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menarbeiten werden.
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Abstract

Many applications of plasma technology at atmospheric pressure use the plasma as a high
temperature source. For these thermal plasma jet processes, control and process observa-
tion are crucial methods needed to ensure the process stability, reliability and enable new
capabilities within the process likewise.

Maintaining such a plasma in a steady state of operation and compensate deviations
coming from internal disturbances (turbulent flow, inhomogenous axial heat flux, etc.) or
due to externally changed conditions (ripple in the current/voltage power supply, erosion
of the electrodes) is not an easy task and requires deep insight into the basic physics of
the underlying process. Hence, if maintaining a plasma in a stationary state is already a
difficult task, to imprint a pulsed pattern, becomes a very demanding job. Designing a
efficient feedback control for such a plasma discharge seems to be challenging task, where
a solution still has to be found. A lot of the present systems rely on empirical models in
order to predict the process behaviour. Yet even works, which are based on physical models,
do not consider plasma dynamics. Consequently, there is a need of a thermal arc plasma
model, which on one hand considers all the relevant physical phenomena and on the other
hand is simple enough to allow an efficient calculation with lower need of computational
effort.

Also there is a high demand for techniques that analyse the data from measurements of
transient phenomena and extract plasma parameters, which are of interest for the regarded
process (like particle densities and temperatures). This is most notably relevant for plasma
discharges where metal vapour is present. This work pursues a dual approach.

At first this work aims to design a flatness based control, able to track a desired plasma
temperature trajectory at a relatively high frequency rate. The tracking of this behaviour
will be achieved by one physical quantity alone, the cathode temperature.

The second idea of this work is to develop a simplified radiation model, which links
the emitted radiation of the plasma to the radial plasma temperature and electron density
distribution within the thermal arc.

Combining both contributions, the model based control and the radiation model, will
help to constitute a new tool set to gain and maintain stability of the plasma discharge and
observe the process parameter evolution.

This novel approach bridges the gap between different scientific disciplines like plasma
physics, quantum mechanics, radiation dynamics and control theory by developing a method
that enables the control of the plasma discharge through one physical quantity alone, the
cathode spot temperature.
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Zusammenfassung

Viele Anwendungen in der Plasmatechnik, bei atmosphärischen Druck, nutzen das erzeugte
Plasma als Quelle für hohe Temperaturen. Für diese thermischen Plasma Prozesse ist es
wichtige Methoden der Regelung und Prozessbeobachtung anzuwenden, um die geforderte
Prozessstabilität, Verlässlichkeit zu gewährleisten und neue Einsatzmöglichkeiten für den
Prozess zu erschließen.

Ein Plasma in einem stationären Zustand zu halten und Abweichungen auszugleichen,
welche aus internen Störungen (Turbulenzen, asymmetrischer axialer Wärmefluss usw.)
oder externen Quellen (Welligkeit der Stromquelle oder Erosion der Elektroden) resultieren
können, ist keine leichte Aufgabe. Hierbei ist ein großes Verständnis für die grundlegenden
physikalischen Effekte notwendig, welche dem Prozess zugrunde liegen. Da das beibehal-
ten eines stationären Zustandes schon keine leichte Aufgabe ist, ist leicht ersichtlich, dass
das Einprägen eines komplexen Musters in ein solches Plasma system eine herausfordernde
Aufgabe ist. Eine Regelung hierfür zu entwerfen ist eine ebenfalls fordernde Aufgabe, für
die er noch gilt eine Lösung zu finden. Viele der bestehenden Systeme nutzen empirische
Modelle, um das Prozessverhalten vorherzusagen. Obgleich es auch arbeiten gibt die sich
auf physikalische Modellierungen stützen, wird die Plasma Dynamik bei keinem der ak-
tuellen Modelle einbezogen. Demzufolge gibt es einen Bedarf für ein Modell eines thermis-
chen Plasmas, das auf der einen Seite genug der grundlegenden physikalischen Phänomene
berücksichtigt, aber zugleich auch einfach genug ist, damit schnell Berechnungen durch
geführt werden können.

Zudem gibt es einen großen Bedarf an Techniken mit denen Daten aus spektroskopischen
Messungen, solcher transienter Phänomene untersucht und die relevanten Plasmaparame-
ter, welche für den Prozess interessant sind (wie zum Beispiel die Partikeldichten und die
Plasmatemperature), abgeleitet werden können. Das is besonders von Interesse, wenn man
Prozesse betrachtet in denen Metall Dämpfe im Plasma vorkommen. Diese Arbeit verfolgt
daher einen dualen Ansatz.

Zunächst soll ein Flachheit basiertes Regelmodell entworfen werden, das in der Lage ist
ein Muster in die Plasmatemperature der betrachteten Prozesses einzubringen und dies mit
hohen Frequenzen zu wiederholen.

Die zweite Idee ist die Entwicklung eines vereinfachten Strahlungsmodells, welches in der
Lage die Eigenschaften der zugrunde liegenden Plasmatemperature (und Elektronendichte-)
Verteilungen einzubeziehen und daraus die emittierte Strahlung des Plasmas zu berechnen.

Diese beiden Entwicklungen ( die Flachheits basierte Regelung und das Strahlungsmod-
ell) zusammengenommen, stellen ein einheitlichen neuen Ansatz dar um einen thermis-
chen Plasmaprozess zu stabilisieren und zu die Entwicklung seiner Plasmaparameter zu
überwachen.

Dieser neuartige kombinierte Ansatz stellt eine Brücke zwischen verschiedenen Diszi-
plinen der Wissenschaft dar, der Plasmaphysik, der Quantenmechnaik, der Strahlungs-
dynamik und der Regelungstechnik. Die Plasmadynamik wird dabei durch eine einzige
physikalische Größe beobachtet, die Kathoden Temperatur.
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Chapter 1

Introduction

”The first principle is that you must not fool yourself and
you are the easiest person to fool.”

Richard Feynman

1.1 Review of literature

Many applications of plasma technology at atmospheric pressure use the plasma as a high temperature
source, to either melt powder injected into a plasma flow and deposite it on a substrate (Plasma
Spraying) [1, 2], for the destruction of hazardous materials (Plasma waste destruction) [3] or for welding
metal substrates placed just below the plasma arc [4–6].
All these processes belong to the category of so called thermal plasma discharges (thermal arcs), which
are defined by the following characteristics:

• All species are assumed to have Maxwellian velocity distribution. Therefore Local Thermo-
dynamic Equilibrium (LTE) or at least partial Local Thermodynamic Equilibrium (pLTE) is
applicable.

• The plasma temperature is in the range of a few eV

• Excited states within heavy particles are assumed to be populated, according to the Boltzmann
term

• The strength of external magnetic fields is assumed to be less than the own magnetic field of the
arc and is therefore be neglected.

• The boundary conditions of the arc are determined by the surrounding gas flow, a solid or liquid
wall.

Typical discharge parameters for this category of processes are listed in Table 1.1. This work will limit
all following discussions to the case of atmospheric pressure discharges, although the ideas can generally
be extended into other pressure ranges aswell.

Quantity Range
power density 107 - 109 J m−3

current density 107 - 109 A m−2

electrical field strength 102 - 108 V m−1

discharge power 102 - 105 J m3

Table 1.1: Characteristic physical quantities for thermal plasmas in industrial applications
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Maintaining such a plasma in a steady state of operation and compensate deviations coming from
internal disturbances (turbulent flow, inhomogenous axial heat flux, etc.) or due to externally changed
conditions (ripple in the current/voltage power supply, erosion of the electrodes) is not an easy task and
requires deep insight into the basic physics of the underlying processes. Designing an efficient feedback
control for such a plasma discharge seems to be an obvious solution for such a problem. However due
to the low mass density of the plasma gas and its relatively high thermal conductivity the plasma
dynamics (temporal and spatial evolution of the plasma parameters) act on a very short time scale and
dynamic control would need to fit into such a time frame to influence the plasma effectively. Hence,
if maintaining a plasma in a stationary state for such a process is already a difficult task, to imprint
a pulsed pattern, which can be kept in a stable way for a long time, becomes a very demanding job
where a solution still has to be found.

To make the solution strategy for this problem more evident it is convenient to choose one of the
mentioned processes and outline the solution therefore in detail. For the category of atmospheric
plasma arcs a paragon is the Gas Tungsten Arc Welding process (GTAW), since from the perspective
of arc welding this process is rather stable and well understood [7, 8]. Yet improving the reliability and
efficiency of such a common welding technique always plays an important role for industrial applications.

contact tip

gas nozzle

tungsten cathode

plasma column

workpiece anode

shielding gas

�ller rod

power supply

Figure 1.1: Schematic of the GTAW torch [9]

Gas Tungsten Arc Welding Gas tungsten arc welding (GTAW) [4], also known as tungsten inert
gas (TIG) welding in case inert gases are used, is characterized by a refractory electrode typically
made of tungsten. Figure 1.1 shows a schematical drawing of the eletrode arrangement and the arc
between the cathode at the top and the anode at the bottom. A constant current (DC) is typically fed
to the electrodes by a power supply, to induce the breakdown of the gas and maintain the resulting
plasma. Sometimes pulsed DC currents are used to achieve a ceratin behaviour of the arc or maintain
its stability. The plasma in turn is used as a high temperature source to melt the underlying workpiece.
The upper electrode (cathode) is surrounded by a shielding gas supplied by a gas nozzle around the
electrode. The plasma composition mainly results from the choice of the working gas or gas mixture.
GTAW is used to produce high quality welds, but it is more complex than comparable processes, such
as shielded metal arc welding and slower than other comparable welding processes. Mostly noble gases
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like Argon or Argon-Helium are use as shielding gases to reduce the effect of oxidation at the hot
cathode tip, during operation [7]. A related process, Plasma Arc Welding (PAW), has a comparable
welding torch to focus this surrounding gas stream even stronger.

The GTAW process will be analysed in detail in this work, due to the similarities in geometry and
polarity of the electrodes compared to the other thermal arc processes. The results and developed tech-
niques however can be applied to the other mentioned thermal plasma processes as well. For GTAW
typically parameters such as process current, arc voltage, arc length or weld pool temperature are used
as a feedback variable [10]. These approaches, although posing as a practical solution, are limited in
their precision to follow a desired behaviour of the plasma evolution and are not able to follow the de-
sired behaviour, when instabilities emerge within the process. A lot of those systems rely on empirical
models in order to predict the process behaviour [11, 12]. Yet even works, which are based on physical
models, do not consider plasma dynamics at all [13–16]. The control approaches for these systems
utilize either linear transfer functions [13, 15, 17, 18] or neural network based controlling schemes [19]
to handle the system dynamics. Common models of welding plasmas are computed using finite volume
methods [20], which require high computation times and thus are not suitable for feedback control
applications.

The control aspect will be extensively discussed later on in this work, but beforehand it shall be
regarded that modern industrial applications involving thermal arcs have to fulfill other important
requirements as well. For example the automation of a process, as well as the steady increase in oper-
ational safety and reliability have become essential qualities. Still few works exist to deliver solutions
for the observation of dynamical plasma process parameters in real time. To gather the data from the
physical system (a experimental setup or a industrial plasma application) some of the best techniques
to analyze such plasma processes are optical measurement techniques, since these don’t disturb the
plasma further by introducing new boundary layers (like it would be the case of Langmuir probes [21,
22]). To analyze the measured spectral intensities and extract the desired information on the plasma
parameters, substantial knowledge of physical principles of the applied measuring technique is required,
as well as its coupling to the desired physical quantity. Subsequently there is a high demand for tech-
niques that correlate the data from measurements of transient phenomena to the plasma parameters,
which are of interest for the regarded process (like particle densities and temperatures). This is most
notably relevant for plasma discharges where metal vapour is present [23–25].

From the perspective of optical spectroscopy there are again various techniques to analyze the plasma
behaviour, especially if the local temperature and electron density of the plasma is required. One such
technique is Stark line broadening measurement, which is often applied when it comes to measurement
of the electron density. However especially for the Quadratic Stark effect, the line width also depends
on temperature [26]. Hence Stark line broadening needs to be combined with other diagnostic methods
in order to obtain both plasma temperature and electron density. Simultaneous evaluation of several
Stark broadened lines can be used to deduce both electron temperature and density [27, 28]. However
such a method requires a reliable model of the Stark effect for several well-detectable optically thin lines
in prevailing plasma conditions. There are few works describing the Stark effect depending on electron
temperature and density [29, 30]. Yet even if those models take into account various effects such as
ion collisions or presence of electric fields, the evaluation of sufficiently strong spectral lines (e.g. Ar
I lines) does not always provide an accurate result for simultaneous determination of electron density
and temperature [9]. This is in particular the case, when it comes to evaluation of spectra containing
metal vapour.

One of the more (if not the most) elaborate techniques is the Thomson scattering measurement
of laser radiation by the free electrons in a plasma, it is considered as the most reliable method for
electron temperature and density diagnostics in fusion related plasmas [31]. Although this technique
was developed to analyse fusion processes, it was also utilized to measure plasma parameters in low
temperature plasmas, such as atmospheric gas discharges [32–38]. Yet the most severe drawback of this
technique, it is quite complicated to setup and to smooth away faults that would lead to ambiguous
results, which makes it hard to apply to dynamical processes.

Optical emission spectroscopy (OES) [39] is another technique, which offers a simple experimental
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set-up and thus is potentially more suitable for real time diagnostics for process observation applications.
A lot of techniques of this type need the information on the chemical composition of the plasma and
whether a optically thin line can be found to apply such a method [40]. Also most techniques of this type
rely on evaluation of a specific feature of the radiation spectra, which allows to extract either electron
temperature or density. For example line intensity ratios of two or more optically thin lines can be
used in order to determine the electron temperature [41–43]. The current state-of-the-art approach of
this category is the Fowler-Milne method and its derivative techniques [44–47].

Fowler-Milne method This method takes a optically thin line of the radiation spectrum emitted
from the plasma and compares the relative radial distribution of this line with theoretical values the
the corresponding emission coefficient, to determine the spatial temperature distribution [48]. Origi-
nally developed for applications involving pure Argon plasmas, their have been various modifications
throughout the year to make the method applicable to gas mixture and even plasmas with impurites
(e.g. metal vapour [49]).

However such a technique is difficult to apply to plasmas, where absorption plays an important role,
which is the case for processes where metal vapour is present. In order to evaluate the radiation in-
tensities and spectra gathered with this OES technique where absorption plays an important role,the
current state-of-the-art technique is the Net Emission Coefficient (NEC) approach [50, 51].

Net Emission Coefficient approach This method is based on the difference between the emitted
and absorbed power within a volume unit of the plasma. This volume unit is defined by the radius of
an emitting sphere of plasma and is commonly used in thermal plasma modelling. This plasma radius
is fixed for the entire plasma geometry and must be predefined. Therefore only global radiative heat
transfer to the surrounding (e.g. a solid wall) can be described [51].

Both approaches however are not sufficient in cases of strong absorption. One drawback of the Fowler-
Milne method, it still needs optically thin lines to evaluate the plasma temperature, which in complex
gas compositions is not guaranteed. The NEC approach incorporates the spectral absorption on lines,
but introduces a arbitrary effective radius of an emitting sphere as free parameter to account for this
absorption. The dimension of that radius is not easy to determine and local emission characteristics
below this radius are unaccounted for. Although in recent years there was a parallel development,
trying to extend the NEC approach with a similar technique to this work [52]. No further progress
could be found in the literature and a functional scheme is still missing, while this thesis provides a
working technique extending current NEC approaches [53].

1.2 Originality of this work

For applications involving thermal arcs, process control and monitoring are crucial methods needed
to ensure the process stability, reliability and extend the applicability of the process likewise. Under-
standing and including the impact of the plasma dynamics into physical models for the control and
the spectroscopical monitoring of the plasmas within the process are a profound way to improve the
process itself.

Consequently, there is a demand for a thermal arc model, which on one hand considers all the
relevant physical phenomena and on the other hand is simple enough to allow an efficient calculation
with lower need of computational effort. This work pursues a dual approach to achieve this goal,
see Figure 1.2.

At first this work aims to design a model based control, able to track a desired plasma temperature
trajectory in a stable way and at the highest possible pulse repetition rate. This novel approach bridges
the gap between plasma physics and control theory by developing a method that enables the control of
motion of the plasma discharge through one physical quantity alone, the cathode spot temperature.

The second idea of this work is to develop a physical model which links the emitted radiation of
the plasma to the radial plasma temperature and electron density profile within the thermal arc. For
this purpose the spectrum of the radiation coming from the plasma is calculated with a new approach.
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Figure 1.2: Schematic representation of this thesis dual modeling approach. The model
based control for process tracking and the radiation model for the data processing part of
plasma diagnostics.

Instead of concentrating on either the line intensity or on the line broadening of few spectral lines,
the spectrum is considered in a wide range of wavelengths at once. The results are compared to
spectrally resolved OES measurements of a thermal arc under the same conditions of operation, as well
as Thomson scattering an Stark broadening measurement as references sources of experimental data.
Thus particular details of each single line are expected to be balanced when a large spectral window is
taken into account, effectively putting their combined influence on one free parameter of the radiation
model, the radial distance to a cold surrounding.

Both models use the arc current, electrode distance and the gas composition as boundary conditions
to calculate the plasma parameters. For the radiation model the geometry of the thermal arc is approx-
imated as a cylinder with radial degree of freedom and constant axial and azimuthal distribution. The
model based control further simplifies this assumption to a single value across the radial coordinate.
Although the spatial coordinates are limited to accelerate the computations, all values retain the full
temporal dependence. The radial plasma temperature and electron density distribution is determined
by the equations of the models and the radial distance to a cold surrounding. This radial distance is
obtained from a best fit of the calculated spectrally resolved radiation profiles compared to measured
normalized spectra of an OES measurement.

Combining both contributions, the model based control and the radiation model, will help to con-
stitute a new tool set to gain and maintain stability of the plasma discharge and observe the plasma
parameter evolution. The model based control will regulate the input current to influence the plasma
dynamics evolution. The tracking of this behaviour will be achieved by one physical quantity alone,
the cathode spot temperature. The radiation model will work as a more elaborate tool for real time
spectral analysis of the plasma radiation, to estimate local plasma temperature and electron density
of the plasma. By introducing a cost function minimalization technique, the spectral analysis can be
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performed on complex gas compositions as well, utilizing the thermal boundary condition (the radial
distance to a cold surrounding) as single optimization parameter for this technique.
These techniques will be demonstrated for a GTAW process with pure Ar and Ar-He gas mixtures
(the model based control will be demonstrated with Argon alone). Possible extensions towards other
applications will be briefly outlined in the conclusion.

1.3 Outline of this work

The work is organized in three main parts.

• The first part will establish the set of physical equations needed to develop the diagnostic technique
and the model based control separately. A description for the temperature evolution of a plasma
close to a cathode will be formulated. Next the plasma composition and particle densities will
be derived using a formulation of the Saha-Eggert equation. Both inputs are then combined to
formulate the equations and fundamental principles for the interface between the cathode region
and the plasma. The specific impact on the evolution of the physical properties within the sheath,
like the electric field and more importantly the heat transfer between the solid metal cathode and
the plasma, are derived.

• The second part of the work is a chapter on the fundamental quantum physics behind the in-
teraction of electromagnetic radiation with the particles of a plasma. The intention is to briefly
recapitulate the concepts behind these photon particle interactions, discuss the most relevant ques-
tions and derive a mathematical scheme to describe these questions. This scheme will be used to
describe the connection to quantities that are of direct importance to plasma spectroscopy exper-
iments. These quantities are the line profile, the broadening width and the correlated emission
and absorption coefficients of the radiation coming from the plasma.
A simplified description of the Stark broadening width will be formulated and all quantities will
be combined to derive the total radiated power, emitted from the plasma. The radiation model
will be analysed for the working gases Argon and Argon-Helium (in varying gas compositions)
and compared to experimental data for these working gases in a GTAW process.

• The last part of the work intends to bridge the gap between plasma physics and control theory
by formulating a scheme that enables the control of the plasma discharge dynamics through
one physical quantity, the cathode spot temperature. The following part will outline the idea
behind flatness based control and gather the mathematical techniques, required to solve the given
equations of state. The purpose is then to imprint a trajectory of the plasma temperature into
the model based control and derive the resulting control output. This is directly applied to the
plasma system, which in this case will be a numerical model of a thermal plasma jet. Therefore
a state controlling law is derived and the required control components are developed. The model
based control will be demonstrated for an Argon plasma within a GTAW process.

• Concluding this work are the chapters dealing with the results from the above mentioned calcula-
tions and the discussion of their reasonability and physical background. The outlook will examine
further extensions and applications of these developed techniques.
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Chapter 2

Plasma Physics Theory

”The technologies which have had the most profound effects
on human life are usually simple.”

Freeman Dyson

At atmospheric pressure a plasma arc is a very hot gas, composed of free charges (negative electrons as
well as positive ions) and neutral particles, where particularly the free electrons are moving chaotically
due to their high temperature Tp and low mass (compared to the ion mass, me � mi). At macroscopic
length scales a plasma is neutrally charged, i.e., the total amount of negative charged electrons equals
the amount of positive ions. This charge neutrality is still satisfied when zooming into finer length
scales, until reaching a limit, the so-called Debye length λD. Below this length a partial separation
between electrons and their respective ions can be observed, produced by the thermal motion of the free
electrons. The Debye length has nevertheless a tiny value, since the charge separation itself induces a
large electric field (large because of the plasma’s high charge density) stopping any further separation,

it is given by λD =
√
ε0kBTp
e2ne

([54],§ 1), with ne the density of free electrons within the plasma, e the

electron charge, ε0 the vacuum dielectric constant and kB = 1.38× 10−23 J/K the Boltzmann constant.
For atmospheric pressure P = 105 Pa and a gas temperature of Tp = 12 000 K the typical ionization

degree is about 10 % and thus ne ∼ 0.1 P

kBTp
= 6× 1022 m−3, resulting in a Debye length of λD ≈ 30 nm

(the Debye length will appear again later on in this work). The plasma property of showing charge
neutrality above the Debye length, but not below it, is denoted quasineutrality.

The following chapter establishes the set of physical equations for the discoveries later on in this
work. At first a description for the temperature evolution of a plasma in proximity to the cathode is
formulated. It is a description that is based on other approaches, such as the Mayr model [55]. Secondly
the equations for the plasma composition are derived in case of an atmospheric plasma discharge. Both
of these descriptions are then connected to formulate equations for the interface region between the
solid metal electrode (the cathode) and the thermal arc to describe the evolution of the electric field
and more importantly the heat transfer within this region.

The purpose for this chapter is to derive descriptions that contain enough of the true physical
behaviour of the regarded plasma system, but are also efficient enough to perform fast computations,
in regard to the time scale of the process of interest. These would be of use for a radiation model for
faster spectral plasma diagnostics, to derive the electron density and temperature in the plasma. As
well as a model based control for the tracking of plasma parameters such as the plasma temperature
along a desired trajectory.
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2.1 Dynamics for a cylindrically symmetrical plasma arc

The full dynamic system considered in this work consists of the plasma arc itself, burning between
two metallic electrodes, and on the physical effects occuring at (and close to) those electrodes. For
the plasma arc the investigated configuration is displayed in Figure 4.1, where an axially symmetric
plasma gas is confined in radial direction by a cylindrical cold boundary of radius r0 kept at a constant
temperature T0 (chosen equal to the room temperature and reference temperature for the enthalpy). In
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Figure 2.1: Schematic representation of the considered cylindrical plasma arc configuration

axial direction the plasma arc is limited by two planar electrodes (a negative electrode or cathode and
a positive electrode or anode); the transition from the bulk plasma to each of the electrodes is managed
by the so-called sheaths (cathode and anode sheath). The anode is distinctively less important for
the very existence of the plasma arc than the cathode, and at atmospheric pressure the voltage at the
anode sheath is nearly an order of magnitude lower than that corresponding for the cathode sheath
[56]. Therefore the anode sheath and the anode itself will no longer be taken into account for the
modeling of the plasma dynamics system; the cathode sheath, on the contrary and despite its very
reduced length dimension at atmospheric pressure (the schematic Figure 2.1 does not represent the
real cathode sheath size), will be considered in detail in the next section. Additionally, it is assumed
in a first approximation that there is no appreciable pressure gradient along the axial direction such
that the gas flow between the electrodes is low and laminar. Also the thermal diffusion along the arc
is considered negligible when compared to the the radial diffusion towards the cold surrounding.

The energy content of a plasma gas at a local temperature Tp is described by its enthalpy density,
defined as

hp(Tp) =
∫ Tp

T0

ρp(T ) cp, p(T ) dT

where ρp and cp, p denote, respectively, the mass density and the specific heat (at constant pressure)
of the plasma gas, both nonlinear functions of the gas temperature. According to approximations
discussed above, the dynamic equation for the local change of enthalpy within a concentric layer of
radius r, infinitesimal width ∆r and arc length `arc is mainly given by two effects:

• the radial heat diffusion due to a radial temperature gradient down to T0

• and the local power generation within the arc
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This can be mathematically formulated [57, 58]:

∂

∂t

(
2πr∆r`arc

∫ Tp

T0

ρp(T ) cp, p(T ) dT
)
≈ −


heat leaving layer at r + ∆r/2︷ ︸︸ ︷

−2π
(
r + ∆r

2

)
`arc

(
λth, p

∂Tp
∂r

)
r+∆r/2

heat entering layer at r − ∆r/2︷ ︸︸ ︷
+2π

(
r − ∆r

2

)
`arc

(
λth, p

∂Tp
∂r

)
r−∆r/2


︸ ︷︷ ︸

energy balance due to heat diffusion in radial direction

+ 2πr∆r`arc Sp(Tp)︸ ︷︷ ︸
local power source

(2.1)

with λth, p the thermal conductivity of the plasma gas, again a nonlinear function of the local plasma

temperature Tp, which determines the radial heat flow density λth, p
∂Tp
∂r

(=power per unit area).
The stationary temperature distribution of this system is determined by the thermal heat conductivity
λth and the electrical conductivity σel of the plasma. Albeit there are different approaches to calculate
these properties, like the Chapman-Enskog method, this will not be a main focus of this work and the
parameters will derived from the literture. The thermophysical properties for Argon as working gas
are taken from the appendix tables [59, 60]. For mixtures of Argon and Helium as working gas with
different concentrations, the transport parameters can be derived from the data of [61, 62]. The local
source term Sp(Tp) (power locally generated/lost per unit volume) corresponds to the Joule heating
produced by the electric current density jel flowing along the (non-perfect conducting) plasma arc

Joule heating: Sp(Tp) = jelEarc = σel(Tp)E2
arc (2.2)

with σel the electrical conductivity of the plasma gas, again a strongly nonlinear function of the plasma
temperature Tp, which relates the electric current density to the electric field Earc along the plasma
arc: jel = σel(Tp)Earc. The energy loss to the cathode, concentrated at the inner most core, is also
neglected compared to the radial heat diffusion and the Joule heating. For an infinitesimal ∆r → 0
the eq. (2.1) can be written as the following differential equation

ρp(Tp) cp, p(Tp)
∂Tp
∂t
≈ 1
r

∂

∂r

(
λth, p(Tp) r

∂Tp
∂r

)
+ Sp(Tp) (2.3)

whose solution is thus a cylindrically symmetrical plasma temperature profile Tp(r, t) with no depen-
dence on the azimuthal angle or on the axial coordinate.

The electric field Earc is practically independent of the radial coordinate — each radial location
within the plasma arc “sees’’ the same electric field — and thus the electric current along the arc Iarc,
given by the current density jel integrated over the circular arc cross section from r = 0 till r = r0, is
related to such electric field according to

Iarc =
∫ r0

0
2πr jel dr = Earc

∫ r0

0
σel(Tp(r)) 2πr dr

σelE
2
arc = σel(∫ r0

0
σel(Tp(r)) 2πr dr

)2 I
2
arc

(2.4)

The shape and size of the plasma discharge alongside its thermal properties is crucial information to
understand the motion of the regarded plasma system. Here the effects of the flow stream on the energy
distribution are much less then the effects of the charge carrier transport. Close to the cathode the
entrainment of cold gas from the surrounding atmosphere can be neglected in a first approximation
and therefore no turbulence correction to the thermal conductivity is required. With the assumption
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of cylindrical symmetry the radial temperature distribution of the plasma Tp(r) only depends on the
radial energy dissipation due to heat diffusion and radiation emission, which balance the electrical
Joule heating. The radiative heat flux is one order of magnitude smaller than the diffusion heat flux
and therefore neglected in a first approximation for the shaping of the temperature profile. Hence the
dynamic equation for the plasma temperature distribution is described by

ρpcp, p
∂Tp
∂t

=

loss due to diffusion in radial
direction, with ∂Tp

∂r & ∂2Tp

∂r2 <0︷ ︸︸ ︷
1
r

∂

∂r

(
λth, p(Tp) r

∂Tp
∂r

) Joule heating︷ ︸︸ ︷
+ σel(∫ r0

0
σel(Tp(r)) 2πr dr

)2 I
2
arc +

other non-modelled
effects︷ ︸︸ ︷

. . . . . . . . .
(2.5)

where the . . . is a reminder of those effects whose details are not being resolved in detail since less
relevant than the two explicitly considered contributions: radial heat diffusion and Joule heating. The
boundary conditions for such equation are ∂T

∂r r=0
= 0 (axial symmetry) and T (r = rcool) = Tcool (outer

boundary). The above stated differential equation need to be solved numerically, due to the strong non-
linear dependence of the electrical conductivity from the temperature. Nevertheless the non-modelled
effects will be taken into account in a collective, effective way as a stochastic noise term when integrat-
ing the plasma dynamics. It is worth noting that the electric current Iarc, assuming it is generated
by an external current source, serves as input variable for the arc dynamics (Equation (2.5)); more
properly the input is given by the squared electric current. If, on the other hand, the system is driven
by a voltage source instead, it will assumed that an underlying fast control is able for the voltage source
to imprint the required electric current which derives from some later developed control design.

Remark 1: although meant to be applied to a plasma arc enclosed by a cylindrically cooled
wall, previous eq. (2.5) is still applicable in a first approximation to an axially symmetric free burn-
ing arc at atmospheric pressure, at least close to the cathode [63]. At such location the mixing of
the cold surrounding atmosphere with the outer plasma fringes is just starting to develop, without
producing any appreciable radial widening of the plasma arc. The only unknown parameter when ap-
plying the model to the free burning arc is the radius r0, which has to be experimentally determined,
for instance by some imaging method at the edge where mixing with the atmosphere is clearly localized.

Remark 2: if desired, and after having determined the radial plasma temperature profile, the
voltage along the plasma arc can be estimated from electric field (Equation (2.4)) as

Uarc = Earc `arc (2.6)
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2.2 Saha-Eggert Equation

”Quiet people have the loudest minds.”
Stephan Hawking

The foundation for every plasma calculation is the knowledge of the plasma composition or more
precisely the underlying plasma kinetics. However under certain assumption this aspect can be carried
out without evaluating all underlying chemical kinetic equations. Since the central region of the plasma
arc being considered operates at atmospheric pressure, as initially stated in the introduction for the
regarded plasma processes, there is nearly no deviation (see [59], § 1) between the temperature for the
thermal motion of free electrons and that for the heavier ions, so that local thermal equilibrium (LTE)
or at least partial local thermal equilibrium (pLTE) can be assumed. In this case reaction kinetics take
place on a much shorter time scale, therefore local chemical equilibrium (LCE) follows as well. Under
these constraints one can solve the plasma composition with the Saha-Eggert equation.

The general theory for the case of pLTE is presented first, with the two temperature Saha-Eggert
equation being derived. Where one assumes the electrons and heavy particles have seperate equilized
temperature distributions, so that the coefficient θ = Te,∞

Th,∞
can be introduced. This fundamental

formulation will primarily be essential for the conclusion of this work. Throughout the main part of
this work the simplified case with equal electron and heavy particle temperatures θ = 1 will be pursued,
since for the regarded plasma process and working gases the LTE condition is sufficient.
The consecutive derivations will in general follow the formulations of [64–66].

2.2.1 Saha-Eggert equation for monatomic gases
A monoatomic gas shall be regarded (e.g. argon or helium), where the electrons have a temperature
Te greater than the temperature Th of all the heavy particles (atoms and ions). It will further on be
assumed that ionization up to the second level will take place, which is sufficient for the temperatures
relevant in the regarded plasma process [67]. Now the concentrations of all particles ne (free electrons),
nA (neutral atoms), nA+ (single charged ions), nA++ (double charges ions) in equlibrium must be
determined. For the four unknowns, their are four equations to be deduced from:

• Dalton’s ideal gas law (1 equation) [59]

• Saha equation for each ionization level (1+1 equations)

• quasi neutrality condition (1 equation)

The first equation expresses the relation between gas pressure p, the temperatures Te and Th and the
particle densities:

P = nekBTe + (nA + nA+ + nA++) kBTh ⇒
P

kBTe
= ne + 1

θ
(nA + nA+ + nA++) (2.7)

with θ being the quotient between electron temperature and temperature of the heavy particles, θ = Te
Th

.
For the Saha equations the partition functions for the neutral atoms, the single charged ions and double
charged ions are formulated:

ZA =
∑
k

gA,k exp
(
−EA,k
kBTe

)
ZA+ =

∑
k

gA+,k exp
(
−
EA+,k

kBTe

)
ZA++ =

∑
k

gA++,k exp
(
−
EA++,k

kBTe

)
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where Ek denotes the k-th bound energy for each plasma species and gk is its corresponding degeneracy
factor (i.e., “how many electrons can be stored in energy level Ek of each species’’). Those values can
be derived from the data in the NIST-database [68]. Now the Saha factors can be formulated:

KI = 2ZA+

ZA

(
2πmekBTe

h2

)3/2
exp

(
−EA,ion
kBTe

)
KII = 2ZA++

Z+
A

(
2πmekBTe

h2

)3/2
exp

(
−
EA+,ion

kBTe

) (2.8)

and the corresponding Saha equations are:

ne nA+

nA
= KI ,

ne nA++

nA+
= KII (2.9)

with EA,ion being the ionization energy of the neutral atom and EA+,ion being the one for the single
ionized atom. Important to notice is the fact that the temperature in the partition functions (Equa-
tion (2.8)) and the Saha factors (Equation (2.8)) is the electron temperature Te. This is the case since
the collisions with the free electrons are the main source for the excitation of the atoms/ions and re-
sponsible for ionization.
It is worth noting that the density ne of free electrons, is given by the inverse of the volume occu-
pied by one single free electron with thermal velocity

√
kBT
me

(and momentum
√
mekBT ), where the

length scale of such volume is given by the position uncertainty derived from the Heisenberg relation:

`e ∼
h√

mekBT
and ne ∼

1
`3
e

∼
(√

mekBT

h

)3

. The last equation is the quasi neutrality condition:

ne = nA+ + 2nA++ (2.10)

Combining all equation leads to the following:

P

kBTe
= ne

1 + 1
θ

1 + KI

ne
+ KIKII

n2
e

KI

ne
+ 2KIKII

n2
e

 = ne

[
1 + 1

θ

n2
e + neKI +KIKII

neKI + 2KIKII

]

or in polynomial form:

n3
e + n2

e (1 + θ)KI + neKI

(
(1 + 2θ)KII − θ

P

kBTe

)
− 2θKIKII

P

kBTe
= 0 (2.11)

It is a cubic equation for the electron density ne

n3
e + c2 n

2
e + c1 ne + c0 = 0 (2.12)

with

c2 = (1 + θ)KI > 0

c1 = KI

(
(1 + 2θ)KII − θ

P

kBTe

)
< 0

c0 = −2θKIKII
P

kBTe
< 0

with c1 being of negative value, since at atmospheric pressures the term P

kBTe
is much larger than the

Saha factor of the second ionization. Equation (2.12) can be solved iteratively with an initial solution
n

(prev)
e that is continuously evolved to a better solution due to linearization of the equation, leading
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to n
(next)
e . Care must be taken with such iterative scheme to ensure convergence of the solution, all

coefficient multipling n(next)
e must be of the same sign. The following linear approximation(
n(next)
e

)3
≈

(
n(prev)
e

)3
+ 3

(
n(next)
e

)2 (
n(next)
e − n(prev)

e

)
(
n(next)
e

)2
≈

(
n(prev)
e

)2
+ 2

(
n(next)
e

)(
n(next)
e − n(prev)

e

)
can be used to transform Equation (2.12) into a linear equation for n(next)

e

0 ≈ n(next)
e

[
3
(
n

(prev)
e

)2
+ 2c2 n

(prev)
e

]
−
[
2
(
n

(prev)
e

)3
+ c2

(
n

(prev)
e

)2
+ |c1| n(prev)

e + |c0|
]

with the solution

n(next)
e ≈ 1

3
(
n(prev)
e

)2
+ 2n(prev)

e (1 + θ)KI

×

 2
(
n(prev)
e

)3
+
(
n(prev)
e

)2
(1 + θ)KI

+KI

(
− (1 + 2θ)KII + θ

P

kBTe

)
n(prev)
e + 2θKIKII

P

kBTe


The electron density n(next)

e will now be taken as initial solution n(prev)
e for the next iteration to achieve

an even better solution n
(next)
e with Equation (2.13). The process is executed until the difference

between two consecutive calculations falls below some defined boundary value. The first electron
density value can be derived with Equation (2.12), by neglecting the second ionisation (KII → 0):

n2
e + ne (1 + θ)KI − θKI

P

kBTe
≈ 0

n(prev)
e = −1 + θ

2 KI +

√(
1 + θ

2 KI

)2
+ θKI

P

kBTe
(2.13)

After finding the solution for the electron density the other particle densities can be easily calculated:

nA = ne
KI

ne
+ 2KIKII

n2
e

nA+ = nA
KI

ne
nA++ = nA+

KII

ne
(2.14)

The procedure must now be corrected if the number of ionized atoms exceeds a certain number density
and lots of positively charged particles are now present. The electrons are now affected not only by
the positive charge of their respective core, but also by the other positive charges around effectively
reducing the required ionization energy needed to free more electrons. The length scale for such an
attraction force is of the order of the Debye-length λD:

λD =
√√√√√ ε0kB

e2
(
ne
Te

+ nA+

Te/θ
+ 4nA++

Te/θ

) (2.15)

This mechnism is called the Schottky correction for the ionisation energies, which take the following
form:

EA,ion = E
(0)
A,ion −

e2

4πε0

1
λD

(2.16)

EA+,ion = E
(0)
A+,ion −

2e2

4πε0

1
λD
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with E
(0)
A,ion and E

(0)
A+,ion being the uncorrected values for the ionization energies of the respective gas

atom from NIST database.1

2.2.2 Saha-Eggert equation extension for arbitrary gas mixtures
Now one considers a gas in thermodynamic equilibrium with an arbitrary composition defined by
k = A, B, C, . . ., in all possible ionization levels. The ideal gas law takes the following form:

P

kBTe
= ne + 1

θ

[
(nA + nA+ + nA++ + . . .) + (nB + nB+ + nB++ + . . .)

+ (nC + nC+ + nC++ + . . .) + . . .

] (2.17)

The Saha equation for all ionized species for one gas component e.g. A takes the form:

KA,1 = nA+ ne
nA

KA,2 = nA++ ne

n+
A

. . .

