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Kurzfassung

Der stetige Fortschritt der Technologie erlaubt es, die Umgebung mit immer höherer
Genauigkeit zu erfassen. Dies führt dazu, dass die Betriebsbedingungen, um ein ange-
messenes Leistungsniveau dieser präzisen Instrumentierung zu gewährleisten, immer
strenger werden, insbesondere für optische Nutzlasten. Im Falle von Raumfahrzeuge
herrscht traditionell eine stabile und geräuschfreie Umgebung, in der hochpräzise
Messungen durchgeführt werden können. Dies gilt für hochauflösende Weltraumte-
leskope und eine Vielzahl von Fernerkundungsmissionen.

Ein wesentlicher Faktor für die Stabilität, die hochpräzise Instrumentierung er-
fordert, ist eine formstabile Struktur. Traditionell wurde eine akzeptable Dimen-
sionsstabilität nur durch passive Methoden erreicht, d.h. durch die Entwicklung ei-
ner adäquaten Konstruktion aus Materialien mit hoher Steifigkeit und niedrigen
Wärmeausdehnungskoeffizienten. Mit den steigenden Anforderungen an die Sta-
bilität stoßen die traditionellen Methoden, um den Auswirkungen von Störungen
entgegenzuwirken, an ihre Grenzen. Eine besondere Art von Störungen, die zu er-
heblichen Maßänderungen an der Struktur führen können, sind Störungen thermi-
schen Ursprungs. Diese verändern das Temperaturfeld in der Struktur und damit
die Verschiebung zwischen verschiedenen Punkten. Aktuelle Missionen zeigen, dass
das Ausmaß dieser Verformungen immer problematischer wird und daher bessere
Methoden für Dimensionsstabilisierung erforderlich sind.

Diese Arbeit stellt eine Alternative zum traditionellen passiven Ansatz dar. Die
vorgestellte Methode basiert auf der kontrollierten Anwendung von Wärme auf ei-
ne Struktur, um ihr Temperaturfeld und damit die entstehenden Verformungen zu
verändern. Dieses Kontroll-Framework wird durch eine Frequenzbereichsformulie-
rung des thermomechanischen Modells der Struktur ermöglicht, die wiederum durch
die Finite-Elemente-Methode abgeleitet wird. Basierend auf dieser Formulierung
werden die Übertragungsfunktionen zwischen Temperatur und Verschiebung ermit-
telt und ein Regler abgeleitet. Außerdem werden die Sensor- und Aktuatorstrategien
zur Umsetzung des vorgestellten Regelungsansatzes präsentiert. Eine Simulations-
umgebung wird entwickelt, um die mit dieser Methode erreichbare Dimensionsstabi-
lität zu bewerten. Dabei werden die wichtigsten Faktoren berücksichtigt, die in der
Praxis zu einer Leistungsreduzierung beitragen können, einschließlich der Sensor-
und Aktuatorunsicherheiten. Die so erreichte Stabilitätsleistung unter verschiede-
nen Szenarien beweist, dass die vorgestellte Methode eine gegenüber den passiven
Verfahren verbesserte Dimensionsstabilität erreichen kann. Es wird erwartet, dass
diese Methode dazu beitragen kann, neue Arten von hochleistungsfähigen Welt-
raummissionen mit hohen Anforderungen an die Dimensionierung zu ermöglichen,
darunter hochauflösende Teleskope, Laserkommunikationssatelliten und Formatio-
nen von Raumfahrzeugen für weltraumgestützte Interferometrie.
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Abstract

The steady advance of technology allows sensing the environment at an always
increasing level of accuracy. As a result, the operating conditions to guarantee an
appropriate level of performance of such precise instrumentation are becoming more
stringent, particularly for optical payloads. Spacecraft have traditionally granted a
stable and noise-free environment from which high-precision measurements can be
conducted. This has been the case for high-resolution space-based telescopes and a
wide variety of remote sensing missions.

An essential factor in achieving the levels of stability that high-precision instrumen-
tation require is to have a dimensionally stable structure. Traditionally, acceptable
levels of dimensional stability have been reached based only on passive methods,
i.e. by developing an adequate structural design built with materials that have high
stiffness and low coefficients of thermal expansion. However, as higher levels of
stability are required, traditional methods to counteract the effects of acting per-
turbations are approaching their limits. A particular type of perturbations that
can introduce significant dimensional changes on the structure are perturbations
of thermal origin. These change the temperature field in the structure and, as a
result, the displacement between different points. Recent missions exemplify that
the magnitude of these distortions is becoming more problematic and, thus, better
methods of dimensional stabilization are required.

This work presents an alternative to the traditional passive approach. The presented
method relies on the controlled application of heat on a structure in order to modify
its temperature field, and as a consequence, the arising distortions. This control
framework is enabled by a frequency-domain formulation of the thermomechanical
model of the structure, derived in turn through the finite element method. Based
on this formulation, thermomechanical transfer functions between temperature and
displacement are obtained and a controller can be derived. The sensor and actuator
strategies to implement the presented control approach are also presented. A sim-
ulation environment is developed to assess the dimensional stability that could be
achieved with this method. This takes into account the major factors that in reality
could contribute to a performance decrease, including the sensor and the actuator
uncertainties. The achieved stability performance under different scenarios is as-
sessed, which proves that the presented method can potentially provide dimensional
stability beyond what is passively possible. It is expected that this method can
contribute to enabling new types of high-performance space missions with stringent
dimensional requirements including higher-resolution telescopes, laser communica-
tions satellites and formations of spacecraft for space-based interferometry.
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Chapter 1

Introduction

1.1 Background

One of the current challenges in the spacecraft design field consists in achieving
the level of dimensional stability that new instrumentation requires to reach a cer-
tain level of performance. Given the steady advance of technology, newly developed
instruments can sense the environment at unprecedented levels of precision. How-
ever, oftentimes the measurements they provide may be disturbed by external and
internal perturbations in the spacecraft. Therefore, one of the limiting factors to
properly operate such instrumentation are the perturbations generated and trans-
mitted through the spacecraft itself.

This is particularly the case of spacecraft equipped with optical payloads that require
stringent alignments and dimensional stability between different elements [1]. For
instance, dimensional stability can be the limiting factor to the maximum pointing
accuracy that can be achieved by space telescopes. Current and planned missions
show that the required pointing accuracy of space telescopes is progressively becom-
ing more stringent [2] and can only be reached with high dimensional stability. This
type of stability also plays an important role in formation flying missions that have
stringent navigation requirements or that perform inter-satellite distance measure-
ments at high levels of accuracy, as in the case of space-based interferometers [3].
From these different types of missions, it becomes apparent that new missions with
higher performance could be enabled by increasing the level of dimensional stability
that can be reached on board spacecraft.

The perturbations that affect the dimensional stability on board the spacecraft can
arise from different sources. On the one hand, there are external perturbations,
which can ultimately be described as changes in the environment surrounding the
spacecraft. On the other hand, there are internal perturbations, which are generated
in the spacecraft itself by onboard equipment. There is also an important distinction
related to the frequency of the perturbations. Low-frequency perturbations have
generally only a quasi-static effect on the structure. These can mostly be described
as thermal changes that induce thermomechanical distortions in the structure. At
the other end of the spectrum, there are high-frequency perturbations, which include
mainly mechanical vibrations.
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A variety of strategies have been suggested and implemented to attenuate the impact
of these different perturbations. The traditional approach has been to isolate the
precise payload on board the spacecraft through passive means. This includes the
construction of a secondary structure where the precise instrumentation is mounted,
usually an optical bench, using materials that exhibit high stiffness and low coeffi-
cients of thermal expansion. Additionally, this secondary structure can be connected
to the primary structure of the spacecraft through a statically determinate mount [4],
also known as isostatic, which minimizes the mechanical interaction between both
structures. By using an isostatic mount, distortions in the primary structure do not
directly translate into distortions in the secondary structure. Passive methods are
also implemented to insulate the onboard equipment that introduces thermal per-
turbations and to attenuate the thermal response of the spacecraft, which minimizes
distortions induced by environmental changes. In all these passive techniques, the
level of stability that can be achieved is inherently limited by the material prop-
erties and by the structural design. Furthermore, as higher levels of stability are
required, the complexity and development efforts of these methods increase accord-
ingly. Therefore, it is suggested that in order to overcome these limitations, active
methods of structural control should be implemented.

Several active methods of structural control have been suggested and investigated.
These include, for instance, active vibration isolation techniques such as controlled
hexapod platforms [5] or active damping devices [6]. Active methods include also the
field of smart structures [7], with a strong focus on piezoelectric actuation [8]. It is
a fact that different types of perturbations require different active control methods.
This results in approaches that can differ significantly depending on whether they
are designed to counteract low-frequency or high-frequency perturbations.

The focus of this thesis is the development of a method to specifically counteract
thermomechanical distortions, i.e. those distortions that result from the expansion
in the materials composing the structure and that are induced by low-frequency
thermal fluctuations. These thermal fluctuations are mainly induced by changes
in the thermal environment of the spacecraft, which arise as the spacecraft follows
its orbit, and by variations in the power dissipation of onboard equipment. These
fluctuations are subsequently transmitted to the rest of the spacecraft through heat
conduction and radiation.

The proposed method is based on the application of controlled heat in the structure,
thereby inducing a displacement field that compensates the distortions arising due to
thermal perturbations. There are three key aspects that are necessary to implement
such a method and that constitute the backbone of this thesis. One aspect consists
in deriving an accurate thermomechanical model of the structure that allows the es-
timation of the thermal and mechanical response of the structure under an uncertain
environment. The other aspect is related to the formulation of a feedback control
loop to derive the appropriate heat inputs that counteract distortions induced by
thermal perturbations. This is directly related to the third essential aspect, which
is a sensor and actuator strategy to properly measure, estimate and modify the dis-
tortion field at one given point in time. The combination of these different aspects
results in a thermomechanical control framework that can be directly applied in
space platforms. The same framework could be extended with minor modifications
for ground applications that require also high levels of dimensional stability.
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1.2 Research Objectives and Motivation

The main objective of this thesis is to develop an innovative control framework that
can be directly implemented on board spacecraft to enable unprecedented levels of
dimensional stability. This method must be able to compensate those distortions
induced by thermal perturbations that are expected to arise in spacecraft. Thus,
it is particularly important to take into account the heat exchange mechanisms
describing the thermal response in space, i.e. conduction and radiation.

The first step in developing this control framework consists in establishing a ther-
momechanical model of the system to be controlled. Several numerical methods
to develop thermomechanical models are already well established in the aerospace
industry, these include finite difference [9] and finite element methods [10]. In order
to facilitate the implementation of the control framework presented in this thesis, it
is considered that the modeling techniques that are already established should be
taken as a basis. It is necessary to account for the limitations of these current tech-
niques and to identify novel methods to overcome them. In this sense, an objective
of this thesis is to investigate the potential of a frequency-domain approach [11] to
the thermomechanical problem, as well as the advantages it provides to develop a
control framework.

The second step involves the derivation of control inputs that, when applied to a
structure, result in a compensation of specific distortion measures. This requires the
identification of a feedback controller that improves the dimensional stability level
in comparison to that achieved with purely passive methods. The derivation of this
feedback controller depends on the control strategy that is chosen, which includes
the selection of actuators and sensors. In order to derive a control framework that
could eventually be implemented, it is necessary to consider a reasonable number of
both sensors and actuators. The cornerstone of the method presented in this thesis
is based on controlling the structural behavior through the application of heat using
heaters mounted on the structure. To achieve this, it is necessary to develop a
sensor strategy based on available technologies that allows the estimation of the
displacement field at each point in time.

The control framework developed in this work aims to compensate small deforma-
tions in structures that are already very stable. One of the obstacles to achieving
stability at these levels is related to the uncertainty of the system. An objective
of this thesis is to prove that the proposed control framework can also work under
uncertain conditions. It needs to be clearly defined what these uncertain conditions
include and what the sources of uncertainty are. The most significant sources of
uncertainty are expected to be the uncertainty due to the randomness of thermal
perturbations, the uncertainty in the behavior of both sensors and actuators, as
well as the uncertainty in the thermomechanical model, mainly related to mate-
rial properties. A framework to assess how these uncertainties impact the control
performance must be developed.

The main motivation behind the work developed in this thesis has been to propose a
possible solution to achieve the dimensional stability levels that new space missions
are already requiring and are expected to require at even higher levels in the near
future. The dimensional stability requirements of recent missions are close to the
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limits of what is possible with only passive methods. It is expected that new mis-
sions will only be enabled if active methods of structural control are implemented.
This is clearly the case of the several space-based interferometry missions that have
been proposed and assessed in the last decade. One of them is IRASSI [12], the
InfraRed Astronomy Satellite Swarm Interferometer, a mission study promoted by
the Deustches Zentrum für Luft- und Raumfahrt (DLR, German Aerospace Center).
It was in the framework of IRASSI that the work presented in this thesis started.

The motivation of this thesis is, on the one hand, to enable new kinds of space
missions with stringent stability requirements. On the other hand, it is also expected
that the technology presented in this thesis can represent in some cases an alternative
to traditional passive approaches. In this sense, it is also a motivation to provide an
active control technology that could be implemented in cases where passive methods
become extremely complex, and as a consequence, expensive. This could represent
a way to reduce development costs and, in some cases, it could even result in mass
savings. Therefore, an additional motivation of the presented work is to reduce
development efforts and minimize costs of a particular type of space missions.

1.3 Thesis Overview

This thesis begins with a review in Chapter 2 of state-of-the-art space missions that
require high dimensional stability. This review illustrates why dimensional stability
is a problem of growing importance by presenting the stability requirements of recent
missions and of missions that have been assessed and proposed for the near future.
This review has a special focus on the IRASSI mission, which is a space-based inter-
ferometer consisting of 5 satellites that plans to observe the infrared spectrum and
has been the starting point for the work presented in this thesis. Chapter 2 con-
tinues with a presentation of the different perturbations that act on spacecraft and
discusses possible classifications based on their properties. The available methods
to counteract the structural distortions introduced by the presented perturbations
are outlined. This introduces the distinction between passive and active methods
of structural control and presents the most relevant active control technologies that
are under investigation.

A representation of the control framework that has been developed in this thesis is
illustrated in Figure 1.1. Each essential aspect of this control framework is treated
and presented separately in the subsequent chapters of the thesis.

The aspects related to the thermal analysis model are presented in Chapter 3. This
chapter presents the available numerical methods that are commonly used in the
aerospace industry to solve thermal problems. It continues with the formulation of
the finite element approach that has been selected to derive the required thermal
model for the control framework. This chapter presents also a formulation of a
frequency-domain approach to the transient thermal problem and its adaption for
control purposes.

Chapter 4 continues with the formulation of the mechanical model, which takes as an
input the temperature field calculated using the process described in Chapter 3 and
outputs the displacement field. This model is also based in finite elements in order to
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Figure 1.1: Control framework for thermomechanical distortions.

facilitate the interface between the thermal and the mechanical model. The chapter
presents how the transient evolution of the displacement field can be calculated
in the frequency domain, which is already a well-established type of analysis in
the field of structural dynamics. It presents also the modal representation of the
displacement field and its combination with the equivalent representation of the
thermal problem, resulting in a modal approach to the thermomechanical problem.
The chapter finishes with a presentation of the quasi-static assumption that is taken
as a basis to implement the feedback controller.

Once the thermal and the mechanical formulation of the structure models have been
derived, the next step has been to develop the control strategy, which is presented
in Chapter 5. This chapter starts with a presentation of a simple perturbation com-
pensation method that can be implemented when thermal perturbations can be fully
characterized. The second part of the chapter presents a feedback control loop to
compensate distortions that arise by random perturbations. This includes the de-
scription of the sensor strategy to estimate the displacement field based on a limited
amount of temperature sensors. It also presents the possible actuation strategies
to apply the control heat in the structure. The procedure to take into account the
inherent uncertainties in both the sensors and actuators behavior is also presented.
Subsequently, the complete formulation of the closed-loop system is presented. The
chapter finishes with a step-by-step guide to implement the developed stabilization
framework on any structure.

Chapter 6 evaluates the results that are obtained from applying the stabilization
framework presented in the previous chapter. It first presents the most optimal
performance results that can be obtained under the assumption that all the compo-
nents have an ideal behavior and that no uncertainties are present. Subsequently,
it presents the results under the effects of different uncertainty sources to identify
which are the largest contributors to the performance decrease. The chapter presents
also simulation results to validate the different assumptions that have been intro-
duced to develop the thermomechanical model. At the end of the chapter there is a
sensitivity analysis in terms of the material properties to assess how uncertainty in
these variables impacts the control performance.

Finally, a thesis summary and conclusions can be found in Chapter 7. This chapter
presents briefly the key aspects of the thesis and finishes with recommendations on
future work.
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Chapter 2

Dimensional Stability Framework

The steady advance of technology enables the development of instruments that sense
the environment at an always increasing level of accuracy. When this instrumen-
tation is operated on board a spacecraft it is often required to provide a high level
of structural stability. This is necessary to achieve the quiet environment that in-
struments require for its proper operation and to provide the interfaces to other
spacecraft elements. Thus, one of the enabling factors for more complex missions
in the near future will be to achieve structural stability at the unprecedented levels
that new instrumentation is requiring.

This chapter starts with a presentation of the state-of-the-art missions that require
high dimensional stability. This shows why dimensional stability is a critical factor in
current missions and how future missions will benefit from higher levels of stability.
This stability must be achieved despite the fact that different perturbation sources
act on the spacecraft. Thus, this chapter continues with a presentation of the most
relevant perturbations that are expected to act on a spacecraft during its operation.
Finally, the chapter gives an overview of the different control methods that have been
implemented and proposed to attenuate the effects of the presented perturbations.

2.1 State-of-the-art missions

The high structural stability of spacecraft has become increasingly more problematic
as the traditional passive stabilization methods based on the selection of adequate
materials and mechanical decoupling have approached their limits. Problems arising
from structural instabilities have become apparent in the last decade during the de-
velopment phases of missions such as GAIA, launched in 2013, and LISA Pathfinder,
launched in 2015. These two missions exemplify different reasons for which struc-
tural stability is becoming progressively more important. Both are single spacecraft
missions. However, LISA Pathfinder is a precursor of the more complex mission
known as LISA that is foreseen to consist of three spacecraft. In this regard, forma-
tion flying missions are a growing field where structural stability requirements are
expected to play an important role.
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GAIA is an astrometry mission [13] of the European Space Agency (ESA) designed
to precisely map around 109 stars in the Milky Way. One of its goals is to provide
precise information on the position and radial velocity of these stars, as well as of
their luminosity, temperature and composition. To this purpose, the GAIA space-
craft, represented in Figure 2.1, is equipped with two identical telescopes with access
to two different fields of view separated by an angle of 106.5◦. It is crucial for the
feasibility of the mission that the angle between these two telescopes does not change
more than 7 microarcseconds over a period of 6 hours, which is the rotation period
of the spacecraft [14]. Moreover, GAIA is equipped with a monitoring system that
keeps track of the variations of this angle at microarcsecond level, which is arguably
the most precise metrology system that has ever flown [13]. For this mission, the
challenging level of structural stability has been reached using a passive approach
based on a highly complex and advanced optical bench made of silicon carbide.

The most stringent structural stability requirement of the GAIA mission is expressed
as an alignment between two optical elements, i.e. the two telescopes. Similar re-
quirements exist and have existed for other single spacecraft missions, specifically
in the case of space telescopes, because the alignment between optical elements di-
rectly influences the scientific performance that can be achieved. It is a logical trend
that new missions, namely in the field of space telescopes, aim at reaching higher
resolutions and better image quality than previous missions. This eventually trans-
lates into stringent requirements in terms of the alignment between optical elements
and in terms of the spacecraft pointing, expressed as absolute pointing and pointing
stability requirements.

The pointing requirements of the first space telescopes were in the range of arcsec-
onds. This was in accordance with what could be achieved based on gyro-stellar
estimation which depended on the available star catalogs that had limited accuracy.
The improvements in the quality of star catalogs and in the hardware of the involved
technologies have made it possible to reach attitude knowledge at subarcsecond level.
Once attitude determination at a subarcsecond level has become possible, the next
logical step in space telescopes technology has been to achieve also attitude control
at these magnitudes. However, to achieve this performance level it is also crucial to
ensure that the spacecraft structure is stable at the subarcsecond level, otherwise
the measurements obtained by the attitude determination system cannot be prop-

Figure 2.1: Artist’s impression of GAIA (Courtesy of ESA/D. Ducros).
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erly related to the pointing direction of the telescope on board the spacecraft. The
coordinate system located at the attitude sensors should ideally be at a constant
orientation with respect to the coordinate system centered at the telescope. How-
ever, perturbations acting on the spacecraft often introduce misalignments between
these two coordinate systems.

Among the most representative examples of this tendency towards more accurate
attitude control there is the Herschel Space Observatory (HSO) [15], launched in
2009 and represented in Figure 2.2. The HSO was designed following a pointing
requirement of 3.7 arcsec in terms of Absolute Pointing Error (APE) and 0.3 arcsec
of Relative Pointing Error (RPE), both expressed as 1σ requirements [16]. According
to the ESA definitions [17], the APE is the difference between the desired pointing
direction and the actual pointing direction. The RPE is defined as the difference
between the instantaneous pointing direction and the average pointing direction
over a time period that in the HSO case was 60 seconds. The final performance that
HSO achieved after applying several corrections in the operations of its attitude and
control system was slightly below 0.9 arcsec APE and 0.19 arcsec RPE [16].

More stringent requirements exist for the James Webb Space Telescope (JWST) [18],
represented in Figure 2.3, which is planned to be launched in 2021 and that will ob-
serve frequencies ranging from long-wave visible light to mid-infrared. The JWST
requires a pointing accuracy of 1 arcsec at 1σ level during its fine guidance mode [19]
and a pointing stability of 7 milliarcseconds, also at 1σ level [20]. Achieving this
stringent level of attitude accuracy is unattainable without a very advanced struc-
tural concept and the appropriate techniques to isolate the telescope from any per-
turbations that may arise on board the spacecraft.

Figure 2.2: Artist’s impression of the
Herschel Space Observatory (Courtesy
of ESA/AOES Medialab).

Figure 2.3: Artist’s impression of the
James Webb Space Telescope (Courtesy
of NASA).
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Another illustrative example of the importance of thermomechanical stability is
the M-class type mission of the European Space Agency known as EUCLID [21],
scheduled for launch in 2020. EUCLID will measure the redshift of galaxies and
clusters of galaxies to better understand dark matter. The image quality that this
mission is expected to achieve results also in stringent requirements on the pointing
accuracy and, therefore, on the thermal and mechanical stability of the spacecraft.
The pointing requirements for EUCLID are 75 milliarcseconds RPE over a period
of 700 seconds and 7.5 arcsec APE, in this case expressed as 3σ requirements [22].

Also among the M-class missions of ESA there is PLATO [23], launching in 2024,
which will study extrasolar planetary systems and will characterize the properties
of exoplanets in habitable zones. The most stringent requirement of this mission
related to its pointing is to achieve an RPE of 0.2 arcsec at 1σ [24].

To illustrate the trend towards an increase of the attitude control accuracy in new
missions it is also relevant to consider missions that have been proposed and prelim-
inarily analyzed and that could be implemented in the next decades. This includes
SPICA, which has been a candidate M-class mission for ESA and developed as a
collaboration between ESA and the Japan Aerospace Exploration Agency (JAXA).
The first pointing requirements derived for this mission were to achieve during its
standard mode of observation an APE of 0.135 arcsec and an RPE of 75 milliarcsec-
onds over a period of 200 s, both expressed as 3σ values [25]. The spacecraft would
also have a coronograph mode requiring both an APE and an RPE of 0.03 arc-
sec [25]. These requirements were slightly loosened in a posterior study conducted
by the Concurrent Design Facility at ESA [26] which resulted in 3σ values of 0.8
arcsec APE and 0.05 RPE, also over a period of 200 s.

All these missions exemplify that there is a tendency towards an increase in the at-
titude accuracy demanded by new missions. It is becoming, therefore, necessary to
take into account that one of the limiting factors for achieving this highly accurate
attitude is the structural stability of the spacecraft itself. The structural stability
requirements for these cases are often expressed as alignments between optical el-
ements and attitude sensors and also as alignments and distances between optical
elements, such as different mirrors of a telescope.

Apart from dimensional stability requirements related to attitude determination and
control, there exist other reasons for which high levels of dimensional stability are
required. This has been the case of the LISA Pathfinder mission [27], a precursor
of the LISA gravitational wave observatory [28]. The goal of the LISA mission
is to detect and measure gravitational waves. This mission is foreseen to consist
of three spacecraft in a triangular formation with a side length of 2.5 million km
following a heliocentric orbit. Each spacecraft will contain a pair of free falling
masses that will follow a drag-free trajectory. Gravitational waves will alter the
geodetic trajectories of each mass inducing distance changes between the free-falling
masses from different spacecraft. Provided that the remaining perturbation sources
are minimized to acceptable levels, it will be possible to detect gravitational waves
by accurately measuring the distance change between free-falling masses. The range
of frequencies of the gravitational waves that LISA aims at detecting requires the
measurement of distance changes at picometer level [28], which will be performed
using laser interferometers.
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LISA Pathfinder has been a precursor mission to test some of the technologies that
enable the LISA mission concept, particularly the aspects related to the distance
measurement between test masses and the strategies to decouple the test masses from
the spacecraft structure [27]. The mission consisted in testing only a miniaturized
version of one of the arms of the full LISA interferometer. This was implemented
with two free-falling masses inside the LISA Pathfinder spacecraft, which can be
seen in Figure 2.4, and a laser interferometry system to track the distance changes
between them [27].

There exists a large variety of physical phenomena apart from gravitational waves
that can induce accelerations in the test masses present in these missions [29] and,
therefore, change the distance between them. To enable the detection of gravita-
tional waves it is crucial to minimize the acceleration noise induced by the remaining
sources. These include accelerations triggered ultimately by thermomechanical dis-
tortions. Therefore, both LISA Pathfinder and LISA require an unprecedented level
of thermal and mechanical stability. On the one hand, this stability is required to
minimize the acceleration perturbation on the test masses. On the other hand, it is
also essential to enable the laser interferometry measurements at picometer level.

The LISA mission can be seen as part of a larger class of space missions that are
slowly reaching technological maturity. These are multi-spacecraft missions that aim
at sensing a variety of space phenomena at unprecedented levels of precision. This
type of missions are often based on taking several measurements of a particular
magnitude from each spacecraft and on subsequently combining them to derive
a more accurate measurement. This usually requires additional measurements of
inter-satellite distances between different reference points in order to properly relate
measurements taken at each spacecraft. Thus, structural stability is an essential
element to ensure the feasibility of this type of missions.

Figure 2.4: Free-falling masses inside the LISA Pathfinder spacecraft (Courtesy of
ESA/ATG medialab).
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One of the first such missions was GRACE [30], the Gravity Recovery and Climate
Experiment, a joint partnership between NASA and DLR that was launched in 2002.
The objective of GRACE has been to detect anomalies of the Earth’s gravity field
induced by mass fluctuations which in turn helps improve the gravity field models.
GRACE consisted of two satellites that flew in a near-circular orbit at 500 km of
altitude and at approximately 220 km from each other. Given that variations in
the gravity field are expected to induce changes in the inter-satellite distance and
relative velocity, the working principle of this mission consisted in tracking the
distance change between both satellites as they orbited the Earth. The spacecraft
used a K-band microwave ranging system to measure distance changes with an
accuracy of 1µm [31]. Both spacecraft were additionally equipped with a high-
accurate accelerometer containing a proof mass which allowed the identification
of distance changes that were not caused by variations of the gravity field [32].
Dimensional stability was crucial in such a mission to minimize shifts of the center
of mass and in order to transform inter-satellite distance changes measured at the
reference point of the ranging system to distance changes of the spacecraft center of
mass.

To expand the measurements conducted by GRACE and improve even further the
accuracy of the gravity field models, a new mission known as GRACE Follow-on [33]
was launched in 2018. This mission is based on the same concept as GRACE but it
has been conceived to achieve a higher resolution. GRACE Follow-on consists of two
spacecraft that were inserted in an orbit at approximately 490 km of altitude, the
distance between spacecraft is in the order of 200 km. In this case, the inter-satellite
distance has to be measured at nanometer precision [34]. This results in even more
stringent requirements in terms of the dimensional stability that is necessary between
the reference point of the ranging system and the center of mass. To comply with
the specified requirements it was necessary to mount both the ranging system and
the high-precision accelerometers in a common high-performance optical bench that
minimizes the distortions between them.

There is a specific group of multi-spacecraft missions that have stringent dimensional
stability requirements, these are space-based interferometers. This type of missions
aim to observe a particular range of the electromagnetic spectrum and consist of at
least two spacecraft that either fly in formation or are connected through a structural
boom or tethers. Space-based interferometry has been suggested as an approach to
observe at high spatial resolutions those wavelengths of the electromagnetic spec-
trum that are blocked by the atmosphere and, therefore, cannot be observed from the
ground. This concerns particularly the infrared spectrum, which has been partially
observed by space telescopes such as the Infrared Space Observatory (ISO) [35], the
Spitzer Space Telescope [36] and the Herschel Space Observatory [15] but never at
subarcsecond resolutions. There exists a strong scientific rationale that justifies and
advocates for the development of a space mission to observe the infrared spectrum
at unprecedented resolutions [37]. As a consequence, several concepts have been
proposed and studied to provide this level of performance.

Interferometric missions require the combination of different waves within accuracies
at a higher order of magnitude than the wavelengths involved, which in the infrared
case range from 0.7 µm to 1 mm. At the same time, the angular resolution that can
be reached with interferometric techniques is inversely proportional to the distance
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between collectors, also known as baseline. This means that longer baselines are
desired to achieve a smaller value of the angular resolution, which results in more
detailed images. As a consequence, space-based interferometry missions require
generally the measurement of long distances at high accuracy. Performing this kind
of measurements between different spacecraft inevitably requires a high level of
structural stability.

Different concepts have been proposed as a solution to this challenge. One option
is to connect the different spacecraft collecting infrared signals through a structural
boom. This is the option that was proposed by SPIRIT [38], which consists of one
beam combiner connected to two light collecting telescopes that can move through
a rail. The structural boom solution gives more control over the baseline magnitude
but it also limits its maximum value, which in turn limits the resolution that can
be achieved. A more complex solution to overcome this limitation consists in using
tethers to connect the different collectors. This approach was considered for the
SPECS concept [39] in order to enable a spin-stabilized formation consisting of three
light collectors and a central beam combiner. This approach theoretically reduces the
effort in formation control because it forces the spacecraft to follow a specific circular
trajectory. Having a tether that connects the different light collectors also helps
in the estimation of the inter-spacecraft distance. However, SPECS requires this
estimation to be performed at an accuracy of 1µm and it also requires an orientation
between spacecraft at subarcsecond accuracy [39]. Therefore, dimensional stability
is also a critical factor for the feasibility of this mission.

Both the structural boom option and the tethered option have also been considered
for the TPF mission [40] and the FIRI mission [41]. These missions have addition-
ally assessed the option of operating the different light collectors as a free-flying
formation [42, 43]. One of the advantages of the formation flying option is that
it provides more flexibility with respect to the relative positions between space-
craft which can be beneficial in scientific performance terms. This has been one
of the reasons why the formation flying concept has also been the core idea be-
hind other space-based interferometry proposed missions including DARWIN [44],
ESPRIT [45], PEGASE [46] and IRASSI [3].

These missions apply different interferometric techniques which result in different
dimensional stability requirements for each mission. To better exemplify why this
is the case, the main structural stability requirement behind the IRASSI mission is
presented here in detail.

The IRASSI mission has been conceived as a space-based interferometer consisting
of a free-flying formation of five spacecraft that aim to observe the infrared spec-
trum between 50 and 300 µm. IRASSI relies on a heterodyne detection approach
to capture infrared signals, which is an alternative to the direct detection approach
of other missions such as DARWIN. The idea behind the interferometry concept
applied for IRASSI is to superimpose at the same wavefront the signal of one source
received at the different spacecraft. In order to perform this step it is necessary
to know with a certain accuracy the geometric delay d, represented in Figure 2.5,
between the same signal as it reaches two different collectors.

In order to properly interfere two different signals, IRASSI requires the combination
of the wavefront from different collectors with a phase error below 30◦. Expressed
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Figure 2.5: Interferometry concept for the IRASSI mission.

in terms of the wavelength this means that the geometric delay needs to be known
to an accuracy of approximately λ/10. Given that the minimum wavelength that
IRASSI plans to observe is 50µm, the geometric delay represented in Figure 2.5
needs to be estimated with an accuracy of 5µm.

The estimation of this geometric delay is based on first estimating the inter-satellite
distance l and the source direction angle θ. If these two magnitudes are known and
a perfect alignment is assumed between the optical elements, the geometric delay
can be directly calculated using trigonometry.

The inter-satellite distance l is defined as the distance between the two reference
points where the signal is detected at each spacecraft. These points correspond
to the reference point of the scientific instrument. A first estimation of the inter-
satellite distance can be obtained with a metrology system. However, a metrology
system can only provide a measurement referred to the point of the spacecraft where
this system is mounted. Therefore, it is required to subsequently transform the
measured distance referred to the metrology system points to the inter-satellite
distance referred to the scientific instrument points. The parameters involved in
this transformation are represented in Figure 2.6.

Figure 2.6 shows that in order to apply this transformation it is necessary to know the
internal distance between the scientific instrument and the metrology system. This
is represented in Figure 2.6 by the vectors ~r1 and ~r2. The final distance that IRASSI
requires for the scientific operations is the geometric delay represented in 2.5, which
has to be known with an accuracy of 5 µm. As a consequence, all the secondary
distances that are required in the process of estimating the geometric delay have
to be known with even better accuracy. In terms of structural stability, it can be
concluded that the internal distances r1 and r2 have to be stable at micrometer level
and, therefore, distortions above this range are not acceptable. It is also crucial that
these vectors maintain their orientation in the spacecraft reference frame.
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Figure 2.6: Inter-satellite distance representation of IRASSI.

Additionally, in order to perform the transformation represented in 2.6, it is also
necessary to know the orientation of the metrology measurement in an inertial refer-
ence frame centered at the spacecraft and not just the one-dimensional information
of its longitude. The orientation of the metrology measurement can be derived from
the pointing direction of the metrology system. However, it must be guaranteed
that this pointing direction of the metrology system does not change over a given
threshold due to structural distortions of its platform. This additional aspect also
translates into stringent requirements expressed in terms of dimensional stability.

Finally, it is also important to take into consideration that the alignment between
optical elements can modify the longitude of the optical path. Figure 2.7 presents
the trajectory followed by the light as it is reflected by the two main mirrors and
until it reaches the scientific instrument. This trajectory is subject to changes if
structural distortions change the distances between different mirrors. Eventually,
this can have an impact on the geometric delay represented in Figure 2.5. Therefore,
in those missions such as IRASSI where several optical elements are involved, it is
often important to guarantee a certain level of structural stability between them in
order to enable scientific operations.

The missions that have been cited in this section exemplify that dimensional sta-
bility is emerging as an increasingly important factor in the space industry as it

Light trajectory

Scientific
instrument

Figure 2.7: Optical path in the IRASSI spacecraft.
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becomes one of the enabling factors for new types of missions. This is the case for
those missions that rely on instruments that require a highly stable environment
for its operations, missions that have high accuracy requirements in terms of its
attitude determination and control, missions with optical elements that need to be
aligned with uttermost precision as well as missions that operate several spacecraft
in formation and combine data from different nodes.

An important characteristic of dimensional stability is that it must be maintained
especially when perturbation sources are present. In order to develop a controlled
structure that will remain stable under the effect of perturbations, it is necessary to
first characterize the nature of the perturbations that are expected to arise. There-
fore, the following section presents the different types of perturbations that may
appear on board a spacecraft with a special focus on the low-frequency perturba-
tions, which are the ones that can be counteracted with the method presented in
this thesis.

