the large revolution
periods of asteroids, the collected arcs are short even when observing an object repeatedly for a couple of
days. Milani et al., (2004) developed the principle of admissible regions, where they restrict the space of
orbital solutions to the physically meaningful ones. An asteroid orbit, for instance, should have a stable
elliptic orbit around the Sun. Virtanen et al., (2001), also in the framework of asteroid orbit determination,
tackled the issue of short arcs by generating hypotheses directly from two observations. This boundary-
value approach, called statistical ranging, uses the angular information at both epochs for a combined
orbit solution.

A considerable amount of literature has been published since then on the issue of optical measurement
correlation for objects on Earth-bound orbits. Tommei et al., (2007) applied the admissible region theory to
orbits of space debris. Maruskin et al., (2009) and Fujimoto et al., (2014b) developed a methodology based
on the same principle. Schumacher et al., (2013), similarly to Virtanen et al., (2001), used the boundary-
value representation to initiate candidate solutions. The individual approaches originate from using
different sensors, observation strategies, and assumptions and consequently each come with advantages
and disadvantages. The different methods are categorized and discussed in the following. The discussion
follows the presentation in (Siminski et al., 2014a).

The key issue, which comes up when using short-arc tracklets in the association, is the lack of infor-
mation. The published methods hypothesize free parameters along the undetermined dimensions of the
problem. The methods differ, however, in the way the orbit is represented and which testing quantity is
used to decide acceptance. The latter quantity is denoted here as the discriminator. As indicated above,
the two different representations are the boundary-value and initial-value formulation respectively.

In the initial-value formulation the full information of the first tracklet is used, namely right ascension
« and declination ¢ and their respective rates ¢ and 6. The angular observations are formally introduced in
Chapter 3. The information of the second tracklet is then used as a discriminator. In contrast, the boundary-
value formulation takes the line-of-sight information of both epochs to generate the hypothetical states.
Both formulations are summarized in Table 1.1, where the discriminators as well as the hypothesized
variables are shown.

Table 1.1: Overview of the current tracklet association approaches adapted from (Siminski et al., 2014a). More details,
further approaches, and references are given in the text.

Orbit representation  Parameters Approaches

Initial-value State (a, dy,061, $ 1) Grid testing Tommei et al., (2007)
Hypotheses (p1, P1) Hyperplane intersection ~ Maruskin et al., (2009)
Discriminator  (ap, 2,62, 62)  Optimization Siminski et al., (2013a,b)

Boundary-value State (a1, 01, @2, 62)  Grid testing Schumacher et al., (2013)
Hypotheses (p1, p2) Analytical Taff and Hall, (1977)
Discriminator (aq, 81, do, 52) Optimization Siminski et al., (2014a)

1.3.1 Initial-value formulation

As shown in the Table 1.1, three different branches have developed from the initial-value formulation.
The regular grid testing and hyperplane intersection are summarized in the following paragraphs. The
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approaches and their relation are additionally illustrated in Figure 1.5. The formulating of the association
as an optimization problem is one of the research contributions in this work and consequently derived in
detail in Chapter 7.

Grid testing

Milani et al., (2004) and Tommei et al., (2007) suggest to restrict the range p and range-rate p space in order
to allow only stable bound orbits around the Earth. This is achieved by confining the energy of the orbital
solutions to be negative. The hypothesis space (p;, p1) is sampled with so-called virtual debris particles
using a triangulation scheme. The information of the second epoch, i.e. (a2, d2,0d>, 85), is used together
with a distance measure (attribution penalty) to decide whether the two tracklets are correlated or not.
The distance measure compares the modeled measurement of the propagated particle with the actually
measured one.

Similarly, DeMars and Jah, (2013) and DeMars et al., (2012) sample the admissible region of the first
tracklet with multiple hypotheses on a regular grid to initialize a filter. The region is filled with a set of
multivariate normal probability density functions, each consisting of a state, covariance and a weight. The
combined density function, a so-called Gaussian mixture, is updated with each incoming measurement.
Components which do not represent the new measurements loose weight and are eventually discarded.
The surviving hypotheses are improved during the tracking process. Filters are typically used in tracking
scenarios. The filters converge after observation arcs with a duration of about 10 minutes in a simulated
example in (DeMars et al., 2012). Gadaleta et al., (2012) applied the methodology to the general association
problem. They tested different distance measures for the association decision. The filtering approach
is furthermore generalized to the multi-object association problem in (DeMars et al., 2015). Instead of
representing each object state by a probability density, the whole domain is represented with a hypothesis
density function. Consequently, multiple objects are treated simultaneously. This technique could be of
special interest when collecting measurements of closely-spaced satellites, such as in clusters of co-located
geostationary satellites.

Hyperplane intersection

Maruskin et al., (2009) define bounds on apoapsis and periapsis radii to prevent hypotheses to de-orbit
within the next revolutions. Their approach, later refined by Fujimoto et al., (2014b), determines the
common solution of two tracklets by computing the overlap of two solutions spaces. Hence, the admissible
region is computed for each observation arc and filled with hypotheses. Instead of using the range and
range-rate, they sample the Delauney (Maruskin et al., 2009) or Poincaré (Fujimoto et al., 2014b) orbital
element space. Usage of orbital elements is advantageous as it provides a natural way of sampling the
solution space. The hypotheses are then propagated to a common epoch and compared to each other,
which effectively is an intersection of two hyperplanes. Fujimoto et al., (2014b) suggests to affirm or reject
the intersecting hypotheses using a least squares fit.

1.3.2 Boundary-value formulation

Two basic approaches have been published which use the information of both observation arcs to define
orbital states, namely grid testing and an analytical approach. The approaches are summarized in Fig-
ure 1.6. This work contributes with a formulation as an optimization problem. Chapter 7 provides the
derivations and details.
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Figure 1.5: Flow diagram of initial-value approaches: the solid line denotes the approach by DeMars et al., (2012) and
Tommei et al., (2007), while the dashed line denotes the path taken by Fujimoto et al., (2014b) and Maruskin et al.,
(2009). The approach developed in this work follows the solid line as well.

Grid testing

Schumacher et al., (2013) propose to use only the line-of-sight information if the angular-rates are not
available within a sufficient accuracy. The poor accuracy of the angular-rates is caused by the used sensor
or due to a short tracklet duration. Very short tracklets (duration in the range of tens of seconds) allow to
observe objects multiple times in a night even from the same sensor. This leads to a better coverage of
the orbit but also increases the necessary association efforts. If the angular-rate is poorly determined,
e.g. for a tracklet duration of a few seconds, at least three tracklets are required to obtain a final orbit.
The trade-off between multiple short against less frequent but longer tracklets is discussed in Chapter 3.
Nevertheless, the rates can be used to define admissible regions accounting for the large uncertainty
(see (Roscoe et al., 2013)). They sample a feasible range-range space (p, p2) for two measurement arcs.
All feasible range combinations create object candidates. These candidates are confirmed and refined
with further measurements. Ansalone and Curti, (2013) present a method for an observer in a low-Earth
orbit. They sample the feasible range space on a coarse grid and test each hypothesis with the individually
measured angles of the two tracklets. The fitness of each hypothesis is then improved iteratively using a
genetic algorithm. Schneider, (2012) performs so-called statistical ranging, similar to the approach for
asteroids by Virtanen et al., (2001), to generate candidate solutions. He characterizes the error distributions
via Markov Chain Monte Carlo and uses them to group tracks originating from the same objects.

Analytical association

Based on the work by Taff and Hall, (1977), Gronchi et al., (2010, 2011) developed an analytical approach
to link the measurements. They use the conservation of energy and angular momentum to set up a
high-order polynomial (e.g., order 48 degrees in the formulation of Taff and Hall, (1977), and 20 in the one
of Gronchi et al., (2011)). The feasible roots of the polynomial then define the orbital solutions. Angles
and angular-rates are used simultaneously to define the orbit. Hence, the formulations are also sensitive
to errors in the angular-rates and can fail if they are given with insufficient accuracy. It should be noted
that the term analytical is used here to categorize the approach, even though the root finding process for
high-order polynomials requires numerical tools.
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Figure 1.6: Flow diagram of boundary-value approaches: Solid line denotes approach taken by e.g. Schumacher et al.,
(2013), while dashed line denotes path taken in this work.

1.4 Research contribution

The overall goal of this work is to create a robust and fast method to perform the association task assuming
tracklets with a duration of about a few minutes. The already published methods either assume a different
arc length of the observations (e.g. no usable line-of-sight derivative and thus more than two tracklets are
needed for an association decision) or a different observation scenario (e.g. tracking). Methods using a
grid evaluation are prone to become computationally intensive or unreliable as the grid size must be very
small to guarantee the detection of every target.

Instead of testing the complete admissible regions for feasible combinations, this research contributes
by formulating the association as an optimization problem. The methodology is applied to both ap-
proaches, i.e., the initial value formulation and the boundary value formulation, and offers great advan-
tages. In contrast to a fixed discretization grid, optimization methods adaptively reduce the step-size to a
desired precision. Secondly, a well-posed optimization problem can reduce the computational burden
of the association. Considering the large amount of collected tracklets per day in a global telescope
network, this advantage becomes crucial when working with limited computational resources. The two
formulations are shortly described here and discussed in more detail in Chapter 7.

In the initial-value formulation, the solved-for variables are range p; and range-rate p;. The opti-
mized loss function which describes the association probability is computed by comparing modeled
and measured observations. Additionally, a new coordinate system is introduced which simplifies the
optimization problem. The coordinate system was presented in (Siminski et al., 2013b) and can also be
used to efficiently sample the domain in a grid testing approach. As it uses the energy or semi-major axis
to represent different solutions, it offers similar advantages as using an orbital element space. In order
to find the minimum in a loss function, good starting values are required. Including the conservation of
angular momentum into the problem helps to identify such starters.

The boundary-value formulation uses the ranges at both epochs (p; and p,) as solved-for variables.
The angular-rates are used in the loss function to decide whether measurements originate from common
objects. Again, starters are obtained by including the angular-momentum conservation.
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1.5 Organization of the thesis

The structure of the thesis is illustrated with the diagram in Figure 1.7. The first row of the figure names
Chapters 2, 3, and 4 which provide a common terminology and the background theory required for later
chapters, i.e. optical observations typically obtained when surveying the geostationary orbit, astrodynam-
ics to predict and determine motion of satellites, and computational optimization methods. The second
row continues with theoretical background knowledge based on the previous chapters. The terminology
in statistics and data association is generally introduced and then applied to the application case of
cataloging space objects. The orbit determination chapter introduces the general methods to find and
improve a satellite orbit using the theory derived in the previous parts of the thesis and additionally
recapitulates the shortcomings of traditional approaches and thus motivates the major contribution of
the thesis in the next row, namely Chapter 7. The developed methods are then tested and assessed with
the chapters depicted in the last row. A list with the detailed content of all chapters is provided in the
following.

Computational
optimization

l l
| '

Statistics and
data association

\—l e J

Tracklet association
and initial orbit
determination

Observations Astrodynamics

— | = Orbit determination

Sensitivity analysis + - - - > Observability

Figure 1.7: Flow diagram of the thesis. The solid connections denote theory dependence, i.e. one chapter requires the
knowledge from another. The dashed connections denote motivational dependence, e.g. a chapter discusses the results
and challenges of the other.

Chapter 2  Astrodynamics: The initial-value and boundary-value formulation in the tracklet associa-
tion problem originate from the two corresponding orbital representations. This chapter
provides the theoretical astrodynamics background and nomenclature required for the later
derivations and discussions.

Chapter 3  Observations: The selection of an association methodology is coupled with the accuracy and
frequency of the observations. The chapter describes visibility conditions and observation
strategies. A sensor network simulation is performed in order to analyze the typical mea-
surement distribution, i.e. obtain realistic observation geometries and time gaps between
observation epochs. Additionally, the information content of the obtained measurements is
analyzed.



Chapter 4

Chapter 5

Chapter 6

Chapter 7

Chapter 8

Chapter 9

Chapter 10
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Computational optimization: The research contribution consists of formulating the corre-
lation as an optimization problem. This chapter introduces a common nomenclature and
explains various used computational optimization methods. Additionally, typical difficul-
ties which arise in optimization problems (and also arise in this work), are highlighted and
methods to overcome them are presented.

Statistics and data association: Association decisions are based on statistical methods and
assumptions. The chapter introduces the statistical nomenclature and theory and applies
it to the correlation of new observations to catalog objects. It points out difficulties which
arise when dealing with uncertainty transformations. The difficulties apply to the tracklet
association problem as well and thus become important again in later chapters.

Orbit determination: The basics of statistical orbit determination methods are introduced
as they form the theoretical foundation of the association method. Classical initial orbit de-
termination methods are explained along with their limitations in the presented observation
scenario. Some difficulties are also handled by introducing restricting assumptions, which
can be a valid choice in some situations and are presented for completeness.

Tracklet association and initial orbit determination: The novel association and initial or-
bit determination method is described using the initial- and boundary-value formulation.
Difficulties appearing in the loss function minimization are discussed and tackled. This
includes the proper selection of a coordinate system, starting values, and constraints.

Sensitivity analysis: The presented methods are analyzed in terms of association perfor-
mance and accuracy. For the first quantity, a set of measurements with known associations
is used to compute the rate of successful associations. Simulated observations are used to
assess the accuracy of the initial orbits depending on observation geometry.

Observability: The geometry dependency of the association performance is systematically
tested using a simplified case study. The outcome of the study identifies shortages of current
observation strategies and suggests possible improvements.

Conclusions: The final chapter gives a short summary of the results and a recommendation
of how the methods should be implemented in a operational cataloging system. The final
section is devoted to an outlook to possible future research tasks.
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2. Astrodynamics

This chapter gives an overview on the dynamics in celestial mechanics which describe the motion of
satellites and debris around the Earth. It summarizes common textbook knowledge in the field of astrody-
namics (see e.g. (Beutler, 2004; Montenbruck and Gill, 2000)) and mainly serves to consistently introduce
relevant terms and concepts for the subsequent chapters of this thesis. Readers familiar with the subject
may readily skip this part on first reading. Orbital motion models are included in the preliminary orbit esti-
mation process as well as in orbit improvement methods. The underlying physics define conditions which
restrict the solution space of orbits for newly detected objects. Classical methods assuming simplified
dynamics (such as two-body motion) help to reduce the complexity of otherwise challenging estimation
problems.

The orbital motion of satellites is described in terms of different accelerating forces. The accelerations
acting on satellites in the vicinity of the Earth are listed in the following equation

#=F(t,r,i) = Fg + Fo + Fpy + Fp + Fs ..., 2.1)

where F 4 denotes the acceleration due to the gravitational potential of the Earth, F, and F), the tidal
accelerations by Sun and Moon, Fj, is caused by the atmospheric drag, and Fg due to solar radiation
pressure. Depending on the required precision, further perturbing terms can be included (denoted by the
dots in the equation).

If only two-body dynamics are modeled, i.e. only the acceleration of a point-mass Earth is considered,
the acceleration reduces to

_He
el

(2.2)

where pg is the product of Earth’s mass and the gravitational constant. Equation (2.1) (equivalently (2.2))
forms a set of three second order, non-linear, differential equations and requires double integration for
its solution. It is commonly transformed into a set of six ordinary, first order, differential equations by
introducing a new state variable

r
.V=(.), (2.3)
r

which consists of the position r and velocity 7. The new system of equations is then given by

o i 3
V= (F(t’ r,f)) =f. 0. (2.4)

In order to solve these equations, they need to be restricted to a certain orbit, i.e. to the orbit which
represents the motion of a selected satellite or debris particle. The solution of the system is uniquely
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defined by six constraints, thus an orbit is e.g. defined by one initial-value

ri
y(n) = ( ) (2.5)

r
or by two boundary-values

Yi3(f) =r; and y3(2) =712, (2.6)

where the subscript denotes the constrained elements of the state vector. The two formulations inherit
certain advantages and difficulties when working with them and will be used throughout this thesis.
Additionally to the six independent parameters, force model parameters have to be defined. Depending on
the complexity of the model, the mass and shape of satellite, drag and solar radiation pressure coefficients
and others might be needed to compute the respective acceleration terms.

The full state required for the initial-value representation can alternatively be expressed in terms of
six orbital elements. Most orbital elements describe the state as a location on an ellipse with its focal
point in the center of the Earth. Classical Keplerian elements use the eccentricity e and semi-major axis
a to define the size and shape of the ellipse. The orientation of the orbital plane is described with the
inclination i and the ascending node Q. The orientation of the ellipse within the plane (the orientation of
the major axis) is fixed with the argument of periapsis w. Finally, the true v, the mean M, or the eccentric
anomaly E define the location on the ellipse at a specific epoch. The true anomaly describes the angle
between the current location and the periapsis. The mean anomaly describes the location of the object if
it were on a circular orbit with equal major axis. The auxiliary angles (mean and eccentric anomaly) are
calculated from the true anomaly and vice versa. This representation is useful, amongst other benefits,
when propagating unperturbed orbits, as the solution to the equation of motion reduces to linear motion
in the mean anomaly (see next section). Keplerian elements run into singularities when working with
low inclination, circular orbits. The node 2 becomes undefined as it lies on the same plane as w and v,
while the periapsis can not be determined if the radius of the orbit is constant. This difficulty arises, most
importantly in the context of this research, when dealing with geostationary objects. Alternative orbital
elements, which avoid these difficulties, can be used instead, e.g. equinoctial elements (see (Broucke and
Cefola, 1972)). Soop, (1994) suggests to use special geosynchronous elements when studying geostationary
objects. The transformation between the different orbital representations and further details can be
obtained from (Montenbruck and Gill, 2000). The following two sections provide the methods to obtain
an orbital solution from either two boundary-values or one initial-value.

2.1 Initial-value solution

Given the initial state, the state at any other epoch can be predicted by single integration. The following
equation shows the integration for the cartesian state y:

y() =y + /f(y(t), r)de 2.7)

The numerical integration is performed with e.g. multistep Adam-Bashforth methods (practical implemen-
tation given by Shampine and Gordon, (1975)). Alternatively, it is solved analytically or semi-analytically
using other orbital state representations (cf. Brouwer, (1959) and Kozai, (1959)).
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A prominent analytical solution is given when restricting the dynamics to a two-body model. Important
equations and properties of this orbital solution are recapitulated in the following from the book by Battin,
(1999) in order to develop a common terminology. Details and intermediate steps can be obtained from
the book.

Two conserved quantities are used in this work to restrict the solution space, namely the energy and
the angular momentum. Starting with the latter, taking the time derivative of it, and inserting (2.2) gives

d
E(rxf):fxi'-erfzo (2.8)

which demonstrates the conservation of angular momentum
h =r X = const. (2.9)

The pointing of h describes the orientation of the plane and it is therefore also called inclination vector.
Describing the position in spherical coordinates, gives Kepler’s second law

dv
h|| =r’P— 2.10
lhl =1 m (2.10)

which states that objects sweep out equal areas during equal intervals of time. Another conserved quantity,

the eccentricity vector, is derived by taking the following derivative

%(i‘xh):th+i~x0 (2.11)

which is again integrated and rearranged, using spherical coordinates, to

1
e=—((Xxh)- I = const. (2.12)
Ue (71|

and after squaring it with itself gives

2 112

o \lrll e

The equation exposes the conservation of energy. The bracketed term on the right side is the reciprocal of
the semi-major axis

2 2\
a=|—-— . (2.14)
Irl - pe

U

-2
Using the expressions for kinetic (@) and potential energy S

mass is derived as

), arelation to the total energy per unit

&= w + Ko _ const. = _Fe (2.15)

2 7l 2a
The geometric interpretation of a as the semi-major axis of the ellipse allows dividing the orbits into
two categories: elliptic or circular bound orbits around Earth where a > 0 and £ < 0, and unbounded
hyperbolic or parabolic orbits with a < 0 and £ > 0. Objects on latter named orbits will eventually escape
Earth’s sphere of influence and play no role when determining orbits of space debris particles. The energy
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thus serves to discriminate between feasible Earth-bound orbits and unfeasible ones. Lastly, the rotation
period is computed from the overall area covered by the orbit using (2.10) and inserting the semi-major
axis and eccentricity

a3
P =2n,|— (2.16)
Ho

which is then used to determine the rate of change /% of the mean anomaly M. Assuming two-body
dynamics a linear equation to propagate the mean anomaly is derived:

M(tz) = | %(tz —h)+ M. (2.17)

The elements are then transformed back to the cartesian position and velocity vector if needed. Typically,
the two-body solution deviates largely from the one using high-fidelity force models (especially for longer
propagation periods). However, it can be used to determine initial-values for more complex methods, as
done in the next section.

2.2 Boundary-value solution

The orbital boundary-value problem, also known as Lambert’s problem, requires a different approach
and cannot simply be obtained by previously mentioned integration methods. One possibility to solve
the perturbed Lambert’s problem is, to use so-called shooting-methods. The initial-value integration is
used to propagate a first guess of the initial state y,

F(i) = (o) + / FE@. D dt, 218)

where the known position r; at the initial epoch is augmented with a first guess of the velocity 7,

~ ri
y(n) = (~ ) . (2.19)

3
Now, a three dimensional root-finding problem is obtained, i.e. a velocity is searched which solves
02 ry—Foltn i1) wWhere 7y = s(t). (2.20)

The exclamation mark notation is used to indicate root-finding problems throughout this thesis. Numerical
root-finding methods, e.g. the Newton-Raphson one, are used for that purpose. They can be obtained
e.g. from (Press et al., 2007). The shooting-method requires a good guess for the velocity 7, at the initial
epoch. Otherwise, the numerical methods might not converge towards the wanted solution. The situation
deteriorates with larger time intervals between the epochs as even small deviations from the true solution
can lead to large differences in the position vector and hence divergence. More advanced methods are
therefore required which robustly solve the boundary-value problem (e.g. multiple-shooting approaches
or numerical continuation methods as used for initial orbit determination by Lenz et al., (2010) and Smith
and Huang, (1986)).
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A practical approach to determine a good initial solution is to consider only two-body dynamics.
Equation (2.17) can be rearranged for the time-of-flight, i.e. the time interval between the two epochs

as
h—4 = 1 {H—(Mg - M, + 27anev) s (2.21)
&

which is dependent on the number of completed revolutions 7ey. The two-body boundary-value problem
has potentially multiple solutions due to the ambiguity in the anomalies. Additionally, the direction of
flight must be provided, i.e. whether the central angle between the two positions (the difference in true
anomaly) is defined by

nr; nry
Av = arccos————— or Ay = 2mx — arccos

. (2.22)
el el

In the first case Av lies between 0 and 7. Consequently, the short arc around the orbital ellipse is taken
between the epochs. The other direction is selected along the longer arc where the central angle is
between m and 2r. In case of Ay = m or Ay = 2, the orbital plane cannot be determined. Additionally,
the eccentricity is unobservable for Av = 2x. It is convenient to use the number of completed half orbital
periods k instead of nyey. If k is 0dd, the central angle is between 0 and 7, whereas if even, the angle is
between  and 2n. The situation is illustrated in Figure 2.1. In order to determine all possible solutions, the
problem must be solved for all feasible k integer values. The feasible interval k = [1, . . ., ni] for a specific
problem will be derived in Chapter 7 where the Lambert’s problem solver discussed here will be used.

The time-of-flight is expressed in terms of the semi-major axis a, the length of the chord joining the
two position vectors

Figure 2.1: Geometry of Lambert’s problem. The short (k = 0) and long paths
(k = 1) areillustrated. The dashed line is the chord joining both positions.

c=|lr—rll (2.23)
and the sum of geocentric distances and chord length
2s = |lrull + flr2ll + ¢ (2.24)

The time-of-flight equation (2.21) essentially states a one-dimensional root-finding problem in the variable
a. Multiple variations of expressing (2.21) using the aforementioned parameters have been developed (cf.
Battin, (1999)). Typically, a change of variables is introduced for more efficient root finding, i.e. substituting
a with better behaving variables. One advantage of other variables can be a bounded solution space and
well-defined derivatives for Newton-Raphson or Halley’s root finding. In this work, the implementation by
Gooding, (1990) is used, which takes the formulation (variables) from Lancaster and Blanchard, (1969) and
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includes some improvements (e.g. the selection of suitable starting values for the root-finding process).
Following the derivations in (Lancaster and Blanchard, 1969), the time-of-flight function is given by

a3
th—tHh =4|—(a@— B —(sina —sinf) + 2nny), (2.25)
He
where
s s—c¢
sinz% = — and sinzg = (2.26)
2a 2a
Instead of using the semi-major axis, the alternative variable x with
2 s a
x*=1-— or x=cos3 (2.27)
2a

is used as a parameter to find the root. It is bounded for elliptical orbits between —1 and 1.

Figure 2.2 shows the time-of-flight function dependent on x for an arbitrary geostationary satellite. As
can be seen in the figure, Lambert’s problem has exactly one solution when the satellite has not completed
a full orbital revolution yet (i.e. k = {0,1}). However, after one completed revolution (k > 2), the measured
time interval between the epochs (illustrated with the dotted line) can intersect the time-of-flight function
in two x values. Depending on the geometry and the number of allowed revolutions, the two-body
boundary-value problem can thus have different numbers of solutions.