(nA + nA+ + nA++ + . . .) = nA

(
1 + KA,1

ne
+ KA,1 KA,2

n2
e

+ . . .

)
≡ nA gA

(2.18)

with KA,j being the Saha factor for the jth ionization. All quantities gk, for the gases k = A, B, C, . . .,
are always positive. With the following partial derivative

∂gA
∂ne

= − 1
ne

(
KA,1

ne
+ 2KA,1 KA,2

n2
e

+ . . .

)
≤ 0

and analogously for all gas species k = A, B, C, . . ., the quasi neutrality condition can be reformulated:

ne = (nA+ + 2nA++ + . . .) + (nB+ + 2nB++ + . . .) + (nC+ + 2nC++ + . . .) + . . .

= nA

(
KA,1

ne
+ 2KA,1 KA,2

n2
e

+ . . .

)
+ nB

(
KB,1

ne
+ 2KB,1 KB,2

n2
e

+ . . .

)
+ nC

(
KC,1

ne
+ 2KC,1 KC,2

n2
e

+ . . .

)
+ . . .

= −ne
∑

k=A,B,C,...
nk
∂gk
∂ne

(2.19)

or simply ∑
k=A,B,C,...

nk
∂gk
∂ne

= −1 (2.20)

1This correction accounts for the negative biasing of the work function, due to the electric field of the space charge,
when a plasma is present. It effectively reduces the required ionisation energy to produce further electrons. It is valid
as long as thermionic emission is the dominant process (E ∼ 108 V

m
), which is the case for the regarded setup. However

since this configuration already displays high value of the electric field strength further improvements to the model can
easely be made by including the effect of field emission on the electron number density, via the Fowler-Nordheim [69] or
the Murphy Good equation [70]
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with fk being the mol fraction of each respective gas k = A, B, C, . . ., which will further on be assumed
to be constant

fA = (nA + nA+ + nA++)
(nA + nA+ + . . .) + (nB + nB+ + . . .) + (nC + nC+ + . . .) + . . .

= nA gA∑
k=A,B,C,...

nk gk

fk′ = nk′ gk′∑
k=A,B,C,...

nk gk
, mit k′ = A, B, C, . . .

nk′ = fk′

gk′

 ∑
k=A,B,C,...

nk gk

 , mit k′ = A, B, C, . . .

(2.21)

From the quasi neutrality it follows:

1∑
k=A,B,C,...

nk gk
= −

∑
k=A,B,C,...

fk
gk

∂gk
∂ne

(2.22)

Which modifies the ideal gas law Equation (2.17) to

P

kBTe
= ne −

1
θ

1∑
k=A,B,C,...

fk
gk

∂gk
∂ne

(2.23)

This nonlinear equation will now again be solved iteratively according to the scheme introduced in the
last section. With n

(prov)
e being the provisional solution for ne, which is replaced by a better solution

n
(next)
e in the next iteration. For a given Te, θ and fk, gk and ∂gk

∂ne
are calculated according to:

gk = 1 + Kk,1

n
(prov)
e

+ Kk,1 Kk,2(
n

(prov)
e

)2 + . . .

∂gk
∂ne

= − Kk,1(
n

(prov)
e

)2 −
2Kk,1 Kk,2(
n

(prov)
e

)3 + . . .

(2.24)

and Equation (2.23) is approximated in the following form:

P

kBTe
≈ n(next)

e − 1
θ

1∑
k=A,B,C,...

fk
gk

∂gk
∂ne

n
(prov)
e

n
(next)
e

n
(prov)
e︸ ︷︷ ︸
≈ 1

n(next)
e ≈

P

kBTe

1− 1
θ

1
n

(prov)
e

∑
k=A,B,C,...

fk
gk

∂gk
∂ne

n
(prov)
e

(2.25)

This scheme always delivers a positive solution, since all terms ∂gk

∂ne
stay negative. This procedure

converges faster compared to the simpler algorithm in Section 2.2.1 and will reach a solution after
around 5 - 10 iterations. Now again the ionization energies E(ion,0)

k,j need to be corrected for the
influence of the electrostatic force of the surrounding ions (for gas species k and ionization level j).

E
(ion)
k,j = E

(ion,0)
k,j − j e2

4πε0

1
λD
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with the new formulation

λD =
√√√√√ ε0kB

e2ne
Te

+ θ

(
e2nA+ + nB+ + nC+ + . . .

Te
+ 4e2nA++ + nB++ + nC++ + . . .

Te
+ . . .

)
for the Debye length. In all these relations above the interactions between electrons and heavy parti-
cles have been neglected. As stated initially the deviations resulting from this simplification to the real
solution will remain small, since for all the formulations LTE and LCE could be assumed.

Some additional remarks:
The formulation for the gas density ρp of the plasma (for both cases regarded in this work; Argon and
Argon-Helium mixtures) shall be given.

ρp =
∑
i

mini = mene +mAr (nAr + nAr+ + nAr++)

mHe (nHe + nHe+)
(2.26)

Although this has been stated indirectly with Equation (2.25), the formulation Equation (2.26) will
be important for the calculations carried out in this work, where ρp is often needed.
Later on in this work the derivative of the electron density over the electron temperature ( and there-
fore the plasma temperature) will be needed. It will be formulated in a simple forward difference,
see Equation (2.27)

dne
d Tp

= ne(i+ 1)− ne(i)
Tp(i+ 1)− Tp(i)

(2.27)

with i being the running index of the electron temperature vector Te = Tp = 5000 - 30 000 K with a
resolution of ∆Te = 100 K. Thereby the calculation of this chapter are decoupled from the realtime
calculations of the radiation and control model (later on described in this work). They will be referenced
through lookup tables. This procedure accelerates the calculations and is therefore applied wherever
possible.
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2.3 Cathode Sheath Model

”A great deal of my work is just playing with equations and
seeing what they give.”

Paul Dirac

At atmospheric pressure a thermal arc consists of a plasma in thermal equilibrium, where free electrons
and ions have equivalent kinetic energies and therefore temperature. As a consequence ionization
equilibrium exists as well and the particle densites can be derived from Saha-Eggert equation [67, 71].
This assumption holds for the central region of the thermal arc, whereas at the plasma edges (towards
the electrodes) there must be deviations from equilibrium in order to sustain the plasma arc. This
central region of the arc will be called plasma bulk. The injected electric current Iarc provides the
power input into the plasma for maintaining its ionization high enough for the plasma arc to remain
conducting. Such a current, as a flow of freely moving charged particles, must at first leave the metallic
electrodes and “jump’’ into free space.
The negative electrode plays the leading role here, conclusively the transition of the plasma bulk to
the negative electrode or cathode, see Figure 2.2, shall be regarded in more detail, since this region
is essential to the existence of the arc (far more than the positiv electrode; the anode) [57]. Due to

Figure 2.2: Schematic representation of a planar, 1-dimensional sheath between cathode and
plasma core

concentrating the electric current into one or several spots of strongly reduced area at the cathode
surface and due to the influence of ions impinging on the cathode surface, the local heating becomes
strong enough for the electrons to break free from their metallic bonding to the cathode. This effect
is called thermoemission (or thermionic emission) and its corresponding current density for emitted
electrons is given by the Richardson equation [72]

je, th = AR T
2
c exp

(
− eΦc
kBTc

)
, (2.28)

where Tc denotes the temperature of the hot cathode area (cathode spot); at atmospheric pressure
only one single stable spot occurs for electric currents below 400 A [73, 74]. From now on it will be
considered that the whole electric current is concentrated into one active spot of radius rc. In the

previous equation AR = 4πemek
2
B

h3 = 1.20× 106 A
m2 K2 is the Richardson constant and eΦc represents

the cathode’s work function, i.e., the energy to be gained by each electron in order to be “liberated’’
from the cathode. This work function is dependent of multiple physical and geometrical parameters
itself. The majority of these effects will be disregarded for this work, only the impact of the space charge

17



formation will be implemented and discussed in detail later on. This is applicable since this effect is
the most important contribution to the modification of the work function [69]. The thermoemission
can be enhanced by tunneling effect (or quantum tunneling), driven by a strong electric field close to
the cathode spot (the so-called field emission, combined with the thermoemission as the thermofield
emission) [72, 75], but its effect for a plasma arc at atmospheric pressure operating at a current in the
order of 100 - 200 A is negligible, since the occuring electric field in the neighborhood of the cathode is
at least one order of magnitude smaller to that necessary for field emission being of any relevance [75].

Once set free, the thermal emitted electrons must be accelerated by a strong voltage in order to
gain a kinetic energy high enough for producing ionization when colliding with neutral atoms inside
the plasma core. The responsible electric potential is created inside a space layer close to the cathode
where nearly every free electron has been removed and thus electric charge neutrality no longer holds,
this layer is called cathode sheath and the voltage developed across it Us. The basic structure of the
cathode sheath is schematically represented in Figure 2.2. Since the ionization energy of most gases is
about 10 eV, the scale for the sheath voltage Us developed in the sheath is also 5− 10 V. The electric
potential inside the sheath must be negative in order to produce an electric field oriented towards the
cathode.

From the very definition of Debye length as the largest length scale where electric charge separation
(and thus a strong electric field) can still exist within a plasma, the longitudinal extension of the
cathode sheath is in the order of magnitude of the Debye length. As already discussed, for a plasma
at atmospheric pressure the Debye length is ∼ 30 nm and therefore the sheath length is much smaller
than the longitudinal extension of the plasma arc. With the sheath length in the order of `s ∼ 30 nmm
at atmospheric pressure, the developed electric field inside the sheath has an order of magnitude of
Us
`s

= Es ∼ 108 V/m 2. Such a strong electric field pushes electrons towards the plasma and attracts
ions from the plasma towards the cathode, but without leaving nearly any time for collisions between
both kind of particles or between ions (electrons, being much lighter than ions, have still the possibility
of colliding among themselves). Hence the sheath is considered as collisionless for ions, meaning that
the ion current density (as well as the electron current density because there is no interaction to the
ions) is conserved within the sheath region.

The cathode sheath voltage determines the energy flow to the cathode surface and contributes thus
to the evolution of the temperature Tc of the cathode spot. The dynamics of Tc is obtained in a similar
way to the equation of motion for the local enthalpy distribution in a plasma arc Equation (2.5). Here
zc denotes the cathode’s axial width from its surface, facing from the plasma arc to the cold surrounding
at temperature T0 (in the back of the cathode). With rc being the radius of the cathode ”hot” spot,
the change in enthalpy of the cathode’s volume behind the spot is mainly determined by three effects:

• the axial heat diffusion due to the temperature difference between spot and cooling water;

• the energy loss due to radiation from the cathode surface, with emissivity εc;

• and the power gain from the plasma arc (this term contains the three major effects on the charge
distribution, see Figure 2.2

Thus leading to the mathematical formulation

πr2
czcρc cp, c

∂Tc
∂t

= −πr2
c

(
λth, c

Tc − T0

zc
+ εcσSBT

4
c

)
︸ ︷︷ ︸

heat loss due to diffusion and radiation

+ Ẇp→c︸ ︷︷ ︸
power gain

from plasma

(2.29)

where ρc, cp, c and λth, c denote the mass density, the specific heat and the thermal conductivity of the
metallic cathode material respectively. All of them considered as constant parameters and

σSB = 2π5k4
B

15h3c2 = 5.67× 10−8 W
m2 K4 , being the Stefan-Boltzmann constant. The emissivity coefficient

εcath of the cathode surface will be considered close to 1, since most operating cathodes display a rough
2This electric field strength, although large, is still not strong enough for making any field-effect correction to the

thermoemission from the cathode, as already mentioned.

18



and partially oxidized surface. The relation between the cathode sheath voltage and the power Ẇp→c,
flowing axially from the plasma (actually from the inner most plasma core) into the cathode spot, will
be derived in the following Section 2.3.2.

Prior to that however it must be discussed that this essential sheath can only exist due to the
presence of another layer between the plasma bulk and the sheath, where ionization is the dominant
process. This transition region, the so-called cathode pre-seath, see (Figure 2.2), where collisions
gradually reach the frequency needed at the plasma core to maintain its ionization level. For the
sheath to exist Maxwell’s equations (in this case the Poisson equation) must be fullfilled in the sheath
region and the electrostatic potential must be real. For this to happen the ions must reach a minimum
velocity at the interface of the sheath and presheath, the Bohm-velocity (see Section 2.3.1). To ensure
that the ions achieve this velocity is the essential function of the presheath. Inside the pre-sheath
the electron density is not equal to the electron density ne,∞ within the fully developed plasma core,
although it has the same order of magnitude. Nevertheless, since the voltage across the pre-sheath
is mostly below 1 V and thus nearly an order of magnitude smaller than the sheath voltage Us, this
connecting region will be no longer considered and a direct transition from cathode sheath to plasma
core will be assumed for the following discussion. For a detailed discussion of the equations describing
the pre-sheath see [56].

2.3.1 Stability of the cathode sheath and the Bohm velocity
The physical situation within the sheath can be regarded as a purely electrostatic problem, neglecting
the time derivative in the first order, since the electric field is very strong (Es ∼ 108 V/m)) and the
dimension of the sheath is small (`s ∼ 30 nm at atmospheric conditions. This can be described by the
following Maxwell equations:

rot ~E = ~0 , div ~E = ρel
ε

with ρel being the volume density of the electrical charge. The first equation can be fullfilled with the
following assumption

~E = −~∇V = −



∂V

∂x

∂V

∂y

∂V

∂z


with V being the electrostatic potential, which has only a dependence in the z-coordinate normal to
the cathode surface since the problem is regarded one dimensional.

~E =

 0
0
−dV
dz


Applying this approach to the second equation we derive Poissons equation for the potential V (z)

div ~E = ρel
ε0

⇒ −d
2V (z)
dz2 = −e ne(z) + e ni(z)

ε0
(2.30)

If ne,s−ps is the density of free electrons on the boundary between sheath and presheath, then the
electron density of an arbitrary position z from the cathode surface, with the potential V (z), is described
through the following relation

ne(z) = ne,s−ps exp
(
− (−e)V (z)

kBTe

)
(2.31)
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with a jump of the potential at position z = zs−ps

V (z = zs−ps) = 0

In eq. (2.31) Te is the temperature of the free eelctrons, which is assumed constant since the small
dimension does not allow temperature gradients to arise within the sheath. At the interface to the
presheath this temperature Te equals that from the presheath Te = Te,s−ps
The ions do not have a defined temperature in comparison to the electrons, since the ions are more
indolent due to their larger mass, collision between ions can be neglected in a first approximation.
They follow the electric filed lines on straight paths. The electrons do indeed have the possibility to
collide within the sheat, since they are more agile. The collisions with other electrons are the dominant
mechanism of energy transfer whereby a electron temperature can be defined.
The motion of the ions in the sheath is collision free, therefore the total energy (kinetic +potential
energy) is conserved and equals the ion energy at the sheath-presheath boundary (z = zs−ps):

mi

2 (vi(z))2 + (+e)V (z) = mi

2 v2
i,s−ps + 0 ⇒ vi = vi,s−ps

√
1− 2eV

miv2
i,s−ps

(2.32)

with the origin of the potential at this sheath-presheath boundary. The ion velocity can subsequently
be derived at an arbitrary position within the sheath. One remark at this instance, if the ion velocity
would vanish at the sheat-presheath boundary vi,s−ps = 0, Equation (2.32) would not be fullfilled. From
the assumption of collision free ion motion within the sheath it follows that the ion current density
remains constant over the sheath dimension.

ni(z) vi(z) = ni,s−ps vi,s−ps ⇒ ni = ni,s−ps
1√

1− 2eV
miv2

i,s−ps

(2.33)

with the equation above the ion particle density can be derived at an arbitrary position. With ni,s−ps
being the ion particle density ar the sheath-presheath boundary: Now one can see that since no charge
separation takes place in the presheath anymore (that was the defining function of the sheath), it follows
ni,s−ps = ne,s−ps. With Equation (2.31), the assumption Te = Te,s−ps) and Equation (2.33) substituted
into Equation (2.30), the following equation for the electrostatic potential in the sheath arises

d2V

dz2 = e ne,s−ps

ε0
exp

(
eV

kBTe,s−ps

)
− e ne,s−ps

ε0

1√
1− 2eV

miv2
i,s−ps

(2.34)

At the position z = zs−ps the electric potential V (z) and the electrical field −dV
dz

turn to zero 3, as a

consequence one can multiply Equation (2.34) with dV

dz
and integrate from z = zs−ps and an arbitrary

position z within the sheath to gain the following relation:∫ z

zs−ps

d2V

dz2
dV

dz
dz = 1

2

(
dV

dz

)2

1
2

(
dV

dz

)2
= ne,s−pskBTe,s−ps

ε0
×

[
exp

(
eV

kBTe,s−ps

)
− 1 +

miv
2
i,s−ps

kBTe,s−ps

(√
1− 2eV

miv2
i,s−ps

− 1
)]
(2.35)

3The electrical field is only approximately zero, since the electric filed within the plasma bulk Earc causes a additional
drift motion of the electrons. This electrical field however is 5-6 orders of magnitude smaller than the electrical field close
to the cathode surface Ecath, since the sheath is of miniscule extent.
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Now lets focus on the position close to the sheath-presheath-boundary (z → zs−ps): The potential is
small there (because the presheath potential is zero) and therefore all terms on the right side of Equa-
tion (2.35) are expanded in a Taylor series

≈ eV
kB Te,s−ps

+ 1
2

(
eV

kB Te,s−ps

)2

︷ ︸︸ ︷
exp

(
eV

kBTe,s−ps

)
− 1 +

miv
2
i,s−ps

kBTe,s−ps

≈− eV

miv2
i,s−ps

− 1
2

(
eV

miv2
i,s−ps

)2

︷ ︸︸ ︷(√
1− 2eV

miv2
i,s−ps

− 1
)

≈ 1
2

(
eV

kBTe,s−ps

)2
[

1− kBTe,s−ps

miv2
i,s−ps

]

1
2

(
dV

dz

)2
≈ 1

2
e2ne,s−ps

ε0kBTe,s−ps

[
1− kBTe,s−ps

miv2
i,s−ps

]
(2.36)

The left side of the equation is squared and hence always positive, conclusively the right side must also
be positive. This is only fullfilled if the ion velocity on the sheath presheath boundary applies to the
condition:

vi,s−ps ≥
√
kBTe,s−ps

mi
(2.37)

This minimal value for the ion velocity is called Bohm velocity:

vBohm =
√
kBTe,s−ps

mi
(2.38)

it defines the essentiell condition for the existence of a sheath.

2.3.2 Solution to the cathode sheath model and the cathode spot temperature
equation

To find a solution to the cathode sheath equation at first the necessary boundary conditions shall be
summerized

• material parameters:

◦ thermal conductivity of the cathode material λth,c;
◦ work function of the cathode material Φc;
◦ First ionization energy of the gas Eion;
◦ The surface emissivity εc(which is assumed to be of constant value)

• dimensions and physical boundary conditions:

◦ gas pressure P ;
◦ temperature of the ambient environment Tcool;
◦ thickness of the cathode material zc;
◦ temperature of the LTE plasma bulk Te,∞ = Th,∞ ≡ T∞, solution to Equations (2.59) and (2.60)

for the central celle (T∞ ≡ T [i = 1]), combined with the electron density ne,∞ in the plasma
bulk

• parameters derived from Figure 2.2:

◦ temperature of the cathode Tc;
◦ electron temperature Te,s−ps at the sheath-presheath interface;
◦ temperature of the heavy particles Th,s−ps at the sheath-presheath interface;
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◦ radius rc of the emitting cathode surface area;
◦ voltage drop Us in the sheath;
◦ voltage drop Ups in the presheath;
◦ electron density (also ion density) ne,s−ps at the sheath-presheath interface

• Important assumptions: The number of unknown variables is reduced to 5 with the following
relations:

Te,s−ps = T∞ , und Th,s−ps = Tc (2.39)
The first assumptions results from the fact that the electrons emitted by the cathode surface are
accelerated in the sheath. They enter the presheath, start ionizing the gas atoms within and by
the time they enter the plasma bulk ionization equilibrium has already been established. During
this process the radius of the contact ares expands from rc at the sheath-presheath boundary
to the radius of the plasma bulk rbulk, which is much larger the rc. Energy is dissipated during
that process, which results in a radial distribution of the temperature in the arc, instead of a
homogenous temperature throughout its extend. The shape is discussed in Section 2.1. Only the
electrons entering the central diagonal matrix element of the arc at i = 1, are barely effected
by the energy dissipation. Therefore their temperature Te,s−ps is approximately equal to the
temperature in the centre of the arc T [i = 1]: Te,s−ps ≈ T [i = 1].
The second assumption is based on the small dimension of the cathode sheath `s ∼ 20 nm at
atmospheric pressure. This leads to the ions and atoms being ”affected” by the temperature of
the cathode.
In the following discussion two more effects on the current density will be left out in order to
reduce the problem to the essential quantities. A more refined model could easily include both
effects, since their processing is straight forward but their impact is minor. The first one being
the current density due to back diffusing electrons (je,back,s−ps = 0). With the current density
being calculated with the equation:

je,back,s−ps = −1
4ene,back,s−psve,back,s−pse

− eUs
kB Te,s−ps

ve,back,s−ps =
√

8kBTe,SE
πme

(2.40)

The second effect is the radiation from the hot cathode surface. This additional heating of the
near cathode region will be neglected at first. Coupled with that problem also the radiation of the
plasma heating the cathode or being reflected from its surface and recoil into the plasma can be
neglected, because its intensity is orders of magnitude lower than the radiation from the cathode
surface itself [74].

For the 5 unknown variables, now 5 equations are needed to solve the stationary one dimensional
cathode sheath (without radiation impact). The number of equations needed will be further reduced,
since the impact of the presheath voltage drop Ups can be disregarded, as stated initially. In principle
one could formulate the following simplified relation for the presheath.

ne,s−ps = ne,∞e
−(−e)Ups/kBTe,s−ps (2.41)

which in turn leads to Ups = kBTe,s−ps

e
ln
(
ne,s−ps

ne,∞

)
. The value of this contribution is of the order

of less than 1 V and is further neglected, since it is much smaller than either the sheath or the bulk
voltage drop.
The 4 remaining unknowns will be calculated from the following relations:

1. The current density from the electrons which results from thermionic emission from the cathode
material, defined by the Richardson equation [76]:

je,th = 4πemek
2
B

h3 T 2
c exp

(
− eΦc
kBTc

)
≡ AR T 2

c exp
(
− eΦc
kBTc

)
(2.42)
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with Tc being the cathode surface temperature and Φc being the work function of the cathode
material. As stated above the ion current density at the presheath-sheath boundary will be
derived from the criterion of the Bohm velocity, which defines the existence of the sheath itself
[77]:

vBohm =
√
kBTe,s−ps

mi
⇒ ji,s−ps = ene,s−ps

√
kBTe,s−ps

mi
(2.43)

The first required equation is the simplified energy conservation at the presheath-sheath boundary.
The electrons emitted from the cathode gain energy within the sheath of a value, charge times
voltage drop Us. The ion current density leaving the boundary towards the cathode carries an
energy per charge equal to the ionization energy of the gas, which is gained through the constant
ionisation within the presheath. Regarding the predefined environmantal conditions the plasma
will be operated in, it is sufficient to take only the first ionisation for this equation into account,
since the amount of higher ionized particles is order of magnitude lower.
Such an energy flow is compensated by the ions leaving the plasma and flying toward the cathode,
where each ion carries at least an energy per unit charge in the order of Eion/e, being Eion the
ionization energy of the neutral atoms within the plasma gas. Hence following energy flow balance
applies [74]

je, th Us ≈ ji,s−ps
Eion
e

(2.44)

with Eion being the first ionization energy of the gas. Thus leading to the equation for the cath-
ode sheath voltage drop Us.

Us ≈

ion current ji, s−ps leaving
plasma core at Bohm velocity︷ ︸︸ ︷
e ne,∞(T p)

√
kBT p
mi

ART
2
c exp

(
− eΦc
kBTc

)
︸ ︷︷ ︸

electron current je, th thermally
emitted at hot cathode spot

Eion
e

(2.45)

2. The second required equation is the Saha-Eggert eq. (2.13) at the presheath-sheath boundary,
which has been defined in Equation (2.25) and will be to be solved iterativley.

ne ≈

P

kBTe

1− 1
θ

1
n

(prov)
e

∑
k=A,B,C,...

fk
gk

∂gk
∂ne

n
(prov)
e

(2.46)

The electron density at the boundary ne,s−ps is derived from that equation.

3. The third equation is a simplified energy conservation at the cathode-sheath boundary. The ions
from the presheath carries an energy of Eion/e per charge towards the surface of the cathode,
plus the the energy the ions gain while traveling through the sheath Us. A part of this energy
is lost at the cathode surface due to recombination with the electrons. The energy required to
release one electron from the cathode surface for the purpose of recombination is equal to the
work function Φc. Each ions then carry the energy according to the following equation towards
the cathode Eion

e
+ Us − Φc. The emitted thermal electrons have an energy of eΦc when released

from the surface of the cathode, the combined energy flux follows as

ji,s−ps

(
Us + Eion

e
− Φc

)
− je,thΦc .
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Regarding the cathode surface there is an energy loss (per unit time and surface) equal to −je, thΦc
due to the electrons “breaking free’’ from the cathode, and there is an energy gain (per unit time

and surface) given by +ji, s−ps

(
Eion
e

+ Us − Φc
)

of the impinging ions which left the plasma

with voltage Eion/e, gained energy due to the acceleration inside the sheath and partially lost
again energy by entering the metal cathode [74, 78].
In steady state this energy flux is carried away by heat conduction within the cathode material.
The cooling effect of the cathode is defined by the cathode width zc

λth,c
Tc − Tcool

zc
= ji,s−ps

(
Us + Eion

e
− Φc

)
− je,thΦc (2.47)

with Tcool being the temperature of the cooling system, for example a water cooled heat sink and
λth,c being the thermal conductivity of the cathode material. This equation will further be the
base for the calculation of the cathode temperature Tc.

4. The last equation needed is the current conservation at the cathode: The current I flows through
the cross section defined by the cathode spot radius rc and equals the sum of the ions and electron
fluxes.

I

πr2
c

= je,th + ji,s−ps (2.48)

The cathode spot radius rc is derived with this equation.

Given these 4 equations, the total amount of energy per unit time and surface flowing into the cathode
spot surface is given by

ẇp→c = Ẇp→c

πr2
c

= −je, thΦc + ji, s−ps

(
Eion
e

+ Us − Φc
)

eq. (2.45)= (je, th + ji, s−ps) (Us − Φc) = (je, th + ji, s−ps)
(
Eion
e

ji, s−ps

je, th
− Φc

) (2.49)

This is actually a formulation for the the power gain by the cathode divided by the cathode spot area (in
this case simplified by a circle of radius rc), which corresponds to a positive contribution increasing the
cathode spot temperature Tc. Combining the Equations (2.29), (2.44) and (2.47) on gets a nonlinear
equation for the cathode temperature (later on this will be called the equation of motion and is a refined
form of Equation (2.29)) for Tc

ρc cp, c
∂Tc
∂t

=

power loss per unit volume
due to diffusion and radiation︷ ︸︸ ︷

−
(
λth, c

Tc − T0

z2
c

+ εc
zc
σSBT

4
c

)

+

power gain per unit volume
from plasma arc︷ ︸︸ ︷

1
zc

 ART
2
c exp

(
− eΦc
kBTc

)
+ e ne,∞(T p)

√
kBT p
mi

×

×

Eione
e ne,∞(T p)

√
kBT p
mi

ART
2
c exp

(
− eΦc
kBTc

) − Φc

 (2.50)

The work function eΦc is always much smaller than the ionization energy Eion. The solution scheme
for this equation will be presented in the next section, but first some characteristics of that equation
shall be clarified.
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• Before one calculates Tc a significant effect has to be included: The ”expulsion” of the electrons
from the sheath and the remain of the more indolent ions near the cathode surface generates a
tremendous electric field. This field further promotes the extraction of electrons from the cathode
surface, which in turn leads to a effective reduction of the work function of the cathode material.
This leads to the so called Schottky correction [69]:

Φc → Φc,eff = Φc −
√

eEc
4πε0

(2.51)

The integral over all charges in the proximity above the cathode contribute to this correction
term. In this one dimensional case no spatial contributions resulting from the shaping of the
surface are incooporated. The electrostatic field near the cathode surface Ec can be derived
from Equation (2.35), with dV

dz
evaluated at z = 0, furthermore V (z = 0) = − |Us| and the

application of the Bohm velocity for the ions vi,s−ps = vBohm

Ec =

√√√√2ne,s−pskBTe,s−ps

ε0

[
exp

(
− e |Us|
kBTe,s−ps

)
+

√
1 + 2e |Us|

kBTe,s−ps
− 2
]

(2.52)

This adaption of the work function takes a few iterations at constant cathode temperature to
find a converged solution. Only after this convergence the cathode temperature can again be
calculated according to the procedure presented later on in this work.

• With reference to the remark Section 2.1 the total voltage spent between cathode and anode is
mainly given by the sum of the cathode sheath voltage Us Equation (2.45) and the arc voltage
Uarc Equation (2.6)

Utotal ≈
Eion
e

e ne,∞(T p)

√
kBT p
mi

ART
2
c exp

(
− eΦc
kBTc

) + + `arc∫ r0

0
σel(Tp(r)) 2πr dr

Iarc (2.53)

where the contributions of the anode sheath and the cathode pre-sheath have been neglected for
being one order of magnitude smaller.
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2.4 Developing a numerically stable integration of the equations of motion

”In nature nothing remains constant. Everything is in a
perpetual state of transformation, motion and change.”

David Bohm

Before beginning with the calculations for a radiation model or the design of an appropriate control for
driving the system “plasma arc - cathode spot temperature’’ along a desired trajectory, it needs to be
discussed how the two different derived dynamic equations of the previous sections are to be integrated.
Due to the nonlinear character of many of the terms in the equations of motion, a numerical solution is
the only way to follow the dynamics evolution, with the time coordinate being discretized in time steps
of duration ∆t. Without taking very good care, such discretization can quickly lead to nonsensical
numerical solutions as soon as ∆t is not chosen small enough. Instead of reducing ∆t down to tiny
values, which may even require to work with time scales where the derived dynamics are no longer
valid, the time step will be kept at a scale about ∆t ∼ 1 µs, but simultaneously the different nonlinear
terms will be implemented according to their sign and strength in such a way that the integration over
many time steps can be performed in a stable way.4 This requires nevertheless the development of
an own integration algorithm, instead of using already commercial codes which are not well suited for
such nonlinear dynamics. The general derivation of this scheme is described in Appendix A.2.1. The
adaption for the equations of motion for plasma temperature and cathode spot temperature will be
carried out in the following.

2.4.1 Numerical integration of the detailed system dynamics
To solve the plasma temperature dynamics (see Equation (2.5)), the plasma arc radial extension, from
the arc symmetry axis r = 0 to the radius r0 of the cold surrouding, is discretized in N concentric layers,
each denoted by index j and having variable width ∆r(j): radial coordinate r(j) marks the middle of
each layer and a radial coordinate with a half integer index like r(j + 1/2) denotes the division line
between the j-th and the (j+1)-th layer (see Figure 2.3). With the assumption of a constant cell width
one can deduce the following description:

r(j) = r(j − 1) + ∆r(j − 1)
2 + ∆r(j)

2

r(j − 1/2) = r(j)− ∆r(j)
2 r(j + 1/2) = r(j) + ∆r(j)

2

with r(1− 1/2) = 0 for the inner most layer. The temperature within the j-th layer is assumed to be
homogeneously distributed in the layer, Tp(j), but change between layers, using a similar notation for
any thermodynamic parameter of the plasma gas: for instance
λth, p(Tp(r(j))) ≡ λth, p(j) and λth, p(Tp(r(j + 1/2))) ≡ λth, p(j + 1/2). The values of temperature and
of the thermal conductivity at the division line between two concentric layers are obtained from the
following condition of a continuous heat flow across the division line (see [79], § 4) in 3 steps:

4The selection of a fitting time scale can be quite challenging, the following thoughts shall clarify the regarded
selection. It should be emphasized that generally one is free to choose the time scale, but the regarded model should be
detailed enough to cover the targeted dynamics of the system. If the time scale is chosen to small for the driving effects
of the dynamics, their impact would effectively be canceled. The simulated dynamics would then be different from the
intended ones. Therefore it is not adequate to just start with the smallest possible value for ∆ t, but rather derive an
estimate of the temporal scaling order through the given effects and material properties present in the regarded problem.
For the thermal model the dominant process is diffusive heat transport, now a time scale can be defined which estimates
how information is transfered, based on this process, from one part of the plasma to another. It follows that τ ∼ ρ cp x

λth
,

with x being a characteristic length scale. This length scale depends on the configuration chosen for the model, for control
applications it is thereby enough to limit the spatial resolution to gain advance on temporal evolution of the underlying
mathematics. Therefore the length scale is defined by the value of radial distance between two consecutive points of the
discretization, which is ∆ r = r0

50 = 8e − 5[m]. With this quantity a proper order of magnitude can be derived, for the
sake of numerical stability and convergence. The precise value can then be found by taking into account the convergence
rate of the solution.
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Figure 2.3: Scheme to discretize the radial plasma temperature distribution in N concentric
layers of width ∆r(j) and center coordinate r(j) with j = 1, . . . , N ; r(j+ 1/2) is the radial
coordinate for the edge to the (j + 1)-th layer

1. Heat is flowing across the division line at r(j + 1/2) due to the temperature gradient between

(j + 1)-th and j-th layer, λth, p(j + 1/2)Tp(j + 1)− Tp(j)
r(j + 1)− r(j) , and this heat flow must be also equal,

on the one hand, to the heat flow within the j-th layer due to the temperature difference
(Tp(j + 1/2)− Tp(j)), and on the other hand, to the heat flow within the (j + 1)-th layer due to
the temperature difference (Tp(j + 1)− Tp(j + 1/2))

λth, p(j + 1/2)Tp(j + 1) − Tp(j)
r(j + 1) − r(j) = λth, p(j)Tp(j + 1/2) − Tp(j)

r(j + 1/2) − r(j) = λth, p(j + 1)Tp(j + 1) − Tp(j + 1/2)
r(j + 1) − r(j + 1/2)

2. Tp(j + 1/2) denotes the temperature at the division line which follows from the last equality in

the previous chain of 2 equalities: Tp(j + 1/2) =
λth, p(j)

r(j+1/2)−r(j)Tp(j) + λth, p(j+1)
r(j+1)−r(j+1/2)Tp(j + 1)

λth, p(j)
r(j+1/2)−r(j) + λth, p(j+1)

r(j+1)−r(j+1/2)

3. And thus λth, p(j + 1/2) results from the first equality

λth, p(j + 1/2)
r(j + 1)− r(j) =

λth, p(j)
r(j + 1/2)− r(j)

λth, p(j + 1)
r(j + 1)− r(j + 1/2)

λth, p(j)
r(j + 1/2)− r(j) + λth, p(j + 1)

r(j + 1)− r(j + 1/2)

λth, p(j + 1/2) = λth, p(j)λth, p(j + 1)
λth, p(j)∆r(j + 1) + λth, p(j + 1)∆r(j) (∆r(j) + ∆r(j + 1))

(2.54)

The discrete formulation for 1
r

∂

∂r

(
λth(T ) r ∂T

∂r

)
follows for the cell element [i]

1
r[i]

1
∆r

[
r[i+ 1/2]λth[i+ 1/2] T [i+ 1]− T [i]

∆r − r[i− 1/2]λth[i− 1/2] T [i]− T [i− 1]
∆r

]
Regarding the electric field Earc along the plasma arc, its relation to the arc current Iarc expressed
in (Equation (2.4)) by means of an integral is now written in its discretized version as a sum over all
concentric layers of the plasma arc

Iarc = Earc

∫ r0

0
σel(Tp(r)) 2πr dr ≈

N∑
j=1

π
(
r(j + 1/2)2 − r(j − 1/2)2)︸ ︷︷ ︸

= 2πr(j)∆r(j)

σel(Tp(j)) (2.55)
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again with r(j − 1/2) = 0 for layer index j = 1. Now the dynamic eq. (2.5) are integrated over each
cylindrical concentric layer, and after applying the general procedure with the 2 methods explained
in eq. (A.3), the following algebraic discretized equations result

j = 1 : 2πr(j)∆r(j) ρp(j)cp, p(j)
Tp(j, t + ∆t) − Tp(j, t)

∆t
=

2πr(j + 1/2) λth, p(j + 1/2)
(

Tp(j + 1) − Tp(j)
)

r(j + 1) − r(j)
− 0 + 2πr(j)∆r(j) σel(j) E2

arc ,

1 < j < N : 2πr(j)∆r(j) ρp(j)cp, p(j)
Tp(j, t + ∆t) − Tp(j, t)

∆t
=

2πr(j + 1/2) λth, p(j + 1/2)
(

Tp(j + 1) − Tp(j)
)

r(j + 1) − r(j)

−
2πr(j − 1/2) λth, p(j − 1/2)

(
Tp(j) − Tp(j − 1)

)
r(j) − r(j − 1)

+ 2πr(j)∆r(j) σel(j) E2
arc ,

j = N : 2πr(j)∆r(j) ρp(j)cp, p(j)
Tp(j, t + ∆t) − Tp(j, t)

∆t
=

2πr(j + 1/2) λth, p(T0)
(

T0 − Tp(j)
)

r0 − r(j)

−
2πr(j − 1/2) λth, p(j − 1/2)

(
Tp(j) − Tp(j − 1)

)
r(j) − r(j − 1)

+ 2πr(j)∆r(j) σel(j) E2
arc

j = 1 : Tp(j + 1, t + ∆t)

aj, j+1︷ ︸︸ ︷[
−

2∆t λth, p(j + 1/2)
ρp(j)cp, p(j)

(
1 +

∆r(j)
2r(j)

) 1
∆r(j)

(
∆r(j) + ∆r(j + 1)

)]

Tp(j, t + ∆t)

1 − aj, j+1 + ξ
∆t σel(j)

ρp(j)cp, p(j)

(
Iarc∑N

j=1 2πr(j)∆r(j) σel(j)

)2
1

T
(prov)
p (j, t + ∆t)


︸ ︷︷ ︸

aj, j

= Tp(j,
⇓
t ) +

(
1 + ξ

) ∆t σel(j)
ρp(j)cp, p(j)

(
Iarc∑N

j=1 2πr(j)∆r(j) σel(j)

)2

︸ ︷︷ ︸
bj

(2.56)

1 < j < N : Tp(j − 1, t + ∆t)

aj, j−1︷ ︸︸ ︷[
−

2∆t λth, p(j − 1/2)
ρp(j)cp, p(j)

(
1 −

∆r(j)
2r(j)

) 1
∆r(j)

(
∆r(j) + ∆r(j − 1)

)]

Tp(j + 1, t + ∆t)

aj, j+1︷ ︸︸ ︷[
−

2∆t λth, p(j + 1/2)
ρp(j)cp, p(j)

(
1 +

∆r(j)
2r(j)

) 1
∆r(j)

(
∆r(j) + ∆r(j + 1)

)]

Tp(j, t + ∆t)

1 − aj, j−1 − aj, j+1 + ξ
∆t σel(j)

ρp(j)cp, p(j)

(
Iarc∑N

j=1 2πr(j)∆r(j) σel(j)

)2
1

T
(prov)
p (j, t + ∆t)


︸ ︷︷ ︸

aj, j

= Tp(j,
⇓
t ) +

(
1 + ξ

) ∆t σel(j)
ρp(j)cp, p(j)

(
Iarc∑N

j=1 2πr(j)∆r(j) σel(j)

)2

︸ ︷︷ ︸
bj

(2.57)
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j = N : Tp(j − 1, t + ∆t)

aj, j−1︷ ︸︸ ︷[
−

2∆t λth, p(j − 1/2)
ρp(j)cp, p(j)

(
1 −

∆r(j)
2r(j)

) 1
∆r(j)

(
∆r(j) + ∆r(j − 1)

)]

Tp(j, t + ∆t)

[
1 − aj, j−1 +

2∆t λth, p(T0)
ρp(j)cp, p(j)

(
1 +

∆r(j)
2r(j)

) 1
(∆r(j))2

+ξ
∆t σel(j)

ρp(j)cp, p(j)

(
Iarc∑N

j=1 2πr(j)∆r(j) σel(j)

)2
1

T
(prov)
p (j, t + ∆t)


︸ ︷︷ ︸

aj, j

= Tp(j,
⇓
t ) +

2∆t λth, p(T0)
ρp(j)cp, p(j)

(
1 +

∆r(j)
2r(j)

) 1
(∆r(j))2 T0

+
(

1 + ξ
) ∆t σel(j)

ρp(j)cp, p(j)

(
Iarc∑N

j=1 2πr(j)∆r(j) σel(j)

)2

︸ ︷︷ ︸
bj

(2.58)

where all the thermodynamical parameters are evaluated at the corresponding position and for the
provisional temperature at the next time step. Notice that for the central core (j = 1) there is no

contribution aj, j−1 since due to the cylindrical symmetry at r = 0 condition ∂Tp
∂r

= 0 is satisfied.
Determining the radial plasma temperature distribution reduces thus to solving the following algebraic
equation group

a1, 1 a1, 2 0 . . . . . . . . . 0
a2, 1 a2, 2 a2, 3 0 . . . . . . 0

...
...