2.2 Structural perturbations

Structural perturbations are mechanical loads acting on a structure that modify its
stress and strain field, which as a consequence introduces distortions in its shape.
From a spacecraft point of view, these perturbations can have an external or an
internal origin. Some of them act only once during the entire operational life of
the spacecraft, for instance, during its launch. In other cases, they act periodically
and can overlap with phases during which high dimensional stability is required.
To assess the impact such perturbations can have, it is useful to characterize them
based on its frequency.

At one end of the spectrum there are low-frequency perturbations. These are per-
turbations with periods ranging from a few hours to several days or even years. This
kind of perturbations have in its majority a thermal origin, in which case they are
also known as thermomechanical perturbations. Thermomechanical perturbations
are essentially perturbations on the thermal state of the structure. When these
perturbations arise, the thermal field in the structure changes as a consequence.
This, in turn, changes the strain field of the structure due to the thermal expansion
of its materials. As a final result, the new strain field translates into dimensional
distortions and misalignments between different points of the structure.

At the other end of the spectrum, there are high-frequency perturbations. These are
perturbations with frequencies that can range from a few Hz to several thousand Hz.
At these high frequencies, thermal perturbations have negligible effects because they
are strongly attenuated. The most relevant perturbations at this range of frequencies
are perturbations of mechanical origin, namely vibrations. Vibrations excite the
structure at specific frequencies and as a consequence change the alignment between
internal points in the structure. The location in the frequency spectrum of both
thermomechanical perturbations and vibrations is represented in Figure 2.8.

The control method presented in this work is based on the application of controlled
heat to counteract dimensional distortions. Due to the thermal nature of this pro-
cedure, the presented method can only be implemented to counteract low-frequency
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Figure 2.8: Perturbation type represented in the frequency spectrum.

perturbations, which in general have a thermal origin. Trying to apply it to counter-
act high-frequency perturbations is unfeasible because it would require unrealistic
amounts of heat. Yet in order to clearly define the limitations of the presented
method, it is sensible to present also in this chapter a description of the high-
frequency perturbations that can appear on board a spacecraft.

The following subsections present more details on the origin of thermal and mechan-
ical perturbations that are expected to act on a spacecraft during its operational life.
Most of these perturbations can be and have been neglected in previous missions
where stringent structural stability was not required. However, the distortion they
introduce cannot be neglected at the levels of structural stability that new missions
are requiring.

2.2.1 Thermal perturbations

Thermal perturbations are those perturbations that change the thermal state of a
system, in this case a spacecraft. These thermal changes cause the expansion or
contraction of the materials in the structure and, as a result, introduce distortions
in its shape.

The first relevant thermal perturbation that acts on a spacecraft occurs when this
is transferred to its operational orbit. This results in a change of the thermal en-
vironment surrounding the spacecraft. As a consequence, the structure reaches a
new thermal equilibrium. The change in temperature between the two states can be
significant, and thus, the introduced distortions due to thermal expansions are not
negligible. These distortions are temperature dependent and, therefore, can be as-
sumed to be permanent under the new thermal equilibrium in the operational orbit.
In some cases it is possible to perform calibration procedures to estimate the extent
of these distortions and to realign the critical elements in the structure by using the
appropriate mechanisms. In some other cases this is not possible and it might be
necessary to design the structure with the appropriate mechanical characteristics to
limit the extent of these distortions.

Once the spacecraft has reached its operational orbit there continue to be ther-
mal perturbations that can induce distortions in the structure. One first type of
perturbations are related to changes in the thermal environment. This thermal per-
turbation arises because the spacecraft is never static at one point in space, instead
it follows an orbit through different points in space with different thermal conditions.
These thermal conditions can be described in terms of the radiation fluxes acting
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on the spacecraft. For a generic case of a spacecraft orbiting around the Earth, the
radiation fluxes acting on the spacecraft include infrared radiation emitted by the
Earth, direct sunlight and sunlight reflected by the Earth, also known as albedo.
The total radiation that a spacecraft receives depends on its position with respect
to these radiation sources. As the spacecraft translates along its orbit the relative
distance to the radiation sources changes and, as a result, the received flux also
changes. For instance, a spacecraft orbiting in a highly elliptical orbit around the
Earth will receive a different amount of albedo and infrared radiation when it is at
the perigee than when it is at the apogee. This thermal perturbation will follow a
cycle with the same period as the orbit. Given the Earth’s orbit around the Sun,
the spacecraft will also receive a changing solar flux as the Earth translates in its
slightly elliptical orbit. In this case, the perturbation in the received solar flux will
have a period of one year.

The most extreme variation in the received flux occurs if the spacecraft experiences
eclipses. In that case, the spacecraft receives virtually no sunlight and, as a conse-
quence, the change in its temperature field with respect to the illuminated condition
is maximized. This results in a significant periodic distortion in the spacecraft struc-
ture that, depending on each case, can have a considerable influence on the payload
operation.

Additionally, there can be changes in the presented perturbations related to varia-
tions in the sources. For instance, changes in the solar activity will translate into
changes in the solar flux received at the spacecraft. Also, the temperature dis-
tribution at the surface of the Earth, or the presence and absence of clouds and
continents, can induce changes in the albedo and infrared radiation received at the
spacecraft.

Thermal perturbations described by changes of the received flux can also be caused
by attitude changes. When the spacecraft changes its attitude, the orientation of the
incident flux with respect to the spacecraft also changes. This can be understood as
a change in the boundary conditions of the spacecraft, which translate into changes
of its thermal state. A clear example is a space telescope that reorients itself to
observe a new target. When stringent alignments are necessary to enable scientific
operations it may be necessary to recalibrate and realign instruments to counteract
the introduced distortions after attitude maneuvers.

Finally, the last relevant source of thermal perturbations in a spacecraft are the
internal heat sources, i.e. the heat introduced by onboard instrumentation. Dur-
ing their operation, instruments experience power fluctuations that translate into
changes of temperature and heat dissipation. These changes occur also when instru-
ments are switched on and off. As a consequence, the heat that they transfer to the
structure where they are mounted is not constant. These perturbations can have a
critical impact when they originate from the same equipment that requires stability
for its operation. Even though the amplitude of these perturbations is generally
low, they are applied directly at the stable structure and, therefore, can introduce
the largest distortions. Thus, passive methods of stabilization can only minimize to
a limited extent the distortions introduced by this kind of perturbations.

18



CHAPTER 2. DIMENSIONAL STABILITY FRAMEWORK

2.2.2 Mechanical perturbations

Mechanical perturbations can be described as forces or pressures acting on the space-
craft structure. These loads directly change the underlying stress and strain field
and, as a result, introduce distortions in the structure. The origin and characteristics
of the mechanical loads acting on the spacecraft change throughout its operational
life.

The mission phase during which the most severe mechanical perturbations are ex-
erted on spacecraft is the launch phase. During this phase, spacecraft experience
accelerations to orbital velocities and are excited over a wide spectrum of frequencies
by high amplitude vibrations originating at the launcher. There is also a transfer
of vibrations through pressure waves applied at the spacecraft surfaces caused by
the acoustic noise from the engines. Additional mechanical loads transferred to
the spacecraft have an aerodynamic origin caused by the turbulent flow around
the launcher. There are also forces acting on the spacecraft resulting from stage
and fairing separation as well as launcher maneuvers. The final result of all these
mechanical loads is a permanent distortion that, in general, exceeds the stringent
stability requirements of the structure. Additionally, there are also structural dis-
tortions appearing due to the gravity release, which takes place when the spacecraft
transitions into microgravity conditions. For missions where the alignment between
different points of the structure is an important factor it is necessary to develop the
appropriate calibration and realignment procedures to compensate the distortions
introduced during this phase.

The most critical perturbations in high-accuracy missions are those that arise during
payload operations and that consequently can decrease the instrumentation perfor-
mance. This is in particular the case of microvibrations, which are low amplitude
mechanical perturbations that appear at frequencies starting at 1 Hz and that can
reach several thousand Hz. Generally, in the field of spacecraft design, microvi-
bration sources of concern have frequencies ranging from a few Hz to 1000 Hz [47,
48]. Microvibrations are produced by a variety of onboard equipment including re-
action wheels, gyroscopes, cryocoolers, specific types of thrusters and, in general,
devices with moving or rotating masses. One consequence of microvibrations acting
on board the spacecraft is a high-frequency movement of its pointing direction, also
known as jitter. This appears also at an internal level of the structure and, therefore,
affects the alignment between onboard equipment. Microvibrations can generally be
described as a fundamental excitation at some specific frequency together with sec-
ondary signals at several harmonics. This results in a wide spectrum of excitation,
which is one of the reasons why the transfer of microvibrations to the rest of the
structure is difficult to attenuate.

Another type of perturbations that can appear during payload operations are thrust-
ing maneuvers. The force resulting from a thrusting maneuver is applied locally in
the structure and only during a given time period. Considering that the amplitude
of the thrusting force is low enough to preserve a certain level of stability in the
structure, it can be assumed that no permanent distortions will remain once the
maneuver ends. Only if a large maneuver is applied, such as to produce an orbital
change, it might be necessary to calibrate or realign the onboard equipment.
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There also exist other perturbations that induce a rigid body motion of the space-
craft. The most relevant perturbations included in this category are due to solar
radiation pressure, gravity gradient, fuel slosh and solar array oscillations after ma-
neuvering. Given the low amplitude of these perturbations, it can be generally
assumed that they do not contribute to the structural distortion of the spacecraft.
Therefore, they are relevant to develop the adequate attitude control procedures to
comply with the pointing requirements but they are not expected to play a role to
preserve structural stability.

2.3 Distortion minimization methods

There exist different methods that to a certain extent can minimize structural dis-
tortions on board spacecraft. These methods are usually adapted and optimized
depending on the perturbation frequency. The method presented in this work aims
to counteract perturbations at the low-frequency end of the spectrum. The effect of
this type of perturbations can be regarded in most of the cases as quasi-static. To
assess the performance of the presented method in comparison to current technolo-
gies, the presentation of distortion minimization methods included in this section is
focused on those methods that have been implemented and investigated up to the
moment to counteract quasi-static distortions. This type of quasi-static control is
also referred to by some authors [8, 49] as shape control to differentiate it from the
dynamical structural control related to the attenuation of high-frequency perturba-
tions, namely vibrations. The methods that are used to attenuate high-frequency
perturbations are based on the same physical principles as those presented here but
with a stronger focus on the use of damping devices [50] and vibration isolation
platforms [51, 52]. The attenuation of high-frequency perturbations is out of the
scope of this work and, therefore, is not presented here in detail.

A first important distinction that can be introduced to classify structural control
methods is between passive control methods and active control methods. Passive
control methods do not require an energy source to attain a certain level of structural
control. These methods represent the traditional approach to structural control and,
therefore, have reached a high level of technological maturity. However, the inherent
physical limitations of passive approaches have fostered the interest in developing
higher-performance methods based on active control. The most relevant specific
methods belonging to these two groups are presented in the subsections that follow.

2.3.1 Passive control methods

Passive methods of structural control are based essentially on two techniques: the
construction of the structure with materials that have appropriate mechanical prop-
erties and the structural design itself. Additionally, minimization of thermomechani-
cal distortions can also be indirectly achieved by minimizing thermal changes. Thus,
passive thermal control technologies can also be regarded as methods of structural
stabilization against thermomechanical perturbations.
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Material selection

A basic approach to minimize the effect of thermomechanical distortions consists
in using materials with specific properties so that they remain dimensionally stable
when thermal conditions change. An important property to characterize the ther-
momechanical response of a material is the coefficient of thermal expansion (CTE),
which expresses the expansion of a given material in relation to a change of its
temperature. This coefficient can be expressed in terms of the linear change of the
material in one dimension, in which case it is known as the linear coefficient of
thermal expansion and it is mathematically defined as

α =
1

l0

dl

dT
(2.1)

where l0 represents the initial length measurement, l is the length and T the tem-
perature. This coefficient is usually expressed in units of µm/m/K or directly in
10−6/K. If the material is considered isotropic, the CTE defined by 2.1 can be
assumed to be the same in the three spatial directions. There exists a variety of
materials that have been developed to exhibit extremely low CTE values. This
includes ceramic materials, such as Zerodur and silicon carbide, as well as metal
alloys, such as Invar. Very small CTE values can also be achieved with composite
materials. However, composite materials also experience distortions due to moisture
desorption once they are transferred to space, which can be characterized by the co-
efficient of moisture expansion (CME). Composite materials are used to achieve high
values of dimensional stability for ground applications, but whether the same level
of performance can be achieved in space is still a matter of investigation [53].

Apart from the CTE, there are other material properties that determine the thermal
response induced by perturbations. Two important thermal properties are thermal
conductivity and heat capacity. Thermal conductivity is a measure of the heat
transfer rate across a material. In materials with high thermal conductivity, heat
is transferred at a higher rate. Heat capacity is related to the amount of heat re-
quired to induce a temperature change in a material. This property determines the
transient behavior of a material when thermal perturbations arise. To achieve high
dimensional stability different strategies in terms of material selection can be imple-
mented. Low conductivity is beneficial to keep the temperature changes localized in
the surroundings of the perturbation, whereas high conductivity is better to quickly
distribute thermal changes across the entire structure and thus minimize global dis-
tortions. Similarly, there are cases for which a high or a low value of heat capacity
is desirable to minimize a specific measure of the dimensional distortion. The ap-
propriate selection of these properties depends strongly on the particular structural
design and therefore has to be performed on a case-by-case basis.

There are also mechanical properties that influence the thermomechanical response
of a material. These are the Young’s modulus and the Poisson’s ratio. The Young’s
modulus is a measure of the stiffness of the material. This property gives the re-
lation between the strain and the stress in the material and thus, it is necessary
to determine the displacement induced by a mechanical load. The Poisson’s ratio
is also a key parameter in displacement calculations because it gives the relation
between transverse and axial strains.
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Another aspect to take into account is that materials that have beneficial proper-
ties for dimensional stability may also exhibit other mechanical properties that are
unfavorable for use in space. For instance, it is to some extent important to use
lightweight materials to minimize the total spacecraft mass and it is also important
to have a certain level of stiffness to withstand the shock and vibrations loads associ-
ated with the launch phase. Both are important factors when the overall spacecraft
design is taken into account. Therefore, it is often not possible to select materials
based only on the optimization of dimensional stability.

Structural design

The structural design is a major factor in determining the mechanical response of
the structure including the induced distortions by thermal perturbations. There
exist several standard techniques to improve the dimensional stability of a structure
based on its design.

One first option to increase the dimensional stability of a structure is to design
it based on a combination of materials with positive and negative CTE values.
With the proper combination of materials and structural design it is possible to
construct structures that exhibit minimal distortions in some directions [54]. With
this technique, it is possible to achieve high structural stability in some particular
direction but the design complexity increases substantially if distortions over several
directions need to be minimized.

Another purely passive approach consists in spatially isolating the sources of per-
turbations. Those instruments on board the spacecraft that are expected to disturb
the environment should be mounted on locations where their thermal influence can
be minimized. This isolation can be achieved from a mechanical point of view
by increasing the distance between perturbing instruments and the regions where
stability is needed. It can also be achieved from a thermal point of view by us-
ing insulating layers and minimizing the heat transfer from perturbation sources,
as explained in the next subsection. The usual practice in spacecraft design is to
include a dedicated platform where the most precise instrumentation is mounted.
These platforms are normally known as optical benches, they are constructed with
highly stable materials and to the maximum possible extent isolated from onboard
disturbances.

Misalignments between different points in the structure induced by thermal fluc-
tuations can also be minimized if the structure is allowed to expand freely. If the
structural expansion is not constrained, there appear distance changes between dif-
ferent points in the structure but the relative orientation between them remains
constant. One approach to allow the free expansion of a stable structure, such as
an optical bench, but at the same time provide some structural support to connect
it to the main spacecraft structure is to use isostatic mounts. Isostatic mounts are
statically determinate systems in which only the six degrees of freedom correspond-
ing to the rigid body motion have been constrained. Rigid bodies can translate and
rotate along the three spatial axes. If each of these degrees of freedom is singly
constrained, the body is able to expand freely. If conversely, some of these degrees
of freedom are redundantly constrained, then internal stresses arise when the struc-
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Figure 2.9: Representation of the 3-2-1 isostatic mount.

ture experiences thermal changes and its expansion is not uniform, which introduces
distortions. The theoretical definition of an isostatic system can never be fully im-
plemented due to the non-ideal behavior of real structural connections. However, it
is a useful principle to minimize the mechanical interaction between two connected
structures.

There exist several approaches to implement this principle. One basic approach is
known as the 3-2-1 configuration [55] and it is based on mounting the structure on
three contact points. In one of these contact points only the translation in the three
spatial axes is constrained. The translation of the second point is constrained only in
two axes, both perpendicular to the line that connects it to the first point. Finally,
the third point is constrained to remain in the same plane defined by the three points,
therefore, its translation is constrained in only one axis. An example of this setup
is represented in Figure 2.9. This figure shows a plate that is partially constrained
at three of its corners. Point 1 is only simply supported on a flat surface, point 2
can only move along the line determined by a V-groove and point 3 is supported on
a sphere that can rotate in a fixed position.

The advantage of this type of systems is twofold. On the one hand the precise
structure is able to expand freely and, as a result, thermal expansions have just a
scaling effect on the structure. On the other hand, distortions in the supporting
structure do not translate into distortions in the stable structure.

There exist alternatives to the 3-2-1 configuration that also result in an isostatic
system. An approach that is frequently used in optical systems, for instance, to
connect a primary and a secondary mirror, is the hexapod concept. This passive
approach consists of six struts of constant length, or equivalently three bipods, that
connect two structures. Variations of this hexapod mounting with adjustable lengths
have also been investigated to provide active vibration control in space platforms [5].

Thermal control

An indirect strategy to increase the thermomechanical stability consists in imple-
menting high-performance techniques of thermal control. These have the objective
of minimizing temperature fluctuations, which as a result prevents the emergence of
distortions induced by thermal expansions and contractions. There is an extensive
variety of physical phenomena that can be exploited to provide thermal control.
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This section focuses only on the most relevant passive control technologies that are
used in the aerospace industry.

Passive thermal control technologies for spacecraft are based on the fact that only
two basic heat exchange mechanisms exist in space: radiation and conduction. Pas-
sive thermal control methods introduce elements that modify how the heat is ex-
changed through these mechanisms. By properly implementing these methods it is
possible to modify the temperature perturbations and gradients that arise within a
structure that requires stability.

A first option of passive thermal control consists in modifying the radiation exchange
between different bodies. This is mainly determined by the view factors between
them, which are geometrically defined and quantify the proportion of radiation
leaving one surface that can reach another surface. Therefore, a first option to
modify the radiation heat exchange between different bodies is to modify the setup
geometry. If it is known beforehand that a given instrument is expected to radiate
a changing amount of thermal energy, it is possible to attenuate the impact of its
disturbance by minimizing the view factor between the instrument and the stable
structure.

Another way of modifying the radiation exchange between surfaces consists in ad-
justing their thermo-optical properties, namely its absorptivity and emissivity. These
properties can be modified through different coatings and surface treatments depend-
ing on the intended effect. For instance, having internal surfaces with high values
of emissivity can be beneficial to increase the radiation exchange between them and
thus achieve a more uniform temperature field, which minimizes thermal gradients.
In other cases it may be more beneficial to have a low value of emissivity in order to
achieve a certain degree of insulation. Different values of absorptivity and emissivity
at the external surfaces of the spacecraft also play an important role to determine
the range of temperatures that is reached within the spacecraft. It is also usual
to cover spacecraft surfaces with Multi-Layer Insulation (MLI) in order to achieve
extremely low values of emissivity, or with Optical Solar Reflectors (OSR) to min-
imize the absorption of solar radiation. The spacecraft can also be equipped with
radiators, which are specifically designed to maximize the amount of heat radiated
to space in order to keep the spacecraft temperature within acceptable ranges.

Heat exchange between different elements in the spacecraft can also be controlled by
modifying the conduction contribution. This can be adjusted by installing elements
with different geometries and conductivities that modify the heat transfer paths.
In some cases it may be desired to increase the heat transfer between two bodies
in contact. This can be achieved through filler materials that are installed on the
contact surface to increase the efficiency of the heat exchange. A similar effect can
be achieved by using doublers, which are solid panels usually made of aluminum that
increase the area of contact between two bodies in order to increase the amount of
exchanged heat. It is also usual to install thermal straps, which are used to thermally
connect two bodies that are structurally decoupled. Similar elements exist that can
be tailored to specific needs but that are based on the same physical principle.

There exist also passive devices that without the use of energy can modify the heat
transfer paths within spacecraft. Among these options there are heat pipes [56],
which make use of capillarity and pressure differences to establish a closed loop with
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a two-phase fluid in order to transport heat. These devices are often installed in
spacecraft to create isothermal surfaces.

The thermal control systems presented in this section are usually implemented with
the only objective of achieving thermal equilibrium and thermal stability within the
requirements of a particular element. It can be considered an indirect benefit that a
high level of thermal stability implies also a proportional level of thermomechanical
stability. The achieved performance is nevertheless limited by material properties
and design uncertainties. These thermal control methods can be combined with the
other available methods of passive structural control to attenuate thermomechanical
distortions up to a certain point. If higher performance is required, it is necessary
to consider active structural control methods.

2.3.2 Active control methods

The field of active structural control encompasses a wide variety of techniques that
can be implemented and adjusted to particular needs in different fields. A gen-
eral framework to classify the different types of structures that belong to this field
was proposed by Wada [57]. According to this classification, it is first possible to
distinguish between those structures that are equipped with sensors, known as sen-
sory structures, and those that are equipped with actuators, known as adaptive
structures. At the intersection between these two sets of structures there are those
with both sensors and actuators connected through a feedback loop. These type of
structures are referred to as controlled structures. This classification framework is
represented in Figure 2.10.

Within the controlled structures type it is then possible to distinguish among further
subsets of structures according to more subtle characteristics. First, the subset of
active structures is defined, which are those structures in which the sensors or the
actuators are highly integrated into the structure to the point that they also fulfill
structural functions. Within active structures it is then possible to define also the
intelligent structures, which are those active structures that additionally have a
distributed control architecture. In part of the literature, this type of structures are
also referred to as smart structures.

Adaptive
structures structures

Controlled
structures
Sensory

Figure 2.10: Classification of types of structures [57].
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Based on these definitions, the field of controlled structures is still a very general
one because there are many aspects of a structure that can be controlled. There
can be controlled structures that only control specific mechanical properties, such
as its stiffness or its damping. There can be controlled structures to control only its
thermal properties, such as its temperature or conductivity. There is a large variety
of options and this work is focused on the control of distortions, which includes only
those controlled structures that ultimately control the position of some discrete
points.

There exist different sensor and actuator technologies that can be used to build
controlled structures for distortion control. The most relevant options that have
been suggested and investigated up to date are presented here in detail.

Actuator technology

A top-level classification of actuator technologies for distortion control can be es-
tablished depending on whether they act on the force or on the strain field. Force
actuators are used to control the applied mechanical load at some specific points
of the structure. The most common type of force actuators, particularly for appli-
cations related to vibration control in space structures, are linear voice coils [58].
Other technologies such as hydraulic actuators are used for similar purposes in civil
engineering [59]. Force actuators are also implemented for static shape control. For
instance, in the field of active optics, the mirror surface of a telescope is controlled
with actuators in order to minimize aberrations. This technique has been applied
to the JWST, in which the rigid body motion of each mirror segment is controlled
to increase the optical performance [60].

Some authors distinguish between force actuators and displacement actuators, de-
pending on whether they are commanded through displacement or force inputs [61].
Displacement actuators are usually based on machine screws driven by DC motors,
but the end result is also a local mechanical load applied to the structure. They have
been mostly implemented in actuated space structures where some truss members
have adjustable lengths [62]. The limitation of force and displacement actuators is
that they have only a local effect in the surroundings of their mounting point. A
distributed actuation is more easily accomplished with strain actuators, which can
be both mounted at the surface or embedded within the structure to modify the
strain field.

Strain actuators based on many different physical phenomena are being considered
for different applications [7]. The five most relevant mechanisms in which recent
research on controlled structures has been focused are the following:

• Piezoelectric effect: Piezoelectric materials experience shape distortions as a
reaction to an electrical field applied to them, the relation between the two
phenomena is relatively linear. Some examples of such materials include piezo-
ceramics and some polymers. These can be used to produce strain actuators
that are controlled by the applied electric field. Several control methods, both
for dynamic and quasi-static shape control, have been suggested using piezo-
electric actuators [8].
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• Electrostriction: This is a property similar to the piezoelectric effect. In this
case, electrostrictive materials also experience deformations under the effect of
an electric field. However, the relation is caused by a different physical effect
to piezoelectricity and it is nonlinear. Based on materials with this property,
it is possible to build strain sensors that react to changes in the electric field.

• Magnetostriction: Magnetostrictive materials are materials in which the mag-
netic and mechanical states are coupled. Thus, they experience deformations
as a reaction to an applied magnetic field. This property can be the basis for
strain actuators that are controlled through the applied magnetic field. By
mounting these type of actuators at different points of the structure it is then
possible to modify the strain field in the structure.

• Shape memory alloys: Shape memory alloys are alloys that experience a re-
versible phase change associated with a change in strain and that can be
induced by heating or cooling the material. Therefore, they can be used to
introduce strain loads that can be controlled through thermal inputs in the
material. Given that this phenomenon relies on a thermal change, it has a
large time constant and thus, it is only applicable for shape control purposes
and not for strain actuation on high-frequency applications.

• Thermal strain: Thermal strain actuation is based on changing the temper-
ature of some control elements in order to induce a strain change through
material expansion. This approach was first suggested by Haftka and Adel-
man [49]. A similar approach based on the use of heaters was suggested by
Zhang [63] to provide quasi-static shape control of thin-walled space structures
such as antennae and solar arrays. This approach has also been investigated
for ground applications, particularly for precise machines [64]. This is also the
basis for the control method presented in this work, in which the shape of a
stable structure is controlled by strategically introducing heat at some points.

Sensor technology

The same distinction that exists between force and strain actuators can also be
considered to distinguish between two basic types of sensors: accelerometers and
strain sensors. Accelerometers are efficient to measure the high-frequency structural
distortions induced by vibrations. At the low-frequency range of perturbations,
quasi-static distortions can be more efficiently measured by strain sensors. The
three basic options that are available to measure strain are the following:

• Strain gauges: Strain gauges consist of a very thin conductor filament that is
bonded at some point of the structure. The strain field of the structure induces
a proportional deformation of the strain gauge. This results in a change in
resistivity of the conductor in the gauge which can be measured and directly
associated to the magnitude of the applied strain. These sensors are frequently
used to measure the strain field of some structure. However, they provide only
a localized measurement and, consequently, several sensors are necessary to
obtain a global strain characterization of the structure, which can become
unpractical.
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• Piezoelectric sensors: The piezoelectric effect that can be exploited to produce
strain actuators can also be the basis for piezoelectric sensors. In this case,
by measuring the electrical signal at the terminals of a piezoelectric device it
is possible to derive the strain acting on it. As in the case of the actuators,
piezoelectric sensors can be built from piezoceramic material or polymer films.
In the latter case, it is possible to embed the sensors in a composite matrix,
which can be advantageous to obtain a distributed measurement of the strain
field. Additionally, it is also possible to simultaneously use piezoelectric ele-
ments as both sensors and actuators, this technology is known as self-sensing
piezoelectric actuation [65].

• Optical fiber sensors: Optical fiber sensors are the most recently developed
type of sensors to measure strain. The working principle of this type of sensors
consists in measuring changes in some property of the signal that is transmitted
through an optical fiber. These changes can be directly related to a change
in the strain in the structure. A specific type of optical fiber sensors that
are suggested for spacecraft applications are known as Fiber Bragg Gratings
(FBG) [66]. One advantage of optical fiber sensors is that, as in the case of
piezoelectric sensors, they can be both mounted at the surface or embedded
within a fiber-reinforced polymer.

Additionally to these technologies, when the strain in the structure is induced
uniquely from thermal perturbations, it is possible to derive the displacement field
based only on temperature measurements in combination with an accurate ther-
momechanical model. This is the selected option for this work, as presented in
Section 5.3.1 of Chapter 5. If an accurate thermomechanical model is available, it
becomes possible to reconstruct the global displacement field based on the measure-
ments of relatively few thermal sensors. However, if mechanical perturbations are
also present it becomes necessary to conduct additional measurements with one of
the presented technologies in order to derive accurate estimations of the strain field.
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Chapter 3

Thermal Analysis Framework

A crucial step in developing a method to control thermomechanical distortions is to
have a model that properly describes the thermal behavior of the system. This model
must be able to derive the changes in the thermal field that arise as a consequence of
changes in the thermal boundary conditions. In particular, the thermal model must
be able to calculate the thermal response of the system when heat control sources
and heat perturbations act on the structure.

This chapter starts with a brief introduction to the thermal analysis methods that are
more commonly used in the aerospace industry. This is included in Section 3.1 and
presents the finite difference method, the lumped parameter method and the finite
element method (FEM). Based on the characteristics of these different methods, the
FEM is selected in this thesis to develop a thermal model. A detailed formulation
of this approach, particularized for the specific thermal conditions considered in this
thesis, is presented in Section 3.2 along with the procedure to solve steady-state and
transient problems. This section includes the presentation of a method to introduce
the radiation contribution into the model based on the combination of the FEM
and the general problem of radiation exchange [67]. The FEM formulation includes
in Subsection 3.2.4 an expansion of the known frequency-domain approach to the
thermal problem [68] to enable its application on a finite element mesh. The chapter
ends with the presentation of the thermal modal representation in Section 3.2.5.

3.1 Thermal Analysis Methods

Thermal analysis methods are mathematical techniques that allow the calculation
of the temperature field and heat transfer within a given continuous medium. This
calculation is performed under consideration of some initial and boundary conditions
expressed in terms of heat fluxes or temperatures. These techniques are applied both
to calculate the steady-state or the transient response of a system.

The relation between the variables involved in the thermal transfer problem can be
expressed in terms of partial differential equations (PDEs). Thermal analysis meth-
ods approximate these PDEs and solve them numerically to obtain an approximation
of the real solution.
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Based on the conservation of energy, the basic PDE describing the heat transfer
problem is expressed as [10]

ρcp
∂T

∂t
= −

(
∂qx
∂x

+
∂qy
∂y

+
∂qz
∂z

)
+Q (3.1)

where ρ and cp are the density and the heat capacity of the material in the considered
domain, respectively. T is the temperature, the three q terms represent the heat flux
in each spatial direction and Q is the volumetric heat generation. The independent
variables in the equation are the time t and the coordinates x, y and z.

The heat fluxes q can be expressed as a function of the temperature introducing
Fourier’s law, which relates the heat fluxes by conduction in an isotropic solid to
the temperatures according to

~q = −λ∇T, (3.2)

where λ is the conductivity of the material. Equation 3.2 can be expressed for each
component as

(qx, qy, qz) =

(
−λ∂T

∂x
,−λ∂T

∂y
,−λ∂T

∂z

)
. (3.3)

Introducing now the relations from 3.3 into 3.1 results in

ρcp
∂T

∂t
=

∂

∂x

(
λ
∂T

∂x

)
+

∂

∂y

(
λ
∂T

∂y

)
+

∂

∂z

(
λ
∂T

∂z

)
+Q. (3.4)

This equation can be further simplified by considering constant conductivity λ
throughout the material. Then,

ρcp
∂T

∂t
= λ∇2T +Q. (3.5)

There are essentially four types of boundary conditions that can be defined at the
surface of the body or domain under study. One option is to prescribe the temper-
ature evolution at the surface

T (x, y, z, t) = Ts(x, y, z, t) for x, y, z ∈ S1. (3.6)

It is also an option to prescribe instead the heat flux at the surface, which can be
specified in terms of a given function

~q · ~n = qs(x, y, z, t) for x, y, z ∈ S2 (3.7)

where ~n is the normal vector to the surface. The heat flux can also be expressed as
a convection boundary condition

~q · ~n = h(Tf − T (x, y, z, t)) for x, y, z ∈ S3 (3.8)

where h is the heat transfer coefficient and Tf the temperature of the surrounding
flow. Finally, the boundary condition can be expressed for radiation exchange as

~q · ~n = σε(T 4
s − (T (x, y, z, t))4) for x, y, z ∈ S4, (3.9)

where σ is the Stefan-Boltzmann constant, ε is the emissivity of the surface and Ts
the temperature of the surrounding space.
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Additionally, it is necessary to define an initial state as

T (x, y, z, t0) = T0(x, y, z) for x, y, z ∈ Ω. (3.10)

where Ω represents the entire volume in the domain of analysis.

There exists a variety of numerical methods that solve 3.5 differing in accuracy and
mathematical complexity. The discussion in this chapter is centered on the three
most relevant methods that are currently used in the aerospace industry. These are
the finite difference method, the lumped parameter method and the finite element
method.

3.1.1 Finite Difference Method (FDM)

The Finite Difference Method (FDM) is based on approximating the continuous
derivatives in 3.5 by differences between the variable values in a limited set of nodes.
Mathematically, this is expressed as

df(x)

dx
= lim

∆x→0

∆f

∆x
= lim

∆x→0

f(x+ ∆x)− f(x)

∆x
=
f(x+ ∆x)− f(x)

∆x
+O(∆x),

(3.11)
which indicates that if the truncation error O(∆x) is negligible, then the derivative
of a function f(x) can be approximated from its value evaluated at two different
points, x and x + ∆x. As it is seen in 3.11 the magnitude of the error in the
approximation is proportional to the magnitude of the step ∆x.

To apply the FDM it is necessary to discretize the domain of analysis. The tem-
poral domain is discretized in time steps of duration ∆t and the spatial domain
is discretized in nodes separated by distances ∆x, ∆y and ∆z as represented in
Figure 3.1.

Based on the concept of finite differences, the left-hand side of Equation 3.5 applied
at node n can be approximated with a forward difference scheme using

∂Tn
∂t

=
T t+∆t
n − T tn

∆t
+O(∆t) (3.12)

∆y

∆z

∆x

Figure 3.1: Nodal discretization in the FDM.

31



CHAPTER 3. THERMAL ANALYSIS FRAMEWORK

or with a backward difference scheme using

∂Tn
∂t

=
T tn − T t−∆t

n

∆t
+O(∆t). (3.13)

In both cases O(∆t) represents a truncation error proportional to ∆t.

To approximate the right-hand side of Equation 3.5 it is necessary to approximate
the second derivative of T with respect to x, y and z. The procedure is the same for
the three variables and, therefore, only the approximation of the partial derivative
with respect to x is presented here. The starting point is a Taylor series expansion
of the temperature T as a function of x,

T (xn+∆x, yn, zn) = T (xn, yn, zn)+∆x
∂T

∂x

∣∣∣∣
xn

+
∆x2

2

∂2T

∂x2

∣∣∣∣
xn

+
∆x3

3!

∂3T

∂x3

∣∣∣∣
xn

+... (3.14)

In order to simplify the following expressions the notation ijk is introduced. The
variable i represents the node number in the x direction, j is used for the y direc-
tion and k for the z direction. Therefore, the node n can be identified with the
notation ijk and its surrounding nodes are represented in Figure 3.2. Rewritting
Equation 3.14 with the ijk notation results in

Ti+1,j,k = Ti,j,k + ∆x
∂T

∂x

∣∣∣∣
i,j,k

+
∆x2

2

∂2T

∂x2

∣∣∣∣
i,j,k

+
∆x3

3!

∂3T

∂x3

∣∣∣∣
i,j,k

+O(∆x4). (3.15)

Equivalently, the Taylor series expansion at i− 1, j, k can be written as

Ti−1,j,k = Ti,j,k −∆x
∂T

∂x

∣∣∣∣
i,j,k

+
∆x2

2

∂2T

∂x2

∣∣∣∣
i,j,k

− ∆x3

3!