2

1.5

t» — 1 [days]

0.5
Figure 2.2: Time of flight as a function of x for an arbitrary
near-geostationary orbit. Dotted line shows the true time dif-
ference (25 hours). All intersections between the function and
the dotted line mark possible solutions. The circle marks the
true solution. Figure is based on (Gooding, 1990).
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3. Observations

Space surveillance tasks are performed using either active or passive observation methods. Active ones,
e.g. radar or laser ranging, use two-way signal travel times to determine the topocentric distance along
with optional pointing angles. Additionally, the range-rate, i.e. the velocity along the line-of-sight relative
to the observer, can be measured with some of these techniques. As the signal has to travel the distance
twice, the sensitivity of active sensors degrades with the fourth power of the distance. Consequently, when
observing objects in high-altitude orbits, only large objects are observed or a strong transmitting signal is
required. Phased-array radars are capable of simultaneously tracking multiple satellites by repeatedly
scanning a wide field of view with short revisit times. They are hence used for surveillance tasks in the
lower orbits while mechanical parabolic dish antennas, such as TIRA operated by Fraunhofer-FHR in
Wachtberg, are used for individual object tracking. Radars have the advantage that they can be used during
night and day and depend less on weather conditions. Laser ranging can only be performed under good
visibility conditions and is commonly used to validate other measurement techniques. Nevertheless, due
to their high precision, recent efforts have been made to utilize them in space surveillance (cf. Kirchner
etal., (2013)).

Passive observation methods, in contrast, use the energy of external sources. Optical sensors capture
the light which is emitted by the Sun and reflected by the observed objects. Considering a constant solar
irradiance in the vicinity of the Earth, the sensitivity of optical sensors is only decreased by the distance
squared. This makes optical telescopes suitable for detecting objects in high-altitude orbits. However, if
no information about the objects shape and attitude is known, the sensors only provide a line-of-sight.
Furthermore, optical observations require certain visibility conditions, i.e. objects must be in sunlight
while the background must be dark. As a result, ground-based optical telescopes are only operated in the
night and cannot observe objects inside the Earth’s shadow cone. Moreover, the visibility is limited by
clouds or other light sources in the field of view. But, telescopes are considerably less expensive than radars
in installation and operation. In consequence, the near-geostationary orbit domain is typically scanned
using ground-based telescopes. Space-based optical sensors have been proposed and first missions have
already been launched or are currently planned (Notris, 2015, pp. 770-774). T. Flohrer et al., (2011) analyze

Figure 3.1: Observation methods used for space surveil-
lance tasks: a typical tracking radar (e.g. TIRA) with
radome, an optical ground-based telescope (e.g. ZimS-
MART) and space-based optical sensors.
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the feasibility of such payloads and their contribution to a frequently updated catalog of geostationary
objects. The different sensor systems are summarized and illustrated in Figure 3.1.

In the framework of this research, measurements obtained from ground-based sensors are discussed.
As this work is motivated by the fact that GSOC builds up a telescope network (Fiedler et al., 2015), the
expected sensor properties are used as a reference. The algorithms and derivations can be applied to
other telescopes and also space-based observations with moderate adjustment. A discussion of optical
observations and their information content is presented in the following sections. Different observation
strategies and survey scenarios result in a diverse set of consequences. These are, the distribution of
measurements along the orbit and in time, the accuracy, and the duration of the individual measurements
arcs. It is important to understand the properties and limits of optical measurements in order to develop
effective methods for orbit determination and measurement association. A more thorough discussion
about the measurement generation is given by Schildknecht, (1994).

3.1 Telescope setup

The principle setup of an optical sensor system consists of a telescope and an attached detector. The
detection is either performed by an integrating photon counting array (e.g. a charge-coupled device sensor)
or an active-pixel sensor (e.g. using complementary metal-oxide-semiconductors) (Schildknecht, 2007).
The aperture and focal length of the telescope define the field of view and the angular resolution which
can be achieved by the detector pixels. Additionally, the pixel size, focal ratio, and the other parameters
have a direct impact on the telescope performance, namely the signal-to-noise ratio and accuracy, and are
all connected to each other. The overall design of a sensor is thus a multivariate optimization process and
returns different results depending on the planned observation scenario and strategy. T. Flohrer, (2012)
provides a detailed description of such an optimization process considering user requirements.

For simplicity, the following discussion focuses on aperture and field of view when designed the
telescope for its specific purpose. Two scenarios occur during catalog build-up and maintenance: tracking
and surveying. Firstly, if the position of an object is approximately known, the aim of the sensor is to
improve this current estimate. Thus, only a limited field of view is required, i.e. as small as needed to
find the object. A small field of view allows a greater angular resolution and is achieved by increasing the
focal length of the telescope. This leads to a better accuracy in the measurements and ultimately in better
estimates of the object’s orbits. The second scenario uses no prior information of any object and scans the
complete orbital region of interest. This work focuses on near-geostationary objects, but other domains
are likewise scanned. If the entire region is covered by a small number of telescopes, a large field of view is
essential to guarantee a frequently updated object database. It is achieved by a shorter focal length and
comes with the drawback of a lower angular resolution.

The telescope system planned by GSOC will consist of two telescopes on one mount, where each
telescope is used for a different operational mode: surveillance or tracking. The surveillance telescope
will be equipped with a primary mirror with a diameter of about 20 cm and a focal length of 50 cm. The
corresponding field of view is 2° x 2°. The tracking telescope has a primary mirror diameter of 50 cm and
focal length of 300 cm, which results in a 42" x 42’ field of view (Fiedler et al., 2014, 2015). It will be mostly
used to chase cataloged objects. Since the main focus of this work lies in the initial orbit determination
without prior knowledge the surveillance telescope is used as a reference for the following simulations
and discussions.
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3.2 Astrometric reduction and errors

The images taken by the sensor contain information about the celestial position of an observed object.
The topocentric astrometric place, i.e. the location on the sphere w.r.t an observer in the coordinate
system origin, is illustrated in Figure 3.2. The right ascension « describes the horizontal angle between
the observed position and the vernal equinox in the equatorial plane. The declination é describes the
vertical angle between the above noted plane and the position.

Figure 3.2: Topocentric coordinate system: line-of-sight u, sensor location R
and astrometric place («,0) w.r.t. to vernal equinox.

Stars and space objects moving relative to an observer appear as stripes on the image assuming a fixed
telescope pointing, whereas geostationary objects appear as a bright spot. The coordinates of objects
in the image reference system are obtained by using image processing methods. First, the images are
segmented using e.g. thresholds to identify object pixels standing out of the image background. Then,
so-called centroiding methods determine the center of objects in the image reference system (x, y), e.g.
by fitting point spread functions to the segmented object pixels. The path of the photons taken from
their celestial location to the detector is described by a transformation. In order to obtain the astrometric
position (@,6) of an observed object at (x, y), the transformation parameters must be determined (see
Figure 3.3 for an illustration of the transformation).
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Figure 3.3: Illustration of the astrometric reduction. The ce-
lestial position («, 6) is projected on the image frame (x,y).

In principle, the transformation can be described as a projection. However, the path of the photons is
distorted and the sensor model is not perfectly known or changing with time. Atmospheric refraction
(wavelength dependent change in direction of the photons path) has to be considered as well as aberration.
Latter is caused by the motion of the telescope (w.r.t. the geocenter and to the barycenter of solar system).
The transformation parameters have to cover these distortions as well. Stable (or long-term varying)
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parameters are calibrated, e.g. once every night. On the other side, short term distortions need to be
modeled for each image or for small series of images. Known star positions are used as a reference to
determine the remaining parameters of transformation through a least squares adjustment. The places
of the unknown light sources are then obtained by inverting the transformation. The uncertainty of
this mapping function depends on the distribution of reference stars around the objects of interest.
Consequently, the uncertainty can vary for objects on the same image but different location. If a series of
images of an object is collected with the same star background, similar errors are expected. Reference star
catalogs can introduce a bias if the positions are erroneous (C. Flohrer, 2008). Usually, the contribution is
neglected as modern catalogs promise very good accuracies (Schildknecht, 2007).

The quality of each individual measurement is mostly limited by the atmospheric seeing. The seeing
is caused by turbulence in the air of the atmosphere. The image of the observed objects is blurred
and possibly shifted. The magnitude of this blurring (typically described with the so-called seeing disc
diameter) differs for each location and observation time, and is mostly influenced by the observer location
and telescope pointing.

An additional error source is the erroneous registration of the observation epoch. In case of a photon
counting array, the collection of photons (typically called integration) is started and stopped by opening
and closing of a shutter. Afterward, the registers are read out to obtain the image. The movement of the
shutter blades is detected and used to obtain a mean epoch. As the mechanical motion can vary due to
changing temperature, humidity, or orientation, an exact timing cannot be guaranteed. C. Flohrer, (2008)
computed corrections for these errors, which can be used for routine calibration. Schildknecht, (1994)
proposes to read out the detector register after opening the shutter in order to detect the first collected
photon. In case of active-pixel sensors, the problem is avoided as each instance of an arriving photon can
be timed (Silha et al., 2014).

The overall accuracy is typically estimated using precisely known positions of e.g. navigation satellites
(C. Flohrer, 2008). For this research, the error of each measurement noise is assumed to be caused
primarily by the seeing and in the order of 1"/, while a bias affecting all measurements of a series is caused
by the shutter delay and expected to be in the range of a few arc seconds. The performance is consistent
with the observations of the ZImSMART telescope, which has been analyzed by Herzog et al., (2013).
These assumptions do not fully represented the expected performance of GSOC’s network, but rather a
conservative approximation.

3.3 Characteristics of observed domain

This work focuses on objects in near-geostationary orbits, i.e. objects that lie on or intersect with the geo-
stationary ring. Common orbits in this region are the geostationary orbit itself, inclined geosynchronous
orbit, graveyard orbit, and the geostationary transfer orbit. The latter is typically used by satellite launchers
to place objects into the geostationary orbit. The graveyard orbit (also called super-geosynchronous orbit)
lies approximately 200-300 km above the geostationary ring and serves as a disposal place for disused
satellites (Flury, 1991). Inclined geosynchronous orbits share the same altitude with geostationary ob-
jects, but a different orbital plane orientation. They are used for navigation satellites as e.g. in Japan’s
Quasi-Zenith Satellite System or some of China’s Compass satellites. The dominant perturbing forces and
long-term dynamics are comparable for all different geosynchronous objects. Thus, this section covers the
behavior of the two different regimes: geosynchronous (including geostationary, inclined geosynchronous
and super-geosynchronous) and transfer orbits.

The most dominant perturbing forces from (2.1) for both orbit types are summarized in Table 3.1. The
perturbing forces have an impact on the long-term evolution of the orbital domain, and consequently the
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distribution of objects. The effects are described in the following for each type.

3.3.1 Geosynchronous orbits

The ideal geostationary orbit is defined by the orbital parameters
a=42164km, e=0, i=0°. (3.1

However, the actual distribution of objects along the ring differs from the perfect circular ring.

The tesseral terms of Earth’s gravitational potential are longitude dependent and cause librational
motion along the orbit around stable points. Controlled satellites perform East-West maneuvers to stay
within their assigned longitude slot. The zonal terms affect the orientation of the orbital plane. The
orientation is described with the normalized inclination vector from (2.9) in terms of orbital parameters

) sin i sin Q
rxr o
= ——— =|-sinicosQ|. (3.2)
llr < 7| )
cos i

The zonal terms (namely the oblateness) cause this vector to precess around the Earth’s rotation axis.
Additionally, the gravitational pull from Sun and Moon cause a similar precession around the ecliptic pole.
The combined effect of these three perturbations then creates a precession around the normal k; of the
so-called Laplace-plane with a period of around 53 years. The normal is inclined to the Earth rotation
axis by ~ 7.5° in direction of the ecliptic pole. The Laplace-plane normal is approximately constant,
however, dependent on the area-to-mass ratio the solar radiation pressure has a similar effect and pulls
the Laplace-plane normal even further towards the ecliptic pole.

Thus, controlled satellites have to perform out-of-plane (North-South) maneuvers to maintain their
orbital plane close to the Earth’s equator. As these satellites are regularly maneuvered, they typically stay
very close (~ 0.1°) to the equatorial plane. Maneuvers have to be performed to correct the orbits which
would otherwise drift away from their assigned location due to perturbations. Active objects on purposely
inclined orbits will equally stay close to their respective plane.

However, as the orbital plane of disused satellites and debris is constantly changing, the overall
distribution of objects close to the geostationary ring can be covered by the constraints

30,000 < a < 50,000km, e <0.3, i<30°. (3.3)

Table 3.1: Order of magnitude of dominant perturbing accelerations, as defined in (2.1), acting on satellites in
geostationary and geostationary transfer orbits. The magnitude for the transfer orbit is only given for the perigee
passage (apogee similar to geostationary case).

Acceleration [m s™2]

Fg F, Fy Fp F;

Ue Zonal Tesseral

Geostationary orbit 10°  10°° 1077 107% 107° 1077
Geostationary transfer orbit (perigee) 10' 1072 1074 10 10 10221077 1077
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Using these bounds and the publicly available catalog, the distribution of objects is plotted. Figure 3.4
visualizes the precession of the orbital plane normal around h;..
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Figure 3.4: The orbital plane orientation of cataloged geosta-
tionary objects (status January 2015). (i sin Q, —i cos Q) is the
approximate projection of h on the equatorial plane. The pre-
) ~ cession around hy, is indicated. The figure adapted from (Soop,
isinQ 1994).
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When placing circular orbits on these orbital planes with ~ 7.5° angular separation between each h
and hy, a ring of orbits with a diameter about 15° is obtained. Figure 3.5 illustrates the resulting ring. The
gray-scale color of the orbits lightens with the progress around the precession axis, i.e. the black thick line
represents the starting geostationary orbit while the light gray orbits represents the status at the end of
the cycle (after approximately 50 years).

Figure 3.5: Evolution of orbital planes
around the precision axis hy. hg denotes the
Earth rotation axis (and consequently the axis
of geostationary orbits). Further details in the
text.

The ring with the expected density of objects is mapped into the geocentric a-6-space. Instead of
showing a set of virtual orbits, the real distribution of objects from the publicly available catalog is plotted.
Figure 3.6 shows the density of objects in the observed domain. The density of orbital planes around the
Laplace-plane (emphasized with the white line in the figure) has consequences on the planning of optical
observations, which will be discussed in section 3.5.
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Figure 3.6: Distribution of cataloged geosta-
tionary objects (status January 2015) in right
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@ ure adapted from (Schildknecht, 2007).

3.3.2 Geostationary transfer orbits

When placing a satellite into the geostationary orbit, an intermediate Hohmann transfer orbit is typically
used. The apogee of the orbit corresponds to the geostationary altitude, whereas the perigee stays close to
the Earth’s atmosphere. Satellites are released there by the launchers from where they perform apogee
kick thruster burns to circularize their orbits. The carrier rocket stages remain in the transfer orbit. The
long-term evolution of objects in this domain is dependent on their area-to-mass ratio and launch date.
In theory, the atmospheric drag slows down the satellite at the perigee and consequently reduces the
apogee height (with approximately constant perigee). This circularizes the orbit and will eventually lead
to a decay. The effect on the distribution of objects can be observed in Figure 3.7, where the semi-major
axis is plotted against the eccentricity.
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L Figure 3.7: Distribution of cataloged geostationary transfer orbit objects
0.6 - | | (status January 2015) in semi-major axis (a) and eccentricity (e) space. Or-
L5 2 2.5 3 bital decay of objects is illustrated with the arrow. The figure is adapted from
a [10* km] (Musci et al., 2007).

The overall distribution of objects that started on geostationary transfer orbits is covered by the
constraints

300 < rp < 1,200km, 0.3<e <0.75 i<15°, (3.4)

where rp = a(l — e) is the radius at the perigee. Due to large apparent velocity relative to the observer, the
objects are mostly observed at apogee.

3.4 Observation strategy and constraints

In order to distinguish illuminated objects from the sky background, enough reflected photons must be
collected by the detector. The high angular velocity of some satellites w.r.t. an observer, increases this
difficulty. Fortunately, objects in the neighborhood of the geostationary ring typically stay at a nearly fixed
location on the sky within reasonable time. Consequently, the pointing direction of a telescope can be
kept constant.
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Exposure and read-out

The minimum exposure time is dependent on the brightness of the observed objects and the topocentric
distance. The first depends on the Sun illumination, object size, shape, and orientation while the latter
stays approximately constant for objects in the region of interest. Optimally, objects are observed when
the angle between the line-of-sight and the Sun-object vector, the so-called solar phase angle, is small.
This increases the chances of detection, as parts of the surface pointing to the observer are illuminated.
It is achieved by observing the areas in the sky opposite to the Sun. Geostationary objects theoretically
allow arbitrary exposure times. However, star trails appear that cut out large parts of the image and reduce
the usable area. The selection of a proper integration time is therefore an optimization task depending
on hardware and observed orbital domain. Objects with larger apparent velocities, e.g. on geostationary
transfer orbits, require tracking unless observed at their apogee. At this location they exhibit a smaller
apparent velocity and can be observed within the same survey as near-geostationary objects. After the
exposure, the information is read out and simultaneously the telescope is pointed to a new direction. The
individual tasks accumulate to one characteristic interval, determining the minimum spacing between
individual measurements.

Orbital coverage with limited resources

Besides collecting enough light from the objects, the sky background has to be dark enough. Any bright
light sources in the vicinity of the observed objects decrease the signal-to-noise ratio. Thus, the viewing
conditions are only acceptable in certain parts of the sky. Figure 3.8 shows the effective visible regions
on two dates. The hatched areas cannot be observed due to the high density of stars close to the Milky
Way or due to the Moon. Additionally, the area covered by the Earth’s shadow at geostationary altitude is
hatched. The figure depicts a major difficulty when dealing with optical measurements, i.e. the uneven
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Figure 3.8: Geocentric right ascension and declination observation constraints for two nights (21. March 2015 upper
and 21. December 2015 lower part). Shaded area cannot be observed: no visibility inside Penumbra cone ), 20°

of the shadow and Moon over time.
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distribution of measurements along the orbits of the observed objects. At the vernal equinox (upper part
of figure), the viewing conditions are favorable in the selected year, as the area close to the shadow is free
of any other disturbing light sources. However, the situation at the winter solstice (lower part of the figure)
is different. It is the day in the year with most night hours in the northern hemisphere, which allows the
observation of a large arc. However, the objects can only be observed at a few locations of their orbit.

In order to keep an object database as updated as possible, as many objects as possible have to be
observed within one night. This is achieved by collecting only one angular measurement pair (@, ) per
object. However, the information content of such an individual measurement is limited, i.e. it allows no
initial orbit determination and complicates an association to known objects. To overcome this difficulty,
short observation arcs, called tracklets, are collected instead. This strategy increases the information
content by a measure for the apparent velocity (¢, 6) on the sky. Longer tracklets provide more accurate
information on the velocity, but reduce the overall number of covered objects per night.

Alternatively, individual angular measurements at multiple epochs distributed throughout the night
can be used. A larger arc is then covered by the same number of measurements than when using short-arc
tracklets. However, it increases the efforts of combining the individual measurements as three pairs must
be tested against each other to identify one candidate object (see section 6.2). If a set of m measurements
is collected (e.g. within one or multiple nights), in total

(’:) =lm(m-2)(m-1) (3.5)

combinations must be tested. The test effort thus increases with the third power of the total number of
tracklets (O(m?)). Tracklets, however, allow for an initial orbit determination under certain assumptions,
e.g. for circular orbits (cf. section 6.3). Additionally, two tracklets provide sufficient information to
perform initial orbit determination (see Chapter 7). Thus, when testing all possible orbits of a set of m
measurements, (3.5) is reduced to

('Z) =lm-1m (3.6)

correlation tests must be performed, i.e., the total effort increases with the square of the number of
tracklets (O (m?)).

The latter approach of collecting tracklets is taken as a reference for this work. Considering a limited
number of telescopes surveying the near-geostationary domain, typically 5-10 measurements are collected
per tracklet to still guarantee a good coverage of the domain.

3.5 Scheduling

The planning of observations should be optimized for two different goals: firstly, to assure good visibility
of the objects and secondly to maximize the information gain. A schedule (or observation plan) contains
pointing directions for each epoch in the night. If an object catalog exists, the scheduler can include the
knowledge into the optimization process. DeMars and Jah, (2011) propose to use the expected information
increase to decide which object is observed when and from which telescope. The latter plays a role when
the observation geometry from one location is more beneficial than from another. When building up a
catalog, the expected density of objects can be used to define a schedule. The density of objects in the
near-geostationary region can be approximated with the ring around the Laplace-plane (see Figure 3.6).

A basic planning tool has been developed to simulate realistic observation conditions for a survey
telescope. For simplicity, the tool does not optimize a complete timeline of tasks but fills up a schedule
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considering three main constraints. As written above, good visibility is typically expected at small solar
phase angles. Thus, objects are observed when they are close to the Earth’s shadow. In principle, when
collecting multiple measurements of the same object, the information increases with larger arcs covered.
It is therefore beneficial to avoid observing an object at the same location on their orbits in consecutive
nights. Lastly, a survey should find every object within a reasonable time in order to update the complete
database frequently.

Schildknecht et al., 1999) and T. Flohrer et al., (2005) describe a strategy where a declination stripe is
repetitively scanned with a fixed right ascension. Each object passes through this space-fixed direction
once, and if observed continuously, every object will be observed. Figure 3.9 (left side) illustrates the
selection of the fixed right ascension ar (in geocentric reference system) close to the shadow boundary.
The boundaries are assumed to be constant for one (or a few) nights. The right side of the figure shows
the declination scanning. Instead of testing the complete declination range of this stripe, the actual
distribution of objects from Figure 3.6 is considered. The relation between i and € is used to ignore all
improbable declination values. A declination interval for each right ascension covering most of the objects
is approximately given by the Laplace-plane +7.5°.

Herzog et al., (2010) suggest to scan not one but multiple of these stripes in each night. The planning
tool then iterates through a set of fixed directions. This increases the time until complete orbital coverage
is obtained, but instead provides better options to re-observe objects (even in the same night). By placing
the additional stripes ag in a predefined angular distance, the same longitude slot of the geostationary
orbit is re-observed after a certain time interval. Furthermore, different stripes allow a better distribution
of observations along the orbits.

Reference survey algorithm

The basic algorithm to select these stripes is presented in the following. The directions are fixed for a
certain time-interval (3 nights), where celestial bodies stay approximately within reasonable boundaries.
As proposed in (Herzog et al., 2010) two fixed stripe locations are selected ag; and @, and each one
is accompanied with a re-observation stripe ag; and ag . In order to compute the places for the re-
observation fields, the stripe duration must be considered. The duration comprises the exposure and
read-out time of the detector for each image and is consequently different for each telescope setup. The
time is also dependent on the field of view of each sensor and the corresponding different number of
images per stripe. For the sake of simplicity, the telescopes are assumed to be equal in the network.
However, the strategy can be adjusted to different sensors which then requires careful planning of re-
observation epochs. The selection of stripes consists of the following steps:

1. Find the two right ascension values ar; and a2 bounding the Earth shadow at geostationary altitude
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Figure 3.9: Fixed geocentric right ascension ar with favorable solar phase angle throughout the night.
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throughout the time interval. If the stripes are disturbed by other light sources, shift them until a visible
value is found.

2. Select further two right ascension values ag ; with a specific offset to each a;, i € 1,2. The offset is
chosen as an integer number of stripe durations j Af;. As objects on the geostationary orbit rotate
around Earth with sidereal rate, the objects appearing at oy ; are re-observed if ay ; is observed exactly
after j stripe iterations. The number j is selected accounting for the rate and visibility constraints.

Figure 3.10 shows an example stripe selection for an unfavorable case, i.e. a large fraction of the a-6 space
is masked by other light sources.

After finding the suitable set of stripes, the planning continues by creating a timeline of observation
tasks, i.e. topocentric telescope pointing directions. So far, the direction computation was independent of
the sensor location. At first, the nights are divided into Ay, intervals. In each interval, one of the visible
stripes is scanned. Visibility is tested by computing the elevation of the virtual objects along the stripe
at geostationary altitude. If the elevation is above the nautical horizon, the objects are assumed to be
observable. Typically, in the beginning of a night, only one stripe in eastern direction is visible. Then later,
all stripes can be observed. At the end of the night, the sensor points towards western direction and sees
only one stripe. Another station dependent constraint is the actual solar phase angle. Stripes, with an
angle larger than 120° are ignored. Other visibility constraints are avoided by the previous stripe selection.
The constraints are summarized in the following Table 3.2.

Table 3.2: Visibility constraints for optical observations

Constraint

Min. Moon angular distance to observed direction ~ 20°

Min. galactic latitude of observed direction 20°
Max. Sun elevation —-12°
Max. solar phase angle 120°

After selecting a stripe direction, the planning tool continues with the next stripe observation epoch.
The re-observation stripes @y ; are scanned j epochs after their respective oy ; partners. An additional
criterion for the exclusion of stripes is included: if the geostationary longitude of the stripe has been
observed in the previous nights, similar observation geometries must be avoided (see Chapter 8 and
Chapter 9 for the effects). The same position on the orbit is observed if the geostationary longitude is
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Figure 3.10: Selection of four declination stripes. Hatched areas denote visibility constraints (same as in Figure 3.8).
Gray area illustrates the likely distribution of objects around Laplace plane (dashed line).
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observed after integer numbers of sidereal days. Thus, stripes are eliminated which come close to this
re-observation time (e.g. one hour). The described algorithm serves as a reference but does not promise
to obtain optimal results. Its performance is estimated using a telescope network simulation.