. . .
...

...
...

...
... 0 aj, j−1 aj, j aj, j+1 0 . . .
...

...
...

...
. . .

...
...

0 . . . . . . . . . 0 aN, N−1 aN, N





T p(t + ∆t)
Tp(2, t + ∆t)

...
Tp(j, t + ∆t)

...
Tp(N, t + ∆t)

 =



b1
b2
...

bj

...
bN

 (2.59)

with T p ≡ Tp(j = 1) the plasma core temperature. Implementing the non-modelled effects, denoted by
. . . in eq. (2.5), as a stochastic contribution is easily carried out by adding the double underline term
into the the right hand side of eq. (2.59)

a1, 1 a1, 2 0 . . . . . . . . . 0
a2, 1 a2, 2 a2, 3 0 . . . . . . 0

...
...

. . .
...

...
...

...
... 0 aj, j−1 aj, j aj, j+1 0 . . .
...

...
...

...
. . .

...
...

0 . . . . . . . . . 0 aN, N−1 aN, N





T p(t + ∆t)
Tp(2, t + ∆t)

...
Tp(j, t + ∆t)

...
Tp(N, t + ∆t)

 =



b1
b2
...

bj

...
bN

+ ∆t
√

σ̃2
0



η1
η2
...

ηj

...
ηN

 (2.60)

where ~η is a vector of N white noise components standard normally distributed (i.e. Gaussian dis-
tributed with unit standard deviation) the strength σ̃0 of this standard white noise has dimensions of
K/s and should be chosen in such a way that ∆t

√
σ̃2

0 ~η is yielding a contribution about 10 % as strong
as vector ~b.
For the single equation of motion for Tc eq. (2.50) a similar procedure yields
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kBT
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)
 (2.61)

In both eqs. (2.59) and (2.61) the abbreviations T (prov)
p/c ≡ T (prov)

p/c (t+ ∆t) have been used for the provi-
sional solution at the next time step. The improved solution just obtained is now used as the provisional
value for obtaining an even better improved solution. This whole process is iterated until the change
between two consecutive iterations for the same time step drops below some desired value.
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Chapter 3

Radiation model and Quantum Mechanics

”Quantum mechanics, with its leap into statistics, has been
a mere palliative for our ignorance.”

Rene Thom

This chapter will formulate all essential physical effects to derive the radiated power coming from a
plasma arc and puts them into a mathematical scheme. The state of the art procedures to deal with ra-
diation intensity as stated in the introduction are either based on the emission coefficient measurement
for weakly absorbed lines as in the Fowler-Milne method [44–48], or the net emission coefficient (NEC)
approach [50, 51], which takes into account absorption of an emitting sphere with predefined radius.
This work extends the latter approach by introducing a segregated radial temperature profile in order
to obtain more insight on the local emission of radiation, to calculate the radiation intensity (emission
of a spectral line corrected by the absorption of the incoming intensity) for each radial element. Ad-
ditionally using Plank’s law for radiative processes in quasi equilibrium, the absorption characteristics
are deduced as well from the emission coefficients and the local information on the plasma tempera-
ture [80]. The integral over the radial dimension and the integral over all wavelength leads to the total
radiation intensity emitted by the plasma. At last a cost function is introduced that evaluates the
difference between the calculated spectrum for a specific radius rcool and a measured spectrum of an
OES measurement of a process with the same input parameters as the calculation. The minimization
of that function yields the temperature profil associated to rcool that fits the radiation profile the best.
This technique poses a novel tool for experimental analysis, since no Abel inversion is needed to com-
pare measurements and computed spectral information. The purpose of this chapter is to derive a
simplified description that contains enough of the ’’true’’ physical behaviour of the radiation processes,
but is accurate enough and fast computable to be of use for analysing spectral lines for real time mea-
surements. The presented approach has been published by the author in [53].
The chapter covers the following steps to derive the required equations:

1. A brief introduction to the concepts of quantum mechanics shall be given. Essentially covering
the formulation of the Hamiltonian operator for a quantum system and the introduction of the
uncertainty principle, which leads to the linear Schrödinger equation and the state function.

2. The derivation of Fermi’s Golden rule and the formulation for the state transition rate for the
interaction of an electromagnetic wave with an electron within a bound state of an atom (the
formulation for ions is derived likewise).

3. Deriving a description of the spectral intensity resulting from the transition of an electron between
two bound states (this process is called bound-bound or discrete transition). This requires the
knowledge of the line shape (or line profile) of the emitted electromagnetic wave and the underlying
phyical mechnisms that lead to this shaping. With respect to the regarded plasma system the
driving mechanism for this shaping (or rather broadening) of spectral lines is pressure broadening
(also called the Stark effect) [81].

4. At last the simulation environment and the code structure of the Matlab model is presented.
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3.1 A brief introduction to Quantum Mechanics

The intension of this section is to briefly recape the concepts behind photon particle interactions,
especially electrons in a bound state of an atom (and ions likewise). The general discussion of the basic
quantum mechnical mathematics will follow the explainations given in [82].

At first consider a particle of mass m whose one dimensional position is denoted by q and its velocity
by q̇ (from now on ˙ represents the time derivative). The motion is due to the action of a (conservative)
force derived from a potential energy Epot(q) and the resulting equation of motion is thus

mq̈ = −∂Epot
∂q

(3.1)

By introducing the momentum p = m q̇ as a coordinate independent of the position q the above equation
of motion can be derived from the Hamiltonian H(q, p), defined as the total energy i.e. the sum of
kinetic and potential energy

H(q, p) = p2

2m + Epot(q) (3.2)

through the Hamiltonian equations of motion

q̇ = ∂H

∂p
and ṗ = −∂H

∂q
(3.3)

The first Hamiltonian equation is nothing else but the relation between velocity and the definition of
momentum, q̇ = ∂H

∂p
= p

m
, and the second Hamiltonian equation corresponds to the actual equation

of motion (Equation (3.1))

ṗ = mq̈ = −∂H
∂q

= −∂Epot
∂q

Any function of q and p (but not explicitly of time t) A(q, p) evolves in time according to

dA

dt
= ∂A

∂q
q̇ + ∂A

∂p
ṗ = ∂A

∂q

∂H

∂p
− ∂A

∂p

∂H

∂q
(3.4)

As next the so-called Poisson bracket for any two functions f(q, p) and g(q, p) will be introduced

{f, g} ≡ ∂f

∂q

∂g

∂p
− ∂f

∂p

∂g

∂q
(3.5)

In particular it follows that, {q, q} = 0 = {p, p} and {q, p} = 1 ,since q and p are independent variables.
By means of the Poisson bracket the equation of motion (Equation (3.4)) reads

Ȧ = ∂A

∂q

∂H

∂p
− ∂A

∂p

∂H

∂q
= {A, H} (3.6)

The transition to the quantum formulation of the equation of motion proceeds through two steps:

1. Any measureable variable A(q, p) (and the position and momentum coordinate themselves) be-
comes a (Hermitian) operator A (the underline symbol will denote from now on operators). Such
an operator acts on so-called state functions ψ(x, t) which are in general space and time dependent
complex valued functions. The result of any macroscopic (=classical) measurement on the state
ψ of the variable A(q, p) corresponds to the following expectation value

〈ψ|A|ψ〉 =
∫ ∞

−∞
ψ∗(x, t)A(q, p)ψ(x, t) dx (3.7)

whereas the action of the position operator q on the state ψ(x, t) just “reads’’ the space coordinate
for that space: q ψ = xψ. States will be often denoted by |ψ〉 and the above expectation value will
be compactly written as 〈A〉 , when there is no possibility of confusion regarding on which state
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the expectation value is being calculated. The states will be assumed to be properly normalized
such that the following relation always hold

〈ψ|ψ〉 =
∫ ∞

−∞
ψ∗(x, t)ψ(x, t) dx = 1 (3.8)

2. The Poisson bracket {A, B} of the Classical Mechanics, which describes the dynamics within
framework of the Hamilton formulation, becomes the commutator between the corresponding
operators [A, B] = AB −BA = − [B, A] but multiplied by the imaginary factor 1

i~
(~ denotes

the (reduced) Planck constant)
{A, B} −→ [A, B] (3.9)

In particular the corresponding commutator for the position and momentum operators[
q, p

]
= i~ (3.10)

actually incorporates the Uncertainty Principle (Appendix A.3.4) ∆q∆p ≥ ~
2 . It also is consis-

tent with the classical equation of motion for an explicitly time independent Hamilton operator
H =

p

2m + Epot(q)

q̇ = 1
i~
[
q, H

]
= 1
i~

[
q,

p

2m

]
+ 0 = 1

i~
2

2m

i~︷ ︸︸ ︷[
q, p

]
p =

p

m

ṗ = 1
i~
[
p, H

]
= 0 + 1

i~
[
p, Epot(q)

]
= 1
i~
[
p, q

]︸ ︷︷ ︸
−i~

∂Epot
∂q

= −∂Epot
∂q

whereas the following relation has been used

[AB, C] = ABC − C AB = ABC − C AB ∓BAC
= A [B, C] + [A, C]B

(3.11)

For any operator A = A(q, p) its time evolution is determined by the commutator with the
Hamiltonian through

Ȧ = 1
i~

[A, H] (3.12)

The time evolution of the state function ψ(x, t) is determined by the Schrödinger equation

i~ψ̇ = H ψ (3.13)

in order to be consistent on the one hand with Ȧ = 1
i~

[A, H] and on the other hand with the first
quantization step where the macroscopic result of a measurement of A on ψ is given by the expectation
values 〈A〉

〈
Ȧ
〉

=
∫ ∞

−∞
ψ∗(x, t) Ȧ ψ(x, t) dx = 1

i~

∫ ∞

−∞

(
ψ∗ A

i~ψ̇︷︸︸︷
H ψ−

−i~ψ̇∗︷ ︸︸ ︷
ψ∗ H Aψ

)
dx

=
∫ ∞

−∞

(
ψ∗ A ψ̇ + ψ̇∗ Aψ

)
dx = d

dt
〈A〉
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3.1.1 Fermi’s Golden Rule
From now on any wave function with the whole time-space dependence will be written in capital letter,
Ψ(t, ~x), whereas lowercase, ψ(~x), is reserved for the case where the time dependence has been already
separated ([82], § 35). Consider a bound electron within an atom, the interaction with its corresponding
nucleus is described by the Hamiltonian H0 which has Ψ(0)

n (t, ~x) = e−iE(0)
n t/~ ψ(0)

n (~x) as time dependent
eigenfunctions, with E

(0)
n the corresponding energy eigenvalue

i~
∂

∂t
Ψ(0)
n = H0Ψ(0)

n =⇒ e−iE(0)
n t/~E(0)

n ψ(0)
n = e−iE(0)

n t/~H0 ψ
(0)
n ,

H0 ψ
(0)
n (~x) = E(0)

n ψ(0)
n (~x) in short⇐⇒ H0 |n〉 = E(0)

n |n〉
(3.14)

The Hamilton operator H0 will be called the unperturbed Hamiltonian. For simplicity no energy
degeneration is assumed such that the eigenfunctions of different energy eigenvalues are orthogonal to
each other

〈n|m〉 =
∫ (

ψ(0)
n (~x)

)∗
ψ(0)
m (~x) d3~x = δnm =

{
1 n = m
0 n 6= m

(3.15)

This is a direct consequence of the calculation of 〈n|H0|〉, once calculated with the (unperturbed)
Hamiltonian acting on the state to its right, once calculated with H0 acting on the state to its left:

〈n| H0 |m〉︸ ︷︷ ︸
E(0)
m |m〉

= 〈n|H0︸ ︷︷ ︸
E(0)
n 〈n|

|m〉 ⇒
(
E(0)
m − E(0)

n

)
〈n|m〉 = 0

with the only possible solution E
(0)
n 6= E

(0)
m for the case 〈n|m〉 = 0. Now an additional interaction is

switched on, described by the so-called perturbation Hamiltonian Hint. The task is now to determine
the eigenfunctions Ψn(t, ~x) of the total Hamiltonian H = H0 +Hint

H Ψn(t, ~x) = i~
∂

∂t
Ψn(t, ~x) (3.16)

assuming that the energy scale of the additional interaction is much lower than that responsible for
the electron to be bound to its own nucleus. The solution ansatz is to expand Ψn(t, ~x) as a linear
superposition of the eigenfunctions of the unperturbed Hamiltonian with time dependent weights cnm(t)

Ψn(t, ~x) =
∑
m

cnm(t) Ψ(0)
m (t, ~x) =

∑
m

cnm(t) e−iE(0)
m t/~ |m〉 (3.17)

The squared |cnm|2 describes the probability at time t to find the m-th unperturbed energy state within
the state Ψn(t, ~x). From Equation (3.17) follows

(H0 +Hint)ψn = i~
∂

∂t
ψn = i~

∑
m

ċnm e
−iE(0)

m t/~ |m〉+
∑
m

cnm e
−iE(0)

m t/~E(0)
m |m〉 ,∑

m

ċnm e
−iE(0)

m t/~ |m〉 = − i
~
∑
m

cnm e
−iE(0)

m t/~Hint |m〉 (scalar product with 〈k|)

ċnk = − i
~
∑
m

cnm(t) ei
(
E

(0)
k

−E(0)
m

)
t/~ 〈k|Hint |m〉 (3.18)

The scalar product with 〈k| has extracted the probability amplitude for undergoing a transition to
a final state |k〉. Since this is a first order differential equation one initial condition is required, for
instance

cnk(t = 0) = δnk (3.19)

which corresponds to the situation where the system is initially in the unperturbed n-th energy state.
The time integration of Equation (3.18) between t = 0 and an arbitrary t allows the calculation of the
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probability amplitude for a later transition from |n〉 to |k〉 6= |n〉

cn→k︷ ︸︸ ︷
cnk(t)−δnk = − i

~
∑
m

∫ t

0
cnm(t′) ei

(
E

(0)
k

−E(0)
m

)
t′/~ 〈k|Hint |m〉 dt′

≈ − i
~
∑
m

〈k|Hint |m〉
∫ t

0
cnm(t′) ei

(
E

(0)
k

−E(0)
m

)
t′/~

dt′

(3.20)

whereas in the last step it has been assumed that the interaction Hamiltonian Hint displays a far slower
time evolution as that in the exponential ei

(
E

(0)
k

−E(0)
m

)
t′/~, the latter arising from the interaction of the

electron with its nucleus. This is again consistent with the assumption that the perturbation has an
energy scale much lower than that of the interaction between bound electron and nucleus.
Since the Equation (3.20) contains the unknown cnm(t) on the left and on the right side of the integral
equation, only approximative solutions of increasing accuracy can be obtained:

1. Solution of Equation (3.20) up to first order in Hint by using the initial condition as cnk(t) inside
the integral

cnk(t) ≈ δnk −
i

~
∑
m

〈k|Hint |m〉
∫ t

0
δnm e

i
(
E

(0)
k

−E(0)
m

)
t′/~

dt′

cnk(t) ≈ δnk + 〈k|Hint |n〉
E

(0)
k − E

(0)
n

(
1− ei

(
E

(0)
k

−E(0)
n

)
t/~
)
, k 6= n

(3.21)

2. Solution of Equation (3.20) up to second order in Hint by using the solution up to first or-
der (Equation (3.21)) inside the integral

cnk(t) ≈ δnk −
i

~
∑
m

〈k|Hint |m〉
∫ t

0

[
δnm + 〈m|Hint |n〉

E
(0)
m − E(0)

n

(
1− ei

(
E(0)

m −E(0)
n

)
t/~
)]
×

× e
i
(
E

(0)
k

−E(0)
m

)
t′/~

dt′

cnk(t) ≈ δnk + 〈k|Hint |n〉
E

(0)
k − E

(0)
n

(
1− ei

(
E

(0)
k

−E(0)
n

)
t/~
)

+
∑
m

〈k|Hint |m〉 〈m|Hint |n〉(
E

(0)
k − E

(0)
m

)(
E

(0)
m − E(0)

n

) (1− ei
(
E

(0)
k

−E(0)
m

)
t/~
)

−
∑
m

〈k|Hint |m〉 〈m|Hint |n〉(
E

(0)
k − E

(0)
n

)(
E

(0)
m − E(0)

n

) (1− ei
(
E

(0)
k

−E(0)
n

)
t/~
)
, k 6= n .

(3.22)

3. From these solutions for the coefficients cnk(t) also the energy eigenvalues of the complete Hamil-
tonian can be obtained (again in increasing order in powers of Hint) up to second order the
following holds

H Ψn = En Ψn

(H0 +Hint)

e−iE(0)
n t/~ |n〉+

∑
m 6=n

〈m|Hint |n〉
E

(0)
m − E(0)

n

(
1− ei

(
E(0)

m −E(0)
n

)
t/~
)
e−iE(0)

m t/~ |m〉


= En

e−iE(0)
n t/~ |n〉+

∑
m 6=n

〈m|Hint |n〉
E

(0)
m − E(0)

n

(
e−iE(0)

m t/~ − e−iE(0)
n t/~

)
|m〉


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and by multiplying with eiE
(0)
n t/~ 〈n| one obtains

〈n|H0 |n〉︸ ︷︷ ︸
E(0)
n

+ 〈n|Hint |n〉+ 0 +
∑
m 6=n

〈m|Hint |n〉
E

(0)
m − E(0)

n

(
e

−i
(
E(0)

m −E(0)
n

)
t/~ − 1

)
〈n|Hint |m〉︸ ︷︷ ︸
〈m|Hint |n∗〉

= En

or equivalently

En = E(0)
n + 〈n|Hint |n〉+

∑
m 6=n

|〈m|Hint |n〉|
2

E
(0)
n − E(0)

m

(
1− e−i

(
E(0)

m −E(0)
n

)
t/~
)

(3.23)

The final step is to derive the Fermi’s Golden Rule, therefore the probability per unit time t shall be
considered (with t large enough) for transitions from the initial state |n〉 to a continuum of close packed
final states around (and starting at) state |k〉 6= |n〉

|cn→k|2

t
=
∑
k′ close

to k

|cnk′ |2

t
(3.24)

In first order in Hint this transition rate reads

|cn→k|2

t
=
∑
k′ close

to k

|〈kk|Hint |n〉|
2(

E
(0)
k′ − E(0)

n

)2
t

2− 2 cos


(
E

(0)
k′ − E(0)

n

)
t

~



≈ 2
∫ ∞

−∞

|〈kk|Hint |n〉|
2(

E
(0)
k′ − E(0)

n

)2
t

1− cos


(
E

(0)
k′ − E(0)

n

)
t

~

D (E(0)
k′

)
dE

(0)
k′

= 4
∫ ∞

−∞

|〈kk|Hint |n〉|
2(

E
(0)
k′ − E(0)

n

)2
t

sin2


(
E

(0)
k′ − E(0)

n

)
t

2~

 D
(
E

(0)
k′

)
dE

(0)
k′

(3.25)

with D
(
E

(0)
k′

)
the density of states, i.e. D

(
E

(0)
k′

)
dE

(0)
k′ denotes how many states are available with

energies within the infinitesimal window between E
(0)
k′ and E

(0)
k′ + dE

(0)
k′ .

The probability rate being considered applies in the case where the time t is much higher than the
typical time scales ~

E
(0)
n

,
~

E
(0)
k′

corresponding to the energy levels of the bound electron. Hence the

(positive) function

sin2


(
E

(0)
k′ − E(0)

n

)
t

2~


(
E

(0)
k′ − E(0)

n

)2
t

is quite small such that the main contribution arises from

the energy level E(0)
k′ = E

(0)
k which is closest to E(0)

n ; all the other levels E(0)
k′ having a higher energy

yield a nearly vanishing contribution

|cn→k|2

t
≈ 2 |〈k|Hint |n〉|

2

t
D
(
E

(0)
k

)∫ ∞

−∞

1− cos
((

E
(0)
k′ −E(0)

n

)
t

~

)
(
E

(0)
k′ − E(0)

n

)2
t

dE
(0)
k′

ω=
(
E

(0)
k′ −E(0)

n

)
/~

= 2 |〈k|Hint |n〉|
2

~t
D
(
E

(0)
k

) [
Re
∫ ∞

−∞

1− eiωt
ω2 dω

] (3.26)

The last integral can be performed on the complex plane along a closed path consisting of
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• A straight path form −∞ to +∞ along the real axis (the actual integral to be carried out) but
with a small arc around the pole at ω = 0 (Figure 3.1). This arc has an infinitesimal small radius
ε and goes from θ = π to θ = 0 across values ω = ε eiθ.

(+infty)

Im ω

ωRe

θ=+π θ=0

ε
(−infty)

Figure 3.1: Schematic of the closed integration path for the frequency integral in Equa-
tion (3.26)

• A large curved arc from +∞ back again to −∞, but across values with a very high positive
imaginary component. This arc produces no contribution to eiωt = ei(Reω)t e−(Imω)t due to the
positive imaginary part. Since this part crosses a region of very large values in ω the complete

contribution of this arc to the integral
∫

large arc

1− eiωt
ω2 dω is vanishing.

Since the integrand has no pole inside the region enclosed by the closed integration path the sum∫
real axis

1− eiωt
ω2 dω +

∫
infinitesimal arc

1− eiωt
ω2 dω +

∫
large arc

1− eiωt
ω2 dω

identically vanishes. Hence

∫ ∞

−∞

1− eiωt
ω2 dω = − lim

ε→0

∫ θ=0

θ=π

−i tεeiθ︷ ︸︸ ︷
1− exp

(
i tεeiθ

)
ε2ei2θ

iεeiθ dθ = −t (0− π)
(3.27)

Substituting into Equation (3.26) produces the Fermi’s Golden Rule

|cn→k|2

t
≈ 2π

~
|〈k|Hint |n〉|

2
D
(
E

(0)
k

)
(3.28)

Or equivalently
|ci→f |2

t
= 2π

~
|〈f |Hint |i〉|

2
D
(
E

(0)
f

)
(3.29)

with i for the initial state and f for the final state, both eigenvectors of the unpertuberd Hamiltonian.
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3.1.2 State transition rate for the interaction between a bound electron and
the electromagnetic radiation
Now the general formulation of Fermi’s Golden Rule (Equation (3.29)) shall be modified to derive
the probability per unit time for the case of interest in this work. This case is the transition of
a bound electron starting in a high energy state (initial state) and ending with the bound electron
in a lower state (final state) and one photon emitted therefore. Similarly to the previous section,
first of all the classical Hamiltonian for such system has to be derived in order to quantize it in
a second step. Initially one electron (of charge −e and mass me) is bound to its respective atom
through the potential energy Epot(~q) which is a function of the electron position ~q and therefore the
Hamiltonian for the bound electron is 1

2me
(~p)2 + Epot(~q). The description for the classical Hamiltonian

for a bound electron between two states is formulated in Appendix A.3.1, based on the quantum
mechanical treatment of the harmonic oscillator. Additionally the free electromagnetic field is described

by the Hamiltonian
∫∫∫ (

ε0

2
~E2 + 1

2µ0
~B2
)
d3~x, discussed in Appendix A.3.2. Hence the Hamiltonian

H0 without interaction between the bound electron and the free photons is given by the superposition
of these two isolated subsystems

H0 = 1
2me

(~p)2 + Epot(~q) +
∫∫∫ (

ε0

2
~E2(~x, t) + 1

2µ0
~B2(~x, t)

)
d3~x

It is worth noting that the particle’s position ~q, later to become an operator after quantizing the system,
is different from the local space coordinate ~x (which is never an operator), but only the location where
the vector potential, the electric and the magnetic fields (these three are also operators) are evaluated.
Now the interaction between these two isolated systems (bound electron and free electromagnetic field)
has to be incorporated, this is achieved by means of the so-called “minimal coupling’’ ansatz ([82],
§57). The particle momentum is substituted by the momentum minus the vector potential ~A of the
electromagnetic field (multiplied by the particle’s charge) and the electrostatic potential energy arising
from the scalar potential φ is added to the potential energy

~p −→ ~p− (−e) ~A(~q, t) and Epot −→ Epot + (−e)φ (3.30)

with the vector potential in general being a function of time and the position where the particle is
located. The resulting full Hamiltonian is thus equal to

H0 = 1
2me

~p2 + Epot(~q) +
∫∫∫ (

ε0

2
~E2(~x, t) + 1

2µ0
~B2(~x, t)

)
d3~x ,

−→ H = 1
2me

(
~p− (−e) ~A(~q, t)

)2
+ Epot(~q) + (−e)φ(~q, t)

+
∫∫∫ (

ε0

2
~E2(~x, t) + 1

2µ0
~B2(~x, t)

)
d3~x

(3.31)

Such a Hamiltonian reproduces the expected equation of motion for the electron; the proof will be
carried out without any previous choice of gauge for the potentials ~A and φ. For the bound electron
the Hamiltonian equations for the time evolution of its position component qk (k = 1, 2, 3) and its
corresponding momentum component pk are

q̇k = ∂H

∂pk
= 1
me

(pk + eAk)

ṗk = −∂H
∂qk

= − 1
me

∑
j

(pj + eAj) e
∂Aj
∂qk
− ∂Epot

∂qk
+ e

∂φ

∂qk

(3.32)
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and therefore the following equation of motion results for the bound electron

me
d

dt
q̇k = d

dt
(pk + eAk(~q, t)) = ṗk + e

∑
j

∂Ak
∂qj

q̇j + e
∂Ak
∂t

= −e
∑
j

pj + eAj
me︸ ︷︷ ︸
=q̇j

∂Aj
∂qk
− ∂Epot

∂qk
+ e

∂φ

∂qk
+ e

∑
j

∂Ak
∂qj

q̇j + e
∂Ak
∂t

= −∂Epot
∂qk

− e
[ (
− ∂φ

∂qk
− ∂Ak

∂t

)
︸ ︷︷ ︸

= Ek

+
∑
j

(
q̇j
∂Aj
∂qk
− q̇j

∂Ak
∂qj

)
︸ ︷︷ ︸

=
(
~̇q × curl ~A

)
k

=
(
~̇q × ~B

)
k

] (3.33)

beside the force −∂Epot
∂~q

responsible for the electron staying confined within the atom, another contri-

bution appears which is nothing else than the electromagnetic Lorentz force −e
[
~E + ~̇q × ~B

]
created

by an electric and magnetic field on an electron. This proves that the approach (Equation (3.30))
correctly incorporates the electromagnetic interaction to the dynamic of a bound electron. Note that
for a vanishing electric charge e = 0 the interaction also vanishes.

The quantization can now be performed in order to identify the interaction Hamilton operator
required for the Fermi’s Golden Rule. The derivation will be carried in the gauge choice φ = 0. First of
all the electron’s position and momentum are operators with the following (3-dimensional) commutation
relations [

q
j
, p

k

]
= i~δjk ,

[
q
j
, q

k

]
= 0 =

[
p
j
, p

k

]
(3.34)

A possible implementation of the first commutator is a multiplicative (3-dimensional) ~q operator, which
only “reads’’ the electron’s 3-dimensional position when applied to a state, and a differential momentum
operator given by ~p = −i~ ∂

∂~q
. Subsequently the vector potential of the electromagnetic field also

becomes an operator according to (Equation (A.18))

~A(~x) = Aω e
ikz +A+

ω e
−ikz

√
2

1
0
0

 (3.35)

with the following commutation relations (Equation (A.24))

[
Aω, A

+
ω

]
= ~
L3ε0ω

[Aω, Aω] = 0 =
[
A+
ω , A

+
ω

]
(3.36)

and therefore [
Aj(~q), pk

]
= ~k

Aω e
ikqz −A+

ω e
−ikqz

√
2

δj1δk3 (3.37)

since the only dependence on the electron’s position arises in the first component of the vector potential
and this is only for the third component of ~q. The resulting Hamilton operator can be directly read
from (Equation (3.31)) together with (Equation (3.34))

H =

H0︷ ︸︸ ︷
1

2me
(~p)2 + Epot(~q) + L3ε0ω

2
(
A+
ωAω + 1

2

)
+ e

2me

(
~p · ~A︸︷︷︸

(3.37)= ~A · ~p+ 0

+ ~A · ~p
)

+ e2

2e
~A · ~A (3.38)

The interaction Hamilton operator for the Fermi’s Golden Rule can be directly read out, since within
the framework of the Golden Rule that interaction Hint has to be considered as a slight perturbation
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(when compared to the energy scales involved in H0) and since for e = 0 the interaction disappears,
the Golden Rule applies only for low order terms of the charge e to be consistent. Thus the term
proportional to e2 (or higher powers in e) is to be neglected when compared to terms proportional to e

Hint = e ~A ·
~p

me
+O(e2) (3.32)= e ~A · ~̇q +O(e2) (3.12)= e

i~
~A ·
[
~q, H

]
+O(e2)

= e

i~
~A ·
[
~q, H0

]
+O(e2)

(3.39)

after implementing the equation of motion for q̇
k

and neglecting those new terms which arise and are
proportional to e2.

In Fermi’s Golden Rule (Equation (3.29)) |ci→f |2

t
= 2π

~
|〈f |Hint |i〉|

2
D
(
E

(0)
f

)
the initial and final

states |i〉 and |f〉 are eigenstates of the unperturbed Hamiltonian H0 corresponding in this case to the
sum of the uncoupled subsystems “bound electron’’ and “free electromagnetic field’’:

H0 = 1
2me

~p2 + Epot(~q) + L3ε0ω
2
(
A+
ωAω + 1

2

)
(3.40)

Hence the eigenstates are just the product of the eigenstates for the subsystem “bound electron’’
(denoted by (e)) and of the eigenstates for the subsystem “free electromagnetic field’’ (denoted by (γ))
without any kind of mixing between both subsystems. In the case under consideration where an electron
at an excited level i(e) within an atom undergoes a transition to a lower energy level f (e) by means of
the electromagnetic interaction (by emitting a photon) the initial state is given by

∣∣0(γ)〉 ∣∣i(e)〉 (without
any photon) and the final state by

∣∣1(γ)〉 ∣∣f (e)〉. By energy conservation, if
(
E

(0)
i − E

(0)
f

)
is the energy

difference between the levels of the bound electron, the frequency ωif of the emitted electromagnetic

energy (=photon) is given by ωif =

(
E

(0)
i − E

(0)
f

)
~

. Thus by neglecting higher orders of terms of e and
using the already derived results (Equation (A.28)) one obtains

〈f |Hint |i〉 = e

i~

〈
1(γ)

∣∣∣ ~A ∣∣∣0(γ)
〉
·
〈
f (e)

∣∣∣ [~q, H0
] ∣∣∣i(e)

〉
+O(e2)

= e

i~
sin θ

eikx
√

2 · 0 + e−ikx
√

2

√
~

L3ε0ωif︷ ︸︸ ︷〈
1(γ)

∣∣∣Ax ∣∣∣0(γ)
〉[ 〈

f (e)
∣∣∣ ∣∣~q∣∣ H0

∣∣∣i(e)
〉

︸ ︷︷ ︸
E

(0)
i

∣∣∣i(e)
〉−

〈
f (e)

∣∣∣H0︸ ︷︷ ︸
E

(0)
f

〈
f (e)

∣∣∣
∣∣~q∣∣ ∣∣∣i(e)

〉 ]
+O(e2)

= e

i~
sin θ e

−ikx
√

2

√
~

L3ε0ωif

(
E

(0)
i − E

(0)
f

)〈
f (e)

∣∣∣ ∣∣~q∣∣ ∣∣∣i(e)
〉

+O(e2)

|〈f |Hint |i〉| = e sin θ
√

~ωif
2L3ε0

∣∣∣〈f (e)
∣∣∣ ∣∣~q∣∣ ∣∣∣i(e)

〉∣∣∣+O(e2) (3.41)

with θ the angle between the electron’s position vector ~q and the propagation direction of the emitted
photon, the latter perpendicular to the direction of the vector potential ~A.

The final result for the transition rate between the initial and final states according to the Fermi’s
Golden Rule requires the calculation of the density of states for the final energy D

(
E

(0)
f

)
, being

D
(
E

(0)
f

)
dE

(0)
f the number of different possible photons emitted with frequency ωif within the interval

of final electron energy between E
(0)
f = E

(0
i + ~ωif and E

(0)
f + dE

(0)
f . This is achieved as follows,

classically for each particle (photon as well as electron) moving in 3 dimensions the exact values of the
position ~x and momentum ~p coordinates defines completely its state within the phase space; in other
words, a 0-dimensional point in phase space characterizes the state of a particle. Quantum mechanically,
nevertheless, the uncertainty relation between position and momentum makes that different states are
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described by small volume of the size h3 (instead of extremely fine points without size) such that phase
points within this small volume cannot correspond to different states, in other words within the phase

volume d3~x d3~p there exist actually only d3~x d3~p

h3 different states. Hence for the density of states of the
emitted photons inside the whole system volume L3 one obtains the following expression

D
(
E

(0)
f

)
dE

(0)
f = L3 p2 dp dΩ

h3 × gf = gf
L3

8π3~3 p
2 dp

dE
(0)
f

dΩ dE
(0)
f

with dΩ = 2π sin θ dθ the infinitesimal solid angle for the direction of the emitted photons and gf the
number of polarizations of those photons. For a photon the relation between momentum p and energy
Eγ is given by p = Eγ

c
= ~ωif

c
and thus dp

dE
(0)
f

= 1
c

holds (because of E(0)
f = E

(0
i + ~ωif )

D
(
E

(0)
f

)
= gf

L3

4π2~
ω2
if

c3 sin θ dθ (3.42)

By collecting the last result together with (Equation (3.41)) the probability per unit time for the
electron’s transition between an initial excited state and a lower energy level with the emission of a
photon is equal to (again neglecting the higher order terms in e) 1

|ci→f |2

t
= 2π

~
|〈f |Hint |i〉|

2
D
(
E

(0)
f

)
= 2π

~
e2 ~ωif

2L3ε0

∣∣∣〈f (e)
∣∣∣ ∣∣~q∣∣ ∣∣∣i(e)

〉∣∣∣2 gf L3

4π2~
ω2
if

c3

∫ π

0
sin3 θ dθ

= gf
ω3
if

3πε0~c3

∣∣∣〈f (e)
∣∣∣ (e ∣∣~q∣∣) ∣∣∣i(e)

〉∣∣∣2
(3.43)

Since e~q represents the dipole moment ~ddip the just derived probability per unit time is also called the
dipole induced transition rate.
This equation can again be reformulated using the relation

fif = 2me ωif
3~

∣∣∣〈f (e)
∣∣∣ (e ∣∣~q∣∣) ∣∣∣i(e)

〉∣∣∣2 , (3.44)

with the new quantity fif being the oscillator strength of the transition i→ f . This leads to

|ci→f |2

t
= gf

ω2
if

2meπε0 c3 fif ,
(3.45)

since all quantities here are natural constants for the regarded transition (except for the oscillator
strength, but its data is also available for the considered gas species) this state transistion rate can be
easily calculated using the data from [68].

1Using the result
∫ θ=π

θ=0
sin3 θ dθ =

∫ π

0
sin θ dθ −

∫ π

0
cos2 θ dθ =

[
− cos θ

]π

0
+
[ cos θ

3

]π

0
=

4
3

.
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3.2 Spectral line intensity of plasma radiation

In the previous section it has been shown how often an excited bound electron is connected through
the dipole operator to a lower energy level of the same electron. Thus leading to the state transition
rate for an electron between two levels within an atom. Based on this formulation a basic description
for the spectral intensity emitted by such a process can be found, in general following the explanations
given in [29]. At some point instead of following this more exact but overloaded notation in ([29], § 4
and [81], § 4) the discussion will follow the description in ([83], § 5).