∂3T

∂x3

∣∣∣∣
i,j,k

+O(∆x4). (3.16)

Adding Equations 3.15 and 3.16 results in

Ti+1,j,k + Ti−1,j,k = 2Ti,j,k + ∆x2∂
2T

∂x2

∣∣∣∣
i,j,k

+O(∆x4), (3.17)

and therefore,

∂2T

∂x2

∣∣∣∣
i,j,k

=
Ti+1,j,k + Ti−1,j,k − 2Ti,j,k

∆x2
+O(∆x2). (3.18)

i,j,k

i+1,j,k

i-1,j,k

i,j+1,k

i,j,k+1

i,j,k-1

i,j-1,k

Figure 3.2: Nodal notation in the FDM.
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This result is known as the second order central difference approximation because
it takes into account the nodes at i as well as i− 1 and i+ 1. This same process can
be followed to approximate the derivatives with respect to y and z, resulting in

∂2T

∂y2

∣∣∣∣
i,j,k

=
Ti,j+1,k + Ti,j−1,k − 2Ti,j,k

∆y2
+O(∆y2) and (3.19)

∂2T

∂z2

∣∣∣∣
i,j,k

=
Ti,j,k+1 + Ti,j,k−1 − 2Ti,j,k

∆z2
+O(∆z2). (3.20)

Neglecting the truncation errors and combining Equations 3.18, 3.19 and 3.20 with
the time forward scheme from 3.12, results in what is known as a forward time
centered space (FTCS) scheme of the FDM,

ρcp

(
T t+∆t
i,j,k − T ti,j,k

∆t

)
= λ

(
Ti+1,j,k + Ti−1,j,k − 2Ti,j,k

∆x2

)
+ λ

(
Ti,j+1,k + Ti,j−1,k − 2Ti,j,k

∆y2

)
+ λ

(
Ti,j,k+1 + Ti,j,k−1 − 2Ti,j,k

∆z2

)
+Qi,j,k.

(3.21)

Equation 3.21 can now be written for all the nodes and solved to calculate the T
values at t = t + ∆t. This equation takes into account the heat transfer through
conduction between the different nodes. To consider also heat exchange through
convection and radiation it would be necessary to apply the corresponding fluxes as
boundary conditions of the nodes representing external surfaces.

There exist also other integration schemes such as the backward time centered space
(BTCS) or the Crank-Nicolson scheme [9]. These other procedures can differ in
terms of the numerical stability they provide and the magnitude of truncation errors.
However, the fundamental idea behind its implementation remains the same.

The obtained result of the FDM is an approximation of the real function T at some
specific locations, corresponding to the nodes in the mesh, and for some specific time
points. The main advantage of this method is that it can be quickly implemented
and it results in a system of equations that can be solved using standard numerical
techniques.

This method is computationally efficient and reliable when it is applied to bodies
with a simple geometry. However, it is not possible to efficiently implement this
method to model a complex geometry. As presented, this method requires the
geometry to be meshed using a rectangular grid. Therefore, it is not prepared to
mesh curved surfaces while attaining high levels of detail. Refining the mesh can
help in some cases but it often results in an extremely large system of equations
that is computationally expensive to solve. Given that the rectangular grid must
be maintained along the entire domain, it is not possible to apply only a local mesh
refinement at some regions of the geometry.

Although some finite difference approaches using irregular grids have been sug-
gested [69], these techniques lose the mathematical simplicity on which the FDM is
based and do not present a clear advantage in front other techniques such as FEM
(see Section 3.1.3).
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3.1.2 Lumped Parameter Method (LPM)

The Lumped Parameter Method (LPM) applied to thermal problems is based on
the analogy between thermal and electrical phenomena. Heat flow can be seen
as an analog to current, temperature difference as an analog to voltage difference,
heat sources can be equivalent to current sources and thermal capacitance can be
understood as electrical capacitance. From this perspective, the thermal and the
electrical problems can be described with the same equations.

To implement the LPM the continuous medium to be analyzed is first discretized
into a network of N nodes. Each node represents an isothermal volume with its
thermal properties lumped in one point. It is possible to use a similar discretization
scheme to the one followed for the FDM. However, it is also common to group larger
volumes representing entire instruments or spacecraft parts into one single node.

These nodes are assumed to exchange heat through conduction, radiation and if
necessary convection. This heat exchange is represented in the LPM through link
parameters that represent conductors between nodes. Through these link parame-
ters Equation 3.5 is rewritten into a system of equations relating the temperatures
at each of the N nodes in the network. The equation for node n is

CnṪn =
N∑
m=1

Knm(Tm − Tn) +
N∑
m=1

Rnm(T 4
m − T 4

n) +Hn(Tf − Tn) +Qn, (3.22)

where T represents temperature, C is the heat capacity and Q is a heat source. The
link parameters are Knm, Rnm and Hn. Knm quantifies the heat exchange through
conduction between nodes n and m, Rnm quantifies the nonlinear heat exchange
through radiation and Hn the exchange through convection with the surrounding
flow at a temperature Tf .

For structures operating in space the convection terms can be neglected. Therefore,
Equation 3.22 becomes

CnṪn =
N∑
m=1

Knm(Tm − Tn) +
N∑
m=1

Rnm(T 4
m − T 4

n) +Qn. (3.23)

The numerical values for the link parameters Knm and Rnm can be derived from the
geometrical and physical properties of the system. There exist different approaches
to calculate these parameters that depend on the discretization method and differ
in terms of the required computational effort and achieved accuracy. Some methods
are based on experimental fitting methods and on correlations with empirical data
from similar structures. Other methods derive the parameters analytically based on
known properties of the structure.

One analytical possibility, resulting in the expression presented in [70], consists in
deriving the conduction link parameters from a finite difference approximation and
the radiation link parameters using the absorption factors [71] (see Appendix A for
details). This results in the following relation:

CnṪn =
N∑
n=1

(
λnmAnm
lnm

(Tm − Tn)

)
+

N∑
m=1

(
σεnAnBnm(T 4

m − T 4
n)
)

+Qn, (3.24)
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where the conduction link parameter Knm from Equation 3.23 has been expressed
in terms of the conductivity λ, the cross section A and the distance l between nodes
n and m. The radiation link parameter Rnm has been expressed as a function of the
Stefan-Boltzmann constant σ, the emissivity ε of node n, the external area of the
node A and the absorption factor Bnm between nodes n and m.

Equation 3.24 still has to be integrated in time if the transient response needs to be
obtained. A finite difference scheme like the one represented by 3.12 can be applied
to this purpose, resulting in

Cn
T t+∆t
n − T tn

∆t
=

N∑
n=1

(
λnmAnm
lnm

(Tm − Tn)

)
+

N∑
m=1

(
σεnAnBnm(T 4

m − T 4
n)
)

+Qn.

(3.25)
This equation can be written for the N nodes in the network resulting in a system
of equations that can be solved to calculate the thermal evolution of the system.

Lumped parameter methods have been traditionally used in several industries and
are particularly popular in the field of electrical machine design [72]. In the aerospace
industry it is the standard approach for software tools such as ESATAN1 and
SINDA2.

The main advantage of the LPM is that it can be very fast to implement and it
allows the setup of a thermal model for analysis at the initial stages of the design.
In other words, LPM can be applied with a coarse level of discretization when little
details about a structure are known. The achieved accuracy is proportional to the
level of spatial discretization and can be sufficient for preliminary estimations.

The LPM is particularly suited when the focus of the thermal analysis is on the heat
transfer between different parts of the domain and not in the thermal field itself.
The accuracy achieved by the LPM is directly dependent on the accuracy of the link
parameter estimation. Therefore, if there is uncertainty in the link parameters, this
will directly translate into uncertainty in the results. The precise determination of
the link parameters is, therefore, crucial to apply this method but can become very
complex and prone to errors if high accuracy needs to be achieved, as it is the case
for the problem presented in this thesis.

3.1.3 Finite Element Method (FEM)

The Finite Element Method (FEM) applied to thermal problems is a numerical
method that approximates the thermal field described by the PDE 3.5 by dividing
the domain into finite elements. Each of these elements has a specific geometrical
shape and at least one node at each of its vertices and possibly more along its edges.
A representation of some of the different geometrical shapes that can be used to
construct finite elements in the FEM can be seen in Figure 3.3. It is also possible
to combine different types of elements to mesh a single domain.

The thermal field inside one finite element is then defined by the values at each
node of the element and a set of shape functions, which are functions with an

1https://www.esatan-tms.com
2https://www.mscsoftware.com/product/sinda
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Figure 3.3: Different geometrical shapes to generate a mesh using the FEM.

assumed shape that interpolate the values obtained at each node. There exist several
possibilities that can be chosen as shape functions but the most usual choice is to use
a low order polynomial function. Then, the thermal field within one finite element
is described with

T (x, y, z, t) =
ne∑
i=1

Ti(t)Ni(x, y, z), (3.26)

where ne is the number of nodes in one element, Ti is the temperature at each node
and Ni is the shape function, which can be evaluated at any point defined by x, y
and z. There are as many shape functions as nodes per element.

Once the shape functions have been defined, there exist several approaches to for-
mulate the FEM. A frequent approach used in the thermal domain is known as the
Galerkin method [10]. Instead of solving the heat transfer PDE 3.5, the Galerkin
method solves its integration at each element multiplied by the shape function which
acts as a weight factor. This is expressed as∫

Ω

Ni

(
ρcp

∂T

∂t
− λ∇2T −Q

)
dΩ = 0 for i = 1, 2, . . . , ne (3.27)

Applying this expression, one equation for each shape function in each finite element
is obtained. Once the equations have been derived for all the elements they can be
combined to form the system of equations

[C]{Ṫ}+ [K]{T} = {Rq}+ {RQ}, (3.28)

where [C] is the thermal capacity matrix, [K] is the conductivity matrix, {T} is the
vector that contains the temperature at each node, {Rq} is the heat flux vector and
{RQ} is the heat source vector. The details on the calculation of these matrices as
well as the introduction of radiation terms can be found in Section 3.2.1.

The finite difference scheme described by Equation 3.12 can be introduced in Equa-
tion 3.28 in order to obtain the time evolution of the termal field. This results in

[C]

(
{T}t+∆t − {T}t

∆t

)
+ [K]{T}t = {Rq}+ {RQ}. (3.29)

Additional vectors and matrices can be calculated to account for boundary condi-
tions such as convection, radiation or applied heat fluxes at the surface of some
elements.
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The FEM is used in a wide variety of domains and is particularly popular in the
field of mechanical and structural dynamics analysis. The increase in computational
power in the last years has also facilitated the shift towards FEM in fields where
traditionally the LPM or the FDM had been used.

The main advantage of the FEM in front of the FDM or the LPM is that it can
easily handle complex geometries. The geometric shapes of the finite elements can
be adapted to the shape of the entire domain and, therefore, there is no added
complexity in analyzing curved geometries. The basic form of the FDM, instead,
is limited to modeling the geometry with rectangular grids which can be a major
disadvantage to model complex shapes.

One aspect that limits the implementation of the FEM in the thermal domain, and
particularly in the aerospace industry, is the computation of the factors related to
the radiation exchange [73]. This requires the computation of view factors between
all the external surfaces of the elements in the domain. This is normally done using
a ray tracing algorithm in combination with a Monte Carlo simulation [74] but the
required computational effort can become prohibitive when the domain is meshed
with a large number of finite elements. Recent research has been focused on reducing
this computational effort using finite element reduction techniques [75] with the goal
of fostering a transition from LPM towards FEM in the thermal domain.

On the other hand, the LPM can be a good choice when the only needed result
is in the thermal domain, i.e. temperature distributions or heat fluxes. However,
inefficiencies may arise if the thermal results obtained by the LPM are used as an
input for a mechanical analysis based on another technique, usually the FEM. In
this case it is necessary to use mapping tools that can consistently translate the
results obtained in an LPM mesh into an input for a different FEM mesh.

The work presented in this thesis is focused on achieving thermomechanical control
at high levels of accuracy, which means that a full thermomechanical model of the
system needs to be developed. Therefore, it is decided that the optimal choice is to
use the same numerical method for both the thermal and the mechanical analysis.
In the presented case, this means using the FEM for both thermal and mechanical
modeling. Even if this entails an additional computational effort in the thermal
side, it is considered to be compensated by the benefits of not having to implement
mapping tools between different numerical methods and the higher level of accuracy
that can be achieved in the results.

3.2 Thermal Analysis in FEM

The FEM is the selected numerical method to derive the thermomechanical model
of the structure that is subsequently used to develop a control strategy. Essentially,
the thermomechanical FEM model consists of a thermal model in combination with
a mechanical model. In order to clarify the notation used throughout this thesis,
this section includes a brief presentation of the basic FEM formulation applied to
the thermal problem. This formulation can be found in reference bibliography that
presents the fundamentals of FEM [76] but it is particularized here for a baseline
case used throughout the thesis to exemplify the application of the presented control
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framework. This fundamental FEM formulation is then expanded to consider also
the radiation exchange between elements. In addition to the standard ways of solving
the steady-state and transient problems, presented in subsections 3.2.2 and 3.2.3,
this section presents the development of a new approach to apply a frequency-domain
technique [11, 68] on a thermal model in combination with the FEM.

3.2.1 Thermal FEM formulation

This section provides a short overview of the derivation of the FEM equations related
to the thermal problem taking into account radiation exchange, external fluxes and
internal heat generation. The detailed presentation on all the equations that have
been followed to derive the thermal model for this thesis can be found in Appendix B.

The first step in formulating a FEM approach is to write the matrix form of Equa-
tions 3.26 and 3.27. Thus, the temperature in the domain is expressed as

T (x, y, z, t) =
ne∑
i=1

Ti(t)Ni(x, y, z) = [N ]{T}, (3.30)

where [N ] is a row vector containing the shape functions evaluated at (x, y, z) and
{T} is a column vector with the nodal temperatures. Similarly, the heat flux can
be expressed as

q(x, y, z, t) = {q} = −λ[B]{T}, (3.31)

where [B] is the derivative matrix built with the gradient of the shape functions as

[B] = ∇[N ] =



∂N1

∂x

∂N2

∂x
. . .

∂Nne

∂x
∂N1

∂y

∂N2

∂y
. . .

∂Nne

∂y
∂N1

∂z

∂N2

∂z
. . .

∂Nne

∂z

 . (3.32)

As presented in Section 3.1.3, the Galerkin method is based on calculating the nodal
temperatures {T} that satisfy the condition∫

Ω

Ni

(
ρcp

∂T

∂t
− λ∇2T −Q

)
dΩ = 0 for i = 1, 2, . . . , ne (3.33)

Introducing the expression 3.30 and 3.31 into 3.33 results in a system of equations
expressed as (see Appendix B for details)(∫

Ω

ρcp[N ]T [N ]dΩ

)
{Ṫ} =−

(∫
Ω

λ[B]T [B]dΩ

)
{T}

−
∫
S

[N ]T{q}T{n}ds

+

∫
Ω

[N ]TQdΩ,

(3.34)

which can equivalently be written as

[C]{Ṫ}+ [K]{T} = {Rq}+ {RQ}, (3.35)
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with

[C] =

∫
Ω

ρcp[N ]T [N ]dΩ, (3.36)

[K] =

∫
Ω

λ[B]T [B]dΩ, (3.37)

{Rq} = −
∫
S

[N ]T{q}T{n}ds (3.38)

and {RQ} =

∫
Ω

[N ]TQdΩ. (3.39)

In the previous expressions [C] is known as the heat capacity matrix, [K] is the
thermal conductivity matrix, {Rq} is the heat flux vector and {RQ} is the heat
source vector. These matrices and vectors are expressed for one finite element.
They can be calculated for all the elements in the domain and assembled to build
global matrices that take into account all the nodes in the mesh.

Instrument 1

Instrument 2

Instrument 3

Instrument 4

Stable

Bipods

structure

Te

q

q q
q

Q1

Q2
Q3

Q4

Figure 3.4: Baseline concept with boundary conditions.
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Figure 3.5: Main dimensions of the baseline concept.
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Material properties

Material λ cp ρ E ν α

Silicon
carbide

190 W
m K 400 J

kg K 3150 kg
m3 420 GPa 0.14 2.00 µm

m K

Aluminum
alloy

120 W
m K 900 J

kg K 2750 kg
m3 73 GPa 0.33 23.1 µm

m K

Titanium
alloy

7 W
m K 560 J

kg K 4420 kg
m3 114 GPa 0.34 8.60 µm

m K

Table 3.1: Material properties for the considered baseline concept.

A baseline case that will be used throughout this thesis to exemplify the different
steps of the control framework is presented here. This consists of a structural plate
with four instruments that is supported by three bipods. This baseline concept
is represented in Figure 3.4. Additionally, its main dimensions are indicated in
Figure 3.5. In this baseline case, the structural plate is assumed to be made of
silicon carbide and supported by bipods made of a generic titanium alloy. The
four boxes represent different instruments and at this stage they are assumed to
be made of an aluminum alloy. The material properties that need to be defined in
order to analyze the thermomechanical behavior of the structure are the thermal
conductivity (λ), the heat capacity (cp), the density (ρ), the Young’s modulus (E),
the Poisson’s ratio (ν) and the coefficient of thermal expansion (α). The assumed
properties for the three considered materials are included in Table 3.1.

It is also necessary to define the emissivity at each surface, which depends on the
applied surface treatments. In this case, it is assumed that the structural plate has
an emissivity equal to ε = 0.7, which results in a relatively high radiation link with
its surroundings. The bipods and the instrument boxes are assumed to be insulated
to a higher degree, which is modeled with an emissivity of ε = 0.2.

As illustrated in Figure 3.4, the considered boundary conditions can include radia-
tion exchange with an environment assumed to be at temperature Te, applied heat
fluxes at the base of the bipods (q) and internal heat sources at the instruments (Q).
The representation of the meshed domain using hexahedrons that has been used to
implement the FEM is included in Figure 3.6.

Figure 3.6: Meshed domain of the baseline concept.
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The next mathematical step consists in introducing the radiation exchange terms
to Equation 3.35, which can be modeled as boundary conditions. Physically, the
radiation exchange can be described as an external flux applied to the surfaces of
the domain. The magnitude of this flux is in turn dependent on the temperature of
these surfaces.

To model the radiation exchange it is necessary to divide the external surfaces of
the domain into smaller units. The approach presented in this work uses the same
division that has been used to create the finite element mesh. Therefore, each
radiation exchange area corresponds to one external area of one finite element as
represented in Figure 3.7.

The first approximation in the presented approach consists in assuming that each
of these external surfaces is isothermal. This is in general not true because the
temperature at these surfaces is defined by the shape functions [N ], which are not
constant along an external surface. However, the error can be negligible if the
surfaces are small enough, i.e. if the domain is discretized with enough detail.

The radiation leaving each surface, which includes an emitted, a transmitted as well
as a reflected component, is known as radiosity and is represented here by J . It can
be calculated at surface i by the equation

Ji = εiσT
4
i + (1− εi)

ns∑
j=1

FijJj + (1− εi)FieσT 4
e , (3.40)

where ns is the total number of surfaces in the domain that exchange radiation and
Fij is the view factor between surfaces i and j. The last term at the right-hand
side represents the radiation from the environment that is reflected by surface i,
therefore, Fie is the view factor between surface i and the environment, whereas Te
is the environmental temperature.

Equation 3.40 can be written in matrix form for all the surfaces in the domain as

([I]− ([I]− [ε]) [F ]) {J} = σ[ε]{Ts}4 + ([I]− [ε]) {Fe}σT 4
e (3.41)

where [I] is an identity matrix of dimension ns; [ε] is the emissivity matrix, built
with the emissivity of each surface in its diagonal; [F ] is the view factor matrix,
which contains a view factor Fij at each cell (i, j); {J} is a column vector with
the radiosity value at each surface, {Ts} is the column vector with the temperature
at each surface and {Fe} is the column vector with the view factor between each
surface and the environment.

Using the abbreviation

[A] = ([I]− ([I]− [ε]) [F ])−1 , (3.42)

Equation 3.41 can be written as

{J} = σ[A][ε]{Ts}4 + [A] ([I]− [ε]) {Fe}σT 4
e . (3.43)

The next step is to define the received radiation at each surface, this is known as
irradiance and can be quantified as

Ei =
ns∑
j=1

FijJj + FieσT
4
e . (3.44)
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Figure 3.7: Representation of a radiation exchange area in one finite element.

The heat flux at each surface is the difference between the radiosity, expressed
by 3.40, and the irradiance, expressed by 3.44. Thus,

qrad,i = Ji − Ei, (3.45)

which in matrix form, combining 3.44 and 3.45, can be expressed as

{qrad} = ([I]− [F ]) {J} − {Fe}σT 4
e . (3.46)

Introducing now {J}, calculated according to 3.43, the flux vector can be expressed
as

{qrad} = [Ds]{Ts}4 + {S}T 4
e (3.47)

with
[Ds] = σ ([I]− [F ]) [A][ε] (3.48)

and
{S} = σ (([I]− [F ]) [A] ([I]− [ε]) {Fe} − {Fe}) . (3.49)

The only remaining step to incorporate the flux function 3.47 into the FEM system
of equations expressed by 3.35 is to express it as a function of the nodal temperatures
{T} and not of the surface temperatures {Ts}. This can be achieved with a relation
such as

{Ts} = [Λ]{T} (3.50)

where [Λ] is a matrix with as many rows as surfaces and as many columns as nodes.
Since the domain has been meshed using hexahedron elements there are 4 nodes at
each surface, one at each corner. The approach used in this work is to consider that
the isothermal temperature of each surface is equal to the average of the four nodal
temperatures in the surface. Under this assumption, it is possible to build the [Λ]
matrix accordingly.

Introducing now
[D] = [Ds][Λ], (3.51)

the radiation flux at each surface expressed as a function of the nodal temperature
vector is finally expressed as

{qrad} = [D]{T}4 + {S}T 4
e . (3.52)
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This radiation flux vector, which contains the radiation heat load at each external
surface, can now be introduced into the FEM system of equations 3.35 using expres-
sion 3.38. Since the radiation flux qrad is spatially constant at surface i due to the
isothermal assumption, the heat flux vector at element i can be calculated with

{Rq,i} = −
∫
Si

[N ]T{q}T{n}ds = qrad,i

∫
Si

[N ]Tds (3.53)

where
qrad,i = −{q}T{n} (3.54)

because {q} is an incident flux perpendicular to the surface and in the opposite
direction to the normal vector {n}. Vector {Rq,i} can be calculated at each radiating
surface and assembled to produce the heat flux vector {Rq,rad} for the global system,
which can be expressed as

{Rq,rad} = [Rr]{qrad} (3.55)

where [Rr] is a matrix based on the surface integration at each radiating surface
according to 3.53.

This relation can be now introduced to the system of equations expressed in 3.35
resulting in

[C]{Ṫ}+ [K]{T} = {Rq}+ {RQ}+ [Rr]{qrad}. (3.56)

This system takes into account applied heat fluxes from external conditions (e.g.
solar flux) and due to the radiation exchange. The solution to this system must be
calculated in combination with Equation 3.52 to take into account also the relation
between radiation fluxes and nodal temperatures. Therefore, the complete system
of equations to solve the thermal field in the domain of analysis is expressed as{

[C]{Ṫ}+ [K]{T} = {Rq}+ {RQ}+ [Rr]{qrad}

{qrad} = [D]{T}4 + {S}T 4
e

(3.57)

3.2.2 Steady-state analysis

The first basic condition that can be analyzed with the system presented in the
previous section is the steady-state analysis. This is the condition that is reached
when the temperature in the system is in equilibrium and does not change with
time. This means that Ṫ = 0 and, therefore, system 3.57 can be simplified to{

[K]{T} − [Rr]{qrad} = {Rq}+ {RQ}

−[D]{T}4 + {qrad} = {S}T 4
e

(3.58)

This nonlinear system can be solved using the Newton method following a similar
approach to the one outlined in reference [77]. The first step is to write system 3.58
in matrix form, i.e.,[

[K] −[Rr]
−[D]{T}3 [I]

]{
T
qrad

}
=

{
{Rq}+ {RQ}
{S}T 4

e

}
(3.59)
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This system of equations can be solved iteratively based on the Newton method
using the expression[

[K] −[Rr]
−4[D]{Tk}3 [I]

]{
∆T
∆q

}
=

=

{
−[K]{Tk}+ [Rr]{qrad,k}+ {Rq}+ {RQ}

−{qrad,k}+ [D]{Tk}4 + {S}T 4
e

}
(3.60)

where {
∆T
∆q

}
=

{
Tk+1 − Tk

qrad,k+1 − qrad,k

}
. (3.61)

Specifying a tolerance value for ∆T and ∆q it is possible to iteratively solve sys-
tem 3.60 until the desired accuracy of the solution is reached.

The steady-state solution for a particular set of boundary conditions of the baseline
case included in this work is calculated and presented here. These boundary condi-
tions include an environmental temperature of Te = 290 K, a heat flux of q = 2 W
applied at the base of each bipod and an internal heat generation of Q1 = 10 W
at instrument 1. These environmental conditions are represented in Figure 3.8.
The equilibrium thermal field that the structure reaches under these conditions is
represented in Figure 3.9.

q q q q q q

q = 2 W

Q1

Te = 290 K

10 W

Figure 3.8: Steady-state boundary conditions of the baseline concept.

292.52 K

292.41 K

292.29 K

292.17 K

292.06 K

291.95 K

Figure 3.9: Steady-state thermal field of the baseline concept.
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3.2.3 Transient analysis in the time domain

A more elaborate approach is necessary to calculate the transient response of the
system triggered by changes in the boundary conditions. The traditional approach
to solve the transient problem is to use an integration scheme in the time domain.
Using the Crank-Nicolson method [9] the system of equations 3.57 is expressed as

[C]

{
T t+∆t − T t

∆t

}
=− [K]

{
T t+∆t + T t

2

}
+

{
Rt+∆t
q +Rt

q

2

}

+

{
Rt+∆t
Q +Rt

Q

2

}
+ [Rr]

{
qt+∆t
rad + qtrad

2

}
{
qt+∆t
rad + qtrad

2

}
= [D]

{
T t+∆t + T t

2

}4

+ {S}T 4
e

(3.62)

where the environmental temperature Te has been assumed to be constant in time
and, therefore, does not change at each time step. This system of equations can be
rearranged and written in matrix form so that it can be solved for the temperature
and flux values at t′ = t+ ∆t. This results in

[C] +
[K]∆t

2
− [Rr]∆t

2

−1

2

[
D

(
T t+∆t + T t

2

)3
]

1

2
[I]


{
T t+∆t

qt+∆t
rad

}
=


[C]{T t} − [K]∆t

2
{T t}+ [Rr]∆t

2
{qtrad}+

{
Rt+∆t

q +Rt
q

2

}
∆t+

{
Rt+∆t

Q +Rt
Q

2

}
∆t

−{qrad}
2

+

[
D
(
T t+∆t+T t

2

)3
]
{T t}

2
+ {S}T 4

e

 (3.63)

This nonlinear system can be solved using the Newton method as it has been done
to solve the steady-state solution in Section 3.2.2. This requires an iterative process
to solve the solution at each time step, which can be expressed as

[C] +
[K]∆t

2
− [Rr]∆t

2

−2

[
D

(
T t+∆t
k + T t

2

)3
]

1

2
[I]


{

∆T t+∆t

∆qt+∆t
rad

}
=

{
F1

F2

}
(3.64)

with

F1 = −[C]{T t+∆t
k − T t} − [K]∆t

{
T t+∆t
k + T t

2

}
+ [Rr]∆t

{
qt+∆t
rad,k + qtrad

2

}

+

{
Rt+∆t
q +Rt

q

2

}
∆t+

{
Rt+∆t
Q +Rt

Q

2

}
∆t (3.65)

and

F2 = −

{
qt+∆t
rad,k + qtrad

2

}
+ [D]

{
T t+∆t
k + T t

2

}4

+ {S}T 4
e . (3.66)
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The temperature and radiation flux at t′ = t+ ∆t is obtained from{
∆T t+∆t

∆qt+∆t
rad

}
=

{
T t+∆t
k+1 − T

t+∆t
k

qt+∆t
rad,k+1 − q

t+∆t
rad,k

}
. (3.67)

This allows the calculation of the temperature and radiation heat flux evolution in
time when the changes in the applied heat flux q or in the internal heat sources Q
are known. These changes are introduced in system 3.63 for each time step using
the corresponding time functions

q = q(t) and Q = Q(t).

The process that has been presented here describes the traditional approach to
calculate the transient response of a thermal system. This approach is reliable and
can be implemented for any varying conditions that can be described in the time
domain.

However, it is important to note that for some kind of problems this method is
mathematically inefficient. To calculate the response at some particular point in
time, i.e. at t = ti, it is still necessary to perform the numerical integration from
the initial state at t = 0 to the time step t = ti. Also, if an analysis has been
performed under some assumed functions q(t) and Q(t) and some new information
arises, which provides a better characterization of these functions, it is necessary
to recalculate all the analysis in order to obtain the updated values of the thermal
response.

The limitations of the time integration approach can be overcome in some cases using
an alternative approach based on a transformation of the involved equations into
the frequency domain. This approach offers some advantages over the traditional
time integration approach and it also sets the foundations to implement a feedback
loop that ultimately allows the control of thermomechanical distortions. The details
of this approach are presented in the following section.

3.2.4 Transient analysis in the frequency domain

The frequency domain approach to the transient analysis problem is an alternative
method to the traditional time integration approach. The approaches based on the
frequency domain have gained popularity in recent years to analyze the thermal
behavior of structures subjected to different types of perturbations that act on a
spectrum of frequencies [11, 78, 79]. This is particularly useful to assess the thermal
stability within a specific range of frequencies. Therefore, it has been used to perform
thermal analysis in high-precision space missions such as LISA [70, 79].

The main characteristic of these methods lies in calculating thermal transfer func-
tions obtained from a linearization of the thermal equations, which basically concerns
the radiation terms. Given that it is required to linearize the equations, the method
presented here is only valid for cases in which only small changes in the thermal state
are expected. This is generally always the case when the method is implemented to
analyze highly stable structures because they are inherently designed for stability
and insulated from large thermal variations.

46



CHAPTER 3. THERMAL ANALYSIS FRAMEWORK

The frequency-based method outlined in this section follows the linearization ap-
proach as presented in references [11] and [68] in combination with a modal repre-
sentation of the thermal field. This approach has been generally applied on thermal
models described using the LPM. Here, the approach is modified and expanded to
apply it in a FEM model, which ultimately allows the calculation of transfer func-
tions between heat flux and nodal temperatures evaluated at a given frequency and
also the calculation of thermal modes, as described in Subsection 3.2.5.

First, the system of equations 3.57 is written just in terms of the temperature by
combining its two expressions. This results in

[C]{Ṫ}+ [K]{T} − [Rr][D]{T}4 = {Rq}+ {RQ}+ [Rr]{S}T 4
e . (3.68)

At this point it is useful to write the heat flux vector {Rq} and the heat source
vector {RQ} as a product of a matrix and a load vector. This is expressed as

{Rq} = [R1
q ]{q} (3.69)

{RQ} = [R1
Q]{Q} (3.70)

where each column in the matrices [R1
q ] and [R1

Q] is calculated using 3.38 and 3.39,
respectively, considering a heat load equal to one. These matrices are then multiplied
by the column vectors {q} and {Q} where each cell contains the heat load value in a
different surface or element volume, respectively. Introducing these expressions into
Equation 3.68 results in

[C]{Ṫ}+ [K]{T} − [Rr][D]{T}4 = [R1
q ]{q}+ [R1

Q]{Q}+ [Rr]{S}T 4
e . (3.71)

The temperature and heat values can be linearized around equilibrium using

T = Teq + δT, (3.72)

q = qeq + δq (3.73)

and Q = Qeq + δQ. (3.74)

Thus, from 3.72,

T 4 = (Teq + δT )4 = T 4
eq + 4T 3

eqδT +O(δT 2). (3.75)

If the changes in temperature are small, the truncation error proportional to δT 2

can be neglected. Introducing these identities into Equation 3.71 results in

[C]{Ṫeq}+ [C]{δṪ}+ [K]{Teq}+ [K]{δT} − [Rr][D]{Teq}4 − 4[Rr][D][T 3
eq]{δT} =

[R1
q ]{qeq}+ [R1

q ]{δq}+ [R1
Q]{Qeq}+ [R1

Q]{δQ}+ [Rr]{S}T 4
e (3.76)

where [T 3
eq] is obtained by expressing the vector {T 3

eq} as a diagonal matrix. Taking
now into account that due to the equilibrium condition

{Ṫeq} = 0 (3.77)

and [K]{Teq} − [Rr][D]{Teq}4 = [R1
q ]{qeq}+ [R1

Q]{Qeq}+ [Rr]{S}T 4
e (3.78)

it is possible to simplify Equation 3.76 to

[C]{δṪ}+ [K]{δT} − 4[Rr][D][T 3
eq]{δT} = [R1

q ]{δq}+ [R1
Q]{δQ}. (3.79)
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Premultiplying by [C]−1 and introducing the following abbreviations

[HT ] = [C]−1
(
[K]− 4[Rr][D][T 3

eq]
)
, (3.80)

[Hq] = [C]−1[R1
q ], (3.81)

[HQ] = [C]−1[R1
Q], (3.82)

Equation 3.78 can be written as

{δṪ}+ [HT ]{δT} = [Hq]{δq}+ [HQ]{δQ}. (3.83)

This equation gives now the linear relation between the changes in temperature and
the changes in heat fluxes or heat sources applied to the structure. The next step in
order to calculate the transfer functions between these variables as a function of the
frequency consists in diagonalizing the matrix [HT ] which can be achieved through
the introduction of modal coordinates. The modal coordinate representation is a
common approach in the structural dynamics field. In this section, an equivalent
approach is applied in the linearized thermal domain to characterize the thermal
field. First, the eigenvectors and eigenvalues of matrix [HT ] are calculated

[φ] : Eigenvector matrix

[λ] : Eigenvalue diagonal matrix

The transformation from the physical coordinates of temperature {δT} to the modal
coordinates {τ} is implemented using

{δT} = [φ]{τ}. (3.84)

Introducing the coordinate transformation 3.84 into 3.83 yields

[φ]{τ̇}+ [HT ][φ]{τ} = [Hq]{δq}+ [HQ]{δQ}. (3.85)

And premultiplying now by [φ]−1

[φ]−1[φ]{τ̇}+ [φ]−1[HT ][φ]{τ} = [φ]−1[Hq]{δq}+ [φ]−1[HQ]{δQ}. (3.86)

It is important to notice that

[φ]−1[φ] = [I] (3.87)

[φ]−1[HT ][φ] = [λ] (3.88)

which are both diagonal. Therefore, Equation 3.86 can be rewritten as

[I]{τ̇}+ [λ]{τ} = [φ]−1[Hq]{δq}+ [φ]−1[HQ]{δQ}. (3.89)

Equation 3.89 expresses the relation between the different variables in the time
domain. By taking the Laplace transform of the dependent variables, it is possible
to express this relation in the frequency domain and to calculate transfer functions
between the modal coordinates {τ} and the heat inputs {δq} and {δQ}. The applied
Laplace transforms are

L{τ̇(t)} = sτ(s) (3.90)

L{τ(t)} = τ(s) (3.91)

L{δq(t)} = δq(s) (3.92)

L{δQ(t)} = δQ(s) (3.93)
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where s = jω is the complex frequency parameter. Introducing these relations into
Equation 3.89 yields

s[I]{τ(s)}+ [λ]{τ(s)} = [φ]−1[Hq]{δq(s)}+ [φ]−1[HQ]{δQ(s)} (3.94)

which solving for {τ(s)} results in

{τ(s)} = (s[I] + [λ])−1 [φ]−1[Hq]{δq(s)}+ (s[I] + [λ])−1 [φ]−1[HQ]{δQ(s)}. (3.95)

This equation provides a linear relation between the modal coordinates {τ} and the
heat input, which includes heat fluxes and volumetric heat sources. The inverse
matrix at the right-hand side can be directly calculated by taking into account that
both [I] and [λ] are diagonal matrices. The temperature values can be calculated
from the modal coordinates in Equation 3.95 using the transformation expressed
in 3.84. Therefore, the transfer function between the temperature change at node i
and the heat flux change at surface k can be finally calculated as

HTq(s) =
δTi
δqk

=
nn∑
j=1

φij
Ajk
s+ λj

(3.96)

where Ajk is the value at cell jk of matrix [φ]−1[Hq] and nn is the total number of
nodes in the model. Equivalently, the transfer function between the temperature
change at node i and the heat source change at element k can be calculated as

HTQ(s) =
δTi
δQk

=
nn∑
j=1

φij
Bjk

s+ λj
(3.97)

with Bjk being the value at cell jk of matrix [φ]−1[HQ].

