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ABSTRACT

Effective cost and risk management is essential for the success of large infrastructure projects as
demonstrated by a long history of cost overruns. In order to achieve cost transparency and to
adequately consider cost and schedule uncertainties (risks), base cost validation and probabilistic
methods need to be used for a full risk assessment. Probabilistic methods include identification and
characterization of risks (estimates of probabilities and consequences) to allow a determination of
the probability of project delivery within cost and schedule goals.

More advanced processes, to better identify and manage such risks on complex tunneling
projects, have been developed over the last 20 years including risk-based methods for improved cost
and schedule estimation. However, cost and schedule uncertainties were generally treated
separately instead of integrating them into one model. This integration is highly relevant as schedule
delays are very often the root cause for severe cost overruns.

This paper presents a fully-integrated probabilistic cost and schedule model that provides a
basis for better cost and schedule analysis (including “what if” analysis) on a management level. The
application is based on combination of two practice-proven approaches, i.e. CEVP (Cost Estimate
Validation Process, Washington State Department of Transportation) and RIAAT (Risk Administration
and Analysis Tool, RiskConsult) resulting in a powerful tool for the management of complex risk

environments.
1 INTRODUCTION

Significant progress has been made over the last 20 years in the identification, characterization,
mitigation and management of risk for complex projects. Risk guidelines have been developed (ITA
1992, 2004; ITIG 2006, 2012; Reilly 2001, 2003, 2008, 2013; Goodfellow & O’Carroll 2015) and are
more routinely applied with increasing success, such that the general process and application of risk
management principles are now generally clear. During this period, specific applications and detailed

tools have been developed to assist with risk identification, characterization and mitigation, such as:



* Risk-based cost estimating, e.g., WSDOT'’s CEVP® cost estimating/cost validation/risk
management process (Reilly et al. 2004)

* Risk management processes and procedures (ITA 2004, ITIG 2006, Reilly 2008, Goodfellow &
O’Carroll 2015)

* Streamlined software applications and integrated systems, e.g., RIAAT 2017, that allow
efficient application of risk-based processes including risk characteristics (probabilities and
consequences), correlations, interdependencies, linkage, risks occurring multiple times and

schedule/critical path analysis (Sander et al. 2016)

The most recent step in advancing such risk-based methods was to add full risk-based critical path

schedule and cost integration. This is the subject of this paper.

2 INTEGRATED COST AND SCHEDULE MODEL

2.1 Cost-Risk Approach

Formerly, cost estimates, usually deterministic with quantities and unit prices, accounted for risk
based on the estimator’s experience and best judgment without fully identifying and quantifying

Ill

risks. Such program uncertainties were included in a general “contingency” to account for
uncertainties. The judgment of the level of such contingencies was related to the level of definition
of the estimate (Estimate Classes as defined in AACE International 2016).

In CEVP (Reilly et al. 2014), estimates are comprised of two components: the base cost
component and the risk component (see section 2.2). The base cost does not include “contingency”
but does include the normal variability of prices and quantities. Once the base cost is established, a
list of risks is created and characterized (probability, consequence) by the project team, including
both opportunities and threats, and are listed in a risk register. This risk assessment replaces general
and vaguely defined contingency with explicitly defined risk events that include the associated
probability of occurrence and impact on program cost and/or schedule for each event.

The base cost is developed by the project team/estimator and is validated by an experience

cost estimator. The risk assessment is developed in a cost risk workshop by a set of participants

including the project team, subject matter experts and experienced risk elicitators.

2.2 Cost Components

Introducing a clear cost component structure allows for cost transparency and cost control. Cost

components that need to be addressed in the estimate are:

* Base cost —the cost if “all goes according to plan” without contingencies

* Risk cost — the cost resulting from threats and opportunities that might occur



* Escalation cost — additional costs resulting from inflation

A best practice cost component structure for different project phases is shown in Figure 1. It consists
of actual cost without uncertainties (left part of the waterfall diagram: BO, A, | — Baseline Cost) and
uncertain components (right part of the waterfall diagram: B*, R, E — Uncertainties). The sum of the
uncertain cost components is also called delta cost and is used for allowing for inclusion of
uncertainties in the project budget. While uncertainties are high in early project phases, they reduce
to zero upon project completion. Escalation (prediction for inflation) becomes indexation cost

(contractual clause for compensation for inflation) and realized risks result in actual additional cost.
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Figure 1. Waterfall diagram for cost component structure, planning phase (a), construction phase (b), project

completion (c)