Simulation

The reference planning algorithm is used to simulate a small telescope network. The simulation is carried
out to obtain a likely distribution of measurements and geometries. As stated in the previous section, the
schedule is not optimal in terms of coverage or visibility but serves as a reference. Similarly, the simulation
does not cover all physical effects and challenges. That is, it does not include weather (cloudy skies), or the
intersection of star trails with observed objects. Both would cause a loss of observations. Of course, several
weeks of bad viewing conditions will alter the distribution. However, the simulation suffices to give an
approximate value for the expected (nominal case) re-observation times and re-observation geometries.

In order to cover a specific longitude range continuously, it is beneficial to place telescopes on the
northern and southern hemisphere. This reduces seasonal effects and increases chances of good visi-
bility for at least one site. Thus, in accordance with GSOC'’s plans, a telescope is placed in Zimmerwald
(Switzerland), and one in Sutherland (South Africa). The location of both simulated telescopes is given in
Table 3.3.

Table 3.3: Simulated telescope locations

1 ® h

Zimmerwald 7.465 46.877 970
Surtherland 20.813 —32.937 1700

The sensors are modeled with a 2° x 2° field of view. The simulation is performed using a set of near-
geostationary satellites from the publicly available catalog space-track.org. The objects were extracted
according to the previously defined region constraints (3.3) and (3.4). In total, 661 objects which are visible
from at least one sensor are taken into account for the simulation.

Using the previously described schedule, the telescope pointing for each simulation step is computed.
Each object that appears in the field of view at least three times in a series of five images, creates a tracklet.
A tracklet consists therefore of at most 5 individual right ascension and declination measurements. The
objects’ states are propagated to the observation epochs accounting for the simplified perturbation model
(SGP4). Observations are generated for the whole year 2015. In total about 80,000 tracklets are collected.

The performance of the scheduling algorithm and the implications for orbit determination tasks are
analyzed with the following figures. The first (Figure 3.11) shows the distribution of the solar phase angle ¢
and serves to check for the plausibility of the plan. Most objects are observed at favorable angles (around
10°-30°). The objects are likely to be successfully observed at these geometries. Thus, the simulation is
plausible in terms of realistic geometries.


http://www.space-track.org
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0° 15° 30° 45° 60° 75° 90° 105° 120° Figure 3.11: Distribution of solar phase angles for simulated obser-
do vations.

The other two histograms in (Figure 3.12) set first requirements for the orbit determination and associ-
ation process. The left side shows the time intervals between observations for each object. Typically, the
objects are observed in the same or consecutive nights. However, due to visibility and time constraints, it
is very likely to observe objects only after three or four days. The developed algorithms must deal with
the expected numbers of days (1-5) in between measurements. The right side of the figure shows the
distribution of angular separations Av on the respective orbits between two observation epochs (the
difference in true anomaly). The distinct peaks are caused by the definition of the re-observation stripes
in the planning algorithm. Even though the algorithm tries to avoid observing objects at the same place of
their orbits, the resulting distribution shows a large fraction of objects with small Av values. This is caused
by the visibility constraints and that the algorithm only accounts for objects moving with sidereal rate.
Observing an object at the same location of its orbit returns less new information than when observing
it somewhere else. The consequences will be discussed in Chapter 8. Unless more advanced planning
algorithms are able to avoid these geometries completely, a catalog software should be able to work with
these geometries e.g. by including restrictions on the orbit (as presented in section 6.3).
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Figure 3.12: Distribution of At (time intervals between tracklets) for simulated objects in near-geostationary domain
on left side. Distribution of angular separations Av for same tracklets.

3.6 Information content

As described in the previous sections, optical telescopes surveying the geostationary domain capture
short series of astrometric observations for each object, i.e. right ascension a and declination ¢ in the
topocentric reference frame

a;, 0; atepochs t; for i=1...,n. (3.7

The information of this sequence is compressed in order to use it conveniently later. Thus, a polynomial
motion model is fitted to the angular measurements, where the estimated coefficients then contain the
information. This compression comes with a loss of information, but simplifies the orbit determination
and association. The order of the polynomial must be carefully selected. A higher order polynomial
increases the risk of over-fitting the measurement arc, i.e. instead of finding a model that describes the
information of the tracklet, a model fitting the random measurement noise is found. On the other hand, if
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the degree of the polynomial is too small, possibly usable information is lost and systematic errors can
be introduced. This problem is commonly referred to as the variance-bias tradeoff. In case of short-arc
tracklets (spanning a few minutes) of high altitude objects, a linear models is sufficient. When using
different observation strategies (e.g. longer tracklet duration) or when observing low altitude objects, a
quadratic motion model becomes feasible. Maruskin et al., (2009) derive in detail how to fit a quadratic
motion model to the measurements of one observation arc and what errors to expect in the estimated
parameters. The derivation here follows the work by Maruskin et al., (2009), but adapts it to the linear
model

at)=a+ @ —-0)d+by,, 6t)=656+t—-7)6+bs, (3.8)

including the bias terms b, and bs. These terms are assumed to be constant for each tracklet. The model
parameters are the mean angles @ and § and the respective angular rates ¢ and é. They are estimated
around a mean epoch 7. The right ascension and declination values are assumed to be uncorrelated
to each other and are individually estimated. For the sake of notational simplicity, the generic angular
variable 6 is used in the following as a replacement for & and 6. The linear motion model function is then

0(t) =0+ (t —0)0 +by. (3.9)
Inserting the angular measurements 6 = (6, . ..,6,)', a set of linear equations is obtained
OIRY -
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where x = (0 + by, 6)" denotes the estimated parameters, and € the measurement noise. As the bias is
assumed to be constant, it is estimated together with the mean angle. The noise is assumed to be zero
mean and normally distributed with the diagonal covariance matrix C; = ‘712\1 1. The least squares solution
is computed with

x=C,]'C;'0 (3.11)
where the covariance
C.=J'c;'n™ (3.12)

describes the uncertainty of the estimated vector x. The so-called innovation matrix

JTcty = (" 0 (3.13)
Z\0 IAP(n+D)(n-Dn

is derived analogously to (Maruskin et al., 2009). The n measurement epochs are assumed to be distributed
on an equally spaced grid around the mean epoch, thus

p=f+iAr where i=-21_..0,... 2. (3.14)
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The variance of the mean angle is determined by inverting the innovation matrix and including the
variance of the bias. The bias is assumed to be normally distributed with E[bg] = 0 and E[bg] = (leg. The
variance of the angle is then

ol (3.15)

3=

~ 2
or;xopg+

S=TH )

The estimated angular rate is independent from the bias and its variance and given by

2
2 3oy

T AR (P -1

(3.16)

The last two equations illustrate an advantage of using the compressed information in terms of mean

angle and angular rates: the model smoothes out random noise. The mean angle has a smaller variance

when compared to one of the measured ones. Furthermore, the angular rate accuracy o is approximately

inversely proportional to the tracklet length (o ﬁ) or to the number of individual measurements (c %).

Hence, observation strategies can be adapted to guarantee a sufficient accuracy of the new parameters.
For completeness, the derived variances from (Maruskin et al., 2009) for the motion model

0(t) =0+t —-0)0+ (t —10)%0, (3.17)
are given by

. 3 . 2V3 o 12V5
05~ 5mONs 06~ opavnONs and o= AV N (3.18)

where simplifications have been included assuming that the number of individual measurements is large,
i.e. n > 1, and no bias term is added. In order to improve readability, the bar above the mean epoch and
mean angle is dropped in the following derivations. The final measurement vector is then

z= (e, 40608) or z=(ad d60,0)" (3.19)

at the epoch ¢.

Line-of-sight and derivatives

An alternative representation of the angles, angular rates, and angular acceleration is given by the line-
of-sight and its time-derivatives: u, i, it. The topocentric line-of-sight is illustrated in Figure 3.2 and is
computed from the right ascension and declination with

COS @ COS O
u=|sinacosd|. (3.20)

sind
The first time-derivative of the line-of-sight is given in terms of angles and rates by

—sina cosd —cosa sinéd

. u u
= 9 a + FH 6 with E =| cosa cosd and Fr =|-sinasind | . (3.21)
0 cos o
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The second derivative of the line-of-sight is likewise derived using the angular accelerations ¢ and §.

Modeled observation from a satellite state

The geocentric position in terms of the line-of-sight is expressed by
r=R+pu, (3.22)

where p is the distance between the observer and the satellite, and R is the position of observer. Conse-
quently, the time derivatives of the satellite position are given by

F=R+pit+pu, (3.23)
F=R+pit+2pu+pu. (3.24)

Accordingly, the modeled line-of-sight and the first derivative from a state are given by

T

w="" and =" _uSS$ (3.25)
IIs|] sl lIs]I? ’
where
s=r—-R and §=#-R. (3.26)

The modeled angular rates can be derived from these.
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4. Computational optimization

If a function L(x) describes the cost or loss of a problem depending on some variable x, then optimization
algorithms are used to determine the optimal value of x, i.e. where the loss becomes as small as possible

argmin L(x) := {x |VX: L(X) > L(x)}. 4.1

This chapter recapitulates some basics of optimization and provides the required knowledge for later
discussions. It follows the explanations in (Press et al., 2007). An example loss function is illustrated in
Figure 4.1. The right plot shows the topography as seen from above. This representation is also used later
for the discussions of loss functions in the tracklet association problem.

Several computational optimization methods have been developed, each one more or less suitable for
specific loss functions and problem statements. If L(x) is smooth and has one distinct minimum, iterative
algorithms can be used. These methods start at an initial guessed value x!%, and gradually improve the
state until convergence is reached. The square brackets denote the current iterate (starting from 0). The
state is either improved along some specified directions or using the gradient information. Two different
methods are discussed in this work, namely the quasi-Newton approach and Powell’s line search.

Often, the variable space of an optimization problem is bounded, i.e. an optimal point is forced to be
in a specified region

Cx)={x:c(x) <0,c2x) <0, ...cp,,(x) <0}, 4.2)

where ¢; fori =1, .. ., neon define inequality constraints. Equality constraints are included similarly. The
region is typically either bounded due to physical constraints or, alternatively, to restrict the solution
space to a subspace of interesting solutions.

Aloss function may contain multiple local minima inside the region (as in the example from Figure 4.1).
Therefore, a difficulty arises that the global minimum (out of many local ones) needs to be identified. The

[SE]

X1

Figure 4.1: Two illustrations of an example loss function L(x,x,) = % + sin(x; + x2) + cos(x; — x2). The plot on the
right shows an intensity-coded representation of the loss function over the two-dimensional variable space.
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aforementioned iterative methods search in the neighborhood of an initial point and consequently find
the next local minimum. Different so-called heuristics have been developed to overcome this difficulty.
Typically, the constrained domain is sampled with a set of initial points. Then, the points are altered
considering certain rules until local minima are identified. The minimum with the smallest loss is selected
as the global one. Common examples for these multimodal optimization methods are simulated annealing
or differential evolution. The latter is used in this work and is described in section 4.3.

In principle, the global minimum is also found, if the complete search space is evaluated. This brute-
force approach requires the highest computational resources, but can be a safe backup solution if the
right search grid is selected and other methods fail.

4.1 Quasi-Newton methods

If the function is smooth enough, algorithms can use the gradient information to efficiently reach the
minimum. Prominent examples are conjugate gradient or quasi-Newton methods. The latter has been
used in this work and will be explained in the following. The quasi-Newton methods approximate the
loss function locally with a quadratic function using a second order Taylor expansion around the current
value x'! (e.g. the initial value x'*')

L(x) ~ L(x™) + VL - (&) (x = x) + 3 (x = x™)TH) (x - x17), (4.3)
where VL(x!") is the gradient at x' and

h diL
Hx") = — (4.4)
dx x=xli]
the corresponding Hessian. The minimum of the approximated function is then determined by finding
the root of the first derivative

0= VL") + HxMy(x - xy, (4.5)

where the Hessian must be a positive-definite matrix. If no analytical expression for the gradient is known,
it can be approximated using a finite difference scheme. Additionally, the inverse of the Hessian matrix
Hlis required to solve equation (4.5) with

£ = gl _ gl (g, (4.6)

which gives the improved solution x!"*!. Such an iterative improvement is denoted as a Newton method.
Quasi-Newton methods do not require the Hessian or its inversion. Instead of computing H ™! directly, it
is approximated and iteratively improved during the minimization process. Different variants of the quasi-
Newton method exist, resulting in different schemes on how to improve the matrix. An implementation
for the popular Broyden-Fletcher-Goldfarb-Shanno (BGFS) scheme can be obtained from (Press et al.,
2007). For a detailed derivation of the algorithm refer to the book of Fletcher, (1987).
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The procedure is iterated until convergence. Convergence is reached if the correction between itera-
tions is small enough

xl =l < 4.7)

where ¢, is a predefined tolerance. Alternatively, the iterations can be stopped if the right hand side of
(4.5) falls below a predefined threshold.

Advantages and disadvantages

The quasi-Newton approaches converge fast if the loss function is sufficiently similar to a quadratic
function. The approximation is good when the initial value is close to the actual minimum. Good initial
values therefore reduce the number of required steps. In case of a true quadratic function, the search
stops after ny iterations, i.e. the number of dimensions.

When using a finite difference scheme to obtain the gradient VL in very flat valleys, the numerical error
can exceed the actual value and therefore cause divergence or false results. If no analytical expression for
this gradient is available and flat valleys are expected, other approaches which do not use any gradient
information are favorable.

4.2 Powell’s line search

Unlike the previously explained quasi-Newton methods, Powell’s line search does not use any gradient
information. Instead, a set of directions is used, represented with unit vectors u; for j = 1, ... ny. The
directions are iteratively improved during the minimization process. The principle of the line search
method is illustrated in Figure 4.2. Commonly, the directions aligned with the coordinate axes are used as
initial values, i.e.

ul”=10" and u=(DT (4.8)

for the two-dimensional case. Known more promising directions can be used to speed up the process.
These are directions where a decrease in the loss function is expected. The algorithm then proceeds
as follows: starting from the current value x!1 for each direction u][.i] a one-dimensional minimization
problem is obtained, i.e. for the first one

Ay = argmin L (x[” +A u][.”) 4.9)
2
and forj > 1
j-1
Aj= arg;ninL(xm + ; Al + 2ull). (4.10)

The superscript index [i] is also applied to the direction vectors as they are iteratively updated during
the optimization process. A commonly used approach to solve the problem in (4.9) and (4.10) is Brent’s
algorithm, which can be obtained from (Press et al., 2007) and is described in (Brent, 1973).
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Figure 4.2: Illustration of Powell’s line search. Dotted lines indicate
the one-dimensional search space. In this quadratic example, the
X minimum is found after one iteration.

The auxiliary scalar variables A, which minimize the loss function along the lines, are then used to
obtain an improved value

Ty
JULLES A Ui Z A ”Ecl]- (4.11)
k=1

The improved x'"*! is used together with the previous value x!/! to update the most influential direction,
i.e. the direction with the largest correction in one iteration

k* = argmax Ay, (4.12)
k
with
[i+1] — x[i+1] B x[i] (4 13)
TP I )

Additional rules when to drop direction updates and modified ways to update the set of directions can
be implemented to improve convergence of the method.

Advantages and disadvantages

The line search typically requires more loss function evaluations than the quasi-Newton method. Of
course, this is depending on the shape of the loss function and the quality of the initial value and the initial
directions. However, it does not use any information on the gradient. Especially when considering loss
functions with no analytical representation of the gradient and narrow and flat valleys, it can outperform
the gradient-based approaches.

4.3 Differential evolution

A multimodal problem is minimized with heuristic methods, if no prior information on the location of the
local minima is available (e.g. constraints which bound the solution space to one valley). In this work,
differential evolution has been implemented to solve these problems. A detailed description and code
samples can be obtained from the book by Price et al., (2005). The complete details go beyond the scope
of this thesis. As the approach is used in Chapter 7, it is sketched here to illustrate its basic principle and
advantages/disadvantages. Figure 4.3 shows the principle of it with the example loss function from the
beginning of this chapter.
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Figure 4.3: lllustration of differential evolution optimization scheme. Cir-
cles show the first generation of 20 candidates (randomly selected inside
domain), + after 25 iterations, and X after 50 iterations.

To initialize the method, the complete domain is randomly sampled with a candidate population
x for 1=1...,npop. (4.14)

where np,0p is the potentially large number of candidates. In every iteration of the algorithm, each candidate
solution is updated using randomly picked other candidates x., xL’ I and x!! with a so-called crossover
strategy
[{i+1] _ (L2 I T I 1 R 1)
x 7 =c (xl , Xy Xy X ) , (4.15)
where different c-functions exist. Alternatively, specific crossover candidates can be selected determin-
istically, e.g. the best candidate of the population. The strategies are tuned for the individual problem

using a crossover probability threshold and a differential weight. The candidate xy] is only updated if the

[i+1]

,  isanimprovement, i.e. the loss falls below the initial loss

crossover result x
L(5 Lz 4.16
i) < L) . (4.16)

After a previously defined maximum number of iterations or convergence, the best candidate is selected.
The exponential crossover method is used along with random crossover candidate selection (cf. the book
of Price et al., (2005) for details). More advanced variations of the method, e.g. from Takahama and Sakai,
(2006), use the gradient information locally for each candidate.

Advantages and disadvantages

As any type of heuristic, the differential evolution cannot guarantee convergence towards the global
minimum. It can randomly hit the desired valley, but it might also miss it. It is therefore favorable to split
the problem into single valleys and then proceed with the above described iterative methods. However, if
no separation is possible, heuristics can become a valid choice to minimize the loss function. They can be
also used after small modification to not only find the global, but also multiple local minima.

4.4 Change of variables

An optimization problem can be simplified by substituting the search variable x with an other expression
x’. The loss function L is rewritten in terms of the new variable with

L'(x") = L(g(x")) = L(x), 4.17)
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where x and x’ satisfy the coordinate map
x =g (x) and x=gkx’). (4.18)

Three different example substitutions are shown in the following, which illustrate how a new coordinate
system can be beneficial in terms of stability and solvability for the optimization.

Simplified constraints

A possible improvement could be, that the solution space is easier to bound, e.g. a rectangular region
Cx")y={x":x;<x" <x,}. (4.19)

where x; and x,, are the lower and upper constraint respectively. The constraint boundary (and the solution
space) is then rectified. A non-linear constraint, especially around narrow and curved solution spaces,
typically cause the iterative algorithms to step outside the feasible area more often, which increases the
number of required steps. Consequently, the iterations might not converge within a predefined number
of steps.

Scaling

Commonly, the elements x; of x are scaled using an expected value for each dimension x. ;, i.e.

x = 2 (4.20)
Xe, i

Alternatively, if the solution space is rectangular, each element can be scaled to stay in a specific interval
(e.g. x; € [-1,1]). Differently scaled elements can lead to numerical difficulties, as the algorithm reacts
more sensitive to changes in one dimension than in the other, especially when using gradient information.

Separation of local minima

A change in coordinates can also help to separate the different local minima. Let L’ be the loss function
dependent of x” and some additional discrete parameter k constraining the function to each known local
valley (containing only one minimum). Then, finding the global minimum reduces to finding the smallest
of all local minima

%, =argminL’(x’, k), (4.21)
x/

where k =1, ..., n; and ng is the total number of local minima. The global minimum is then

X = argmin L(g(x;)) . (4.22)
k
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4.5 Constrained optimization

Constraints (as defined in equation (4.2)) can be included into the optimization problem by adding penalty
terms to the loss

Ncon

Le(x) = L(x) + Y ¢(c;(x), 1), 4.23)

j=1

where ¢ denotes the penalty function, A is a tuning parameters and scales the penalty, and L. is the
modified loss function. The function ¢ should penalize all values of x outside the feasible region. A
common practice for a penalty is to use a quadratic function g, which increases when exceeding the
constraint boundaries:

b(x) 0 ifxecC (4.24)
x) = .
Aq(x) otherwise.

Consequently, when the iterations step outside the feasible domain, they are pushed back by the slope.
The function must be carefully scaled using A in order to superpose the loss function and the latter must
be defined outside C. Alternatively, so-called barrier methods, prevent the iteration to step outside by
superimposing a function which increases inside the region when approaching the constraint boundary.
This is achieved, for example, with a logarithmic function and a singularity at the boundary.

Both methods alter the loss function and therefore potentially find a different minimum than when
using no additional terms. Barrier methods work well with loss functions that are undefined outside the
feasible domain. More advanced algorithms to solve constraint optimization problems exist. However, in
this work, the above mentioned approaches were implemented due to their simplicity and transparency.
The iterative optimizers (quasi-Newton or line search) can be used together with the penalty function
without any further modification.
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5. Statistics and data association

An association decision relies on statistical assumptions and methods. A statistical decision is taken
when a new measurement is linked to other measurements or to an existing catalog object. The first
three sections of this chapter summarize the relevant statistical theory. The content is common textbook
knowledge (e.g. by Bar-Shalom et al., (2004) and Sivia, (2006)) and serves to introduce the nomenclature.
Section 5.4 addresses a typical problem which arises when using statistical methods, i.e. the proper
quantification and transformation of uncertainties. The last section describes current methods and
possible improvements for the task of associating new tracklets to catalog objects. The association
framework builds the theoretical foundation for the later derived tracklet-to-tracklet association.

5.1 Probability density functions

A continuous probability distribution of a random variable is described by a density function f (x). It is
defined as the derivative of the cumulative distribution

d
fx) = EF(x) (5.1

where F computes the probability that the random variable is less than a given upper value x,,, i.e.

P(x <x,)=F(xy) = /f(x) dx . (5.2)

The equations use vector notation to describe multivariate random variables, but they apply to scalar
variables as well.

Two probability density functions are used within this thesis. The first one is the multivariate normal
distribution

N(x;%,Cy) = f(x,%,Cy) = m exp{—%(x — J'c)TC;l(x -x)}, (5.3)
which describes the probability of a n,-dimensional x given the mean x, and the covariance matrix Cy.
The det operator computes the determinant of the matrix. The function is used, e.g., to describe the
orbital state estimates and measurement noise. The mean and covariance of the normal distribution are
the first and second moments of the density function, i.e. ¥ = E[x] and C = E[(x — X)(x — J?:)T], where
the expectation for continuous random variables is defined as

[

E[x] = /xf(x)dx. (5.4)

—00
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In the univariate case, the function is described by a standard deviation o and mean u

1 (x — %)%
fx,x,0,) = exp{—l—}. (5.5)
* o V2 2 o )%
The other used function is the chi-squared distribution for a scalar random variable x
1 My X
fng) = 5——x2 e 2 for x>0, (5.6)
22T(%)

where I" denotes the Gamma function and n, the degrees of freedom. The distribution can be related to
the multivariate normal distribution, i.e. if an n,-dimensional random variable is normally distributed as
described by (5.3), the scaled quadratic distance

d*(x) = (x - %) CH(x - %) ~ x*(ny) (5.7)

is distributed (~) according to the chi-squared distribution ( XZ) with n, degrees of freedom (Bar-Shalom
et al., 2004, pp. 57-58). The quantity d? is used to describe the statistical distance to or from a multivariate
normal distribution and its square root is commonly denoted as the Mahalanobis distance (Mahalanobis,
1936). The two density functions are illustrated in Figure 5.1 and Figure 5.2 along with their relationship.
The first figure shows a bivariate normal distribution for x = (x;, x2)". Three iso-lines indicate a certain
constant distance d? from the distribution and contain a certain fraction of the overall volume under the
function. The most inner one comprises ~ 68.27 % of the volume, the middle one ~ 95.45 %, and the most
outer one ~ 99.73 %. The chi-squared distribution with n, = 2is presented in Figure 5.2. The distance
values used for the iso-lines in Figure 5.1 are depicted with the vertical lines. The selected percentages
correspond to the o-boundaries commonly used with the univariate normal distribution, i.e. the interval
[-10,107] covers ~ 68.27 % of the distribution (20" =~ 95.45 %, 30" =~ 99.73 %).

Figure 5.1: Bivariate normal distribution of x = (xy, X2)". The contours (ellipses)
X1 depict lines of constant density (equivalently constant d* distance).

The bounding distances, from here on after called gates, are typically defined accounting for a certain
significance. With the known density function (5.6), gates are selected to cover a desired percentile, e.g. P
= 95%, using the cumulative distribution function P(x < x,,) = F(xy,n). The upper bound is computed
by inversion

x, = FY(Pn). (5.8)

Common gates for different significance values are listed in the table below. The values are listed for
n, = 21in accordance with Figure 5.1 and Figure 5.2. Additionally, the values for n, = 4 are shown as these
are mostly used for the association tasks in this work.
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Figure 5.2: Chi-square distribution f of x with 2 degrees of freedom. The vertical lines bound the shown percentage of
the distribution from the right (corresponding to the contour lines in Figure 5.1).

Table 5.1: Common gates for the chi-squared distribution with 2 and 4 degrees of freedom.

P[%] 10 20 30 40 50 60 70 80 90 95 99

xy(ng=2) 021 045 071 1.02 139 183 241 322 460 5.99 9.21
xy(ng=4) 106 165 220 275 336 4.04 488 599 778 949 13.28

5.2 Bayesian estimation

The joint probability density describing the distribution of two variables f (x, z) can be described in terms
of the conditional probability (likelihood of one variable given the other)

f(x,2) = f(x]z) f(2) = f(z]x) f(x). (5.9

In order to introduce a common nomenclature, x denotes now the estimated parameter and z the measure-
ments or data. Starting from (5.9), Bayes’ theorem is derived accounting additionally for the underlying
model M (background information such as a dynamical and/or measurement model)
Flxlz,M) = f(ZIx,M)f(x,M). (5.10)
f(z, M)

The posterior density f (x|z, M) then describes the probability of the parameter x given the measurements
and the model. The likelihood of the measurements f(z|x, M) accounts for the data noise. If prior
knowledge on the parameters is available, it is incorporated in f (x, M). Lastly, f(z, M) is referred to as the
evidence and can help to select an appropriate model (Sivia, 2006). When estimating the most probable
X, the evidence can be neglected as it is independent of the parameters. Hence, it is omitted from the
following derivations along with the model M.