The transfer functions 3.96 and 3.97 can be evaluated at a given frequency s to
calculate the relation between the temperature change and the heat input change.
These transfer functions can be calculated between any combination of nodes and
elements in the structure, i.e., it is possible to know the thermal change at any node
in the structure induced by a given heat input at any element.

This analysis is very powerful to analyze the heat transfer and temperature depen-
dencies in the structure. These insights are obtained purely from the magnitude
and phase of the transfer functions between different nodes without the need to in-
tegrate in time. If the magnitude and frequency of a given perturbation are known,
the temperature response at any point in the structure can be obtained by simply
multiplying the magnitude of the perturbation by the transfer functions 3.96 or 3.97,
depending on whether the perturbation is expressed in terms of heat flux or heat
source.

With this approach it is possible to calculate the thermal evolution of the baseline
concept presented in Section 3.2.1 and represented in Figure 3.4 when a thermal
perturbation arises. A generic example is included here to illustrate how the ap-
proach works. In this example a thermal perturbation δQ1 arising in the instrument
1 is assumed. This perturbation is modeled as a sinusoidal wave with a frequency
of 10−5 Hz and an amplitude of 5 W. Using Equation 3.97 it is possible to calculate
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Figure 3.10: Perturbation input and corresponding temperature response.

the temperature change at one representative node of instrument 2, indicated here
as δT2. It results in

HTQ

(
j

2π

105

)
=
δT2

δQ1

= 0.039− j0.061 = 0.072∠− 57.39◦ (3.98)

The complex result indicates that there is a phase delay between the perturbation
δQ1 and the temperature change at instrument 2, δT2. Taking into account that the
perturbation can be expressed in polar form as

δQ1 = 5∠0◦ W (3.99)

it is possible to calculate the thermal response by multiplying the transfer func-
tion 3.98 by the perturbation 3.99. This gives as a result

δT2 = 0.194− j0.303 = 0.359∠− 57.39◦ K (3.100)

These two magnitudes, δQ1 and δT2, are represented in Figure 3.10.

An important advantage of having linearized the thermal equations is that the ther-
mal response under several perturbations can be obtained by superimposing the
individual responses to each perturbation. Thus, if additionally to δQ1 there are
perturbations arising from other instruments, it is possible to calculate the global
response by adding the responses induced by each instrument.

One limitation of the frequency-domain approach is that it only provides the so-
lution of the non-homogeneous differential equation expressed by 3.85. However,
the complete solution of an ordinary differential equation is always the combina-
tion of the non-homogeneous and the homogeneous solution. The solution of the
homogeneous equation corresponds to transient terms that converge to zero with
time. These transient terms are not captured by this approach and, as a result, the
frequency-domain approach only provides a portion of the total response. The time
domain and the frequency domain approach converge to the same result but show
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some initial discrepancy that is progressively attenuated to zero. This behavior can
be seen in Figure 3.11.

These transient terms can be analytically calculated by applying the inverse Laplace
transform of the response function expressed in the frequency domain. First, the
Laplace transform of the perturbation is calculated in this case as

δQ1 = 5 sinωt→ L{5 sinωt} =
5ω

s2 + ω2
. (3.101)

The temperature response in the frequency domain is obtained by multiplying the
previous expression by the transfer function expressed by 3.97. Thus, the response
function calculated in the frequency domain is

δT2(s) =
nn∑
j=1

Cj
s+ λj

5ω

s2 + ω2
(3.102)

where for the sake of clarity, the factors φijBjk from Equation 3.97 have been sub-
stituted for Cj. The analytical expression of the response in the time domain can
be obtained by applying the inverse Laplace transform, thus

δT2(t) = L−1

(
nn∑
j=1

Cj
s+ λj

5ω

s2 + ω2

)

=
nn∑
j=1

(
5Cjωe

−λjt

λ2
j + ω2

+
5Cjλj sinωt− 5Cjω cosωt

λ2
j + ω2

)
.

(3.103)

The second term inside the summation is a periodic function and it corresponds to
the response that is obtained when the transfer function evaluated at some given
frequency is multiplied by the perturbation, as done in 3.100. The first term inside
the summation is exponentially converging to zero. It is a transient term that can
only be obtained in the time domain by directly calculating the inverse Laplace
transform.
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Figure 3.11: Temperature response obtained using the time domain approach and
the frequency domain approach.

51



CHAPTER 3. THERMAL ANALYSIS FRAMEWORK

3.2.5 Modal representation

The previous section has introduced the transformation into modal coordinates to
calculate an expression of the transfer functions, resulting in Equations 3.96 and 3.97.
By using these transfer functions, the temperature response of the system is obtained
according to Equation 3.84, which is repeated here for clarity,

{δT} = [φ]{τ}.

Considering that each column in the eigenvector matrix [φ] represents a linearized
thermal mode, it can be interpreted that the solution is expressed as a linear com-
bination of all the thermal modes. In other words, the thermal response is obtained
by assigning a different weight to each column of the matrix [φ]. The weight of each
column is determined by vector {τ}.

Each thermal mode, corresponding to each column vector of matrix [φ], represents
a normalized fundamental shape in which the temperature fluctuates within the
structure. Given a finite element model of the structure, there are as many modes
as degrees of freedom have been considered. Different thermal modes are excited
depending on the origin and frequency of the perturbation. Figure 3.12 shows the
first 8 modes of the baseline case that are excited when the perturbation comes from
instrument 1 at a frequency of 10−5 Hz.

The weight of each mode depends on the frequency of the perturbation. At lower
frequencies, the weight is more concentrated over a small number of thermal modes,
whereas at higher frequencies, the total response tends to be more distributed over a
larger number of modes. This behavior can be seen in Figure 3.13, which represents
the weight of each of the first 8 modes that determine the response at different
frequencies. As it can be observed, the weight difference between different modes is
much smaller at higher frequencies.

The advantage of using the modal representation is that under some circumstances it
is acceptable to neglect a large number of modes and describe the response using only
those that carry the largest weight. This procedure is known as modal truncation
and it implies that instead of calculating the transfer functions with the summation
up to nn, only the terms up to N are considered, with N < nn, i.e.,

HTq(s) =
δTi
δqk

=
N∑
j=1

φij
Ajk
s+ λj

(3.104)

HTQ(s) =
δTi
δQk

=
N∑
j=1

φij
Bjk

s+ λj
(3.105)

Based on the modal truncation procedure it is possible to develop a feasible sensor
strategy that relies only on a limited number of sensors. This is a crucial step
to implement a feedback control loop, and therefore, it is presented in detail in
Section 5.3.1 of Chapter 5.
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Mode 764 Mode 765

Mode 792 Mode 790

Mode 796 Mode 763

Mode 791 Mode 770

Figure 3.12: First linearized thermal modes that describe the response to perturba-
tions from Instrument 1 at f = 10−5 Hz.
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Figure 3.13: Modal weight of the first 8 linearized thermal modes that describe the
response to perturbations of 1 W from Instrument 1 at frequencies between 10−8 Hz
and 10−1 Hz.
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Chapter 4

Structural Analysis Framework

Once the thermal FEM model has been established, the next step is to formulate
the mechanical counterpart in order to obtain a complete thermomechanical model.
The mechanical model calculates the displacement in each spatial direction at each
node caused by a given mechanical load, which in this case is the thermal stress
induced by temperature fluctuations. Based on the obtained displacement field it is
possible to calculate distortions between specific points in the structure.

This chapter starts with a presentation in Section 4.1 of the FEM formulation for
mechanical problems, with a special emphasis on the modeling of thermal stress.
This formulation is briefly presented with the purpose of clarifying the notation that
is used in the subsequent chapters. This first section includes also a short explanation
of the mathematical procedure that has been followed to solve the steady-state
condition. For completeness, a standard procedure to solve the transient problem is
also included to discuss its limitations over the alternative approach, presented in
Subsection 4.1.3, based on a frequency domain transformation.

The frequency domain analysis is already a well-established technique in the field of
structural dynamics [80]. This approach is presented in Subsection 4.1.3 and it is
expanded to combine it with the thermal formulation presented in Chapter 3, which
results in the derivation of the thermomechanical transfer functions presented in
Section 4.2. These functions give the relation between displacement and applied
heat changes as a function of the frequency and are the basis to develop a control
loop to stabilize distortions of thermal origin. Finally, the chapter finishes with
the presentation and analysis of the quasi-static assumption, which simplifies the
formulation of the control framework presented in Chapter 5.

4.1 Thermomechanical FEM formulation

The FEM formulation for thermal problems presented in Section 3.2.1 considers
that each node in the mesh has one degree of freedom, the temperature. In the
mechanical case, the ultimate variables obtained by the FEM are the displacements
at each node in each spatial direction. This implies that there are three degrees of
freedom for each node in the mesh.
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As presented in Section 3.2.1 for the thermal case, the displacement field within a
finite element can be calculated based on assumed shape functions. This relation
can be expressed as

{u(x, y, z, t)} = [N ]{u}, (4.1)

where u is the displacement vector containing the displacements in each direction at
coordinates x, y and z. Vector {u} is the nodal displacement vector and it contains
the displacements in each direction at each node expressed as un, vn and wn. It can
be written as

{u} = {u1 v1 w1 u2 v2 w2 . . . }T . (4.2)

According to this definition, the dimension of the {u} vector is three times the total
number of nodes in the mesh. The [N ] matrix has to take also into account this 3
DOF representation and, therefore, it is expressed as

[N ] =

 N1 0 0 N2 0 0 . . .
0 N1 0 0 N2 0 . . .
0 0 N1 0 0 N2 . . .

 . (4.3)

The nodal displacement vector {u} can be obtained by solving the equations of
motion of the structure. These equations of motion can be derived from Newton’s
second law and can be expressed in matrix form as [80]

[Mu]{ü}+ [Cu]{u̇}+ [Ku]{u} = {F (t)} (4.4)

where [Mu] is called the mass matrix, [Cu] is the damping matrix, [Ku] is the stiffness
matrix and {F (t)} is the applied mechanical load, which generally varies with time.
The mass matrix can be calculated as

[Mu] =

∫
Ω

ρ[N ]T [N ]dΩ (4.5)

where ρ is the material density and [N ] is the shape function matrix assembled for
each element in the domain Ω. Similarly, the stiffness matrix [Ku] is calculated as

[Ku] =

∫
Ω

[B]T [E][B]dΩ (4.6)

where [B] is the displacement differentiation matrix which is defined as

[B] =



∂N1

∂x
0 0

∂N2

∂x
0 0 . . .

0
∂N1

∂y
0 0

∂N2

∂y
0 . . .

0 0
∂N1

∂z
0 0

∂N2

∂z
. . .

∂N1

∂y

∂N1

∂x
0

∂N2

∂y

∂N2

∂x
0 . . .

0
∂N1

∂z

∂N1

∂y
0

∂N2

∂z

∂N2

∂y
. . .

∂N1

∂z
0

∂N1

∂x

∂N2

∂z
0

∂N2

∂x
. . .



(4.7)
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and [E] is the elasticity matrix

[E] =
E

(1 + ν)(1− 2ν)



1− ν ν ν 0 0 0
ν 1− ν ν 0 0 0
ν ν 1− ν 0 0 0

0 0 0
1− 2ν

2
0 0

0 0 0 0
1− 2ν

2
0

0 0 0 0 0
1− 2ν

2


(4.8)

with E being the Young’s modulus and ν the Poisson’s ratio.

The calculation of the damping matrix [Cu] depends on the damping model that
is considered. There exist several mathematical models to derive this matrix. One
option, known as proportional damping [81], consists in defining the damping matrix
as a linear combination of the mass and the stiffness matrix, i.e.

[Cu] = a0[Mu] + a1[Ku] (4.9)

where a0 and a1 are two parameters that can be adjusted based on experimental
data or on mathematical estimations of the damping level.

The vector at the right-hand side of the equation of motion expressed by 4.4 rep-
resents the mechanical loads applied to the structure. It includes the necessary
external forces that constrain the structure and that are represented in this chapter
by the vector {Fd}. It also includes the mechanical loads resulting from external
forces and pressures as well as from internal stress. The thermomechanical stress
is a specific type of internal stress and it arises due to the material expansion and
contraction induced by thermal fluctuations. In order to calculate the mechanical
load associated with this thermal expansion, it is necessary to choose a mathemati-
cal model of this effect. Here, it is assumed that the materials are isotropic. Thus,
the thermal strain that arises at a given temperature can be calculated as

{εt} =



αT
αT
αT
0
0
0


(4.10)

where α is the coefficient of thermal expansion and T the temperature. This vector
contains six components because in the three-dimensional case the strain vector is
described by three normal strains (εx, εy and εz) and three shear strains (γxy, γyz
and γzx). Based on the thermal strain described by 4.10 it is possible to calculate
the mechanical load applied to the structure as

{Ft} =

∫
Ω

[B]T [E]{εt}dΩ. (4.11)

Considering the relation between thermal strain and temperature expressed by Equa-
tion 4.10, it is also possible to express the mechanical load in matrix form as a
function of the temperature vector, i.e.

{Ft} = [FT ]{T}. (4.12)
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Based on this notation it is possible to rewrite the equation of motion 4.4 as

[Mu]{ü}+ [Cu]{u̇}+ [Ku]{u} = [FT ]{T}+ {Fd} (4.13)

which gives the relation between temperature and displacement field in the structure.

4.1.1 Steady-state analysis

The first basic analysis that can be performed is to calculate the displacement field
when only static forces are present, this is the steady-state condition. Under steady-
state conditions both the acceleration ü and the velocity u̇ are equal to zero and,
therefore, Equation 4.13 can be written as

[Ku]{u} = [FT ]{T}+ {Fd} (4.14)

The first necessary step to solve the previous system of equations it to define the
mechanical boundary conditions. Boundary conditions in structural analyses are
usually expressed as displacement constraints at some specific nodes in the structure.
In the application presented in this work, the focus is on the distortions arising due
to the thermal expansion in a body that is free-floating in space, i.e. a satellite.

The free-floating condition is equivalent to constraining only the 6 DOF correspond-
ing to the rigid body motion and allowing the free thermal expansion of the structure.
In mathematical terms, this condition can be simulated with an artificial isostatic
constraint, i.e. following the same principle of the isostatic mount that has been
presented in Section 2.3.1 and that is known as 3-2-1 constraint. This condition can
be implemented by constraining the displacement at three different nodes. In one
node, the displacements in all three directions are forced to be zero. In a second
node, only the displacements in those two directions perpendicular to the line that
connects it to the first node are constrained. The third node is forced to remain
in the same plane defined by the three points at t = 0. This isostatic condition
with the mentioned constraints is represented for the baseline case presented in this
thesis in Figure 4.1.

The mathematical implication of this condition is that there are 6 components in
the {u} vector of Equation 4.14 that are forced to be zero. Conversely, the {Fd}
vector containing the constraint loads is empty except in those cells that correspond
to a displacement constraint. Therefore, there are only 6 unknowns in the {Fd}
vector. The global system defined by 4.14 can be directly solved for the displacement
vector by removing these 6 unknowns from the system. To this purpose, the 6
equations that contain these unknowns are removed from the system. Additionally,
the columns of matrix [Ku] that are multiplied by a null displacement can also be
removed. As a result, the global system of equations can be reduced to the following
expression

[Kr
u]{ur} = [F r

T ]{T} (4.15)

where the superscript r indicates that the matrix or vector has been reduced and the
{F r

d } vector is not written because all its cells are zero. This system of equations can
now be solved to obtain the displacement field that arises due to the thermal state
calculated as indicated in Section 3.2.2. This is considered to be the equilibrium
state with respect to which distortions arise when thermal boundary conditions
change.
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Figure 4.1: Artificial isostatic constraint for the baseline concept.

4.1.2 Transient analysis in the time domain

The traditional approach to solving the system of equations expressed by 4.13 when
transient mechanical loads are present is to implement a time integration scheme.
The integration scheme presented here is equivalent to the one presented for the
thermal problem in Section 3.2.3.

First, the examined time period is subdivided into time steps. Then, given some
initial conditions, a system of equations is solved to calculate the displacement,
velocity and acceleration at the following time step. The procedure is repeated until
the entire time period of interest is covered.

There exist several algorithms to perform this integration that differ in their com-
plexity, accuracy and stability. Some of the algorithms that can be applied to
integrate structural dynamics equations are the Central Difference Method (CDM),
the Houbolt method, the Park method, the Wilson-θ method and the Newmark
method, which for some choice of its parameters is known as the average acceler-
ation method [80]. This last one is arguably the most frequently used in the field
of structural dynamics and, therefore, it is outlined here to exemplify how time-
integration schemes are applied in this domain.

The assumption behind the average acceleration method is that the acceleration is
constant during an integration step. The average value of the acceleration at each
integration step is assumed to be

{ü}avg =
{ü}t + {ü}t+∆t

2
. (4.16)

Based on this assumption and using the kinematic equations, the velocity at each
time step can be calculated using

{u̇}t+∆t = {u̇}t +
(
{ü}t + {ü}t+∆t

) ∆t

2
. (4.17)

Similarly, the displacement vector at t + ∆t can be written as a function of the
displacement at t, the velocity and the acceleration as

{u}t+∆t = {u}t + {u̇}t∆t+
(
{ü}t + {ü}t+∆t

) ∆t2

4
. (4.18)
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Equation 4.18 can be solved for the acceleration at t+ ∆t resulting in

{ü}t+∆t =
4

∆t2
(
{u}t+∆t − {u}t

)
− 4

∆t
{u̇}t − {ü}t. (4.19)

Substituting the previous expression into Equation 4.17 it is possible to express the
velocity at t+ ∆t as

{u̇}t+∆t =
2

∆t

(
{u}t+∆t − {u}t

)
− {u̇}t. (4.20)

The average acceleration method calculates the displacement at t + ∆t by solving
the equations of motion expressed by the system

[Mu]{ü}t+∆t + [Cu]{u̇}t+∆t + [Ku]{u}t+∆t = {F (t+ ∆t)} (4.21)

in which the acceleration and the velocity can be calculated from the values at the
previous time step by using 4.19 and 4.20, respectively. Introducing these expressions
into Equation 4.21 results in

[K̂]{u}t+∆t = {F (t+ ∆t)}

+ [Mu]

(
{ü}t +

4

∆t
{u̇}t +

4

∆t2
{u}t

)
+ [Cu]

(
{u̇}t +

2

∆t
{u}t

) (4.22)

where

[K̂] =
4

∆t2
[Mu] +

2

∆t
[Cu] + [Ku]. (4.23)

Equation 4.22 can be solved to obtain the displacement values at t′ = t + ∆t. The
solution can be introduced in 4.19 and 4.20 to obtain the acceleration and velocity
values at the same time step. These can then be taken as the initial values to
calculate the solution at the following time step.

The results obtained by this method are directly related to the particular function
that models the perturbation load. If the response needs to be evaluated under a
different perturbation function it is necessary to perform a new time integration in
its entirety. This limits the field of application of this method because it becomes
computationally expensive when the response needs to be calculated for a wide
variety of perturbations at different amplitudes and frequencies.

Structures are often excited at very different frequencies during its lifetime and,
therefore, alternative methods based on solving the problem in the frequency do-
main can be more efficient for structural dynamics analyses. In the framework
of this work, the frequency domain approach to the mechanical problem has been
combined with the thermal transfer functions obtained in Section 3.2.5 to derive the
thermomechanical transfer functions that are subsequently used to develop a con-
troller. The following section presents the frequency domain approach to calculate
the mechanical response of the system.
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4.1.3 Transient analysis in the frequency domain

The transient response described by the equations of motion in 4.13 can also be cal-
culated by transforming the equations into the frequency domain. This approach has
been extensively implemented in the structural dynamics field because it ultimately
allows the calculation of transfer functions between applied loads and displacements.
Based on these transfer functions it is possible to calculate the displacement re-
sponse induced by a given mechanical load at a specific frequency. Thus, it is useful
to calculate the structural response to high-frequency vibrations and it can also be
implemented to obtain the response to low-frequency oscillations induced by thermal
perturbations.

In the work presented in this thesis, the focus is on calculating the structural dis-
tortions with respect to an equilibrium state. Therefore, the first step consists in
rewriting the equations of motion to take into account only changes around the con-
sidered equilibrium condition. This can be achieved by introducing the identities

T = Teq + δT (4.24)

and
u = ueq + δu. (4.25)

Thus, the equations of motion can be expressed as

[Mu]{δü}+ [Cu]{δu̇}+ [Ku]{ueq}+ [Ku]{δu}
= [FT ]{Teq}+ [FT ]{δT}+ {Fd}+ {δFd}. (4.26)

where the {δFd} term represents the change in the reaction forces that constrain
the structure under displacement variations. Taking the equilibrium condition into
account, as explained in Section 4.1.1,

[Ku]{ueq} = [FT ]{Teq}+ {Fd} (4.27)

it is possible to write Equation 4.26 as

[Mu]{δü}+ [Cu]{δu̇}+ [Ku]{δu} = [FT ]{δT}+ {δFd}. (4.28)

As it has been done in Section 4.1.1 to solve the steady-state problem, it is necessary
to reduce the previous system of equations in order to calculate the solution of the
displacement vector {δu}. Introducing an artificial isostatic constraint to prevent
the rigid body motion of the structure it is possible to remove six rows and six
columns of the previous system. These rows correspond to the unknowns in the
{δFd} vector which, thus, disappears from the previous expression. This yields

[M r
u]{δür}+ [Cr

u]{δu̇r}+ [Kr
u]{δur} = [F r

T ]{δT}. (4.29)

Premultiplying now by [M r
u]−1

{δür}+ [CM ]{δu̇r}+ [KM ]{δur} = [RT ]{δT} (4.30)

with

[CM ] = [M r
u]−1[Cr

u], (4.31)

[KM ] = [M r
u]−1[Kr

u] (4.32)

and [RT ] = [M r
u]−1[F r

T ]. (4.33)

61



CHAPTER 4. STRUCTURAL ANALYSIS FRAMEWORK

The system of equations expressed by 4.30 gives the relation between displacement
and temperature changes. The transfer functions between these two variables can
be calculated based on this system using a modal representation obtained from a
transformation into the frequency domain. The modal representation is implemented
following a similar approach to that presented in Section 3.2.4 for the thermal prob-
lem. This requires the calculation of the eigenvectors and eigenvalues of matrix
[KM ], i.e.

[ψ] : Eigenvector matrix

[γ] : Eigenvalue diagonal matrix

The modal coordinates are now introduced, which are related to the displacement
coordinates according to

{δur} = [ψ]{η}. (4.34)

Introducing the previous identity into Equation 4.30 and premultiplying by [ψ]−1

results in

[ψ]−1[ψ]{η̈}+ [ψ]−1[CM ][ψ]{η̇}+ [ψ]−1[KM ][ψ]{η} = [ψ]−1[RT ]{δT}. (4.35)

In this previous equation
[ψ]−1[ψ] = [I] (4.36)

and
[ψ]−1[KM ][ψ] = [γ] (4.37)

which are both diagonal. Additionally, considering that the damping matrix [Cu] is
built as a linear combination of [Mu] and [Ku], as expressed by Equation 4.9, the
operation [ψ]−1[CM ][ψ] also results in a diagonal matrix that can be expressed as

[ψ]−1[CM ][ψ] = [ξ]. (4.38)

Thus, Equation 4.35 can finally be written as

{η̈}+ [ξ]{η̇}+ [γ]{η} = [ψ]−1[RT ]{δT}. (4.39)

At this point, the Laplace transform of the independent variables in the previous
equation is introduced to calculate the transfer functions between displacement and
temperature. The necessary Laplace transforms are

L{η̈(t)} = s2η(s) (4.40)

L{η̇(t)} = sη(s) (4.41)

L{η(t)} = η(s) (4.42)

L{δT (t)} = δT (s) (4.43)

which after being introduced in Equation 4.39 result in

s2{η(s)}+ s[ξ]{η(s)}+ [γ]{η(s)} = [ψ]−1[RT ]{δT (s)}. (4.44)

Solving the previous expression for {η(s)} results in

{η(s)} =
(
s2[I] + s[ξ] + [γ]

)−1
[ψ]−1[RT ]{δT (s)}. (4.45)
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The first inverse matrix at the right-hand side can be directly calculated given that
its components are all diagonal. Once the vector {η(s)} has been calculated for
a given input {δT (s)}, it is possible to calculate the displacement change vector
{δur} using Equation 4.34. Thus, considering only row i in Equation 4.34 and
expressing the result as a summation of all the columns in matrix [ψ] multiplied
by the corresponding component in {η(s)}, the transfer function with respect to a
temperature change at node k at a frequency s can be calculated using

HuT (s) =
δui
δTk

=
3nn∑
j=1

ψij
Cjk

s2 + ξjs+ γj
(4.46)

where ψij represents the ij cell of matrix [ψ] and Cij is the jk cell of matrix [ψ]−1[RT ].
The summation ranges from j = 1 to j = 3nn because each of the nn nodes in the
mesh has three degrees of freedom. This transfer function enables the calculation
of the displacement at any point in the structure given some temperature change
at any other point. These transfer functions can be combined with the thermal
transfer equations calculated in Section 3.2.4 to produce thermomechanical transfer
functions that give a direct relation between displacement and applied heat.

4.2 Thermomechanical transfer functions

Thermomechanical transfer functions are mathematical expressions that can be eval-
uated at a given frequency to provide the relation between displacement and heat
input. These functions can be derived by combining the mechanical transfer func-
tions, which relate displacement and temperature (see Section 4.1.3), with the ther-
mal transfer functions, which relate temperature and applied heat (see Section 3.2.4).
Thus, thermomechanical transfer functions between the displacement at node i and
the heat load l can be expressed as

Huq(s) =
δui
δql

=
nn∑
k=1

δui
δTk

δTk
δql

. (4.47)

The combination of the thermal transfer function according to expression 3.96 pre-
sented in Section 3.2.4 and the mechanical transfer function according to the ex-
pression 4.46 presented in Section 4.1.3 results in

Huq(s) =
δui
δql

=
3nn∑
j=1

nn∑
k=1

ψij
Cjk

s2 + ξjs+ γj

Akl
s+ λk

, (4.48)

which defines the displacement change at node i given some heat flux change δq at
surface l. In this expression, the value Cjk from 4.46 has been substituted for Cjk,
which is the jk cell of the [ψ]−1[RT ][φ] matrix that takes into account the thermal
modes represented by [φ].

Similarly, it is possible to calculate the response to an applied heat source change
δQ at element l by using the thermal transfer function 3.97, which results in

HuQ(s) =
δui
δQl

=
3nn∑
j=1

nn∑
k=1

ψij
Cjk

s2 + ξjs+ γj

Bkl

s+ λk
. (4.49)
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Considering again the baseline case presented in Section 3.2.4 it is possible to apply
now these transfer functions to calculate the introduced distortion given a thermal
change. The same case is illustrated here to exemplify the calculation of the distance
change between points A and B of the structure, which are reference points of two
different instruments, as represented in Figure 4.2.

Assuming an internal heat change at instrument 1 equal to δQ1 = 5 W at a frequency
of 10−5 Hz and applying Equation 4.49 it is possible to calculate the displacement
variation at point A and at point B in each spatial direction. The difference between
the two values gives the distance change between A and B, which can thus be
calculated by

δuAB =

(
δuA
δQ1

(
10−5 Hz

)
− δuB
δQ1

(
10−5 Hz

))
δQ1 = 0.139 µm ∠− 36.55◦ (4.50)

δvAB =

(
δvA
δQ1

(
10−5 Hz

)
− δvB
δQ1

(
10−5 Hz

))
δQ1 = 0.204 µm ∠− 54.97◦ (4.51)

δwAB =

(
δwA
δQ1

(
10−5 Hz

)
− δwB
δQ1

(
10−5 Hz

))
δQ1 = 0.403 µm ∠− 41.05◦ (4.52)

This displacement response is illustrated in Figure 4.3. It shows that the phase delay
with respect to the perturbation is different in each direction and that the largest
distortion appears in the z-direction.

The same procedure can be applied to calculate the displacement response under a
perturbation with a different location, magnitude or frequency. Also, given that the
equations have been linearized, the total response under different perturbations can
be calculated by superimposing each individual response from each perturbation.
Assuming that there are n different heat sources from n different points, each acting
at a different frequency, the resulting displacement response can be calculated as

δu =
n∑
i=1

(HuQi
(si)) δQi (4.53)

A
B

x
y

z
δQ1

Figure 4.2: Representation of points A and B in the baseline concept.
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Figure 4.3: Displacement change between points A and B induced by a perturbation
of 5 W at f = 10−5 Hz from Instrument 1.

4.2.1 Modal representation and truncation

The previous transfer functions are based on a modal representation of both the ther-
mal and the mechanical problem. The details on the thermal modal representation
have been presented in Section 3.2.5. Based on the same approach, the mechanical
response of the system can be expressed as a linear combination of several mechan-
ical modes. In this case, each mode represents a fundamental possible shape that
the structure can take as it oscillates. Each shape mode can be expressed as a nor-
malized vector that corresponds to a column in the [ψ] matrix and that contains
the displacement of each degree of freedom. Figure 4.4 illustrates the first eight
mechanical modes that describe the structural response of the baseline case.

Each mode has a different weight in the total response, which implies a different
contribution to the distortion field. Most of the weight is often distributed among
a small number of modes relative to the total number of modes. This weight dis-
tribution depends on the location, magnitude and frequency of the applied load.
The calculation of the response can be simplified by considering only a subset of
mechanical and thermal modes, those with the greatest weights. This introduces a
certain error in the calculation but reduces the number of terms that must be taken
into account. In mathematical terms, this implies considering only N out of the
total nn thermal modes and M out of the 3nn mechanical modes. In that case, the
thermomechanical transfer functions can be expressed as

Huq(s) =
δui
δql

=
M∑
j=1

N∑
k=1

ψij
Cjk

s2 + ξjs+ γj

Akl
s+ λk

(4.54)

and HuQ(s) =
δui
δQl

=
M∑
j=1

N∑
k=1

ψij
Cjk

s2 + ξjs+ γj

Bkl

s+ λk
. (4.55)

This reduction of the number of terms included in the transfer functions can be
understood as a simplification of the thermomechanical model. The magnitude of
the error that this procedure introduces is proportional to the overall weight of the
neglected nodes. The error can be marginally decreased by considering additional
modes, but each additional mode introduces a lower decrease of the error.
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Mode 2479 Mode 2480

Mode 2489 Mode 2488

Mode 2487 Mode 2486

Mode 2485 Mode 2484

Figure 4.4: First 8 mechanical modes that describe the displacement response.
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4.2.2 Quasi-static assumption

The thermomechanical transfer functions derived in the previous sections can be
evaluated as a function of the frequency. The result is illustrated in Figures 4.5
and 4.6 for the thermal and the mechanical case, respectively.

It can be observed that the thermal transfer function, expressed as the temperature
change at point A given a heat input at instrument 1 at frequencies ranging from
10−8 Hz to 10−2 Hz, behaves as a low-pass filter. Figure 4.5 shows that the transfer
gain is constant up to approximately 10−5 Hz and that it decreases afterwards. The
mechanical transfer function illustrated in Figure 4.6 represents the displacement
change in the x-direction of point A given a temperature change at the same point.
In this case, the introduced distortion is almost constant at frequencies below 10 Hz
and it shows an attenuated resonant behavior above this threshold.

Based on the data represented by these two figures it can be concluded that through-
out the frequency regime at which thermal perturbations are relevant, the mechani-
cal behavior can be described as quasi-static. Figure 4.5 proves that for the baseline
case, thermal perturbations above 10−5 Hz are quickly attenuated. At frequencies
above 10−2 Hz, any low-amplitude heat perturbation can only have a negligible ef-
fect. Throughout all this range, the mechanical transfer function has a flat gain
because the contributions arising due to damping and inertia effects are negligible.
In this case, they only influence significantly the response at frequencies above 10 Hz.

Assuming that the inertia and damping contributions are negligible is equivalent to
treating the mechanical problem as quasi-static, i.e. each instantaneous state can
be considered to be in mechanical equilibrium and can be solved using the steady-
state Equation 4.15. When this assumption is implemented, the thermomechanical
transfer functions can be simplified if the inertia and damping terms are removed.
This results in

Huq(s) =
δui
δql

=
3nn∑
j=1

nn∑
k=1

ψij
Cjk
γj

Akl
s+ λk

(4.56)

and HuQ(s) =
δui
δQl

=
3nn∑
j=1

nn∑
k=1

ψij
Cjk
γj

Bkl

s+ λk
, (4.57)

which considering the abbreviations

Akl = Akl

(
3nn∑
j=1

ψij
Cjk
γj

)
(4.58)

and Bkl = Bkl

(
3nn∑
j=1

ψij
Cjk
γj

)
, (4.59)

can be finally written as

Huq(s) =
δui
δql

=
nn∑
k=1

Akl
s+ λk

(4.60)

and HuQ(s) =
δui
δQl

=
nn∑
k=1

Bkl
s+ λk

. (4.61)
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Figure 4.5: Transfer gain between temperature fluctuation at point A and heat
perturbation in Instrument 1.
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Figure 4.6: Transfer gain between displacement change and temperature fluctuation
at point A.
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Chapter 5

Control Framework

The previous chapters have presented the FEM derivation of a thermomechanical
model. Based on this model it has been possible to derive thermomechanical transfer
functions that relate heat input and structural displacements as a function of the
frequency. This formulation is the first step in developing a control framework that
enables the distortion minimization at some points based on the applied heat.

A direct approach to displacement control can be implemented if the expected heat
perturbations can be thoroughly characterized. When perturbations are predictable
and it is feasible to characterize them, it becomes possible to calculate the dis-
placements they introduce to the structure and to determine the heat input that is
necessary to compensate them. This approach is referred to in this chapter as the
perturbation compensation method and is presented in detail in Section 5.1. The
more general case is that in which the heat perturbations acting on the structure
have a random component. Under this condition it is necessary to install sensors
to estimate the displacement state of the structure and to implement a control loop
to calculate the heat inputs that can minimize the introduced distortions. The
approach developed in this thesis is presented in detail in Section 5.2.

The possible sensor and actuator strategies as well as the modeling of their behavior
to simulate the performance of the described control loop are presented in detail
in Sections 5.3 and 5.4. This includes the implementation of a Kalman filter, as
presented in Section 5.5, in order to mitigate the impact of noise affecting the control.
The complete formulation of the control loop with all the aspects presented in this
chapter is included in Section 5.6. Finally, the chapter ends with a list of necessary
steps in Section 5.7 to implement the presented framework in a real structure.

5.1 Perturbation compensation method

The perturbation compensation method is a direct approach to calculate the neces-
sary heat input that cancels the distortion effects of a particular heat perturbation
acting on a structure. From a mathematical point of view, this approach consists
in solving a linear system of equations where the unknown variables are the heat
inputs applied by the control heat sources.
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Considering that a mathematical function of the applied heat perturbation δQn

expressed in the frequency domain is known, it is possible to calculate the induced
displacement response by using the corresponding transfer function, as expressed by
Equation 4.61, thus

δui = [HuiQn ]s δQn =

[
δui
δQn

(s)

]
δQn. (5.1)

The previous equation describes a single-input and single-output (SISO) system, in
which the displacement in the x-direction at node i is calculated as a function of the
heat perturbation at source n. If more output variables are considered, such as the
displacement at node i in the three spatial directions, the problem becomes a single-
input and multiple-output (SIMO) system, which in this case can be expressed as

δui

δvi

δwi

 =


HuiQn

HviQn

HwiQn


s

{
δQn

}
. (5.2)

This system can be further extended to consider several heat sources which results
in a multiple-input and multiple-output (MIMO) system,

δui

δvi

δwi

 =


HuiQn . . . HuiQm

HviQn . . . HviQm

HwiQn . . . HwiQm


s


δQn

. . .