The energy difference between both levels is also the energy of the photon emitted whose frequency

is thus ωif =

(
E

(0)
i − E

(0)
f

)
~

and the corresponding emitted power is obtained by multiplying the tran-
sition rate (Equation (3.43)) with the photon’s energy

Ẇif = |ci→f, atom a|2

t
~ωif = gf

ω4
if

3πε0c3

∣∣∣〈f (e)
∣∣∣ (e ∣∣∣~q(a)

∣∣∣) ∣∣∣i(e)
〉∣∣∣2 (3.46)

The spectral distribution of this power (i.e. how much power is emitted within an infinitesimal frequency
window ω) is given by

dẆ

dω
dω = gf

ω4
if

3πε0c3

∣∣∣〈f (e)
∣∣∣ (e ∣∣∣~q(a)

∣∣∣) ∣∣∣i(e)
〉∣∣∣2 δ(ω − ωif ) dω , (3.47)

such that
∫ ∞

−∞

dẆ

dω
dω = Ẇif holds. The spectral distribution is therefore extremely sharp located at

ω = ωif (which is therefore denoted spectral line). If the emitting bound electrons are nevertheless
placed inside a gas the many collisions of the corresponding atoms between themselves or with free
electrons if the gas is partially ionized (= plasma) let the sharp spectral lines of the isolated atom
become broadened. The spectral distribution is no longer a sharp Dirac delta but a smoother profile
L(ω)

dẆ

dω
dω = gf

ω4
if

3πε0c3

∣∣∣〈f (e)
∣∣∣ (e ∣∣~q∣∣) ∣∣∣i(e)

〉
1 atom

∣∣∣2 L(ω) dω (3.48)

with the normalization condition ∫ ∞

−∞
L(ω) dω = 1 (3.49)

3.2.1 Spectral broadening and the line profile
To derive an equation for the still missing line profile L(ω) the following concept shall be considered. If
many atoms (each one with its own bound and emitting electron) with their respective electron’s posi-
tion operator is acting at different times, which results in the introduction of the full time dependence
in the initial and final state of the bound electrons〈

f (e)
∣∣∣ (e ∣∣~q∣∣) ∣∣∣i(e)

〉
one atom

−→
〈

Ψ(e)
f

∣∣∣∣
(
e
∑

atoms a

∣∣∣~q(a)
∣∣∣) ∣∣∣∣Ψ(e)

i

〉
many atoms

(3.50)

The profile L(ω) is defined subsequently as

L(ω) def= lim
T→∞

∣∣∣∣∣
∫ T/2

−T/2
eiωt

〈
Ψ(e)
f

∣∣∣∣
(
e
∑

atoms a

∣∣∣~q(a)
∣∣∣) ∣∣∣∣Ψ(e)

i

〉
many atoms

dt

∣∣∣∣∣
2

2πT
∣∣∣〈f (e)

∣∣∣ (e ∣∣~q∣∣) ∣∣∣i(e)
〉

one atom

∣∣∣2 (3.51)

This definition transforms into a Dirac delta in the case of a single atom. In such a case the only time

dependence in
〈

Ψ(e)
f

∣∣∣∣
(
e
∑
a=1

∣∣∣~q(a)
∣∣∣) ∣∣∣∣Ψ(e)

i

〉
many atoms=1 atom

exclusively arises from the initial and final
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states of the single bound electron

Ψ(e)
i/f (t) = e

−iE(0)
i/f

t/~ |i/f〉 ,

〈
Ψ(e)
f

∣∣∣∣
(
e
∑
a=1

∣∣~q∣∣) ∣∣∣∣Ψ(e)
i

〉
1 atom

= e−iωif t

time independent︷ ︸︸ ︷〈
f (e)

∣∣∣ (e ∣∣~q∣∣) ∣∣∣i(e)
〉

1 atom

L(ω) = 1
2π

∫ ∞

−∞
eiωt e−iωif t dt︸ ︷︷ ︸

δ(ω − ωif )

lim
T→∞

∫ T/2

−T/2
e−iωt′ e+iωif t

′
dt′

T

= δ(ω − ωif ) lim
T→∞

∫ T/2

−T/2
e−iωt′ e+iωif t

′
dt′

ω=ωif

T︸ ︷︷ ︸
= 1

In the general case of many atoms the time dependence is more complicated and will be collected into
the function ϕ(t)〈

Ψ(e)
f

∣∣∣∣
(
e
∑

atoms a

∣∣∣~q(a)
∣∣∣) ∣∣∣∣Ψ(e)

i

〉
many atoms

def= ϕ(t)
〈
f (e)

∣∣∣ (e ∣∣~q∣∣) ∣∣∣i(e)
〉

1 atom
(3.52)

such that the profile L(ω) can be rewritten as the Fourier transform of the correlation function of ϕ(t)
with itself shifted in time

L(ω) = 1
2π lim

T→∞

1
T

∫ T/2

−T/2
e−iωt′ ϕ∗(t′) dt′

∫ ∞

−∞
eiωt ϕ(t) dt

τ=t−t′
dt=dτ= 1

2π

∫ ∞

−∞
eiωτ

[
lim
T→∞

1
T

∫ T/2

−T/2
ϕ∗(t′)ϕ(t+ τ) dt′

]
︸ ︷︷ ︸

correlation function C(τ)

dτ
(3.53)

Due to the normalization condition (Equation (3.49)) the value of the correlation function at τ = 0 is
already fixed

1 =
∫ ∞

−∞
L(ω) dω =

∫ ∞

−∞

1
2π

∫ ∞

−∞
eiωτ dω︸ ︷︷ ︸

δ(τ)

C(τ) dτ = C(τ = 0) (3.54)

Since L(ω) is a real function the correlation function C(τ) must fulfill C(−τ) = C∗(τ) and thus

L(ω) = 1
2π

∫ ∞

0

(
eiωτ C(τ) + e−iωτ C∗(τ)

)
dτ (3.55)

It remains to discuss how the interaction to the different atoms determines the form of the profile L(ω)
or equivalently how the correlation function C evolves with the time shift τ . Therefore a small time
interval ∆τ and the value of ϕ(t′ + τ + ∆) in (Equation (3.52)) shall be considered.

ϕ(t′ + τ + ∆τ) = e
−i

ωif︷ ︸︸ ︷
(E(0)

i − E
(0)
f )/~∆τ

e−iχ ϕ(t′ + τ)

Here the first exponential arises from the time dependence of the initial and final bound electron’s state
Ψ(e)
i/f (t) and the second exponential from the interactions of the bound electrons with the surroundings,
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which modifies the phase of ϕ with a contribution χ ∼ ∆τ depending on the interaction energy scale.
In order to be more precise, those interactions are collisions with charged particles (=free electrons
and free ions) within a gas in plasma state, which corresponds to the so-called line broadening due
to the Stark effect. Moreover the time interval ∆τ is considered small enough such that only one
collision to one atom (and its respective bound electron) takes place. This is the impact approximation
which allows to add the contribution of each separate bound electron by considering each collision as
uncorrelated from each other

C(τ + ∆τ)
1 col. with 1 atom

= e−iωif ∆τ e−iχC(τ)

dC
dτ

= C(τ + ∆τ)− C(τ)
∆τ = C(τ) 1

∆τ
(
−1 + e−iωif ∆τ e−iχ

)
∆t small= C(τ)

[
−iωif −

(1− e−iχ)
∆τ +O(∆τ)

] (3.56)

In the last equation the overline represents the sum or average over all uncorrelated collisions with
maximal one collision with each single atom in the system. Such an average is obtained by using
the probability for collisions with the free electrons in the plasma, which is proportional to the volume
density of free electrons ñe, to the free electron’s velocity ve, to the time interval ∆τ and to the collision
cross-section dσcol(χ, ve)

collision probability for phase between χ and χ+ dχ at ve: ñe ve ∆τ dσcol(χ, ve)

Hence the average involves not only an integration over the different values of χ but also over the
different electron’s velocities, with fe(ve) dve the corresponding distribution probability becomes

(1− e−iχ) = 1− cosχ + i sinχ

1− cosχ = ñe ∆τ
∫∫

fe(ve) (1− cosχ) dσcol(χ, ve) dve ≡ ñe ∆τ σ(1−cosχ)ve

sinχ = ñe ∆τ
∫∫

fe(ve) sinχdσcol(χ, ve) dve ≡
⇓
− ñe ∆τ σsinχve

(3.57)

In the last relation the minus sign marked by ⇓ arises from the fact that a higher value of the phase
shift χ occurs when the interacting particles are closer to each other and thus correponds to a lower
value of the collision cross-section. Substituting this into Equation (3.56) leads to

dC
dτ

= C(τ)
[
−iωif − ñe σ(1−cosχ)ve + iñe σsinχve

]
C(τ) = C(τ = 0) exp [−i (ωif − ñe σsinχve) τ ] exp

[
−ñe σ(1−cosχ)veτ

] (3.58)

with C(τ = 0) = 1 according to (Equation (3.54)). Profile L(ω) follows from integral (Equation (3.55))

L(ω) = 1
2π

[
1

ñe σ(1−cosχ)ve − i (ω − ωif + ñe σsinχve)

+ 1
ñe σ(1−cosχ)ve + i (ω − ωif + ñe σsinχve)

]
=
ñe σ(1−cosχ)ve

π

1
(ω − (ωif − ñe σsinχve))2 +

(
ñe σ(1−cosχ)ve

)2

(3.59)

which is a Lorentz profile with a maximum at the frequency ωif − ñe σsinχve (the maximum is shifted
from ωif by ñe σsinχve) and a half width at half maximum equal to ñe σ(1−cosχ)ve. This latter width
characterizes the spectral line broadening ∆ωbroad of the initially sharp line at ωif due to the superpo-
sition of uncorrelated collisions with the plasma’s free electrons

∆ωbroad impact approx.
= ñe σ(1−cosχ)ve (3.60)
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3.2.2 Pressure dominated broadening - the Stark effect
Similar to the more detailed discussion in the last section, leading to Equation (3.60). This result for
the spectral line width within the framework of the impact approximation can be qualitatively derived
directly from the time-energy uncertainty relation in Appendix A.3.4. This relates the lifetime ∆t and
the corresponding uncertainty in energy ∆E, leading to

∆t∆E ∼ ~ (3.61)

The uncertainty in energy is given by the uncertainty in frequency ∆ωbroad characterizing the broad-
ening of the transition frequency at ωif (∆E = ~∆ωbroad) and the lifetime ∆t is given by the averaged
time between consecutive collisions, i.e. the time interval ∆t required for having a collision probability
equal to 1: ñe ve ∆t σcol ∼ 1 or equivalently 1

∆t ∼ ñe σcol ve. Hence it follows

∆ωbroad ∼
1

∆t ∼ ñe σcol ve (3.62)

To determine the value of ∆ωbroad impact approx.
the following description shall outline the basic mecha-

nism of the phenomenon of pressure broadening, thus leading to the Stark effect. The dipole induced
emission of a photon of a very sharp frequency ωif by an excited bound electron becomes fuzzy or
broadened in its emitted frequency, through the interaction with surrounding free electrons and ions
within a plasma. The main source here is the interaction of the free charges with the atomic electric
dipole formed by the emitting bound electron, assuming that the electron distribution inside the atom
is asymmetric enough for the atom to display a dipole. The Hamiltonian for such an interaction is
given by (Appendix A.3.3)

Hint = e

4πε0

∣∣∣~ddip∣∣∣ cos θ
r2 , (3.63)

with θ the relative orientation of the dipole with respect to the position where the interaction is being
evaluated and r the distance to such position. It is worth noting that the dipole interaction being
considered now is added to the already discussed dipole interaction with a free electromagnetic field
responsible for the emission of a photon by the excited bound electron. The additional interaction
creates the broadening of the already existing spectral line originated by the latter interaction. The
just described effect is called the quadratic Stark effect, due to it being a second order pertubation.
It accounts for elements where no permanent electric dipole is present, like rare gas atoms, with the
second order effect being the dominant broadening mechanism. In contrast for elements, which have
a permanent electric dipole (that is the case for ionized rare gas species Ar+, Ar++ or metal vapour
plasmas) the dominant broadening mechanism is another one, called the linear Stark effect. To not
pertube the explanations presented here, the latter mechanism is briefly described in Appendix A.3.5.
However it has been incooperated into the presented software, which will be described later on in this
work. The general contribution to the electron energy of such an additional interaction has already
been described in the section devoted to the Fermi’s Golden Rule (see Equation (3.23))

Ei =

0th order︷︸︸︷
E

(0)
i + 〈i|Hint |i〉︸ ︷︷ ︸

1st order

+

2nd order︷ ︸︸ ︷∑
f 6=i

|〈f |Hint |i〉|
2

E
(0)
i − E

(0)
f

(
1− e−i

(
E

(0)
f

−E(0)
i

)
t/~
)

+ . . .

where |i〉 represents the energy eigenstates of the undisturbed Hamiltonian. Argon atoms, due to their
inert gas structure and their corresponding highly symmetric distribution of electrons, show no atomic
dipole and thus there is no possibility of connecting |i〉 with the same eigenstate through the action
once of Hint: 〈i|Hint |i〉 = 0. Hence for argon atoms the first non vanishing correction to the electron’s
energy arises from the second order contribution proportional to |〈f |Hint |i〉|

2. The physical process
occurs in the following way: a free electron flies by and slightly deforms the symmetric bound electron
distribution of the argon atom, inducing an electric dipole for a short time interval; a second free
electron can thus interact with the short lived dipole. Such an interaction, involving the concerted
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action of two free electrons, is much weaker and improbable than it would have been if the atom itself
had an own electric dipole: the resulting spectral line broadening is correspondingly weaker.

The contribution to the electron’s potential energy by this weak effect is described by the following
equation

∆U(r) =
(

e

4πε0

)2 1
2

1
r4

∑
f 6=i

∣∣∣〈f ∣∣∣ ∣∣∣~ddip∣∣∣ ∣∣∣i〉∣∣∣2
E

(0)
i − E

(0)
f

(
1− 0

)
≡ A4

r4 , (3.64)

which in a first approximation has been already averaged in time and over all different dipole’s ori-
entations θ. The resulting dependence with the distance to the dipole ∼ 1

r4 , which for increasing r

decreases much more rapidly than ∼ 1
r

of a single point charge, is the hallmark of being considered a
second order correction.

In the remaining discussion in this section the scale of the spectral line broadening in argon will
be calculated. In order to estimate the strength A4 a rough evaluation of the expectation value of the
dipole moment is required. This will be carried out in the following in a semi-classical way. The dipole
can be depicted as the result of the oscillation of the bound electron between the energy levels |i〉 and
|f〉, oscillation produced by the action of an external electric field ~E0, the latter created by the plasma’s
free electron. If adip2 denotes the oscillation amplitude of the bound electron, such that the resulting
dipole moment is equal to ddip = e adip, the Newton Law yields

me ω2
if

adip
2︸ ︷︷ ︸

acceleration

= e
∣∣∣ ~E0

∣∣∣
The energy gained by the dipole through its interaction with the electric field is given by ~ddip ~E0 and this
corresponds to the energy difference between the two energy levels, between which the bound electron
is oscillating
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where the wavelength λif for the transition between the states |i〉 and |f〉 is obtained from(
E

(0)
i − E

(0)
f

)
= ~ωif = 2π~ c

λif
. Finally the line broadening due to the collisions with the free electrons

inside the plasma can be evaluated. At first the collision cross-section σcol has to be estimated, which
requires the length scale acol for the effective extension of such cross-section σcol = πa2

col. During the
short time interval ∆t for which the separation between the bound and the free electron is shorter than
2acol the interaction takes place and an interchange in energy in the order of magnitude ∆U(r = acol)

occurs. That time interval can be estimated as ∆t ∼ 2acol
ve, th

, where ve, th ∼
√

2kBTe
me

describes the scale

of the thermal velocity of the plasma electrons (Te is the electron temperature, assuming the free
electrons to have already reached the thermal equilibrium). Since during this time interval ∆t the
bound electron’s energy is altered in an amount of ∆U(r = acol), the time-energy uncertainty relation
∆t∆U ∼ ~ leads to the following estimation for the collision cross-section

~ ∼ 2acol
ve, th

A4

a4
col

⇒ acol ∼
(

2A4

~ve, th

)1/3
⇒ σcol = πa2

col ∼ π
(

2A4

~ve, th

)2/3
(3.66)
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According to Equation (3.60) (or to the more simple Equation (3.62)) the full width at half maximum
expressed both in frequency and in wavelength is approximately

2∆ωbroad ∼ 2ñeσcolve,th

∼ ñe
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1
2π

)1/3 1
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(
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(3.67)

For argon’s spectral line at λif = 696.54 nm and at an electron plasma temperature kBTe = 1 eV the
resulting full width in wavelength is given by

2∆λbroad ∼ ñe
1

(4π2)2/3

λ
10/3
if

(~cmec2)2/3

(
e2

4πε0

)4/3(2kBTe
mec2

)1/6

2∆λbroad[nm]
Te=1 eV

∼ 3.9× 10−25 ñe[m−3]
(3.68)

whose order of magnitude agrees with the more detailed calculation for the same electron temperature
2∆λbroad[nm]

Te=1 eV
= 8.5× 10−25 ñe[m−3] ( [84], § 9).

A more general consideration for the radiation transition leads to a modification of Equation (3.65),
taking into account the oscillator strength fif of the transition i =⇒ f , which leads to:∣∣∣〈f ∣∣∣ ∣∣∣~ddip∣∣∣ ∣∣∣i〉∣∣∣2 ∼ 2fife2~2
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as relation for the collision amplitude and for the full broadening width at half maximum it leads to:
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∼ ñe
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(3.70)

This set of equations is valid as long as the collision times of a cloud of electrons colliding with a cloud
of atoms τe is large compared to the time scale where these quantum mechanical interactions take place
τinter. Further it should be noted that the main contributions to the spectral line broadening emerges
from the excited levels that are close to the emitting transition:

fup−fλ
2
up−f ∼

h2c2fup−f(
E

(0)
up − E(0)

f

)2 (3.71)
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The closer the level E(0)
f is to the emitting upper level E(0)

up the stronger is the contribution to the
broadening. Strong lines with high oscillator strengths fup−down (for example argon lines) often have
weak lines in their energetic proximity corresponding to small values of fup−f . Therefore the spectral
line broadening of these strong lines is often quite small and absorption becomes increasingly important
for such lines.

3.3 Integrated radiation intensity for plasma diagnostics and
the cost function minimalisation

To derive the radiation intensity coming from the plasma the approach is to solve the equation for
the radiative tranfer in radial coordinates. With the assumption of a cylinder symmetrical plasma
model (Figure 2.1) and neglecting dispersion and scattering processes, the two dominating processes
are [80]:

• absorption of the incoming intensity along dr,−κ′

λIλdr

• emission of radiation from the centre of the system within dr, ελdr

thus leading to the equation for radiative energy transfer (with only the radial coordinate here).2

1
r

d(rIλ)
dr

= −κ
′

λIλ + ελ (3.72)

With ελ being the spectral emissivity, with dr being the differential step in radial direction of the
cylinder and κ

′

λ the corrected absorption coefficient. The general solution to this equation under the
given assumptions is:

Iλ =
∫ rcool

0
ελ exp

(
−κ

′

λIλ

)
dr (3.73)

with rcool being the distance to the cold surrounding (actually there is a position the plasma tem-
perature falls below a limit ≈ 6000K, corrsponding to a position where the contribution of ελ and
κλ will be reduced significantly). Now due to the underlying plasma temperature profile (resulting
from Equation (2.5)) this integral can be approximated as a sum 3:

Iλ =
∑
i

ελ(Tp(i)) exp
(
−κ

′

λ(Tp(i))Iλ
)

∆ r (3.74)

The spectral emissivity ελ depends on different physical processes, the most dominant one for intensities
in the visible spectrum is the bound-bound transition. The contribution of the free-bound transitions
of electrons in the plasma was neglected in a first approximation, since its effect is comparably small to
the bound-bound transition contribution and will not be further discussed. If a bound electron inside of
an atom jumps between discrete energy levels Ef and Ei, a photon of well-defined energy λif = hc

Ef −Ei

is emitted. If the emitting bound electrons are nevertheless placed inside a partially ionized gas (=
plasma) the many collisions of the corresponding atoms between themselves or with free electrons make
the sharp spectral lines of the isolated atom become broadened.

The spectral distribution is no longer a sharp Dirac delta, but takes the form a smoother function,
the Lorentz profile L(ω) according to Equation (3.59). The expression for L(λ) can then be derived
with the equation

~ωif = 2π~ c

λif
(3.75)

2The scattering mean free path of a photon in a partially ionized gas is generally much greater than of the corre-
sponding absorption contribution. The scattering leads to significant contributions if the level of ionization comes close
to one (being fully ionized) or the gas density is significantly lowered. In these cases the free-free (or bremsstrahlung)
contribution to the absorption is small, since it is proportional to the square of the electron density. [80]

3The contribution of the radiative transfer to the radial temperature profile of the arc is at least an order of magnitude
lower than the contribution of the diffusive heat transfer (at least for noble gases) and will therefore be neglected.
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The transition probability Aif is defined by Equation (3.45) and combined with eq. (3.46), the connetion
to the emitted power of the radiation is given. Thus leading to the following equation [80]:

ε
(bb)
λ =

∑
if

1
4πnf

hc
λif

AifL(λif ) = 1
4πnfẆif (3.76)

Here
∑
if is the sum over all contributing states of an atom or ion. The density of atoms nf that

corresponds to the upper energy level Ef (running from the ground state), can be derived with the
Boltzmann factor (as initially stated this assumptions holds for thermal arc plasmas)

nf = gf
gground

nground exp
(
−Ef
kBTp

)
= gf

natom
Zatom

exp
(
−Ef
kBTp

)
(3.77)

with gf and gground being the degenerancy factors of the respective states and natom being the particle
density of the plasma atoms. This leads to:

ελ =
∑
if

ε
(bb)
λ = 1

4π
hc
λif

Aif
g↑
ZA
nAe

−Ef
kB T L(λ) (3.78)

This procedure can be adapted for ions as well and as such has been included in the calculations,
but regarding the small density of ions in the considered temperature range nA+ � nA the expected
emissivities will be quite low.
For the above mentioned process of discrete emission of radiation after a stimulated transition of an
electron between two electronic states, there is also an inverse process where a photon is absorbed. This
process is characterized by the spectral absorption coefficient κλ. In thermal equilibrium the spectral
absorption coefficient is correlated with the spectral emission coefficient through Plank’s law:

ελ
κλ

= λ5

2hc2 e
− hc

λkB T (3.79)

Absorption requires the presents of photons, which in turn can also induce another emission of a photon.
Therefore the absorption coefficient needs to be corrected through the occurence of the stimulated
emission [80]:

κ
′

λ = κλ

(
1− e− hc

λkB T

)
(3.80)

Combining these equations leads to the corrected spectral absorption coefficient:

ελ
κ

′
λ

= λ5

2hc2

(
e

hc
λkB T − 1

)
(3.81)

Last but not least a scheme shall be introduced to compare the calculated spectral intensities, with
measured spectral intensities from OES measurement. Therefore a cost function is introduced to
compare both quantities:

Q =
(∫

λ

(
Iλmeas.

− Iλcalc.

)2
dλ

)
with Iλ being the radiative intensity along the line of sight of the measurement, normalized to the
maximum value of a certain line of the regarded spectrum (in this case it will preferably be the 696.5 nm
Ar I line, either experimentally measured or theoretically calculated). Furthermore

∫
λ
dλ is the integral

over all wavelengths taken into account by the external observer. To reduce the computation time
additional limitations have to be supplemented. The integral over the wavelength is limited by the
upper and lower bound of the spectrometer spectral window, in this case 320 - 950 nm. The cost
function then takes the form:

Q =
∑
∆λ

(
Iλmeas.

− Iλcalc.

)2
∆λ (3.82)

49



This does not pose a problem so far, since the influence of the line intensities and broadening widths
have way more impact on the cost function than the selected spectral range, with respect to the
used gases. Furthermore the wavelength resolution for the calculations is limited to 0.05 nm. This
ensures that no mismatches of the intensity values occur, due to coarse data values and still keeps the
required computation power low. Still a trade-off between spectral width of the cost function and the
computation time need to be taken into account. The spectral window and the resolution within that
window shall be regarded as input parameters for a matching algorithm, so the detailed choice of these
values is still open for the particular problem this method is applied too.
An example for such a matching algorithm can be build in the following way:

1. first the cost function is derived for a desired spectral window according to the equations prior in
this section, with Iλcalc.

being calculated for a given value of rcool

2. then rcool is slightly varied by some small deviation ±∆ r and the corresponding values of the
cost function Q+, Q− are derived

3. both values are comparedto the original Q to create a local gradient, repeat all steps until the
minimum of Q is found

This is only a general procedure and the convergence can take quiet long depending on the starting
solution for rcool, it is good to derive the order of rcool with some other method (e.g. the method
presented latter on in this work).

Some additional remarks:
The spectral radiance derived with eq. (3.74) can be integrated over the wavelength, to derive the total
irradiance coming from the plasma:

Irad =
∫ ∞

0
Iλdλ (3.83)

For the regarded problem with a finite spectral range available for analysis this equation can further
be approximated as summation over the wavelength, with λ → λ(i) being discretized between the
minimum λmin and maximum value λmax of the spectral window with the resolution ∆λ. This leads
to the following formulation, together with Equation (3.45), for the total irradiance

Irad =
λmax∑

λ(i)=λmin

Iλ(i) =
λmax∑

λ(i)=λmin

rmax∑
i=rmin

ελ(Tp(i)) exp
(
−κ

′

λ(Tp(i))Iλ
)

∆ r∆λ (3.84)

3.4 Simulation tool for the radiation model

In this section the own developed MATLAB/Simulink code for simulating the radiation spectrum, the
cost function minimalization method and the corresponding subroutines, shall be briefly explained.
The detailed description remains within the code itself and can be obtained from the reference in Ap-
pendix A.4. The simulation results will be presented and discussed later on in this work Section 5.1, at
first the plasma composition for the different working gases will be displayed, than the corresponding
calculated and measured spectra from [9] will be compared. Furthermore the electron densities and
plasma temperature profiles will be displayed and compared to the results from the same experiment.
The simulation is initiated with a Matlab script, which:

• calculates the particle densities of all species depending on the plasma temperature Tp

• provides all necessary plasma transport parameters (σel , λth,p , cp,p , ρp) [59, 60, 85] and cathode
material parameters (λth,c , cp,c , ρc) [86, 87]

• sets the geometrical boundary conditions and operational parameters (zc , rcool , `arc , Iarc)

• starts the radiation calculation script and cost function minimalization parametric sweep script
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The radiation model (matlab scripts), consists of the following parts:

• Linear Stark Broadening

• Quadratic Stark Broadening

• Combined Transition Radiation

• Radiation QM Calculation

• Calc Angular Radiation Distribution

• Display Angular Radiation Distribution

The cost function minimalization model (matlab scripts), consists of the following parts:

• Determine cost function value and minimize

Radiation QM Calculation This matlab script calls all underlying radiation calculations to deter-
mine the Stark broadening widths, the line profile and the radiated spectral power Equation (3.46).
Conclusively the spectral emission coefficient and the absorption coefficient are calculated. This func-
tion precalculates all these quantities depending on a plasma temperature vector Te =5000 - 30 000 K,
with a resolution of ∆Te = 100 K and the corresponding value of the particle densities and stores them
in a lookup table.

Linear Stark Broadening This function calcualtes the Linear Stark broadening width for the re-
garded working gas and species, according to Appendix A.3.5.

Quadratic Stark Broadening This function calcualtes the Quadratic Stark broadening width for
the regarded working gas and species, according to Equation (3.70).

Combined Transition Radiation This function gathers all the calculated infromation on the Stark
broadening widths, the radiated power and combines them with the data on the state transition rate
and the oscillator strength taken from [68]. To determine the emission and absorption coefficients.

Calc Angular Radiation Distribution This function performs the numerical integration to de-
termine the total (and spectrally resolved) radiation intensity emitted from the plasma, according
to Equations (3.74) and (3.84). It depends on the results for the plasma temperature profile, the
electron density and the emission and absorption coefficients.

Display Angular Radiation Distribution This function gathers all previous results and displays
them according a desired display style defined within it. The laser heating simulation has its own
display windows for the temporal evolution. Only the convergence solutioon at the end of the laser
pulse is transfered and display with this function.

Determine cost function value and minimize The cost function minimalization is a parametric
sweep technique to call the radiation model with a specific set of parameters, calculate the results and
determine the corresponding cost function value for the evaluation. The values are stored and compared
over the whole parameter set.
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Chapter 4

Plasma dynamics and control system

”A method is more important than a discovery, since the
right method will lead to new and even more important dis-
coveries.”

Lev Landau

In general the dynamics of a real system to be controlled is determined by the behavior of a certain
number of degrees of freedom which are called state variables and are gathered as a collective state
vector x; in order to keep the notation simple the symbol ~ for a vector will not be explicitly written
at this stage. The number of degrees of freedom is the order of the dynamics and will be denoted by n;

thus x contains n components xi, with i = 1, . . . , n: x =

x1
...
xn

. And the time evolution (or dynamics)

of all these degress of freedom is described by a set of n differential equations of 1st order (one equation
for each state variable).

If this system is to be driven along some desired behavior (and only such systems are of interest
here) at least one variable (called input) must exist which can be externally controlled or designed.
Nevertheless in most of the systems the number of state variables to be driven/controlled (the n
degrees of freedom) is much higher than the number of input variables which can be designed, and such
dynamics are called underactuated: the dynamics to be considered in this work belongs to this class,
in particular to the worst situation where only one input variable must be designed for controlling all
n state variables. From now on this single input variable will be denoted by u. The general basic

x* y*,

(feedback)

x

x̂
yu

y

u

(feedforward)

^

x

ŷ

controller

observer

trajectory design

real system

Figure 4.1: Schematic structure a controller of a dynamic system, designed to track a desired
trajectory
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structure of the task to be solved is represented in Figure 4.1. Instead of performing the deduction
of the model based control with the more specific depiction from the introduction Figure 1.2, a more
general description will be applied now, since only the system structure is required not the precise
physical implementation behind it. The real dynamics corresponds to a block operating as a “black
box’’ by taking some input (vector) and yielding some output (vector) but whose internal details remain
hidden to all the other blocks. The calculation of the correct input u is carried out in the controller
block according to some method, which will be explained later on in this work and this usually requires
a complete knowledge of the current values of all degrees of freedom, i.e. of the full state vector x.
In most situations nevertheless this is not practicable since for the full system only few sensors are
avalaible yielding a reduced number of measurement outputs, collectively denoted as the output vector
y. Again in this work the situation is considered where only one single component can be measured
for the output, analogous to the single input variable to control the whole system. Hence the control
design needs (assuming enough information of the full system dynamics is contained in the output y)
a reconstruction of the full state vector from the output: this state estimation is denoted by x̂, which
is fed back into the controller for achieving the desired behaviour. The block responsible for the state
reconstruction is called observer.

The already mentioned desired behaviour (denoted from now on with the symbol ∗) corresponds
to some trajectory design for all degrees of freedom of the system (and equivalently for its output
variable), calculated in a separated block and whose results are directly passed onto the controller; this
latter process is called feedforward. If the dynamics of the real system to be controlled is fast, as it
is the case in this work, the controller as well as the observer must operate very quickly. Considering
the current limitations in computing power the control/observer design may well require a simplified
dynamics model, with whom a lower number of degrees of freedom than the actual system dynamics is
still capable of describing the main effects to be controlled.
Summarizing this part of the present thesis, the general structure for the task to be discussed consists
of 4 elements:

• The real system (gray block) actually planned to be controlled, which exists either as a physical
machine or as a numerical model in a computer, in both cases driven by the input u, being output
y the only information one gets from the system.

• The trajectory design (orange block) determining the desired behavior to be followed by the
real system, this has been precalculated on a computer.

• The observer (blue block) to estimate the full state vector from the only information, the output
available from the real system. The observer is usually implemented in a fast microprocessor which
yields at a high rate the state reconstruction.

• And finally the central block, the controller (green block), implemented again in a fast micropro-
cessor and which determines the input u for implementing the desired trajectory by compensating
any deviation between the desired behavior x∗ and the reconstructed system state x̂. Controller
and observer can be combined into one single block (within the same microprocessor), if desired.

This part of the work is constituted as follows, since there was no possibility of implementing this
structure in a physical facility the real system has been numerically modelled according to the equations
discussed in the Section 2.1. At first a simplified model for the system dynamics will be derived from
these equations in the consecutive sections, both of whom the observer and controller will be based on.
It is important to emphasize that the “real’’ system dynamics are more complicated than the model
used for designing the control. Thereby the “black box’’ character of the real system dynamics, whose
details are hidden from the controller, is thus ensured. Additionally a noise component is added to the
full system dynamics to better validate the performance of the control being designed. This accounts for
the non-modeled physical effects in the thermal arc model Equation (2.5). Subsequently it is considered
how to numerically integrate the nonlinear equations of motion in such a way as to avoid generating
uncontrolled growing behaviours, which indicate a poor numerical solution. In order to develop a
fast algorithm for realtime applications a makeshift numerical integration scheme will be implemented,
instead of using a common integration technique. Following on the main original contribution of this
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part of the thesis is displayed, the development of a flatness-based control suited to the simplified model
of the combined “plasma arc - cathode spot’’ dynamical system. This flatness-based technique [88] is
an advanced method of nonlinear control able to track a desired trajectory in a precise way by using a
particular property of the equations of motion for the simplified model. Also the design of a efficient
observer for the state estimation required by the control is considered in that section. The simulation
results based on the just developed algorithms of the thesis will be presented in the succeeding chapter
for different trajectories of interest, together with their corresponding discussion.

4.1 Simplified model for control design

Since the plasma dynamics is a fast process, a control model able to react to any deviation from some
desired behavior must be calculated at a high rate. For such a task the previous model (Equation (2.5))
for the temperature distribution within the plasma arc, although more detailed, is not well suited
since its state vector contains too many components to be tracked. A much simpler model, with a
reduced number of state variables but still containing the essential effects of the plasma arc as well as
cathode spot dynamics, is required for an eventual control design. The dynamics for the cathode spot

0

cold surrounding

rr

Tp (r)

Tp

rp

plasm
a core

sim
plified

Figure 4.2: Schematic of the simplified plasma core with effective core radius rp

temperature, already described by a single variable Tc, cannot be further reduced. Taking the latter as
a model, a description for the plasma arc by using only one variable is now intended. This is achieved
by approximating the radial distribution of the plasma arc temperature by a homogeneous cylindrical
core of uniform temperature T p and radius rp, see Figure 4.2. The temperature T p corresponds to
the inner most temperature in the more detailed model and radius rp has no direct physical meaning,
being only an effective variable condensing the form of the actual, no longer resolved, radial profile
of the arc temperature (black line in Figure 4.2). Such an effective radius is a function of the core
temperature T p, whose form will be discussed at the end of this section, for now it will be assumed as
already derived and thus known. The enthalpy content of the plasma is only located inside the plasma
core of radius rp and therefore its evolution is described in a similar way as Equation (2.1)

∂

∂t

(
πr2
p`arc

∫ Tp

T0

ρp(T ) cp, p(T ) dT
)
≈ +2πrp`arc

(
λth, p

∂Tp
∂r

)
core edge︸ ︷︷ ︸

power loss due to diffusion
crossing core’s lateral surface

+ πr2
p`arc σel(T p) (Earc)2︸ ︷︷ ︸

power gain due to Joule heating
inside core

(4.1)

with the main focus on two effects: the radial heat diffusion and the Joule heating within the core.
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• The heat diffusion at the core’s lateral edge can be approximated by the average of the power
flow λth, p

∂Tp
∂r

over the narrow space from the core’s external surface until the cold surrounding
is reached

averagedλth, p
∂Tp
∂r

= 1
r0 − rp

∫ r0

rp

λth, p
∂Tp
∂r

dr = − 1
r0 − rp

∫ Tp

T0

λth, p(T ) dT

≈ −
λth, film

(
T p − T0

)
r0 − rp

(4.2)

This corresponds to assuming a nearly linear decrease of gas temperature between r = rp and
r = r0 (green line in Figure 4.2). In the previous equation λth, film represents the gas thermal
conductivity evaluated at the average temperature between the core temperature T p and the
temperature T0 of the cold surrounding wall

λth, film ≡ λth, p( (T p + T0)/2 ) (4.3)

and thus λth, film
(
T p − T0

)
is a first approximation for the integral

∫ Tp

T0

λth, p(T ) dT .

• Being consistent with the uniformly conducting plasma core of the simplified model, the full
electric current and thus the Joule heating is exclusively concentrated inside the plasma core,
leading to the following relation

Iarc = Earc

∫ r0

0
σel(T (r)) 2πr dr = πr2

p σel(T p)Earc

σel(T p)E2
arc = 1

π2σel(T p) r4
p

I2
arc

(4.4)

Hence the simplified model for the system “plasma arc - cathode spot’’ can now be formulated. It is de-

scribed by a 2-dimensional state vector ~x =
(
Tc
T p

)
, whose equations of motion are taken Equations (4.1)

to (4.4) and Equation (2.50) to formulate the following set of equations:

dTc
dt

= − λth, c
ρccp, c z2

c

(Tc − T0)− εcσSB
ρccp, c zc

T 4
c + 1

ρccp, c zc

ART 2
c exp

(
− eΦc
kBTc

)
+ ene,∞

√
kBT p
mi

×
×

Eion
e
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√
kBTp

mi

ART 2
c exp

(
− eΦc

kBTc

) − Φc


≡ f1(Tc, T p)

dT p
dt

= −
2λth, p((T p + T0)/2)

(
T p − T0

)
ρp(T p)cp, p(T p)

(
rp(T p)

)2
(

r0

rp(T p)
− 1
) + 1

π2σel(T p)ρp(T p)cp, p(T p)
(
rp(T p)

)4 I
2
arc

≡ f2(T p) + g2(T p) I2
arc︸︷︷︸
u

(4.5)

Again the square of the electric current acts as the input u for the dynamics. For the simplified model the
Saha-Eggert equation for solving the electron density ne,∞ is calculated according to Equation (2.25).
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4.1.1 Estimation of an effective plasma core radius rp

The only remaining part to be discussed for the simplified model is how the effective core radius rp
depends on the single variable describing the plasma arc: core temperature T p. This still unknown
dependence is determined by the radial heat diffusion, which is described by the differential term
1
r

∂

∂r

(
λth, p(Tp) r

∂Tp
∂r

)
. As a first step, let this last term be reformulated by using the so-called

thermal potential

ψth, p(Tp) =
∫ Tp

T0

λth, p(T ) dT (4.6)

as well as a dimensionless radial coordinate x =
(
r

r0

)2

1
r

∂

∂r

(
λth, p(Tp) r

∂Tp
∂r

)
= 4
r2

0

∂

∂x

(
x
∂ψth, p
∂x

)
(4.7)

The plasma arc’s radial temperature profile displays a negative curvature and thus the previous differ-
ential term is in general a negative function. Since there is no much space between the plasma arc core
and the cold surroundings, such negative function cannot display a strong x-dependence, otherwise the
heat flow would become too inhogeneous over the considered narrow fringe separating the arc from

r = r0. Thus the simplest form for ∂

∂x

(
x
∂ψth, p
∂x

)
is just a negative constant

4
r2

0

∂

∂x

(
x
∂ψth, p
∂x

)
≈ − 4

r2
0
κ1 with constant κ1 > 0 . (4.8)

This simplified approximation must be validated a posteriori after having solved the detailed model
(this will be discussion in the next chapter), but it can be expected to hold at least for small r0. The
integration of the previous equations yields

∂ψth, p
∂x

= λth, p
∂Tp
∂x
≈ −κ1 +

= 0︷︸︸︷
C0

x
,

ψth, p(x) =
∫ Tp(x)

T0

λth, p(T ) dT ≈ κ1 (1− x)

(4.9)

where in the first equation C0 must be set equal to zero since otherwise ∂Tp
∂x

would unphysically diverge
at x = 0, the core center; in the last integration the boundary condition Tp(x = 1) = T0, or equivalently
ψth, p(x = 1) = 0, has been used. Evaluating the last equation in Equation (4.9) at the core center x = 0
allows to obtain a good estimation of constant κ1

κ1 =
∫ Tp

T0

λth, p(Tp) dTp (4.10)

Now let us connect the previous general discussion to the homogeneous cylindrical core of the simplified
model: in both cases the same electric current and electric field along the arc must apply and thus the
following relation must be satisfied

Iarc
Earc

=
∫ r0

0
2πrσel(Tp(r)) dr︸ ︷︷ ︸
detailed model

!= πr2
pσel(T p)︸ ︷︷ ︸

simplified model(
rp
r0

)2
x=r2/r2

0= 1
σel(T p)

∫ x=1

x=0
σel(Tp(x)) dx = 1

σel(T p)

∫ x=1→T0

x=0→Tp

σel(Tp(x)) dx
dTp

dTp

(4.11)

According to the approximation in the detailed model Equation (4.9), where the radial gradient of the
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Figure 4.3: Evolution of estimated rp/r0 with plasma core temperature T p for an Argon
plasma at atmospheric pressure

thermal potential is nearly constant, the previous equation can be written in a way fully determined
by the transport parameters of the plasma gas, without any dependence on the plasma arc geometry.