The mode which maximizes the posterior density function is denoted as the maximum a-posteriori
(MAP) estimate

Xyap = argmax f(z|x) f(x) . (5.11)

If no prior knowledge is available, the maximum likelihood estimate (MLE) is searched for

XMmLe = argmax f(z|x) . (5.12)
X
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In both cases, the probability functions are maximized to get the most likely state estimate. Chapter 4
provides the necessary tools for such optimization problems. The estimation process in case of univariate
density functions is illustrated in Figure 5.3. The unscaled posterior function (depicted with the dashed
line) is obtained by multiplication of prior and likelihood. The scaling factor (evidence) is unknown but
the £yap estimate can still be determined. A first practical estimation problem is provided in the next
section. The presented methodology is repeatedly used in the following chapters.

fxly)
f(J’Ix)/’\

Figure 5.3: Illustration of example estimation results for a given scalar prior f (x), likelihood f (x| y), and posterior
density function f (y| x). The maximum a posteriori X yjap and maximum likelihood estimate X 1 g are indicated on
the bottom axis.

5.3 Classification

The association of a new observation z is interpreted as a classification based on Bayes’ theorem. Each
object is represented with a class name c;, where the index identifies the object number. In principle, prior
knowledge f(c;) on object probability can be included, e.g. when performing a survey for geostationary
objects, an observation of an object in a low-Earth orbit is unlikely. Following (5.10), the probability of
each object candidate given the new measurement is expressed proportionally with

f(cilz) o« f(zl|ci)f (ci) . (5.13)

In the simple case, each object is equally likely and modeled with the same probability. Consequently, the
prior is neglected in the following.

Each object is attributed with a state vector at an epoch and additional model parameters. The
parameters and their uncertainty are described with the multivariate normal distribution, i.e. the mean
vector x; and the covariance matrix Cy ;. The measurement noise is assumed to be normally distributed
as well with the mean z and covariance C, (see section 3.6). When comparing the two different functions,
first a common frame must be determined. One possible frame is the observation space, hence, the object
state density functions are transformed with a model function k. The outcome of this function is denoted
as the modeled observation. The modeled observations are random variables as well and can be described
again with a normal distribution (mean Z; and covariance C3 ;). This representation is not always a valid
choice. The transformation of density functions and resulting limitations are explained in the following
section 5.4.

The probability density function of the difference between two independent normally distributed
random variables Az; = z — Z; is given by the cross-correlation (equivalently convolution) between both
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describing density functions (Sivia, 2006, pp. 72-73)
f(Az;) = /f(z’)f(zg + Az;)dz’. (5.14)

In case of two normally distributed variables (as assumed here), a closed expression for the distance
distribution can be derived as

f(Az;)) = N(Az;,0,C, +C3 ;). (5.15)

The likelihood of the measurements given an object ¢; is modeled using this function, thus, f(z|c;) =
f(Az;). The goal of the classification process is to find the object which maximizes the likelihood.

¢; = argmax N (Az;,0,C, +Cyz;). (5.16)

Ci

When dealing with normal distributions, often the negative logarithm is minimized instead, i.e.

¢; = argmin —In f(z|c;) (5.17)

¢i
= argmin  In {det(21(C, + Cz,))} + (2 — ;) (C, + C51) (2 - Z)), (5.18)
ci
where the first term prunes large uncertainties of modeled measurements and the second term is the
statistical distance from (5.7).

All objects must be tested and the one which comes closest, i.e. will produce the smallest value in (5.17),
is associated. However, if catalog objects are closely-spaced and have large uncertainties in their states,
the association decision becomes sensitive to small errors and is ambiguous. An ambiguous association is
illustrated in Figure 5.4, where three modeled observations z; = (&;, 5)HT corresponding to the objects c;
are shown along with difference covariances C, + C3 ;. The covariances are depicted with lines of constant
probability (as in Figure 5.1). The new observation z (white square) is associated to the second object ¢,
in this example. However, it is also inside the significant domain of object ¢; (indicated by the 3 o-line
around Zz; covering 99.73 % of the distribution).

Figure 5.4: Bayesian classification for a new observation z (white
~<| square). Three classes (catalog objects) with modeled observations z;.
Each likelihood function is represented with the o -lines (explained
in the text). Dashed lines show the boundaries between the different
« classifiers.

Thus, the general association decision should be based on whether the difference Az; is in a statistically
significant part of the distribution. As described in section 5.1, certain significance intervals can be selected
for the multivariate distribution with the d2-distance. Using (5.7) and (5.15), the test quantity is computed
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by
d>=(z-2)"(C,+Cz)) Nz -%z)). (5.19)

Other distance measures between probability density functions exist, e.g. Kullback-Leibler information
or Bhattacharyya’s distance (Everitt and Skrondal, 2010, pp. 44,239). DeMars, (2010) and DeMars and
Jah, (2011) provide an overview on similarity measures used for space object cataloging tasks (e.g. sensor
management) and derive closed expressions for the multivariate normal density function. Gadaleta et al.,
(2012) test different measures for the special case of tracklet-to-tracklet association.

If the statistic is below a predefined threshold (see Table 5.1), the measurement is considered likely
to be generated by the object ¢;. Hence, the decision is now based on an individual assessment of
each object. However, as also indicated in the figure, multiple objects may pass the gate leading to
multiple associations of the same observation. The ambiguous association is particularly challenging
for observations of satellites flying in formations. One way of overcoming the ambiguities is to associate
loosely with an association weight. This follows the multi-hypothesis filtering approach as described e.g.
in (Bar-Shalom et al., 2004). The individual likelihood is scaled with the overall association likelihood and
then used as the weight for each hypothesis. If a measurement is erroneously mistagged, it results in a
false posterior state after an orbit improvement step. Thus the ambiguity might be resolved after further
measurements are obtained which cannot be associated anymore to the false candidates. The focus of the
thesis lies on the individual association. The efficient handling of a multi-hypotheses association problem
is shortly discussed Chapter 10.

5.4 Uncertainty transformation

The realistic representation of uncertainties is required in various space object catalog applications: the
association of tracklets during the catalog build-up, but also, for instance, when computing collision
probabilities between two satellites. The focus here lies on the first problem, nevertheless, the methods
are generally used wherever density functions must be transformed.

When transforming a random variable through a function z = h(x), the result is also a random
variable and thus also described by some density function. The mean x and covariance C, are assumed
to properly describe the initial distribution. Indices and accents from previous sections are omitted to
reduce notational clutter. The distribution of the transformed variable can be found by applying a linear
approximation of the transformation, i.e. using a first order expansion around the mean value

h(x)~h(x)+ J(x—X%X) ,where J = Z—Z . (5.20)

X=X
and inserting it into the definition of mean and covariance
Z=Elzl=h(%) and C,=E[(z-2)(z-2)"]1=JC:]". (5.21)

The distribution of the transformed variable is also described with the normal distribution under linear
assumptions. If & is nonlinear around %, the transformation can be a poor approximation.
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Alternatively, Julier, (2002) proposes to approximate the resulting density directly instead of approx-
imating the transformation. The so-called unscented transform samples the initial distribution with
sigma-points X';, where i =1, ..., nx. Each point is individually transformed with

Z; = h(X;). (5.22)

The sample mean and covariance are computed with
nx nx
z = Zwizi and Cz = Zwi(zi —Z)(Z,' —2)T, (5.23)
i=1 i=1

where w; denote the weights for each sigma-point and 27:1 w; = 1. Different schemes to define the
sigma-points and weights have been developed (Julier, 2002). Typically, sigma-points are selected along
the eigenvectors of the covariance matrix or the column vectors of its Cholesky decomposition. More
details can be obtained from (Julier, 2002; Julier and Uhlmann, 1997). The unscented transform will be
referred to as a non-linear transformation in the following to distinguish it from the one using the linear
transformation.

The mean and covariance of the transformation result can be also estimated by randomly sampling
the distribution. They are computed as well with (5.23), where all samples are equally weighted (1/nx for
large samples). A considerable amount of methods has been published on the analysis of density samples.
For instance, the samples can also be used to estimate higher order moments of the distribution such as
skewness and kurtosis (Everitt and Skrondal, 2010, pp. 397, 239). These moments provide information
on the geometry of the transformation, e.g. they can indicate some deformation w.r.t. to the normal
distribution. A large skewness indicates a lack of symmetry, while the kurtosis describes the peakiness or
flatness of the density function. Mardia, (1970) developed a formulation for the multivariate skewness

1 &
Pr=—r ) (Zi- 2)'cz-2)) (5.24)
X i=1
and kurtosis
1 &
po=s - lEZi-2'C @ -2 (5.25)

i=1

He used the terms to test if a set of samples originate from a normal distribution. As the multivariate
normal distribution is symmetric w.r.t. its major axes, the skewness £, is 0. Mardia’s kurtosis S, is n,(n, +2)
for a multivariate normal distribution, where 7, is the dimension of z. The kurtosis is normalized to 3 in
the following by subtracting the expected value for a normal distribution from S,. A deviation from this
value thus indicates that the function is more peaky or flatter than the normal distribution.

In order to illustrate the transformation methods and also their shortcomings, the deformation of a
satellite state uncertainty through orbit propagation is demonstrated. The satellite motion is reduced
to the planar case, i.e. observing just along-track and in-radial uncertainty. This has the advantage that
unfavorable effects of the transformation are easier to visualize. Starting from the apogee, a satellite
state located on a geostationary transfer orbit (a = 24,500 km, e = 0.7, i = 0°), is propagated for 1.5
orbital periods assuming two-body dynamics. The state is then located at the perigee of the orbit, which
is intentionally selected to increase the deformation effect. State and covariance are defined in terms of
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satellite-centered coordinates

y =(R,T,N,R T,N) and C, = diag (0%, 0%, 0%, 0%, 0'%, 0'12\-]) ) (5.26)
The local satellite-centered reference frame is defined as follows: the main axis is tangential to the orbit
(along the velocity-vector), the second one is parallel to orbit normal N, and the last is in-radial R direction
and forms the orthonormal basis. The initial distribution is described with the mean y,; and the diagonal
terms ogy = o1 = or1 = 10km, op; = 1m/s, 04, = 3m/s, oy, = 1 m/s. The distribution defined
by mean and covariance is randomly sampled with ny = 5000. The samples along with the o -lines are
shown in Figure 5.5. The distribution is projected onto the R X T plane for better visualization.
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—40 -20 0 20 40 Figure 5.5: Initial distribution of satellite state samples and o -lines of the de-

R scribing normal distribution projected on the R X T -frame.

After propagating each sample point for the specified time interval, the deformed distribution can
be observed in Figure 5.6. The o -lines of the projected distribution are again shown, once for the linear
transformation (left side) and once for the sigma-point transformation (right side). Both distributions are
poor approximations of the actual one. The distribution obtained from the linear transformation properly
describes the actual samples around the mean, but deteriorates as soon as the distribution bends. The
one obtained from the unscented transform covers most sample points, but overestimates the size of the
distribution.

Instead of visually comparing the samples and distribution in state space, the distance measure from
(5.7) can be used to see how much the sample distribution deviates from the theoretical chi-squared
distribution. Figure 5.7 shows the histogram of the d?-values calculated from the samples using the
covariance and mean from each of the two transformation methods. The figures show the same result
as before. The d?-values from the linear approximation show a good match to the theoretical function
close to zero (i.e. close to the mean). However, a the amount of samples with large d?-values is larger than
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Figure 5.6: Propagated satellite state samples propagated for 1.5 orbital periods in cartesian object-centered coor-
dinates. Left side shows the o -isolines of the linearly transformed function, while right side shows the result of the
non-linear transformation.
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expected. The dashed line represents the gate where theoretically 95% of the samples should be covered
(P = 95% and di ~ 5.99 according to Table 5.1, where the upper boundary x, is denoted with di in the
following for consistency). In this example, ~ 24% of the samples fall outside of the gate, instead of 5%
that should be. This effectively causes missed associations.

The sample distance values, obtained when using the non-linear transform, also resemble the impres-
sion from Figure 5.6. More samples lie within the region close to the mean value than they should (small
d? values). However, for larger d?-values the distribution matches the theoretical one well. The number
of samples above the previously defined gate accumulate to 4.9%. The overestimation of the significant
region size comes with certain disadvantages. In the presence of closely-spaced objects, this covariance
expansion can lead to multiple or false associations (as illustrated in Figure 5.4). The histograms are
again used in Chapter 8 to identify problems with the uncertainty transformations of the two proposed
formulations for the tracklet-to-tracklet association.

While some transformation can be properly transformed using the two described methods, others
cannot. If the satellite is propagated for a short duration, its uncertainty is mostly representable by
the transformation, while when propagating for larger durations it is not necessarily. Additionally, the
success of a simplified transformation depends on the initial covariance. A small covariance allows larger
propagation periods. The histogram provides an assessment of this validity for a given transformation
and propagation time. The time dependency of the covariance deformation is visualized using the 95%
association gate and the multivariate skewness and kurtosis as defined in (5.24) and (5.25). Figure 5.8 shows
the time series of accepted samples points, i.e. a?l.2 < di (P =95%) fori =1, ..., ny, once for the linear
and for the unscented transform. The state uncertainty is properly transformed for most time intervals,
but around the perigees. The situation deteriorates with larger propagation periods. The unscented
transform captures the right percentage of the distribution even around the perigee. The skewness and
kurtosis on the right side of the figure again illustrate the deformation of the distribution.

To overcome these issues, various researchers propose alternative uncertainty representations, such
as Gaussian mixtures as done by DeMars, (2010), calculating higher order moments using state-transition
tensors (Fujimoto et al., 2012), using the so-called Gauss-von-Mises distribution as in (Horwood and Poore,
2014), or using polynomial approximations (Jones et al., 2013). The different approaches typically require
additional computational resources and/or a rewriting of well-established orbit propagation methods.
The Gaussian mixture approximation as proposed by DeMars, (2010) detects the non-linearity of the
transformation from the dynamics, i.e., since orbit propagation is approximately volume-preserving,
the non-linearity is detected when the volume of the covariance changes after using the unscented
transform. Alternatively, Faubel et al., (2009) detects the non-linearity by determining an asymmetry in
the transformed sigma-points.

Rate

8 10

Figure 5.7: Theoretical chi-squared distribution (solid line) and actual distribution of d*-values for the linear (left)
and non-linear transform (right) using cartesian coordinates. The vertical dashed line represents the P = 95% gate.
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Figure 5.8: Change of uncertainty quantification errors in cartesian state space over two revolutions. The parameters
of the tested orbit are provided in the text along with further details. Left side shows percentage of samples passing
the gate (P = 0.95%) for the transformed covariance from the linear and non-linear transform. The right side shows
Mardia’s skewness (1) and the normalized kurtosis [3; over the same time period.

The initial multivariate normal distribution is split whenever a non-linearity is detected during the
transformation. The initial function is thus, after dividing it multiple times, represented as a sum of
weighted normal distributions. The weights and components are determined by an optimization scheme
guaranteeing good agreement with the single initial multivariate distribution. Each component is then
individually transformed using either the non-linear or linear transform. As the covariance volumes
reduce with each subdivision, the linear assumptions become valid at some point. Arbitrary shapes and
deformations can be covered with this formulation if enough components are used. Figure 5.9 shows
the transformed distribution of the example problem using 100 components. The initial distribution is
adaptively split using the approach by Faubel et al., (2009).

2,000
1,000
& 0
-1,000
—2,000 . . , . . . ;
-100 0 100 Figure 5.9: Transformed probability density function using an adaptively split
Ry Gaussian-mixture distribution.

Working with single normal distributions comes with advantages such as computational efficiency,
simplicity, and consequently transparency and implementation robustness. Instead of searching for an
appropriate representation, a different coordinate system can be used in which the transformation does
not become non-linear. Coordinates are favorable if the uncertainty remains almost normally distributed
over longer time-spans. Hill et al., (2012) compare different coordinate systems for their effectiveness in
radar-track association. Hill et al., (2008) propose to use object-centered curvilinear coordinates when
correlating radar-tracks to each other and to catalog objects. They use the Mahalanobis distance as in (5.7),
to compare two states. Their analysis contains also orbital elements, which show promising performance
as well. The mentioned curvilinear coordinates, however, allow a separation of position and velocity,
which helps to visualize the covariance. A similar formulation of the coordinates, as described by Vallado
and Alfando, (2014), is illustrated in Figure 5.10. They use the coordinates to describe relative motion of an
interceptor and target. The coordinate system is defined by a reference position # and velocity #. When
describing the position r in terms of the reference, the along-track arc length sy, cross-track arc length sy,
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and radial distance s are used. The values are computed using auxiliary positions r, and rj. The vector
r, is obtained by projecting r onto the reference orbit. rj, is calculated from by rotating r, to be aligned
with r.

Figure 5.10: Individual components of curvilinear coordinates st (tangential), sg (cross-track or binormal), and sy
(normal or in-radial). Illustration adapted from (Vallado and Alfando, 2014).

Figure 5.11 shows the propagated random states in the curvilinear coordinate system along with o -lines
of the linear transformed covariance matrix. Additionally, the histogram of the d?-values, the time-series
of samples passing the 95%-gate, and the skewness and kurtosis are shown in Figure 5.12 and Figure 5.13.
The gated samples now perfectly match the theoretical chi-squared distribution. The good representation
also holds for other epochs of the propagation time interval as illustrated by 8, and ;.
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00
-100 =50 0 50 100 Figure 5.11: Transformed samples in curvilinear frame and3 o lines illustrating
SR,2 the normal density function.
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Figure 5.12: Theoretical chi-squared distribution (solid line) and
0 2 4 6 8 10 qgctual distribution of d*-values for the linear transform using object-
d? centered curvilinear coordinates.
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Figure 5.13: Change of uncertainty quantification errors in curvilinear coordinates over two revolutions. The same
tested orbit from Figure 5.8 is propagated for the analysis. The left side shows the percentage of samples passing
the gate (P = 0.95%) for a covariance from a linear transform. The right side shows Mardia’s skewness (1) and the
normalized kurtosis (;).

5.5 Association of tracklets to catalog objects

The previous section discusses the difficult representation of state uncertainty propagation. An association
of state vectors to each other becomes relevant if the new observation provides enough information to
determine an orbital state, e.g. when correlating radar-tracks or long optical observation arcs. In this
work, the focus lies on short-arc measurement association. The tracklet provides only information on the
angles and angular-rates (cf. section 3.6). As proposed in section 5.4, the catalog state is propagated to the
observation epoch, where it is transformed into the observation space. Thus, the function h returns the
angles and angular rates at the observation epoch. The association decision is then based on the distance
metric (5.19). In principle, angles and angular rates form a curvilinear frame as well, i.e. they should
better represent the along-track deviation than cartesian coordinates. However, the transformation can
nevertheless introduce deformations as illustrated in the following.

The analysis from the previous section is repeated for the association of tracklets, i.e. nx = 5000
samples are randomly drawn from the initial catalog state distribution (same covariance as before in
satellite-centered reference frame) and propagated for a certain time interval. Instead of propagating
a satellite on the transfer orbit, the more likely case of a geostationary one is selected. This assures a
feasible observation geometry for the whole propagation period (neglecting other visibility conditions).
The time-series of the association performance using the 95%-gate is shown in Figure 5.14. The right
side shows the time-series of the 8; and $; quantities. Similarly as for the cartesian state coordinates,
the distribution deforms significantly after a certain propagation time. The conclusion is drawn from
the difference between linear and non-linear transformation as well as from the increase in kurtosis and
skewness.

The distribution of the samples for a critical epoch, i.e. local maximum of the deformation, at At = 5.48
days is shown in Figure 5.15. The figure visualizes the deformation in the angular projection of the uncer-
tainty distribution, while the time-series in Figure 5.14 uses the full angles and angular rates covariance in
the calculation of the quantities. Thus, the same limitations of the approximate transformation apply to
angles and angular rates as for the cartesian coordinate system. This difficulty needs to be considered
when developing a tracklet association method. The implications of an erroneous representation can be
observed in Chapter 8.
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Figure 5.14: Change of uncertainty quantification errors in angles and angular rates over six revolutions. The
parameters of the tested orbit are provided in the text along with further details. Left side shows percentage of samples
passing the gate (P = 0.95% corresponding to d? = 9.49) for the transformed covariance from the linear and non-linear
transform. The right side shows Mardia’s skewness (1) and the normalized kurtosis [3;.

As in the example from section 5.4, another coordinate system can be beneficial when comparing the
catalog state with the observation. Friih and Schildknecht, (2009) suggest to transform the observation into
state space by assuming an equal geocentric distance of catalog state and observed state. A comparison
in the state space can improve the performance, as the uncertainty in the observed quantities is usually
smaller than the one from the state. Consequently, a transformation of the observation covariance can be
less lossy as the other way around. If the covariance in state space describes the uncertainty in a realistic
way (e.g. when using orbital elements or object-centered curvilinear coordinates), the association can
thus become more robust. Robustness implies not only that most observations are successfully associated
to the respective catalog object, but also that the association performance can be properly calibrated.
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Figure 5.15: Satellite state samples propagated for 5.48 days in angular coordinates. Left side shows the o -isolines of
the linearly transformed function, while right side shows the result of the non-linear transformation.
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6. Orbit determination

Determining unknown parameters describing an orbit from a set of measurements is an inversion prob-
lem. Given a set of measurements, which constrain at least as many degrees of freedom as there are
unknown parameters, an orbit can be determined. The different orbit determination tasks which have to
be performed for cataloging space debris are: initial orbit determination and orbit improvement. The
latter is explained first in this chapter as it motivates the need for good initial states. Afterward, different
preliminary orbit determination methods and their difficulties with short optical arcs are presented.
Finally, possible ways to overcome the difficulties by including restricting assumptions are provided.

6.1 Orbitimprovement

As outlined in the previous sections, an orbital state y is defined using six parameters (here a cartesian
state or equivalently orbital elements). Typically, force model parameters p are unknown (unless provided
by satellite operators) and are estimated from the data as well. Additional parameters q (e.g. biases) are
introduced in the estimation process to overcome measurement model deficiencies. The estimated orbital
parameters are then summarized in the variable

y
x=|p (6.1)
q
The observations z are described with the function k by
z=hx)+e, (6.2)

given the orbit parameters and accounting for the presence of noise €. Measurements in the context of
this thesis are angles only (e, ¢), or angles and angular-rates (d, ).

Similar to the derivations in Chapter 5 and Chapter 7, the inversion of equation (6.2) is derived as
a Bayesian estimation process. The explanation here follows the book of Bar-Shalom et al., (2004), but
also borrows nomenclature from (Beutler, 2004) and (Montenbruck and Gill, 2000). Starting with Bayes’
theorem (5.10), the posteriori probability density function of the orbit f(x|z) can be computed from

f(xlz) = M, (6.3)

f(2)

where f(z|x) is the likelihood of the measurements, f(x) the prior knowledge, and f(z) the evidence.
Analogously to the derivations in section 5.2, the maximum a-posteriori estimate is given by

X = argmax f(z|x)f(x), (6.4)
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assuming prior information on the orbit is available (e.g. from the satellite catalog). If no a-priori density
function is known, the maximum likelihood is estimated instead, i.e.

X = argmax f(z|x) . (6.5)

It is now assumed that £ and x are normally distributed according to (5.3) with zero-mean noise (E[e] = 0
and covariance E[esT] =Cg)

f(&) =N (£0,Cp) . (6.6)
The likelihood function is then computed with
f(zlx) = N (z; h(x),Cy) (6.7)

If the orbital state x,, of a catalog object is known along with its corresponding covariance Cy 4, then the
prior is written as

f(x) =N (x;%4,Cx.0) . (6.8)

The two last equations are inserted into (6.4) and (6.5). Instead of searching for the parameter which
maximizes the maximum a-posteriori or likelihood respectively, the following two loss functions are used.
They minimize the logarithm of the corresponding density function and consequently maximize the
functions. For the maximum a-posteriori, the following loss function

L(x) = (z — h(x))T C;' (z = h(x)) + (x — x2)" C;., (x — x4) (6.9)
whereas for the maximum likelihood this function
L(x) = (z - h(x))' C;' (z — h(x)) , 6.10)

is minimized. The different cases will not be explicitly separated in the following as the principle remains
the same. The respective loss function is minimized and the orbit estimate is finally given by

X =argminL(x). (6.11)
X
Several approaches have been developed to determine this minimum. One option is to sequentially go
through the measurements and update the a-priori state. An alternative option is to use the batch least
squares formulation. The latter will be shortly explained here.

The loss function can be, in principle, minimized using the optimization approaches from Chapter 4,
e.g. by applying the Newton method. However, the structure of the function can be exploited using the
so-called Gauss-Newton method (effectively a simplification of the Newton method). The non-linear
measurement function k(x) is linearized about a current estimate x'! (starting with a guessed initial point
x'%) with the first order Taylor expansion

h(x) ~ h(x"™) + J(x)(x — 21y, (6.12)
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Finding the minimum is equivalent to finding the root in the derivative of L (similar to (4.5)), which
defines the following system of linear equations after the insertion of (6.12) into the function

0= C;! (z - h(x'")) + €11 (1) (x - x'7), (6.13)
where x is unknown and can be solved for, and the Jacobian at x'! is

s = 9%

6.14
EP (6.14)

x=x!