δQm

 . (5.3)

The previous MIMO system has three outputs corresponding to the displacement in
each direction at node i. These displacements can be forced to be zero by introducing
three further variables in the system. These new variables describe the controlled
heat added to the system by additional heat sources. Considering that these three
control heat sources are δQ1, δQ2 and δQ3 it is possible to express the system
response as 

δui

δvi

δwi

 =


HuiQn . . . HuiQm

HviQn . . . HviQm

HwiQn . . . HwiQm


s


δQn

. . .

δQm


+


HuiQ1 HuiQ2 HuiQ3

HviQ1 HviQ2 HviQ3

HwiQ1 HwiQ2 HwiQ3


s


δQ1

δQ2

δQ3

 .

(5.4)

The control heat vector that cancels the displacement vector at node i can be derived
from the previous system of equations as

δQ1

δQ2

δQ3

 = −


HuiQ1 HuiQ2 HuiQ3

HviQ1 HviQ2 HviQ3

HwiQ1 HwiQ2 HwiQ3


−1

s


HuiQn . . . HuiQm

HviQn . . . HviQm

HwiQn . . . HwiQm


s


δQn

. . .

δQm

 . (5.5)
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An essential requirement to apply this method is to have a mathematical expression
of the heat perturbations acting on the structure, which correspond to the heat
vector at the right-hand side of the previous system. This system is solved in the
frequency domain and thus, it is necessary to have an expression of the corresponding
perturbation functions also in this domain. If instead a time domain function is
available, the most straightforward procedure to obtain the frequency representation
is to calculate it in terms of the Fourier series. This transformation provides an
equivalent expression of a given time function expressed as a summation of several
sinusoidal terms, i.e.

δQn(t) = δQn,0 +
N∑
k=1

δQn,k sin(ωkt+ ϕn,k) (5.6)

where the necessary coefficients can be calculated using standard Fourier series trans-
formation techniques. In those cases in which there are several perturbation sources,
each of them with several components at different frequencies, it becomes necessary
to solve system 5.5 at different frequencies to obtain the components of δQ1, δQ2

and δQ3, which in turn are also expressed using Equation 5.6. Each component k
is thus calculated using
δQ1

δQ2

δQ3


k

= −


HuiQ1 HuiQ2 HuiQ3

HviQ1 HviQ2 HviQ3

HwiQ1 HwiQ2 HwiQ3


−1

ωk


HuiQn . . . HuiQm

HviQn . . . HviQm

HwiQn . . . HwiQm


ωk


δQn∠ϕn

. . .

δQm∠ϕm


k

.

(5.7)
By solving the previous system at all the required frequencies ωk it is possible to
calculate the Fourier series of the heat control sources. When this calculated control
heat acts on the structure in conjunction with the known perturbations, the thermal
field that arises cancels the distortions at node i.

The number of heat control sources is always equal to the number of degrees of
freedom that are controlled. In the previous case, this number is three because
only the displacements of node i in the three spatial directions are controlled. If
further points in the structure were to be controlled it would be necessary to consider
additional control sources.

In general, it cannot be assumed that heat perturbations acting on the structure are
known and can be fully characterized. While some information about the level of
expected perturbations can be known beforehand, it must be expected that a ran-
dom component will always be present. Therefore, the perturbation compensation
method presented in this section is only useful in those cases where any random
perturbation acting on the structure is nonexistent or can be neglected. Since this
is not normally the case it is required to implement a feedback control loop that
provides in real time the necessary heat input based on the estimation of the present
distortions from a set of sensors. The approach that has been followed in this thesis
is presented in the next section.
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5.2 Optimal control method

The control strategy behind the method presented in this thesis consists in con-
trolling the temperature distribution within a structure in order to minimize its
displacement at some specific locations. The key aspect is not to minimize tem-
perature fluctuations, which would also be a way to reduce distortions induced by
thermomechanical effects, but rather to generate the temperature field that cancels
the distortions at some points introduced by an external perturbation.

In mathematical terms this implies that the system which is ultimately controlled
corresponds to the thermal model of the structure, which has been derived in Sec-
tion 3.2.4 and can be described by the equation

{δṪ}+ [HT ]{δT} = [Hq]{δq}+ [HQ]{δQ}. (5.8)

In order to simplify the following mathematical formulation the applied heat terms
at the right-hand side of the previous equation are grouped into a single term,
[H]{δq}, which is assumed hereafter to represent both heat fluxes and heat sources.
Thus, Equation 5.8 becomes

{δṪ}+ [HT ]{δT} = [H]{δq}. (5.9)

However, it is important to make a distinction between heat inputs associated to
control, {δqc}, and heat inputs associated to perturbations, {δqpert}. Therefore,
Equation 5.9 is rewritten into

{δṪ}+ [HT ]{δT} = [Hc]{δqc}+ [Hpert]{δqpert}. (5.10)

where the [Hc] and [Hpert] matrices are built from the specific columns of [H] that
represent the corresponding control or perturbation elements. This equation de-
scribes a MIMO system where the inputs are a finite number of heat fluxes or
sources and the outputs are the temperatures at the nodes in the mesh. One possi-
bility is to directly implement a controller to the continuous-time system described
by Equation 5.10. However, taking into account that in reality the control inputs
have a discrete nature and that, additionally, they are estimated from sensor read-
ings that are also obtained at discrete time steps, it is necessary to discretize the
equations before developing the control loop. The continuous system of equations
described by 5.10 can be approximated using a forward difference scheme as

{δT}t+∆t − {δT}t

∆t
=− [HT ]

(
θ{δT}t+∆t + (1− θ){δT}t

)
+ [Hc]

(
θ{δqc}t+∆t + (1− θ){δqc}t

)
+ [Hpert]

(
θ{δqpert}t+∆t + (1− θ){δqpert}t

) (5.11)

where θ is an approximation parameter that can take values between 0 and 1. For
θ = 0 the previous equation results in an explicit scheme, θ = 1 results in an implicit
scheme and for values in between the scheme is considered semi-implicit. Here, the
equations are solved for θ = 0.5, which results in the Crank-Nicolson method and
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can be written as

{δT}t+∆t − {δT}t

∆t
=− [HT ]

{δT}t+∆t + {δT}t

2

+ [Hc]
{δqc}t+∆t + {δqc}t

2

+ [Hpert]
{δqpert}t+∆t + {δqpert}t

2
.

(5.12)

Rearranging the terms in the previous equation it is possible to write

{δT}t+∆t =

(
[I] +

[HT ]∆t

2

)−1(
[I]− [HT ]∆t

2

)
{δT}t

+

(
[I] +

[HT ]∆t

2

)−1

([Hc]∆t)
{δqc}t+∆t + {δqc}t

2

+

(
[I] +

[HT ]∆t

2

)−1

([Hpert]∆t)
{δqpert}t+∆t + {δqpert}t

2

(5.13)

which can be abbreviated to

{δT}t+∆t = [HT ]{δT}t

+ [Hc]
{δqc}t+∆t + {δqc}t

2

+ [Hpert]
{δqpert}t+∆t + {δqpert}t

2
.

(5.14)

This system of equations can now be taken as the basis to develop a discretized
control loop. One possibility is to calculate the optimal control law that minimizes
a defined cost function, which is a common approach in the field of smart structures
both using thermal strain [63, 64] or piezoactuators [82, 83]. If this approach is
implemented on a linear system the controller is known as linear quadratic regulator
(LQR), which is one of the most widely used control methods in the aerospace
field [84]. The LQR provides a particular solution to the optimal control problem
in which the control inputs are calculated to optimize a quadratic function of both
inputs and outputs. This quadratic function is defined as

J =

∫ ∞
0

(
Y 2(t) + ρU2(t)

)
dt (5.15)

where Y represents the output, U represents the control input and ρ is a relative
weight factor between them. Thus, for low values of ρ the function gives more
weight to the output values whereas for large values of ρ the opposite is true. The
previous expression assumes that there exists a control input for which the integrand
converges to zero and thus the integral is finite.

According to expression 5.14 the control inputs are described by the heat vector
{δqc} and, therefore, the second term inside the integrand of the cost function can
be expressed in matrix form as

ρU2(t) = {δqc}T [R]{δqc} (5.16)
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where [R] is a weight matrix that specifies the relative weight of each heat control
input with respect to the output variables. Considering that the same weight is
assigned to each input source it is possible to build the [R] matrix as a multiple of
the identity matrix.

Additionally, it is necessary to define the outputs of the system and their correspond-
ing weight in order to calculate the cost function 5.15. Previous approaches of shape
control based on the LQR controller and thermal strain have been based on directly
canceling specific thermal modes in order to minimize the effect of thermal pertur-
bations on the displacement field [64, 85]. The approach developed here differs from
previous strategies because the output that is being controlled corresponds directly
to the displacement at some specific positions. Thus, the output that is considered
in the cost function is the displacement variation at the controlled locations and not
the intermediate temperature fluctuations.

The displacement variations are indirectly related to Equation 5.14 because they
depend on the temperature fluctuations. The relation between these two variables
has been derived in Chapter 4 and it is expressed by Equation 4.28, which is repeated
here for clarity

[Mu]{δü}+ [Cu]{δu̇}+ [Ku]{δu} = [FT ]{δT}+ {δFd}. (5.17)

Chapter 4 has also shown in Section 4.2.2 that when the internal stress arising in
the structure has a thermal origin it can be generally assumed that the behavior is
quasi-static. This implies that the contribution to the deformation field induced by
inertia and damping effects can be neglected and thus, the previous equation can
be simplified to

[Ku]{δu} = [FT ]{δT}+ {δFd}. (5.18)

This system of equations can be reduced by removing the unknown variables in the
{δFd} vector that correspond to the reaction forces that constrain the structure.
This process is explained in detail in Section 4.1.1 and if applied to this case results
in the equation

[Kr
u]{δur} = [F r

T ]{δT} (5.19)

or equivalently,
{δur} = [Kr

u]
−1[F r

T ]{δT} = [FT ]{δT}. (5.20)

In general, only some points in the structure will be controlled and, as a consequence,
the outputs of the system correspond to only some specific cells of the {δur} vector.
This can be expressed by further reducing Equation 5.20 and thereby expressing the
outputs of the system as

{δu}out = [FT ]out{δT} (5.21)

where [FT ]out is built from only the relevant rows of the [FT ] matrix or evaluating
the mechanical transfer functions at the corresponding frequency, which is 0 Hz for
the static case. Based on this expression it is possible to define now the output of
the system included in the cost function 5.15, which can be calculated as

Y 2(t) = {δu}Tout{δu}out = {δT}T [FT ]Tout[FT ]out{δT} = {δT}T [Q]{δT} (5.22)

where [Q] is the weight matrix assigning different relative weights among the different
cells of vector {δT} and as indicated is calculated from [FT ]out. By inserting now
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Equations 5.16 and 5.22 into the cost function 5.15 it is possible to express it as

J =

∫ ∞
0

(
{δu}Tout{δu}out + {δqc}T [R]{δqc}

)
dt

=

∫ ∞
0

(
{δT}T [Q]{δT}+ {δqc}T [R]{δqc}

)
dt.

(5.23)

Based on the LQR method, the input {δqc} that minimizes J is defined considering
a feedback loop that applies a proportional gain to the output, i.e.

{δqc}t = −[KLQR]{δT}t (5.24)

where the gain matrix [KLQR] is in turn calculated in the discrete-time case as

[KLQR] =
(
[R] + [Hc]

T [P ][Hc]
)−1

[Hc]
T [P ][HT ] (5.25)

and [P ] is obtained from the expression

[P ] = [HT ]T [P ][HT ] + [Q]

−
(
[HT ]T [P ][Hc]

) (
[R] + [Hc]

T [P ][Hc]
)−1 (

[Hc]
T [P ][HT ]

) (5.26)

which is known as the discrete-time algebraic Riccati equation and can be solved
for [P ] using a Newton-type iterative method [86]. Taking now into account the
definition of the control input expressed by 5.24, it is possible to write the closed-
loop system of equations based on 5.14, which results in

{δT}t+∆t +
[Hc][KLQR]

2
{δT}t+∆t =

(
[HT ]− [Hc][KLQR]

2

)
{δT}t

+ [Hpert]
{δqpert}t+∆t + {δqpert}t

2

{δu}t+∆t = [FT ]{δT}t+∆t

(5.27)

The system described by the previous equation can only be implemented under
the assumption that all the nodal temperatures are known. This is mathematically
consistent but currently unfeasible from a technical point of view given that it would
require a temperature sensor for each node in the mesh. Thus, it is necessary to
develop a strategy that enables the implementation of the presented system when
only partial information about the thermal or distortion state of the structure is
available.

Additionally, the uncertainty in the behavior of sensors and actuators must be taken
into account. Sensors provide noisy measurements with limited accuracy and it
cannot be assumed that actuators behave exactly as commanded. The strategies
to mitigate the control performance decrease induced by these factors are presented
in sections 5.3 and 5.4. The LQR method previously presented must be modified
accordingly to integrate these strategies which results in the closed-loop formulation
presented in Section 5.6.
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5.3 Sensor model framework

Sensors are crucial to estimate the state of the variables that are being controlled.
The control strategy presented in this thesis aims to stabilize the displacement
changes at some specific points based on the modification of the thermal field. In
other words, the temperature distribution is controlled in such a way that some
specific distortion metrics in the structure remain at approximately constant values.
Thus, as presented in the previous section, the necessary heat inputs to ultimately
control the distortion field are not directly calculated as a function of the underlying
displacements but as a function of the temperature field, which is modified at each
instant to induce a displacement field where distortions are stabilized.

This section starts with a presentation of the possible sensor strategies that could
be implemented to estimate the thermal state of the structure, which is necessary
to derive the control heat inputs. The formulation for the chosen strategy is then
described along with the sensor model to take into account the sensor uncertainties.

5.3.1 Sensor strategies

The objective of the sensor strategy is to estimate the full temperature vector {δT}
to enable the calculation of the control heat inputs using Equation 5.24.

The most straightforward option to perform this estimation would be to equip the
structure with as many temperature sensors as considered nodes in the FEM model
and to mount each of them at a position corresponding to one node. This would
involve a large number of sensors and it would also require embedding them at
internal positions of the structure which could deteriorate its mechanical properties.
Given the current state of technology concerning temperature sensors, it is regarded
as unfeasible to implement such an option.

Assuming that it is not an option to directly measure each cell of the {δT} vector, an
alternative consists in measuring only the temperature of the structure at some spe-
cific points and implementing afterwards a mathematical procedure to reconstruct
the full thermal field while minimizing the estimation error. The mathematical
technique that has been implemented in this thesis is described as a thermal modal
expansion and is presented in detail in Section 5.3.2.

Apart from the technical challenge associated with the limited amount of measure-
ments, it must also be taken into account that each individual sensor does not
provide an ideal measurement. Instead, errors arising from uncertainties and an
intrinsic level of noise are always present. Even high-accuracy temperature sen-
sors rarely provide accuracies below ±0.1 K at a wide range of temperatures. The
procedure followed to model this source of errors is presented in Section 5.3.3.

A promising sensor option, in opposition to the traditional approach of directly
mounted sensors in the structure, is to use infrared cameras. These could take sev-
eral temperature measurements at different points of the structure simultaneously.
In principle, this would allow the measurement at more points than with mounted
sensors and it would not compromise the mechanical properties of the structure. If
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combined with actuators external to the structure, which is a possible option pre-
sented in Section 5.4.1, it would result in a completely non-intrusive control strategy
that would not require mounting any equipment directly in the stable structure.

It should also be noted that displacement sensors could also be implemented to im-
prove the temperature estimation. This could be performed based on Equation 5.20
presented in Section 5.2. This equation gives a relation between temperature and
displacement. As in the case of the temperature sensors, it is not feasible to equip
the structure with sensors to measure the entire {δu} vector. However, if some of its
cells are known, either through direct measurements of the displacement or through
estimations based on strain sensors, it is possible to use Equation 5.20 to reduce
the error in the estimation of the {δT} vector obtained purely from temperature
sensors.

5.3.2 Thermal modal expansion

A mathematical procedure is necessary to estimate the entire {δT} vector based on
the measurement of only some of its values. A very similar problem exists in the
structural dynamics field where, also for shape control purposes, the displacement or
strain field needs to be reconstructed based on a limited number of measurements.

A possible solution to this problem is based on the modal representation of the
involved variables. This has been applied in the structural dynamics field [87] but
the same principle can be applied in the thermal case, as presented in reference [88],
to estimate the thermal field of a structure from the measurements of only some
sensors. This principle is presented here in detail as it enables the control loop
expressed by Equation 5.27.

The enabling idea behind the field reconstruction as presented in [87] and [88] is
the modal representation. This procedure has been presented in this thesis in Sec-
tion 3.2.5 for the linearized thermal problem and in Section 4.2.1 for the mechanical
problem. The modal representation of the thermal problem results in the thermal
field being expressed as

{δT} = [φ]{τ} (5.28)

where each column in the [φ] matrix represents a thermal mode and the {τ} vector
assigns a different weight to each mode to express the resulting response. The
important property of this representation is that, at the expense of introducing an
error, it allows the calculation of vector {δT} based only on a subset of modes. This
is known as modal truncation and is presented in detail for the linearized thermal
case in Section 3.2.5.

Considering that there are n degrees of freedom in the model, all the variables in
the Equation 5.28 have a dimension equal to n. However, if the model is truncated
and only m out of the n modes are considered, then the dimensions of each of these
variables become

{δT}n = [φ]n×m{τ}m. (5.29)

If the previous equation is written only for the s positions where the temperature is
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directly measured with a sensor, with always s < n, it can be expressed as

{δTsensors}s = [φ]s×m{τ}m. (5.30)

In general, s is different than m and, therefore, the reduced [φ] matrix in the previous
equation is not square, and thus, not directly invertible. However, if the number of
sensors exceeds the number of considered modes, i.e. if s > m, the pseudoinverse
[φ]+m×s of the reduced [φ]s×m matrix can be obtained which allows the calculation of
the least squares solution of the reduced vector {τ}m, which is expressed as {τ̄}m.
This operation can be expressed in matrix form as

{τ̄}m = [φ]+m×s{δTsensors}s . (5.31)

Combining now Equation 5.31 with 5.29 results in an estimation of the full temper-
ature vector which can be expressed as

{δT}n = [φ]n×m[φ]+m×s{δTsensors}s (5.32)

and abbreviated to
{δT}n = [Ψ]{δTsensors}s (5.33)

with
[Ψ] = [φ]n×m[φ]+m×s. (5.34)

This estimation combines the expected shape of the thermal field described by the
thermal modes with the actual temperature measurements provided by the sensors.
A critical aspect to minimize the estimation error of this procedure concerns the
selection of the subset of modes that are considered to construct the reduced [φ]s×m
matrix.

As presented in Section 3.2.5, the thermal response is dominated by a few modes.
This weight distribution in which the influence of particular thermal modes is re-
inforced is more accentuated at lower frequencies. In order to identify which are
the relevant modes that should be considered in the [φ]s×m matrix it is necessary to
know the spatial origin of the expected perturbations. Specific thermal modes are
associated with perturbations arising from particular points. Thus, if the spatial
origin of a perturbation is known, even if its behavior is not, it is possible to know
which thermal modes will have the largest weight in the response.

The first step in selecting the modes that should be taken into account in matrix
[φ]s×m is to identify the possible perturbation sources in the stable structure. Once
these have been identified it is possible to determine which are the thermal modes
that carry the highest weight in the system response. Based on this information
it is possible to select the locations where sensors should be placed. There should
always be at least as many sensors as considered modes, otherwise, it is not possible
to properly invert the matrix in Equation 5.32. Additionally, sensors should be
placed at locations where the modal amplitudes take the maximum values and,
consequently, can be more easily detected by the sensors. If conversely, sensors are
placed at points where the modal amplitudes are minimal, the measured signal will
be more easily covered by noise.

This procedure can be implemented to estimate the thermal response triggered by
heat perturbations. However, in the controlled cases it must be taken into account
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that part of the thermal response is induced by heat control sources. Thus, the
presented approach must be expanded to consider also the contribution of the control
sources. The total thermal response can be expressed as

{δT} = {δTpert}+ {δTc} (5.35)

where {δTpert} represents the thermal fluctuations induced by perturbations and
{δTc} the fluctuations induced by control heat sources. In order to estimate the
total thermal response under the effect of both perturbation and control heat sources
one option is to install additional sensors to estimate the weight of those thermal
modes associated to the control heat sources. This is a viable option that introduces
an estimation error proportional to the errors from the measurements and to the
magnitude of the modal truncation. An alternative option is to calculate the thermal
response contribution induced by the heat control sources through the thermal model
of the structure. This can be calculated by adapting Equation 5.10 to consider only
the heat control contribution, i.e.

{δṪc}+ [HT ]{δTc} = [Hc]{δqc}. (5.36)

This step can be performed because, in contrast to the heat related to perturbation
sources, the heat applied by the control sources is known. It is important to consider
that when the sensors measure the temperature, they measure the entire response
resulting from both control and perturbation sources. Thus, before applying the
thermal modal expansion expressed by Equation 5.33 it is first necessary to subtract
the control contribution from the sensor measurement, hence

{δT}n = [Ψ] ({δTsensors}s − {δTc}s ) + {δTc}. (5.37)

This expression applies the thermal modal expansion to a vector that represents
only the thermal response induced by the perturbations. Afterwards, the thermal
response induced by the control sources is added to the initial thermal response
estimation to obtain the global estimation that considers both perturbation and
control sources.

Considering that the {δTsensors} vector is a subset of the entire {δT} vector it is
possible to relate both vectors with a mapping matrix of dimensions s × n that
selects the corresponding cells from {δT}, thus

{δTsensors} = [Π]{δT}. (5.38)

Based on this relation, Equation 5.37 can be written in terms of the {δT} vector as

{δT}n = [Ψ][Π] ({δT} − {δTc}) + {δTc} (5.39)

an rearranged as

{δT}n =
[
[I]− [Ψ][Π] [Ψ][Π]

]{{δTc}
{δT}

}
(5.40)

which expresses the temperature estimation based on a combination of the temper-
ature induced by the control sources and the thermal expansion performed through
the sensor measurements. Equation 5.40 can be introduced into the controlled sys-
tem 5.27 to calculate the heat control inputs that stabilize the structure. However,
as presented in the following subsections, it is also necessary to take into account
that there exist inaccuracies in the measurements provided by the sensors, and thus,
further errors are introduced in the estimation {δT}.
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5.3.3 Sensor model and uncertainty

The main limitation of current temperature sensors is the accuracy of their measure-
ments. Apart from the inherent inaccuracy of each sensor, which can be understood
as a bias from the real measurement, there is also a certain level of noise at the mea-
surements. Thus, the temperature values provided by the sensors can be modeled
as

{δTsensors} = [Π] ({δTactual}+ {εs}+ {ε∆s}) (5.41)

where {εs} is a random vector that is assumed to be constant in time, representing
the measurement bias at each sensor, and {ε∆s} is a random vector that changes for
each retrieved measurement and represents the sensor noise.

In this work, each individual value in both the {εs} and the {ε∆s} vectors is assumed
to follow a Gaussian distribution. A simulation is set up to allow for different values
in the variance of these variables in order to assess the impact of these inaccura-
cies in the achieved stability performance. The values of {εs} are established at
the beginning of the simulation and are assumed to remain constant because they
are inherent to each sensor. The values of {ε∆s} are updated for each retrieved
measurement from the sensors.

The measurement errors described in this section are directly transmitted to the
temperature estimation that has been presented in Section 5.3.2. Thus, based on
the model expressed by Equation 5.40 the temperature field estimation is calculated
to be

{δT}n =
[
[I]− [Ψ][Π] [Ψ][Π]

]{ {δTc}
{δT}+ {εs}+ {ε∆s}

}
(5.42)

As a result, the estimation error increases and, therefore, the applied control heat
inputs calculated through Equation 5.24 are not optimal. These errors can be par-
tially mitigated if adequate filters to improve the temperature estimation are im-
plemented. This filter should take also into account that there are other sources of
uncertainties in the model, including the acting perturbations and the uncertainties
in the actuator behavior, which depend on the actuator strategy and are presented
in Section 5.4. All these factors are taken into account in this work by implementing
a Kalman filter, which is presented in detail in Section 5.5.

5.4 Actuator model framework

Another set of elements that are essential to implement the control loop presented
in Section 5.2 are the actuators. The function of the actuators is to apply the heat
load described by Equation 5.24. There exist different technical options to apply
a change in heat load on a structure. These different options, and particularly the
ones that are regarded as more viable and thus taken into account in the subsequent
steps of this work, are presented in Section 5.4.1. Additionally, it must be taken
into account that the behavior of real actuators is not ideal and, therefore, the heat
load they apply does not exactly correspond to the commanded heat load derived
by the control laws. This non-ideal effect is modeled as presented in Section 5.4.2.
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5.4.1 Actuator strategies

According to the thermal system as described by 5.10, the heat control sources are
represented by the vector {δqc}. This vector can contain heat loads expressed as
flux, understood as heat power per unit area, or as heat generation, understood as
heat power per unit volume. The different physical options that vector {δqc} can
represent are indicated in Figure 5.1.

If the control heat is applied as heat generation, the implementation can only consist
of heating elements embedded inside the structure that are controlled through its
power per unit volume. This option provides a uniform heat load around the location
where the heater is mounted but affects also the mechanical integrity of the structure.

If the control is instead applied as heat flux, two options exist. One option is to use
a heater element directly mounted at some surface of the structure. This can be
achieved with film heaters, which apply the commanded heating power distributed
along its surface. The other option is to use external radiation sources. These
sources could consist of radiating elements within the field of view of the structure.
By controlling the radiated power of these elements the radiating flux acting on the
structure is accordingly changed and its distortion state can be controlled. It is
important to note that in this case the radiated power on the structure could be
controlled not only through changes in temperature of the radiating elements but
also through changes of its thermo-optical properties. This would enable distortion
control only by changing the surface properties, for instance through louvers.

When the heat flux is applied through film heaters mounted in the structure, its
action has a more localized effect that is then distributed to other regions of the
structure through conduction. If instead radiation sources are used, all those parts
of the structure that have a radiative link with the radiating element are immedi-
ately affected. This is expected to result in some performance difference between
both cases. Additionally, nonlinear effects due to radiation terms can become an ad-
ditional source of errors if distortions are controlled through radiation heat. Despite
these fundamental differences, both options are physically possible.

It is also possible to base the control actuation on a completely opposed approach
relying on cooling power instead of heat. This would imply mounting cooling de-
vices on the structure that are able to extract heat from some specific locations.
Technically, this could be implemented using thermoelectric coolers or some type of
cryocooler based on a cycle of a cooling fluid. However, it is uncertain whether cur-
rent cooling devices could perform at changing levels of power with the performance
required to apply precise distortion control. The technical difficulties associated

{δqc}


Heat generation δQv

[
W

m3

]
: Internal source

Heat flux δqs

[
W

m2

]{
Conduction source
Radiation source

Figure 5.1: Classification of possible heat control sources.
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with this option appear to have a higher degree of complexity than a purely heat
based approach. However, it should be kept in mind that distortion control using
cooling devices or through a combination of both cooling and heating devices is
theoretically a possible option.

The heat control inputs described by {δqc} can take positive and negative values.
This does not imply that the control heaters should be capable of applying negative
heat power, i.e. cooling power. The heat control inputs always represent changes
from a reference state which is taken as the average condition around which the
thermal equations are linearized. Thus, it should only be ensured that the power
applied by the actuators in the reference state is higher than the amplitude of
the expected heat control inputs. This initial power level applied by the actuators
determines the maximum amplitude of the distortions that can be stabilized without
changing the equilibrium condition of the structure around which the stabilization
takes place.

Part of the actuator strategy includes also the identification of the locations where
the control heat should be applied. Based exclusively on the thermomechanical
model derived in Chapters 3 and 4 it is theoretically possible to control a particular
distortion metric from any other point of the structure. In reality, the possible
locations where heaters can be placed will be more restricted due to the presence of
support equipment and other practical matters. Nonetheless, it is still possible to
identify those locations that minimize a given cost function. This cost function must
be defined and assessed on a case-by-case basis but a sensible option is to identify
the locations that minimize the required control power. Other options could be to
minimize the global distortion at the remaining parts of the structure that are not
stabilized or the temperature fluctuations around some specific part of the structure.

The heater locations that minimize the required control heat power can be identified
based on the gain of the thermomechanical transfer functions expressed by Equa-
tions 4.56 and 4.57. These functions express the distortion at node i given a heat
input at position k. If evaluated for all the possible k positions, it is possible to
calculate the gain field distribution in the structure. The distortion at node i should
be controlled from those regions where the gain is maximum because these are the
spots where a given value of input power has a larger effect at node i. The gain
field is a function of the frequency and, therefore, optimal positions are in general
frequency-dependent.

To exemplify this procedure the gain field for the baseline case included in this
thesis is presented here. The distance change between points A and B, as illustrated
in Figure 4.2 of Section 4.2, induced by a given control source at position k can
be determined in each spatial direction x, y and z based on the thermomechanical
transfer functions calculated at A and B, i.e.

δuAB
δQk

=
δuA
δQk

(s)− δuB
δQk

(s) (5.43)

δvAB
δQk

=
δvA
δQk

(s)− δvB
δQk

(s) (5.44)

δwAB
δQk

=
δwA
δQk

(s)− δwB
δQk

(s) (5.45)
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(a) x-direction:

∥∥∥∥δuABδQk

∥∥∥∥ (b) y-direction:

∥∥∥∥δvABδQk

∥∥∥∥

(c) z-direction:

∥∥∥∥δwABδQk

∥∥∥∥ (d) Total:

∥∥∥∥(δuABδQk

,
δvAB
δQk

,
δwAB
δQk

)∥∥∥∥
Figure 5.2: Thermomechanical gains related to to the distance change between
points A and B under static conditions. (Red regions correspond to maximum gain
and blue regions to minimum gain).

If the perturbation frequency is known, the gain of each of these functions can be
evaluated at the same frequency to identify the locations from which the distortion
AB can be controlled with minimum input power. If the perturbation frequency
is unknown it is also possible to evaluate the transfer functions for the static case,
i.e. at f = 0 Hz to qualitatively assess the gain distribution. The gain field in the
static case considering that heaters can only be mounted in the structural plate are
represented for each direction and for the total distortion in Figure 5.2.

This type of analysis increases in complexity as more degrees of freedom need to be
controlled, which requires more heaters. If only the absolute distance between points
A and B needs to be controlled, only one heater is required and its optimal location
can be directly derived from Figure 5.2 (d). If instead it is required to stabilize the
distortion AB in each spatial direction, it is necessary to use three heaters, each one
partially contributing to the stabilization of each degree of freedom. Thus, in order
to identify the optimal locations, it is necessary to take into account the gain field
represented by Figures 5.2 (a), (b) and (c) as well as the expected magnitude of the
distortions in each direction. In a scenario with multiple perturbation sources and
multiple degrees of freedom to be controlled, the optimal heater locations depend
eventually on the distortion field that arises in the structure. Thus, in those cases,
the optimization can only be performed based on the probability of the expected
level of perturbations.
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5.4.2 Actuator model and uncertainty

Amongst the multiple sources of uncertainty that exist when the presented control
framework is implemented there is the uncertainty in the actuators’ behavior. It
cannot be assumed that the heat power applied by the actuators in the structure,
{δqapplied}, matches exactly the commanded heat power, {δqcommanded}, calculated
through the control law expressed by Equation 5.24. The relation between these
two variables can be modeled according to

{δqapplied} = ([I] + [Γ]) {δqcommanded}+ {qoffset} (5.46)

where [Γ] is a diagonal matrix with multiplicative factors and {qoffset} is a vector with
additive factors. The multiplicative factors Γj in the diagonal of [Γ] are assumed to
be a characteristic value of each actuator. It is assumed that these factors follow
a Gaussian distribution centered at 0 and that they remain constant throughout
the lifetime of the actuators. For negative values of Γj the model indicates an
underperformance of the actuator. Conversely, for positive values of Γj the actuator
overperforms with respect to the commanded signal.

The additive factors in {qoffset} indicate a constant offset from the commanded signal.
This effect can arise in actuators that experience hysteresis. In case electric heaters
are used as actuators, it can be assumed that these factors are negligible because
the applied heat is in direct relation to the commanded power. Consequently, if
no power is applied there is no physical effect that can induce an offset. Thus, this
factor is not included in the presented simulations on Chapter 6 but should be taken
into account in case heat control based on other technologies is considered.

5.5 Kalman filter

As presented in Section 5.3.1, the temperature field estimation performed through
the modal transformation and the sensor measurements will be partially inaccurate
due to the modal truncation and the sensor uncertainties, including noise. Addition-
ally, the structure cannot be exactly controlled as desired due to the uncertainty in
the actuators’ behavior, which may not react exactly as commanded. This situation
is generally worsened by the fact that random perturbations will be acting on the
structure and thus, it is not possible to predict the evolution of the system based
purely on the thermomechanical model.

Despite all these technical obstacles, an accurate estimation of the thermomechan-
ical state of the structure in real time is essential, not only to calculate the heat
control inputs but to assess whether the distortions are being stabilized at all. The
estimation of the thermal state presented in Section 5.3.2 is based on the thermal
modal representation in combination with sensor measurements. It is also possible
to conduct a parallel estimation of the thermal state based on the expected dynamics
of the system described by the thermal model, i.e. by expression 5.13. An improved
estimation of the thermal state can be achieved by adequately combining the results
from both estimations.
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A frequently used procedure to implement this additional step in the estimation
process is the Kalman filter. The standard formulation of the Kalman filter produces
an estimation of a given variable following a two-step process. First, the variable
is estimated using the system dynamics model. Then, this initial estimation is
updated with the data provided by sensors. The final estimated value results from
a weighted average of these two inputs, model and sensors, in which the values with
higher certainty have more weight. In turn, this relative weight is inferred from the
expected noise level at the sensors and the expected magnitude of perturbations
acting on the model.

The initial estimation of the temperature field is obtained from the known variables
in the system of equations 5.13, which describes the thermal behavior of the struc-
ture. This system is rewritten here to introduce the distinction between known and
unknown random variables. The discrete-time form of the system is

{δT}t+∆t =

(
[I] +

[HT ]∆t

2

)−1(
[I]− [HT ]∆t

2

)
{δT}t

+

(
[I] +

[HT ]∆t

2

)−1

([Hc]∆t)
{δqc}t+∆t + {δqc}t

2

+

(
[I] +

[HT ]∆t

2

)−1

([Hpert]∆t)
{δqpert}t+∆t + {δqpert}t

2
.

(5.47)

It is first important to take into account that the control heat input {δqc} cannot
be calculated from the actual temperature vector, as expressed in Equation 5.24, as
this information is unknown. Instead, the heat control input has to be calculated
from the estimated temperature vector. Additionally, considering that the actuator
behavior is not ideal, as expressed by Equation 5.46, it is possible to express the
actual control heat input as

{δqc} = − ([I] + [Γ]) [KLQR]{δT̂}. (5.48)

Introducing this control heat input into Equation 5.47 results in

{δT}t+∆t =

(
[I] +

[HT ]∆t

2

)−1(
[I]− [HT ]∆t

2

)
{δT}t

−
(

[I] +
[HT ]∆t

2

)−1

([Hc]∆t) [KLQR]
{δT̂}t+∆t + {δT̂}t

2

−
(

[I] +
[HT ]∆t

2

)−1

([Hc]∆t) [Γ][KLQR]
{δT̂}t+∆t + {δT̂}t

2

+

(
[I] +

[HT ]∆t

2

)−1

([Hpert]∆t)
{δqpert}t+∆t + {δqpert}t

2
.