2.3 RIAAT — Risk Administration and Analysis Tool, Process

The process used for the integrated cost and schedule model is shown in Figure 2. In the first step,
Base Cost is estimated and validated, subjected to uncertainties, and integrated into the Work
Breakdown Structure (WBS). Subsequently, identified risks and a markup for unknowns with cost

and time impacts will be assessed and integrated into the WBS and the construction schedule.
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A probabilistic simulation of the construction schedule incorporates all risks with associated

time impacts. The results include a construction completion date, delays with respect to specific

milestones, critical paths and near-critical paths. The results of the construction schedule are linked

back to the WBS, where the time impacts can be associated with time-related costs to evaluate the

cost impact of program delays.

If RIAAT software (RIAAT 2017) is used, there will be a hierarchical project structure, full MS

Excel Import/Export, advanced risk modeling and numerous options for visualization. Construction

schedules are fully integrated into the software. Risks are assigned to tasks of the schedule from the

project tree using drag&drop; updated simulation results are obtained within seconds and available

“live” during workshops. Figure 3 shows the main interface of RIAAT, the subsequent figures in this

paper were generated using RIAAT.
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Figure 3. Sample main interface, RIAAT risk software

3 CASE STUDY — CONSTRUCTION OF A BASE TUNNEL

3.1 Project Description

A fictitious sample project is used in this paper to illustrate the process. It is based on experience

from major European railway base tunnels. This 14 km twin-bore tunnel consists of several Tunnel

Boring Machine (TBM) drives as well as Drill & Blast (D&B) drives in different geological formations,

an access shaft, an emergency stop, various cross cuttings and (optional) inner linings. A linear

project schedule is shown in Figure 4. In RIAAT, the base schedule is modeled as a Gantt diagram

(Figure 5). The deterministic critical path is shown in red.

8.0 9.0 10.0 11.0 12.0 13.0

14.0

e Drill & Blast

~ r~
— — TBM —
o - o
Q = = = [Nner lining ~
._\ B Access shaft i
=] m Emergency stop
© i =)
= Civil works S
S \ a Cross cutting ~
@ - 1 ' [ \ s
- . . -
O =a_ z 1 o
e — ~
T e (] (]
— Co— o N ] - 1 - .
= S — -
o —— e E— e e i T o
o™ - - e - S— o™
o — &
~ = ~

Figure 4. Linear base schedule — horizontal axis: station, vertical axis: time
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Figure 5. Base schedule in RIAAT, deterministic critical path without risks is shown in red

3.2 Base Cost and Risk Register

A deterministic base cost estimate is made by the design firm. It is reviewed, discussed and validated
with the project team and a bandwidth is assigned to account for minor variability in the base cost
estimate. Subsequently, risks are identified and assessed in moderated workshops with the project
team and subject matter experts as described in section 2.1. The process is structured using “risk
fact sheets” to gather and systematize information such as risk description, qualitative and
guantitative assessment, risk strategy and risk mitigation measures. The quantitative assessment
typically consists of either probability of occurrence (0-100 %) or expected rate of occurrence (e.g.,
1, 2, 3, etc., modeled with a Poisson distribution) and cost/time impact using a three-point estimate
(best, most likely and worst case). Complex risks (e.g., dependencies) can be modeled using event or
fault trees (ETA, FTA). The risk register is updated during the workshops to give the project team a
clear picture of the ongoing process.

Table 1 shows the quantitative assessment of the top 10 risks. Figure 6 shows the same risks
in a range impact diagram to illustrate the full bandwidth of each risk. Risks that are assigned to
more than one task will be dependent (i.e., the risk will impact both tasks in the same way). The
importance of the capability to model dependencies in schedules was explained by Dorp & Duffey

(1999). Independent risks such as “Main Bearing Damage” for four different TBMs are modeled



separately to ensure independency. For clarity, similar independent risk events are not displayed in

Table 1 and Figure 6.