The solution to (6.13) is denoted as x'*!! and provides an improvement w.r.t. the previous iterate. Conse-
quently, the process is iterated until convergence, i.e. the correction between two consecutive improve-
ments is negligible or the loss function value at the estimate is not changing anymore. The presented
process is commonly called differential correction and describes only one of the possible ways how to
minimize the function. Other methods use damping factors to scale the improvement step or so-called
trust-region approaches (e.g. Levenberg-Marquardt) to increase the convergence radius.

Still, the approach serves the purpose to illustrate the need for a good initial state guess x'°. If the
guessed point largely differs from the true solution, the iteration might diverge. It could either find
another local minimum of the loss function or not find any at all. The convergence radius is larger with
more advanced update schemes. Nevertheless, good starters are still required to find the right valley of
the loss function. The dependency on good initial values motivates the next section about initial orbit
determination.

6.2 Preliminary orbit determination

As discussed in the previous section, a sufficiently good estimate of an orbital state is required to perform
orbit improvement. Sufficiently good means that the estimate is close enough to the final solution
(the minimum of the loss function), so that the iteration converges. Chapter 2 shows that at least six
independent parameters are required to describe a two-body dynamics orbit. Consequently, at least six
independent observations must be provided to determine a first orbit. For high-altitude orbits, a set
of optical observations as described in Chapter 3 is taken to compute the first estimate. A line-of-sight
direction is described by the two angles: right ascension and declination. Thus, at least 3 pairs, or three
line-of-sights u; at three observations epochs t; where i = {1,2,3}, are required to perform the initial orbit
determination.

Classical methods have been derived by Gauss and Laplace. Gibbs, Herrick and Gooding, (1996)
published more advanced versions of it. For more detailed derivations, the reader is referred to (Beutler,
2004; Escobal, 1965; Montenbruck and Gill, 2000). The different approaches can be categorized according
to the formulation used to represent the orbit, i.e. the initial-value formulation and the boundary-value
formulation. As described in Chapter 2 both representations can be used to uniquely define an orbital
state. Here, one approach of each formulation is outlined. The different formulations will be likewise used
later in the tracklet association method. The methods are outlined in order to illustrate the deficiencies
when dealing with real observations.

6.2.1 Initial-value formulation

Laplace’s solution is selected as a representative initial-value approach due to its simple derivation and
transparency. Laplace merges the information of the three line-of-sights and the time difference between
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them, to determine the line-of-sight u at a mean epoch and its first and second time derivative i and ii.
Inserting the acceleration from (3.24) into (2.2) gives a non-linear equation in three unknowns (topocentric
range p and its time derivatives p and /)

- . .. He

R + pii + 2p0 + pu = —W (R+pu) . (6.15)

r

Substituting the geocentric distance ||r|| = r and taking the time derivative on both sides of the equation
with (u X #@t) gives the topocentric distance as a function of r

Ho

p(r) = —-—=R-(uxu)- R (ux it)) (6.16)
r

Gﬁiﬁfﬁ(

The initial orbit determination reduces to finding the roots in

0=r—|IR+p(r)ul. 6.17)
With the known root r, the range-rate

Ho

p(r) = ——R-(uxit)-R-(ux u)) (6.18)
r

(uxit)-u (
is computed. Range p and its rate are then inserted into equations (3.22) and (3.23) to determine the
position r and velocity 7, i.e. the state y at the mean epoch.

6.2.2 Boundary-value formulation

Gauss proposed a method to determine the positions of celestial objects based on three line-of-sights.
A detailed derivation of Gauss’ method can be obtained from (Escobal, 1965). Gibbs, (1889) and Herrick,
(1971) extended the method by additionally computing the velocities based on three position vectors.
Gauss uses the principle that the two outer line-of-sights and the corresponding topocentric ranges (if
they were known) fully describe the orbital state, i.e.

ri=R; + p1 U and r3 = R3+ pP3U3 . (6.19)

The position at the central observation is then described as a linear combination of the outer positions,
assuming coplanar motion

F2 = mry + narp (6.20)

It is furthermore possible to express the range values at the outer epochs p; and p, in terms of n; and
n, Starting with approximate values for these two quantities, the orbit is improved using fixed-point
iterations.

The situation for an asteroid orbit determination is illustrated in Figure 6.1. The observation geometry
in the figure is taken from the example in (Bauschinger, 1906, pp. 316-320). Bauschinger describes a method
named variation of geocentric distances, where he alters the ranges p; and p3 to obtain the astrometric
place at the center epoch (namely the line-of-sight it,). He uses a finite difference scheme to update the
guessed range values and an approximate motion model. He iteratively improves the bounding range
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values until the computed line-of-sight i1, approximates the actually measured u; as good as possible, i.e.

X =argminL(x) where L(x) = |lito(x) —u,|| and x = (py, p2). (6.21)
X
482 Petrina
/ Earth’s orbit
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Figure 6.1: Initial orbit determination of the asteroid 482 Petrina. Measurements taken March 7, March 30, and May
71902. The orbits of Mars, Venus, and Mercury are denoted with dotted lines.

In fact, he used angular differences at the middle epoch, but the line-of-sight serves to show the
principle. In his book he notes, that the method can be easily extended to more than three observations.
Herget, (1965) later published an algorithm to perform this distance variation on a computer using as
many observations as wanted. Gooding, (1996) developed a method very similar to this approach to
determine the orbit from three line of sights. However, he does not use an approximate motion model,
but instead the solution to the two-body boundary-value problem (cf. section 2.2). For the solution
he uses a Newton-Raphson multivariate root-finding procedure. The boundary-value problem can be
solved for multiple revolutions and consequently Gooding’s approach allows the combination of optical
observations from different revolutions as well. It can be therefore used to determine initial orbits using
tracklets of geostationary objects (only the angular information) from three different observation nights.

6.2.3 Sensitivity to errors in very short arcs

Equation (6.16) and (6.18) reveal a major challenge, i.e. the line-of-sight acceleration comes up in the
denominator of the function. Short arcs will lead to small estimates of this quantity with relatively
large errors due to noise, which are effectively amplified when computing the unknown quantities. The
preliminary orbit determination methods using the boundary-value formulation suffer from the same fact
as the initial-value methods when dealing with very short arcs. That is, the curvature of the observed arc
is used in the determination process. For Gauss’ method, it appears in the denominator when computing
the ranges p; and p; from n; and n, (Gronchi, 2004). Gooding’s approach on the other hand suffers from
the sensitivity of Lambert’s problem to short arcs. The computation of the semi-major axis is sensitive
to small angular errors for very short time intervals between the epochs. Additionally, a small central
angle between two position vectors will make the orbital plane orientation more sensitive to errors in the
pointing of the position vectors.
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The sensitivity of the classical preliminary orbit determination methods is illustrated in Figure 6.2.
The orbits defined by the erroneous observations (gray circles) are completely different from the one
connecting the three true observations (black circles).

9

R AN Figure 6.2: Visualization of the short-arc problem: small errors in ob-
N o servations can result in large orbital errors. Dashed gray lines show
N B erroneous curvature of orbit solutions using gray circles, while black

circles denote the truth. Figure adapted from the sketch in (Gronchi,
2004).

6.3 Preliminary orbit determination with restricting assumptions

Considering a special orbital region and observation constraints, certain geometric simplifications can be
made to obtain first initial orbit states. This helps to exclude the possibly corrupted angular accelerations
from the orbit determination process, with errors expected to be distributed as in (3.18). However, the
simplifications also restrict the solutions to the selected orbital classes. Typically, geostationary and also
transfer orbits are located at low inclinations. One simplification could thus be to constrain the orbital
plane. In the following, methods which use this or other assumptions are presented. In contrast to most
traditional approaches which use a set of line-of-sights, the methods here are formulated around the
measured line-of-sight # and its derivative #. As the derivative is obtained from a line-fitting process (see
section 3.6), it can smooth out errors if more than two line-of-sights are used for the fitting.

6.3.1 Fixed orbital plane

The orientation of the orbital plane is fixed by either specifying the right ascension of the ascending node
Q and inclination i or the normal vector k. This reduces the degrees of freedom to 4 and hence requires
only 4 independent observations, e.g. two angle pairs or one angle pair together with the rates.

In case of a zero inclination orbit, the normal vector is parallel to the Earth rotation axis, i.e. h = (0,0, D'
When the topocentric line-of-sight u# is known, the geocentric position is determined by computing the
intersection between the geocentric line-of-sight (R + p u) and the orbital plane. The intersection is then
found by

h-R

h-r:0—>p:—h—. (6.22)
‘u

Analogously, the geocentric velocity is obtained using

h-R+h-pu

h-F=0->p= -
-u

(6.23)

Inserting the intersecting range p and range-rate p into (3.22) and (3.23) yields the state on the fixed orbital
plane.
6.3.2 Circular orbits

Another good simplification for geostationary orbits is the circular orbit. Circular orbits have four degrees
of freedom, i.e. the orientation of orbital plane, the radius, and the location on the ring. A measured
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line-of-sight and its derivative constrain the motion in four degrees, thus, provide sufficient information
to obtain an orbital estimate. Beutler, (2004) uses two line-of-sights (each constraining two degrees of
freedom) to perform the preliminary orbit determination for a circular orbit (similar also to the approach
by Dubyago, (1961)). He sets up a root-finding problem to find the semi-major axis which zeros the
difference between a computed angular separation with the measured one.

Two properties of circular orbits are used here to obtain the initial estimate: firstly, the velocity 7 is
always perpendicular to the position vectors, secondly, the magnitude of the velocity 7 is constant and
only depends on the semi-major axis (equal to the geocentric distance r for circular orbits). The here

i

71l

and at the apogee of a geostationary transfer orbit. The normalized
velocity vector is shown to illustrate the orthogonality for both orbits

“ Figure 6.3: Observation geometry for object on geostationary orbit

presented approach is equivalent to one by Fujimoto et al., (2010) with minor modifications. The two used
properties, effectively constraints, are mathematically written as

r-i=0 and 7-F=/2=%2, (6.24)
r

Expressing the position and velocity in terms of observations (equation (3.22) and (3.23)) and inserting it
to the first constraint yields

r-i=(R-u+R-u)p+R-up+pp=0, (6.25)
which is rearranged for the range-rate p. The rate is thus defined only by the topocentric range

(R-iu+R-u)p

(6.26)
R-u+p

p(p) =

Using (3.22) and simplifying with r - r = r? gives a function of the range depending on the geocentric
distance r:

p(r)=-R-u++(R-u)>2—R-R+r2 (6.27)

Consequently, the range-rate can also be defined in terms of the geocentric distance, i.e. p(r). Inserting
p(r) and p(r) into second constraint from (6.24) gives a root finding problem

0L 20y Mo (6.28)
r

which is numerically solved. An example of the function in (6.28) is shown in Figure 6.28. The resulting
root r is then used to obtain the preliminary orbit estimate. The derivative w.r.t. r is easily derived from
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the equations above and allows the efficient usage of Newton-type root finding methods.

20 -

2 — L2 [km?s72)

20 | |  Figure 6.4: Root-finding problem for preliminary orbit determination
assuming a circular orbit. Observation taken from a geostationary
object (sub-satellite longitude A = 100° and station located at A = 30°

—40 \ \ \ and latitude ¢ = 40°). Solution is the intersection of dotted line and
0 2 4 6 solid path. Function similar for the apogee orbit determination in
r [10* km] section 6.3.3.

6.3.3 Apogee orbit determination

Objects on geostationary transfer orbits are typically observed at their apogee. Viisild, (1939) computed
orbits with two line-of-sights assuming the objects to reside at their apsides during observation. Here,
similarly to the approach for circular orbits, the apogee cases are constrained by

r-7r=0 and 7 -F=7"=—-—, (6.29)

where the velocity is again perpendicular to the position. The orthogonality assumption (left side) con-
strains one degree of freedom, which leaves five independent unknown parameters. Therefore another
parameter must be fixed in order to obtain the full state. Vdisild, (1939) proposed to guess either the
geocentric distance r or the eccentricity (as in the right side of (6.29)). If the distance r is known, the
topocentric range p is calculated from (6.27) and consequently the range-rate p from (6.26). After calcu-
lating both variables, the orbit is ultimately known (cf. equations (3.22) and (3.23)). If the eccentricity is
assumed to be known, then, analogously to the circular case, a root finding problem is obtained

(1-e)ue
r b

!
0=7%r) - (6.30)
which must be again solved using numerical methods. As transfer orbits typically circularize during
their life-time, different eccentricity values should be tested in order to compute at least one feasible
preliminary orbit candidate. However, as long as no further information on the eccentricity of the orbit is
available, each candidate is equally likely.
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Only the reliable information of the tracklets, i.e. the line-of-sight # and its first time-derivative i, is used
for the association and initial orbit determination. This information constrains the equations of motion
in four degrees of freedom. As an orbital state is uniquely defined by six independent constraints (see
Chapter 2) the orbit determination problem becomes under-determined. The missing parameters for a
full orbital state in the topocentric reference system are the range p and range-rate p (with the position
defined as in (3.22) and the velocity as in (3.23)). They are called free or hypothesized parameters in the
following as they can be altered in order to derive a 6-dimensional orbital state from the 4 independent
tracklet parameters. In principle, three different strategies can be used to find an orbit fitting the tracklet:

1. preliminary orbit determination using restricting assumptions (cf. section 6.3),
2. association to already cataloged objects (cf. section 5.5),
3. association to other tracklets (derived here).

The first strategy is only successful as long as the assumptions are valid. Assuming circular orbits, is a
reasonable and mostly valid assumption for objects on geostationary orbits. However, it is not a good
approximation for other objects close to or intersecting the geostationary ring (e.g. on geostationary
transfer orbits).

An association to already cataloged objects is only possible if the object’s location is well known. Of
course, new objects cannot be linked to known cataloged objects. However, re-observed old objects might
not be successfully associated as well due to unpredictable dynamics or orbital maneuvers. The cases
where both previous strategies fail, motivate the tracklet-to-tracklet association as developed in this work.
A method is derived, which uses the information from two observations to obtain an orbit estimate and
an association probability. The latter is used to decide, whether two observation arcs belong to the same
object. The used information for the orbit and the decision is u;, i, u,, and i, at the epochs 4 and % or
alternatively

@1,d1,61,07  and @y, d, 82,02 (7.0

along with the respective uncertainties. The observations from two epochs constrain the equations of
motion in eight degrees of freedom, which results in an over-determined system to solve.

Similarly to the presented preliminary orbit determination cases in section 6.2, the methods employ
two different representations, namely the initial-value and boundary-value formulation. Both methods
share the same working principle. The observations are divided into two groups: one is augmented with
a hypothesis to define a state, while the second group is used to discriminate between good and bad
solutions. Then, irrespective of the formulation, a optimization scheme is used to find the best fitting
orbit.
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7.1 Initial-value approach
The observation vector from the first epoch #
— : S \T
zy = (@, d1,61,01) (7.2)
is augmented with the hypothesized topocentric range and range-rate
x=(p.p)T (7.3)

which then defines the orbital state with

yi(x) = (f(pl? ) . (7.4)
r(p1, 1)

The tilde notation is used to indicate the modeled variables, which are intermediate hypotheses. The
test state is propagated to the second observation epoch t, as described in section 2.1. Subsequently,
the resulting y,(x) is transformed back to observation space, which gives a modeled observation z,.
Additionally, together with the observation, the uncertainty of the first measurement C, is transformed
to the second epoch (C3,) using x and the non-linear approximation as described in section 5.4.

The measurement association is analogously derived to the classification in section 5.3. The classifica-
tion test as proposed in the latter named section, cannot be directly applied but requires first an orbital
estimate defined by x. The proportional probability of the variable x given the two observations z; and z,
is computed according to Bayes’ theorem

[ (x|z2, z1) < f(z2]x,21) f (x]z1) . (7.5)

The value x is sought which maximizes this function and consequently gives the best estimate. The prior
f(x|zy) is assumed to be constant inside a feasible domain C and is therefore neglected. This assumption
is not always valid. More details about this admissible region and about the possible invalidity is provided
in the following section 7.1.2. The remaining likelihood is modeled similarly to (5.15) with the difference
between the modeled and the observed measurement

f(z2lx,21) = N(Z2 — 22;0,Cz, + C_,) . (7.6)
The maximum likelihood estimate for the hypothesis x is then

X = argmax f(z2|x,21) (7.7)
xeC
where C denotes the admissible region in which the prior is assumed to be constant. The function can be
maximized using the optimization methods as described in Chapter 4. Instead of maximizing (7.6), the
negative logarithm of the same function is minimized to find the identical point

& = argmin {1Indet(21(Cz, + Cz,)) + (22— 22)' (Cz, +Cz,) " (22— 22) |, (7.8)
xeC
where the first term prunes large uncertainties C;, and the second term gives a measure how close the
modeled Z; is to the actually observed one.
When deciding whether two tracklets belong to a common object, the second term becomes relevant
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as it can be directly used to gate observation pairs (cf. with the Mahalanobis distance as provided in (5.7)).
The location of the minimum of the loss function

L(x) = (22— 22)" (Cz, + Cz,) " (22— 22) (7.9)
is denoted with

X4 = argmin L(x) . (7.10)

xeC

and the loss function value at it
L(&y) = d? < L(%) (7.11)

can be gated using the thresholds in Table 5.1 for the chi-squared distribution with 4 degrees of freedom.
The assumption is valid if the probability density of z, — Z; is assumed to be normally distributed with
zero mean and covariance Cz, + C,,. Neglecting any bias or transformation errors, any value within
the significant region of the distribution indicates that the observations originate from the same object.
Otherwise, the mean will be shifted, leading to a non-central chi-squared distribution. In practice, un-
modeled dynamics or non-linearities affecting the density transformation lead to a decentralization of
the distribution. Therefore, thresholds can be selected considering the actual distribution.

The estimate X4 describes the orbit which approximates both measurements best but not the one
which maximizes the likelihood. The difference between the maximum likelihood estimate x and % is
illustrated in Figure 7.1. The figures shows the two modeled density functions (simplified to one dimension)
of each estimate. In this example, the statistical distance d? is equal for both estimates, however, the
likelihood of x is larger due to the smaller modeled covariance.

Figure 7.1: Comparison between maximum likelihood estimate X
[ and minimum of loss function %4. The scaled distance d* is the
Z2(%)

same for both points for the illustrated example (1 o -distance of the
univariate normal distribution).

Z2(%q) Z2

If the covariance pruning term is approximately constant in the vicinity of the local minimum, then
X4 ~ X gives a good initial estimate. The subscript d is dropped in the following derivations for notational
simplicity. Afterward, an orbit improvement can be performed, either using the log-likelihood from (7.8)
or directly a least squares approach with the angular data. The latter has the advantage of using the full
information from two tracklets, rather than using the derived mean angle and angular rate quantities.

7.1.1 Loss function topography

The loss function defined above, evaluated at feasible x values, is illustrated in Figure 7.2. The feasible
range is defined in section 7.1.2. A geostationary object at longitude A = 100° is observed from a ground-
based telescope with coordinates 4 = 30° and ¢ = 40° (longitude and latitude). This example will be used
throughout this chapter. The satellite is once re-observed in the same night after three hours and in the
consecutive night after 27 hours. Measurement uncertainty is for simplicity modeled with oy s = 2 ”” and
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0 4.6 = 0.004 "’ /s which corresponds approximately to 5 measurements within one tracklet, a spacing of
about 20 seconds, ox = 0.5 "/, and o ~ 2 ”. The logarithm to base 10 of the loss function is plotted in
order to emphasize the shape of the topography. As can be seen in the figure, the function contains one or
several minima located within narrow valleys. The number of minima increases with the time interval
between the measurements.

In order to interpret the topography, the loss function is decomposed into two functions. The loss is
effectively a linear combination of the scaled angular and angular rate differences (between modeled
and observed ones). Both parts are illustrated in Figure 7.3 for the 27 hour case. The pattern from the
difference between angular positions is dominating in the combined loss function. This is caused by the
large uncertainty of the angular rates (the measurement uncertainty as well as the propagated modeled
uncertainty). A large uncertainty scales the difference to a small value and the better known angular
position becomes more influential. Similar to Lambert’s orbital boundary-value problem (see section 2.2),
an angular position can be approximated for different numbers of completed full and half revolutions.
This number is conveniently described with the variable k as in the previously mentioned section. This
property is illustrated by overlaying the loss function from above with contours of equal k-values. It can
be observed in Figure 7.4 that the valleys are distributed between the contour lines.

The difference in angular rates shows a different pattern. It resembles the property from the angular
difference, i.e. the angular rates differences are locally smaller for different numbers of completed revo-
lutions (and thus different semi-major axis values). The function can be further divided by geometrical
considerations. Neglecting orbital constraints, the modeled angular rates at the second epoch can approxi-
mate the observed ones in two different geometrical ways: with the modeled range-rate pointing outwards
p2 > 0 or inwards p, < 0. Figure 7.5 illustrates two possible approximations to the line-of-sight derivative
for different orbits. Figure 7.6 shows the p = 0 boundaries on top of the angular rate loss function. In
combination with the k-boundaries, the local minima appear in separated regions. The geometrical
separation does not, however, guarantee that all minima are logically separated.

Summarizing the discussion about the loss function topography: the initial-value loss function in its
standard form (using range and range-rate as free parameters) is a difficult multi-modal optimization
problem. Restrictions (e.g. k-intervals or p boundaries) and coordinate transformation can improve the
stability and convergence of its solution. The latter will be explained in the following sections. Alternatively,
the angular rates can be dropped from the discriminating loss function. With typical measurement
properties (uncertainty as described above), the angular rates at the second observation epoch play a
minor role in the loss function. The dominating discriminators, namely the angular variables at the second

At =3h At = 27h logo L
T T T T 12
41 — [ — 10
% 2| 8 = 8 8
_E of —— | & - 6
S - 7 . 4
-4 |- = 2 = 2
| | | | | | | | | | | | 0
2.5 3 3.5 4 4.5 5 2.5 3 3.5 4 4.5 5
p [10* km] p [10* km]

Figure 7.2: The loss function topography for an example geostationary object (explained in text). The left figure shows
the topography for a re-observation time of 3 hours and the right one shows it for 27 hours.
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Figure 7.3: Decomposition of the loss function. The left side shows difference between measured and modeled angles.
The right side illustrates the influence of angular rates, i.e. angular rate difference between modeled and observed ones.
The differences are not scaled with the uncertainty. The gray color ranges between the maximum and the minimum
value of the respective function.

At =27h

p [km/s]

Figure 7.4: Difference between modeled and observed angles

- for complete feasible domain. The local valleys are bounded

| | by the dotted lines denoting the k -intervals. Each bounded

25 3 3.5 4 45 5 subdomain corresponds to one number of completed full and
p [10* km] half revolutions.

epoch, are mostly affected by the angular rates at the first epoch. This can be shown with

002, 5 002 (7.12)
— 0 — 09, .
891 o 801 o

where 6 represents both angles. Consequently, the loss function is not very sensitive to errors in the
angular variables, but to ones in the angular rates. Additionally, the uncertainty in the modeled angles
due to the angular rate uncertainty is typically larger than the one of the measured angles, i.e.

0,(%, 21) > 0, . (7.13)

Considering that a bias affects only the mean angles, its effect on a practical loss function is negligible.
Furthermore, the orbit is fully described by six independent quantities, i.e. angular position at both epochs
and rates at first. Instead of finding the minimum, a non-linear system of equations can then be solved,
e.g. the difference between modeled line-of-sight and observed one at the second epoch. This can be
achieved with numerical root-finding algorithms as discussed for the Lambert’s problem in section 2.2.
The reduction, however, comes with the cost of losing information. In this work, the reduction is not
applied in order to develop general methods independent of the specific telescope setup.
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Figure 7.5: Illustration of two possible orbits with the same line-of-sight time-
derivative it with equal line-of-sight u. The telescope is located at R.

p [km/s]

Figure 7.6: Difference between modeled and observed angu-

e lar rates for complete feasible domain. The local valleys are

| bounded by the dotted and the solid lines. The first denotes

25 3 3.5 4 45 5 the k -intervals as in the Figure 7.4. The solid lines denote the
p [10* km] range-rate boundaries as explained in the text.

7.1.2 Admissible region

The two dimensional space of hypotheses x, essentially the space of possible orbit solutions for one
observation z,, is restricted using the admissible region concept. Milani et al., (2004) and Tommei et al.,
(2007) allow only stable orbits around a central body. Hyperbolic and parabolic trajectories connecting
the two observations are excluded by defining a region where the energy of all candidates is negative

Ce(x) ={x: E(x) <0}, (7.14)

with the energy per unit mass given by (2.15). Inserting (3.22) and (3.23) into (2.15) gives the energy (or
alternatively the semi-major axis a) dependent on p and p

2e=E - 2 2R up+ f(p) (7.15)
a

where

2u

o ST . ST 7
f(p):uTup2+2R up+R R+ ——.
IR + pull

(7.16)
The energy equation is quadratic in the range-rate variable p, with the symmetry axis located at the vertex
b= —R'u. (7.17)

If a value for the energy and a range p are provided, the equation is solved with

pr2 = vt Ae (7.18)
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where the discriminant
Ag = p— f(p) — 2& (7.19)

must be positive. An analytic expression for the energy boundary is therefore given, which is beneficial for
a coordinate transformation in section 7.1.3. This property causes the following: for each fixed feasible
range p, the solution with minimal energy is at the vertex p,. Alternatively, for each energy level, the
maximum range value py is also at py.

