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Abstract

The interest in plasma research and modelling is growing due to its wide range of
applications in academia and industry as well as military purposes. This is particu-
larly the case for electric discharges as they can be obtained easily, and thus are one
of the most commonly used plasma generation techniques.

The present work combines common electric discharge models with detailed mo-
dels for nonequilibrium aerothermodynamics and chemical kinetics. These modelling
subjects are usually treated separately, and the challenge of combining the two con-
cepts is highly topical. Therefore, in this thesis, the development of a physicochemical
model and its subsequent numerical implementation for the simulation of partially
ionized high-speed flows in the state of nonequilibrium and in the presence of electric
and magnetic fields are carried out. This allows detailed numerical investigations on
different types of electric discharges and improves the capabilities to analyse ionized
gases in general.

The physicochemical model developed is based on the single-fluid assumption and
takes the chemical and thermodynamic nonequilibria in the gas mixture into account.
Therefore, the vibrational and electronic excitation of particles are modelled. This
allows the use of more sophisticated kinetic mechanisms for high-enthalpy flows,
leading to more accurate results for the chemical composition of the plasma, and
thus for its thermodynamic and transport properties. Particular attention is paid
to the validity of the assumptions and simplifications used in this work. Due to the
high complexity of the processes within the nonequilibrium regions near the electrodes
and their small dimensions compared to the characteristic length of the system, the
modelling of the plasma nonequilibrium layers is simplified.

For the numerical implementation of the physicochemical model the open-source
computational fluid dynamics framework OpenFOAM is used. To validate the nume-
rical solver, a three-dimensional arc discharge on the surface of a wedge in a supersonic
flow is numerically calculated. The simulation results provide a detailed picture of
the physicochemical processes to be investigated. The numerical results show a fair
agreement with the experimental measurements and theoretical values. Possibilities
for improving prediction accuracy and suggestions for further research are discussed
in detail.
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Kurzfassung

Aufgrund der vielfältigen Möglichkeiten der Plasmaanwendung in Wissenschaft und
Industrie sowie für militärische Zwecke wächst das Interesse an der Erforschung und
Modellierung von Plasmen. Dies gilt insbesondere für elektrische Entladungen, da
diese eine sehr häufig verwendete Technik zur Erzeugung von Plasma darstellen.

Die vorliegende Arbeit kombiniert bekannte Modelle elektrischer Entladungen mit
detaillierten Modellen zur Beschreibung von Nichtgleichgewichtsaerothermodynamik
und chemischer Kinetik. Diese Modellierungsgebiete werden im Allgemeinen getrennt
voneinander behandelt. Die Kombination der beiden Konzepte ist jedoch notwendig,
um die physikochemischen Prozesse im Plasma besser zu verstehen und abbilden
zu können. Daher wird in dieser Arbeit ein physikochemisches Modell entwickelt
und anschließend numerisch umgesetzt, um Simulationen von teilionisierten Hochge-
schwindigkeitsströmungen im Zustand des Nichtgleichgewichtes und in Überlagerung
mit elektrischen und magnetischen Feldern durchführen zu können. Dies ermöglicht
detaillierte numerische Untersuchungen zu elektrischen Entladungen und erweitert
die Möglichkeiten zur Analyse ionisierter Gase.

Das Modell basiert auf der Ein-Fluid-Annahme und berücksichtigt die chemischen
und thermischen Nichtgleichgewichtszustände im Gasgemisch. Dazu werden die Vib-
rationsanregung und die elektronische Anregung von Partikeln im Plasma modelliert.
Dies ermöglicht die Verwendung detaillierter kinetischer Mechanismen für Hochen-
thalpieströmungen und führt zu präziseren Ergebnissen für die chemische Zusam-
mensetzung des Plasmas und damit der thermodynamischen und Transporteigen-
schaften des Fluids. Besonderes Augenmerk wird auf die Gültigkeit der in dieser
Arbeit getroffenen Annahmen und Vereinfachungen gelegt. Aufgrund der hohen
Komplexität der Prozesse innerhalb der Nichtgleichgewichtsschichten an den Elektro-
den und ihrer geringen räumlichen Ausdehnung im Vergleich zur charakteristischen
Länge des elektrischen Bogens, werden die Plasmaschichten vereinfacht modelliert.