(
rp
r0

)2
≈ − 1

σel(T p)
1
κ1

∫ T0

Tp

σel(Tp)λth, p(Tp) dTp
eq. (4.10)= 1

σel(T p)

∫ Tp

T0

σel(Tp)λth, p(Tp) dTp∫ Tp

T0

λth, p(Tp) dTp

(4.12)

For an Argon plasma at atmospheric pressure, using the thermodynamical data in the appendix tables
of [59], the resulting dependence of rp/r0 on the core temperature T p is shown in Figure 4.3. This
curve rp(T p) can be simply saved into a look-up table when performing any numerical simulation using
the simplified dynamics. Or alternatively it can be fitted to some smooth function: the curve data
in Figure 4.3 are well fitted by the following polynomial

r

r0
≈ c0 + c1

(
1− T p

10000

)
+ c2

(
1− T p

10000

)2

+ c3

(
1− T p

10000

)3

,

c0 = +0.66247 , c1 = −0.53413 , c2 = −0.53958 , c3 = −0.18185

4.2 Numerical integration of the simplified dynamics

The simplified dynamics eq. (4.5) are discretized in an analogous way to the full system dynamics

(see Appendix A.2.1). The system is described by a 2-dimensional state vector ~x(t) =
(
Tc(t)
T p(t)

)
, which

is again driven by the input u(t) =
(
Iarc(t)

)2
. The discretization of the equation of motion for the
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cathode spot temperature is just eq. (2.61) again and for the plasma core temperature the discretization
leads to the following expression.

Tc(t + ∆t)

 1 +
∆t λth, c

z2
c ρccp, c

+
∆t εcσSB

ρccp, c zc

(
T

(prov)
c

)3

+
∆t

zcρccp, c

AR

(
T

(prov)
c

)2
exp
(

−
eΦc

kBT
(prov)
c

)
+ en

(prov)
e, ∞

√
kBT

(prov)
p

mi

 Φc

T
(prov)
c



= Tc(
⇓
t ) +

∆t λth, c

z2
c ρccp, c

T0 +
∆t Eionn

(prov)
e, ∞

√
kBT

(prov)
p

mi

zcρccp, c

1 +
en

(prov)
e, ∞

√
kBT

(prov)
p

mi

AR

(
T

(prov)
c

)2
exp
(

− eΦc

kBT
(prov)
c

)


T p(t + ∆t)

1 +
2∆t λth, p((T p + T0)/2)(

ρpcp, pr2
p

(
r0

rp
− 1
))

T
(prov)
p

+ ξ
∆t(

π2σelρpcp, pr4
p

)
T

(prov)
p

(
Iarc(t + ∆t)

)2

T
(prov)
p


= T p(

⇓
t ) +

2∆t λth, p((T p + T0)/2)(
ρpcp, pr2

p

(
r0

rp
− 1
))

T
(prov)
p

T0 +
(

1 + ξ
) ∆t

π2
(

σelρpcp, pr4
p

)
T

(prov)
p

(
Iarc(t + ∆t)

)2
(4.13)

With a factor ξ (comparable to Equation (2.56)) to ensure the convergence of the numerical solution,
as stated in Appendix A.2.1 and using the same abbreviations for the provisional solution at t+ ∆t;
T

(prov)
c ≡ T (prov)

c (t+ ∆t) and T
(prov)
p ≡ T (prov)

p (t+ ∆t). Otherwise the iterative method remains the
same as for the full dynamics. The set of equations for the cathode sheath layer ( Section 2.3.2) are
recalculated in every time step of the integration, before calculating the new value for the cathode
temperature. This integration is now processed until the residual error of two consecutive values of the
cathode temperature has droped below some given error limit. This is typically achieved after less than
60 iterations.

4.3 Flatness-based control and observer design

The main property to be managed in a plasma process for its technological use is the gas temperature,
which also determines the amount of free electrons inside the plasma. Nevertheless to have direct access
to the value of the gas temperature requires a very precise control, since the time scales involved in the
temporal evolution of the gas temperature are very short. The relevant time scales can be read from
the equations of motion Equation (4.5) at the terms dx

dt
∼ −1

τ
x+ . . .:

τc = ρccp, cz
2
c

λth, c

τp =
ρpcp, pr

2
p

λth, p

(4.14)

with rp, zc being the respective characteristic length scales of the effective plasma core temperature and
the cathode temperature. The first parameter is derived through Equation (4.12) and the second one is
a given input parameter. For typical values of an argon plasma at atmospheric pressure and a plasma
temperature about T̂p = 12 000 K (λth, p ∼ 1.5 W/m K, ρp ∼ 3.6× 10−2 kg/m3, cp, p ∼ 4400 J/kg K
and rp = 4.1 mm , r0 = 5.5 mm) combined with a tungsten cathode

59



(λth, c ∼ 170 W/m K, ρc ∼ 19.3× 103 kg/m3, cp, c ∼ 138 J/kg K and zc = 4 mm), these two character-
istic time scales are in the order of magnitude of

τc = 19.3× 103 × 138× (0.004)2

170 = 250.6 ms

τp = 3.6× 10−2 × 4400× (0.0041)2

1.5 = 1.8 ms
τc
τp
≈ 139

With the plasma temperature evolution being over 139 times faster than the evolution of the cathode
spot temperature, the first one will be the driving factor for the control. In the current applications,
when it comes down trying to imprint a pulsed pattern in the plasma temperature, one hopes that
the system will be following some periodic trajectory, without any particularly detailed control of the
trajectory form and even less trying to compensate any deviation from some desired behaviour. The
main reasons for this rather poor performance are on the one hand the impossibility of measuring the
plasma core temperature at a rate close to kHz and on the other hand not having a simple enough
control design which can be calculated fast enough. These two issues will be addressed in this chapter.

At first the central method, the flatness-based control, is introduced. Its application to the consid-
ered plasma system requires the finding of a so-called flat output, which fortunately is a simple task to
perform ,for this simplified arc model. Additionally this flat output is easily measured and therefore it
offers a viable path for designing the required observers, which are needed to reconstruct the plasma
core temperature, without directly measuring it. The chapter concludes with the discussion of two
different observers, both of them based on the existence of a flat output for the simplified dynamics,
which are able to estimate the plasma core temperature.

Remark:
In the present work the characteristic length scale for the cathode temperature evolution was chosen
to be zc. However this only remains true for this one dimensional consideration, with a single cathode
spot in the middle of the cathode, as initially stated in Section 2.3. A 2 dimensional formulation of that
problem would lead to another important length scale, the radial extension of the cathode spot. The
smallest extend of this length scale would be the cathode spot radius rc (this would assume an instant
cold boundary condition beyond this radial extend), which poses as a lower boundary condition.
The cathode spot radius rc can be estimated in the following way section 4.3:

Iarc = πr2
c (je, th + ji, sp)

rc =
√√√√√√√

Iarc

π

ART 2
c exp

(
− eΦc
kBTc

)
+ e ne,∞(T p)

√
kBT p
mi


The current Iarc along the plasma arc is also the electric current flowing across the cathode sheath and
arriving at the cathode spot, which is given by the total current density (je, th + ji, sp) times the spot
area. The equilibrium solution for the cathode spot radius is initially derived from the input current
of the steady state solution. The relation between the two characteristic length scales, the plasma bulk
radius rp and the cathode spot radius rc is displayed in Figure 4.4.
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Figure 4.4: Schematic for the relation between the length scales of the cathode spot and the effective
plasma core radius

Typically rc lies in the order of less than < 1 mm. Recalculating the characteristic time scales (Equa-
tion (4.14)) with that value would lead to a relation τc

τp
≈ 8. The initial remark that the plasma

temperature evolution is the fastest driving mechanism off that coupled dynamics is still valid in this
context. However the spot formation would have significantly more impact and would need to be
included in the model based control. Still this is beyond the scope of this work, based on the ini-
tially stated operational conditions of the regarded thermal arcs, but should be memorized for future
extension of the model.

4.3.1 Basic idea of flatness-based control
The main task addressed in this chapter is how to ensure the tracking of a desired trajectory by applying
the technique of flatness-based control ([89], [88], § 2 and § 6). Even if the mathematical definition of
flatness is quite abstract, the main idea behind it is simple. In general the system dynamics are
described by n degrees of freedom (or state variables), collected together into a state vector with n

components ~x =

x1
...
xn

 1, and driven by a single input variable u. The system dynamics are described

by the following system of n differential equations of 1st order (in general nonlinear)

d~x

dt
≡ d

dt

x1
...
xn

 =

f1(x1, . . . , xn)
...

fn(x1, . . . , xn)

+

g1(x1, . . . , xn)
...

gn(x1, . . . , xn)

u ≡ ~f(~x) + ~g(~x)u (4.15)

The order of the system dynamics is therefore n. The restriction to a dynamic formulation which is
linear in the input variable, i.e. equations of motion containing a term independent of u and a term
directly proportional to u, is no oversimplification since the dynamics being considered for the plasma
arc (either in the simplified form or in the more detailed one) displays this feature, where I2

arc is taken
as the actual input.

An important definition for the following discussion is the relative degree r of an arbitrary dynamical
variable y: it is the lowest time derivative applied on y, according to the dynamics eq. (4.15), for the
input variable u to appear explicitly. Hence a relative degree of y equal to r = 2 means that both y
as well as its first time derivative ẏ do not explicitly contain u, this holds until the u occurs in the
differential equation for ÿ as input variable. This also implies that through u one has access to the
dynamics of y, which are of 2nd order. Clearly, if the system dynamics of order n (Equation (4.15))

1In the initial sections of this chapter the vector notation with the symbol ~ will be explicitly written in order to
clearly separate which variables have several components and which variables are only a single scalar. Later in this
chapter, when discussing the observers and there is no longer any possible confusion, such symbol will be dropped for
keeping the notation simple.
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describes the complete dynamics without leaving any degree of freedom “unattended’’, there is no
variable with a relative degree strictly higher than n, since this would lead to the contradiction that
an equation of motion of order higher than n is hidden inside the dynamics, which only has n degrees
of freedom. Now if a single variable y can be found for this system (as many as input components in
the dynamics), such that its relative degree equals the dynamics order n: r = n. This variable with
full (=maximum) relative degree is called a flat output for the dynamics (Equation (4.15)) and will
be denoted yf from now on.

From its very definition, controlling the dynamics of the flat output means controlling the full
system, without any degree of freedom being unmanaged. This holds even if it is a single output
component and the dynamics displays a higher number of state variables. In other words, by forcing
the flat output to follow some desired trajectory, each state component can no longer freely evolve but
is also constrained to follow the flat output. Moreover, since the both flat output and the input have
the same number of components (in this case only 1 component) the relation between both can be
inverted by writing the input as some algebraic combination of the flat output and its derivatives until
its relative degree is r = n. Also the full state vector can be analogously expressed as some algebraic
combination of the flat output and its derivatives, this time only until the relative degree minus one is
reached (since a further derivation would make the input appear). Therefore, if the desired trajectory
for the flat output is given as some smooth function, the required input as well as the full state vector
are completely determined by such trajectory, without the need to solve any system of differential
equations, only algebraic operations. Additionally a state feedback can be easily designed for the input
which converts the (originally nonlinear) output dynamics into an exact linear differential equation,
without any kind of approximation, for which the usual methods of the Linear Control Theory can be
applied to produce a stable trajectory tracking. This will be discussed in the following.

4.3.2 A more exact formulation of flatness
The just discussed shall be put into a more mathematical description. The time derivative of some
arbitrary function y(~x) of the state variables ~x is according to the equations of motion (4.15)

dy

dt
≡ ẏ =

(
∂y
∂x1

· · · ∂y
∂xn

)f1
...
fn

+
(
∂y
∂x1

· · · ∂y
∂xn

)g1
...
gn

u = ∂y

∂~x
· ~f + ∂y

∂~x
· ~g u (4.16)

, which can be written in a more compact way by introducing the Lie (or directional) derivative of any
scalar function y along the direction of a vector function ~v(~x) as the projection (or scalar product) of

the gradient ∂y
∂~x

along such direction ~v

L~vy
def=
(
∂y
∂x1

· · · ∂y
∂xn

)v1
...
vn

 = ∂y

∂~x
· ~v (4.17)

In an analogous way the second Lie derivative of a scalar function y first along ~v and subsequently
along ~w is

L~wL~vy =
(
∂

∂~x
L~vh

)
· ~w (4.18)

and in compact notation L~vL~vy = L2
~vy. Hence the task of finding a single variable yf (t) = h(~x) which

does not contain explicitly the input u and simultaneously have full relative degree r = n corresponds
to satisfying the following n conditions
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dyf

dt
= ∂h

∂~x
· ~f + ∂h

∂~x
· ~g u = L~f h +

= 0︷︸︸︷
L~gh u = L~f h (no u contained explicitly)

d2yf

dt2 =
(

∂

∂~x
L~f h

)
· ~f +

(
∂

∂~x
L~f h

)
· ~g = L~f L~f h +

= 0︷ ︸︸ ︷
L~gL~f h u = L2

~f
h (no u contained explicitly)

...
...

... (no u contained explicitly)

dn−1yf

dtn−1 =
(n − 1)-times︷ ︸︸ ︷
L~f · · · L~f h + L~g

(n − 2)-times︷ ︸︸ ︷
L~f · · · L~f h︸ ︷︷ ︸

= 0

u = Ln−1
~f

h (no u contained explicitly)

dnyf

dtn
=

n-times︷ ︸︸ ︷
L~f · · · L~f h + L~g

(n − 1)-times︷ ︸︸ ︷
L~f · · · L~f h︸ ︷︷ ︸

6= 0

u = Ln
~f
h +

(
L~gLn−1

~f
h
)

︸ ︷︷ ︸
6= 0

u (does explicitly contain u) (4.19)

or equivalently to solving the following n differential equations

L~gh = 0
L~gL~f h = 0

...
...

L~gLn−2
~f

h = 0

L~gLn−1
~f

h 6= 0 (4.20)

Before even trying to solve the previous system of equations, where each subsequent equation contains
an increasing number of Lie derivatives, the first 2 equations shall be combined in the following way.
From L~gh = 0 it trivially follows that L~fL~gh = 0, which together with the second equation L~gL~fh = 0
leads to the following combination of 2 consecutive Lie derivatives

[
L~fL~g − L~gL~f

]
y =

n∑
i=1

fi
∂

∂xi

 n∑
j=1

gj
∂y

∂xj

− n∑
i=1

gi
∂

∂xi

 n∑
j=1

fj
∂y

∂xj


=

n∑
j=1

[
n∑
i=1

∂gj
∂xi

fi −
n∑
i=1

∂fj
∂xi

gi

]
︸ ︷︷ ︸

vector with components wj

∂y

∂xj
≡ L~wy (4.21)

This can be written as a single Lie derivative along the new direction defined by ~w. Such a direction
is called the Lie bracket (of 1st order, see [88], § 2) of the direction ~f with the direction ~g 2

ad~f~g ≡ ad1
~f
~g ≡

[
~f, ~g
]

=


∂g1
∂x1

... ∂g1
∂xn

...
. . .

...
∂gn

∂x1

... ∂gn

∂xn


f1

...
fn

−

∂f1
∂x1

... ∂f1
∂xn

...
. . .

...
∂fn

∂x1

... ∂fn

∂xn


g1

...
gn

 (4.22)

2A Lie bracket is a vector, in contrast to the Lie derivative which yiels a scalar.
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This can be generalized to combinations of a higher number of Lie derivatives

ad2
~f
~g = ad~f ad~f~g =

[
~f, ad~f~g

]
=
[
~f,
[
~f, ~g
]]

=


∂
(

ad~f
~g
)

1
∂x1

...
∂
(

ad~f
~g
)

1
∂xn

...
. . .

...
∂
(

ad~f
~g
)

n

∂x1

...
∂
(

ad~f
~g
)

n

∂xn


f1

...
fn

−

∂f1
∂x1

... ∂f1
∂xn

...
. . .

...
∂fn

∂x1

... ∂fn

∂xn



(

ad~f~g
)

1
...(

ad~f~g
)
n


ad3

~f
~g =

[
~f, ad2

~f
~g
]

(4.23)

and so on. Together with the notation ad0
~f
~g ≡ ~g. Finally the system of n differential equations Equa-

tion (4.20) to be solved for obtaining a flat output is equivalent to a new system of n equations, this
time formulated by means of only single Lie derivatives

L~gh = 0 =⇒ Lad0
~f
~gh = 0

L~gL~fh = 0
combined with

previous equation=⇒ Lad1
~f
~gh = 0

...
...

L~g

(n − 2)-times︷ ︸︸ ︷
L~f · · ·L~f h = 0

combined with
previous equations=⇒ Ladn−2

~f
~gh = 0

L~g

(n − 1)-times︷ ︸︸ ︷
L~f · · ·L~f h 6= 0

combined with
previous equations=⇒ Ladn−1

~f
~gh 6= 0 (4.24)

According to the Frobenius theorem (see [90], § 1 and [88], § 2) the existence of a solution for the
previous equation system is determined by two necessary conditions to be satisfied:

• The system dynamics takes place in a n-dimensional space and per definition the flat output
dynamics must cover the full dimensionality of the system dynamics, so the n directions of the
Lie brackets

{
ad0

~f
~g, ad1

~f
~g, . . . , adn−1

~f
~g
}

, defining the solution for the flat output, must cover n
different dimensions and thus be linearly independent. Otherwise, if two of these Lie bracket
directions were parallel to each other, one of the conditions in Equation (4.24) would be super-
fluous and the flat output will be not determined by all the n dimensions of the original system
dynamics.
This condition can be equivalently reformulated as follows: the quadratic matrix constructed
column-wise with the n directions defined by the Lie brackets

C =
(

ad0
~f
~g ad1

~f
~g . . . adn−1

~f
~g
)

(4.25)

must be invertible (or regular). This matrix C is called the controllability matrix of the system
dynamics Equation (4.15).

• The previous condition is in general not sufficient, and an additional constraint must still be
satisfied for a flat output to exist: according to Equation (4.24) the last direction adn−1

~f
~g has

been singled out for the coupling with the input u to occur, and thus the additional condition
applies only on the remaining (n − 1) directions

{
ad0

~f
~g, ad1

~f
~g, . . . , adn−2

~f
~g
}

, which have to be
involutive 3. In other words, any Lie bracket calculated from these (n − 1) directions can be
expressed as a linear combination of just (n − 1) directions, without any contribution of the
singled out direction adn−1

~f
~g. The meaning of this second condition will not be discussed here

3In general terms for a function to be involutive, it must be its own inverse f (f (x)) = x, for all values of x [91]
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since for the simplified plasma dynamics used for the control design such involutivity condition is
trivially satisfied. The simplified dynamics is of order n = 2 and thus the involutivity condition
must be satisfied by only one direction,

{
ad0

~f
~g ≡ ~g

}
, which is immediately involutive since the Lie

bracket of ~g with itself identically vanishes (due to its very definition, see Equation (4.22)) and
zero is always a linear combination of any direction. A more detailed discussion in this context
can be found in [92] and for the general discussion in [88], § 2.

Once it has been proven that a flat output exists for a given system dynamics, the n equations (4.24)
have to be solved, which only can be performed analytically for a low order n. If such a solution could
be found, that would create some advantages:

• first of all the flat output dynamics, in general nonlinear, can be exactly transformed into a linear
differential equation by means of the following simple state feedback (see [88], § 9 and [93], § 13)

u = u(~x) = 1
L~gL

n−1
~f

h

[
−Ln~fh+ v(t)

]
=⇒ dnyf

dtn
= v(t) (4.26)

where the denominator L~gLn−1
~f

yf never vanishes due to the very definition of the flat output as
a variable with full (r = n) relative degree (see Equation (4.19)). v(t) in the previous equation is
a free part in the input, still to be determined.

• in a second step the free v(t) can be designed in order to ensure that the system tracks a given
desired trajectory for the output variable y∗

f (t), this time using the common techniques of the
Linear Control Theory

v(t) =
dny∗

f

dtn
− cn−1

( Ln−1
~f

yf︷ ︸︸ ︷
dn−1yf
dtn−1 −

dn−1y∗
f

dtn−1

)
− . . .− c1

( L~f
yf︷︸︸︷

dyf
dt
−
dy∗
f

dt

)
− c0

(
yf − y∗

f

) (4.27)

Both points leading to the following formulation for the control output (Equation (4.28)):

u = 1
L~gL

n−1
~f

yf

− Ln~f yf +
dny∗

f

dtn

− cn−1

(
Ln−1
~f

yf −
dn−1y∗

f

dtn−1

)
− . . .− c1

(
L~fyf −

dy∗
f

dt

)
− c0

(
yf − y∗

f

)
(4.28)

where y∗
f (t) is given, fully known, for instance as a smooth function or polynomial, and therefore

all its time derivatives appearing in u are completely determined. In the previous equation constant
coefficients c0, c1, . . . , cn−1 are to be chosen in such a way that the error between the actual output and
the desired output y∗

f (ey = yf − y∗
f ) decays asymptotically with time, since after applying eq. (4.27)

the error dynamics of the respective system is described by the following linear differential equation

dnyf
dtn

= v(t) =⇒ dney
dtn

+ cn−1
dn−1ey
dtn−1 + . . .+ c1

dey
dt

+ c0 ey = 0

characterisitic polynomial: p(s) =sn + cn−1 s
n−1 + . . .+ c1 s+ c0

(4.29)

The constants c0, c1, . . . , cn−1 must be selected such that all the eigenvalues λ̃i of the previous charac-
teristic polynomial have a strictly negative real part, such that the error ey evolves as ey(t) ∼ eλ̃it [94].
It is worth mentioning that all the required Lie derivatives

{
L~fyf (~x), . . . , Ln~f yf (~x), L~gLn−1

~f
yf (~x)

}
(as
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well as yf = h(~x)) for determining the input u , to implement the stable trajectory tracking are func-
tions of the state variables (but not of the input u itself). Thus the control law (Equation (4.28)) is
actually a state feedback, which of course precises full knowledge of all the state variables, this is an
issue still to be addressed in the following.
Until now it has been discussed how having a flat output leads easily to the design of a stable tracking
of a desired trajectory, written as a purely algebraic expression. This is not the only advantage of a flat
output: also the full state can be “extracted’’ from the information “contained’’ into the flat output
(and its derivatives), without integrating any differential equation. Returning back to the system of
equations (Equation (4.19)) the n-th time derivative of the flat output contains the input u; but the

other n scalar functions
{
yf = h(~x), dyf

dt
= L~fh(~x), . . . , d

n−1yf
dtn−1 = Ln−1

~f
h(~x)

}
are not coupled explic-

itly to the input. Since n is also the number of components in the state vector ~x, it must be possible to
transform and reverse the transform (at least locally) of the n coordinates between both representations

original coordinates: ~x =


x1
x2
...
xn

 ←→ new coord.: ~z =


z1 = yf = h(~x)

z2 = dyf

dt = L~fh(~x)
...

zn = dn−1yf

dtn−1 = Ln−1
~f

h(~x)

 , (4.30)

because all components in ~z are independent of each other (since the differential equation for the flat
output is of order n). Hence if at some location ~z (and its correponding ~x) is known (for instance
at the initial state) and now ~z changes by some known infinitesimal d~z, the corresponding change d~x
displayed in the original coordinates for getting the new ~x is given by

~z + d~z = ~z(~x+ d~x) = ~z +
(
∂~z

∂~x

)
~x

d~x =⇒ d~x =
[(

∂~z

∂~x

)
~x

]−1

d~z .

The inversion between both coordinates (mathematically such invertible coordinate transformation is
called a local diffeomorphism) is guaranteed since the quadratic matrix constructed row-wise with the

gradients of the n scalar functions
{
yf = h(~x), dyf

dt
= L~fh(~x), . . . , d

n−1yf
dtn−1 = Ln−1

~f
h(~x)

}

O =


∂
∂~xh
∂
∂~xL~fh

...
∂
∂~xL

n−1
~f

h

 , (4.31)

must be a regular matrix when yf is a flat output: in such a case the original ~x can be reconstructed
from ~z, i.e., can be extracted from the flat output and its time derivatives to the order (n− 1). This
matrix O is called the observability matrix of the system dynamics (Equation (4.15)) for the output
yf = h(~x).

4.3.3 Derive a flat output for the simplified dynamics of the combined plasma
arc and cathode spot dynamics

The tracking of a desired trajectory in the case of the simplified dynamics developed in the previous

chapter, described by a 2-dimensional state vector ~x =
(
x1 = Tc
x2 = T p

)
is considered. The dynamics evolve

in time according to the following 2 highly nonlinear equations of motion (Equation (4.13))
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dx1

dt
= − λth, c

ρccp, c z2
c

(x1 − T0)− εcσSB
ρccp, c zc

x4
1

+ 1
ρccp, c zc

(
ARx

2
1 exp

(
− eΦc
kBx1

)
+ ene,∞(x2)

√
kBx2

mi

)
×

×

Eion
e

ene,∞(x2)
√

kBx2
mi

ARx2
1 exp

(
− eΦc

kBx1

) − Φc


≡ f1(x1, x2) ,

ne,∞(x2) = −Ksaha(x2) +
√

(Ksaha(x2))2 + P

kBx2
Ksaha(x2) ,

Ksaha(x2) = 2ZA+(x2)
ZA(x2)

(
2πmekBx2

h2

)3/2
exp

(
− Eion
kBx2

)
,

dx2

dt
= − 2λth, p((x2 + T0)/2)

ρp(x2)cp, p(x2) (rp(x2))2
(
r0

rp
− 1
) (x2 − T0) + 1

π2σel(x2)ρp(x2)cp, p(x2) (rp(x2))4

u︷︸︸︷
I2
arc

≡ f2(x2)) + g2(x2)u ,

d~x

dt
= d

dt

(
x1
x2

)
=
(
f1(x1, x2)
f2(x2)

)
︸ ︷︷ ︸

~f(~x)

+
(

0
g2(x2)

)
︸ ︷︷ ︸
~g(~x)

u . (4.32)

This nonlinear dynamics of 2nd order driven by input u = I2
arc has a flat output since the controllability

condition is satisfied

ad0
~f
~g ≡ ~g =

(
0

g2(x2)

)
, ad1

~f
~g =

(
0 0
0 ∂g2

∂x2

)(
f1(x1, x2)

f2(x2)

)
−
(

∂f1
∂x1

∂f1
∂x2

0 ∂f2
∂x2

)(
0

g2(x2)

)
=
(

∂f1
∂x2

g2
∂g2
∂x2

f2 − ∂f2
∂x2

g2

)
C =

(
0 ∂f1

∂x2
g2

g2
∂g2
∂x2

f2 − ∂f2
∂x2

g2

)
(4.33)

because matrix C is invertible (its determinant doesn’t vanish) as soon as following condition holds

∂f1

∂x2
g2 6= 0 g2 6= 0⇐⇒ ∂f1

∂x2
6= 0 . (4.34)

According to the discussion in Equation (4.24) a flat output candidate for the considered simplified
dynamics results from the 2 differential equations

Lad0
~f
~gh = g2

∂h

∂x2
= 0 =⇒ ∂h

∂x2
= 0 , h is independent of x2 ,

Lad1
~f
~gh = ∂f1

∂x2
g2

∂h

∂x1
+
(
∂g2

∂x2
f2 −

∂f2

∂x2
g2

)
∂h

∂x2︸︷︷︸
=0 (previous eq.)

6= 0 , (4.35)
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which can immediately be solved: yf = h(x1, x2) = x1 (or any smooth function of x1).

dyf
dt

= f1(x1, x2) ,

d2yf
dt2

= ∂f1

∂x1
f1(x1, x2) + ∂f1

∂x2
f2(x2)︸ ︷︷ ︸

L2
~f
yh

+ ∂f1

∂x2
g2(x2)︸ ︷︷ ︸

L~gL~fyh

⇓
u . (4.36)

The same result can be directly obtained by noticing that yf = Tc = x1 does not explicitly display the
input variable (marked by an arrow) to its 2nd time derivative Equation (4.36), since the coupling to the

input is mediated by the factor ∂f1

∂x2
g2, yf is a flat output when this factor does not vanish, as already

obtained from the controllability condition, see Equation (4.34). Three tasks remain to be performed
before the discussion of the flatness-based control for the simplified dynamics is fully concluded:

1. What are the constraints for the controllability condition ∂f1

∂x2
6= 0 to hold and thus Tc(t) to be a

flat output for the simplified dynamics.

2. The control law for achieving the tracking of some desired trajectory of the flat output.

3. How to derive the flat output trajectory for the corresponding desired behavior of the plasma core
temperature, the latter being ultimately which has to be implemented for the plasma process.
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The controllability condition For the simplified dynamics the condition (Equation (4.34)) is un-
fortunately not always satisfied. The reason is the density of free electrons in plasma core not being a
monotonic increasing function of the plasma temperature x2, since ne,∞ initially increases during the
ionization process but once the gas is nearly fully ionized, the electron density (being equal to the ion

density) is given by P

2kBx2
and thus decreases with x2. This effect makes ∂f1

∂x2
change its sign and thus

go through a zero.

∂f1

∂x2
= 1
ρccp,czc

(
(Us − Φc)

djion
dTp

+ (jee + jion) dUs
dTp

)
djion
dTp

= jion

(
1
ne

dne,∞
dTp

+ 1
2Tp

)
dUs
dTp

= Eion
ejee

djion
dTp

(4.37)

The derivative of the electron density over the plasma temperature dne, ∞
dTp

is numerically calculated
through the relation given in Equation (2.27). For an argon plasma at atmospheric pressure, where the
ionization energy and the energy levels required for solving the Saha-Eggert eq. (2.24) and ne,∞ Equa-

tion (2.25) are taken from [68]. The temperature dependence of ∂f1

∂x2
is displayed in Figure 4.5. The

controllability is ensured as long as

T p < T p crit = 18800 K (Ar at P = 1 bar) (4.38)

Only trajectories satisfying such condition can be implemented with the flatness-based control developed
in the following discussion. Below this “critical’’ temperature the sign of ∂f1

∂x2
is well-defined and

positive.

Trajectory tracking control The tracking control can be easily calculated. For a desired trajectory
for the cathode spot temperature T ∗

c (t) (∗ denotes the desired behavior, not the complex conjugate)
and by combining Equation (4.36) with the general discussion in Equation (4.28) the following state
feedback is obtained

I2
arc = u(x1, x2) = 1

∂f1

∂x2
g2

[
−
(
∂f1

∂x1
f1 + ∂f1

∂x2
f2

)
+ d2T ∗

c

dt2
− c1

(
f1 −

dT ∗
c

dt

)
− c0 (x1 − T ∗

c )
]
, (4.39)

∂f1

∂x1
= − λth, c

ρccp, c z2
c

− 4 εcσSB

ρccp, c zc
x3

1

− 1
ρccp, c zc

ARx2
1 exp

(
− eΦc

kBx1

)
x1

(
2 + eΦc

kBx1

)Eion

e

 ene, ∞

√
kBx2

mi

ARx2
1 exp

(
− eΦc

kBx1

)
2

+ Φc


∂f1

∂x1
< 0 ,

∂f1

∂x2
= 1

ρccp, c zc

ene, ∞

√
kBx2

mi

x2

(
−ne, ∞

(
2 + Eion

kBx2

)
+ P

2kBx2

(
3
2 + Eion

kBx2

)
P

kBx2
− ne, ∞

)
×

×

Eion

e

2
ene, ∞

√
kBx2

mi

ARx2
1 exp

(
− eΦc

kBx1

) + 1

− Φc


∂f1

∂x2
> 0 for T p < T p, crit, see eq. (4.38) (4.40)
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Figure 4.5: Evolution of ∂f1

∂x2
with plasma core temperature T̂p for an argon plasma at

atmospheric pressure. The upper graphic showing the linear scaling to display the overall
behaviour of the parameter and the lower graphic displaying the discontinuity where the
parameter goes through zero and becomes negative.

After applying this control law the resulting dynamics for the error in the cathode spot temperature,
econtrol = Tc − T ∗

c , is linear and of 2nd order

ëcontrol + c1 ėcontrol + c0 econtrol = 0 . (4.41)

The two eigenvalues λ̃1/2 of the characteristic polynomial to the previous linear differential equation

λ̃1/2 = −c1

2 ±
√(c1

2

)2
− c0

determine the error time evolution as econtrol(t) ∼ eλ̃1/2t. For c1, c0 > 0 these two eigenvalues are either
both real and negative, if

(c1

2

)2
− c0 ≥ 0, or complex conjugated to each other with a negative real part,

70



if
(c1

2

)2
− c0 < 0. In both cases the asymptotic stability of the trajectory tracking is guaranteed [94];

econtrol(t)
t→∞−→ 0. For the choice of a complex conjugated pair, the eigenvalues can be rewritten as

λ̃1/2 = − d̃

τ̃control
± i
√

1− d̃2

τ̃control
, with 0 < d̃ ≤ 1 (the so-called damping factor) and τ̃control > 0 the char-

acteristic time scale for the error decay; i =
√
−1. This corresponds to c0 = 1

τ̃2
control

and c1 = d̃

τ̃control
,

both of them strictly positive, and the resulting state feedback Equation (4.39) becomes

I2
arc = u(x1, x2) = 1

∂f1

∂x2
g2

[
−
(
∂f1

∂x1
f1 + ∂f1

∂x2
f2

)
+ d2T ∗

c

dt2
− d̃

τ̃control

(
f1 −

dT ∗
c

dt

)
− 1
τ̃2
control

(x1 − T ∗
c )
]

(4.42)

Calculation of desired trajectory T ∗
c (t) In practical applications not the cathode spot tempera-

ture, but rather the internal plasma temperature is the actual variable of interest. Let us assume the
system should follow a desired time-dependent pattern in the plasma core temperature T ∗

p(t). This
pattern shall always kept below the “critical’’ plasma core temperature Equation (4.38) to guaran-
tee the controllability of the simplified dynamics. The corresponding trajectory in the cathode spot
temperature is obtained by an iterative, numerical integration of the equation of motion for Tc:

• The time interval of the trajectory is discretized in time steps of equal duration ∆t, with Tc(t)
denoting the actual (and known) value of the cathode spot temperature and Tc(t+ ∆t) the value
at the next time step which has to be calculated.

• From a provisional estimation for the next time step T (prov)
c (t+∆t) an improved solution Tc(t+∆t)

is calculated by using Equation (2.61), now with the desired (known) T ∗
p in place of T (prov)

p

Tc(t + ∆t)

 1 +
∆t λth, c

z2
c ρccp, c

+
∆t εcσSB

ρccp, c zc

(
T

(prov)
c (t + ∆t)

)3

+
∆t

zcρccp, c

(
AR

(
T

(prov)
c (t + ∆t)

)2
exp
(

−
eΦc

kBT
(prov)
c (t + ∆t)

)
+ en

(prov)
e, ∞

√
kBT

∗
p

mi

)
Φc

T
(prov)
c (t + ∆t)


= Tc(t) +

∆t λth, c

z2
c ρccp, c

T0 +
∆t Eionn

(prov)
e, ∞

√
kBT

∗
p

mi

zcρccp, c

1 +
en

(prov)
e, ∞

√
kBT

∗
p

mi

AR

(
T

(prov)
c

)2
exp
(

− eΦc

kBT
(prov)
c

)


• As usual, the just obtained solution is now used as the provisional estimation and an even better
improved solution is re-calculated. This process is iterated for each time step until the change
between two consecutively calculated improved solutions falls below some limit; for the first
iteration the provisional estimation is set equal to the value Tc(t) of the previous time step.

The resulting array of single values for Tc at each time step can now be fitted to a smooth polynomial,

to define the desired trajectory T ∗
c (t). From this the required 1st and 2nd time derivative dT ∗

c

dt
,
d2T ∗

c

dt2
are determined for the control law (Equation (4.42)).
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4.3.4 Flatness-based state estimation
Nevertheless the control law designed in the previous section needs a full state feedback, where both the
cathode spot temperature (the flat output and 1st component of the state vector) as well as the plasma
core temperature (the 2nd state component) are required. The possibility of reconstructing the state of
the simplified model from the flat output and its first time derivative (only the first time derivative since
the dynamics order is n = r = 2) is however guaranteed. The observability matrix (Equation (4.31))
for the considered simplified dynamics is invertible

yf = x1, L~fyf = f1(x1, x2) ⇒ O =
(

1 0
∂f1
∂x1

∂f1
∂x2

)
, det O = ∂f1

∂x2
6= 0 (4.43)

It is noteworthy that the observability condition in this case is actually equivalent to the controllability
condition, see Equation (4.34), ∂f1

∂x2
6= 0 (since g2 6= 0 is trivially satisfied, otherwise there would be no

coupling of the external current source to the plasma dynamics). Hence it is feasible to extract the
plasma core temperature from the information in the cathode spot temperature and its derivative. Two
methods for this estimation will be discussed now.

4.3.4.1 Flatness-based simple state reconstruction

Reconstructing the current value of the plasma core temperature T p from the flat output content
requires the evaluation of the time derivative Ṫc. The real system only provides yf as an output, but
not its time derivative, the latter has to be estimated. In most systems the output variables of the
sensor measurments are nevertheless not ideal (because of an overlapped noise signal), which makes any
estimation of the derivative more difficult. A simple solution is a least square estimator, which in the
case where the sensor noise is distibuted normally (according to a Gaussian probability distribution)
yields also the optimum derivative estimation as a result of the Cramér-Rao bound [95]. If the noise is
not normally distributed this is still a good estimator.