In addition to the energy constraint, Maruskin et al., (2009) force the perigee of the solutions to stay
above a feasible height

Cperi(x) ={x: ||rperi(x)” < T'min}» (7.20)

in order to guarantee that the candidate objects do not de-orbit within the next revolutions. A common
choice for a least allowed perigee height is 200 km above surface.

Energy and perigee bounds are natural constraints, i.e. no real objects are expected to lie outside the
region. In most cases, however, a specific orbital domain is of interest, e.g. the geostationary ring. The
solutions can be additionally bounded using constraints on the orbital elements (DeMars and Jah, 2013;
DeMars et al., 2012). These could be the semi-major axis a

Ca(x) ={x: anin < a(x) < Amax)} . (7.21)
or eccentricity e

Ce(x) ={x:e(x) < emay/ - (7.22)
The intersection of all constraints defines the final admissible region:

Cx)=C,NC,NCp. (7.23)

The different constraints are illustrated in Figure 7.7 for the geostationary example object.

p [km/s]

Figure 7.7: Admissible region boundaries for a geostationary
satellite. Details are provided in the text.

p [10* km]

Semi-major axis and eccentricity constraints cannot be easily applied to geostationary transfer orbits,
as they vary considerably. The apogee height is more suitable, as objects can only be observed above a
certain height. Objects in lower altitudes move to fast w.r.t. the observer and are typically not observed in
survey scenarios. The constraint is

Capo(x) ={x: ||rapo(x)” > Tobs)s (7.24)

where rops is the minimum height where objects can be observed. The admissible region constraints must
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be carefully selected in order not to be too strict or to loose. Loose constraints increase the computational
burden, while strict ones lead to a loss of associations.

As discussed in section 3.3.1, the inclination of near-geostationary objects typically varies between
+15°. As can be observed in Figure 3.4, the actual population of objects follows a certain pattern due to the
long-term dynamics in the respective region. The orbital planes precess around the Laplace-plane over
approximately 53 years. This prior knowledge can be incorporated in the admissible region definition.
The feasible orbital planes are separated of the Laplace-plane normal k; by an angle of abouty = 7.5°,
thus, the boundary is defined by

Co(x)={x:y—-Ay <arccosh(x)-hy <vy+ Ay}, (7.25)

where Ay is used to cover also objects drifting away from the perfect precession axis. The normal is
computed from the initial position and velocity

r(x) X r(x)

_— 7.26
I (x0) < F @)l (7.20)

h(x) =

The bounds covering the likely distribution of orbits are shown in the Figure 7.8.

p [km/s]

Figure 7.8: Admissible region boundaries for a geostationary
satellite considering the likely distribution of the geostationary
region.

p [10* km]

Region segmentation

Besides separating feasible orbits from unfeasible ones, the admissible region itself is segmented using
similar constraints. As described in Chapter 4 it is favorable for numerical optimization methods to
minimize functions which contain only one local and thus global minimum. If this is not possible, the
likelihood of catching every local minimum and therefore also the global one using heuristics increases
with a lower number of local minima. As shown in the previous section, the valleys of the loss function are
located along and within certain boundaries. Thus, as suggested in (Siminski et al., 2014a), it is beneficial
to restrict the solution space to a fixed number of completed half orbital revolutions k. Additionally, the
direction of the range-rate at the second epoch p, can be used as a boundary definition. The number
of revolutions in between measurements is unknown, but can be gated using the same requirements as
above (e.g. allowing only stable orbits around Earth). However, with an increasing number of revolutions,
more multi-revolution solutions become physically feasible. An extreme case is given if the object is
observed two times at the same location. Then, there are multiple solutions with equal angular rates but
different semi-major axis values. The number of completed orbital revolutions is given by

Nrey(X) = l s (7.27)

r — Vo —V
2 1J+ 2 1
p 2n
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where the orbital period P is computed from (2.16) using the semi-major axis (or energy). The brackets
denote the floor function which reduces the number to the next lower integer value. The true anomaly
difference, however, requires the knowledge about both geocentric positions r; and r;. The restriction is
thus applied after the propagation of the initial state to the second epoch. Alternatively, the number can
be approximated for circular orbits with

h—h

R (7.28)

Nrey(X) ~
which reduces the computation burden as no orbit must propagated. Similar to the parametrization in
Lambert’s problem, the k-variable is used to add information about completed half revolutions:

k= 2| nrev] %f Nrev — | Mrev] < 0.5 (7.29)
2| nrev] +1  if Byey — | Brev] > 0.5.

The sign of the k-variable can be used to distinguish between positive and negative range-rate solutions.
Thus, if k < 0, then p, < 0 must be fulfilled and correspondingly if k > 0, then p, > 0.

Instead of using a global admissible region, a set of n; separate constrained domains are then created
with

Cr.i(x) ={x : k(x) = ||k;ll, sgnpa(x) =sgnk;} fori=1...,n. (7.30)

with k; going twice from the least feasible number ki, to the maximum possible k.« with once positive
and once negative sign. The bounding values for the number of completed revolutions are calculated
from the circular assumption (7.28) together with a feasible semi-major axis interval a € [@min, Gmax]:

h—h h—h

P(amax) P (amin) ‘

The kpmin and kpnax are obtained from these values. The semi-major axis interval is not a tight bound as
defined above with (7.21), but only limits the number of revolutions. However, the circular approximation
might not cover the complete range depending on the geometry. Computing the actual values requires
evaluating all possible points on the semi-major axis region boundary. Alternatively, another half rev-
olution is added for safety to the range and tested even if it might not be required in some cases. As a
consequence of forming distinct domains, a set of ny individual optimization problems have to be solved
instead of one, i.e.

IR min = and 7g max = (7.31)

X = argmin L(x, k) . (7.32)
X
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The global minimum corresponds to one number of completed full and half revolutions and one range-rate
direction:

X = argmin L(Xg) . (7.33)
k

The loss function together with the k-restricted sub-domains are shown in Figure 7.9 and Figure 7.10
(neglecting the p, boundaries to improve visibility). The first shows the geostationary example from
before, while the second illustrates the case of an object in some geostationary transfer orbit. The latter is
included for completeness, the principle shape and method does not change. However, it can be observed
that the number of possible multi-revolution solution increases for these observation geometries. The
large number of possible k-values motivates the use of a restricted semi-major axis interval instead of
using the global energy and perigee height constraints.

Region uncertainty

So far, the uncertainty of the initial observation is not included in the derivation of the admissible region
boundaries. Worthy III and Holzinger, (2015) point out that this assumption is not always valid and
illustrate it with an example object in a lower Earth orbit. Even though the effects of neglecting the
uncertainty in the admissible region for near-geostationary objects is not as large as for lower altitude
objects, they still need to be considered. However, if arbitrarily tight bounds on some elements are selected,
the uncertain bounds become equally arbitrary. In order to cover a specific orbital region and reduce
the computational burden, the size of the admissible region can be manually increased instead using
some margins from experience or an approximation. The latter is derived here. For notational simplicity,
the effect of the measurement on the energy bound is derived and later adapted to the semi-major axis
bounds, i.e.

(%) 0¢ TC o¢ ! (7.34)
o ~ — — .
€ C()Zl = 8z1
with the contribution from right ascension and its rate computed with
o€ 0 Jduy 9E Oy oE 0 Jmy
= — — 4+ —+— and — = — - — (7.35)
8@1 8u1 8(11 6”1 60’1 (9(11 aul 60/1
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Figure 7.9: Loss function for a geostationary object re-observed after 3 (left) and 27 hours (right). Additionally, the
k -restricted domains are illustrated with the dashed lines.
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Figure 7.10: Loss function for an object on the geostationary transfer orbit re-observed after 3 (left) and 27 hours
(right). Additionally, the k -restricted domains are illustrated with the dashed lines.

where

(91:!1 8u1 6u1 . 62u1 . azul

a1 o da; ~ “9a? T "960a (7:36)
and the partials w.r.t. to line-of-sight and derivative are given by

o€ . o€ . .

— =R - &31{1 and — = pf u+mR;. (7.37)

aul = (')ul

(ry-r)2

The partials w.r.t. declination and rate are computed analogously. Of particular interest is the effect of the
uncertainty at the boundaries of the region. The discussion is restricted to the semi-major axis bounds
a € [Amin, Gmax) corresponding to kpmiy, and kpax. The value o, (x) can be directly obtained from o ¢ as
itis a linear transformation. Neglecting the impact of the angular uncertainty on the energy boundary
(assuming small angular errors), the largest energy deviation is found for the maximum range p, at the
vertex. Thus, it is sufficient to compute o, once instead of testing the whole boundary to get an upper
limit.

Fujimoto et al., (2014a) suggests to extend the admissible region by some o -interval to include all
feasible orbits. Worthy III and Holzinger, (2015) model the probability in the transition and propose to use
it in the estimation process. In the special case of the k-restricted admissible region, only the outermost
boundaries are interesting. The internal boundaries play no role, as they are covered by surrounding
domains. Before computing k-intervals, the admissible region of an observation z; is investigated by
computing the py (amin) and py(amax) and the corresponding semi-major axis deviations o, max and o, min-
The respective semi-major axis bounds are then updated with a certain o -interval (e.g. 307). An extended
admissible region is shown in Figure 7.11. Afterward, the optimization proceeds as normal.

Penalty function

The admissible region is introduced into the optimization problem by using a penalty function. The
penalty function should be zero if a x hypothesis is tested in the allowed range of the loss function and
should increase quadratically if it is not. This allowed range is defined by an interval of allowed half
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Figure 7.11: Admissible region with 3 o upper and lower mar-
gin illustrated with gray area.
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revolutions. A possible penalty function is then given by

0 ifk(x) € [k, k +1]
dr(x) =3 Ak (k(x) — (k+1)%® k(x)>k+1 (7.38)
Ak (k(x) — k)? k(x) <k

where A is a scaling parameter and k (x) as computed from (7.29). The range-rate boundary is included
in the same way;, i.e.

95, () = {0 if sgn po(x) = sgnk 739

Ak p2(x)?  else.

If a probability density function for the admissible region is provided as done e.g. by Worthy III and
Holzinger, (2015), then this can be directly included into the optimization as a penalty function. So far it is
assumed that the prior f(x|z;) is constant and is therefore dropped in the estimation process. However, if
it is somehow modeled, its natural logarithm can be added to the loss function. In this work, the above
mentioned practical approach using an arbitrary penalty is selected with an appropriate scaling parameter.

7.1.3 Change of variables

Because of the curved shape of the different constrained regions for each k, it is favorable to change the
coordinate system. Otherwise optimizers will run into difficulties as explained in Chapter 4. An obvious
choice for a coordinate is the semi-major axis as it is highly correlated to the number of completed half
revolutions k (in fact the relation is linear for circular orbits as shown above). Together with the range,
an orbital solution is defined using (7.18). However, the range itself is not suitable as the second variable,
as each range-semi-major axis combination allows two solutions. This can be solved by either splitting
up the problem into two parts and minimizing each individually or by using an alternative grid. The
relative range p’ is therefore introduced with the respective vertex range as a reference, i.e. the maximum
range for a given semi-major axis. The quadratic energy function from equation (7.15) is used to set up a
root-finding problem for p,

! .
02 2 +2R upy+ fpy) - S (7.40)
The new coordinates are then expressed by

p(a,p’) = py(a) —|p'| (7.41)
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and

pV - VAE(%P)’ lfp’ <0
pla,p’) =1 pu, ifp’=0 (7.42)
pV + VAS(a,p), lfp/ > O

The resulting loss function is shown in Figure 7.12. It shows how some boundaries are rectified. Transitions
to even k-values denote a difference in completed full revolutions. The boundaries are thus equal to lines
of constant semi-major axis. The other regions are improved as well in terms of beneficial shape but keep
their curved boundaries.

logyo L
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Figure 7.12: Loss function for a geostationary object re-observed after 3 (left) and 27 hours (right) using the alternative
coordinate system defined in the text. Additionally, the k -restricted domains are illustrated with the dashed lines.

7.1.4 Angular-momentum conservation

The size of the solution space can be furthermore reduced by including the angular-momentum conser-
vation from (2.11) (effectively an equality constraint)

rXr =ryXr;. (7.43)

This constraint can be used to transform the two-dimensional into a one-dimensional problem, i.e. it
defines a path through the p-p space. The global minimum does not have to lie on the line due to erroneous
rate measurements. Still, the approach can be used to identify local valleys and then continue with good
initial starting points in two dimensions.

The angular-momentum for each epoch depending on the unknown quantities p and p is computed
with

rxi=(R+pu)X(R+pit+pu)
=p(RXu+puxu)+p’ (uxi
p( p )+ p7 ( )

a 0 b
+p (RXi+uxR)+(RXR)
—_— T
c

=pa+f(p) (7.44)
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Insert (7.44) into (7.43) and cancel out range-rate terms p; and p» by scalar projection

prar— praz = f,(p2) — f1(p1) |- (a1 X ay)

gives a quadratic equation for the range p- at the second epoch

0= (a1 xaz) - (f,(p2) — f1(p))
= (a1 X az) - f,(p2) — (a1 X az) - f1(p1)
= p5 (@1 X az) - by +ps (a1 X az) - ¢
qn q2
+ (a1 X az) - dy — (a1 X az) - f1(p1) -

qs3

The equation is solved with

—qo % |95 — 40143

= (7.45)
P2 20

where the positive root is selected. The range at the second epoch is required to compute the range-rate
for the first epoch using

p1(ar X az) = (f2(p2) = f1(p1) X az,
which gives two possible values

: l(f2(p2) = f1(p) X aall

==
[(ar X a>)||

Thus, two paths are created that lead through the two-dimensional solution space: one for the positive
and one for the negative value of p;. It is possible to compute the range-rate at the second epoch as well.
However, the solution has no physical meaning, as it only fulfills the requirement of angular momentum
conservation, not necessarily energy conservation. Taff and Hall, (1977) set up a system of equations using
the angular momentum conservation and energy conservation equalities. Gronchi et al., (2011) build up
on this approach and exchange the energy constraint with the equality of the Laplace-Lenz vector. Both
methods rely on the solution of a high-order polynomial root-finding problem as outlined in section 1.3.2.
In this work, the solution for the range-rate depending on a free hypothesized range

/(o1 wy, 1, uy, 1) (7.46)

is inserted along with the range into the 2-dimensional loss function. The principle is illustrated on the
left side of Figure 7.13. The right side shows the loss values for one of the two possible paths (upper one).
The best fitting orbit fulfilling the constraints is then

pr = argmin L(p1, p1(p1)) - (7.47)
Pl
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Figure 7.13: Path with conserved angular-momentum on top of the two-dimensional loss function (left). On the right
side is the one-dimensional loss function for the same object and observation geometry along with the k -intervals
illustrated with dotted lines.
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Figure 7.14: Path with conserved angular-momentum on top of the two-dimensional loss function (left). On the right
side is the one-dimensional loss function for the same object and observation geometry along with the k -intervals
illustrated with dotted lines.

As written before, the minimum is not necessarily located at the same position as in the two-
dimensional case, i.e. X # (p, ﬁl(ﬁl))T. However, it is used as a starter to the more difficult two-
dimensional problem.

The angular-momentum conservation is furthermore used to restrict the solution space in p;-p;-
domain. The effect of the uncertainty in angles and angular rates on the range-rate at the first epoch is
approximated with

. AT
I 74
o~ [ e, [ 2= 7.48
o-pl (62,1) “ (azl ( )
Analytical expressions for the partials can be derived or alternatively a finite difference scheme can be used.

Considering the uncertainty, the solution space is reduced to a stripe surrounding the before mentioned
path. The stripe width should be selected accounting for a feasible o-interval (e.g. 307).

7.2 Boundary-value approach

The association of two tracklets is also achieved by using the alternative boundary-value formulation of
orbital states. The initial-value approach is asymmetric as the full information of one tracklet is used to
hypothesize orbits, while the other one is used only for the discrimination. The boundary-value approach
allows using the same information of both tracklets for the same purpose. As for the initial-value approach,
the observed quantities are thus divided into state and discriminating variables. The angular observations

z = (a, 61,2, 62)" (7.49)
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serve to define a state after augmenting them with range hypotheses at both epochs using

Vi3() =r(p1) and y,3(52) =r(p2). (7.50)

The range values are combined for convenience into the free variable x = (p;, ,oz)T. The tilde notation is
used to denote the hypothesized orbit solution. It is obtained from the solution to the orbital boundary-
value problem in section 2.2. The remaining angular rates

z = (dy, 61, d2, 62)" (7.51)
are used as the discriminator. The orbit hypothesis y (k) is used to generate modeled observations
%(Z,x, k) = (&1’ 519 &27 gZ)T (7.52)

which are compared to the actually measured ones. Note that the number of completed half revolutions k
is included in the orbit generation.
Starting again with the relative probability of a hypothesis x and k according to Bayes’ theorem

f(x,k|z,z) < f(z|x,k, 2)f (x,k|z), (7.53)

an optimization problem is created. The most likely x maximizes the probability as the MAP estimate.
The prior is assumed to be constant for all feasible range-range combinations in an admissible region.
Again, the likelihood is modeled as a multivariate normal distribution similar to (5.15) with

f(zlx,k,z) =N (z2-%;0,C; +C;) (7.54)

where the covariance of the modeled angular rates is computed numerically using finite differences due
to the complexity of the Lambert’s problem solution. A step size of a few arc seconds is a feasible choice
for the finite difference approximation. Alternatively, a set of sigma-points can be used as explained in
section 5.4. Arora et al., (2015) recently derived partials of the solution to the Lambert’s problem, which
could be used in an linear transformation of the uncertainty. Schumacher et al., (2015) gives a detailed
discussion on the uncertainty attached to the solution of the problem.

With typical sensor properties, the angular positions are well known up to an arc second. The effect on
the orbit hypothesis is then negligible w.r.t. the uncertainty of the measured angular rates, i.e. o7y < 0.
Figure 7.15 shows the evolution of the modeled angular rate uncertainty for a geostationary satellite.
The modeled uncertainty stays an order below the measured one, but for geometries where the object
completed a full or half revolution and the orientation of the orbital plane becomes indeterminable. For
a geostationary object, the declination rate is influenced while the right ascension rate remains fairly
determinable. However, as long as the objects are not re-observed at the same (or close to the same)
position on their orbits, the above noted uncertainty assumption is valid.

Figure 7.15: Evolution of standard deviation estimate for modeled

angular rates (diagonal components of C3. The solid line shows the

I T Y declination rate standard deviation o ; and dashed line the right

246 81012141618 20 2224 26 28 ascension rate deviation o . The dotted line illustrates the measure-
At [h] ment uncertainty o 5 = 0.004 /s,

Std. deviation [”/s]
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Instead of maximizing the likelihood, the negative natural logarithm is taken to simplify the equations
of the normal distribution

X = argmax f(z|x,k, z) (7.55)
xeC

= arg min {% Indet(2n(C; + C3)) + (2 —2) ' (C; + C3) (2 — z)} (7.56)
xeC

where C denotes the admissible region in which the prior is constant. The first term of (7.56) stays constant
under the previously stated assumption of a negligible modeled uncertainty. Instead of maximizing the
likelihood, the following loss function is minimized:

Lx, k) =(2-2)(C, +C3)(z - 2). (7.57)
This comes with the advantage that the minimum
L(®) = d? (7.58)

can be again gated using the chi-squared distribution.

7.2.1 Loss function topography

The loss function of the boundary-value formulation is shown for feasible x values in Figure 7.16 and
Figure 7.17. The figures are generated for observations from the same example geostationary object as for
the initial-value method. The satellite is located at longitude A = 100°, while the sensor is at 4 = 30° and
¢ = 40°. The time interval between the tracklets is 3 hours in the first and 27 hours in the second figure.
Measurement uncertainty is again modeled with oy,s = 2" and o4, 5 = 0.004 ”’/s. The loss functions are
evaluated for a reasonable choice of k-values, i.e. close to the true solution. It can be observed that for
both time intervals, only one k shows a distinct loss function minimum in the range of 10°. The function
shows a beneficial topography, i.e. only one local and thus global minimum inside the feasible domain.
The shape resembles the one of a quadratic function and shows no curved local valleys as in the initial
value formulation. The first point is advantageous when using quasi-Newton optimization themes, which
approximate the function with a quadratic one.

However, the function can become more challenging to minimize for special cases. For the analysis,
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Figure 7.16: Loss function topography for example geostationary object (explained in text) re-observed after 3 hours.
The two plots depict different loss functions for specified k -values.
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Figure 7.17: Loss function topography for example geostationary object re-observed after 27 hours. The three plots
depict different loss functions for specified k -values.

the loss function is divided into two components: the angular rate differences at the first and at the second
epoch. The decomposition is shown in Figure 7.18 for the 27 hour time interval case. Additionally, the
line with no topocentric range velocity is shown for both epochs. For geostationary objects or objects
close to the perigee, the orbital solution lies on (or close to) this line. For others, this path effectively
splits the domain into two feasible areas: one with a positive and one with a negative range-rate. The

k=-2
T T T T T -
45 - - i
24 35f - = =
T .
= 3 | L ) .
&
25 - = p2=0 |
2 T‘.. L7 R . .. . ..
5 25 3 35 4 45 2 25 3 35 4 45 Figure 7.18: Admissible region decomposition: each
side shows the loss on one side of the problem, i.e.
p1 [10* km] p1 [10* km] f the p

the scaled angular rate differences at t; and t,.

decomposition illustrates two difficulties that can arise.

Firstly, when the angular rates are better determined at one epoch than at the other, one side will
gain weight and contribute more to the shape of the function. Reasons for better determined angular
rates at one epoch are e.g. when the object moves out of the field of view at the other epoch and less
measurements per tracklet are collected. If one side dominates, the loss function becomes a curved,
narrow, and possibly flat valley. Optimization schemes as the quasi-Newton ones might fail to approximate
the gradient properly after reaching the valley. Thus, the mostly slower but safer choice is to select the line
search as presented in section 4.2.

Secondly, the loss function can become more challenging for geometries where the two valleys of the
decomposition overlay. This geometry is e.g. obtained if the object is observed two times at approximately
the same location on its orbit. In case of a geostationary orbit, this unfavorable but likely case happens
when observing an object after one sidereal day. Figure 7.19 illustrates the problem for a re-observation
time of 24 hours (which is slightly more than a sidereal day). As discussed, the shape is again unfavorable
for optimization schemes. Even though, the two valleys can be divided using the range-rate criterion,
again a narrow and flat valley is obtained.
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(104 kem] Figure 7.19: Challenging loss function topography for example geosta-
Pl

tionary object re-observed after 24 hours.

As a consequence, these geometries should be avoided during observation planning itself. It should
be noted, that these geometries are unfavorable in terms of orbit improvement as well, as less information
can be yielded from the observations (Cordelli, 2015). A more thorough discussion of the issue is provided
in Chapter 8.

7.2.2 Admissible region

An advantage of the boundary-value formulation over the initial-value formulation is that different multi-
revolution solutions are automatically separated by the use of k in the orbit computation. Unlike in
the initial-value formulation, a separation of the region is not required anymore. Each loss function
corresponding to one k is expected to contain one minimum. However, global boundaries which restrict
the solution space can be likewise restricted. They can help to find good starting points or exclude
solutions that diverge into unfeasible areas.

In principle, there are two ways of restricting the orbit solutions. One before actually computing the
orbit y using Lambert’s theorem, and one after computing it. Roscoe et al., (2013) state criteria for the
elimination of orbits in the first case. They introduce perigee and apogee bounds to restrict the range at
each epoch before combining the observations

Amin (1 = emax) < |7l £ Gmax(1 + emax) - (7.59)

Inserting (3.22) gives the bounds

Pmax = —R - + V(R )2 + Gmax(1 + emax) — R - R (7.60)

and

Pmin = —R -1+ (R u)?+ amin(1 — emax) — R - R. (7.61)

They can be used to get a rectangular feasible domain. Additionally, combinations are excluded where the
least possible semi-major axis
ri(p) + ra2(p2) + c(p1, p2)

ay,min = > (7.62)

is above the maximum allowed limit ap,,«. Likewise, the minimum eccentricity solution in Lambert’s
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theorem

_ri(p) —ra(p2)

€L, min = (7.63)
' c(p1, p2)

is used to remove hypotheses with er, min > emax. They also introduce angular rates and their uncertainties
into the boundary definition.

Again, constraints can be used to incorporate a-priori knowledge of the orbital distribution of the
objects caused by the long-term dynamics, i.e.

Cr(x) ={x:y— Ay < arccos (h(x) - hy) <y + Ay}, (7.64)
where the normal vector is computed with
X
h(x) = r1(p1) X ra(p2) (7.65)

lren) X ra(p2)ll

The constraints, which can be applied before solving Lambert’s problem iteratively, are illustrated in
Figure 7.20. Another approach is to bound the orbits after computing the Lambert’s solution, which
consequently increases the computational burden.Figure 7.21 shows the region boundaries as defined in
section 7.1.2 for semi-major axis C,, eccentricity C., and perigee height C, bounds. The semi-major axis
boundary can be used to obtain the interval of admissible k-values.
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Figure 7.21: Admissible region: lines show boundaries which are obtained
after computing the Lambert’s problem solution.
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7.2.3 Angular-momentum conservation

Taking all observed quantities into account, the range at the second observation is directly expressed in
terms of the first epoch range from (7.45)

p2(p1, w1, Ty, U, 13)
using the angular-momentum conservation
FiIXr =raXrFs (7.66)

Consequently, if the angular rates are considered accurate enough, the problem reduces to a one-
dimensional minimization with

p = H})in L(py, p2(p1)) - (7.67)
1

Even when they are not accurate, the value can still be used as a starter for the two-dimensional problem.
Furthermore, if the loss is already below a reasonable threshold, another improvement step is not required
anymore to decide whether two observations belong to a common object. The benefit of using the
one-dimensional loss function is safer and faster convergence.
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Figure 7.22: Path with conserved angular-momentum on top of the two-dimensional loss function (left). On the right
side is the one-dimensional loss function for the same object and observation geometry.