Die numerische Implementierung des physikochemischen Modells erfolgt mit Hilfe
des quelloffenen Softwarepakets für numerische Berechnungen OpenFOAM. Um das
in dieser Arbeit entwickelte numerische Lösungsverfahren zu validieren, wird eine
dreidimensionale Lichtbogenentladung auf der Oberfläche eines Keils in einer Über-
schallströmung berechnet. Die Simulationsergebnisse ergeben ein detailliertes Bild
der herrschenden physikochemischen Prozesse. Die numerischen Ergebnisse zeigen
eine akzeptable Übereinstimmung mit den experimentellen Messungen sowie ana-
lytischen Berechnungen. Möglichkeiten zur Verbesserung der Vorhersagegenauigkeit
und Vorschläge für weitere Forschungen werden ausführlich erläutert.
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Chapter 1

Introduction

1.1 Background and Motivation

Background

The present work arose in the context of a larger project aiming at investigating
the applicability of plasma actuators for course correction of high-speed vehicles and
projectiles. The change in the projectile trajectory is caused by asymmetries in the
surface pressure distribution induced by a gas discharge on the projectile surface dur-
ing the flight (plasma-flow interaction) [1, 2, 3, 4]. For this purpose, a DC plasma
actuator is used, which, on-demand, induces power-controlled electric discharges bet-
ween the electrodes installed flush with the surface. The free-flight shock tunnel
experiment in a supersonic flow shown in Fig. 1.1 demonstrates the functionality of
this concept [5, 6].

The original purpose of the present work was to investigate the possibilities for
numerical modelling of the gas discharge impact on flow variables around a projectile
[7, 8, 9]. Based on this, a numerical solver should be developed. The subsequent
numerical simulations should then contribute to a better understanding of the process
to be investigated.

However, the problem described above is more related to flight control, for which
a relatively simple plasma model would be sufficient to analyse the influence of a
high-intensity arc on the flow variables. At the same time, the interest in plasma
research and modelling is growing due to its wide range of applications in academia
and industry as well as military purposes. For this reason, the scope of the present
work has been extended to the development of a more sophisticated numerical solver
capable of modelling subsonic and supersonic ionized nonequilibrium gas flows and
their response to electric and magnetic fields. This would allow the carrying out of
detailed numerical investigations of various types of electric discharges, as well as
improving the analysis of ionized gases in general. Based on this, it is possible to
investigate which assumptions and simplifications are reasonable for certain electric
discharges and which modelling depth is suitable for phenomena to be modelled.

To summarise, the present work deals with the development of a physicochemical
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model and its subsequent numerical realization for the simulation of ionized nonequi-
librium high-speed gas flows in the presence of electric and magnetic fields, regardless
of the area of application of the model.

horizontal plane

vertical plane

horizontal plane

vertical plane

t = 0 ms t = 1.2 ms t = 2.4 ms

t = 3.6 ms t = 4.8 ms t = 6.0 ms

Figure 1.1: Electric discharge generated on a projectile in a nitrogen flow in a free-
flight shock-tunnel experiment at M = 4.5, p∞ = 0.747 bar, T∞ = 272 K [10].

Motivation

The scope of application of plasmas generated by electric discharges covers a wide
range of industrial sectors and research fields. Although the use of gas discharges
can be challenging, it is often advantageous over conventional techniques. In the
chemical industry, for example, plasmas are used for initiating chemical reactions
that are difficult or impossible to induce by applying ordinary chemical mechanisms.
A particularly promising technique is the use of gliding arcs generated between two
diverging electrodes in a high-speed flow. This technique permits to simultaneously
obtain high power levels and high degrees of nonequilibrium of the gas flow. That
is, the vibrational or electronic excitation of molecules and atoms would reach high
values, while their translational temperature would remain low. By doing so, a
selective chemical treatment of reactants can be achieved [11]. Furthermore, plasmas
are used in environmental control equipment for treating a wide range of emissions.
Also, there exist many applications of electric discharges in the field of material
processing like coating, surface modification, and arc welding. Plasmas are also used
in aerospace applications, for example in the arc-heated wind tunnels which can be
used for ground-based experiments of planetary entry [12]. Moreover, in the last
two decades, the interest in studying the effects of electric discharges on subsonic,
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supersonic, and, particularly, hypersonic gas flows has increased. This is related
to an increasing interest in developing hypersonic flying vehicles as well as ramjet
and scramjet engines [13]. There plasma actuators can be used for plasma assisted
ignition and combustion (plasma-chemistry interaction) as well as for external and
internal flow control (plasma-flow interaction).