The first time derivative has to be estimated at the current time step t0 and the series of output
y values is known at t0 and at (N − 1) previous equally separated time steps, where ∆tc is the time
duration of each time step. For this array of values {(t0 − i∆c, y−i) : i = 0, . . . , (N − 1)} a polynomial
of 2nd order should be found for a good estimation ŷ of the output value during the considered time
interval between t0 − (N − 1)∆tc and t0

ŷ(t) = κ0 + κ1

(
t− t0
∆tc

)
+ κ2

(
t− t0
∆tc

)2
(4.44)

with the time coordinate given by t = t0 − i∆tc and the yet unknown coefficients. For white sensor
noise the best fit, i.e. the optimum choice of constant parameters {κ0, κ1, κ2} is achieved after defining
a (positive) cost function

J = 1
N

N−1∑
i=0

(ŷ−i − y−i)2 = 1
N

N−1∑
i=0

(
κ0 − κ1 i+ κ2 i

2 − y−i
)2 (4.45)

, which shall be minimized by the appropriate selection of κ values, resulting in the 3 conditions
∂J

∂κ0
= 0 = ∂J

∂κ1
= ∂J

∂κ2
. Such conditions can be written as the following linear algebraic equation

system 

1 − 1
N

N−1∑
i=0

i
1
N

N−1∑
i=0

i2

− 1
N

N−1∑
i=0

i
1
N

N−1∑
i=0

i2 − 1
N

N−1∑
i=0

i3

1
N

N−1∑
i=0

i2 − 1
N

N−1∑
i=0

i3
1
N

N−1∑
i=0

i4





κ0

κ1

κ2


=



+ 1
N

N−1∑
i=0

y−i

− 1
N

N−1∑
i=0

i y−i

+ 1
N

N−1∑
i=0

i2 y−i


(4.46)
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Using the Faulhaber’s formula [96] the elements in the quadratic matrix can be calculated directly

1
N

N−1∑
i=0

i = N − 1
2

1
N

N−1∑
i=0

i2 = 2N2 − 3N + 1
6

1
N

N−1∑
i=0

i3 = N (N − 1)2

4
1
N

N−1∑
i=0

i4 = 6N4 − 15N3 + 10N2 − 1
30

(4.47)

and thus from the inversion of the matrix on the left hand side of eq. (4.46) the following estimation
for the 1st derivative of the output is obtained 4

dTc
dt

t=t0

= κ1

∆tc
=

(bc− ad)
N−1∑
i=0

y−i −
(
d− b2)N−1∑

i=0
i y−i + (ab− c)

N−1∑
i=0

i2 y−i

N∆tc (bd+ 2abc− b3 − c2 − a2d) (4.48)

with

a = −N − 1
2 , b = +2N2 − 3N + 1

6 , c = −N (N − 1)2

4 , d = +6N4 − 15N3 + 10N2 − 1
30

(bc − ad) = − (N − 1)2

120
(
−2N3 + 3N2 + 3N − 2

)
−
(
d − b2) = −16N4 − 30N3 − 5N2 + 30N − 11

180

(ab − c) = +(N − 1)2 (N + 1)
12

(
bd + 2abc − b3 − c2 − a2d

)
=
(
N2 − 1

)2 (
N2 − 4

)
2160

Once derivative Ṫc is evaluated, the plasma core temperature can be extracted from the vector

~z =
(
z1 = yf = Tc
z2 = ẏf = Ṫc

)
(4.49)

in an iterative way by means of the Newton-Raphson algorithm (Appendix A.2.2). ~z is a (nonlinear)

function of the actual state vector ~x =
(
x1 = Tc
x2 = T p

)
, starting at a provisional solution ~x(prov) =

(
Tc

T
(prov)
p

)
and by calculating the first two terms in a Taylor expansion of ~z(~x) the following solution for an im-
proved ~x is obtained

~z(~x) ≈ ~z(~x(prov)) +
(
∂~z

∂~x

)
~x(prov)

(
~x− ~x(prov)

)

T p ≈ T
(prov)
p +

(
0 1

) ( 1 0
∂f1
∂x1

∂f1
∂x2

)
︸ ︷︷ ︸

O
~x(prov)


−1(

0
Ṫc − f1(Tc, T

(prov)
p )

)

= T
(prov)
p +

(
Ṫc − f1(Tc, T

(prov)
p )

)
∂f1

∂x2
(Tc, T

(prov)
p )

(4.50)

The denominator of the previous relation does not vanish since it just corresponds to the observability
condition Equation (4.31). The solution for the actual T p is carried out in two iterations. The first
iteration T

(prov)
p takes the value of T p from the previous time step and an improved T p is calculated,

the latter being used in the second iteration as T (prov)
p for an even better T p and so on. If the time

step ∆tc at which the output sensor yields values is short enough (typically 1/4 of the time scale for
the plasma dynamics, i.e., about 0.2 ms) the iterative solution can be reduced to a single iteration.

4Together with
(

0 1 0
)(1 a b

a b c
b c d

)−1

=
1

bd + 2abc − b3 − c2 − a2d

(
(bc − ad)

(
d − b2

)
(ab − c)

)
.
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4.3.4.2 Flatness-based high-gain observer

In the previous reconstruction of the plasma core temperature it was assumed that the output sensor in
the real system was not ideal, but the simplified dynamics on the other hand are still accurate enough
to describe the full system. Thus the flat output of this simplified model could be safely applied for
extracting any information from the real system. In many situations, however, the model being used
to design the control is only an approximation to the real underlying dynamics which contains some
additional non-modelled effects. This occurs because these effects are either not relevant for the time
scales being resolved during the control or because such effects are too complicated to describe . In this
case the corresponding mathematical model would considerably slow down the controller and make
it useless. This is also the situation in the considered system. The simplifed model is a 2nd order
dynamics, able only of reproducing some of the relevant effects, but without any detail about the radial
plasma temperature distribution. Hence the reconstruction of the plasma core temperature from such
simplified model might be quite poor (again, a direct measurement of such a plasma temperature is
not viable at the frequency rate required for controlling).

There is nevertheless an efficient solution proposed by Luenberger half a century ago [97], initially
for linear systems: the observer. Implemented on a microprocessor the observer takes the input u into
the real system as well as the output y measured from it and follows the system dynamics according to
the simplified model (including output ŷ), but with an additional correction proportional to the error
ey = y − ŷ between the real and the modelled output. The idea behind it is:

• This error ey is negligible, the simplified model is currently yielding an accurate description of
the actual system dynamics and therefore the modelled state vector of the observer is also a fine
estimation for the non-accessible state in the real system.

• If, on the contrary, ey is not small the simplified model within the observer has to be adjusted
along the appropriate direction to correct this error and bring it back to a situation with a
negligible ey.

The question is, how strong should the correction ey be coupled to each state component when formu-
lating the observer’s equations of motion and how this is expressed mathematically.

From now on any estimation/reconstruction calculated within the observer will be marked by the
symbol ˆ and therefore to avoid an overloaded notation the vector symbol will be dropped in the
following discussion (always keeping in mind that x has n components, as well as f and g, but u and y
have only one). The equations of motion for the real system and the observer are, respectively, given
by

real system:

{
dx

dt
= f(x) + g(x)u+ (. . .)1

y = h(x) + (. . .)2

observer:

{
dx̂

dt
= f(x̂) + g(x̂)u+ L(x̂) (y − ŷ)

ŷ = h(x̂)

(4.51)

where the (. . .)1 in the equations of motion for the real state vector x represents the non-modelled
effects discussed earlier; in the output equation for y, the (. . .)2 indicates the sensor noise. Now to
design the n components of the column vector L(x̂) multiplied by ey = y − ŷ (term marked by a single
underline), in such a way that the state estimation x̂ remains close to the real x. Without measuring the
full state (which is not viable), but only by having the information contained in the output. Assuming
that the observer manages to keep the state reconstruction error ex = x− x̂ small (a column vector
with n components), the equation of motion for such error vector can be approximated by keeping only
the linear term in ex for its Taylor expansion
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dex
dt

=
(
f(x)− f(x̂)

)
+
(
g(x)− g(x̂)

)
u− L(x̂)

(
h(x)− h(x̂)

)
+ . . .

≈

observer matrix AO︷ ︸︸ ︷[ (
∂f

∂x

)
x̂︸ ︷︷ ︸

quadratic
n×n matrix

+
(
∂g

∂x

)
x̂︸ ︷︷ ︸

quadratic
n×n matrix

u− L(x̂)︸︷︷︸
column

n×1 vector

∂h

∂x
x̂︸︷︷︸

row
1×n vector

] ex︷ ︸︸ ︷
(x− x̂) + . . . (4.52)

The main intention of an observer is to maintain the vector ex small, observer matrix AO in the
previous equation must be a Hurwitz matrix, i.e. all its eigenvalues must have a strictly negative real
part so that ex cannot grow in an uncontrolled way. For the simplified dynamics (4.32), which are of
order n = 2, this observer matrix reads

AO =
(
∂f1
∂x1

∂f1
∂x2

0 ∂f2
∂x2

)
x̂

+
(

0 0
0 ∂g2

∂x2

)
x̂

u−
(
`1(x̂)
`2(x̂)

)(
1 0

)
=
(
∂f1
∂x1

(x̂)− `1(x̂) ∂f1
∂x2

(x̂)
−`2(x̂) ∂f2

∂x2
(x̂) + u ∂g2

∂x2
(x̂)

) (4.53)

and for both eigenvalues to have a strictly negative real part, the following two conditions must be
satisfied. The trace of the matrix must be negative and its determinant must be positive.

`1(x̂) >
(
∂f1

∂x1
+ ∂f2

∂x2
+ u

∂g2

∂x2

)
x̂

,

`2(x̂) ∂f1

∂x2
(x̂) > −

(
∂f1

∂x1
− `1

)
x̂

(
∂f2

∂x2
+ u

∂g2

∂x2

)
x̂

>

(
∂f2

∂x2
+ u

∂g2

∂x2

)2

x̂

(4.54)

Yet determining two constant values for `1 and `2, in such a way that the above inequalities are
satisfied for nearly the whole value range of the state components (and the input) is quite a demanding
task to solve. Particularly if those bounds include the input u itself, a value that can strongly vary.
Fortunately there exists a particular observer formulation, the so-called high-gain observer ([93], § 14),
which applied to a dynamics with a flat output yields a robust state estimation ([98], § 7). This observer
is characterized by a simple structure and by constant values for `1 and `2. Instead of discussing the
high-gain observer in general only its application to the simplified model for the “plasma arc and
cathode spot’’ dynamics will be presented here. As a first step, the simplified dynamics is described

in the follwoing new state coordinates z =
(
z1 = yf
y2 = ẏf

)
, which contains the same information as the

original state vector x since yf is a flat output. The equations of motion for these transformed state
variables are

ż1 = ẏf ≡ z2

ż2 = ÿf = L2
~f
yf + L~gL~fyf︸ ︷︷ ︸

6= 0

u (4.55)

and thus the real system as well as the observer are described as follows

real system:


dz

dt
=
(

0 1
0 0

)
z +

(
0
1

)[ scalar function ϕ(z, u)︷ ︸︸ ︷
L2
~f
yf (x) + L~gL~fyf (x)u+ . . . . . . . . . . . .︸ ︷︷ ︸

additional effects,
additional degree of freedom

]

observer:

 dẑ

dt
=
(

0 1
0 0

)
ẑ +

(
0
1

)[ scalar function ϕ̂(ẑ, u)︷ ︸︸ ︷
L2
~f
yf (x̂) + L~gL~fyf (x̂)u

]
+
(
`1
`2

)(
1 0

) (
z − ẑ

)
(4.56)
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again with the correcting term in the observer marked by a straight underline. The state reconstructiong

error in the transformed coordinates, ez = z − ẑ =
(
eyf

= yf − ŷf
deyf

dt

)
, has the equation of motion

dez
dt

=
(
−`1 1
−`2 0

)
ez +

(
0
1

)(
ϕ(z, u)− ϕ̂(ẑ, u)

)
(4.57)

This time without any approximative linearization (as it was the case in Equation (4.52)). Let us now
assume the following choice for constant `1 and `2

`1 = −1
ε̃

(
λ̃1 + λ̃2

)
, `2 = 1

ε̃2 λ̃1λ̃2 , (4.58)

, where λ̃1 and λ̃2 represent constant eigenvalues with negative real part (either both real or complex
conjugated to each other) and ε̃ is a positive (small) number still to be determined. The next step is to
re-scale the time coordinate in such a way to follow the evolution of the transformed state reconstruction
error ez in more detail

t′ = ε̃−1 t =⇒ d

dt
= ε̃−1 d

dt
(4.59)

Correspondingly a modified error vector ζ is introduced whose 2nd component is the derivative of the
1st component, but now according to the new time coordinate t′

ζ =
(
ζ1 = eyf

= yf − ŷf
ζ2 = deyf

dt′

)
. (4.60)

This new vector is related to the original vector z by means of ζ =
(

1 0
0 ε̃

)
z and its dynamics is given

by

dez
dt

= ε̃−1
(

1 0
0 ε̃−1

)
dζ

dt′
=⇒ dζ

dt′
= ε̃

(
1 0
0 ε̃

)
dez
dt

dζ

dt′
= ε̃

(
1 0
0 ε̃

)(
−`1 1
−`2 0

)(
1 0
0 ε̃−1

)
ζ + ε̃

(
1 0
0 ε̃

)(
0
1

)(
ϕ(z, u)− ϕ̂(ẑ, u)

)
=
(
λ̃1 + λ̃2 1
−λ̃1λ̃2 0

)
︸ ︷︷ ︸

A′
O

ζ + ε̃2
(

0
1

)(
ϕ(z, u)− ϕ̂(ẑ, u)

) (4.61)

The re-scaling of the time coordinate makes the advantage of this observer formulation clear. By
choosing ε̃→ 0 (which leads to high `1/2 values, thus the name of “high gain’’) the contribution
ϕ(z, u)− ϕ̂(ẑ, u) becomes negligible, with all the involved nonlinearities in the state variable as well as
the explicit dependence on the input. Moreover for ε̃→ 0 (typically ε̃ = 0.1 is enough) the remaining

observer dynamics reduces to dζ

dt′
= A′

O ζ, where the eigenvalues of the matrix A′
O are λ̃1 and λ̃2. As

soon as both eigenvalues have a strictly negative real part the behaviour ζ t
′→∞−→ 0 follows, independent

of the form in ϕ(x) and ϕ̂(x̂). This last property is referred to as robustness. Since ζ t
′→∞−→ 0 implies also

ẑ
t→∞−→ z the stable operation of the observer is guaranteed. If eigenvalues λ̃1/2 are chosen large enough

in magnitude the time it takes to achieve the convergence goes to infinity “t→∞’’ , but this already
occurs for a shorter time intervalas well, since the components in ζ evolve as eλ̃1/2 t

′
. A convenient

choice for these eigenvalues is
λ̃1/2

ε̃
∼ 10
τ̃c

(4.62)

for the observer to reconstruct the state in a time scale faster than τ̃c, with the latter defining the
stabilizing state feedback (4.42) which requires an already fine enough estimation of the state.
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And as a final step, it remains only to write the observer equations back into the original x̂ state
coordinates. This is easily carried out since the transformation matrix connecting dẑ

dt
to dx̂

dt
is just the

observability matrix (evaluated at the current state estimation)

dx̂

dt
=
[ (

∂ẑ

∂x̂

)
x̂︸ ︷︷ ︸

observability
matrix O

]−1
dẑ

dt
(4.63)

Hence the equations of motion for the high-gain observer, formulated in the original state variables

x̂ =
(
x̂1 = T̂c

x̂2 = T̂ p

)
, are

d

dt

(
x̂1
x̂2

)
=

O−1︷ ︸︸ ︷
1

∂f1

∂x2
x̂

(
∂f1
∂x2

0
− ∂f1
∂x1

1

)
x̂

[(
0 1
0 0

)(
x̂1

f1(x̂1, x̂2)

)

+
(

0
1

)(
∂f1

∂x1
f1 + ∂f1

∂x2
(f2 + g2 u)

)
x̂

+
(
`1
`2

)(
T (meas)
c − x̂1

)]
(4.64)

where the output emanating from the real system has been written as T (meas)
c to stress its measurement

character. Now the separated components for the observer’s equations of motion are given by

dx̂1

dt
= f1(x̂1, x̂2) + `1

(
T (meas)
c − x̂1

)
dx̂2

dt
= f2(x̂2) + g2(x̂2)u+

−`1
∂f1

∂x1
x̂

+ `2

∂f1

∂x2
x̂

(
T (meas)
c − x̂1

) (4.65)

The numerical integration is carried out in an interative way, similarly to equations (4.13) and using
again the 2 methods (A.3) as well as the sign conditions derived in (4.40)
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x̂1(t + ∆t)
[

1 + ∆t
f

(−)
1 (x̂(prov)

1 , x̂
(prov)
2 )

x̂
(prov)
1

+ ∆t `1

]
= x̂1(

⇓
t ) + ∆t f

(+)
1 (x̂(prov)

1 , x̂
(prov)
2 ) + ∆t `1T (meas)

c

x̂2(t + ∆t)

1 + ∆t

(
f2(x̂(prov)

2 ) + g2(x̂(prov)
2 ) u

)(−)

x̂
(prov)
2

+ ∆t

−`1
∂f1

∂x1 (
x̂

(prov)
1 ,x̂

(prov)
2

) + `2

∂f1

∂x2 (
x̂

(prov)
1 ,x̂

(prov)
2

)
x̂

(prov)
1

x̂
(prov)
2



= x̂2(
⇓
t ) + ∆t

(
f2(x̂(prov)

2 ) + g2(x̂(prov)
2 ) u

)(+)
+ ∆t

−`1
∂f1

∂x1 (
x̂

(prov)
1 ,x̂

(prov)
2

) + `2

∂f1

∂x2 (
x̂

(prov)
1 ,x̂

(prov)
2

) T (meas)
c

(4.66)

f
(+)
1 =

λth, c

ρccp, cz2
c

T0 +
Eionn

(prov)
e, ∞

√
kB x̂

(prov)
2
mi

ρccp, czc

1 +
en

(prov)
e, ∞

√
kB x̂

(prov)
2
mi

AR

(
x̂

(prov)
1

)2
exp
(

− eΦc

kB x̂
(prov)
1

)


f
(−)
1

x̂
(prov)
1

=
λth, c

ρccp, cz2
c

+
εcσSB

ρccp, czc

(
x̂

(prov)
1

)3

+
1

ρccp, czc

(
AR

(
x̂

(prov)
1

)2
exp
(

−
eΦc

kB x̂
(prov)
1

)
+ en

(prov)
e, ∞

√
kB x̂

(prov)
2

mi

)
Φc

x̂
(prov)
1

(f2 + g2 u)(+) =
2λth, p((x̂(prov)

2 + T0)/2)(
ρpcp, pr2

p

(
r0

rp
− 1
))

x̂
(prov)
2

T0 +
(

1 + ξ
) 1

π2
(

σelρpcp, pr4
p

)
x̂

(prov)
2

u

(f2 + g2 u)(−)

x̂
(prov)
2

=
2λth, p((x̂(prov)

2 + T0)/2)(
ρpcp, pr2

p

(
r0

rp
− 1
))

x̂
(prov)
2

+ ξ
1

π2
(

σelρpcp, pr4
p

)
x̂

(prov)
2

u

x̂
(prov)
2

∂f1

∂x1
= −

λth, c

ρccp, c z2
c

− 4
εcσSB

ρccp, c zc

(
x̂

(prov)
1

)3

−
1

ρccp, c zc

AR

(
x̂

(prov)
1

)2
exp
(

− eΦc

kB x̂
(prov)
1

)
x̂

(prov)
1

(
2 +

eΦc

kB x̂
(prov)
1

)
×

×

Eion

e

 en
(prov)
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√
kB x̂

(prov)
2
mi

AR

(
x̂

(prov)
1

)2
exp
(

− eΦc

kB x̂
(prov)
1

)
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2

+ Φc

 < 0

∂f1

∂x2
=

1
ρccp, c zc

en
(prov)
e, ∞

√
kB x̂

(prov)
2
mi

x̂
(prov)
2

−n
(prov)
e, ∞

(
2 + Eion

kB x̂
(prov)
2

)
+ P

2kB x̂
(prov)
2

(
3
2 + Eion

kB x̂
(prov)
2
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P

kB x̂
(prov)
2

− n
(prov)
e, ∞

×

×

Eion

e

2
en

(prov)
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√
kB x̂

(prov)
2
mi

AR

(
x̂

(prov)
1

)2
exp
(

− eΦc

kB x̂
(prov)
1

) + 1

− Φc

 > 0 for T p < T p, crit

Now the usual abbreviations x̂(prov)
1/2 ≡ x̂(prov)

1/2 (t+ ∆t) for the provisional solution at the next time
step and analogously n

(prov)
e,∞ ≡ ne,∞(x̂(prov)

2 (t+ ∆t)) are calculated from the Saha-Eggert equation
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considering the first and second ionization. Note that both `1 and `2 are positive since all eigenvalues

λ̃1/2 have a negative real part (and ε̃ is positive). Once the reconstructed state x̂ =
(
x̂1 = T̂c

x̂2 = T̂ p

)
has

been determined for the next time step after a few iterations, the second component is used as a
reliable estimation for the plasma core temperature T̂ p, used in the stabilizing state feedback; there is
no need to use the first component of the observer state for such state feedback, since the cathode spot
temperature is directly measured.

4.4 Simulation tool for the plasma dynamics

As mentioned at the beginning of this work the developed trajectory tracking control could not be
implemented in a real facility. Hence the control performance can only be tested in a simulation
where nevertheless the numerical model for the real system has a higher complexity (plus an additional
stochastic contribution) than the simplified model which the control design is based on. In this section
the own developed MATLAB/Simulink code for simulating the system dynamics is presented, together
with the trajectory design for the plasma core temperature, the observer and the controller for a stable
trajectory tracking discussed in the previous chapter. The simulation results will be presented and
discussed later on in this work (Section 5.3), at first for different stationary states and finally showing
the performance at achieving a stable trajectory tracking control. The desired trajectory for these latter
simulations corresponds to a periodic pulsed pattern in the plasma core temperature of an argon gas
at atmospheric pressure (P = 105 Pa).
The simulation will again be initiated with the Matlab script, mentioned in (Section 3.4), which:

• calculates the particle densities of all species depending on the plasma temperature Tp (θ = 1)

• provides all necessary plasma transport parameters (σel , λth,p , cp,p , ρp) [59, 60, 85] and cathode
material parameters (λth,c , cp,c , ρc) [86, 87]

• sets the geometrical boundary conditions and operational parameters (zc , rcool , `arc , Iarc)

• starts the plasma dynamics simulink model

The plasma dynamics simulation itself is a simulink model, which consists of the following parts:

• Trajectory generator

• Feedforward control

• Plasma system (numerical model for the radial plasma temperature evolution of the electrical arc
with stochastic contribution for non-modelled effects)

• Derivative estimator

• Feedback control (nonlinear flatness based feedback controller)

• State observer (flatness based high gain observer)

The toplayer structure of the entire controller model is displayed in Figure 4.6. The structure and data
flows of each component of that model are broken down in the consecutive subsections.
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Figure 4.6: Overall structure of the nonlinear flatness based feedback control model
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Figure 4.7: Component of the plasma dynamics simulation, for the generation of the desired plasma
trajectory

Trajectory generator The trajectory generator Figure 4.7 creates the pulse train for the desired
plasma temperature trajectory. Currently three types of trajectories can be chosen:

• plasma temperature trajectory with sinusoidal pulse shape

• plasma temperature trajectory with trapezoidal pulse shape

• constant cathode temperature trajectory

In the present controller model the form of the pulse train is chosen to be plasma temperature profile
with trapezoidal pulse shape, in order to evaluate the performance of the controller model, see (Fig-
ure 4.8), has been choosen to:

• create large temperature gradients within the trajectory

• create large pulse repetition rate of pulses within the trajectory
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Figure 4.8: Schematic of the pulse shape profile of the desired trajectory. The overall duration is denoted
with tpulse, the lower T p,low and upper T p,high desired values of the plasma temperature increase during
the pulse.
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Figure 4.9: Feedforward controller to generate the input Tc trajectory and its first and second time
derivative from the trajectory data of Tp , Ṫp.

Feedforward control The Feedforward controller, see Figure 4.9 creates the profile of the cathode
temperature T ∗

c and its derivatives according to the desired trajectory in Tp. The inputs to that function
are the time dependent values of Tp(t) and Ṫp(t), now the initial solution for the cathode temperature
is guessed (it is convenient to choose the temperature from the steady state calculation in that case).
Now all the information needed to calculate the function f1(Tc, T̂p) from (Equation (4.32)) is given.
The numerical integration scheme from (Equation (A.4)) can now be taken to find a converged solution
for the time step and then evolve the solution for all time steps of the regarded time frame to describe
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the full trajectory. The solutions for T ∗
c (t) and Ṫ ∗

c (t) are now given and one needs to calculate the
second derivative for the full control scheme. This can be achieved with the help of (Equation (4.32))
and the assumption that no control is applied ueff (t) = 0, which leads to the relation:

dT̂p
dt

= f2(T ∗
c , T̂p, . . .)

d2T ∗
c

dt2
= ∂f1

∂T ∗
c

f1(Tc, T̂p) + ∂f1

∂T̂p
f2(Tc, T̂p, . . .)

= ∂f1

∂T ∗
c

f1(Tc, T̂p) + ∂f1

∂T̂p

dT̂p
dt

(4.67)
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plasma.

Plasma system: numerical model for the radial plasma temperature evolution of the
electrical arc with a stochastic contribution for non-modelled effects The controlled system
displayed in Figure 4.10 contains the nonlinear radial plasma temperature eq. (2.60). To account
for other nonlinear effects not included in this model, a white noise vector with the noise amplitude
σ̃0 is added to the plasma temperature distribution of the system. The noise amplitude is designed
to account for deviations around 10% of each element of the plasma temperature distribution. The
numerical integration scheme described in Appendix A.2.1 evolves the system of equations with the

time step ∆t = 1µ s. The block returns the new state vector ~xnew =


Tc
Tp,1

...
Tp,N

 and the value of

the effective plasma radius rp resulting from the current plasma temperature distribution. Since the
flatness based control only applies for the central temperature of the arc, the system dynamics of the
whole arc are still highly nonlinear and can lead to chaotic behaviour.

84



1
d1_xx_estimate

rank

t_step

t

Queue_measured

l_Queue

d_xx

d2_xx

Derivative	Estimator

2
t

1
xx

2
d2_xx_estimate

2

rank

Queue_In

xx

Queue_Out

l_Queue_Out

Queue	Measured	Data

t_step_Tc
t_step

Figure 4.11: Derivative estimator of the first and second time derivative of the cathode temperature
Ṫc , T̈c.

Derivative estimator The derivative estimator (see Figure 4.11) has the purpose to extract the
information of the first time derivative of the cathode temperature d Tc

d t from the measured signal of Tc.
Various methods can be choosen here, but regarding the properties of the measured physical quantity
Tc (white gaussian noise over the measured signal) it is convinient to choose an estimator that can take
care of such fluctuations of the input signal. The estimator scheme was briefly outlined in Section 4.3.4.1
and is taken from [95].
The measured signal shall be seen as the sum of a clear signal x(t) and η (t) being the component of
white gaussian noise.

y(t) = x(t) + η (t);

The block consists of the derivative estimator algorithm in the eponymous block and a queueing block
that stores the data of the number of desired measurements N of the cathode temperature Tc which
shall be taken into account for this respective algorithm. It is worth noting that the derivative estimator
and the observer are executed at a faster time scale than the nonlinear controller itself, defined by the
parameter τobs.
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Figure 4.12: Nonlinear flatness based feedback controller block

Feedback control The nonlinear feedback controller (see Figure 4.12) contains the state control-
ling law (Equation (4.42)). Its inputs are the values of the planned trajectory T ∗

c ,
d T∗

c

d t ,
d2T∗

c

d t2 and the
measured value of Tc, as well as its estimated value of the effective plasma core temperature T̂p. The
output of the controller is the current profile I(t), which need to be applied to the controlled system to
track the desired behaviour. This output can be directly fed to a real plasma system or a simulation
environment to observe the proper behaviour of the controller.
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Figure 4.13: Flatness based observer block

State observer The flatness based observer, see Figure 4.13, contains the algorithm to reconstruct
the effective plasma core temperature T p from the measured value of the cathode spot temperature Tc,
according to the scheme described in Section 4.3.4.2.
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Chapter 5

Results and Discussion

”I have not failed. I’ve just found 10,000 ways that won’t
work.”

Nikola Tesla

5.1 Plasma radiation simulations of the thermal arc and comparison with
experimental data of noble gases and mixtures

This section presents the results of the radiation simulation, based on the equations in Chapter 3. At
first the particle densities calculated from the Saha eqs. (2.24) and (2.25) are displayed. Subsequently
the calculated spectra for the respective gas composition will be compared to measured spectra from [9].
Likewise the electron densities and electron (or better gas) temperatures are compared to measurements
from [9]. The calculations can be performed on any composition of noble gases and their mixtures,
but due to the wide spread application of argon and helium, most experimental data is available here.
Therefore this configuration has been chosen to compare the numerical results with experimental data
of Thomson scattering measurements for the electron density and electron temperature, as well as Stark
broadening spectroscopy for the electron density. The description of the experimental set up can be
seen in [9]. The physical parameters from this experiment, which are important for the simulation are
summerized in Table 5.1.

variable value meaning
Tcool 300 K temperature of the cooled surrounding
`arc 7 mm length of the plasma arc
Iarc 150 A input current of the plasma arc
λmin 300 nm lower boundary of the spectral window
λmax 900 nm upper boundary of the spectral window
∆λ 0.05 nm resolution of the spectral window
Q 14 slpm gas flow rate of the shielding gas flow
Ep 25 mJ energy of the laser pulse
rlaser 250µm radius of the circular focal area of the laser pulse
tp 4 ns duration of the laser pulse

Table 5.1: Simulation boundary conditions from experimental data of [9]

Based on these boundary conditions Table 5.1, the spectra are calculated for argon and argon-helium
as working gases. The cost function for both setups has been calculated and minimized according to
the scheme in Section 3.3. For pure argon as a process gas, the cost function reaches its minimum for a
value of rcool = 5.1 mm as simulation parameter, for argon-helium the respective cost function reaches
its minimum with parameter rcool = 3.65 mm and for a gas concentration of argon-helium equal to 40 -
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60 %. All results will be displayed at first without discussing the deviations and their possible causes.
In the following discussion section each result will be references and a combined analysis of the physical
causes behind these resuults will be given. This approach is chosen since the interconnection between
all results is rather complex and one can easily loose track of each implication.

5.1.1 Gas composition for pure argon and argon-helium mixtures
The gas composition for the different working gases is performed with the equations formulated in (Sec-
tion 2.2).

Figure 5.1: Plasma composition for an argon plasma with particle densities of each species plotted over
the plasma temperature
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Figure 5.2: Plasma composition for an argon-helium with a ratio of 40 - 60 % plasma with particle
densities of each species plotted over the plasma temperature temperature

Figure 5.1 shows the particle distribution over the plasma temperature for pure argon and Figure 5.2
for the case of an argon-helium mixture with a ratio of 40 - 60 %. The displayed curves match very well
with other theoretical [99] and experimental results [9], which is reasonable under the assumption of
LTE. One can see that the electron density first rises with increasing temperature, reaches a maximum
at about 16 500 K and than falls slightly below that value afterwards [71].

5.1.2 Sensitivity analysis of the calculated results depending on the boundary
condition of the thermal arc model

Now with the data of the particle density evolution (especially the electron density) at hand, it shall be
analyzed how sensitive the calculated results of the spectra and the electron densities are on a change of
the boundary condition rcool of the thermal arc model. One can see that the sensitivity of the spectral
lines is quite different Figure 5.3, some lines (like the 763.5 nm) show greater variation in amplitude
and width, while the other selected lines only show differences in width. The changes induced into
the electron density profiles is much more prominent Figure 5.4. Both height and width of the profiles
chance visibly with only minor changes in rcool.
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Figure 5.3: Simulated spectral line profiles for different values of the thermal boundary radius rcool =
5.1 mm (black), rcool = 4.1 mm (green) and rcool = 6.1 mm (blue). All the spectra were normalized
with the maximal simulated intensity of the Ar I 696.5 nm line and selected lines have been displayed
for visibility reason.
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Figure 5.4: Simulated electron density profiles for different values of the thermal boundary radius
rcool = 5.1 mm (black), rcool = 4.1 mm (green) and rcool = 6.1 mm (blue).

5.1.3 Spectral emission profile and Stark broadening widths
At first it shall be displayed what dimension the Quadratic Stark broadening widths have, compared
with other more detailed theoretical calculations from the literature [30, 100].

Quadratic Stark broadening widths The Full width at half maximum (FWHM) induced by the
Stark effect shall be displayed for some spectral lines. For pure argon the data calculated through this
simplified model are compared with results from the literature [30, 100] 1. The data for λif and fif are
extracted from NIST Atomic Spectra Database [68] for the respective gas. As can be seen in table 5.2
the values are within the order of magnitude of comparable theoretical and experimental work.

1The results mentioned here (Table 5.2) have been published by the author prior to this thesis [53]
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Ar I Ar I Ar I Ar I Ar I
reference λ0 [nm] 549.6 603.2 696.54 738.4 763.5
this work FWHM [0.1 nm] 1.25 1.35 2.05 1.43 2.18

[100] FWHM [0.1 nm] 3.75 1.75 1.45 2.5 1.46

Table 5.2: Comparison of estimated Stark width at the electron temperature Te of 14 000 K and electron
density ne of 1.43× 1023 m−3

Now it shall be displayed, which spectral resolved profile calculated by the radiation model fits the
measured spectral data the best in the optical range, see Table 5.1. This data will be displayed and
compared to the results from OES measurements [9].

5.1.3.1 Pure Argon

Figure 5.5 shows four selected Ar I lines. The measured data was not Abel transformed, since simulated
spectra were spatially integrated. The presented lines were selected as an example for the fit, as their
spectral broadening data are also available in e.g. [29, 30]. As can be seen here, for all cases the
measured and simulated spectral lines are in good agreement, only the 763.5 nm line shows a noticeable
deviation.
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Figure 5.5: Simulated (black) and measured (blue: 2 mm from the tip of the cathode) spectra of selected
Ar I lines in the central axis of the arc in pure argon. All the spectra were normalized with the maximal
measured/simulated intensity of the Ar I 696.5 nm line.

5.1.3.2 Argon-Helium

For the simulation of emission spectra of the argon-helium arc additionally the gas mixture ratio
needs to be estimated. In order to get a first estimate for the further iterations, a gas concentration
corresponding to that of the plasma in thermal equilibrium with plasma parameters as measured by
Thomson scattering was used [101]. This concentration (argon-helium 40 - 60 %) was assumed to be
constant, in a first approximation, over the radius of the arc. This assumption will again be reviewed
in the discussion.
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Figure 5.6: Simulated (black) and measured (blue: 2 mm from the tip of the cathode) spectra of selected
Ar I lines in the central axis of the arc in argon-helium (40 - 60 %). All the spectra were normalized
with the maximal measured/simulated intensity of the Ar 696.5 nm line. For visualisation purposes the
He I line intensity is multiplied by factor 50.
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Figure 5.7: Measured (blue: 2 mm from the tip of the cathode) and simulated spectra of a selected Ar
I and He I lines in the central axis of the arc for different argon-helium mixtures (red: 40 - 60 %, green:
30 - 70 %, black: 50 - 50 %). All the spectra were normalized with the maximal measured/simulated
intensity of the Ar 696.5 nm line. For visualisation purposes the He I line intensity is multiplied by
factor 50.

Figure 5.6 shows comparison of calculated and measured spectra for the four previously chosen Ar I
lines as well as one He I line, which could be well detected in the spectrum. Here again considerable
deviations can be noted for Ar I 763.5 nm line. The same reasons as discussed for the case of pure
Argon are assumed here. While the line intensity of the calculated and measured He I line have the
same magnitude, their width deviate slightly.
Figure 5.7 additionally shows spectra for variation of the Ar-He ratio. It can be seen that for lower
He concentration the He I line becomes broader, while Ar I lines do experience a major reduction
of the intensity of the calculated lines. This deviation is caused by the assumption of a constant
gas composition throughout the radial coordinate of the arc model. Adding an estimation on the
detailed mass fraction distribution would solve this problem and minimize the deviations for both gas
components separately.
For the sake of visibility the line intensity segment displayed on the left side of Figures 5.6 and 5.7 was
magnified by a factor of 50. Both results display a significant deviation in the line width of the He I
line, these deviations shall be discussed in detail in the subsequent section.
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5.1.4 Electron density distribution results
Now that the matching of the spectral data could be achieved, the corresponding electron density profile
is displayed and compared with the results from Stark line broadening spectroscopy and Thomson
scattering diagnostic [9].

5.1.4.1 Pure Argon

Figure 5.8 shows the comparison of the calculated and measured electron density profile. The calculated
electron density profile (black solid line) corresponding to these spectral intensities Figure 5.5 and the
electron density derived through Thomson scattering (blue dote) show comparable values. Also the
evaluation of the Stark broadening of the Ar I 696.5 nm line (red triangles), without the consideration of
temperature influence as described in [9] for radially resolved spectra show similar results. The profile
width do not match precisely, the deviation is ∼ 10 %.
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Figure 5.8: Simulated (black solid line) and measured 2 mm from the tip of the cathode (blue dots:
Thomson scattering, red triangles: Stark broadening) electron densities in pure Argon GTAW process

5.1.4.2 Argon-Helium

Figure 5.9 shows the results for the electron density comparison in the case of Argon-Helium for the gas
composition of 40 - 60 % (this ratio has been determined by the cost function minimalization together
with the distance to the cold surrounding). Here a very good agreement can be noted for the density
profiles determined by Thomson scattering (blue dots) and Stark broadening (red triangles). This can
be explained by extending the description given for pure argon to the case of an Argon-Helium gas
mixture, the thermal conductivity results from the composition of the shares of both gases. This results
in an additional parameter, the mass fraction coefficient, to modify this thermal conductivity. In the
case presented here a gas mixture could be found with a thermal conductivity sufficient enough to cause
a radial diffusive heat flux to compensate for the Joule heating.

95



−4 −2 0 2 4
0

0.2

0.4

0.6

0.8

1
·1023

r [mm]

n
e
[m

−
3
]

Figure 5.9: Simulated (black: 40 - 60 %) and measured 2 mm from the tip of the cathode (blue dots:
Thomson scattering, red triangles: Stark broadening) electron densities in Argon-Helium GTAW pro-
cess.

5.1.5 Temperature distribution results
Now it shall be discussed how the plasma temperature profile (corresponding to the electron density
profile) can be reconstructed. At this point it shall again be emphazised that this data is needed
to observe that the plasma temperature follows a desired trajectory, as stated in the introduction.
Figure 5.10 (left) shows the comparison of calculated (black line) and measured (blue line) plasma
temperature [9]. The profile width and the peak temperature do not match for this case (the devation
is ∼ 22 % in the height and ∼ 10 % in the width of the profile). Comparable results are shown for the
Argon-Helium gas mixture Figure 5.11. In advance to the detailed discussion in the next section it
shall be explained that various phenomena can cause such deviation. This work focuses on the impact
of the laser heating during the Thomson scattering measurement, as possible cause for this effect [102].
The numerical scheme Equation (2.59) has been adapted by an additional term to account for the laser
heating, as discussed in Appendix A.1. The data generated with this adaption is displayed on the right
side of Figures 5.10 and 5.11. The right subplots in Figures 5.10 and 5.11 show the corrected profiles
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Figure 5.10: (left) Simulated (black solid line) and measured 2 mm from the tip of the cathode (blue
dots: Thomson scattering) electron/ plasma temperature profiles in pure Argon GTAW process without
(top) and with (right) effect of laser heating

in comparison to the measured value [9]. The peak profile temperature and the profile width are in
good agreement with the measurement, if one takes into account the laser light energy of 25 mJ. The
profil shape however deviates after the inclusion of the laser heating mechanism. This has been derived
accordingly for the Argon-Helium gas mixture with a comparable result, as can be seen in Figure 5.11.
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Figure 5.11: Simulated (black solid line) and measured 2 mm from the tip of the cathode (blue dots:
Thomson scattering) electron/ plasma temperature profiles for Argon-Helium with gas composition of
40 - 60 % in GTAW process without (left) and with (right) effect of laser heating

The profile shaping taking laser heating into account appears to be much better in the case of
Argon-Helium mixtures than the shaping for the case of pure Argon. A discussion will be given in the
subsequent section.