An additional use of the angular-momentum conservation is the reduction of the solution space. When
approximating the uncertainty of the second range using the linear transformation

- [_9p2 [ _9p2 T
%N(a(z,z))cz’z(a(z,z)) ’ (7.68)

a feasible stripe around the previously defined path is computed allowing for a specific o-margin. The
partials are computed either analytically or using a finite difference scheme.
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7.3 Comparison

Although both methods use the same principle, namely a Bayesian’ association based on the maximum-
likelihood estimate, they differ significantly in their performance. The boundary-value formulation allows
the easy separation of different multi-revolution solutions and the resulting loss function is typically
easier to solve for optimization algorithms. The simplicity of the problem assures some robustness of
the approach. A minimization of the initial-value loss function can be made equally robust using the
k-restricted domains and a coordinate conversion, however, this comes with considerable additional
implementation efforts and a thus a loss in transparency.

As the initial-value problem from section 2.1 allows the direct propagation of the satellite orbit using
an arbitrary complex force model, the same can be straightforward implemented in the association and
initial orbit determination approach. The same force model can be, in principle, used for the boundary-
value formulation, but requires more implementation efforts such as a multiple-shooting or numerical
continuation solver (cf. section 2.2).

The computational costs of using both formulations are compared in (Siminski et al., 2014a). Around
200 tracklets collected in two nights are tested against each other (all-vs-all), resulting in a total of ~ 16,000
association tests. The initial-value approach is implemented using k-restricted domains, the alternative
grid, and a differential evolution minimization scheme (as explained in section 4.3) in order to increase
the chances of catching every local minimum. The boundary-value approach uses a quasi-Newton solver
(as in section 4.1) due to the simplicity of the loss function. The association based on the boundary-
value formulation outperforms the initial-value one by a factor of 50 for the used data set (i.e. 2% of the
computational time is required for the boundary-value method compared to the initial-value one). The
speed difference is caused by various reasons: the different optimization methods used, the selection of
starting values, and the loss function topography. However, a fair comparison should use exactly the same
settings for both formulations.

When incorporating a high-fidelity force model into the orbit propagation, the initial-value formulation
can become more efficient than the boundary-value one. Each evaluation of the boundary-value loss
function will require a solution of a perturbed-dynamics Lambert’s problem. Depending on the efficiency
of the used solver, this requires several orbit propagations for one function evaluation. The accuracy
results in section 8.2,however, indicate that a high-fidelity model is not always necessary for geostationary
objects (of course neglecting special cases such as high-area-to-mass ratio objects). Furthermore, as long
as the two-body orbit solution obtained by the loss function minimization is good enough it can be also
improved using a least squares adjustment and a complex force model.

The association and initial orbit determination for a large set of measurements (e.g. from one or
several nights) can be trivially parallelized as each test is independent on each other. As long as enough
computational resources are available, both formulations can be made sufficiently fast for regular ob-
servation processing and catalog maintenance. However, another performance criterion becomes more
important than the computational burden and complexity of the implementation, namely the sensitivity
to errors in the measurements. It will be calculated in the next chapter together with the mentioned
accuracy assessment.
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8. Sensitivity analysis

Both formulations, the boundary as well as the initial-value one, exhibit certain advantages and disadvan-
tages over each other. The methods use the same amount of information of the two tracklets, namely the
angles and angular rates including their uncertainties. However, the robustness w.r.t. variations in the
noise and transformation errors differ between the two formulations.

The uncertainty estimate is based on a noise model. The noise model describes the distribution of
errors in the measurements. Good knowledge on the error distribution allows a more robust and more
unambiguous association of observations (see also the discussion in section 5.5). Overestimating the
errors leads to larger variances and covariances in each respective loss function of the two formulations.
This effectively decreases the statistical distance d? between the observations and hence leads to more
pairs passing the association test. The noise model and accordingly an association threshold can be
calibrated using tracklets of objects with well known orbits.

However, as discussed in section 3.2, the noise and bias changes, amongst others, with the weather,
viewing direction or aging of the sensor. The errors even differ for objects appearing on the same image
but within a different area, e.g. one which is less well represented by the plate model. The latter effect is
illustrated on the left side of Figure 8.1. The observation z; is surrounded by reference stars, which allows
a good plate representation. However, the second observation z, is less well represented as it lies close to
the image edge and is locally surrounded by less stars.

Z1

(a) Plate model (b) Seeing

Figure 8.1: The error sources for astrometric observations which are difficult to eliminate through calibration. The left
side (a) shows the effect of the reference star distribution on the plate model. Satellite images near the center of the
image are less affected by distortions and can thus be measured more accurately than objects near the edges. The right
side (b) shows the influence of seeing: unpredictable turbulences in atmosphere affect individual observations. Both
can be theoretically estimated from the residuals of the plate model solution.

Thus, a complete and proper modeling of the exact noise model using calibrated values becomes
challenging. Long-term changes can be accounted by recalibrating the noise model. Short-term changes,
e.g. caused by the seeing (see right side of Figure 8.1), could be, in principle, estimated using the residuals
of the plate model fit. In practical applications, a fixed large enough noise estimate is assumed to suc-
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cessfully link most observation pairs, also under bad viewing conditions. The effect of false noise model
assumptions on the association performance is studied in this chapter.

8.1 Association performance

The association performance is quantified by two different measures: the success rate of the associations
and the rate of false associations. The first describes the number of observation pairs generated by the
same object which are successfully matched. Ideally, a number of 100 % is wanted, as the information of
the tracklets is otherwise lost (or at least lost until it can be matched to an object in the catalog or another
measurement). When subtracting the success-rate from 100 %, the number of missed correlations can be
assessed.

The rate of false associations, or false positives, causes no loss in information but an increase in
computational burden. Every object candidate which is created by two tracklets needs to be assessed
and further processed. A low number is favorable for this rate. False positive rates must be carefully
interpreted. A few percent might give an impression of a negligible problem. However, the absolute
number of unphysical objects is important as it directly scales the computational efforts required. If 1000
observations are collected which could not be correlated to cataloged objects, around half a million pairs
must be tested. 1 % of false positives then creates around 5000 object candidates (where observations are
used multiple times for different candidates). The problem increases with the numbers of uncorrelated
tracklets used for the association tests. Another difficulty which arises when discussing false positive rates,
is the proper sample selection. When testing measurement pairs from a schedule which observes objects
on completely different orbits (e.g. different orbital plane, or large angular separation), the false-positive
rate will consequently be low. In contrast, when using a measurement set which contains observations of
co-located closely spaced objects, mistagging becomes highly likely and the rate will increase. Co-located
satellites typically perform regular maneuvers to stay in their relative position. Unless the maneuvers are
identified in the measurement to catalog object correlation process, the orbits must be newly determined
with the presented methods. The difficulty of misassociation is thus a regularly appearing problem when
observing object on the geostationary ring. Another scenario which requires fast and unambiguous initial
orbits, is right after a break-up of a satellite. The fragments will most likely be distributed close to the
original object, before they are drifted apart due to the dynamics.

Both methods rely on approximate transformations of uncertainties and use the compressed informa-
tion of the tracklet, i.e. angles and angular rates. Thus, a successive least squares orbit improvement is
always advised in order to remove unfeasible candidates. A final decision (confirmation) after the linking
based on e.g. 30 bounds for the least squares residuals is a common technique and also proposed by
Milani et al., (2011) and Fujimoto et al., (2014b). This improvement is also advised in order to obtain the
most likely orbital solution using the complete information of the two tracks. Typical false positive rates
are discussed in (Siminski et al., 2014a). A systematic approach to test the false association probability is
used in this thesis and presented in the Chapter 9.

8.1.1 Test measurement set

Tracklets collected by GSOC'’s surveillance telescope (as explained in section 3.1) are used to test the
performance. The telescope setup is still in development and testing phase while writing this thesis.
Consequently, the performance parameters differ depending on the used camera or other setup changes.
Observations are selected from 13 nights in December 2014 and January 2015, where the setup and weather
was fairly stable. The location of the telescope (for testing) is the Zimmerwald observatory in Switzerland.
The nights of the observations are summarized in Figure 8.2.
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Instead of using tracklets of unknown origin, a special set was selected with known association to
catalog objects. These truth associations serve as a reference to test the proposed methods. The mea-
surements are collected in tracking-mode, i.e. the objects of interest are deliberately observed multiple
times a night and the field of view is centered around the object location. The object observed in each
tracklet is well known and accordingly also the associated tracklets. Additionally, the noise differences
resulting from uneven distribution of reference stars is reduced as the objects are located in the center.
Other noise varying effects are still present but the overall model variations are reduced when compared
to a survey-mode or larger sets of measurements.

The re-observations times and geometries play an important role in the orbit determination process.
If an object is re-observed at the same location within its orbit, less information gain is obtained than
at another orbit position. In section 3.5 the typical re-observation conditions of a survey are discussed.
However, as the measurement set here is obtained through deliberate tracking, a different distribution is
expected. The resulting distribution of re-observation times is shown in Figure 8.3.
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Figure 8.3: Distribution of re-observation times for the selected sample. Time differences above 5 days are not shown.
The number of re-observation times is computed from all subsequent observations and accordingly scaled with the
same.

The re-observation times are similar to a survey scenario and consistent with the distribution in
Figure 3.12. Most objects are separated by time spans of 1 to 3 days. The distribution is consistent with the
dates in Figure 8.2. Rare re-observation times above 5 days are neglected. The re-observation geometry in
Figure 8.4, however, differs from the distribution in the survey simulation in Figure 3.12. Restricting the
observations to low solar phase angles during the scheduling process forces the objects to be observed
repeatedly at the same position of their orbit and results in a peak of the distribution at small angular
separations Av. Here the peak is at 30° angular separation between the observations, which corresponds
to are-observation time of 2 hours in addition to an integer number of days. The 60° peak is also visible in
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the simulated distribution. However, the overall distribution is more even and favorable than the one
obtained from the survey. Nevertheless, smaller separations are still present and can cause difficulties.
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Figure 8.4: Distribution of re-observation geometries.
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0° 20° 40° 60° 80° 100° 120° 140° 160° observations covered of the orbit. The total number is
Av computed from all subsequent observations.
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8.1.2 Threshold dependency

The success rate of each method is not only dependent on the loss function formulation and sensitivity
but also on the minimization process. The loss function of the initial-value approach is more challenging
to minimize (see the topography discussion is the previous chapter). Both formulations allow multiple-
revolution solutions. As a consequence, observations can be matched to each other assuming a false
number of completed half-revolutions in between. However, the orbital solution of the result is largely
off the target and does not allow a subsequent orbit improvement. Thus, such a match is not considered
a successful association. The same force model is used for assessing the initial and boundary value
formulation, namely two-body dynamics.

Each loss function minimum d? is compared against a predefined threshold d2. Whenever the loss
value falls below the threshold, the test is counted as a success. The overall success rate is computed
by dividing the number of passed d? values by the total number of performed association tests. The
threshold is varied in order to allow a calibration. The number of correctly matched observation pairs
are shown in Figure 8.5 for different noise model assumptions. The plots can also be interpreted as the
cumulative distribution of the loss values. The cumulative distribution is properly calibrated when the
values resemble the theoretical ones from Table 5.1.

The influence of the bias terms is negligible as it can be seen in the figures one the right hand side.
Even an exaggerated bias model of 5 arc minutes changes the output only marginally. This behavior is
caused by different factors in each formulation. The bias insensitivity of the two approaches is discussed
in section 7.1 and section 7.2.

When scaling up the o value, the association performance in terms of successful association is
increased. However, the noise model then does not represent the physical properties of the sensor and the
viewing conditions. The next section discusses the theoretical and real distribution of the loss function
minima used for the gating.
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Figure 8.5: Successful association rate for different noise models. Dashed lines show rates for initial-value formulation
while solid lines are used for the boundary-value one.

8.1.3 Calibration using the theoretical distribution

As described in section 7.1 and section 7.2, a loss function minimum d? is, in principle, distributed
according to the chi-squared distribution. However, due to erroneous state propagation and uncertainty
transformations, the actual distribution can differ from the theoretical one (as discussed in section 5.4).
Figure 8.6 shows the actual distribution of the minima of all associated tracklet pairs against the theoretical
chi-squared distribution. The different ranges for the different noise models along the vertical axis should
be noted.
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Boundary-value formulation
oN = 0.5"
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Figure 8.6: Comparison between theoretical chi-squared distribution and sample histogram for different noise
model assumptions. The left side shows distribution for boundary-value and the right side shows it for initial-value
formulation.

A deviation from the theoretical distribution can be observed for all cases. By adjusting the noise
estimate, the distribution can be fitted to the theoretical function illustrated with the dashed lines. The
fitting works better for the boundary-value formulation, where an assumed standard deviation oy around
0.5” is an appropriate value. Both formulations exhibit thicker tails, i.e. more larger loss values than
predicted from theory. The difference is more pronounced for the initial-value formulation.
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This discrepancy can be caused by various reasons. In order to exclude false noise assumptions, the
correlation tests are repeated but the measurements are simulated instead with random errors added
according to a known noise model. The two-line elements from the database are propagated to the
respective measurement epoch in order to calculate the astrometric positions. The linear motion model
is fitted to these in order to obtain the angles and angular rates. The resulting distribution of loss values is
shown in Figure 8.7.
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Figure 8.7: Comparison between theoretical chi-squared distribution and sample histogram for known error distri-
bution oy = 0.5”. Left side shows distribution for boundary-value and right side shows for initial-value formulation.

In case of the boundary-value formulation, the number of large loss values is reduced and the overall
function almost resembles the theoretical one. The initial-value formulation shows the same different
distribution as in the previous figures with real measurements. The tail is thicker, and most values are
located close to zero and not around the predicted distribution. The differences between both formulations
point out another cause for the invalidity of the assumptions, namely the unrealistic transformation of
uncertainties. As discussed in section 5.5, the assumption of having a normally distributed uncertainty in
the modeled observations is not always valid. The actual distributions can be skewed to one side or even
have an other arbitrary shape (as illustrated in Figure 5.15).

The boundary-value formulation requires the transformation of normally distributed angular errors
into the modeled angular rates using the solution to the Lambert’s problem. As the uncertainty of the
modeled angular rates contributes only marginally to the loss scaling in most geometries (see Figure 7.15), it
can be mostly neglected and does not cause such a deformation of the loss distribution. The transformation
of uncertainty in case of the initial-value formulation is performed using the same approximation for fair
comparison.

Alternative methods to express the uncertainty region of states and measurements are outlined in
Chapter 5 and can help to overcome this problem with the initial-value formulation. This difficulty,
however, highlights a major advantage of the boundary-value formulation. The formulation does not
require a complex propagation of uncertainties for most geometries.

Another reason for the deviation of the theoretical distribution from actual one can be a bad re-
observation geometry. Bad geometries can affect the solution of both formulations. However, the individ-
ual contributions are difficult to separate in case of the initial-value formulation as it is already strongly
affected by the transformation. Hence, only the boundary-value formulation is studied in the following.
Figure 8.8 shows the distribution of d?-values, once for very large angular separation between the tracklets
and once for very short separations.
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The angular separation is computed as the difference in true anomaly between the two epochs. While
the left case with good orbital coverage of at least 90° produces an almost perfect chi-squared-distribution,
the low coverage case (Av < 5°) does not.

oN = 0.5”,Av > 90° oN = 0.5",Av <5°
0.20 -

T T

0.15

0.10

Relative frequency

0.05

Figure 8.8: Comparison between theoretical chi-squared distribution and sample histogram for known error distri-
bution o = 0.5" and different angular separations Av.

The difficulty which arises at these full-revolution re-observation times, is furthermore illustrated in
Figure 8.9 by fixing a threshold and counting the number of successful gate passes for different angular
separations. A low noise assumption with oy = 0.5”" along with the P = 0.95% gate according to Table 5.1
is selected to increase the effect. A larger noise value would result in an almost flat bar graph.
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0 5 10 15 20 25 Figure 8.9: Association performance w.r.t. central angle
Av [deg] Av. Detailed description in text.

8.1.4 Noise model sensitivity

The required level of detail in the noise modeling is now studied. As discussed in the introduction of this
chapter, the actual noise differs due to various reasons. Practically, a fixed value of the expected noise is
used for all measurements of one sensor during correlation. However, a more detailed representation
could be implemented if it shows a benefit. For this purpose, a reasonable threshold of P = 0.95% is
selected and the assumed noise value oy is varied. The number of associations due to the variation then
shows the impact of the mismodeled noise.

The function increases up to approximately 1”, where it converges towards a stable level. The final
level covers around 95%. Consequently, the figure can be also used to calibrate the noise model. The



8.2 Accuracy of solutions 95

100

80 -

60 [~ -

40 -

20 -

Successful associations [%]

0 | | | |
0.5 1 1.5 2 2.5

ON

Figure 8.10: Association performance for fixed P = 95% gate w.r.t. changing noise assumptions o y.

feasibly noise value for the measurements is in the range of 0.5 — 1 arc second. If a fixed value above 1" is
selected for the association, a small variation in the sub arc second range does not play a role. However, if
a lower value is selected, small changes in the sensor performance or noise variations can lead to missed
associations. The benefit of using a lower value is the better exclusion of false positives.

8.2 Accuracy of solutions

Aside from correlating measurements with each other, the association methods generate first orbital
solutions. The success of a correlation is thus also quantified by the accuracy of the orbit it computes. As
most preliminary orbit determination methods, the presented approaches rely on reduced information.
That is, assuming only two-body dynamics and using the angles and angular-rates instead of the series of
angles. Consequently, the result will in most cases be less accurate than when performing a least squares
orbit improvement using a high-fidelity force model. The latter improvement is, however, only possible if
a starting value close enough to the wanted solution is provided. Otherwise, the iterations may diverge.
An absolute value for the required closeness cannot be provided, as the convergence always depends
on the individual re-observation geometry, orbit dynamics and the used nonlinear least squares solver.
While a simple differential correction process could diverge into a completely different region, damped or
trust-region approaches are able to find the best fitting orbit. Observations of high-altitude orbits around
the geostationary domain typically allow for courser initial guesses than lower orbits. The approximate
accuracy required for stable convergence in the near-geostationary domain is assumed to be around
100 km in position and 0.03 km/s in velocity. Initial states with errors in this order showed still good
convergence in orbit improvement tests using a trust-region approach.

This work is motivated by the challenges which arise when observing satellites in a survey scenario. The
obtained accuracies of the initial orbits do not represent the actual accuracies of the cataloged states. Most
of the observations in a regular survey will be generated by known objects and hence not require an initial
orbit. In order to assess the general accuracy of catalog states, detailed observability studies are required
accounting for consider parameters (cf. Montenbruck and Gill, (2000)). Assessing the accuracy of orbits
using real observations requires precise knowledge at best from a different source. As this information
is not available, a simulated data set with known positions is used instead. Consequently, this section
discusses the accuracy of initial orbits based on the simulated optical sensor network from Chapter 3. Due
to the transformation errors in the initial-value formulation of the association test, the assessment from
here on focuses on the boundary-value formulation. The accuracy assessment follows the work presented
in (Siminski et al., 2014b).
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8.2.1 Simulation framework

In accordance with the plans of GSOC to build up a telescope network with first stations being Sutherland
(South Africa) and Zimmerwald (Switzerland), the same network is simulated. Telescopes are operated in
survey-mode as described in section 3.4, i.e. no follow-up observations or special tracking campaigns
are planned. The programmed survey does not represent an optimal solution but a base-line scenario.
Future work can use this program to compare its performance with results of more advances schedulers.

After collecting all observations, a random error with the normal distribution representing the mea-
surement noise is added to each component of the simulated tracklet. Additionally, a constant random
normally distributed error representing the bias is added to each element of a tracklet. The details about
the observation scenario and errors are summarized in Table 8.1.

Table 8.1: Simulation setup

Value
Noise oy 17
Bias o 5
Time spacing 10s

Observations per tracklet 5

Once the tracklet is formed, it is stored in a list together with the object identification numbers. This
allows the later identification and accuracy assessment. The whole year 2015 is simulated in order to
capture and visualize temporal variations. A set of around 80, 000 tracklets is created in this way.

8.2.2 Results

Tracklets belonging to the same object are extracted and tested with each other. In order to statistically
capture the likely geometries, one observation arc is always tested with the tracklet of the next occurrence of
the object. If the minimum of the combined loss function d? is below the predefined threshold (P = 0.95%),
the pair is counted as a match. The orbital solution of this match is then compared with the actual state
from the simulation. The differences between preliminary orbits and simulated truth in position and
velocity are illustrated with Figure 8.11. Additionally, the errors in orbital elements is shown in Figure 8.12.

The figures summarize the overall performance of the method, but do not provide detailed information
on geometry or time dependency. However, the performance of the method is promising as around 90% of
the orbits lie in the feasible range of solutions. This performance is particularly promising as the base-line
observation scenario still allows an improvement e.g. in terms of re-observation geometry.

A peak can be observed at around 20 km and 0.002 km/s, which is caused by the differences between
two-body dynamics and the SGP4 model in case of the typical re-observation time-span of a few days.
The median errors in the Radial-Tangential-Normal frame (RTN) of all results are given in Table 8.2. To
suppress the influence of the large outliers, the median of the errors is used instead of the mean.

Table 8.2: Median errors in RTN frame

Position Velocity
Direction Radial Tangential Normal Radial Tangential Normal

Median error 20 km 2km 2km 10-3 km/s 10-3 km/s 5-10"* km/s
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Figure 8.11: Distribution of position (upper part)
and velocity (lower part) errors for complete
dataset. Note that the last bin shows all errors
above the respective value. The number of pairs
denotes the percentage of association test results
with an error defined in the bin.

Figure 8.12: Distribution of errors in semi-major
axis Aa, eccentricity Ae, and argument of latitude
Au (u = w+v) for complete dataset. Note that the
last bin shows all errors above the respective value.
The number of pairs denotes the percentage of
association test results with an error defined in
the bin.
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Even if the overall performance is promising, a significant amount of solutions still exhibit larger errors.
These object candidates would be effectively lost when the final criterion fails, i.e. an orbit improvement
and a residuals test. It is important to understand the reasons for this failures in order to either avoid
them beforehand while planning observations or by introducing ways to overcome this challenges. Hence,
the different causes of failure are analyzed in the following paragraphs and illustrated by showing the
dependency on certain variables.

The first analyzed parameter is the re-observation time. The position and velocity errors w.r.t. the
re-observation time for all tracklet pairs are shown in Figure 8.13. The performance does not degrade with
time. It should be noted that the density of samples decreases with time (a typical re-observation occurs
within the first few days). The force model error remains fairly constant for the observed time frame in
the near-geostationary domain. This property can be exploited, when the reduction of computational
burden is necessary. However, a decrease in performance, i.e. many candidate solutions with larger errors,
can be observed for time gap with an integer number of days between the observation epochs. One
day corresponds approximately to one orbital revolution of an object on the geostationary orbit. Thus,
the angle covered between the tracklet locations on the orbit will be small. The difference here denotes
the geometric angular separation and not the physical angular separation between the two states. The
dependency on Av is visualized in Figure 8.14.
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The scatter plots should be interpreted carefully. While they provide good visualization of the error
dependencies, they do not give a good representation of the actual density. The densityis roughly visualized
by using transparent circles for each tracklet pair. For precise density values (percentage of successful
pairs), the above used histograms are more meaningful (Figure 8.11 and Figure 8.12). A relation of the arc
covered to the errors of the obtained orbits can be observed. The dependency has two main reasons. The
first being that more measurements are collected for certain angular separations, consequently more
matching tests can fail. This is particularly visible at 0° and 30° angular separation, where for the latter in
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principle a feasible arc is covered. But, due to the observation strategy as outlined in section 3.4, more
observations are collected. The same is true for the peak at 60°.
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The second reason is the reduced orbital information obtained by observing an object at approximately
the same geometry and the same location of their orbit. In the case of a perfect full revolution between the
two tracklet epochs, the information gain is the smallest possible. Besides being able to draw conclusions
on the orbital period (or semi-major axis), several orbits with that period can be fitted to the two arcs. This
can be illustrated with the lines of constant semi-major axis in Figure 7.7 and Figure 7.21 for the boundary
and initial-value formulation.

A least squares improvement, which uses possibly more information than angles and angular rates,
will likely have its difficulties with these geometries as the equation system H' H becomes nearly singular.
Cordelli, (2015) studies the effect of geometry on accuracies using least squares covariance computation
and finds the same conclusions.