Detailed numerical simulations of electric discharges contribute to the understand-
ing of the complex thermochemical and electrodynamic processes in plasmas, as it is
often difficult or even impossible to experimentally reproduce and to measure certain
phenomena and their interactions under the desired boundary conditions. Further-
more, numerical models allow a separate consideration of different physical effects
under simplified conditions, which contributes greatly to the study of individual pro-
cesses and their impact on the system. Moreover, numerical calculations help to make
detailed quantitative statements about the plasma parameters, such as the chemical
composition of the gas, the level of vibrational and electronic excitation of different
species, the strength of induced magnetic fields and Lorentz forces acting on the
ionized gas. Finally, many configurations, geometries, and boundary conditions can
be virtually examined and tested utilizing numerical simulations, which is often not
possible experimentally.

In some cases, a successful high-quality experiment requires a detailed under-
standing of the processes to be investigated. In this case, numerical simulation could
provide necessary information for carrying out the experiment successfully. For ex-
ample, a numerical model can be used for obtaining all relevant gas properties of the
free jet released from the nozzle exit of an arc-heated wind tunnel. Measuring all gas
properties of interest experimentally would be extremely difficult, firstly, because the
heating process in the constrictor of an arc heater is complicated and, secondly, due
to the strong thermochemical nonequilibrium in the nozzle [12]. For plasma-chemical
gas processing numerical simulations can help to find desired plasma parameters at
which the chemical process runs optimally. The same applies to plasma assisted
ignition and combustion in a high-speed flow, which is especially useful for active
control of ramjet and scramjet engines. In general, numerical simulations of ionized
high-speed flows can be of great use for investigations of hypersonic flow regimes, for
example for the study of nonequilibrium gas-surface interactions [14].

1.2 Objectives

The aim of this project is the development of a numerical solver for the simulation
of nonequilibrium electric discharges in high-speed flows with a detailed modelling of
the thermochemical processes. The development comprises the following steps:

1. Development of a physicochemical model for a partially ionized high-speed flow
in the presence of electric and magnetic fields,

2. Numerical implementation of the model,

3. Solver validation by means of one- and multidimensional analyses.
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Development of the Physicochemical Model

The development of the physicochemical model forms the core of this research. The
subsequent numerical implementation depends entirely on this work step. The goal
is to define a complete physicochemical model consisting of a closed system of go-
verning equations, supplemented by submodels for the calculation of all required
chemical, thermodynamic, and transport properties. A precondition for this work
step, however, is the preceding definition of a test case, a physicochemical system,
which exemplarily represents the field of application of the new solver. A qualitative
and quantitative analysis of this system allows the definition of the required model-
ling depth with all associated assumptions and approximations. This information is
then used for the development of the physicochemical model.

As far as the requirements are concerned, the physicochemical model must be
able to account for the thermodynamic and chemical nonequilibrium in the system
under investigation (test case). In addition, the model must be applicable to both
subsonic and supersonic flows and should consider viscous effects in the gas. The
turbulence effects are not taken into account for now. Due to the high complexity of
the processes within the nonequilibrium regions near the electrodes (plasma sheaths
and presheaths) and their small dimensions compared to the characteristic length
of the system, the modelling of the plasma nonequilibrium layers is simplified. The
breakdown during the ignition of the electric discharge is not modelled. Instead, a
simpler method of modelling the ignition is used, in which the gas is heated between
the electrodes until ionization begins and the gas becomes a conductor.

Numerical Implementation of the Physicochemical Model

The numerical implementation of the physicochemical model is carried out within the
framework of the open-source CFD toolbox foam-extend 4.0, a development branch
(a fork) of the open-source CFD platform OpenFOAM (Open Field Operation and
Manipulation). The numerical implementation includes two tasks. First, a new
OpenFOAM thermophysical model has to be developed, which includes functions for
the calculation of all necessary thermodynamic and transport properties of the gas
as well as all source terms included in the conservation equations. Second, a new
customized OpenFOAM solver has to be set up, which includes all the necessary
conservation equations.