(5.49)

This expression defines the temperature dynamics of the model and can also be used
to define the dynamics of the estimated temperature.
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Substituting {δT}t in the previous expression for its estimation, represented as
{δT̂}t, and applying the same substitution at t = t + ∆t, results after rearrang-
ing the terms in

{δT̂}t+∆t =(
[I] +

[HT ]∆t

2
+

[Hc][KLQR]∆t

2

)−1(
[I]− [HT ]∆t

2
− [Hc][KLQR]∆t

2

)
{δT̂}t

−
(

[I] +
[HT ]∆t

2
+

[Hc][KLQR]∆t

2

)−1
[Hc]∆t

2
[Γ][KLQR]

(
{δT̂}t+∆t + {δT̂}t

)
+

(
[I] +

[HT ]∆t

2
+

[Hc][KLQR]∆t

2

)−1
[Hpert]∆t

2

(
{δqpert}t+∆t + {δqpert}t

)
.

(5.50)
Only the first term at the right-hand side of the previous expression consists of
known variables. The two remaining terms contain random variables, namely [Γ]
and {δqpert}, and thus cannot be taken into account to obtain an initial estimation
of {δT}t+∆t. Introducing the abbreviations

[A∗] =(
[I] +

[HT ]∆t

2
+

[Hc][KLQR]∆t

2

)−1(
[I]− [HT ]∆t

2
− [Hc][KLQR]∆t

2

)
,

(5.51)

[B∗1 ] = −
(

[I] +
[HT ]∆t

2
+

[Hc][KLQR]∆t

2

)−1
[Hc]∆t

2
, (5.52)

and [B∗2 ] =

(
[I] +

[HT ]∆t

2
+

[Hc][KLQR]∆t

2

)−1
[Hpert]∆t

2
(5.53)

it is possible to rewrite Equation 5.50 as

{δT̂}t+∆t = [A∗]{δT̂}t + [B∗1 B∗2 ]

{
[Γ][KLQR]

(
{δT̂}t+∆t + {δT̂}t

)
{δqpert}t+∆t + {δqpert}t

}
. (5.54)

Based only on the known terms of Equation 5.54, the initial estimation of {δT}t+∆t,
represented as {δT̂}t+∆t

∗ , can be calculated as

{δT̂}t+∆t
∗ = [A∗]{δT̂}t. (5.55)

The second step of the Kalman filter performs an update of this first estimation
based on the measurements provided by the sensors. This update is expressed as

{δT̂}t+∆t = {δT̂}t+∆t
∗ + [MK ]

(
{δT}t+∆t

n − {δT̂}t+∆t
∗

)
, (5.56)

where [MK ] is a matrix known as the innovation gain and {δT}t+∆t
n is the thermal

estimation at t+∆t obtained from the temperature sensors in combination with the
thermal modal expansion process described in Section 5.3.2. Introducing the thermal
estimation expressed by the expression 5.42 it is possible to write the previous
expression as

{δT̂}t+∆t = {δT̂}t+∆t
∗ +

[MK ]

([
[I]− [Ψ][Π] [Ψ][Π]

]{ {δTcontrol}t+∆t

{δT}t+∆t + {εs}+ {ε∆s}t+∆t

}
− {δT̂}t+∆t

∗

)
(5.57)
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The innovation gain matrix [MK ] is calculated as a function of the expected noise
acting as heat input in the model and in the sensor measurements. This noise level
is quantified through the covariance matrices [QK ] and [RK ].

The [QK ] matrix represents the covariance of the second term in the right-hand side
of Equation 5.54. This can be calculated as

[QK ] = [B∗1 B∗2 ]



σ2
1

. . .

σ2
n

σ2
a

. . .

σ2
m


[B∗1 B∗2 ]T (5.58)

where σ2
1 to σ2

n are the variances of the uncertainty in the heat control sources and
σ2
a to σ2

m are the variances of the perturbation heat sources acting on the spacecraft.
The performance obtained by the Kalman filter ultimately depends on the accuracy
to which these variables are known. A better characterization of the expected level
of random perturbations, as well as of the uncertainty in the actuators, results
consequently in better estimations.

The other covariance matrix, [RK ], represents the variance in the estimated temper-
ature vector. Assuming that all the sensors have the same level of noise described
by a variance σ2

s , the [RK ] matrix can be built as

[RK ] = σ2
s [I], (5.59)

where [I] is the identity matrix with a dimension equal to the number of nodes.

Based on these definitions, the innovation gain matrix is calculated as

[MK ] = [PK ] ([PK ] + [RK ])−1 , (5.60)

where [PK ] is obtained from the equation

[PK ] = [A∗][PK ][A∗]T − [A∗][PK ] ([PK ] + [RK ])−1 [PK ][A∗]T + [QK ] (5.61)

which considering the change of notation

[A] = [A∗]T (5.62)

can be written in the form

[PK ] = [A]T [PK ][A]− [A]T [PK ] ([PK ] + [RK ])−1 [PK ][A] + [QK ]. (5.63)

This is known as the algebraic Riccati equation and can be solved numerically for
[PK ] following a Newton-type iterative procedure [86].
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5.6 Closed-loop system formulation

The equations that have been presented in this chapter can be finally combined into
a full system that describes the closed-loop dynamics of the system together with
the sensor and actuator models.

Section 5.2 has ended with the closed-loop formulation of an ideal system where the
temperatures at all nodes are known and there are no sensor or actuator uncertain-
ties. This system can be expanded to take into account the uncertainties of both the
sensors and the actuators as well as the methods to counteract the errors they intro-
duce, i.e. the thermal modal expansion and the Kalman filter. The most important
variables in the closed-loop system are the temperature values contained in vector
{δT}. However, the control is in reality based on the best available knowledge of
this vector, which corresponds to the estimated vector {δT̂}, derived by the Kalman
filter as explained in Section 5.5. In turn, the Kalman filter requires an estimation
of the temperature based purely on the thermal model of the system which includes
a thermal field expansion presented in Section 5.3.2. The thermal modal expansion
process includes a superposition of the thermal field induced from the perturbation
sources and the thermal field induced by the control sources, which is expressed as
{δTc}.

These three vectors, {δTc}, {δT} and {δT̂}, are coupled to each other and thus
they must be solved simultaneously to simulate the evolution of the entire system.
The system describing the evolution of the {δTc} vector has been presented in Sec-
tion 5.3.2 and can be expressed in discrete-time form based on Equation 5.36 as

(
[I] +

[HT ]∆t

2

)
{δTc}t+∆t =

(
[I]− [HT ]∆t

2

)
{δTc}t

−
(

[Hc][KLQR]∆t

2

)(
{δT̂}t+∆t + {δT̂}t

)
.

(5.64)

The evolution of the actual temperature field arising in the structure is described
by the {δT} vector and can be described by equation 5.13 with the addition of the
uncertainties introduced by the actuators and the random perturbation terms, i.e.(

[I] +
[HT ]∆t

2

)
{δT}t+∆t =

(
[I]− [HT ]∆t

2

)
{δT}t

−
(

[Hc][KLQR]∆t

2

)(
{δT̂}t+∆t + {δT̂}t

)
−
(

[Hc][Γ][KLQR]∆t

2

)(
{δT̂}t+∆t + {δT̂}t

)
+

(
[Hpert]∆t

2

)(
{δqpert}t+∆t + {δqpert}t

)
.

(5.65)

Finally, the evolution of the estimated temperature vector {δT̂} is calculated fol-
lowing the Kalman filter framework presented in Section 5.5. This can be expressed
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based on the combination of Equation 5.55 and 5.57 as

{δT̂}t+∆t = [MK ]

([
[I]− [Ψ][Π] [Ψ][Π]

]{ {δTc}t+∆t

{δT}t+∆t + {εs}+ {ε∆s}t+∆t

})
+ ([A∗]− [MK ][A∗]) {δT̂}t.

(5.66)

The systems of equations 5.64, 5.65 and 5.66 describing the evolution of {δTc}, {δT}
and {δT̂} respectively, can be combined into a full closed-loop system of equations
expressed as


[I] +

[HT ]∆t

2
0

[Hc][KLQR]∆t

2

0 [I] +
[HT ]∆t

2

[Hc] ([I] + [Γ]) [KLQR]∆t

2

[MK ][Ψ][Π]− [MK ] −[MK ][Ψ][Π] [I]



δTc
δT

δT̂


t+∆t

=


[I]− [HT ]∆t

2
0 − [Hc][KLQR]∆t

2

0 [I]− [HT ]∆t

2
− [Hc] ([I] + [Γ]) [KLQR]∆t

2

0 0 [A∗]− [MK ][A∗]



δTc
δT

δT̂


t

+


0

[Hpert]∆t

2

0

({δqpert}t+∆t + {δqpert}t
)

+


0

0

[MK ][Ψ][Π]

({εs}+ {ε∆s}t+∆t
)

(5.67)

This system of equations completely describes the control framework presented in
this work. It describes the closed-loop dynamics of the thermal system derived in
Chapter 3 using a proportional gain based on a linear quadratic regulator. Ad-
ditionally, it takes into account that the temperature field can only be estimated
through a limited set of noisy sensors and that the actuators do not exactly behave
as commanded. To partially mitigate the uncertainties resulting from sensor noise
and from the perturbations acting on the spacecraft the system includes a Kalman
filter. This system of equations can be complemented with equation 5.19 to obtain
the displacement field in the structure.

The stability performance that can be achieved through the implementation of this
system is assessed in the next chapter, where also the contribution of each error
source to the performance decrease is analyzed in detail. To finalize this chapter
a step-by-step guideline to implement this control framework to any structure is
presented. This guideline serves also as a summary of the most relevant aspects
that have been presented in the previous chapters and that should be taken into
account to simulate or practically implement the presented framework.
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5.7 Implementation guidelines

This section presents the specific steps that have been followed to simulate the
developed control framework and to obtain the results presented in Chapter 6. The
same procedure described here could be applied to simulate the stability performance
that could be reached on any other structure and to apply the presented stabilization
framework on a real structure.

1. The first step, assuming that the structure that has to be stabilized has been
defined, is to obtain a finite element representation of it. To perform this
step, it is first required to develop a geometric model of the structure, which
can easily be accomplished with currently available CAD software. Once the
geometry has been defined, it is necessary to generate a mesh of finite elements.
The presented framework has been developed assuming that the geometry is
divided in hexahedrons. This step can be performed manually for simple
geometries but it is recommended to use available FEM software to ease the
process and avoid errors. The finite element model for the examples presented
in this thesis has been developed using ANSYS Workbench, which incorporates
both a design modeler to define the geometry and tools to obtain a finite
element mesh with the desired characteristics. The result of this step should
be a list of all the nodes in the model with their corresponding coordinates
and a list of all the elements in the model, each defined by a set of nodes.

2. The second step consists in assigning to each finite element a set of physical
properties, which are defined by its material. The necessary properties that
need to be defined for each element are the thermal conductivity, the heat
capacity, the density, the Young’s modulus, the Poisson’s ratio and the coef-
ficient of thermal expansion. In case the element has an external surface, i.e.
it is not completely surrounded by other finite elements, it is also necessary
to define its emissivity. This step has been conducted for the presented thesis
within the specific MATLAB code developed to simulate this control frame-
work. The code assigns the corresponding physical properties depending on
the element number and the body to which it belongs.

3. The radiation surfaces need to be defined. Given that the geometry has been
divided in hexahedrons, each radiation surface corresponds to one surface from
a hexahedron. Thus, each radiation surface can be fully defined by the four
nodes at its corners. Once the radiation surfaces have been defined it is neces-
sary to calculate the view factors between them. These are purely geometrical
factors and can be numerically calculated through a ray tracing algorithm. In
the presented examples these have been calculated using ANSYS mechanical.
Through this software it is possible to calculate view factors between specific
surfaces and output them as a txt file.

4. Similarly, it is necessary to identify external surfaces to which heat fluxes can
potentially be applied. This step is only necessary in case applied heat fluxes
to the structure are considered to be a possible boundary condition. Each of
these surfaces must belong also to a hexahedron in the mesh and thus, as in
the case of the radiation surfaces, can be defined by the four nodes at the
corners.
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5. After completing the four previous steps, the definition of the finite element
model is concluded and it becomes possible to calculate the necessary matrices
to solve the required problems. To perform these calculations it is first required
to select some shape functions that describe the thermal and displacement field
within the finite elements. The assumed shaped functions for the presented
examples are included in Appendix B.

6. The next step consists in solving the thermal equilibrium condition of the
structure given some boundary conditions. This requires the calculation of the
thermal matrices and vectors (which include [K], [Rq], [RQ], [Rr], [D] and {S})
according to the expressions presented in Chapter 3. Once this set of matrices
and vectors have been built it is possible to calculate the temperature field
of the structure under steady-state conditions, as presented in Section 3.2.2.
In the presented examples this has been performed using the MATLAB tool
developed for this thesis.

7. Based on the calculated steady-state solution, the next step consists in calcu-
lating the thermal transfer functions that are linearized around this steady-
state of equilibrium. This requires the calculation of further finite element
matrices as described in Section 3.2.4. After this step, a full characterization
of the thermal behavior through transfer functions is obtained.

8. The next step consists in calculating the finite element matrices that are nec-
essary to describe the mechanical response of the structure. This process is
described in detail in Section 4.1. It requires the calculation of the stiffness
matrix [Kr

u] and the mechanical load matrix [F r
T ]. These equations can then

be combined with the thermal transfer functions calculated in the previous
step to obtain the thermomechanical transfer functions.

9. Evaluating the thermomechanical transfer functions at different frequencies
it is possible to identify optimal locations where control heaters should be
placed. If the goal is to minimize control heat power, heaters should be placed
at those locations where thermomechanical transfer functions reach maximum
gains. If the optimization of a variable other than the control heat power is
desired, such as global temperature fluctuation, a more detailed assessment to
fulfill the given requirements must be performed.

10. The temperature sensor locations should be identified based on the location of
perturbation sources. Thus, it is required to identify the possible perturbation
sources that are expected to act on the structure. These may be, among
others, instruments mounted on the structure or external perturbations that
have a radiation link to the structure. Once these have been identified, it is
possible to select the thermal modes (calculated from matrix [K] as explained
in Section 3.2.5) that better characterize the thermal response under the effect
of the considered perturbations. Sensors should be placed at those locations
where the selected thermal modes reach maximum amplitudes.

11. Based also on the selected thermal modes, the next step consists in calculating
the modal expansion matrix (represented by [Ψ] in Section 5.3.2) that allows
the estimation of the entire temperature field in the structure based on a
limited set of sensor measurements.
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12. To implement the control loop it is necessary to clearly define the variables
that need to be controlled. Thus, it is necessary to express the stability re-
quirements in terms of displacements at specific nodes in the finite element
model. These definitions must identify which specific nodes and in which spa-
tial directions must be stabilized. Generally, these nodes will correspond to
some reference points of precise instruments mounted on the structure.

13. After calculating the thermomechanical transfer functions that relate displace-
ment field with applied heat and after defining the stability requirements in
correspondence with the finite element model, it is possible to calculate the
proportional control gains following the procedure presented in Section 5.2.

14. Based on the expected level of noise in the sensor measurements, the uncer-
tainty in the control heaters and the expected magnitude of heat perturbations
it is possible to calculate the innovation gain [MK ] of the Kalman filter, fol-
lowing the procedure explained in Section 5.5.

15. After applying the previous steps, the structure is ready to be controlled. The
sensors measurements can be filtered using the Kalman filter developed in
step 14. The entire temperature field can be estimated from the filtered mea-
surements using the expansion matrix calculated in step 11. This estimated
temperature field expressed as a vector can be multiplied by the proportional
gains calculated in step 13. Subsequently, the heaters mounted in the struc-
ture after step 9 apply the control heat input that stabilizes the structure
according to the requirements derived in step 12. The obtained behavior can
be simulated through the implementation of Equation 5.67. Several examples
are included in Chapter 6.

16. Finally, validation procedures can be performed to ensure that an acceptable
level of performance can be reached. These include the validation of the ra-
diation linearization and the quasi-static assumption. Also, it is possible to
simulate the achieved performance under different levels of uncertainty in the
sensors and the actuators. All these procedures are exemplified for a baseline
case in Chapter 6.
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Chapter 6

Control Results

Based on the thermomechanical model and the control loop that have been presented
in the previous sections it is possible to simulate the behavior of the baseline case
presented in this thesis to assess the dimensional stability that can be achieved with
such a system. The enhancement in dimensional stability that this system provides
is ultimately dependent on a variety of parameters that define the structure, its
environment and the inherent uncertainty in the control equipment.

In this chapter, these different parameters are identified and its influence on the
achieved performance is evaluated. First, the results from stabilizing one point in
the structure assuming ideal conditions are presented in Section 6.1. This includes
the achieved performance using the perturbation compensation method presented
in Section 5.1 and the feedback control based on the linear quadratic regulator pre-
sented in Section 5.2 considering ideal sensors and actuators. Section 6.2 evaluates
the impact of the different inaccuracy sources in the control feedback loop, namely
the sensor and the actuator contributions to the performance decrease. The chapter
continues with Section 6.3, where the errors introduced due to the approximations
included in the model are assessed. Section 6.4 presents the results for a case in
which the relative distance between two points in the structure are stabilized. Fi-
nally, the chapter ends with Section 6.5, where the influence of eventual uncertainties
in the material properties to the achieved performance is evaluated.

The dimensions and characteristics of the baseline structure assumed in this section
have been presented in Section 3.2. An illustration of this structure is included also
in Figure 6.1 for clarification purposes. Figure 6.1 shows also the location of points
A and B which appear throughout the different results included in this chapter.

Taking into account the actuator strategy presented in Section 5.4 it is possible to
qualitatively identify the heater locations that minimize the control input power
required to stabilize the distortions in the surroundings of points A and B. Based on
this approach it is decided to place three heat actuators as represented in Figure 6.2.
These locations could be changed to optimize for specific perturbation conditions.
However, throughout the examples presented in this chapter the actuator locations
are assumed to be the same in order to simplify the performance comparison between
different scenarios. This implies that for particular cases there is still a certain
margin of improvement in terms of the input power required for control.
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Figure 6.1: Representation of the baseline concept with instruments and reference
points.
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Figure 6.2: Baseline concept with control sources.

6.1 Ideal control performance

The most ideal condition under which the presented thermomechanical stabilization
framework can be applied is that in which the perturbations are predictable. In
this case, it is possible to calculate the exact heat input that is necessary to com-
pensate the distortions introduced by a given perturbation. This can be achieved
following the procedure presented in Section 5.1. A basic example is presented here
to illustrate the magnitude of expected distortions in the baseline case.

In this first example it is assumed that the only acting perturbation arises in In-
strument 1 and that the objective of the stabilization is to cancel the displacements
at point A. The perturbation follows a sinusoidal signal with a frequency of 10−5 Hz
and an amplitude of 10 W, as represented in Figure 6.3. This could be a perturba-
tion arising from the operational cycle of the instrument which in turn could depend
on the orbital period of the spacecraft orbiting around the Earth. Given that orbital
periods around the Earth can range from approximately 90 minutes to several hours
and that these same spacecraft also orbit around the Sun with an orbital period
of one year, it is not uncommon to experience thermal perturbations at frequencies
below 10−5 Hz on board spacecraft.
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Based on Equation 5.5 presented in Section 5.1 it is possible to calculate the heat
inputs that need to be applied at the three heat actuators represented in Figure 6.2
in order to cancel the distortions at point A. The resulting displacements in the
three spatial directions of point A when the heat inputs represented by Figure 6.3
and Figure 6.4 act simultaneously on the structure are theoretically zero.

Figure 6.5 illustrates the comparison between the uncontrolled and the controlled
case in terms of the displacement at point A. In this case the structure is made of
silicon carbide, which as indicated by the material properties in Table 3.1 on page 40
remains very stable under thermal perturbations. Thus, even in the uncontrolled
case the distortions only exceed the 1µm range in the z-direction. Figure 6.5 shows
that if perturbations are known, distortions can be virtually forced to be zero (the
controlled response corresponds to values in the order of magnitude of 10−22 m). In
absolute terms, this might not make a great difference in this case but it could also
be applied in structures that are not particularly stable. For instance, if the same
structure were made of aluminum, the distortions would exceed 1µm in all three
directions but they could still be stabilized to virtually 0µm using the same system
(see Appendix C for more details on the aluminum case).
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Figure 6.3: Assumed sinusoidal perturbation arising in Instrument 1.
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Figure 6.4: Required control heat inputs at the actuators to compensate the distor-
tion induced by Instrument 1.
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(a) Displacement in the x-direction.
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(b) Displacement in the y-direction.
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(c) Displacement in the z-direction.

Figure 6.5: Displacements at point A induced by perturbations in Instrument 1.
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In general, it cannot be assumed that the perturbation arising in Instrument 1 is
known beforehand. Therefore, the control method based on sensor measurements
presented in Section 5.2 has been developed. The ideal conditions for the imple-
mentation of this second method are to consider that there is no uncertainty in
the behavior of sensors and actuators. This means that sensors are assumed to
provide exact temperature measurements corresponding to the actual temperature
in the structure and that actuators behave exactly as commanded. Additionally,
it is assumed that the structure is equipped with as many sensors as nodes con-
sidered in the thermomechanical model. Under these assumptions it is possible to
simulate the best ideal performance that could theoretically be achieved, even when
perturbations are random.

The response under these conditions is simulated assuming that the perturbation
from Instrument 1 follows a random function that is obtained by adding several
sinusoidal signals with a random amplitude, at a random frequency between 10−7 Hz
and 10−3 Hz and with random phases. The total amplitude of the resulting signal
is constrained to be always below 10 W, which corresponds to the assumed power
level of the Instrument 1 under steady-state conditions. A sample of this random
signal generated adding six random sinusoidal waves is presented in Figure 6.6.

The displacement response, both for the uncontrolled and the controlled case, is
presented in Figure 6.7. This figure illustrates that it is possible to strongly coun-
teract the distortion effects of perturbations even when the perturbation function
is unknown but as long as the temperature field can be properly measured. In this
case, the controlled response does not exceed 10−9 m, i.e. 0.001µm, in any direction.
In the framework of this thesis, this is considered to be the highest theoretical level
of stabilization that can be achieved with this method. Numerical results beyond
this value of precision can be obtained, but it would be questionable whether the
thermal and mechanical models used in the derivation of the FEM are valid at these
magnitudes. In reality, there is a number of non-idealities that significantly under-
mine this high degree of stability. The most important factors are expected to be
related to sensor and actuator uncertainties and thus, several countermeasures have
been devised, as presented in sections 5.3 and 5.4. Their individual contribution to
the performance decrease as well as the expected performance that can be achieved
when all these factors are considered are presented in the following section.
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Figure 6.6: Assumed random perturbation arising in Instrument 1.
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Uncontrolled response Controlled response
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(a) Displacement in the x-direction.
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(b) Displacement in the y-direction.
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(c) Displacement in the z-direction.

Figure 6.7: Uncontrolled displacements at point A induced by random perturbations
arising in Instrument 1 and controlled displacements considering ideal conditions.
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6.2 Non-ideal control performance

The high level of stability that can be achieved according to the simulation examples
presented in the previous section cannot be achieved in reality because of non-ideal
conditions. The two main sources that contribute to the performance decrease arise
from the uncertainties related to the sensor and the actuator behavior. These two
sources of uncertainty are first analyzed separately in Section 6.2.1 and Section 6.2.2,
respectively. Subsequently, the performance that can be achieved when both uncer-
tainty sources are considered is presented in Section 6.2.3.

6.2.1 Sensor contribution

The magnitude of the performance decrease introduced by sensors is dependent on
two factors. The first factor is related to the fact that the number of sensors is limited
and thus, only some particular nodes of the thermal model can be measured. The
second factor is related to the inherent noise of the sensor measurements, modeled
as presented in Section 5.3.3, which further increases the errors in the temperature
estimation. These two factors are first assessed separately for the same baseline
case presented in the previous section. Subsequently, the total performance decrease
resulting only from sensor uncertainties is presented.

Contribution related to the number of sensors

The thermal model of the baseline case considered in this thesis includes 1063 DOF.
Based on the current state of the art in temperature sensors it is considered unfea-
sible to equip the structure with such a large number of sensors. Here, the achieved
performance when only a portion of the DOF can be measured is presented. It is
assumed that only 20 sensors are mounted on the structure. To isolate the effect
related to the sensor number it is considered that these 20 sensors are ideal, i.e.
they provide a noise-free measurement. The thermal modal expansion procedure
presented in Section 5.3.2 is implemented based only on the first 10 thermal modes.

From the 20 sensors that are mounted in the structure, 10 are located at the positions
where the 10 considered thermal modes reach its maximum amplitude. From the
remaining 10 sensors, 6 are located at each of the bipod struts, which correspond to
the most external parts of the structure, and the other 4 are distributed randomly
at different locations in the structural plate.

In the presented results, the structure is controlled through ideal heaters that are
located at those positions indicated in Figure 6.2. The comparison between the un-
controlled and the controlled displacements at point A is represented in Figure 6.8.
These graphs illustrate that the limitation of the number of sensors does not in-
troduce a large performance decrease as long as the temperature measurements are
ideal. A more detailed view of the controlled response is included in Figure 6.10 on
page 104, which shows that only in the z-direction an amplitude above 0.001µm is
achieved. These graphs prove that the achieved stability is extremely better than
in the uncontrolled case even if only a limited number of measurements is available.
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Uncontrolled response Controlled response
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(a) Displacement in the x-direction.
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(b) Displacement in the y-direction.
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(c) Displacement in the z-direction.

Figure 6.8: Uncontrolled displacements at point A induced by random perturba-
tions arising in Instrument 1 and controlled displacements considering only 20 ideal
sensors.
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Contribution related to the sensor noise

The second sensor contribution to the performance decrease is a consequence of the
measurement noise. To analyze the impact of sensor noise a best case scenario is
assessed in which the temperature is measured at all DOF but with noisy sensors.
The noise is modeled according to Equation 5.41 in Section 5.3.3. It is assumed
that both the bias at each sensor and the noise of each retrieved measurement have
a standard deviation equal to σ = 0.05 K.

The comparison between the uncontrolled case and the controlled case under these
assumptions is represented in Figure 6.9. A detailed view of the controlled response
is additionally included in Figure 6.10 on page 104. Figure 6.9 illustrates that there
is a significant improvement of the stabilization in the controlled case. However, in
comparison to the previously presented case where only a few sensors were providing
exact temperature measurements, the achieved performance is up to 10 times worse.
In the case where only 20 ideal sensors are available, the maximum stabilization
amplitude appears in the z-direction, reaching approximately 0.01 µm. In this case
with 1063 noisy sensors, however, the maximum stabilization amplitude exceeds
0.001µm in all directions, and the worse performance takes place also in the z-
direction, where it reaches a maximum of approximately 0.07µm. The exact values
in terms of the amplitude and standard deviation in each direction are included in
Table 6.2 and Table 6.3, respectively. These illustrate that for both measures the
achieved performance is approximately an order of magnitude worse than in the
previously presented case.

It can also be observed in Figure 6.9, particularly in the z-direction displacement,
that distortions at the highest frequencies are only partially attenuated. This ef-
fect is related to the nature of the high-frequency perturbations, which have a lower
gain than low-frequency perturbations. As a result, temperature changes induced by
high-frequency perturbations have a lower amplitude. This explains why these tem-
perature changes are the first to be masked under a given level of sensor noise. Given
that these high-frequency low-amplitude temperature changes cannot be properly
measured with noisy sensors they cannot be fully compensated and, as a result, they
still appear in the controlled case.

Figure 6.9, and more clearly Figure 6.10, illustrate also that the decrease in perfor-
mance introduced by sensor noise is more severe than the one introduced due to the
limitation in number of sensors. In reality, both contributions are present, which
results in an even worse performance than when both factors are assessed sepa-
rately. The next section presents the performance that is achieved in this worst-case
scenario that considers only a limited number of noisy sensors. Subsequently, the
performance between the three cases is compared.

101



CHAPTER 6. CONTROL RESULTS

Uncontrolled response Controlled response
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(a) Displacement in the x-direction.
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(b) Displacement in the y-direction.
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(c) Displacement in the z-direction.

Figure 6.9: Uncontrolled displacements at point A induced by random perturbations
arising in Instrument 1 and controlled displacements considering 1063 noisy sensors.
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Total contribution of the sensors

The real implementation of the proposed control strategy can only consist of a lim-
ited number of sensors that provide noisy measurements, which is the combination of
the two previously presented cases. This situation is simulated to assess the total im-
pact that sensor uncertainties have on the achieved performance. For completeness,
this case is presented in comparison with the two previous cases. Thus, the result
in Figure 6.10 presents the controlled performance in the three simulated cases, i.e.
with 20 ideal sensors, with 1063 noisy sensors and the combination presented here
with 20 noisy sensors.

Figure 6.10 illustrates that the largest contributor to the performance decrease is
the noise in the sensors and not the fact that only a few measurements are available.
Thus, one conclusion of this study is that if and when more accurate temperature
sensors become available, it will be possible to improve the achieved performance.

The condition in which there are only 20 noisy sensors is by definition the more
adverse among the three options presented here. Logically, it results in the worst re-
sult, which can be seen by the fluctuations with the largest amplitude in Figure 6.10.
This figure illustrates that the achieved performance in this case is worse than in
the previously presented cases but that it still represents a major improvement with
respect to the uncontrolled case.

An important characteristic of this stabilization result is that the fluctuation does
not take place around 0 µm, which can be clearly seen in Subfigure 6.10b. This is a
consequence of the combined effect of having only a limited number of sensors and
the fact that each provides a biased measurement. As mentioned in Section 5.3.3,
it is assumed that each sensor has an inherent constant bias that takes a random
value with a standard deviation of σ = 0.05 K. When the measurements are limited
but exact, as in the 20 ideal sensor case, it is possible to clearly measure the thermal
state around which the structure is fluctuating. This is not possible when each
measurement is biased, but the error averages around 0 if a large number of sensors
is available. Thus, the bias is more severe for the 20 sensor case than for the 1063
sensor case. The value of the bias is different in each direction and it changes for each
realization of the simulation. The corresponding values for the case presented in this
section are included in Table 6.1. The relevance of this bias is always dependent
on the stabilization application. For applications where only the stabilization of
one point in relative terms is required, the fact that there is a bias around which
the stabilization takes places is not important. In cases where it is required to
absolutely stabilize one or more points, then it is essential to ensure that the expected
magnitude of this bias does not exceed the stability requirements.

Despite the fact that the combined effect of both the limitation in number of sensors
and their noise increases the amplitude of the stabilized signal, the achieved per-
formance is still more than one order of magnitude better than in the uncontrolled
case. The precise values in terms of the amplitude and standard deviations for each
of these three presented cases are included in Table 6.2 and Table 6.3, respectively.
It is important to note that the presented maximum amplitudes are not measured
around zero but around the value at which the displacement is stabilized, i.e. without
considering the bias. This can be added from the values included in Table 6.1.
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20 ideal sensors 1063 noisy sensors 20 noisy sensors
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(a) Displacement in the x-direction.
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(b) Displacement in the y-direction.
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(c) Displacement in the z-direction.

Figure 6.10: Performance achieved under 3 different situations modeling the sensor
uncertainty.
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Stabilization bias
Direction Bias

x 4.940·10−3
µm

y 2.670·10−2
µm

z 5.779·10−2
µm

Table 6.1: Stabilization bias in each direction for the case with 20 noisy sensors.

Maximum amplitude

Direction
Uncontrolled

response
20 ideal
sensors

1063 noisy
sensors

20 noisy
sensors

x 0.217 µm 3.727·10−4
µm 2.925·10−3

µm 6.935·10−3
µm

y 0.798 µm 9.827·10−4
µm 9.664·10−3

µm 1.012·10−2
µm

z 3.245 µm 1.023·10−2
µm 6.619·10−2

µm 0.149 µm

Table 6.2: Maximum amplitude of displacements at point A achieved in each of the
considered cases modeling the sensor behavior.

Standard deviation

Direction
Uncontrolled

response
20 ideal
sensors

1063 noisy
sensors

20 noisy
sensors

x 0.091 µm 1.428·10−4
µm 1.119·10−3

µm 2.568·10−3
µm

y 0.336 µm 3.753·10−4
µm 3.784·10−3

µm 3.323·10−3
µm

z 1.371 µm 3.929·10−3
µm 2.595·10−2

µm 5.904·10−2
µm

Table 6.3: Standard deviation of displacements at point A achieved in each of the
considered cases modeling the sensor behavior.

6.2.2 Actuator contribution

The other important factor that can potentially affect the achieved performance of
the presented framework is the uncertainty in the actuator behavior. As explained
in detail in Section 5.4.2, the actuators do not apply exactly the signal that is
commanded. In the presented simulations it is assumed that heaters are used as
actuators and that there exists a linear relation between the commanded signal and
the applied signal. The factor relating both signals is taken as a random value with
an average value of 1 and a standard deviation of σ = 5%.

Based on this approach, the sample used in the presented simulation considers three
heaters that apply the heat control according to

qapplied,1 = 1.016 · qcommanded,1
qapplied,2 = 0.977 · qcommanded,2
qapplied,3 = 0.921 · qcommanded,3

(6.1)

In order to assess the impact that this uncertainty factor has on the achieved perfor-
mance, the simulation is conducted assuming that the remaining uncertainty sources,

105



CHAPTER 6. CONTROL RESULTS

namely related to the sensor behavior, are not present. The comparison between
the uncontrolled case and the controlled case with non-ideal actuators is represented
in Figure 6.11. The results appear to be very similar to those obtained under ideal
conditions, as represented in Figure 6.7 on page 98. A more thorough analysis shows
that to a certain extent there is a performance decrease due to the non-ideal behavior
of the actuators. However, the achieved performance is still several orders of mag-
nitude better than in the uncontrolled case. A numerical comparison between these
two cases in terms of the maximum reached amplitude and the standard deviation
is included in Tables 6.4 and 6.5.

It is also important to evaluate the difference between the applied heat under ideal
conditions and the actual heat that the non-ideal actuators apply to the structure.
The evolution of these two signals for each actuator is represented in Figure 6.12.

Figure 6.12 illustrates that, despite the slight differences in the actuator behavior,
the control signals follow the same pattern and thus, the required control power
remains at the same order of magnitude. A detailed view of the difference between
the ideal control heat and the actual applied heat for each actuator is included
in Figure 6.13. This figure shows that the overperformance of heater 1 is mostly
compensated by the underperformance of heater 2. The difference between ideal
and actual heat is in this case smaller for heater 3.

It is also important to note that the non-ideal behavior of heaters does not destabi-
lize the system and that their contribution to the performance decrease is negligible
in comparison to the magnitude of the stabilized distortions. In order to fully as-
sess the impact of using non-ideal actuators it is necessary to evaluate the achieved
performance considering also non-ideal sensors. This results in the most realistic sce-
nario in which both sensors and actuators are non-ideal. The achieved performance
under these adverse conditions is presented in the next subsection.

Maximum amplitude

Direction
Uncontrolled

response
Ideal control

Non-ideal
actuators

x 0.217 µm 1.267·10−4
µm 1.712·10−3

µm
y 0.798 µm 5.036·10−6

µm 2.203·10−3
µm

z 3.245µm 6.838·10−4
µm 6.643·10−3

µm

Table 6.4: Maximum amplitude of displacements at point A achieved in each of the
considered cases modeling the actuator behavior.

Standard deviation

Direction
Uncontrolled

response
Ideal control

Non-ideal
actuators

x 0.091 µm 4.860·10−5
µm 7.103·10−4

µm
y 0.336 µm 1.953·10−6

µm 8.348·10−4
µm

z 1.371µm 2.624·10−4
µm 2.853·10−3

µm

Table 6.5: Standard deviation of displacements at point A achieved in each of the
considered cases modeling the actuator behavior.
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Uncontrolled response Controlled response

0 2 · 105 4 · 105 6 · 105 8 · 105 1 · 106
−0.3

−0.2

−0.1

0

0.1

0.2

0.3

Time [s]

D
is

p
la

ce
m

en
t
δu

A
[µ

m
]

(a) Displacement in the x-direction.
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(b) Displacement in the y-direction.
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(c) Displacement in the z-direction.