As pointed out before, the scheduler can be improved in order to reduce the amount of unfavorable
geometries. This improvement, however, is limited by the visibility constraints. Other measures have to
be taken in order to use the information of such tracklets. A simple approach to overcome the lack of
information in the orbit determination process, is to restrict the orbits to certain types, e.g. assuming
circular orbits or apogee observations as described in section 6.3.
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The tools developed for this analysis can be used for other tasks than testing the accuracy performance,
namely sensor or network design and assessment. To demonstrate the capabilities of the proposed sensor
network, as described in section 3.5, the number of acceptable object candidates is assessed. This gives
an estimate on the completeness of the derived catalog. An acceptable catalog candidate is obtained if
at least one tracklet pair creates a feasible solution. Figure 8.15 shows the ratio of acceptable candidates
per month of the year in order to visualize the monthly variations. Of course, objects which cannot be
observed due to bad seasonal visibility, can also not be correlated. Thus, only observed objects are taken
as a reference. Around 70-80 % of the observed objects can be correlated per month. Correlation does not
necessarily mean that the orbital solution is sufficiently good. Hence, the rate of acceptable candidates
is shown as well, i.e. orbits with a position error better than 100 km and velocity error below 0.03 km/s.
The orbits with sufficient accuracy are furthermore separated into two different classes in Figure 8.16
accounting only for the positional error to better visualize the seasonal variations.
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Figure 8.15: Success rate per month in terms of observed and correlated objects. Additionally, the rate of good candidate
solutions is shown.
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Figure 8.16: Percentage of correlated objects with a positional error below 100 km and 30 km respectively.

When observing the different months, it can be noted that some months (e.g. January) show worse
results than later months (e.g. May) for the selected year. The effect is caused by the visibility constraints,
e.g. due to the adverse influence of the Moon and Milky way. Thus, objects can only be re-observed at
unfavorable geometries. The reason for the performance difference between the two different months
mentioned before is shown in the following Figure 8.17. The figure shows the distribution of re-observation
geometries w.r.t. the central angle once for May and for January. In January most objects are re-observed
after an integer number of full revolutions, while May allows also different geometries.
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Figure 8.17: Success rate w.r.t. the re-observation geometry for January (left side, bad performance) and May (right
side, good performance).

Figure 8.18 shows the rate of acceptable candidates (as defined above) w.r.t. the re-observation time
in order to see if the performance is degrading with time. Besides the decrease in performance for full
revolutions in between the measurements, the accuracy remains in feasible bounds over the selected time
span of three days.
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Figure 8.18: Percentage of acceptable candidates (Ar < 100 km
and A < 0.03 km/s w.r.t. re-observation time.)

This short analysis serves also as an example of using the tools for a network assessment. Other
analyses are likewise possible, such as testing different observation strategies or sensor locations and
setups. Additional parameters, e.g. final orbit accuracy using follow up observations, should be also
considered for a final system analysis but is not included here.
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9. Observability

Motivated by the previous chapter, the influence of the observation geometry on the association perfor-
mance is studied. Capabilities of sensors are limited by the current state-of-the-art technology, location
and atmospheric conditions. The observation duration and geometry, however, can be altered in order
to optimally use the available observation time. This work studies the determination of first orbits in a
survey scenario. If a-priori knowledge on the orbital states is accessible, sensors can be tasked to optimally
increase the information of each object. In a survey scenario, the tracklet length and the survey schedule
can be adjusted to increase the performance while still covering the complete population.

The observability conditions for a geostationary object are discussed in the first section of this chapter.
The common separation of objects along different longitudes around the Earth motivates a systematic
study of re-observation geometries. The second part discusses the implications on the observation
planning and gives recommendations to unambiguously associate newly detected objects. An early
version of this discussion was first presented in (Siminski and Fiedler, 2014).

9.1 Geostationary case study

The geostationary orbit is densely filled with commercial satellites, often co-located in clusters for redun-
dancy and better coverage. False association of observations to other objects within the same cluster are
very likely to occur, even if a catalog solution is already available. False associations are either revealed by
a subsequent orbit improvement or by adding information from observations of the following nights. In
critical situations, such as an approaching intercepting object, ambiguities must be avoided.

Instead of testing the false positive rate with a random set of observations, a systematic approach is
selected. A false association scenario is simulated. The scenario is illustrated in Figure 9.1. An object on
a perfect geostationary orbit is observed at # from a telescope located at latitude ¢ = 47°. The object is
observed in south direction in order to avoid asymmetries in the results due to the observation geometry.
The position is propagated to a second epoch f,. The position of the satellite is illustrated with the black
spheres in the figure. Instead of re-observing the object at the true location, observations of objects
separated in longitude by AA are associated. This artificial problem allows studying the principle effects,
but it exaggerates the real situation, as the simulated objects lie exactly on the same orbit but with different
longitude. Under real dynamics and with applied collocation strategies, the objects would lie on slightly
inclined and eccentric orbits.

The resulting orbits for a longitudinal separation of A4 = 0.5°, 1.0°, 1.5° are shown in Figure 9.2. The
orbits are transformed into the local topocentric coordinate system, i.e. declination 6 and hour angle 7.
The local hour angle is computed from the right ascension by

T= ®LST -, (9-1)

where @p st denotes the local mean sidereal time at the observing station. The position of an object on the
geostationary orbit stays constant in this coordinate system and is illustrated with a circle in the plots.
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Figure 9.1: Geometry for the geostationary case study. First obser-
vation illustrated with w,. The three vectors named with u, point
towards true and false objects. False objects are located on same orbit
but shifted by AA.

The circle also denotes the starting position at #; of the false association orbits. Multiple different
cases are shown: orbits of a false association after 0.25, 0.75, and 1.75 revolutions and orbits after almost
one and three completed revolutions. The arrows point towards the direction of flight on the path and
consequently to the location of the second epoch f,. The gray continuation of the orbits is shown to
emphasize the location along the orbit at the observation epoch. The plots are centered around the
starting declination 6;.

The shift in longitude (and hour angle) is accomplished by adapting the semi-major axis. A smaller
semi-major axis leads to a drift in prograde direction while a larger one leads to a retrograde shift. In
all cases, extrema in declination of the paths are observed between the starting and ending point. The
extrema appear at the apsides of the orbits. This symmetric behavior is caused by the formulation of
the boundary-value approach which minimizes the angular-rate differences at both observation epochs
equally large assuming an equal uncertainty for scaling.

The orbits connecting the observation of the positively shifted (A1 > 0) false candidates with the
initial observation (denoted with prograde solutions) are observed after the object passed the perigee at
the minimum. In case of an association with an object with a negative separation (retrograde solution),
the object passes the apogee at the maximum. Hence, solutions with the same longitudinal difference
but opposite sign will appear with different apparent velocities on the sky. Consequently, the angular
rates will be closer or farther apart from the reference ones depending on the observation geometry. The
association problem is thus not symmetric for retrograde and prograde solutions, i.e. one direction is
easier to associate than the other depending on the re-observation geometry.

The maximum of the declination depends on the re-observation time (see different scaling of the
axis). Larger time spans allow for smaller semi-major axis differences required to shift the object to the
observed hour angle. The angular-rate differences are likewise reduced as the combined orbit is closer to
the reference one. Consequently, the association gets more ambiguous with an increasing number of days
in between the observation epochs.

In case of a re-observations after almost full revolutions (second and third plot in Figure 9.2), the
observation epochs are placed approximately at the apsides of the combined solution. This assures the
smallest possible angular-rates differences. The semi-major axis of the solution is well defined by the
re-observation time. In case of an exact integer number of full revolutions, the semi-major axis would be
exactly known. The eccentricity can not be solved for and remains unobserved. Hence, a large range of
eccentricity values allows a combined solution with an acceptable loss, i.e. small angular-rate differences.

In Figure 9.3, the differences in angular rates are plotted for different re-observation times and a fixed
angular separation A1 = 1°. For exactly full revolutions, the solution of Lambert’s problem becomes
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Figure 9.2: Orbit solutions corresponding to false associations with objects shifted by AA = 0.5°, 1.0°, 1.5° shown in
local hour angle and declination. The solutions are computed for different re-observation times.

undefined as the orbital plane cannot be fixed. When fixing the orbital plane, the angular-rates differences
will approach zero as described above. However, in order not to use different methods for different
geometries, the sections are cut out of the plot. Re-observations at completed half revolutions also
cause difficulties in the Lambert’s solver, due to the plane uncertainty. However, as these re-observation
geometries are anyway unlikely, they are excluded from the discussion. Re-observations of the same
object after half a revolution are possibly occurring in a sensor network or in a space-based observation
scenario. However, in these cases the geometries will be different as the sensors are located at a different
position relative to the object.
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Figure 9.3: Angular-rate differences between nominal solution A1l = 0.0° and corrupted one Ad = 1.0°.

Re-observation times below half a revolution are not shown in the figure as the differences are consid-
erably larger and do not fit in the same scaling. Linking observations of the same night allows the most
unambiguous decisions with the drawback of covering a smaller orbital arc. Declination rate differences
Ady » are larger than the right ascension rate differences Ad, ». Both rates decrease to zero when approach-
ing the full-revolution geometries. Due to the symmetry (as discussed above) Ad; and Aé; are opposite in
sign, while the right ascension rate differences are equal at both epochs.

The angular-rate differences are scaled by the uncertainty to compute the loss. The uncertainty in the
modeled rates is dependent on the angular noise oy and the number of observations (see section 3.6).
Figure 9.4 and Figure 9.5 show the loss d? at the minimum for different re-observation times and different
retrograde and prograde solutions (Al € [-4°, 4°]). The loss values are once shown for an assumed
standard deviation oy = 1" (Figure 9.4) and oy = 0.5” (Figure 9.5).

dz

At [Tg]

Figure 9.4: Loss function minima d* of false association solutions for AA range and different re-observation times for
the noise model o =1".
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d2

Figure 9.5: Loss function minima d? of false association solutions for AA range and different re-observation times for
the noise model o = 0.5”.

Loss function values below the P = 0.95% gate (d> ~ 9.86), result in a false association. The dark areas
show the false associations while the gray and white space expose the proper candidate rejections. The
figures show three important properties. First, a false association of tracklets obtained from different nights
is very likely. A proper selection of the re-observation geometry can improve the association performance
in terms of false associations. Lastly, less uncertain angular-rates allow more unambiguous associations.
The last two points motivate the next discussion, i.e. at which geometries and for how long should objects
be optimally re-observed.

9.2 Implications for observation strategies

As the noise in the measured angles is fixed by sensor and observation conditions, only the duration
of the tracklet can be altered to improve the angular-rate accuracy. Figure 9.6 shows the dependency
between angular rate uncertainty (illustrated with o;) and the number of individual observations in one
tracklet. The time spacing between observations (integration and read-out) is fixed with 20 seconds and the
assumed angular noise standard deviation is 09 = 1”’. Alonger duration of a tracklet shortens the available
observation time for each object in the night. A general recommendation for a long optimal tracklet
duration cannot be given as only a few objects can be observed with the limited resources. Nevertheless,
the following discussion can be used in the optimization process of finding a good balance between
observation time and cataloging performance.
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Figure 9.6: Angular-rate uncertainty depending on number of
n observations in tracklet.
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Figure 9.7 shows the minimum number of observations within one tracklet needed to unambiguously
associate tracklets with a longitudinal separation of A4 = 1°. The plot is generated by altering the number
of observations until the loss function minimum of the false association passes exactly the P = 0.95%
gate. This is a root-finding problem, which is solved numerically using a bisection method.
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If objects are re-observed within the same night, typical tracklet durations of around 5 measurements
guarantee good performance. The following nights show the same pattern as discussed in the previous loss
function plots, i.e. the shorter the arc covered by the two tracklets, the more ambiguous the association
and the more observation would be needed. 40 observations amount up to a tracklet duration of ~ 13.3
minutes in this setup, which would dramatically worsen the global coverage of the scheduler. While five
observations per tracklet allows observing 36 slots in an hour, tracklets with ~ 13.3 minutes duration
would only provide 4.5 observed slots.

When observed at the right location, five to ten observations within the tracklet are sufficient to
perform an unambiguous association of observations from two subsequent nights. If the objects are
re-observed only after two nights, the minimum required tracklet duration is increased. Nights are longer
in winter, which allows observing larger arcs than in summer time (up to almost half an orbit). While
n = 5—101is a feasibly number during winter time, it is not sufficient in summer time, where the arc of
the collected tracklets can only cover one third of the orbit. Additionally, not all objects can be observed
once in the beginning of the night and once at the end. Figure 3.12 shows typical geometries in a survey
scenario. Due to the survey strategy, the arcs covered are typically around 15° and 30°. In order to guarantee
unambiguous associations, 7 must be around 20 - 30. In order not to waste observation time, these long
tracklet durations should not be used for all measurements. Instead, only newly detected objects could be
verified in this way.

[SUY i — A —

Figure 9.7: Number of observations required per track-
let for an unambigous association (AA < 1°).

Planning re-observations

One tracklet does not provide enough information to schedule re-observations as the approximate position
in the future is not well known. The admissible region provides a way to describe all possible orbits and
consequently all possible future observation positions. Holzinger et al., (2014) describe a method to use the
information to determine a time-interval left for re-observation. As the amount of possible re-observation
locations increases with time, a scheduling is only feasible for short durations after the first sighting. The
admissible region is filled with hypotheses, where each one is confirmed or rejected by scheduling an
observation at an optimal re-observation epoch. This epoch is defined here in terms of unambiguous
association, but could be likewise implemented in terms of information gain. Such an improved schedule
is possible for longer time-gaps between the tracklets when restricting the solution space. Typically, when
observing objects close to the near-geostationary domain, the orbital period is approximately known.
This does not apply to objects on decaying transfer orbits, but to most around the geostationary ring.
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Consequently, a re-observation can be scheduled by scanning a complete declination stripe after a specific
time interval (as explained in section 3.5).

The strategy is altered in the following way. When detecting a new object, i.e. an observation which
cannot be correlated to any object in the catalog, a re-observation at an optimal epoch can be planned. The
first tracklet is collected with a fixed n = 5. The tracklet duration at the second epoch is then increased until
the association performance is achieved (assumptions as above: A1 = 1° and P = 0.95%). The resulting
recommendation of observation epochs and corresponding tracklet duration is shown in Figure 9.8.
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The figure mostly resembles Figure 9.7 although slightly longer tracklets are required for each geometry.
The difference is small, which indicates that one high accuracy tracklet is enough to perform successful
associations. If one tracklet at f; yields a more precise angular-rate estimate than the other tracklet at #,,
the loss function will be dominated by the rates at #;. As an orbital solution is defined by six independent
parameters, the angular-rates at one epoch are enough to find a unique solution together with the two
angle pairs. A tracklet duration with n = 20 — 30 causes a minor loss of observation time when applied
only for newly detected objects.

It should be noted that smaller angular separations, as apparent in satellite formations, increase
the requirements to an unfeasible range. The consequences of false associations must also be assessed.
Primarily, a false association causes an additional computational burden. The ambiguities are either
resolved by an orbit improvement, or by subsequent measurements of the objects. Orbit improvement
methods experience the same difficulties as the presented methods, i.e. they find feasible orbits connecting
two measurement arcs of two different objects. Hence, the final association decision is shifted until the next
observation of the objects is obtained. During normal operations, this delayed decision is acceptable and
the observation strategy should focus on the maintenance of the complete catalog. In certain situations,
however, rapid decisions are required, e.g. directly after a break-up event or if a newly detected object is
in close proximity of another satellite. Then, an improved re-observation scheme as illustrated here is
applicable.

kb~~~ r==-7777

Figure 9.8: Number of observations required for second
tracklet for an unambiguous association (AA < 1°).
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10. Conclusions

The main goal of this work was to provide measurement correlation methods required for the build-up
of a space object catalog. Major difficulties and current challenges when correlating observations have
been outlined. Common approaches are either computationally intensive or oversimplify the problem. A
general framework is presented in which the best fitting orbit is found by numerically minimizing a loss
function. The thesis is structured in a way that formulations repeatedly show up in a different context. This
purposely guides the reader through the individual steps of the process and highlights the consistency of
the approach with other orbit estimation methods. The framework is applied to two different formulations,
each coming with advantages and drawbacks. The individual methods are analyzed in depth for fair
comparison and to give elaborate recommendations. The performance is studied theoretically using
simulated measurements and practically with real measurements. The overall performance is shown to
be very promising.

This final chapter is structured as follows: firstly, each chapter is summarized, where the main conclu-
sion of each part is emphasized. Then, a recommendation for a practical implementation is given. Lastly,
future research possibilities are outlined.

10.1 Summary

The thesis starts by recapitulating basic astrodynamics. The main notable aspect from the chapter is
that a satellite orbit can be represented by either position and velocity at one epoch or two position
vectors at two epochs. Both representation are in theory equivalent. In a practical numerical treatment of
differential equations, the initial-value problem is easier to solve as it just involves numerical integration.
The boundary-value formulation requires more advanced methods, but nevertheless can be solved.

Telescope setup, observation strategies and scheduler have a direct impact on the performance of the
methods and are consequently in detail discussed. Using the long-term dynamics of the geostationary
orbit, a base-line schedule is presented. The schedule serves to compute a typical distribution of observa-
tions, i.e. objects are mostly re-observed after 1 to 5 days. The objects are often re-observed at almost the
same location of the orbit or shifted by 1 - 4 hours. The first is caused by requiring low solar phase angles,
while the latter re-observation geometries are caused by the selected strategy.

Numerical optimization is a huge field of research in mathematics and consequently a lot of advanced
algorithms are published. The thesis does not go in detail of each algorithm, but summarizes advantages
and possible weaknesses. The latter part is important, as numerical optimization can only work properly
if the problem is well-defined. Code which runs in a operational service, must be reliable and robust.
Consequently, the chapter explains the benefits of appropriate coordinate systems and constraints.

A major difficulty during measurement correlation is the proper representation of uncertainties at-
tached to object states and measurements. The uncertainty regions are required to decide if the association
probability is above a certain threshold or not. Alternative representation are presented, which can help
to overcome the issues. Additionally, methods to quantify and visualize erroneous uncertainty transfor-
mations are provided and later used in the tracklet-to-tracklet association performance assessment.
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The chapter about orbit determination provides the statistical background for the later derived associ-
ation methods. The chapter also provides a compendium of preliminary orbit determination methods
under constraining assumptions, e.g. assuming circular orbits. Incorporating assumptions, based on e.g.
statistical knowledge about the object population, is often a valid choice and the algorithms can serve to
build up a set of tools.

The main research contribution is the chapter about the actual tracklet association and initial orbit
determination. The association is performed by computing the minimum of the association loss. If
the loss is below a predefined threshold, the observations are correlated. Two different loss functions,
following from the two different orbital representations, are presented. Benefits of each representation
are discussed.

The performance of the methods in presence of noise is assessed using real observations and simulated
ones. Real tracklets are taken from a measurement set with good knowledge of the originating objects.
Consequently, the algorithms are tested for the rate of successful associations. The overall performance is
shown to be very promising. However, the boundary-value formulation is easier to calibrate and more
robust to errors in the noise model.

The simulated observation set is used to test the achievable accuracy of the method. Even with a
simplified force model, i.e. two-body dynamics, the methods have shown to deliver sufficiently accurate
preliminary orbits. Both studies depict a major challenge by showing a drop in performance at full-
revolution re-observation geometries.

The last chapter analyzes the geometry dependency of the performance using a case study approach.
The study is used to illustrate the difficulties but also reveals a possibility to overcome them. The per-
formance of the methods can be increased by selecting beneficial re-observation epochs and observing
objects for longer durations. The outcome of the chapter can be used in a scenario where observations
can be planned for newly detected objects.

Comparison of the two formulations

The two used formulations of the association problem show a different performance. The implemented
boundary-value method requires considerably less computational resources, however, as discussed in
section 7.3 this advantage is not always guaranteed for other force-models than two-body dynamics and
depends also on the complexity of the implementation.

The initial-value formulation requires a special coordinate transformation and is, in general, more
difficult to minimize. Main reason for this difficulty is the multi-modal shape of the loss function, i.e.
multiple local minima can contain the searched-for orbital solution. Robustness is improved by segment-
ing the domain of feasible solutions into subspaces, each one containing at most one minimum. A one
dimensional search helps to find starting values for each subspace minimization. The boundary-value
formulation offers a more favorable loss function topography. Instead of one optimization problem, it
provides multiple loss functions for different numbers of completed half revolutions. This automatic seg-
mentation leads to a simple loss functions for each sub-problem. Chapter 8 shows the clear advantage of
the symmetric method in terms less transformation errors and easier calibration. The initial-value method
requires advanced methods for the transformation of the initial-state uncertainty to the observation space
of the second tracklet. Due to the large uncertainties in the angular-rates, the uncertainty cannot be
modeled anymore with a multivariate normal density function after propagation. The boundary-value
method, on the other hand, generates the orbit hypothesis using the angles-only information of the
tracklet. The modeled angular rate uncertainty is mostly negligible when compared to the observation
noise, which can be well represented by a normal distribution. Thus, the distribution of the association
results can be compared to a theoretical chi-squared distribution and accordingly calibrated.
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The initial-value method can be modified using e.g. a Gaussian mixture representation of the uncer-
tainties. If the transformation is properly modeled, the association performance can become similarly
good as for the boundary-value approach. Good means that it can be calibrated to achieve a certain
association success without creating to many false positives. However, the high-order representation of
uncertainties increases not only the complexity of the method but also the computational burden.

To summarize the discussion: the boundary-value formulation offers a robust and fast association and
initial orbit determination method without the need for a complicated implementation. The simplicity of
the approach makes it transparent and less prone to errors. The used uncertainties are approximately
distributed according to the normal distribution and thus allow a proper calibration without much efforts.
The accuracy results in section 8.2 additionally show that the implementation assuming just two-body
dynamics suffices for most objects. The computationally more costly perturbed Lambert’s problem solver
is thus only applied for the observations which cannot be linked with the fast implementation. More
details about the recommended processing pipeline are given in the following paragraph.

Recommendation

When it comes to the association of tracklets, there is no one-size-fits-all solution. The selection of a
proper method largely depends on the quality of the data and consequently on the observation strategy.
The developed methods perform very well on tracklets with a duration of a couple of minutes. This
observation scenario is a trade-off solution between good coverage of the geostationary domain and
association efforts. Shorter tracklets, which do not provide accurate angular-rates, require a different
approach and more measurements while longer observation arcs might not require any special treatment
at all and can be solved using traditional approaches.

Any of the methods might fail in bad geometries. However, this failure is an intrinsic problem of the
data. These geometries must be identified and handled differently. Various strategies can be selected
to overcome the issues, i.e. incorporating knowledge about the population or a brute-force sampling
approach which will create multiple state hypotheses.

In the end, a process chain should be implemented. Preliminary orbit determination assuming a
circular orbit (as described in section 6.3) eliminates the sensitivity to bad geometry. The remaining data
can be processed by the developed approaches. If observations still remain uncorrelated, they must be
correlated with measurements to come or the solution space must be sampled in a brute-force approach
if an estimate is absolutely necessary.

It is furthermore recommended to couple the association, orbit determination and observation plan-
ning. A scheduler should use the uncertainty information of cataloged data to decide which object to
observe at which epoch. The data used for decision should contain verified but also unconfirmed object
states (e.g. from a brute-force admissible region sampling approach).

10.2 Outlook

Instead of searching for feasible combinations of two tracklets, the search-space can be increased to three
and more observation combinations. As pointed out in section 3.4, this will increase the combinational
burden but also reduces the ambiguities and difficulties. In the mentioned multi-step association process
it could be seen as an additional last step. Zittersteijn, (2015) developed a loss function approach based on
the work in this thesis, which accounts for an arbitrary number of tracklets. Due to the large number of
required tests, an all-vs-all association approach as used in this thesis becomes unfeasible. Consequently,
they apply search heuristics to find matching triples.
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This work is assuming normally distributed uncertainty regions. This is helpful in terms of transparency
and simplicity but does not represent the reality. Future research should carefully balance out where higher
order representations are beneficial and where simplifications lead to more robustness. This applies not
only to the initial-value and object-to-measurement association but also to the boundary-value approach
for certain geometries.

The presented association methods provide necessity tests for measurements, i.e. all measurements
which actually originate from a common object fulfill this test. But, they can also fulfill the requirement if
originating from different but closely-spaced objects. Unfavorable geometries increase this effect. In these
cases, sufficiency can only be guaranteed if more observations are considered. Given a set of observations,
a global optimization problem in terms of the combined association likelihood can be defined. Results of
a prototype implementation using an expectation-maximization optimization approach (Dempster et al.,
1977) are shown in Figure 10.1. Measurements of three closely-spaced co-located satellites are simulated
and associated using 11 expectation maximization steps.
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Figure 10.1: Association of measurements to three closely-spaced objects with a semi-major axis separation of 1 km
and eccentricity difference of 0.0001°. Plot centered around —6.83°. The different markers denote the observations and
the different lines the associated orbital solutions.

Another difficulty arises when associating measurements where the object maneuvered in-between
the measurement epochs. With no prior knowledge, the association becomes a completely ambiguous
operation in a dense environment, as every observation can be linked to another. But, if prior knowledge
is incorporated, e.g. a probability for a maneuver at a certain time, the association becomes less arbitrary.
Maneuvers can be learned by classification methods either for each object individually, for each bus
type, or for the whole domain (e.g. North-South maneuvers and East-West maneuvers for geostationary
objects). If the normal association without a maneuver does not provide a match, the association is
repeated allowing for probable maneuvers and considering for their probability. If a likely maneuver is
found, the association is a success.
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As can be seen in this section, the subject of measurement association and space debris orbit de-
termination still offers a wide range of research opportunities. Even if initial orbit determination has
been studied for asteroids already for centuries, new sensors and the increasing risk in the near-Earth
space environment open up all new questions. As sensors become better, smaller debris particles will be
observed which leads to an even larger amount of observations and consequently larger catalogs. The
hazardous debris in our valuable space will eventually call for an international collaboration and hopefully
to a measurement exchange. Merging the information adds another task to the list.
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