5.1.6 Experimental validation of the assumption of a cold boundary for the
thermal model

At this point the initial remark from Section 2.1 concerning the underlying plasma temperature dis-
tribution, which is defined by the parameter rcool, shall be further strengthened. To clarify that the
values of this parameter (which have been displayed so far in this work) are at least in the right order of
magnitude, a optical diagnostic technique called Schlieren imaging has been utilized. Schlieren imaging
is a visual technique that makes density gradients in the flow field accessible through interferometry of
optical light passing through it [103]. It is a favourable technique to study the stream lines of a flow field
for processes which work at high enough pressures (in this case atmospheric pressure) [104]. Figure 5.12
shows the Schlieren snapshot of a plasma arc in a GTAW process, with its operation conditions collected
in Table 5.3. Evaluation of the pixel width of the optical camera, display the order of magnitude of the

variable value meaning
Iarc 100 A current of the plasma arc
`arc 5 mm length of the plasma arc
Q 30 l/min gas flow rate of the surrounding cold gas

Table 5.3: Experimental paramters of the Schlieren imaging method applied to
a GTAW process

distance between the plasma boundary and the surrounding flow. For the process parameters of Ta-
ble 5.3 the plasma temperature profile has been calculated and compared to the marked boundaries in
the Schlieren snapshot Figure 5.12. In this snapshot on can see the illuminated section in the middle,
which corresponds to the discharge region of the arc. The line in green marks the Schlieren edge (only
the right side is marked, but the Schlieren edge naturally exists on both sides), which is the density
gradient between the flow around the plasma discharge and the surrounding cold gas flow. Two length
scales are displayed in Figure 5.12, marking the dimension of the arc discharge region rarc|Schlieren and
the distance from the symmetric axis to the Schlieren edge rcool|Schlieren. Both values have been eval-
uated at a distance of 1.5 mm from the cathode tip (to ensure the evaluation is still taken in proximity
to the cathode). The value rcool|Schlieren = 4.1 mm was deduced and taken as input for the simulation
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to calculate the plasma temperature profile and the corresponding radiation intensity profile emitted
by the plasma. The calculated distance of the plasma where the radiation intensity drops drastically
rarc|calc (this can be regarded as the visible border of the plasma), must be in the order of magnitude as
the length rarc|Schlieren. With rarc|calc = 2.0 mm and rarc|Schlieren = 1.6 mm The deviation between
both values is ∆ rarc = 0.4 mm.

Figure 5.12: Snapshot of optical Schlieren imaging displaying the density gradient between the region
of the plasma discharge and the cold gas flow of the shielding - the Schlieren edge (green line).

5.1.7 Estimation of the computational effort for radiation model
The calculations of the radiation model are segregated in three stages

1. Calculation of static radiation properties (emission and absorption coefficient). These quantities
can be precalculated for a large number of parameters and stored in a lookup table. Therefore
the computational effort for their calculation can be neglected at first.

2. Calculation of the temperature profiles, according to the input current and arc length. These
calculation would need to be calculated in an appropriate time scale during process observation.
The execution time on the given setup to 2.13 s, using the packaging technique stated at the end
of the section, this time can be shortened to ∼ 10 ms

3. The last part is the integration of the radiation intensity, this has been executed for a cylindrically
symmetrical arc with 100× 100 finite difference elements. The processing time was unoptimized
∼ 37.7 s. Now if only the central region of the arc would be observed (and therefore reconstructed)
this would shorten the execution time by a factor of 100 and utilizing packaging technique stated
at the end of the section, would yield another factor of 20. This leads to a total processing time
of ∼ 18.8 ms.

and were performed with the Matlab/Simulink development enviroment (Version:R2017b) on a desktop
computer (Intel Core i5 3450 @ 3100MHz). Since Matlab is an interpreter language (which is naturally
slower then source code from compiled languages like c++), the subsequently displayed computation
time can be further reduced using Matlab coder to package computationally expansion sections of the
code to c++ libraries.
Overall this would lead to an execution in the range of 10 - 100 Hz for intime process observation.
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5.2 Discussion of the results for the radiation simulation

First of all it could be shown that the concepts and equations derived in the previous chapters for
the radiation model, enabled the development of a novel analysis technique to determine the electron
density and electron (gas) temperature within a thermal arc of a GTAW process. This technique is
designed to work with data inputs coming from OES measurements and can be applied to processes
where alternative measurement techniques like Thomson scattering diagnostics are to elaborate to be of
practical use. The results calculated with this technique could successfully be compared to experimental
data for argon and argon-helium gas mixtures [9, 53], which will now be discussed in more detail.

The differences in the spectral width and intensity of some lines (see Figures 5.5 to 5.7), especially
in the case of the 763.5 nm line, can be caused by the fact that the applied algorithm gives a simplified
estimation of the Stark broadening width. Furthermore the Bibermann correction factors for the
respective gases are not yet included in the emission coefficients of the radiation.

The deviation in the line width of the He I line is actually a result of an overlap with the contribution
of the continuum radiation resulting from the bound-free and free-free (or bremsstrahlung) contributions
of the contiuum electrons. As can be seen from the results these effects are important mostly for
lines with small intensities (such as He I), but are not the dominant effects in regard of the overall
spectrum generation. At least as long as the line intensity lies about the continuum contribution and
can therefore be distinguished by the cost function algorithm. Further adaptions of the algorithm shall
include continuum emission coefficients (bound-free and free-free transisions). This would improve the
presented results for the gas mixtures results (or in general weak line contributions), but need to be
validated and examined for their respective computational costs.

The sensitivity analysis of the spectral lines showed only miniscule changes in the height and width
of the spectral lines, when a change in rcool is applied. This strengthens the argument stated in
the introduction that evaluation of single selected lines is a challenging task. Therefore the proposed
adaption, to utilize a wide range of spectral lines and apply a cost function minimalization, poses a
novel method to improve the analysis of such spectral data. However since the spectral range is widened
for the diagnostic, the minimalization technique is prone to artifacts within the measured spectrum.
These could result from impurities of other elements (metal vapour) in the plasma. Therefore it is
advisable to either screen the spectrum from such lines beforehand or limit the spectral window again
to certain regions of the spectrum.

Likewise the sensitivity analysis showed a significant change induced to the electron density profiles,
if rcool is changed. This is a convenient fact, since the electron density is one property of interest and
should be generated with this model. Not only the profile height is changed, but also simultanously the
width of the profile. This is caused by the following fact. If the electron density value is fixed, so is the
maximum achievable electron temperature if the LTE condition is fullfilled (the plasma temperature can
be derived from the graphs of the particle densities Figures 5.1 and 5.2. Since the plasma temperature
is fixed in the centre of the plasma, the arc widens itself in order to transport the heat towards the cold
surrounding and a balance is again maintained.

Also the broader width of the electron density (Figure 5.8) and electron temperature profiles (Fig-
ure 5.10) can be explained by the fact that the presented simplified thermal arc model of Section 2.1
takes into account radial diffusive heat transfer as the main and only cooling mechanism for the Joule
heating. Although this equation is solved radially and takes the temperature dependence of the thermal
conductivity into account, this leads to a slight underestimation of the radial heat flux. Due to this
underestimation of the radial cooling effect the plasma temperature distribution is to wide (and a bit
to low in the centre), which in turn results in a wider radial electron density distribution.

However the calculated temperature profiles in Figure 5.10 and Figure 5.11 show a 22 % deviation
from the measured values in the centre of the arc. Still in this case the initial remark of Section 2.1,
that the radial diffusive heat transfer is the main source of energy transfer still remains valid, to
some extend. The deviation in the central plasma temperature of ∼ 22 % (in the case of argon)
can not only be explained by an underestimated energy transport towards the edges. Based on the
measurements of the electron density and the Saha equation (in Section 5.1.1), it can be seen that
for the measured electron density the corresponding plasma temperature matches the calculated one
in Figures 5.10 and 5.11(under the assumption of LTE). Not only the profile height is changed, but
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also simultanously the width of the profile. This is caused by the same effect as stated in the case of
the electron density profile width, since electron temperature and density are directly coupled. This
is further supported by calculations [102] and measurements [35, 37, 38, 101, 105–107], which indicate
that other physical causes have considerable impact on this deviation. However the huge deviation
in the central temperature contradicts theoretical [29] and experimental [108, 109] evidence, that the
regions away from the electrodes and fringes are in (or close to) LTE for electron densities above about
1× 1023 m3. This is caused by the fact that rapid equilibration of states due to the high collision
rates take place. Such electron densities occur at temperatures above 12 800 K in atmospheric pressure
argon plasmas. However it has been shown in [105](utilizing the Stark Shift measurement, which does
not have such a strong plasma temperature dependence as the Stark broadening width in [108, 109])
that for the region in proximity to the cathode (as stated to be closer than 2 mm from the tip of the
cathode, which is also the case for this work) this condition is non clearly fullfilled. It is stated that in
this distance the cathode fringe still has a noticable impact and a slight deviation from LTE (θ ∼ 1.2
is possible.

This topic however is still prone to rigorous discussion within the plasma physics community, albeit
there are various approaches to explain this deviation [37, 38], this work wants to follow the approach
of [102]. According to this concept it means that for the applied measuring method (Thomson scattering
diagnostic) additional heating of electrons occurs along the laser line of sight within the plasms arc,
due to the influence of the laser pulse. This has significant impact on the reconstruction of the electron
temperature value. Since the respective time scale of the interaction of the laser beam with the plasma
is too short for the heavy particles to react, due to their inertia, the energy of the beam is primarily
transferred to the electrons. This causes a slight deviation in the thermal equilibrium between electrons
and heavy species resulting in two separate temperatures during exposure of the plasma to the laser
radiation. Comparable discussions about the influence of the laser radiation on the measurement of the
plasma temperature have been presented in [106]. The results derived with the additional laser heating
term agree well in absolute height and width with the measured profiles for argon and argon-helium
mixtures Figures 5.10 and 5.11, the deviation is ∼ 5 % in height and ∼ 10 % in width.

However the shape of the profile does not match entirely. The impact of the laser heating con-
tribution based on the presented model is dominated by two effects, the heat transport determined
by the thermal conductivity of the plasma mixture and the absorption coefficient of the laser light α
in Equation (A.2). This itself is a strongly nonlinear function of the electron density, electron temper-
ature and the refractive index µ. The last quantity µ is again a function of the first two quantities.
According to [110] the refractivty µ of the plasma is a sum of the contributions from each respective gas
species, while the neutral atom contributions appear to by constant over a wide range of wavelength
the dominant contribution of the electron was determined by the classical dispersion formula of Eccles,
Larmor, Kramer [110]. This formula is dependent of the square of the wavelength and linear dependent
of the electron density. Other contributions were disregarded. From the comparison to the experiment
it appears that the deviation of the electron temperature profile leads to a significant change in the
absorption coefficient, due to the strong dependence from the electron temperature. However in the
case of the given argon helium mixture the mol fraction of helium is higher and thereby the overall
thermal conductivity compared to the pure argon case. This higher thermal conductivity benefits the
shaping of the temperature profil and in return that of the absorption coefficient. Furthermore the
disregard of ion contributions to the refractivity, might not be fitting for the precent case and add up
to deviations in the sinlge percent range for the refractivity as well.

Also these deviations are noticable, their impact with regarded to the proposed application of
this work is not so strong. The presented radiation model is able to calculate electron density and
temperature profiles with comparable size and shape as measured with other experimental methods,
but in a much faster time than other data processing techniques. Combined with the results of the
estimated computational effort, this enables the possibility to use this technique for data processing on
plasma parameters in applications where spectral analysis in the range of 10 - 100 Hz is required.

The discussion above displays the importance of the thermal arc model accuracy for all predictions
made by this radiation model. It is therefore important to further validate the assumption on the
boundary conditions of that model. As dicussed in Section 2.1 the thermal model is limited to the
proximity of the cathode, since it is based on a finite distance to a cool surrounding rcool. This
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means that other flow specific mechanisms like turbulence can be disregarded to some extend, since
the dominant effect arises from diffusive heat transport. This model therefore accounts quite well for
processes where a solid or fluid boundary condition confines the plasma arc. For processes without such
a wall one needs to verify if the assumption on the cold surrounding boundary still holds. A diagnostic
technique that gives information on the size and shape of the flow field of the respective process is the
Schlieren imaging [103]. The results from Section 5.1.6 further strengthens the assumption, that such
a distance to a cold surrounding is applicable for the observed process, at least in first order. The
comparison of the derived length scales coming from the optical evaluation of the Schlieren snapshot
with the calculated ones from the thermal arc model show very good agreement. The deviation in the
two length scales is only ∆rarc = 0.4 mm, which corresponds to an error < 20 %. For the Schlieren
imaging data presented here, no spectroscopical data was available and the optical filters used do
influence the radiation detected coming from the plasma, which poses as a source of error for determining
the value of rarc|Schlieren. While this is just a coarse quantitative analysis, both presented length scales
are of comparable size, so it can be assumed that the initial remark Section 2.1 can be regarded as
valid. The flow in proximity to the cathode of the discharge can be regarded as close to being laminar.
Disturbances due to cold gas intake can be neglected in a first approximation. Although no detailed
spectroscopic analysis has been carried out on this specific process, the data derived with it and the
experimental data from [9, 101], show a consistent picture that strengthens the predictions of the
displayed radiation model.

For gas mixtures the assumption of a constant gas ratio over the radial profile is only valid in a
short time frame of a measurement. This time frame is essentially defined by the diffusion velocity
and the radial extension of the plasma arc, since the effect of demixing plays an important role for
gas mixtures [111] (especially argon-helium). However the displayed radiation model could successfully
demonstrate this possibility to adjust the gas composition ratio by itself in line with the experimental
results. A enhancement of the radiation model by including a radial diffusion (demixing) model would
therefore be helpful to improve the tracking of gas composition changes.

The presented radiation model incorporates concepts from different existing diagnostic techniques,
such as the Fowler-Milne method with all its derivative modifications [44–48] and the net emission
coefficient [50, 51] and extends them with a more detailed description for the underlying temperature
distribution across the plasma, which is not present in neither of them. First of all, no Abel inversion is
needed to evaluate the spectral intensities. Based on the simplified thermal arc model the spectral re-
solved total radiation intensity is calculated, including the absorption coefficient of each respective line,
which is calculated and included to derive the radiation intensity of each element along the integration
region. The broadening of spectral lines is included, utilizing a simplified scheme for the Quadratic
Stark effect in noble gases. Last but not least, the algorithm incorporates a cost function minimization,
which can take either the intensity and spectral width of single lines or a whole spectral range of lines
into account.

On the contrary the advantage of the state-of-the-art Fowler-Milne methods lies in the fact that no
assumption on the underlying thermal distribution is needed to perform a diagnostic. In contrast the
set of lines adaquate for this evaluation must be carefully taken and gases with strongly absorbing lines
can only be evaluated under specific circumstances. The presented scheme on the opposite demands
a description of the thermal distribution. This could be shown to be reasonable for GTAW processes
in the proximity of the cathode, if a shielding or gas flow around the arc is present. Developing this
idea further this technique could be fruitful for applications in plasma cutting and plasma spraying [1,
2] as well, if a solid or fluid boundary condition for the distribution of the plasma temperature can be
applied.
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5.3 Plasma dynamic simulations

This section presents the results of the dynamic plasma simulation. At first the steady state solutions
for the radial plasma temperature profile and the thermal potential distribution for a defined input
current Iarc are displayed. This strengthens the validitiy of the assumption to simplify the dynamics
of the plasma for a model based control, by introducing a effective radius rp to track the motion of
the plasma. Further on the steady state solution is the starting solution for the tracking of a desired
trajectory later on in this chapter.
Simulation results I: stationary state, containing:

• steady state solutions of the radial plasma temperature profile Tp(r)

• corresponding values of the cathode temperature Tc

• radial thermal potential distribution Ψth,p

• current-voltage charactersitic

In the next step it shall be displayed that the model based control is able to maintain the system
in a desired state, by tracking a constant state value of the cathode temperature and of the plasma
temperature. Afterwards the tracking of a desired trajectory in the plasma temperature T̂p shall be
displayed with a profile according to Figure 4.8, starting from a steady state with the input current
Iarc = 150 A. The repetition frequency of the pulse shape is chosen to be fpulse = 140 Hz, with a
sampling frequency of fsample = 100 kHz, a desired difference in plasma temperature of ∆T̂p = 2000 K
and an observer frequency of fobs = 500 kHz. This case is further along defined as the reference case and
each consecutive case changes one parameter of this set up. The described cases are again summerized
in the following:

• tracking constant cathode temperature Tc

• tracking constant plasma temperature T̂p

• tracking reference trajectory in T̂p

• tracking reference trajectory in T̂p with higher frequency fpulse

• tracking reference trajectory in T̂p with higher difference temperature ∆T̂p

The Table 5.4 summerizes these boundary conditions and the following subsections cluster the simula-
tion dataset according to these cases.

case fsample in [kHz] fpulse in [Hz] ∆T̂p in [K] τ̃control in [s−1] d̃ comments
1 40 0 0 0.0002 0.5 constant Tc
2 40 0 0 0.0002 0.5 constant T̂p
3 100 140 2000 0.00005 0.5
4 100 1400 2000 0.0002 0.5 high pulse repetition rate
5 100 140 4300 0.000125 0.5 high ∆T̂p

Table 5.4: Summary of cases and boundary conditions for the tracking of a plasma temperature tra-
jectory

All results will be displayed at first, without discusssion of the deviations and their physical causes,
this will be carried out in the consecutive section.
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5.3.1 Simulation results I: stationary state
This subsection presents the data for the steady state points of the regarded GTAW process. The
thermodynamical properties for the Argon gas have been taken from the appendix tables in [59]. The
ionization energy and the energy levels for Argon in neutral and the first two ionized states, required
for solving the Saha equation and determining the electron density within the plasma arc, are taken
from [68]. The other material parameters are listed in Table 5.5.
The stationary state is obtained from the numerical integration of eqs. (2.56) and (2.61) with a very

variable value meaning
rcool 5.5 mm radial coordinate for cold surrounding with temperature Tcool = 300 K
`arc 7 mm arc length
zc 4 mm cathode’s with between hot surface and back cooling
εc 1 cathode’s surface emissivity
ρc 19.25× 103 kg m−3 cathode’s mass density (tungsten)
cp, c 138 J kg−1 K−1 cathode’s heat capacity (tungsten)
λth, c 170 W m−1 K−1 cathode’s thermal conductivity (tungsten)
Φc 4.6 eV cathode’s work function (tungsten)

Table 5.5: Geometrical boundary conditions and material parameters for the plasma arc -
cathode spot simulations

large time step ∆t ≈ 1µ s. Five different stationary arc currents are considered Table 5.6. The resulting
stationary plasma arc temperature distribution for each stationary case is represented in Figure 5.13,
solved for a radial resolution of N = 50, i.e. the number of concentric layers from r = 0 to r = rcool is
N = 50.

Case A Case B Case C Case D Case E
Iarc 50 A 100 A 150 A 200 A 300 A

Table 5.6: Cases for the input plasma current to evaluate stationary states for an Argon
plasma
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Figure 5.13: Radial profile of plasma arc temperature for the 5 steady states of Table 5.6
and the parameters in Table 5.5; resulting cathode spot temperatures are Tc = 3474 K (A),
Tc = 3798 K (B), Tc = 3973 K (C), Tc = 4074 K (D), Tc = 4135 K (E)

The corresponding radial distribution of ψth, p(x) =
∫ Tp(x)

T0

λth, p(T ) dT as a function x =
r2
p

r2
0

for each

stationary case is depicted in Figure 5.14, and as it can be seen, it decreases linearly in a first ap-
proximation. This result validates the approximation carried out in the simplified dynamics model for
determining the effective plasma core radius rp.
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Figure 5.14: Radial profile of ψth, p(x) =
∫ Tp(x)

T0

λth, p(T ) dT as a function of x = r2
p/r

2
0 for

the 5 steady states of Table 5.6

To compare the results calculated with Equation (2.53) with experimental data the current-voltage
characteristic are again calculated for an arc length `arc = 4 mm
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Figure 5.15: Calculated overall current-voltage characteristic of the model (black) and measurements
from [112] (red marks). The green line marks the contribution of the plasma bulk and the blue line of
the cathode sheath voltage drop.

and a value of rcool = 2.8 mm, see Figure 5.15. These operational conditions were taken to compare the
calculated data with measurements from [112] for a GTAW process with identical operating parameters
Iarc = 100 A. Although no spectroscopical data is available in that reference, the measurements indicate
comparable results for the calcualted and measured steady state solutions. The slight deviation in the
voltage of about 2 V results from the missing contribution of the anode voltage drop, which is in that
order of magnitude. Nevertheless the characterisitic curve is sorresponding to the measurements, at
first a steeply decreasing profile, reaching a minimum and then linearly rising again. This behaviour
is well incorporated, since it mostly depends on the cathode voltage drop and the bulk voltage drop
contribution.

106



5.3.2 Simulation results II: trajectory tracking
5.3.2.1 Case 1: Simulation of constant cathode temperature Tc operation

The following graphs display the behaviour of the controller if a trajectory of constant value for the
cathode temperature Tc|desired = 4060 K is imprinted into the plasma system Figure 5.16. The con-
troller starts from the steady state solution Tc = 3973 K for a input current of Iarc = 150 A and is
then raised and maintained at the desired value by the controller. The initial disturbance comes from
disturbed data of the observer. The controller recovers this behaviour and reaches a constant value of
Tc within the first 0.004 s and is then able to maintain this state throughout the rest of the regarded
time frame. Only a small fraction of that time frame is displayed here in order to make the controlling
behaviour visible.
Figure 5.17 shows the corresponding current profile generated by the controller to achieve the above
mentioned behaviour in Tc

Figure 5.16: Constant Tc trajectory desired value(black) and realized behaviour(blue)

Figure 5.17: Constant Tc trajectory and corresponding current profile I
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5.3.2.2 Case 2: Simulation of constant plasma temperature Tp operation

The following graphs display the behaviour of the controller if a trajectory of constant value for the
plasma temperature Tp|desired = 13 700 K is imprinted into the plasma system Figure 5.18. The con-
troller starts from the steady state solution Tp = 13 855 K for a input current of Iarc = 150 A and is
then decreased and maintained at the desired value by the controller. The initial disturbance comes
from disturbed data of the observer. The controller recovers this behaviour and reaches a constant
value of Tp within the first 0.003 s and is than able to maintain this state throughout the rest of the
regarded time frame. Only a small fraction of that time frame is displayed here in order to make the
controlling behaviour visible.
Figure 5.19 shows the corresponding current profile generated by the controller to achieve the above
mentioned behaviour in Tp

Figure 5.18: Constant Tp trajectory desired value(black) and realized behaviour(blue)

Figure 5.19: Constant Tp trajectory and corresponding current profile I
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5.3.2.3 Case 3: tracking of the reference plasma temperature trajectory Tp

The following subsection displays the capabilities of the model based control to track a trajectory in the
plasma temperature Tp profile. Various properties are of interest for such a trajectory, the maximum
temperature difference ∆Tp achievable between the peak and through points of the curve. The shape
of a pulse within the temperature trajectory, which in the presented case is a trapezoid with very steep
flanks Table 5.8, as displayed in Figure 5.21. Last but no least the repetition rate of such a pulse shape,
which defines the oscillations ontop of the trajectory profile.

Initially the system starts at the stationary state corresponding to a plasma current of Iarc = 150 A,
whose plasma temperature radial profile is represented in Figure 5.20; the corresponding cathode spot
temperature reads Tc = 3973 K. Afterwards the periodic pattern of Figure 5.21 is taken as the desired
trajectory for the plasma core temperature.

Figure 5.20: Radial profile of plasma arc temperature for a steady state with a arc current
Iarc = 150 A and the parameters in Table 5.5; resulting cathode spot temperature Tc =
3973 K

t

pulse

tfalltontrise toff
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Figure 5.21: Desired periodic trajectory for the plasma core temperature
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variable value meaning
τ̃control 50µ s time scale for flatness-based state feedback
d̃ 0.5 damping factor for flatness-based state feedback
λ̃1/2 1× 104 s−1 eigenvalues for high-gain observer
ε̃ 0.5 ε̃ parameter for high-gain observer

Table 5.7: Case 3 - Derived control and observer parameters for the dynamic simulations

variable value meaning
tpulse 7 ms pulse period for desired trajectory of plasma core temperature
trise = tfall, ton 0.5 ms, 3 ms time parameters for desired trajectory
∆T p 2000 K desired amplitude of plasma core pulsation

Table 5.8: Case 3 - Shaping parameters of the desired trajectory

The non-modelled effects in the system dynamics, such as the influence of a high gas flow and turbulence,
gradients in pressure and in temperature along the downstream direction, are effectively taken into
account by including a white noise contribution as discussed (see Equation (2.60)). The strength of
the white noise signal for these simulations is chosen equal to σ̃0 = 5× 108, corresponding to at least
10% of the total contribution in vector ~b. The numerical integration of the equations of motion is
performed with a time step ∆t = 1µ s and the update of the derivative estimator, as well as of the
observer, takes place with a time step ∆tc = 2 × ∆t. The parameters for the control and observer
design, as well as for the desired trajectory, are listed in Table 5.7 and Table 5.8. The cathode spot
trajectory corresponding to the periodic desired behavior of the plasma arc temperature is represented
in Figure 5.23. In Figure 5.23 the desired plasma temperature profile is displayed (black) and the
reconstructed value of the effective plasma temperature of the observer, according to Equation (4.5).
The resulting behaviour of the real system when applying trajectory T ∗

c (t) can be seen in Figure 5.24.

Figure 5.22: Case 3 - Trajectory T ∗
c (t) corresponding to the measured (black line) and the

observed behavior (blue line) of the plasma arc temperature of Figure 5.21 with parameters
of Table 5.8
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Figure 5.23: Case 3 - Desired plasma arc temperature evolution (black line) and estimated
value from the observer (blue line) for the reference case; τ̃control = 50µ s, ∆t = 1µ s,
∆tc = 2∆t, high-gain observer

Figure 5.24: Case 3 - Resulting value of the central plasma temperature (the other values
of the radial plasma temperature distribution are not displayed for visibility of the profile)
corresponding to the current profile generated by the model based control; τ̃control = 50µ s,
∆t = 1µ s, ∆tc = 2∆t, high-gain observer
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Figure 5.25: Case 3 - Current profile generated by the model based control for the reference case,
leading to the behaviour Figures 5.23 and 5.24 in the plasma temperature and Figure 5.22 in the
cathode temperature

5.3.2.4 Case 4: tracking of the reference plasma temperature trajectory Tp high
repetition rate fpulse = 1400 Hz

The high repetition rate trajectory case is displayed in the following. In Figure 5.26 the current profile
that is generated by the controller is displayed and the resulting Tp trajectory from solving the full
radial plasma dynamics is display in Figure 5.24, compared to the desired Tp profile in Figure 5.23.
One can see that the pulse shape deviates slightly from the desired signal, but the maximum plasma
temperature deviates by 16% from the desired value. However the pulse train could be generated
and evolves stable throughout the desired time frame of 1 s, only a snapshot of the full time frame is
displayed here, in order to make the controlling behaviour visible.

Initially the system starts at the stationary state corresponding to a external electric current of
Iarc = 150 A, whose plasma temperature radial profile is represented in Figure 5.20; the corresponding
cathode spot temperature reads Tc = 3973 K. Afterwards the periodic pattern of Figure 5.21 is taken
as the desired trajectory for the plasma core temperature. The non-modelled effects in the system

variable value meaning
τ̃control 0.0002µ s time scale for flatness-based state feedback
d̃ 0.5 damping factor for flatness-based state feedback
λ̃1/2 16.2× 103 s−1 eigenvalues for high-gain observer
ε̃ 0.5 ε̃ parameter for high-gain observer

Table 5.9: Case 4 - Derived control and observer parameters for the dynamic simulations

variable value meaning
tpulse 0.7 ms pulse period for desired trajectory of plasma core temperature
trise = tfall, ton 0.05 ms, 0.3 ms time parameters for desired trajectory
∆T p 2000 K desired amplitude of plasma core pulsation

Table 5.10: Case 4 - Shaping parameters of the desired trajectory
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dynamics are again taken into account with a white noise signal, according to Equation (2.60). The
strength of the white noise signal for these simulations is chosen equal to σ̃0 = 5× 108, corresponding to
at least 10% of the total contribution in vector ~b. The numerical integration of the equations of motion
is performed with a time step ∆t = 1µs and the update of the control state feedback, as well as of the
observer, takes place with a time step ∆tc = 2∆t. The parameters for the control and observer design,
as well as for the desired trajectory, are listed in Table 5.9 and Table 5.10. The cathode spot temperature
trajectory corresponding to the periodic desired behavior of the plasma arc temperature is represented
in Figure 5.26. In Figure 5.23 the desired plasma temperature profile is displayed (black) and the
reconstructed value of the effective plasma temperature of the observer, according to Equation (4.5).
The resulting behaviour of the real system when applying trajectory T ∗

c (t) can be seen in Figure 5.25.

Figure 5.26: Case 4 - Trajectory T ∗
c (t) corresponding to the measured (black line) and the

observed behavior (blue line) of the plasma arc temperature of Figure 5.21 with parameters
of Table 5.10

Figure 5.27: Case 4 - Desired plasma arc temperature evolution (black line) and corre-
sponding reconstructed value from the observer (blue line) for the reference case; τ̃control =
0.000 05 s−1, ∆t = 1µ s, ∆tc = 2∆t, high-gain observer
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Figure 5.28: Case 4 - Resulting value of the central plasma temperature (the other values of
the radial plasma temperature distribution are not displayed for visibility) corresponding to
the current profile generated by the model based control; τ̃control = 0.000 05 s−1, ∆t = 1µ s,
∆tc = 2∆t, high-gain observer

Figure 5.29: Case 4 - Current profile generated by the model based control for the high repetition rate
case, leading to the behaviour Figures 5.27 and 5.28 in the plasma temperature and Figure 5.26 in the
cathode temperature

As can be seen the pulse shape of the desired trapezoidal plasma temperature trajectory can not
be maintained by the controller. The controller rises the current fast enough to generate a plasma
temperature 20% higher than desired, but subsequently decreases the current during the hold on time
of the pulse τup to finish with a value of the plasma temperature about 10% lower than desired. The
mean value is thus 10% than the desired value of the plasma temperature. The plasma temperature is
thereby risen to a value greater than the critical plasma temperature for maintaining the controllability
of the plasma system T p > T p, crit = 18 800 K Equation (4.38).
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5.3.2.5 Case 5: tracking of the reference plasma temperature trajectory Tp higher
difference temperature ∆Tp = 4300 K

Initially the system starts at the stationary state corresponding to a external electric current of Iarc =
150 A, whose plasma temperature radial profile is represented in Figure 5.20; the corresponding cathode
spot temperature reads Tc = 3973 K. Afterwards the periodic pattern of Figure 5.21 is taken as the
desired trajectory for the plasma core temperature. The non-modeled effects in the system dynamics

variable value meaning
τ̃control 0.000 125µ s time scale for flatness-based state feedback
d̃ 0.5 damping factor for flatness-based state feedback
λ̃1/2 4.75× 104 s−1 eigenvalues for high-gain observer
ε̃ 0.1 ε̃ parameter for high-gain observer

Table 5.11: Case 5 - Derived control and observer parameters for the dynamic simulations

variable value meaning
tpulse 7 ms pulse period for desired trajectory of plasma core temperature
trise = tfall, ton 0.5 ms, 3 ms time parameters for desired trajectory
∆T p 4300 K desired amplitude of plasma core pulsation

Table 5.12: Case 5 - Shaping parameters of the desired trajectory

are again taken into account with a white noise signal, according to Equation (2.60). The strength of the
white noise signal for these simulations is chosen equal to σ̃0 = 5× 108, corresponding to at least 10%
of the total contribution in vector ~b. The numerical integration of the equations of motion is performed
with a time step ∆t = 1µs and the update of the control state feedback, as well as of the observer, takes
place with a time step ∆tc = 2∆t. The parameters for the control and observer design, as well as for
the desired trajectory, are listed in Table 5.11 and Table 5.12. The cathode spot temperature trajectory
corresponding to the periodic desired behavior of the plasma temperature is represented in Figure 5.30.
In Figure 5.31 the desired plasma temperature profile is displayed (black) and the reconstructed value of
the effective plasma temperature of the observer, according to Equation (4.5). The resulting behaviour
of the real system when applying trajectory T ∗

c (t) can be seen in Figure 5.32.
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Figure 5.30: Case 5 - Trajectory T ∗
c (t) corresponding to the measured (black line) and the

observed behavior of the plasma arc temperature (blue line) of Figure 5.21 with parameters
of Table 5.12

Figure 5.31: Case 5 - Desired plasma arc temperature evolution (black line) and corre-
sponding reconstructed value from the observer (blue line) for the reference case; τ̃control =
0.000 05 s−1, ∆t = 1µ s, ∆tc = 2∆t, high-gain observer
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Figure 5.32: Case 5 - Resulting value of the central plasma temperature (the other values of
the radial plasma temperature distribution are blanked out for visibility) corresponding to
the current profile generated by the model based control; τ̃control = 0.000 05 s−1, ∆t = 1µ s,
∆tc = 2∆t, high-gain observer

Figure 5.33: Case 5 - Current profile generated by the model based control for the high plasma tempera-
ture gain case, leading to the behaviour Figures 5.31 and 5.32 in the plasma temperature and Figure 5.30
in the cathode temperature
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5.4 Discussion of the results of the plasma dynamics simulation

The aim of the flatness based control was to enhance present controlling schemes, which are mostly based
on phenomenological observations of integral physical quantities (voltage) and geometrical quantities
(arc length) [10, 13–18], by an algorithm that includes the behaviour of the plasma dynamics.

The displayed model based control increases the precision of trajectory tracking for the plasma
temperature, such that the deviations are less than 10% Figures 5.23 and 5.24 and less than 0.1% Fig-
ure 5.22 for the cathode spot temperature. Furthermore it enables the tracking of trajectories with
higher repetition rate (more than 1000 Hz) Figure 5.28, the tracking of new pulse shapes (trapezodial
with a steep gradient in plasma temperature of more than 8.6× 108 K s−1 and is able to follow trajec-
tories with a gain in plasma temperature as high as 4000 K during a pulse Figure 5.32. The presented
model calculates the steady state points of operation with good accuracy, less than 10% deviation, com-
pared to experimental data [112]. Although the anode voltage drop contribution is still not included
in this model, the characteristic evolution of the current-voltage curve is correctly followed.

The case of constant cathode temperature was chosen to display a new method to control the mode
switching of an arc. The drift of the cathode temperature measured profile, which can be induced by
multiple physical processes like turbulence, material erosion or changes in plasma composition, can be
tracked by the controller and compensated up to a certain yet unknown degree.

The case of constant plasma temperature is of interest, since this temperature is directly coupled
to the heat flux towards the anode and the chemical composition on the anode side of the discharge.
Changes of the plasma composition due to surface reactiosn on the target material or deviations in the
heat flux due to melting of a material would induce changes in the current density. This in turn can
affect the cathode boundary, if the changes are of a certain quantity. These observations can be linked
to the measured cathode temperature and correspondingly be compensated to a certain yet unknown
degree. The sensitivity of the cathode temperature measurement is therefore an important criteria.

The cases 3-5 for the tracking of a desired plasma temperature profile are be important if some
correlations between heat flux and chemical composition with the cathode temperature have been
found and shall therefore be tracked. It has to be mentioned that the deviation between the desired and
observed plasma temperature profiles in height of the plasma temperature Figures 5.23, 5.27 and 5.31
results from the fact that two separate temperatures T̂p (central core) and T p (effective simplified
plasma model) are regarded here. With T p corresponding to a greater effective radius of the plasma
bulk rp (of the simplified model). Having this in mind it is clear why both quantities can not be of the
same value, this in turn would result in a much higher central plasma temperature induced in the full
dynamics simulation of the plasma temperature Figures 5.24, 5.28 and 5.32.

It was shown in Section 5.3.2.4 that the plasma temperature exceeded the critical plasma tempera-
ture for maintaining controllability of the plasma system. This explains the sharp decrease in current
(and therefore plasma temperature) in the aftermath of a pulse Figures 5.28 and 5.29, since the con-
trollability condition is violated and the system acts chaotically. The controller decreases the current
rapidly to recover the system, but this does not lead to smooth profiles. This does not pose a problem,
as the controller is able to recover the system and therefore proves to be robust enough against such
deviations. It must however be emphazised that desired motions of the plasma temperature must not
violate the operational conditions set up for this controller structure Section 4.3.3, in order to function
properly.

As discussed in the introduction a successful control of the plasma arc system including the plasma
arc temperature requires a high time resolution (with a frequency in the range of 2 kHz) necessary for
measuring some output of the system and simultaneously calculating the required control. Hence it is
very fortunate that for the simplified dynamics which the control is based on, the flat output variable
(which in an oversimplified way of speaking incorporates in one single variable also the information
of the plasma core temperature) corresponds to the cathode temperature, a variable relatively easy
to be measured by means of a pyrometer with a high time resolution (tyically operating in the kHz
range)(examples for such pyrometers applied to a welding process can be seen in [113, 114]). Any
other contribution from the internal plasma temperature would have made the previously developed
control method no longer viable in practical terms, since any plasma temperature measurement is quite
complicated and cannot be performed at the required frequency of kHz. Therefore any flatness-based
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state feedback like (Equation (4.28)) is in principle attainable, provided the other state variables as the
plasma core temperature (state variable x2 in the simplified dynamics) can be reconstructed from the
flat output. The calculated data for the pulse sequence indicates that profiles with close resemblance
to a rectangular pulse shape can be generated and repeated up to a frequency of 1400 Hz. The required
current profiles are operated with sampling frequencies from 100 kHz down to 40 kHz, which is well
achievable with state-of-the-art power switches.

Although the thermal model of the plasma dynamics has been drastically simplified (in order to
be computable in a shorter amount of time than present model based controls), the robustness of the
model could be shown by the capacity of tracking the desired trajectory even when a white noise signal
is included on the plasma dynamics. This latter contribution accounts for not modeled physical effects
like turbulence and heat transfer along the plasma arc.
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Chapter 6

Conclusion and Outlook

”Part of the journey is the end.”
Robert Downey Junior alias Anthony Stark

There exist a lot of descriptions for the plasma boundaries and the plasma bulk behaviour, for processes
where thermal arcs are utilized [78]. Yet few of these fundamental insights seem to be used properly
in important aspects for these thermal arc processes, such as plasma spectroscopy, process observation
and process control. Conclusively this work can be regarded as a tool set for control and observation of
plasma parameters for processes involving thermal arcs, intended to fill the gap by providing simplified
physical models that still contain enough of the ”true” physical behaviour and can be computed very
fast. This was achieved by bridging the gap between different scientific disciplines like plasma physics,
quantum mechanics, radiation dynamics and control theory. To derive the formulations needed the
process of GTAW has been chosen as paragon, since this process itself is a rather stable and well
understood.