Figure 6.11: Displacements at point A induced by random perturbations arising in
Instrument 1 considering ideal sensors and non-ideal actuators.
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Ideal control heat Actual applied heat
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(a) Applied control heat at source 1.
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(b) Applied control heat at source 2.
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(c) Applied control heat at source 3.

Figure 6.12: Comparison in terms of the applied heat control between the ideal
actuator case and the non-ideal actuator case.
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Figure 6.13: Heat difference between ideal and actual control heat at each heater.

6.2.3 Achieved performance

The presented control framework can only be implemented in reality with sensors
and actuators that are inherently non-ideal. Thus, in order to simulate the perfor-
mance that could be achieved with the presented system it is necessary to combine
the effects of sensor uncertainties, as presented in Section 6.2.1, with the effects of
actuator uncertainties, as presented in Section 6.2.2. This combination includes, on
the one hand, the fact that there is only a limited number of noisy sensors and, on
the other hand, the fact that actuators do not exactly apply the commanded signal.

The results presented in this section assume that the structure is equipped with 20
noisy sensors and that the actuators follow the non-ideal behavior as described by
Equation 6.1 in Section 6.2.2. The comparison between the uncontrolled response
and the controlled response under the mentioned assumptions is illustrated in Fig-
ure 6.14. This figure proves that even under the adverse conditions that include
using non-ideal sensors and actuators, it is still possible to increase the achieved
structural stabilization by more than one order of magnitude. Figure 6.14 illus-
trates also that the remaining displacements correspond to the response induced by
the high-frequency perturbations. This effect has been shown to appear due to the
noise in the sensors, as presented in detail in Section 6.2.1.

A numerical comparison between the uncontrolled response, the theoretical con-
trolled response that could be achieved under ideal conditions and the simulated
response that is achieved with non-ideal sensors and actuators is presented in Ta-
bles 6.6 and 6.7. Table 6.6 presents the maximum amplitude that is reached in each
case and Table 6.7 the standard deviation. The last column in both tables presents
the achieved improvement between the uncontrolled and the non-ideal controlled
case.

The impact that non-ideal actuators have on the performance can be analyzed in
more detail by comparing the performance results of two cases, both with non-ideal
sensors but one considering ideal actuators and the other non-ideal actuators. The
displacement evolution of point A for these two cases is represented in Figure 6.15,
which illustrates that the achieved performance is slightly worsened when the actu-
ators do not behave exactly as commanded. In turn, a comparison of heat input for
these two cases is included in Figure 6.16.
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Uncontrolled response Controlled response
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(a) Displacement in the x-direction.
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(b) Displacement in the y-direction.
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(c) Displacement in the z-direction.

Figure 6.14: Displacements at point A induced by random perturbations arising in
Instrument 1 considering 20 noisy sensors and non-ideal actuators.
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Maximum amplitude

Direction
Uncontrolled

response

Ideal
controlled
response

Non-ideal
controlled
response

Reduction
factor

x 0.217 µm 1.267·10−4
µm 9.669·10−3

µm 22.4
y 0.798 µm 5.036·10−6

µm 7.069·10−3
µm 112.8

z 3.245µm 6.838·10−4
µm 0.190 µm 17.1

Table 6.6: Comparison in terms of the maximum amplitude of displacements at
point A for the uncontrolled and controlled cases.

Standard deviation

Direction
Uncontrolled

response

Ideal
controlled
response

Non-ideal
controlled
response

Reduction
factor

x 0.091 µm 4.860·10−5
µm 3.798·10−3

µm 24.0
y 0.336 µm 1.953·10−6

µm 2.365·10−3
µm 141.9

z 1.371µm 2.624·10−4
µm 7.626·10−2

µm 18.0

Table 6.7: Comparison in terms of the standard deviation of displacements at point
A for the uncontrolled and controlled cases.

The contribution to the performance decrease induced by the uncertainty in the ac-
tuators is ultimately a consequence of the estimation error of the temperature field.
The temperature field estimation is performed by combining the sensor measure-
ments with the estimated temperature changes introduced by the actuators. If the
actuators are ideal it is possible to calculate exactly the temperature change they
introduce based on the thermomechanical model. However, if their behavior is par-
tially uncertain the temperature field variation they introduce can only be estimated
within some level of accuracy. This inaccuracy in the temperature field estimation
affects the calculation of the required control inputs, which eventually translates
into a decrease in the achieved level of stability. A detailed view of the stability
decrease due to this phenomenon is included in Figure 6.17, which illustrates how
the achieved performance partially decreases due to this inaccuracy in the applied
heat.

The variation in the control inputs that is ultimately introduced by the actuator
uncertainty is presented in Figure 6.16. This figure presents the required control
inputs that would be applied through ideal actuators compared to the control inputs
as calculated when sensors and actuators are not ideal. The noise that is introduced
by sensor measurements can only be partially attenuated by the Kalman filter in
the temperature estimation process. Thus, the control inputs that are calculated
incorporate also part of this noise. A detailed view of the difference between this
two cases is represented in Figure 6.18.
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Non-ideal sensors + Non-ideal actuators

Non-ideal sensors + Ideal actuators
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(a) Displacement in the x-direction.

0 2 · 105 4 · 105 6 · 105 8 · 105 1 · 106
0.01

0.02

0.03

0.04

Time [s]

D
is

p
la

ce
m

en
t
δv

A
[µ

m
]

(b) Displacement in the y-direction.
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(c) Displacement in the z-direction.

Figure 6.15: Comparison of displacements at point A induced by random perturba-
tions arising in Instrument 1 with non-ideal sensors and considering the ideal and
the non-ideal actuator cases.
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Ideal control heat Actual applied heat

0 2 · 105 4 · 105 6 · 105 8 · 105 1 · 106
−4

−2

0

2

4

Time [s]

C
o
n
tr

o
l

h
ea

t
δq

c1
[W

]

(a) Applied control heat at source 1.
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(b) Applied control heat at source 2.
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(c) Applied control heat at source 3.

Figure 6.16: Comparison in terms of the applied control heat between the ideal
case with only sensor uncertainties and the non-ideal case with sensor and actuator
uncertainties.
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Figure 6.17: Stabilized displacement difference between the case with ideal actuators
and the case with non-ideal actuators. In both cases, sensor behavior is non-ideal.
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Figure 6.18: Heat difference between the ideal control heat and the actual control
heat at each heater when sensor behavior is non-ideal.

6.3 Errors introduced by approximations

The previous section has evaluated the impact that uncertainties in the equipment
performance, namely in the sensors and in the actuators, can have on the achieved
stability. This section evaluates the decrease in performance that could potentially
arise due to the mathematical approximations introduced to develop the control
framework. There are two potential sources of errors related to the derivation of the
thermomechanical model that represents the studied structure. The first one is the
linearization of the radiation terms, as presented in Section 3.2.4, which is necessary
to derive the transfer functions of the thermal problem. The second possible source
of errors is the assumption that the structure has a quasi-static behavior when
affected by low-frequency thermal perturbations. This step is necessary, as presented
in Section 5.2, in order to calculate the control gains of the feedback loop.

The possible impact of the linearization of the radiation terms is subsequently eval-
uated and presented in Subsection 6.3.1. This is followed by the evaluation of the
influence that the quasi-static assumption can have on the stability performance,
presented in Subsection 6.3.2. The presented results are valid for the baseline case
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considered in this thesis but they cannot be extrapolated to all the possible cases.
The validation of these approximations should be verified in a case-by-case basis to
ensure that an acceptable level of performance can be reached.

6.3.1 Linearization of radiation terms

According to the Stefan-Boltzmann law the power radiated from a black body follows
a fourth power law in terms of the temperature. This relation has been linearized
following the procedure presented in Section 3.2.4 in order to obtain a linear rela-
tion between temperature and heat flux. If under some circumstances there is a
strong discrepancy between the values provided by the Stefan-Boltzmann law and
the linearized model, this will translate into an error in the temperature estimation
obtained from the thermal model. In turn, it will result in an inaccuracy on the
calculated control heat inputs which will decrease the final stability performance.

The simulations that have been presented in the previous sections of this chapter
have been performed following the model expressed by Equation 5.67 on page 89,
which is based on the assumption that the thermal behavior is linear. If this is not
the case, the actual thermal evolution of the system will differ from that obtained
from the linear model. In order to assess the magnitude of this potential difference,
a time integration of the model considering the nonlinear terms, as expressed in
Equation 3.63 of Section 3.2.3, is performed. Afterwards, the temperature evolution
obtained through the nonlinear model is compared to that obtained from the linear
model.

The nonlinear model is executed considering as heat inputs a random perturbation
from instrument 1 and the heat control inputs that are obtained from the linear
control model. The comparison between the nonlinear and the linear evolution
results in a difference that is several orders of magnitude below the amplitude of
the fluctuation at each node. As an example, Figure 6.19 shows the temperature
evolution of one specific node in the model both according to the linear and the
nonlinear model. Both lines appear superimposed which proves that the difference
between both models is negligible in this case. For the sake of clarity, the difference
in temperature between these two cases is included in Figure 6.20, which illustrates
that for the presented case the difference never exceeds a magnitude of 4·10−4 K,
even though the temperature fluctuations reach approximately 1 K. Linearizing the
model is equivalent to underestimating the heat radiated by each element. Thus,
the linear model results in slightly higher temperatures than the nonlinear model,
as illustrated by Figure 6.20.

The magnitude of the difference between the linear and the nonlinear case does not
depend only on the amplitude of the fluctuations but also on the relative weight
of the radiation links between the different nodes in the structure. Therefore, it
depends also on the thermo-optical properties of the surfaces and their geometry.
This analysis proves that the linearization is a valid assumption in the baseline
studied case. However, the analysis should be repeated in case there appear changes
in the magnitude of the perturbations, the geometry of the structure or its thermo-
optical properties.
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Figure 6.19: Temperature evolution comparison between the linear and the nonlinear
model.
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Figure 6.20: Temperature difference between the linear and the nonlinear model.

6.3.2 Quasi-static assumption

A significant difference between the estimated displacement and the actual displace-
ment could potentially arise due to the inertial and damping effects of the structure.
The control framework has been developed based on the assumption that these ef-
fects are negligible. If it turns out that they are not, the control framework would
be calculating the necessary control inputs based on a flawed estimation of the real
displacements taking place. As a result, the achieved stability performance would
decrease.

Section 4.2.2 has shown that the mechanical transfer functions are mostly flat
throughout the frequency range of interest. Therefore, from a pre-simulation point
of view, it is expected that the quasi-static assumption is valid. Here, the assump-
tion is validated based on the obtained results from the presented simulations. The
thermal field evolution of the structure is considered to be the input and the dis-
placement field is the output. This is first calculated based on the quasi-static
assumption, which is expressed as

[Ku]{u} = [FT ]{T}+ {Fd} (6.2)

as explained in Section 4.2.2 and as it is done in the control loop. The results
from this approximation are compared to the more accurate results that would be
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obtained if the inertial and damping effects were considered. These are obtained
from the expression

[Mu]{ü}+ [Cu]{u̇}+ [Ku]{u} = [FT ]{T}+ {Fd} (6.3)

as outlined in Section 4.1.

The displacement change around the equilibrium condition is represented for these
two cases in Figure 6.21. As in the assessment of the linearization effect in the
previous section, there is an almost perfect overlap between the two results. A
detailed view of the difference between both cases is illustrated in Figure 6.22. This
shows that the magnitude of the difference is more than 4 orders of magnitude below
the magnitude of the fluctuation amplitude and never exceeds 1·10−4

µm. Thus, it is
considered that in the baseline case it is a valid assumption to consider the problem
as quasi-static since the performance decrease it introduces is negligible for any
practical purposes.
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Figure 6.21: Comparison in terms of the displacement evolution at one representative
node according to the quasi-static model and to the full model that includes inertial
and damping effects.
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Figure 6.22: Displacement difference between the actual case and the quasi-static
approximation.
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6.4 Absolute and relative stabilization

The goal of the simulation examples presented in the previous sections is to stabilize
the displacement at point A in the structure with respect to an external reference
frame, as represented in Figure 6.1. In physical terms, this baseline case consists
in stabilizing three degrees of freedom of the structure and thus, three heaters are
required. Based on the same presented approach it is also possible to stabilize
specific points in the structure with respect to other reference frames. One sensible
option consists in stabilizing one point with respect to another. In this scenario,
both points are experiencing a displacement with respect to an external reference
frame but their relative motion is stabilized.

An example to illustrate this strategy is presented in this section. In this case,
the relative motion between points A and B, as represented in Figure 6.1, is stabi-
lized. Technically, this consists in the stabilization of three degrees of freedom and
thus, only three heaters are required. The same previous heater configuration, as
represented in Figure 6.2, is assumed.

Hence, the control setup is assumed to be exactly the same as in the previously
presented cases. The noise in the sensors is assumed to be characterized by a con-
stant bias with σ = 0.05 K and an error at each measurement with also σ = 0.05 K.
The actuators are assumed to behave as expressed by Equation 6.1. The presented
results are obtained under the assumption that the structure is equipped with 20
sensors. It is important to keep in mind that the achieved performance can always
be improved by increasing the number of sensors, as has been shown in Section 6.2.1.
However, more sensors also entail more complexity and, therefore, a compromise has
to be found between performance and complexity. The marginal improvement that
each added sensor provides must be evaluated on a case-by-case basis.

The comparison between the uncontrolled and the controlled response for this case is
illustrated in Figure 6.23. This figure shows that, even in the uncontrolled case, the
relative displacement between points A and B does not exceed 1µm in any direction.
This low magnitude of the displacement can be attributed to a partially synchronized
movement at these two points. The largest stabilization is achieved in the y and z
directions, which are also the directions in which the largest displacements appear.
The numerical comparison between both cases is included in Tables 6.8 and 6.9,
which show the maximum amplitude and the standard deviation in each case.

It is also interesting to analyze this scenario in terms of the control effort it requires
understood as heat power. Figure 6.24 shows a comparison of the control signals
between an ideal case and the actual case. The ideal case assumes that the thermal
perturbation is known beforehand and thus the exact control input can be calcu-
lated. The actual applied heat is obtained through the feedback loop with 20 noisy
sensors and non-ideal heaters. Figure 6.24 shows that the required input power is
significantly higher than in the previous cases where only point A is controlled, as
represented in Figure 6.16. This could be minimized by identifying more optimal
locations for the heaters. Also, there is a higher level of noise in the control signals,
which can become a problem depending on the latency in the actuators. This could
be reduced by adding temperature sensors, which would allow to consider more
thermal modes in the model, providing a better estimation of the temperature field.
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(a) Displacement in the x-direction.
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(b) Displacement in the y-direction.
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(c) Displacement in the z-direction.

Figure 6.23: Comparison between the controlled and uncontrolled distance changes
between points A and B.
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(a) Applied control heat at source 1.

0 2 · 105 4 · 105 6 · 105 8 · 105 1 · 106
−15

−10

−5

0

5

10

15

Time [s]

C
on

tr
ol

h
ea

t
δ

q
c2

[W
]

(b) Applied control heat at source 2.
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(c) Applied control heat at source 3.

Figure 6.24: Comparison in terms of the applied control heat to stabilize the distance
between points A and B considering the ideal case under no uncertainties and the
non-ideal case with sensor and actuator uncertainties.
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Maximum amplitude

Direction
Uncontrolled

response
Controlled
response

Reduction
factor

x 0.066µm 6.370·10−3
µm 10.4

y 0.384µm 6.827·10−3
µm 56.2

z 0.761µm 3.945·10−2
µm 19.3

Table 6.8: Maximum amplitude of displacements between points A and B for the
uncontrolled and controlled cases.

Standard deviation

Direction
Uncontrolled

response
Controlled
response

Reduction
factor

x 2.756·10−2
µm 2.397·10−3

µm 11.5
y 0.162µm 2.335·10−3

µm 69.4
z 0.313µm 1.448·10−3

µm 216.2

Table 6.9: Standard deviation of displacements between points A and B for the
uncontrolled and controlled cases.

6.5 Material sensitivity analysis

The presented simulations have been conducted under the assumption that the ma-
terial properties that characterize the structure behavior are perfectly known. Al-
though it is true that the relevant properties can be measured at high levels of
accuracy and also that it is possible to manufacture high quality materials within
stringent tolerances of some specific properties, it may be also common to apply the
presented method on structures for which the material properties are only known
within some margin of accuracy. For instance, in an otherwise passively stabilized
structure for which measuring all the material properties at high accuracies would re-
quire excessive costs. The consequence of having some uncertainty in the knowledge
of the material properties translates directly into an inaccuracy in the thermome-
chanical model, which to a certain extent can affect the achieved performance.

This potential change in performance is assessed here in terms of the main material
properties that define the structure. The analysis is divided between those properties
affecting the thermal behavior of the structure, presented in Subsection 6.5.1, and
those affecting the mechanical behavior, presented in Subsection 6.5.2.

The effect of each property is assessed separately assuming that there is no uncer-
tainty in the other properties. Thus, it is possible to identify which properties can
have a larger influence on the achieved performance. The baseline example presented
in the previous section is also considered for this study. In particular, only the un-
certainty in the structural plate is analyzed. The properties of the remaining parts
of the structure, i.e. the bipods and the instruments, are assumed to be known. The
achieved performance is calculated considering that the actual value of the property
under evaluation differs from the value assumed in the thermomechanical model.
This is performed for six values of this difference distributed between ±5%.
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6.5.1 Thermal properties

The material properties that directly determine the thermal behavior of the struc-
ture are the thermal conductivity λ, the heat capacity cp, the emissivity ε and the
density ρ. From these, only the density is a variable that also has a direct influence
on the mechanical behavior. However, if the quasi-static assumption is made, this
influence is neglected and thus, it is here assumed that the material density only
influences the thermal response. For the sake of consistency, the effects of density
uncertainties are analyzed in this section.

First, the analysis related to the uncertainty in the thermal conductivity is presented.
As with the rest of the variables, six different cases are considered. In all of them
the assumed conductivity value corresponds to the one expressed in Table 3.1 on
page 40 but the actual value that describes the real behavior differs from it by -5%,
-3%, -1%, 1%, 3% and 5%. The controlled response is simulated in each case and
it is quantified in terms of the maximum amplitude and standard deviation of the
displacement in each direction. The obtained values are illustrated in Figure 6.25.

The uncertainty in the conductivity value directly results in an inaccurate calculation
of the conductivity matrix, calculated according to Equation 3.37 on page 39. As a
result, the actual thermal equilibrium state achieved by the structure will differ from
the assumed state around which the thermal equations are linearized to calculate the
transfer functions. Also, the heat will flow through the structure in slightly different
ways than those predicted by the model. As a consequence, the calculation of the
control gains used in the feedback loop is not based on a completely accurate model.
Thus, the final achieved performance in each direction will slightly differ from the
obtained in the ideal case in which the conductivity value is exactly known, as seen
in Figure 6.25.

The first important conclusion that can be drawn from Figure 6.25 is that the per-
formance does not necessarily decrease when there is uncertainty in the model. This
can seem contradictory at first sight but it must be taken into account that the
change in performance is eventually induced by two factors, which might have op-
posing effects. On the one hand, the uncertainty in the material properties decreases
the accuracy of the models. On the other hand, it may be the case that the actual
material properties are in reality more beneficial for the structural stability than in
the case of the assumed values. Thus, when the structure is in reality more stable
than the implemented model assumes, the final net effect can be an improvement
of performance, even when uncertainty is present. Depending on which of these as-
pects has a higher weight, the achieved performance will increase or decrease. This
behavior is always case-by-case dependent and, therefore, no general conclusions can
be extracted. Whether a change in a particular material property is beneficial or
detrimental to the performance will always depends on the geometry of the struc-
ture and on the particular displacements that are being stabilized. Even at the same
point the behavior can differ depending on the direction.

This behavior can be seen for the conductivity case represented in Figure 6.25. In
this case, both for the x and z directions the amplitude of the distortions decreases
when the actual conductivity is lower than the assumed conductivity. This indicates
that in these two directions, a lower conductivity value results in higher stability,
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which is reached even if there is uncertainty in the assumed conductivity value.
This behavior is not observed in the y-direction, in which an uncertainty in the
conductivity value always decreases the achieved performance.

The second important conclusion, also observable for the conductivity case in Fig-
ure 6.25, is that in absolute terms the performance changes have very low magni-
tudes. Even though it is possible to identify positive and negative trends depending
on the direction of the uncertainty, the absolute value of the amplitude change be-
tween the two extreme cases only exceeds 0.01 µm in the z-direction, which is also
the direction in which the uncontrolled amplitude is larger. In the other directions,
the maximum performance changes are in the range of nanometers. As it has been
mentioned in Section 6.1, it is questionable whether the assumed finite element
models are still valid at these magnitudes. Additionally, when such low values are
involved it has not been discarded whether some of the observed effects could be a
result of numerical rounding errors at some step in the simulation process.

The changes in performance expressed in percentage for each specific case are in-
cluded in Table 6.10 on page 134 and in Table 6.11 on page 135, for the maximum
amplitude and the standard deviation, respectively. These tables include also the
changes introduced by the uncertainty in the other properties. It can be seen from
these values that, relative to the other properties, the uncertainties in conductivity
are the ones that can result in the largest changes in the achieved performance.
Thus, to minimize these possible variations in the obtained performance, a strong
effort should be put in obtaining an accurate measurement of the actual conductivity
in the materials of the structure.

The second variable that is analyzed is the heat capacity. This physical property
appears in the calculation of the thermal capacity matrix, calculated according to
Equation 3.36 on page 39. The thermal capacity of the structure does not influence
the temperature field that is reached under equilibrium. In fact, it only affects the
transient behavior of the structure. Thus, if there is uncertainty in the actual value
of the heat capacity, the transfer functions obtained from the thermomechanical
model will not exactly describe the actual behavior but they will still be linearized
around the correct value.

The resulting performance, in terms of maximum amplitude and standard deviation,
is illustrated for the different considered cases in Figure 6.26. This figure illustrates
that within the considered range of uncertainty, the relation between maximum
amplitude and uncertainty follows approximately a linear relation. In the x and y
directions this relation is negative, whereas in the z-direction it is positive. A very
similar behavior can be observed in terms of the standard deviation. An exception
takes place in the x-direction case, which appears to follow a parabolic relation.
However, the expected changes are at such low magnitudes that become irrelevant
for any practical purposes and, as aforementioned, could be the result of numerical
rounding errors. In terms of the maximum amplitude, the introduced changes do
not exceed 0.001µm in any case. The same data expressed as percentage changes is
included in Tables 6.10 and 6.11. These show that both in terms of amplitude and
standard deviation, the uncertainty in heat capacity has one of the lowest impacts
on the achieved performance. Particularly in the case of the standard deviation, the
expected changes can be considered negligible within the studied range.
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Figure 6.25: Maximum amplitude and standard deviation of the displacement at
point A in each direction under different levels of uncertainty in the conductivity
value.
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Figure 6.26: Maximum amplitude and standard deviation of the displacement at
point A in each direction under different levels of uncertainty in the heat capacity
value.
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Another variable that determines the thermal behavior of the structure is the emis-
sivity of its surfaces. This property plays a direct role in the characterization of
the radiation exchange with the environment and with the other surfaces. Thus, if
there is a difference between the assumed and the actual value, the equilibrium state
estimated by the thermomechanical model will slightly differ from the actual one.
As a result, the transfer functions will be linearized around a slightly biased value
which, in turn, affects the gains in the control loop. Also, the expected radiation
exchange will be underestimated or overestimated depending on the direction of the
uncertainty.

The performance results obtained for the six considered cases are represented in
Figure 6.27. The first important fact, regardless of the specific relation between
uncertainty and performance, is that the expected changes in performance induced
by emissivity uncertainty have also very low magnitudes and only exceed 0.001 µm in
the z-direction. As it is the case for the heat capacity uncertainties, in this particular
case the performance changes introduced by emissivity uncertainties could also be
neglected for any practical purposes. As can be observed in Figure 6.27, the relations
in all directions can be approximated as linear within the considered range. The
relation is positive in the x and z direction and negative in the y-direction, both in
the amplitude and in the standard deviation case. The percentage values included in
Tables 6.10 and 6.11 show that the influence of the emissivity is slightly higher than
the influence of the heat capacity, but much lower than the thermal conductivity.

The last property studied in this subsection is the density. As aforementioned,
this variable has also an influence on the mechanical behavior of the structure.
However, when the structural behavior can be approximated as quasi-static this
influence becomes negligible. In terms of the thermal behavior, the material density
affects the thermal capacity matrix in the same way as the heat capacity does. This
can be deduced from the expression of the thermal capacity matrix, expressed in
Equation 3.36 on page 39. This equation contains the product between density and
heat capacity. Thus, whether there is a percentage change in the density or in the
heat capacity, the final result is the same. As a consequence, it can be expected
that any uncertainty in material density will have exactly the same final effect that
the same uncertainty in terms of the heat capacity would have.

The simulations have been conducted to prove that an uncertainty in density is
equivalent to an uncertainty in heat capacity. The results are illustrated in Fig-
ure 6.28 and, as expected, exactly the same behavior represented in Figure 6.26,
i.e. for the heat capacity case, is obtained. Thus, it can also be concluded that any
uncertainty in the actual density value contained within ±5% can be considered
negligible for the baseline case. For the sake of consistency, the percentage changes
for this case have also been included in Tables 6.10 and 6.11 even though they are
essentially the same as for the heat capacity case.
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Figure 6.27: Maximum amplitude and standard deviation of the displacement at
point A in each direction under different levels of uncertainty in the emissivity
value.
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Figure 6.28: Maximum amplitude and standard deviation of the displacement at
point A in each direction under different levels of uncertainty in the density value.
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6.5.2 Mechanical properties

The material properties that directly influence the mechanical response of the struc-
ture are the Young’s modulus E, the Poisson’s ratio ν and the coefficient of thermal
expansion (CTE) α. Both the Young’s modulus and the Poisson’s ratio influence
the finite element model through the definition of the elasticity matrix. This is
calculated according to Equation 4.8 on page 57. The relation between these two
variables and the elasticity matrix is different and thus, its influence on the achieved
performance will also differ.

First, the influence of the uncertainty in the Young’s modulus is assessed. The per-
formance under the six considered levels of uncertainty between ±5% is calculated.
The results, presented in Figure 6.29 show that the relation between the uncertainty
and the performance change is strongly linear, at least in the considered range. The
relation is negative in the x and y directions and positive for the z-direction case.
In absolute terms, the expected changes introduced due to this uncertainty are very
small, always significantly below 0.01µm. The maximum change in amplitude takes
place in the z-direction, where the difference between the two extreme cases reaches
approximately 0.003 µm. In comparison to the previously analyzed material prop-
erties, the uncertainty in the Young’s modulus can introduce some of the largest
changes in the achieved performance, reaching levels similar to those introduced by
the uncertainty in the thermal conductivity, particularly in the x-direction. This
can be corroborated by the percentage changes included in Tables 6.10 and 6.11. In
the extreme cases of uncertainties of ±5% the change in the maximum amplitude in
the x-direction reaches approximately 12%. As aforementioned, in absolute terms
these changes are within the nanometer range.

The same analysis is performed for the uncertainty in the Poisson’s ratio and the re-
sults are presented in Figure 6.30. In terms of the maximum amplitude, the relation
between uncertainty and performance is observed to be also strongly linear. The
magnitude of the introduced changes is smaller than for the Young’s modulus case.
Only in the z-direction the expected changes in amplitude reach a similar magni-
tude as in the Young’s modulus case, with a difference between the extreme cases
around 0.003 µm. Performance changes are also observed in the standard deviation
values but they never exceed 0.001 µm between the nominal and an extreme case.
A curious behavior is observed in the y-direction, in which the amplitude change
has a linear relation to the uncertainty, but the standard deviation changes evolve
parabolically. Given the extremely low magnitude of the changes in the standard
deviation (i.e. below 10−10 m) it cannot be discarded that this result is just a con-
sequence of rounding errors in the simulation process. Considering the negligible
relevance of this result for any practictal purposes, the reason for this behavior has
not been further analyzed.

The last property that influences the mechanical response is the CTE. This variable
is introduced in the mechanical model through the mechanical load vector, as ex-
pressed by Equation 4.11 on page 57. The CTE is essential to estimate the strain
introduced in the structure due to thermal fluctuations. Thus, an uncertainty in its
value can result in an overestimation or underestimation of the introduced strains
and, in turn, in the displacements. The obtained results for the six considered cases
are presented in Figure 6.31. The induced amplitude changes between the extreme
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cases only exceed 0.001 µm in the x and z directions. Considering the difference be-
tween the nominal condition, i.e. no uncertainty, and the extreme cases of ±5%, the
0.001 µm value is never exceeded. In terms of the standard deviation, the changes
are even lower and negligible for any practical purposes. It can be seen from the
percentage values in Tables 6.10 and 6.11 on pages 134 and 135 that the uncertainty
in the CTE value never introduces changes in the performance above 10%. Its in-
fluence appears to be generally lower than the one introduced by the uncertainty in
the Young’s modulus and slightly higher than the introduced by the Poisson’s ratio.

Overall, it can be concluded from the presented analyses that uncertainty in the
material properties has a very limited effect on the achieved performance. Only
in the case of large uncertainties in the thermal conductivity there could be some
relevant changes in the achieved performance, particularly in terms of the amplitude
of the response. In any case, the introduced changes in absolute terms would be in
the nanometer range.

It could be argued that largest deviations would be seen in reality when all these
uncertainties act simultaneously. However, it is also true that different properties
affect the performance in different ways and thus, uncertainties in one property
may be partially compensated by uncertainties in another. If in some particular
cases a strong discrepancy is observed between the modeled behavior and the actual
behavior, it would be possible to calibrate the thermomechanical model to partially
reduce this difference and provide a better characterization.

Even though the influence of the material uncertainty has been proved to be very
limited, this sensitivity analysis provides also some insight into possible optimiza-
tion approaches that could improve the achieved stability level. A crucial step in
achieving high mechanical stability consists in selecting materials that have the ad-
equate physical properties for the considered application. This selection must be
performed on a case-by-case basis and it always depends on the geometry of the
structure and the expected perturbations. Considering that this first selection step
has been performed, the procedure conducted in this section indicates in which di-
rection the properties should vary to further improve the stability in some particular
metrics. However, it is important to note that the displacements in each direction
can be affected differently by a change in a particular material property. Thus,
changing the material can improve the stability in one metric and decrease it in
another. Additionally, the material properties are not distributed in a continuous
space and introducing changes in materials to modify one particular property may
result also in a modification on another property. Despite these potential setbacks,
this sensitivity analysis can still be a starting point to further optimize the achieved
stability.
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Figure 6.29: Maximum amplitude and standard deviation of the displacement at
point A in each direction under different levels of uncertainty in the Young’s modulus
value.
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Figure 6.30: Maximum amplitude and standard deviation of the displacement at
point A in each direction under different levels of uncertainty in the Poisson’s ratio
value.
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Figure 6.31: Maximum amplitude and standard deviation of the displacement at
point A in each direction under different levels of uncertainty in the coefficient of
thermal expansion value.
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Maximum amplitude

Direction Property -5% -3% -1% 1% 3% 5%

x

λ -18.80% -11.72% -3.82% 3.74% 10.99% 17.94%
cp 0.38% 0.22% 0.07% -0.07% -0.20% -0.33%
ε -0.52% -0.31% -0.10% 0.10% 0.31% 0.52%
ρ 0.38% 0.22% 0.07% -0.07% -0.20% 0.33%
E 11.95% 7.07% 2.33% -2.29% -6.79% -11.18%
ν 1.03% -0.62% -0.21% 0.21% 0.63% 1.05%
α 6.42% 3.85% 1.28% -1.28% -3.85% -6.42%

y

λ 42.40% 18.41% 2.89% 1.96% 16.81% 37.59%
cp 0.50% 0.30% 0.10% -0.10% -0.30% -0.50%
ε 0.15% 0.09% 0.03% -0.03% -0.09% -0.15%
ρ 0.50% 0.30% 0.10% -0.10% -0.30% -0.50%
E 1.44% 0.85% 0.28% -0.27% -0.80% -1.30%
ν 0.64% 0.38% 0.13% -0.13% -0.37% -0.63%
α -1.15% -2.08% -0.81% 0.81% 2.44% 6.04%

z

λ -10.19% -6.02% -1.98% 1.96% 5.79% 9.52%
cp -0.15% -0.09% -0.03% 0.03% 0.09% 0.14%
ε -0.49% -0.29% -0.10% 0.10% 0.29% 0.48%
ρ -0.15% -0.09% -0.03% 0.03% 0.09% 0.14%
E -0.87% -0.51% -0.17% 0.16% 0.48% 0.79%
ν 0.81% 0.49% 0.16% -0.16% -0.49% -0.82%
α 0.32% 0.19% 0.06% -0.06% -0.19% -0.32%

Table 6.10: Percentage change in terms of the maximum amplitude of displacements
at point A under different levels of uncertainty in the material properties.
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Standard deviation

Direction Property -5% -3% -1% 1% 3% 5%

x

λ -20.86% -12.33% -4.04% 3.98% 11.72% 19.18%
cp 0.01% <0.01% <0.01% <0.01% <0.01% <0.01%
ε -0.55% -0.33% -0.11% 0.11% 0.33% 0.55%
ρ 0.01% <0.01% <0.01% <0.01% <0.01% <0.01%
E 12.73% 7.52% 2.47% -2.43% -7.18% -11.78%
ν -1.12% -0.68% -0.23% 0.23% 0.68% 1.15%
α 7.22% 4.32% 1.43% -1.43% -4.26% -7.07%

y

λ 38.85% 13.29% 0.36% 3.75% 21.20% 47.12%
cp 0.78% 0.46% 0.15% -0.15% -0.44% -0.71%
ε -0.16% -0.10% -0.03% 0.03% 0.10% 0.18%
ρ 0.78% 0.46% 0.15% -0.15% -0.43% -0.71%
E 2.64% 1.52% 0.48% -0.46% -1.33% -2.11%
ν 0.04% 0.01% <0.01% 0.01% 0.05% 0.12%
α 1.04% 0.17% -0.10% 0.25% 1.20% 2.75%

z

λ -11.03% -6.55% -2.16% 2.14% 6.34% 10.45%
cp -0.06% -0.04% -0.01% 0.01% 0.04% 0.06%
ε -0.54% -0.32% -0.11% 0.11% 0.32% 0.53%
ρ -0.06% -0.04% -0.01% 0.01% 0.04% 0.06%
E -1.03% -0.61% -0.20% 0.20% 0.58% 0.95%
ν 0.86% 0.52% 0.17% -0.17% -0.52% -0.87%
α 0.32% 0.19% 0.06% -0.06% -0.19% -0.32%

Table 6.11: Percentage change in terms of the standard deviation of displacements
at point A under different levels of uncertainty in the material properties.
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Chapter 7

Conclusions

This final chapter presents the main conclusions that can be extracted from the pre-
sented control framework in combination with the simulated results. Subsequently,
the chapter ends with an evaluation of those aspects that could be further investi-
gated and that conform the possibilities and recommendations for future work.

7.1 Thesis Summary and Conclusions

As presented in the introduction of this thesis, the main goal of the present work has
been to develop a novel active control framework to compensate distortions that may
arise in space structures due to low-frequency thermal perturbations. Based on the
obtained simulated results it can be concluded that the fundamentals for a promising
control technique to compensate this type of distortions have been established.

The first part of the thesis is centered on the development of a proper thermome-
chanical model on top of which the control framework can be built. In this regard,
it has been concluded that the best option is to base this model on the finite el-
ement method (FEM) because, at this stage, this facilitates the interface between
the thermal and the mechanical model.