Table 1. Sample quantitative assessment of top 10 identified risks

# Identified Risk Probability of Rate of cost impact (USD x 1000) time impact (d)
Occurence  Occurence best | most likely lworst best | most likely | worst

1 TBMS2 - Main Bearing Damage 20% - 1000 2000 3000 90 180 400
2 TBM N1 - Changein Exc.&Sup. Categ. 70% - 500 3000 4500 20 120 180
3 TBM N1 - Immobilization Squeezing 25% - 1500 3000 5000 60 120 200
4  Contractor Appeal 50% - - - - 30 90 180
5 No Release of Design 30% - 225 900 1350 30 120 180
6 TBM N - Delay installation 25% - 400 1200 2000 20 60 100
7 Extension Fault zone km 2.0 80% - 0 840 1660 42 83
8 TBM S2 - Extension of inner lining - 3 150 200 250 5 10 20
9 Logistic Problems Crosscut S (13-25) 30% - 150 375 600 20 50 80
10 CC N - Mountain water inflow >401/s - 3 222 886 1782 1 3 14
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Figure 6. RIAAT Range impact diagram for top 10 identified risks, bandwidth: VaR5-VaR95

After the risk register is complete, all risks with time impact are assigned to the base schedule

(Figure 7). The colors indicate the type of assigned risks, in this case blue for owner risks, green for

contractor risks and purple for tender risks (pre-contract). The length of each task is not a

deterministic number anymore, it contains uncertainties and is thus represented with a distribution

function.

Due to the assigned uncertainties,

different critical paths become possible. The

probabilities of occurrence for various critical paths are calculated using Monte Carlo Simulation.
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Figure 7. RIAAT schedule with assigned risks, colors indicate risk impact

4 RESULTS

Simulation results for the critical paths are shown in Figure 8. Each color indicates one critical path. A
task with more than one color is part of more than one critical path, e.g., the task “Tender, Contract
Award” is made up of all colors. Hence, it is part of all possible critical paths. A graphical example for
interpretation is given in Figure 9. In this example, there is a 60% chance (blue + yellow) that the
completion date will be determined by the TBM south drive, but there is also a 30% chance (green +
red) that the TBM north drives will become critical. The D&B drive from the north portal only has a
12% chance of becoming critical. This will be the case when the fault zone turns out to be much
longer than expected (risk 7).

The construction completion date and the deviation to the original construction completion
milestone of the base schedule are shown in Figure 10. Direct time-related cost that is caused
specifically by one risk event is calculated within the risk itself (see Table 1). In addition to that, a
delay on the critical path causes additional time-related cost. This cost is now calculated using the
overall project delay on the critical path. In this case, this was done by taking into account only the

portion of the critical path delay caused by the owner’s risks (see Figure 11).
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overall risk cost of the project

After including time-related cost, a probabilistic cost forecast for all cost components can be

made. The results are shown in Figure 12. The vertical blue line represents the deterministic base

cost without uncertainties. Taking into account uncertainties related to the base will result in the

blue curve. Adding risk cost results in the red curve. Finally, escalation cost is added to obtain the

total project cost. Delta cost is obtained by comparing the total project cost with the deterministic

base cost. In this case, a certainty level of VaR80 was chosen to determine the project’s budget.
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5 DISCUSSION

The above describes a clear risk process that, in general, is being used by a significant number of
projects and Agencies in the planning and design phases. The CEVP-RIAAT process can be used to
establish a realistic budget (e.g., setting the budget for a program of projects at the P80 level — an
80% chance that the projects will be delivered at or under this number; a 20% chance that they will
be delivered over this number). The P-level will depend on the historical experience of the Agency
and if the project is a large complex project — perhaps P80 (Reilly 2016) or a set of smaller more
routine projects — perhaps P60.

Beyond the planning and design phases, the use of RIAAT will enable tracking progress,
construction change orders and cashflow with a risk-based approach. Integrated change order
management can be applied, and probabilistic look-aheads can be used to update the project’s
budget certainty. Changing P-levels (initial P80 budget decreases to P30/initial P80 increases to P95)
are paramount for controlling the projects budget, i.e., increasing or reducing it.

Advances in risk-based cost and schedule estimation and management are being implemented
due to more widespread recognition of the need to apply risk-based methods, the advantages of
using such processes and the publication of risk guidelines by international associations (ITA, ITIG),
as well as U.S. Federal and State Agencies. Application of these principles and process has been
approved and is being used by major U.S. Government Agencies (FHWA, FTA, Corps of Engineers,

State Departments of Transportation) and they are also being applied internationally.
6 CONCLUSIONS

A software-supported risk process was presented on a sample tunneling project that has the
capability to enhance risk-based project management in the U.S. and internationally. The main

conclusions are:

¢ Afully integrated cost-schedule model is available that can analyze risk impact on
construction schedules and can enable the integration of delay cost.

* Probabilistic schedule simulations can be used to determine major critical paths and their
respective probabilities.

* Model results can be used for budgeting in the planning and design phases.

* Budget control with integrated risk/change order management can be used during

execution.
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