Achievements
At first the theoretical framework has been derived, including descriptions of the plasma-electrode
interactions, the plasma composition, the radial energy transport within the plasma bulk and a brief
outline of the quantum mechnical basis of radiation interaction with matter.

In the second major part of this work a formulation for the radiation emitted from a thermal arc
was derived, whose underlying plasma temperature distribution and fluid boundary condition matches
those given in this work. This includes descriptions for the line shape of the emitted radiation, the
Stark broadening width, the emission and absorption coefficients and a integration scheme for the
radiation intensity. All these formulations were condensed into a set of functions for fast evaluation
and comparison of calculated spectral resolved data with measured spectral information of an OES
measurement of a GTAW process. The underlying assumptions of the plasma temperature profil and
the critical topic of deviations from the LTE condition in the measured region of the bulk plasma during
a Thomson scattering measurement were briefly discussed. An additional formulation was adopted from
the literature, including the impact of laser heating on the electrons in the plasma during the Thomson
scattering measurement, to account for the deviations in the radial plasma temperature profile. The
originality of this work compared to existing schemes like the various modifications of the Fowler-
Milne method [46–48] and the NEC approach [50, 51] was outlined. This lead to the conclusion that
this scheme can be regarded as an additional technique to analyze the spectrum of plasma radiation
of OES measurements. Due to the underlying assumption of the temperature profile more physical
insight on the local emission and absorption characterisitics were generated with this technique. This
technique is designated for a fast and easy implementation into processes which do not allow for costly
instrumentation and where an assumption on the boundary conditions of the plasma temperature profile
(a solid or fluid wall condition) can be made.

In the last part the presented model based control displayed the ability to imprint various desired
trajectories into a simulation, that emulates the real behaviour of a GTAW process. Although there
are multiple solutions to control of such a system already present in the literature [11–13, 15, 17, 18],
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none of these models takes into account the impact of the plasma dynamics. The introduction of a
model based control utilizing this feature enables new applications for pulses plasma processes, since
their parameter evolution can now precisly being tracked. The presented flatness based control scheme
is well established in the literature as well, however finding a flat output to a system of desire is not
straight forward and has not been done for a plasma process so far. Therefore this work presents an
alternative solution for the control of a plasma system that is unique throughout the current scientific
landscape. This work encourages the utilization of the presented algorithms and codes to apply to a
GTAW experiment adn comparable thermal arc applications to demonstrate the rigorously discussed
control capabilities.
The computational effort was analysed and optimization strategies of the software were proposed.
Thereby indicating the applicability of the radiation model for the observation of fast processes in the
range of 10 - 100 Hz and for the model based control in the range of 40 - 100 kHz for the tracking and
switching of the current.

Applications
The developed model based control and radiation model can be directly applied to processes involving
thermal arc’s, like Plasma Arc Welding (PAW) [5, 6], Plasma Spraying [1, 2], Plasma Waste De-
struction [3] and the discussed thermal arc welding [4]. All mentioned processes involve comparable
geometries and polarity of the electrodes and can be regarded, as long as an assumption on the thermal
boundary condition of the plasma bulk can be applied. The presented work developed the fundamental
theory based on assumptions that are not just applicable to noble gas mixtures as process gases. Look-
ing ahead this work can be adopted for more difficult plasma processes, where the process is inheritly
more complex, for example due to the presence of metal vapour in the plasma (e.g. like GMAW) [115,
116].

Future development
With the idea of handling more complex plasma compositions future development of the codes should be
undertaken with regard to the plasma transport properties, for example for metal vapour plasmas [117,
118]. This would extend the capabilities of the presented radiation model and the model based control
towards these other processes of interest. Therefore the present work layed the foundation, by formu-
lating the pLTE two-temperature Saha equation approach (Section 2.2.2) and the formulation for the
Linear Stark broadening width (Appendix A.3.5). Both effects are important for metal vapour species
in a plasma, since most of these have a steady electric dipole in their outer atomic shells.

Likewise the contribution of continuum radiation and the Biberman correction coefficients to the
spectral emission coefficient should be included, since radiation coming from metal vapour will pre-
sumably have greater impact on the plasma temperature distribution than the radiation coming from
noble gases.

The importance of the plasma temperature distribution model has been outlined within the dis-
cussion sections. To further improve this model, especially in the prospect of gas mixtures as working
gases, microscopic formulations for effects like demixing [119] have to be regarded. Including a one
dimensional (radial) diffusion model would account for such demixing effects on the spectral radiation
intensity profile and pose as a fruitful adaptions. Furthermore corrections to the thermal model, es-
pecially the axial heat transfer induced by the gas flow should be taken into account to ensure that
the deviations caused this effect do not pose a significant contribution (for some gas mixture or some
operational conditions). However increasing the degree of freedom in the spatial dimensions will affect
the required computational effort and thereby target the achievable execution time. The need for such
an increased effort should be defined by the targeted application alone.

Also there is various work [56, 76] dealing with the topic of diffuse or spot mode arc attachment at
the cathode, however present phenomenological models do not inherit enough physical information for
stable operation and transition between these modes. The present model unveiled the perspective that
the coupling between the plasma temperature and the heat evolution in the cathode can be described
by the cathode temperature alone (at a fixed arc length). Thereby measuring the cathode temperature
during operation of the arc (in union with the presented controller model) would allow the operation
of the arc within fixed limits of the cathode temperature. If one would link this information of the
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cathode temperature to a specific mode of operation, this mode could be maintained over large (yet
not clearly determined) time scales.

At last to improve the usability of the developed control codes an automated search algorithm
for the control and observer parameters (given in Section 5.3) should be written, to accelerate the
configuration of a model based control to a specific setup of a desired process.
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[109] B Bachmann, R Kozakov, G Gött, K Ekkert, J.-P. Bachmann, J.-L. Marqués, H Schöpp, D
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A.1 Effect of nonlinear laser heating on the electron temperature of a
thermal arc

The first chapter introduced the concepts and equations for calculating the plasma temperature distri-
bution of a plasma close to a cathode. The results derived with that method are however still prone
to deviations when it comes to plasma diagnostics like Thomson scattering. The source of this dis-
crepancy is rigourously discussed in the plasma physics community [35, 37, 38, 101, 105–107]. This
section briefly outlines the implications of the effect of laser induced plasma heating onto the radial
plasma temperature profile and therefore the emitted radiation from the plasma. The approach has
been adopted from [102] and incooperated to be utilized in the presented radiation model. This method
describes the impact of the laser light during a Thomson scattering measurements as a significant source
of heating of the plasma itself. The electromagnetic wave of a laser pulse passes through the region
of the plasma, the ions due to their inertia are not affected by the electric field vector of that wave.
The electrons on the other hand, since they are much lighter will be accelerated by the electric field
vector. Macroscopically that means the electrons are heated, as the electron gas partially absorbes
energy from the electric field an converts it into its own kinetic energy. To account for this effect the
one fluid approach is taken, since LTE condition is still assumed to be valid in absence of the laser
light. This leads to a modification of Equation (2.5) for the temperature distribution of the plasma,
where the . . . term is now replaced by a source term, accounting for the laser heating into the plasma
and the radiation loss out of the plasma.

ρpcp, p
∂Tp
∂t

= 1
r

∂

∂r

(
λth, p(Tp) r

∂Tp
∂r

)
+ σel(∫ r0

0
σel(Tp(r)) 2πr dr

)2 I
2
arc + αEp

Ap tp
− Irad (A.1)

with Ep, Ap, tp being the energy, the focal area and time of the laser pulse. The pulse form is assumed
to be of gaussian shape and α being the absorption coefficient of the laser light energy of the plasma:

α =
ne Z

(∑h
i=1 ni Zi

)
e6
[
1− exp

(
−hω

2π kB Te

)]
µ 6π ε30c h2πω3m2

e

(
me

2π kB Te

) 1
2 π

3 g in
[
W

m3

]
(A.2)

with g being the gaunt factor, µ being the refractive index of the plasma and Irad being the radiation
intensity emitted by the plasma. The last contribution will be calculated using the relation given prior
in this work Equation (3.84).

This description is added to the radiation model (matlab scripts + additional simulink model) and
consists of the following part:

Laser heating sim (simulink model) The laser heating simulation is a simulink model built on
top of the radiation intensity calculated with Section 3.4. It extends the plasma temperature profile
with a laser heating term, according to Equation (A.1). It determines the temporal evolution of the
plasma (or rather electron) temperature over the duration of the laser pulse.

A.2 Numerical Techniques

A.2.1 Robust numerical integration scheme for control applications

A general nonlinear equation of motion shall be considered dx

dt
= F (x) for a variable x, whose values

are always positive (as it is the case in the considered dynamics where all the state variables correspond
to temperatures, either in the plasma or at the cathode spot, all of them measured in K). Due to the
nonlinear dependence in x, these dynamic equations have to be integrated numerically by discretizing
the time coordinate in time steps of equal duration ∆t, with x(t) being the current value and x(+∆t)
the still unknown value to be determined at the next time step. The nonlinear character is taken
into account in an iterative way. The nonlinear function F (x) is evaluated at a provisional solution
x(prov)(t + ∆t) for the next time step and then used to gain an improved solution x(t + ∆t) for the
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same solution of this next time step. The just obtained solution is again taken as a provisional one and
an even better improved solution is calculated. This process is repeated until the desired accuracy is
reached. In order to avoid any artifical and uncontrolled oscillating (sign-changing) solution during the
iterative process (which is usually generated by a relatively large ∆t), the following two useful methods
will be implemented:

1. First (see [79], § 4) the contributions to the nonlinear function F (x) are separated into a positive
and a negative part, F (x) = F (+)(x)− F (−)(x), where both F (+)(x) and F (−)(x) are positive
valued functions. As already mentioned, both functions are evaluated at the provisional solu-
tion x(prov)(t + ∆t) for the next time step, but F (−)(x) is additionally multiplied by the factor
x(t+ ∆t)

x(prov)(t+ ∆t) , which is practically equal to one, for an intended stable iterative process. This

leads to the following time discretization of the equation of motion

x(t+ ∆t)− x(t)
∆t ≈ F (+)(x(prov)(t+ ∆t))− F (−)(x(prov)(t+ ∆t))

≈1︷ ︸︸ ︷
x(t+ ∆t)

x(prov)(t+ ∆t)

x(t+ ∆t)
[
1 + ∆t F

(−)(x(prov)(t+ ∆t))
x(prov)(t+ ∆t)

]
≈ x(t) + ∆t F (+)(x(prov)(t+ ∆t))

where both sides of the resulting equation consist of only positive contributions. The formulation
is independent of the time step size, and therefore no sign changes occur between two consecutive
iterations.

2. Nevertheless it may still happen that F (+)(x) (or F (−)(x)) is a strongly varying function of x such
that the previous method is not enough to ensure that x(prov)(t+ ∆t) and the improved solution
x(t + ∆t) are close to each other, thus hindering the convergence of the iterative procedure.
Therefore a second step is carried out by sharing the effect of F (+)(x) on both sides of the
discretized equation, according to the following algorithm

F (+)(x)→
(
1 + ξ

)
F (+)(x(prov)(t+ ∆t))

to be moved to the
left hand side
since negative︷ ︸︸ ︷

−ξ F (+)(x(prov)(t+ ∆t))

→
(
1 + ξ

)
F (+)(x(prov)(t+ ∆t))− ξ F (+)(x(prov)(t+ ∆t)) x(t+ ∆t)

x(prov)(t+ ∆t)

with ξ > 0 (typically ξ = 10).

Hence the final resulting discretization of the equation of motion is

x(t+ ∆t)− x(t)
∆t ≈ F (+)(x(prov)(t+ ∆t))− F (−)(x(prov)(t+ ∆t))

≈1︷ ︸︸ ︷
x(t+ ∆t)

x(prov)(t+ ∆t) ,

x(t+ ∆t)
[
1 + ∆t F

(−)(x(prov)(t+ ∆t))
x(prov)(t+ ∆t) + ξ∆t F

(+)(x(prov)(t+ ∆t))
x(prov)(t+ ∆t)

]
≈ x(t) + (1 + ξ ) ∆t F (+)(x(prov)(t+ ∆t))

(A.3)

where all terms on both sides of the equation are positive. Even if F (+) rapidly increases its value, the

improved solution x(t+ ∆t) ≈ x(t)
1 +

(
1 + ξ

)
∆tF (+)

x(t)

1 + ξ∆t F (+)

x(prov)(t+∆t)

still remains close to the value at the previous

time step, without divergence. Such a solution procedure can be iteratively repeated using the just
obtained improved solution as a provisional value, leading to an even better improved x(t+ ∆t).
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A.2.2 Newton-Raphson numerical solver
The Newton-Raphson method or Newton’s method uses straight line tangents to quickly find an approx-
imation for the root of a real valued function. This idea holds for continuous, differentiable functions
and can be easily implemented. It is therefore a central technique in numerical mathematics [120].

~̇x = f(~x)

with ~x(t) given and ~x(t+ ∆ t), ~xprov(t+ ∆ t) achievable. The Newton-Raphson scheme is as follows:

~x(t+ ∆ t)− ~x(t) = ∆ t f(~x)(t+ ∆ t)

≈ ∆ t f(~xprov(t+ ∆ t)) + ∆ t
∂ f

∂ ~x
(~x(t+ ∆ t)− ~xprov(t+ ∆ t))

(
1 − ∆ t

∂f

∂~x

)
~x(t + ∆ t) = ~x(t) + ∆ tf (~xprov) − ∆ t

∂f

∂~x
~xprov(t + ∆ t)

+ ~xprov(t + ∆ t) − ~xprov(t + ∆ t)

=
(
1 − ∆ t

∂f

∂~x

)
~xprov(t + ∆ t) + ~x(t)

− ~xprov(t + ∆ t) + ∆ tf (~xprov)

~x(t + ∆ t) = κ

[
~xprov(t + ∆ t) +

(
1 − ∆ t

∂f

∂~x

)−1
[~x(t) − ~xprov(t + ∆ t) + ∆ tf (~xprov)]

]
+ (1 − κ)~xprov(t + ∆ t)

~x(t+ ∆ t) = ~xprov(t+ ∆ t) + κ

(
1−∆ t

∂f

∂~x

)−1
[~x(t)− ~xprov(t+ ∆ t) + ∆ tf (~xprov)]

(A.4)

with κ being a relaxation factor between 0 and 1.
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A.3 Additional remarks on radiation and quantum mechanics

A.3.1 A crash course into the harmonic oscillator
A particle of mass m is subjected to an elastic force such that the resulting one dimensional dynamic
is that of the harmonic oscillator [121] with natural frequency ω0

ṗ = mq̈ = −mω2
0 q (A.5)

whereas q denotes the deviation from the equilibrium position and p = mq̇ the particle’s momentum.
This motion is described by the following total energy or Hamiltonian

H = p2

2m + m

2 ω
2
0 q

2 (A.6)

through the corresponding Hamiltonian equations: q̇ = ∂H

∂p
= mq̇ and ṗ = −∂H

∂q
= −mω2

0 q. For the
quantum mechanical description of this system, the position and momentum become operators with
the already discussed commutation relations (derived from the respective classical Poisson brackets)[

q, q
]

= 0 =
[
p, p

]
and

[
q, p

]
= i~

and correspondingly for the Hamiltonian operator H =
p2

2m + m

2 ω
2
0 q

2. In order to solve the energy
eigenvalues of this Hamiltonian the following dimensionless operators

q′ =
√
mω0

~
q and p′ =

√
1

mω0~
p ⇒

[
q′, p′] = i (A.7)

will be introduced at first, such that the Hamilton operator becomes.

H = ~ω0

2
(
q′2 + p′2) (A.8)

This can be further transformed by introducing an additional pair of operators, called annihilation and
creation operators, a and a+ which are Hermitian conjugated to each other and thus independent of
each other

a =
q′ + ip′
√

2
, a+ =

q′ − ip′
√

2
⇒

[
a, a+] = 1

2 (0 + (−i) · i+ i · (−i) + 0) = 1 (A.9)

, now the Hamiltonian takes a very simple form.

H = ~ω0

4

(
−�

�(a)2 + a a+ + a+a−HHH
(
a+)2 +�

�(a)2 + a a+ + a+a+HHH
(
a+)2

)
= ~ω0

2

(
a+a+ a a+︸︷︷︸

a+a+ 1

)
= ~ω0

(
a+a+ 1

2

)
(A.10)

Hence the energy values scale with ~ω0.
Considering the physical meaning of these creation and annihilation operators a+ and a in more

detail leads to the following conclusion. At first the commutators with the Hamiltonian are calculated.

[a, H] = ~ω0
[
a, a+a

] (3.11)= a+ · 0 +
[
a, a+] a (A.9)= +~ω0 a[

a+, H
]

= ~ω0
[
a+, a+a

] (3.11)= a+ [a+, a
]

+ 0 · a (A.9)= −~ω0 a
+

(A.11)

Thus if a state ψn(x, t) is an eigenvector (properly normalized
∫ ∞

−∞
ψ∗
n ψn dx = 1) of the Hamiltonian

H with the energy eigenvalue En (at the moment the index n has no meaning and doesn’t have to be an
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integer) the states aψn and a+ψn are also eigenvectors of H and have the respective energy eigenvalues
En − ~ω0 and En + ~ω0

H (aψn) = (aH − [a, H])ψn = a

En ψn︷ ︸︸ ︷
(H ψn)−~ω0 aψn = (En − ~ω0) (aψn)

H
(
a+ψn

)
=
(
a+H −

[
a+, H

])
ψn = a+ (H ψn) + ~ω0 a

+ψn = (En + ~ω0)
(
a+ψn

)
The energy cannot become negative (the Hamiltonian is just the sum of squared positive terms), but
the repeated action of a on any arbitrary eigenvector ψn would eventually produce a state of negative
energy, therefore an eigenstate ψ0 must exist, such that aψ0 = 0 holds in order to be compatible with
the general relation H (aψ0) = (E0 − ~ω0) (aψ0) without simultaneously yielding a negative energy
value. Such a ’’annihilated’’ state, defined by the operator a, is called the ground state and it will
denoted |0〉. All other eigenstates result from that ground state through the repeated action of the
creation operator a+ and have energy values, which (up to a constant term) are an integer (n) multiple
with ~ω0:

H |0〉 = ~ω0a
+

=0︷︸︸︷
a |0〉+~ω0

2 |0〉 = ~ω0

2 |0〉

H
(
a+ |0〉

)
=
(
~ω0

2 + ~ω0

)(
a+ |0〉

)
=
(

1 + 1
2

)
~ω0

(
a+ |0〉

)
H
(
a+a+ |0〉

)
=
(

3~ω0

2 + ~ω0

)(
a+a+ |0〉

)
=
(

2 + 1
2

)
~ω0

(
a+a+ |0〉

)
...

...

The energy eigenstates will be denoted by |n〉 instead of ψn, since a |n〉 has an energy eigenvalue(
(n− 1) + 1

2

)
~ω0, this state must be proportional to |n− 1〉 and completely analogous for a+ |n〉 in

relation to |n+ 1〉:

a |n〉 = cn |n− 1〉
a+ |n〉 = dn |n+ 1〉

Here the proportionality factors cn and dn are chosen to be real (if the phase of the eigenvectors |n〉 is
properly defined). The value of such proportionality factors can be easily derived

〈n| a+a |n〉 =
{
|(a |n〉)|2 = c2

n 〈n− 1|n− 1〉 = c2
n

cn 〈n|a+|n− 1〉 = cndn−1 〈n|n〉 = cndn−1
⇒ dn−1 = cn

〈n|H |n〉 = ~ω0 〈n| a+a |n〉+ ~ω0

2 〈n|n〉 = ~ω0

(
c2
n + 1

2

)
⇒ c2

n = n

and thus
a |n〉 =

√
n |n− 1〉 and a+ |n〉 =

√
n+ 1 |n+ 1〉 (A.12)

A.3.2 Quantization of the electromagnetic field
At first the electromagnetic field shall be considered, as a step for later regarding its interaction with
bound electrons within an atom. The spatial and temporal distribution of the electromagnetic field
~E(~x, t) and ~B(~x, t) is described by the Maxwell equations, which in a system like a plasma without
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dielectric or diamagnetic properties are

div ~B = ∂Bx
∂x

+ ∂By
∂y

+ ∂Bz
∂z

= 0

curl ~E + ∂

∂t
~B =

 ∂Ez

∂y −
∂Ey

∂z
∂Ex

∂z −
∂Ez

∂x
∂Ey

∂x −
∂Ex

∂y

+

∂Bx

∂t
∂By

∂t
∂Bz

∂t

 = ~0

div ~E = ∂Ex
∂x

+ ∂Ey
∂y

+ ∂Ez
∂z

= 1
ε0
ρel

curl ~B − µ0ε0
∂

∂t
~E =

 ∂Bz

∂y −
∂By

∂z
∂Bx

∂z −
∂Bz

∂x
∂By

∂x −
∂Bx

∂y

− µ0ε0

∂Ex

∂t
∂Ey

∂t
∂Ez

∂t

 = µ0~jel

(A.13)

The two last equations are inhomogeneous and describe how the sources electrical charge density ρel
and electrical current density ~jel are coupled to the electromagnetic field. The eight Maxwell equations
are not all independent of each other , since electromagnetic fields have maximally 3 degrees of freedom
in a system with electrical charges and currents or in vacuum an even a lower number of degrees of
freedom (2, which are the two polarizations of an electromagnetic wave). Therefore a more compact
way of formulating the Maxwell equations is required. The first two homogeneous equations can be au-
tomatically fulfilled by introducing the vector and scalar potentials ~A(~x, t) and φ(~x, t) to re-formulating
the magnetic and electric field through these potentials

~B = curl ~A =

 ∂Az

∂y −
∂Ay

∂z
∂Ax

∂z −
∂Az

∂x
∂Ay

∂x −
∂Ax

∂y

 and ~E = −gradφ− ∂

∂t
~A =

−
∂φ
∂x −

∂Ax

∂t

−∂φ∂y −
∂Ay

∂t

−∂φ∂z −
∂Az

∂t

 . (A.14)

In this way the number of degrees of freedom has been reduced to 4 (the number of components of the
vector and scalar potential together). But even after this reduction there is still one (in the case of a
system with free charges) or even two (in the case of vacuum or a system with weak interacting charges)
further degrees of freedom which are spurious and can be removed. This later effect is the consequence
of the freedom in choice of the potentials to describe the same electromagnetic field configuration.
There exists an infinite number of different potentials, as the following pair {φ(~x, t), ~A(~x, t)}, as well
as the pair {φ′(~x, t), ~A′(~x, t)}, which yield the same electromagnetic field (A.14)

~A −→ ~A′ = ~A+ gradχ(~x, t)

φ −→ φ′ = φ− ∂

∂t
χ(~x, t)

(A.15)

with χ(~x.t) being an arbitrary smooth function of the spatial and temporal coordinates. This property
is called gauge invariance (or more improperly “gauge symmetry’’). Hence in vacuum a particular
χ(~x, t) can be chosen, with the potentials fulfilling two further conditions, typically φ′(~x, t) = 0 and
div ~A′ = 0, in order to reduce the 4 components contained in the potentials to the 2 actual and physical
degrees of freedom. In a system with free charges and currents one condition can still be chosen,
typically φ′(~x, t) = 0. The electromagnetic fields take the following form after such a choice:

~B = curl ~A′ and ~E = − ∂

∂t
~A′ (A.16)

together with

grad
(

div ~A′
)
−∆ ~A′ + µ0ε0

∂2

∂t2
~A′ = µ0~jel

− ∂

∂t

(
div ~A′

)
= 1
ε0
ρel

(A.17)
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From now on the prime ′ will no longer be written explicitly and with the additional condition div ~A′ = 0
(if we are considering vacuum or a system nearly so diluted as vacuum ~jel ≈ ~0 and ρel ≈ 0).

Considering the most simple electromagnetic configuration in vacuum (~jel = ~0 and ρel = 0): a planar
electromagnetic wave propagating along the z direction with a single frequency ω. This configuration
is described by the following real vector potential

~A(~x, t) =

Ax(z, t)
0
0

 with Ax(z, t) = Aω(t) eikz +A∗
ω(t) e−ikz

√
2

(A.18)

with the time dependence in Aω(t) chosen in the way that Ȧω = −iω Aω holds and therefore the
propagation velocity of the wave is given by ω

k
. This vector potential fulfills not only the gauge

condition div ~A = 0, but also the Maxwell equation (A.17), as long as the following relation holds for
the propagation velocity:

k2 − µ0ε0 ω
2 = 0 ⇒ ω

k
= 1
√
µ0ε0

(A.19)

with the propagation velocity of that electromagnetic wave being the speed of light c in vacuum.
The quantum mechanical formulation of the electromagnetic field’s dynamics requires at first the

calculation of the corresponding Hamiltonian or total energy for the considered system. This is
achieved by the integration over the whole system’s volume L3 of the electromagnetic energy density 1

ε0

2
~E2 + 1

2µ0
~B2

Hem =
∫∫∫ (

ε0

2
~E2 + 1

2µ0
~B2
)
d3~x = L2

∫ L/2

−L/2

(
ε0

2 E2
x + 1

2µ0
B2
y

)
dz (A.20)

together with

Ax(z, t) = Aω e
ikz +A∗

ω e
−ikz

√
2

Ȧx(z, t) = −iωAω e
ikz −A∗

ω e
−ikz

√
2

Ex(z, t) = −Ȧx(~x, t) = iω
Aω e

ikz −A∗
ω e

−ikz
√

2

By(z, t) = ∂Ax
∂z

= ik
Aω e

ikz −A∗
ω e

−ikz
√

2
(A.19)= i

√
µ0ε0 ω

Aω e
ikz −A∗

ω e
−ikz

√
2

(A.21)

Actually the volume extension is infinite but in order to avoid such infinity the system has been put
inside a finite box with the additional property that the field variables depend on the propagation
coordinate z in a periodic way such that any field variable evaluated at z = −L/2 has the same value

1By scalar multiplying the last Maxwell equation in (A.13) with −
1

µ0
~E and using the following relation

− ~E · curl ~B = div
(

~E × ~B
)

− ~B · curl ~E = div
(

~E × ~B
)

+ ~B ·
∂ ~B

∂t
(the latter equality arises from the 2nd Maxwell equa-

tion in (A.13)) one obtains −~jel · ~E = −
1

µ0
~E · curl ~B + ε0 ~E ·

∂ ~E

∂t︸ ︷︷ ︸
∂

∂t

(
ε0

2
~E2
) =

∂

∂t

(
ε0

2
~E2 +

1
2µ0

~B2
)

+ div
(

~E × ~B

µ0

)
. For a

local infinitesimal volume the temporal change in
ε0

2
~E2 +

1
2µ0

~B2 contained within such volume results from either a)

to the net flux of the current
~E × ~B

µ0
through the volume surrounding walls; or b) to the loss at a rate ~jel · ~E within the

volume itself. With ~jel · ~E being nothing else than the electrical power dissipated per unit volume (the local formulation

of the power loss due to the Joule effect) the quantity
ε0

2
~E2 +

1
2µ0

~B2 is called the density of electromagnetic energy.
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like the one at z = +L/2 (in other words k L = 2π). The integral over dz in (A.20) can thus be
performed immediately

Hem =
∫∫∫ (

ε0

2
~E2 + 1

2µ0
~B2
)
d3~x

= −L2 ε0ω
2

2

∫ L/2

−L/2

(
(Aω)2

ei2kz + (A∗
ω)2

e−i2kz
)
dz

+ L2 ε0ω
2

2

∫ L/2

−L/2
(Aω A∗

ω +A∗
ωAω) dz = 0 + L3 ε0ω

2

2 (Aω A∗
ω +A∗

ωAω)

Hem ≡
~ω
2

(√
L3ε0ω

~
Aω

√
L3ε0ω

~
A∗
ω +

√
L3ε0ω

~
A∗
ω

√
L3ε0ω

~
Aω

)
(A.22)

The quantum mechanical formulation of the system dynamics is now easliy formulated. The variable Aω
becomes an operator and the just obtained Hamiltonian is completely analogous to that of the harmonic

oscillator with a natural frequency ω0 (A.10), H = ~ω0

2
(
a a+ + a+a

)
, with

√
L3ε0ω

~
Aω instead of the

annihilation operator a. Hence the corresponding annihilation and creation operators for discrete
’’portions’’ of electromagnetic energy (called photons) are defined through

Aω =
√

~
L3ε0ω

aω ,

A+
ω =

√
~

L3ε0ω
a+
ω ,

(A.23)

with commutation relations similar to those of the harmonic oscillator[
aω, a

+
ω

]
= 1, [aω, aω] =

[
a+
ω , a

+
ω

]
= 0[

Aω, A
+
ω

]
= ~
L3ε0ω

, [Aω, Aω] =
[
A+
ω , A

+
ω

]
= 0

(A.24)

The Hamilton operator for an electromagnetic waves of frequency ω is accordingly given by

Hem = ~ω
2
(
aω a

+
ω + a+

ω aω
)

= ~ω
(
a+
ω aω + 1

2

)
≡ L3ε0ω

2
(
A+
ωAω + 1

2

)
. (A.25)

Such a (vacuum) Hamilton operator, together with the commutation relations above, reproduces the
Maxwell equations for the dynamics of the electric and magnetic field, which now have become operators
according to relations (A.21)

Ex = iω
Aω e

ikz −A+
ω e

−ikz
√

2
,

By = i
√
µ0ε0 ω︸ ︷︷ ︸
k

Aω e
ikz −A+

ω e
−ikz

√
2

,

[
By, Hem

]
= ik√

2
eikz L3ε0ω

2

~
L3ε0ω

Aω +A+
ω · 0︷ ︸︸ ︷[

Aω, A
+
ωAω

]
− ik√

2
e−ikz L3ε0ω

2

0 ·Aω − ~
L3ε0ω

A+
ω︷ ︸︸ ︷[

A+
ω , A

+
ωAω

]
,

1
i~
[
By, Hem

]
= ω k

Aω e
ikz +A+

ω e
−ikz

√
2

,

(curlE)y = ∂Ex
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= −ω k Aω e
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ω e
−ikz

√
2

,

=⇒ d

dt
By = 1

i~
[
By, Hem

]
= − (curlE)y ,

(A.26)
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as the quantum mechanical dynamic equation (3.12) relates the temporal evolution of the magnetic
field to spatial gradients of the electric field (second Maxwell equation in (A.13)). And equivalently

[Ex, Hem] = iω√
2
eikz L3ε0ω

2

~
L3ε0ω

Aω︷ ︸︸ ︷[
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+
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2
e−ikz L3ε0ω

2

− ~
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+
ωAω

]
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1
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ω e
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√
2

,
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∂By
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ω e
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,
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Ex = 1
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µ0ε0
(curlB)x ,

(A.27)

as the last Maxwell equation (A.13) in vacuum (~jel = ~0).
The energy eigenstates for the Hamilton operator Hem (for the frequency ω) will be represented

by
∣∣0(γ)〉 for the ground state,

∣∣1(γ)〉 for the state with one photon, and similarly for states with a
higher number of photons. Eigenstates with a different number of photons (or belonging to photons
of different frequency ω) are orthogonal to each other. Finally the following two transition amplitudes
connecting two eigenstates differing in one photon will be useful in the section

〈
1(γ)|Aω|0(γ)

〉
=
√

~
L3ε0ω

〈
1(γ)|

= 0︷ ︸︸ ︷
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ω |0(γ)
〉

=
√

~
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〈
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ω
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〉

︸ ︷︷ ︸
= 1 ·

∣∣∣1(γ)
〉=
√

~
L3ε0ω

.
(A.28)

A.3.3 The pertubed Hamiltonian - electric dipole moment for a bound electron
within an atom

A dipole consisting of a positive charge +e located at adip
2

(
cos θ0
sin θ0

)
and a negative charge −e at

−adip2

(
cos θ0
sin θ0

)
creates an electrostatic potential energy on another charge q at

(
x
y

)
with√

x2 + y2 � adip equal to
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 1√(
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2 cos θ0
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− 1√(
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= q

4πε0

(eadip) cos θ
x2 + y2 ≡ q

4πε0

~ddip · ~r
|~r|3

(A.29)

, where the dipole moment of the charge pair is defined as ~ddip = (eadip)
(

cos θ0
sin θ0

)
and is oriented from

its negative to its positive charge; θ is the angle between the direction of the dipole moment and the

position vector ~r =
(
x
y

)
where the other charge q is located. If on the other hand a constant electric

field ~E0 (at least constant for length scales comparable to the extension of the electric dipole) is applied
for instance along the x direction, the potential energy of the previously considered charge pair (with
respect to a reference chosen when the dipole and the electric field are parallel to each other) is equal

to Epot = (+e)
∫ θ0

ref

~E0 · d~s+ (−e)
∫ −θ0

ref

~E0 · d~s = (eadip)
∣∣∣ ~E0

∣∣∣ cos θ0 ≡ ~ddip · ~E0.
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A.3.4 The time-energy uncertainty relation

For two different operators A and B and an arbitrary state |ψ〉 with 〈ψ|ψ〉 =
∫ ∞

−∞
ψ∗(x)ψ(x) dx = 1,

the following expectation values describe the standard deviations for respectively both operators

(∆A)2 =
〈
ψ|A2|ψ

〉
− (〈ψ|A|ψ〉)2 =

〈
ψ| (A− 〈A〉)2 |ψ

〉
with 〈A〉 ≡ 〈ψ|A|ψ〉

(∆B)2 =
〈
ψ|B2|ψ

〉
− (〈ψ|B|ψ〉)2 =

〈
ψ| (B − 〈B〉)2 |ψ

〉
with 〈B〉 ≡ 〈ψ|B|ψ〉

and thus they are called uncertainties. For an arbitrary real number κ following relation

f(κ) =
〈
ψ

∣∣∣∣ [κ (A− 〈A〉)− i (B − 〈B〉)
]∗ [

κ (A− 〈A〉)− i (B − 〈B〉)
] ∣∣∣∣ψ〉 ≥ 0, is always non-negative as

well as real, since it corresponds to the absolute value of a squared expression. This defines a real func-
tion of κ [122] which can be rewritten as
f(κ) = κ2 (∆A)2 + (∆B)2 − iκ

〈
ψ| (AB −BA)︸ ︷︷ ︸

[A, B]

|ψ
〉

+ 0. Since f(κ) is real and non-negative the com-

mutator [A, B] must be pure imaginary (with positive sign in order to keep f(κ) non-negative),
f(κ) = κ2 (∆A)2 + (∆B)2 + κ

∣∣∣ 〈ψ| [A, B] |ψ〉
∣∣∣, and additionally, as a function of κ, f(κ) is non-negative

and corresponds to a parabola oriented upwards. Hence its minimum evaluated at κ = κ0 is also non-

negative: κ0 = −

∣∣∣ 〈ψ| [A, B] |ψ〉
∣∣∣

2 (∆A)2 (from condition df

dκ κ=κ0

= 0) and (∆A)2 (∆B)2 ≥ 1
4

∣∣∣ 〈ψ| [A, B] |ψ〉
∣∣∣2

(from f(κ = κ0) ≥ 0). For the case A = q (position operator) and B = p (momentum operator), the

commutator
[
q, p

]
= i~ finally leads to the Uncertainty Principle ∆q∆p ≥ ~

2 . With this results now
the case with B = H can be consideres, i.e. the Hamiltonian describing the energy of the system:
∆A∆H ≥ 1

2
∣∣ 〈ψ| [A, H] |ψ〉

∣∣. Since the Hamiltonian also describes the time evolution of any operator

by means of d

dt
A = 1

i~
[A, H] it follows

∆A∆H ≥ ~
2

∣∣∣∣ 〈ψ| ddtA|ψ
〉∣∣∣∣ ≡ ~

2

∣∣∣∣d 〈A〉dt

∣∣∣∣. If ∆t denotes the time scale where a variation in 〈A〉 takes

place in the order of magnitude of ∆A, then the previous result leads to ∆A∆H ≥ ~
2

∆A
∆t or equivalently

to ∆t∆E ≥ ~
2 since the uncertainty in the Hamiltonian describes the uncertainty in energy.

A.3.5 An approximation for spectral broadening due to the Linear Stark effect
A simplified approximation of the line broadening resulting from Linear Stark effect can be derived
regarding a system of two colliding electrons. One inside an atom in the outer energy level (which
represents a permanent electric dipol) and the other electron moving freely on a colliding path with
that atom. The derivation follows in general the descriptions in [123].
The inciding electron moves with the velocity ve in the reference system and scatering occurs from the
center of gravity point of view with the scattering angle χ and the velocities can be described as:

~v1|cm = ve
2
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)
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)
(A.30)

The velocity of the center of gravity moving in the reference system is:

~vcm = me ~ve +me~0
2me

= ve
2

(
1
0

)
(A.31)
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the velocity is kept constant, because the interaction force is a inner force between the two electrons:

~v
′

1 = ~v1|cm + ~v|cm = ve
2

(
1 + cosχ

sinχ

)
~v

′

2 = ~v2|cm + ~v|cm = ve
2
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1− cosχ
− sinχ

)
(A.32)

The transmission of momentum towards the inciding electron perpendicular to the moving directory
can be approximated for small scattering angles χ as:
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with the scattering parameter b. The change in kinetic energy of the inciding electron is:
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4 (A.34)

regarded from the reference system. And the cross section for the energy transfer |ε| between the two
interacting electrons can be expressed as:

σexc = πb2 ≈ π
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1
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e

2

)2
4
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)2 1
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with σexc being the collision cross section and |ε| being the energy that is absorbed if it corresponds
to the discrete energy of two neighboring electronic states within the atom |ε| = Eif . Additionally
correcting the Equation (A.35) with the oscillator strength fif of the transition n =⇒ m and with
Ee = mev

2
e

2 as kinetic energy of the inciding electron leads to:

σexc,if ≈ π
(

e2

4πε0

)2
fif

EifEe
(A.36)

The collision time of the two electron system can be expressed as:

1
τe

= ne 〈σexc,ifve〉 (A.37)

with ne the free electron density within the plasma and 〈σexc,ifve〉 describing the average over all pos-
sible velocities of the inciding electrons, that correspond to a kinetic energy equally or larger than the
excitation energy Eif . Combining the equations (A.36), (A.37) leads to:
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Finally the line broadening of the wavelength according to the Linear Stark effect is:

∆ωif ∼
1
τe

λω=c=⇒ ∆λif = λ2

c
ne 〈σexc,ifve〉 ∼

λ2

c
4π
(
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)2
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e
−

Eif
kB Te

√
2πmekBTe

ne (A.39)

This remains valid only for species with a static electric dipol in the outer electronic states, which is
interesting for the components of metallic vapours.
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A.4 Matlab scripts and functions

The code is structured according to the statements in Section 4.4 for the control model and Section 3.4
for the radiation model.
The corresponding folder, source code, component tests and examples, can be received from the Chair
of the laboratory of plasma technology of the Bundeswehr university munich
(https://www.unibw.de/plasmatechnik).
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