One important condition that determines the thermal behavior of any structure
is the heat exchange through radiation. This is especially important in the case of
space structures because they are not affected by heat exchange through convection,
and thus the radiation exchange becomes more significant in relative terms. The
radiation exchange makes the thermal problem nonlinear and, therefore, a lineariza-
tion approach has been implemented to enable the calculation of linear transfer
functions between heat and temperature. This linearization can become a source
of errors if the experienced thermal fluctuations are large enough. The effect of
this linearization has been assessed for a baseline case in which thermal fluctuations
up to 1 K take place. This has shown that the contribution of the linearization to
an eventual performance decrease is negligible. Generally, structures that are used
for high precision applications are already designed to operate in a relatively quiet
environment. Thus, it is expected that large thermal fluctuations are not present
and that the linear approximation is valid. As presented in this thesis, this assump-
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tion can be checked on a case-by-case basis to ensure that no significant errors are
introduced in the control process.

The linearization of the radiation terms enables the calculation of transfer functions
between heat and temperature as a function of the frequency. This approach has
been shown to be an alternative to the traditional time-integration procedure to solve
transient thermal problems. With this novel approach, based on a frequency-domain
transformation, it is possible to calculate the time evolution of the displacement field
in a more computationally efficient way given that it only requires the multiplication
of the input function, i.e. defining the heat evolution, by the corresponding transfer
function. The limitation of this approach is that it does not directly provide the
solution of the transient terms that define the response, which correspond to expo-
nential terms that converge to zero. The multiplication between transfer function
and input function provides only the stationary evolution of the problem expressed
as complex numbers, which represents the thermal fluctuation at each node in the
finite element mesh.

Based also on the FEM, the mechanical analysis framework has been presented. The
mechanical problem can also be solved in the frequency-domain, as it is normally
done in the field of structural dynamics to analyze, for instance, the impact of vibra-
tional loads. This approach enables the calculation of transfer functions, which in
this case provide the relation between temperature fluctuations and displacements.
By combining these functions with those obtained from the thermal problem it is
finally possible to obtain thermomechanical transfer functions that directly relate
heat input and displacement.

The mechanical analysis in the frequency domain has also illustrated that the iner-
tial and damping terms that generally influence the mechanical response are only
relevant at high-frequencies, understood as those above approximately 1 Hz. Thus,
below this threshold it is generally acceptable to treat the problem as quasi-static.
A similar behavior can be observed in the thermal problem, which behaves as a
low-pass filter with a quasi-static behavior at low-frequencies and a turning point
between 10−5 Hz and 10−3 Hz, depending on the specific conditions of the problem.
It is concluded from the combination between the thermal and the mechanical prob-
lem that, generally, the inertial and damping effects are negligible as long as the
perturbation has a thermal origin. These terms would not be negligible only if there
were relevant heat perturbations at frequencies around or above 1 Hz. This is gener-
ally not possible because it would imply high-amplitude perturbations at unrealistic
levels given the low transfer gain of the thermal problem at these frequencies. The
validity of the quasi-static assumption has been checked for the baseline case pre-
sented throughout this thesis, proving that the inertial and damping terms have by
a wide margin a negligible contribution to the mechanical response.

The calculation of transfer functions between heat and displacement based on the
finite element thermomechanical model is one of the key aspects to develop the con-
trol framework. The strategy followed in the presented method consists in applying
the appropriate heat to the structure that compensates some particular displace-
ment measure induced by acting perturbations. This appropriate heat is in turn
calculated through the transfer functions and applied by heaters mounted in the
structure.
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The most favorable case is that in which acting perturbations can be fully charac-
terized and thus, can be predicted before they act on the structure. Under these
circumstances it has been concluded that a virtually perfect compensation can be
achieved. In other words, the displacement at one point induced by a heat perturba-
tion acting in any point of the structure can be theoretically fully compensated by
a control heater installed at any other point of the structure. Generally, heat per-
turbations are to a certain extent random and, as a consequence, cannot be known
before they appear. Thus, a strategy to estimate the distortions induced by random
perturbations has been developed, which is a requirement to subsequently calculate
control inputs that compensate them.

The approach followed in this thesis has been to estimate the displacement field in
real-time based on the thermomechanical model that relates displacement and tem-
peratures. This requires, in turn, an estimation of the temperature field which is
obtained based on the combination of the thermal model with sensor measurements.
The followed strategy to estimate the thermal field is analogous to that followed in
the structural dynamics field to measure the displacement response of structures.
This consists in the assumption of a simplified thermal model that describes the
temperature field only in terms of the most important linearized thermal modes,
which correspond to the eigenvectors of the linearized conductivity matrix. This
process is known as modal truncation and, at the expense of introducing an esti-
mation error, enables the estimation of the thermal field based on a limited number
of temperature sensors. In the presented example, the thermal field described by
1063 thermal nodes has been estimated based only on the measurements of 20 sen-
sors. The analysis of the modal representation shows that this estimation is always
more accurate at lower frequencies and thus, the temperature fluctuations induced
by high-frequency perturbations are estimated with larger errors.

A critical factor to properly implement the modal truncation process is to know the
origin of the expected perturbations. This does not mean that it is required to know
how the perturbations evolve temporally, but it is necessary to know where in the
structure they are applied. This is essential because it allows the identification of
the thermal modes that carry the largest weight in describing the thermal response
and that should, therefore, be included in the truncated model. Hence, a strong
effort should be put during the development phase of the structure to thoroughly
identify all the possible heat perturbation sources that may act on the structure.
This will enable the selection of the relevant thermal modes and, as a consequence,
the identification of optimal positions where temperature sensors should be placed.

The estimation of the displacement field is essential to assess whether the applied
control is successfully counteracting distortions. The objective of the control strat-
egy is to control some specific measures of the displacement field, which are ex-
pressed in terms of the displacement in some specific directions at some specific
nodes. The controller used in this thesis applies a proportional control based on the
linear quadratic regulator theory. In mathematical terms, this results in a control
input calculated from the multiplication of a gain matrix by the temperature vector.
In order to enable the displacement control through this strategy it is necessary to
equip the structure with one heater for each degree of freedom that is controlled.
The control input can be theoretically applied at any point in the structure. How-
ever, this is not the case in practice because the control from some particular regions
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would result in an unrealistic required amount of heat. Additionally, there will exist
limitations due to the presence of other equipment and design requirements. Thus,
only some areas in the structure will be available to allocate the heaters. A selection
of the exact locations to place the heaters can be based on an optimization of the
transfer gains calculated from the thermomechanical transfer functions. Based on
this procedure, it is possible to identify the locations that under some assumed con-
ditions minimize the required input power. Optimizations in terms of other variables
aside from control power are also possible.

The control performance that can be achieved based on the presented sensor and
heater strategies has been simulated for a highly stable structure. This structure has
been assumed to be made out of silicon carbide, which with a very low coefficient
of thermal expansion can provide passively a highly stable behavior. The simulated
results show that the control framework significantly improves the level of dimen-
sional stability with respect to the passive response. This result has two important
implications. Firstly, it is concluded that the presented framework enables levels of
stability beyond what is passively possible. Secondly, the same control framework
can also be implemented in structures that do not have a particularly stable passive
behavior to attain a high level of dimensional stability. Thus, the presented technol-
ogy has the potential to significantly simplify the current development efforts that
are required to produce highly stable structures.

This higher level of stability, in relation to the passive approach, is achieved despite
the fact that several non-ideal conditions exist. The most important factors defin-
ing these conditions are the uncertainties in the behavior of sensors and actuators.
Different cases have been simulated to assess the impact of these uncertainties.

There are two aspects related to the sensor characteristics that decrease the achieved
level of stability. One is the fact that only a limited number of sensor measurements
is available given that it is unfeasible to equip the structure with as many sensors
as nodes in the model, which would easily result in thousands of sensors. The other
aspect is related to the uncertainty in the measurements. Temperature sensors are
inherently inaccurate and can only provide measurements within a given range of
accuracy.

The thermal field reconstruction based on the modal representation has been proved
to provide highly accurate estimations, which means that the fact that only a few
measurements are available does not significantly decrease the achieved performance.
Conversely, from the simulated cases it is concluded that the largest contributor
to the performance decrease is the noise in the measurements. If a different bias
exists at each sensor, an offset in the control output appears, which means that
the displacement is not stabilized exactly around the initial equilibrium point. The
remaining fluctuations in the stabilized displacements are concluded to be mostly a
result of the noise in the sensors. Thus, it is expected that if higher-performance
temperature sensors are developed it will be possible to achieve higher levels of
stability with exactly the same method.

The decrease in performance that appears due to the sensor noise is partially atten-
uated by implementing a Kalman filter. This provides a more smooth estimation of
the temperature fluctuations and a higher level of stabilization in the displacement
output.
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The uncertainty in the actuator behavior is assumed to be characterized by a linear
relation between the commanded signals and the applied signals. The factors relat-
ing both signals are assumed to be random following a known normal distribution.
Based on this assumption, the applied control heat is slightly different from the re-
quired heat input provided by the controller. The performance decrease arising from
this disparity has been shown to be smaller than that induced by the noise in the
sensors, which is identified as the largest contributor to the performance decrease.

An additional factor that can impact the achieved performance is the thermal and
mechanical coupling between the stabilized structure and the rest of the spacecraft
structure. If both structures are strongly coupled, any thermal fluctuation at some
point in the spacecraft can translate into a distortion in the stabilized structure. If
this fluctuation is measured at the vicinity of its origin it is feasible to compensate
it through the implemented control setup. However, if it is only measured through
sensors mounted in the stabilized structure, there will be a higher level of uncertainty
introduced in the estimation and thus, a suboptimal level of achieved stability. To
attenuate these effects there are two options. One is to mount temperature sensors
outside of the stabilized structure to accurately measure the fluctuations induced
by external perturbations. The other is to minimize the thermomechanical coupling
between the stabilized structure and the spacecraft structure. A combination of both
strategies is also possible and the adequate compromise should be found depending
on the particularities of each case.

It has also been assessed whether the uncertainty in the material properties can
affect the achieved performance at a relevant level. It has been concluded from this
study that, at least in the baseline case, any uncertainty in the material properties at
a reasonable level does not introduce relevant changes in the achieved performance.
Among all the physical properties that determine the thermomechanical response of
the structure, the uncertainties in thermal conductivity appear to be the ones with
the largest potential to influence the achieved performance.

The results achieved by the presented control framework have been presented for
a scenario in which a particular point of the structure is stabilized with respect
to an external reference frame. The option of stabilizing two different points of the
structure with respect to one another has also been evaluated resulting also in a high
level of dimensional stability. More complex cases can be implemented following the
same steps, with the only requirement of installing the necessary number of heaters.

It is also possible to expand the presented framework to take into account other
effects such as heat exchange through convection. With the appropriate changes it
would also be possible to develop a fully non-intrusive control setup which would
require estimating the thermal field through external sources, such as infrared cam-
eras, and applied heat through external radiation sources. A discussion on these
two aspects is presented in more detail in the next section which presents recom-
mendations for future work.
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7.2 Recommendations for Future Work

The presented work has tackled the main theoretical aspects that enable structural
stabilization based on the application of heat. The main conclusions of the work
have been that this control framework is theoretically feasible, which implies that no
insurmountable technical difficulties have been identified. Nevertheless, considering
that the next logical step consists in developing a physical demonstration of this
control framework that fully proves the feasibility of this approach, it is important to
make some comments on some theoretical aspects that could be further investigated
and some recommendations for the work ahead.

One of the first steps that will have to be conducted when implementing this control
framework will be the development of the thermomechanical model of the structure
to be controlled. This includes not only the finite element representation, as done
in this work, but also a proper validation of the model with respect to the real
structure. This requires the definition of correlation procedures and the introduction
of correction factors to ensure that the finite element model represents within an
acceptable tolerance the behavior of the real structure.

Additionally, given that the implementation will be tested on ground, it will be
necessary to expand the current thermal model to include the boundary condition
related to the heat exchange through convection. The simplest option would consist
in performing the tests under an environment of forced convection, which could
be modeled using a linear model. Consequently, no further linearization would be
required and only a slight modification of the heat exchange equation would be
necessary. It is also important to mention that this step could be avoided if said
tests were performed in a vacuum chamber.

The controller presented in this thesis is based on the linear quadratic regulator
theory which provides a systematic approach to calculate a matrix of proportional
gains. This controller has been implemented in combination with a Kalman filter
and a thermal modal expansion. The results obtained from simulations illustrate
that a significant improvement in the achieved dimensional stability can be achieved
through this method. However, it should not be discarded that even better perfor-
mances could potentially be achieved with other control approaches. Several aspects
in the presented framework could be investigated in more detail to assess whether
better strategies exist.

One first aspect is related to the locations of the control heaters. In the presented
thesis, their locations have been identified based only on the gain of the transfer
functions. This approach is straightforward when only one degree of freedom in
the structure needs to be controlled. As the number of degrees of freedom to be
controlled increases, and also perturbations from different sources are present, the
locations identified by this approach become suboptimal. A more general procedure
should be developed to identify optimal heater locations based on the knowledge
of some perturbation characteristics and the degrees of freedom that are to be con-
trolled. One possibility is to base this identification on a set of numerical simulations
that test different possible configurations to find the most favorable heater locations
that optimize specific variables.
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Another theoretical aspect that could be investigated is the derivation of the control
laws. As aforementioned, the presented controller is based on the linear quadratic
regulator procedure and considering applied heat as the input variable. The con-
trol is based in modifying the temperature field in such a way that distortions are
minimized at some particular points. There exist alternatives to this approach that
would modify the obtained results, potentially for the better. One option is to de-
rive the controller based on another multi-input multi-output approach (e.g. PID
or H∞). Also, according to the presented approach it is necessary to equip the
structure with as many heaters as controlled degrees of freedom. It could also be
interesting to develop a control framework based on a lower number of heaters.
Instead of controlling each degree of freedom individually, this could be based on
minimizing a global metric defined from the displacements at the controlled nodes.
The stability achieved at each controlled node individually would, in principle, be
lower than the one presented in this work. However, it is possible that it could still
meet some predefined stability requirements and, more importantly, it would result
in a simpler setup given that it would require less heaters.

Another aspect around which there is potentially margin for improvement is in the
noise filtering process. The implemented Kalman filter has proved essential to filter
the noise in the sensors and to provide an accurate estimation of the thermal field,
which is required to derive the control inputs. However, under some circumstances
part of the noise in the sensors is not fully filtered and it is transmitted to the
control signals. This can be problematic above a certain level of noise because it
results in a noisy control signal that the actuators may not be able to reproduce.
Some investigations should be conducted to minimize this effect. A possible option
is to implement more advanced filters or to introduce an additional filter layer at
the control signal level.

It is also worth mentioning that the presented control framework could be expanded
to compensate distortions that have a purely mechanical origin, i.e. those that do
not originate from thermal fluctuations. In the presented strategy, the displacement
field is estimated from the thermal field, which in turn is estimated from temperature
measurements. This has as a consequence that distortions induced by mechanical
loads are not captured because they do not introduce temperature fluctuations.
However, if they were measured using another mechanism it would still be possible
to compensate them through controlled heat. The measurement of these purely me-
chanical distortions would require equipping the structures with additional sensors,
such as displacement or strain sensors at some specific locations. Even in those
cases where distortions had purely a thermal origin, the presence of these additional
sensors could be helpful to refine the displacement estimation obtained from the
thermal field. This expanded approach would be useful to counteract distortions
introduced by low-frequency mechanical perturbations or even permanent deforma-
tions to a certain extent. However, it would not be a valid approach to compensate
high-frequency perturbations. This ultimately depends on the transfer functions
between displacement and temperature fluctuations, which have very low gain at
high frequencies.

Considering that the practical feasibility of this concept is proved through experi-
mental tests, it could subsequently be investigated whether the fully non-intrusive
option is also practically feasible. This strategy has been shortly described in Chap-
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ter 5 and it consists in using an infrared camera as a temperature sensor and ra-
diation sources to apply the control heat. As a result, no direct contact with the
structure is required to control its distortions. The implementation of this approach
would first require a reassessment of the radiation linearization. Given that in this
case the radiation exchange would play a central role in the control strategy it is ex-
pected that a more accurate approach to model its nonlinearity would be necessary
in order to achieve an acceptable level of performance.
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Appendix A

Link parameter derivation in the
LPM

The Lumped Parameter Method (LPM) presented in Section 3.1.2 requires the calcu-
lation of the link parameters that characterize the heat exchange between nodes [89].
This derivation can be based on experimental fitting methods [90] as well as analyt-
ical procedures [89]. This appendix presents an analytical procedure based on the
finite difference method (FDM) [9] to calculate the conductive and radiative link
parameters.

Starting with the conductive link parameters, the FDM can approximate the heat
exchange Equation 3.5 in terms of finite differences, as outlined in Section 3.1.1, as

ρcp

(
T t+∆t
i,j,k − T ti,j,k

∆t

)
= λ

(
Ti+1,j,k + Ti−1,j,k − 2Ti,j,k

∆x2

)
+ λ

(
Ti,j+1,k + Ti,j−1,k − 2Ti,j,k

∆y2

)
+ λ

(
Ti,j,k+1 + Ti,j,k−1 − 2Ti,j,k

∆z2

)
+Qi,j,k.

(A.1)

The procedure to calculate the conductive link parameters consists in equating the
previous expression with the heat exchange equation in LPM form, i.e.,

Cn

(
T t+∆t
n − T tn

∆t

)
=

N∑
m=1

Knm(Tm − Tn) +Qn. (A.2)

First, Equation A.1 can be rewritten into

ρcp

(
T t+∆t
i,j,k − T ti,j,k

∆t

)
= λ

(
Ti+1,j,k − Ti,j,k

∆x2

)
+ λ

(
Ti−1,j,k − Ti,j,k

∆x2

)
+ λ

(
Ti,j+1,k − Ti,j,k

∆y2

)
+ λ

(
Ti,j−1,k − Ti,j,k

∆y2

)
+ λ

(
Ti,j,k+1 − Ti,j,k

∆z2

)
+ λ

(
Ti,j,k−1 − Ti,j,k

∆z2

)
+Qi,j,k.

(A.3)
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In the LPM, each node represents an isothermal volume. If the discretization of
the domain is performed using a rectangular grid, then the volume of one node is a
rectangular hexahedron with side lengths equal to ∆x, ∆y and ∆z. A representation
of this volume is included in Figure A.1. The next step consists in multiplying the
previous equation by the nodal volume, this yields

ρcp

(
T t+∆t
i,j,k − T ti,j,k

∆t

)
∆x∆y∆z = λ

(
Ti+1,j,k − Ti,j,k

∆x

)
∆y∆z

+ λ

(
Ti−1,j,k − Ti,j,k

∆x

)
∆y∆z

+ λ

(
Ti,j+1,k − Ti,j,k

∆y

)
∆x∆z

+ λ

(
Ti,j−1,k − Ti,j,k

∆y

)
∆x∆z

+ λ

(
Ti,j,k+1 − Ti,j,k

∆z

)
∆x∆y

+ λ

(
Ti,j,k−1 − Ti,j,k

∆z

)
∆x∆y +Qi,j,k.

(A.4)

The product ρcp∆x∆y∆z at the left-hand side of Equation A.4 can be abbreviated
by the total heat capacity of the node represented by Ci,j,k. At the right-hand
side, the increments at the denominator are equivalent to distances between nodes,
which can be represented by l. The multiplication between increments is equivalent
to the cross-sectional area between nodes that can be represented by A. Therefore,
Equation A.4 can also be written as

Ci,j,k

(
T t+∆t
i,j,k − T ti,j,k

∆t

)
=

λAi
li

(Ti+1,j,k − Ti,j,k)

+
λAi
li

(Ti−1,j,k − Ti,j,k)

+
λAj
lj

(Ti,j+1,k − Ti,j,k)

+
λAj
lj

(Ti,j−1,k − Ti,j,k)

+
λAk
lk

(Ti,j,k+1 − Ti,j,k)

+
λAk
lk

(Ti,j,k−1 − Ti,j,k) +Qi,j,k.

(A.5)

Considering now only the heat exchange equation centered at node n (equivalent to
node i, j, k) Equation A.5 can be written as

Cn

(
T t+∆t
n − T tn

∆t

)
=

N∑
m=1

λAnm
lnm

(Tm − Tn) +Qn. (A.6)

Comparing Equation A.6 to Equation A.2 it can be concluded that the conductive
link parameters can be calculated using

Knm =
λAnm
lnm

. (A.7)
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∆y

∆x

∆z

i,j,k

i+1,j,k

i-1,j,k

i,j+1,k

i,j,k+1

i,j,k-1

i,j-1,k

Figure A.1: Representation of one node in the LPM.

Since this derivation is based on the FDM, the error introduced in Equation A.6 is
minimized when the discretization scheme resembles the one required for the FDM,
i.e., a rectangular grid. If the domain is meshed using an irregular grid the error
introduced in the estimation of the conductive link parameters might increase and
another approach for the estimation might be more appropriate.

Equation A.6 is a lumped parameter expression of the thermal problem considering
only heat exchange through conduction and internal heat sources. The contribution
of the radiation exchange between nodes is traditionally introduced into this equa-
tion based on the approach described by Gebhart in [71]. This method is based on
the definition of the absorption factors. For every pair of nodes i and j there is an
absorption factor Bij that represents the fraction of energy emitted by the area Ai
that is absorbed in Aj. This must not be confused with the view factor, commonly
represented by Fij, which is the fraction of radiation leaving from Ai that reaches
Aj.

The absorption factors are related to the view factors according to [91],

Bij = Fijεj +
N∑
k=1

Fik(1− εk)Bkj. (A.8)

Writing Equation A.8 for each absorption factor results in a system of linear equa-
tions that can be solved to calculate the absorption factors as a function of the
view factors. One important difference between Fij and Bij is that the view factors
depend only on the geometry of the domain whereas the absorption factors are also
a function of the surface emissivities.

The heat exchange between nodes i and j is the difference between the heat emitted
by Ai that is absorbed by Aj and the heat emitted by Aj that is absorbed by Ai.
This can be expressed through the absorption factors as

Qij = σεiAiBijT
4
i − σεjAjBjiT

4
j . (A.9)
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This same expression can be rewritten introducing the reciprocity of the absorption
factors [71],

εiBijAi = εjBjiAj, (A.10)

which results in
Qij = σεiAiBij

(
T 4
i − T 4

j

)
. (A.11)

Equation A.11 can now be introduced into Equation A.6 to account for the radiation
exchange between nodes. Finally, this results in the equation that has been presented
in Section 3.1.2 which written for node n is

Cn
T t+∆t
n − T tn

∆t
=

N∑
n=1

(
λnmAnm
lnm

(Tm − Tn)

)
+

N∑
m=1

(
σεnAnBnm(T 4

m − T 4
n)
)

+Qn.

(A.12)
Therefore, the radiative link parameters for each pair of nodes can be calculated as

Rnm = σεnAnBnm. (A.13)

Calculating the conduction links at each node based on Equation A.7 and the ra-
diation links based on Equation A.13 it is possible to fully characterize a lumped
parameter model that describes the thermal behavior of a structure in space, i.e.
under the absence of convection.
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Appendix B

FEM thermal formulation

The FEM approach implemented in this work is based on the Galerkin method [76],
which in turn is a particular case of the weighted residual method. The goal of this
appendix is to present in detail the assumptions and mathematical formulation that
are followed in this approach and to clarify the notation that is used throughout the
thesis. The presented formulation is particularized for the thermal problem.

First, the equation describing the thermal field in the domain of study is expressed
in form of the PDE

ρcp
∂T

∂t
= λ∇2T +Q. (B.1)

The FEM provides a numerical approximation to the solution of this PDE expressed
inside each finite element as

T (x, y, z, t) =
ne∑
i=1

Ti(t)Ni(x, y, z) = [N ]{T}, (B.2)

with T being the approximated thermal field, ne the number of nodes in one finite
element, Ti the nodal temperatures for each node in the element and Ni the assumed
shape functions that interpolate the thermal field between nodes. If expressed in
matrix form [N ] is a row vector containing the shape function values and {T} is
the column vector of the nodal temperatures. This approximation does not give an
exact solution of Equation B.1 and, therefore, a residual will remain. This residual
can be identified by R and is defined as

R = ρcp
∂T

∂t
− λ∇2T −Q. (B.3)

The weighted residual method calculates the solution of the nodal temperatures Ti
by minimizing a weighted form of this residual, integrated over the whole domain.
This is expressed as∫

Ω

wiRdΩ =

∫
Ω

wi

(
ρcp

∂T

∂t
− λ∇2T −Q

)
dΩ = 0 for i = 1, 2, . . . , ne (B.4)

The choice of the weight function wi results in different methods. A common ap-
proach is the Galerkin method, which uses as weight functions the same shape
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functions that are used to define the thermal field in Equation B.2. Therefore, the
Galerkin method consists in solving∫

Ω

Ni

(
ρcp

∂T

∂t
− λ∇2T −Q

)
dΩ = 0 for i = 1, 2, . . . , ne (B.5)

Introducing now the identity B.2 and rearranging the terms in B.5 results in∫
Ω

Ni

(
ρcp[N ]{Ṫ}

)
dΩ =

∫
Ω

Ni

(
λ∇2T

)
dΩ +

∫
Ω

NiQdΩ for i = 1, 2, . . . , ne

(B.6)
The first term at the right-hand side can be integrated by parts, which yields∫

Ω

Ni

(
λ∇2T

)
dΩ = −

∫
Ω

∇Niλ∇TdΩ +

∫
S

Ni

(
λ∇T

)
d~s. (B.7)

At this point it is useful to define the derivative matrix [B], which is a matrix built
with the gradient of the shape functions. For a generic case with ne nodes in each
element, the [B] matrix is defined as

[B] = ∇[N ] =



∂N1

∂x

∂N2

∂x
. . .

∂Nne

∂x

∂N1

∂y

∂N2

∂y
. . .

∂Nne

∂y

∂N1

∂z

∂N2

∂z
. . .

∂Nne

∂z


(B.8)

Using this matrix it is now possible to calculate the temperature gradient as

∇T = [B]{T}. (B.9)

Introducing also the equivalences

{q} = −λ∇T (B.10)

and d~s = {n}ds (B.11)

with {n} being the normal vector to the surface, it is now possible to combine
equations B.6 and B.7 resulting in∫

Ω

Ni

(
ρcp[N ]{Ṫ}

)
dΩ =−

∫
Ω

(∇Niλ[B]{T}) dΩ

−
∫
S

Ni{q}T{n}ds

+

∫
Ω

NiQdΩ for i = 1, 2, . . . , ne

(B.12)

Writing Equation B.12 for all the nodes in the element results in(∫
Ω

ρcp[N ]T [N ]dΩ

)
{Ṫ} =−

(∫
Ω

λ[B]T [B]dΩ

)
{T}

−
∫
S

[N ]T{q}T{n}ds

+

∫
Ω

[N ]TQdΩ.

(B.13)
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Introducing the definitions

Thermal capacity matrix : [C] =

∫
Ω

ρcp[N ]T [N ]dΩ (B.14)

Thermal conductivity matrix : [K] =

∫
Ω

λ[B]T [B]dΩ (B.15)

Heat flux vector : {Rq} = −
∫
S

[N ]T{q}T{n}ds (B.16)

Heat source vector : {RQ} =

∫
Ω

[N ]TQdΩ (B.17)

the matrix form of the thermal problem in finite elements is finally obtained

[C]{Ṫ}+ [K]{T} = {Rq}+ {RQ}. (B.18)

One of the crucial steps in applying the FEM is to define the shape functions to
interpolate the thermal field within one finite element, as expressed in B.2. These
shape functions can be defined using polynomial expressions and their exact defini-
tion depends both on the geometrical shape and the coordinate system of the finite
elements.

There exists a wide variety of finite elements that can be used to mesh a three-
dimensional domain: tetrahedrons, hexahedrons, prisms, pyramids, etc. It is also
possible to use more than one type of element to create a mesh. In the examples
presented in this work the domain of study has been meshed using uniquely hexa-
hedron elements built with 8 nodes. The fact that the domain is meshed using the
same type of element gives some uniformity to the employed equations and simplifies
the radiation exchange equations. However, the presented method in this work is
fully applicable using also other types of elements.

The hexahedron element with 8 nodes is represented in Figure B.1. Each of these el-
ements in the mesh requires the definition of 8 shape functions in the xyz coordinate
frame. This can become unpractical given that each element might have a slightly
different geometry, and thus, each shape function at each element requires different
components if expressed in this frame. A very practical approach to simplify this
process is known as the isoparametric representation [92]. Based on this approach,
the shape functions are defined using a set of coordinates known as natural coor-
dinates (ξ, η, µ) and subsequently transformed to the global system of coordinates
(x, y, z). Using the isoparameteric representation, the hexahedron shape functions
that are used in this work are expressed as

N1 =
1

8
(1− ξ)(1− η)(1− µ) N2 =

1

8
(1 + ξ)(1− η)(1− µ)

N3 =
1

8
(1 + ξ)(1 + η)(1− µ) N4 =

1

8
(1− ξ)(1 + η)(1− µ)

N5 =
1

8
(1− ξ)(1− η)(1 + µ) N6 =

1

8
(1 + ξ)(1− η)(1 + µ)

N7 =
1

8
(1 + ξ)(1 + η)(1 + µ) N8 =

1

8
(1− ξ)(1 + η)(1 + µ)

(B.19)
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1 2

34

5 6

78

Figure B.1: Finite element using a hexahedral shape.

The transformation between coordinates (ξ, η, µ) and (x, y, z) can be performed
using

x =
8∑
i=1

xiNi(ξ, η, µ) y =
8∑
i=1

yiNi(ξ, η, µ) z =
8∑
i=1

ziNi(ξ, η, µ) (B.20)

where xi, yi and zi are the coordinates of each node in the element.

Using the natural coordinates (ξ, η, µ) each hexahedron element is represented by a
cube with each coordinate ranging from −1 to 1.

Finally, the isoparametric representation is also useful to simplify the numerical
integration of the FEM matrices B.14, B.15 and B.17. For each of these matrices
it is necessary to perform a volume integral. This integral can be calculated in the
domain of the natural coordinates introducing the Jacobian determinant, i.e.

dΩ = dxdydz = |J |dξdηdµ. (B.21)

The Jacobian determinant can be calculated from the Jacobian matrix, equal to

[J ] =



∂x

∂ξ

∂y

∂ξ

∂z

∂ξ

∂x

∂η

∂y

∂η

∂z

∂η

∂x

∂µ

∂y

∂µ

∂z

∂µ


. (B.22)

The components of this matrix can in turn be calculated using

∂x

∂ξ
=

8∑
i=1

∂Ni

∂ξ
xi

∂y

∂ξ
=

8∑
i=1

∂Ni

∂ξ
yi

∂z

∂ξ
=

8∑
i=1

∂Ni

∂ξ
zi

∂x

∂η
=

8∑
i=1

∂Ni

∂η
xi

∂y

∂η
=

8∑
i=1

∂Ni

∂η
yi

∂z

∂η
=

8∑
i=1

∂Ni

∂η
zi

∂x

∂µ
=

8∑
i=1

∂Ni

∂µ
xi

∂y

∂µ
=

8∑
i=1

∂Ni

∂µ
yi

∂z

∂µ
=

8∑
i=1

∂Ni

∂µ
zi

(B.23)

To increase the speed in the integration of expressions B.14, B.15 and B.17, Gaussian
quadrature rules are frequently implemented [93]. The approach followed in this
work has been to use the Gaussian quadrature rule with 6 points.
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Appendix C

Stabilization analysis for the
aluminum case

The results presented in Chapter 6 have been obtained assuming that the structural
plate represented in Figure 3.4 is made of silicon carbide, according to the properties
presented in Table 3.1 on page 40. The thermomechanical properties of silicon
carbide, among which there is a very low coefficient of thermal expansion, result
in a structural configuration that exhibits a highly stable passive behavior. As
presented thoroughly in Chapter 6, this passive level of stabilization can be further
increased through the presented framework.

As illustrated through the examples in Chapter 6, the highest levels of structural
stability can be attained by combining an already passively stable structure with an
active control technique. However, it is also possible to achieve high levels of stability
by applying an active control technique to a structure that is not particularly stable
in passive terms. In some cases, applying the active method of stabilization may
already provide the required level of stability and, therefore, could spare the design
efforts related to developing a passively highly-stable structure, which often entails
using high-performance materials.

To exemplify this approach, this appendix analyzes the distortion reduction that
could be achieved if the structural plate represented in Figure 3.4 were made of
aluminum. The assumed mechanical properties in this case are those included in
Table 3.1 for the aluminum alloy.

First, the uncontrolled and controlled distortions are simulated assuming that a
known sinusoidal perturbation arising from instrument 1 is applied to the structure.
This is equivalent to the case presented in Section 6.1. If it is known that the thermal
perturbation follows a sinusoidal function with an amplitude of 10 W, as represented
in Figure 6.3 on page 95, then it is possible to calculate the exact heat inputs that are
necessary to compensate the arising distortions at point A. Under this ideal condition
where the perturbation is known it is possible to achieve an almost perfect distortion
cancellation reaching controlled distortions in the order of magnitude of 10−22 m.
This result is represented in Figure C.1, where both the uncontrolled and controlled
responses are presented. This figure can be compared to the results for the silicon
carbide case in Figure 6.5 on page 96. The comparison shows that the distortions
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in the uncontrolled case are significantly larger for the aluminum case. Nonetheless,
the figure also proves that it is possible to virtually cancel completely the distortion
effects of known perturbations, even when the structure is not particularly passively
stable.

To analyze the scenario in which the perturbation is unknown, the achieved response
considering the feedback loop presented in Chapter 6 is also simulated for the alu-
minum case. The same setup presented in Chapter 6 and represented in Figures 6.1
and 6.2 is assumed. Based on the assumption that the structure is equipped with
20 noisy sensors and 3 control heaters, the achieved controlled response in each
direction at point A is represented in Figure C.2.

It can be observed in Figure C.2 that under the absence of active control the dis-
tortions can achieve significantly higher values than in the silicon carbide case. The
maximum amplitude appears in the y-direction, where an amplitude of 22.3 µm is
reached. When the active control is applied, the distortions in each direction are
reduced by a factor of approximately 20. The exact maximum amplitudes in each
direction, both for the uncontrolled and the controlled cases, are included in Ta-
ble C.1. Also, the stabilization improvement in terms of the standard deviation for
each direction is presented in Table C.2.

It can be concluded from this example that high levels of stabilization can be
achieved for cases in which the structure has not been designed to be particularly
stable in passive terms. In this case, a structure that under no active stabiliza-
tion would experience distortions in the range above 10 µm, can be dimensionally
stabilized at levels below 1µm. Provided that this level of stabilization satisfies
some predefined stability requirements, this strategy could result in some cases in a
significant decrease of costs associated with the development of stable structures.

Maximum amplitude

Direction
Uncontrolled

response
Controlled
response

Reduction
factor

x 5.529 µm 0.261µm 21.2
y 22.322µm 0.897µm 24.9
z 2.900 µm 0.149µm 19.5

Table C.1: Maximum amplitude of displacements at point A for the uncontrolled
and controlled cases in a plate made of aluminum.

Standard deviation

Direction
Uncontrolled

response
Controlled
response

Reduction
factor

x 2.153 µm 6.837·10−2
µm 31.5

y 8.692 µm 1.403·10−1
µm 61.9

z 1.135µm 4.229·10−2
µm 26.8

Table C.2: Standard deviation of displacements at point A for the uncontrolled and
controlled cases in a plate made of aluminum.
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Uncontrolled response Controlled response
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(a) Displacement in the x-direction.
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(b) Displacement in the y-direction.
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(c) Displacement in the z-direction.

Figure C.1: Displacements at point A induced by known perturbations in Instrument
1 considering a plate made of aluminum.
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Uncontrolled response Controlled response
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(a) Displacement in the x-direction.
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(b) Displacement in the y-direction.
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(c) Displacement in the z-direction.

Figure C.2: Displacements at point A induced by random perturbations in Instru-
ment 1 considering a plate made of aluminum.
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