Solver Verification and Validation

The verification and validation of the solver consists of two steps. First, the carrying
out of a one-dimensional analysis over a temperature range from 2000 to 24,000 K
at a pressure of 1 bar. The simulation results obtained are used for the verification
of submodels for the transport properties and individual physical processes. Second,
performing a transient analysis on a simple three-dimensional (3-D) test case for the
validation of the entire physicochemical model by comparing the results with the
experimental measurements and data from the literature.
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1.3 Thesis Contribution and State of Research

1.3.1 Thesis Contribution

The present work combines common gas discharge models with more sophisticated
models for nonequilibrium aerothermodynamics and chemical kinetics. These phe-
nomena are usually treated separately as indicated by Surzhikov [13]: „To date,
problems of electrodynamic and physical mechanics of electric discharges have, as a
rule, been covered separately from problems of physicochemical kinetics.“ He also
states that the challenge of combining the two concepts is highly topical.

Indeed, in most research works in the field of gas-discharge modelling, the mo-
delling depth of chemical kinetics, as well as nonequilibrium thermodynamics, can
be increased. In many research projects, local thermodynamic equilibrium (LTE) is
assumed for high-pressure gas discharges where the ionized gas is characterized by
a single temperature only, which is a simplification. Even if local thermodynamic
nonequilibrium (Non-LTE, or NLTE) is taken into account, in most cases, only a
two-temperature model is used for calculating thermodynamics. In such a model, the
plasma is characterized by two temperatures, namely the translational temperature
of free electrons Te,tr, and the temperature of heavy particles (molecules, atoms, and
ions) Thp. That is, thermodynamic equilibrium is assumed between all energy modes
of heavy particles, meaning the rotational, vibrational, and electronic excitations are
in equilibrium with the translational energy: Trot = Tvib = Tel = Ttr. However, in
many cases, this assumption is violated, especially in low-density high-speed flows
[15]. Consequently, for performing more accurate calculations, such processes as vib-
rational and electronic excitation must be taken into account. This allows the use
of more sophisticated kinetic mechanisms for high-enthalpy flows, leading to more
accurate results for the chemical composition of the plasma, and thus for its thermo-
dynamic and transport properties.

1.3.2 State of Research

State of Research in Numerical Gas-Discharge Modelling

Surzhikov [13] provides a detailed overview of several different modelling concepts of
electric discharges. In the present research, his work is used as the basic foundation
of the knowledge in the field of electric discharge modelling. It must be pointed out
that hybrid, kinetic, and stochastic models of gas-discharge processes are beyond
the scope of Surzhikov’s book. In all computational models discussed there, the
plasma is viewed as a continuum. The book deals with both gas and glow discharges
with the emphasis on the latter. The computational models discussed are followed
by the corresponding simulation examples. For the modelling of glow discharges,
Surzhikov presents two classes of models, namely drift-diffusion models and quasi-
neutral models with ambipolar diffusion. Most of the examples of glow-discharge
models presented are multi-fluid models. As for the gas discharges, which are the
subject of the present thesis, Surzhikov provides a detailed description of several
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calculation models for different applications and of different modelling depth. All
discussed gas-discharge models are one-fluid models and are based on the concept of
magnetohydrodynamics (MHD). The discussion includes one-temperature and two-
temperature gas-discharge models for plasmas in the state of chemical equilibrium
and nonequilibrium.

Nevertheless, Surzhikov’s book does not offer the depth of modelling for chemical
and thermodynamic processes targeted in the frame of the present thesis. Surzhikov
himself points out that the major frame of problems of the physical and chemical
kinetics of gas-discharge plasmas is beyond the scope of his book.

The same applies to the work of Mitchner and Kruger [16] where the thermo-
dynamics is limited to a two-temperature plasma and where, in most discussions,
chemical equilibrium is assumed. However, this book provides valuable information
on developing the fundamental concepts and calculation methods for the study of
collision-dominated partially-ionized gas flows in the presence of electric and mag-
netic fields. Of particular importance for the present work is the discussion in Mitch-
ner and Kruger about the applicability of the so-called MHD approximation and
the associated generalized Ohm’s law to a physical system to be investigated. The
MHD approximation considerably simplifies the Maxwell’s equations and thus the
electrodynamic part of the model.

Baudry [17] also uses the MHD approximation in his work about 3-D time-
dependent modelling of the arc’s dynamic behaviour in a DC plasma spray torch.
Further assumptions used by Baudry are the quasi-neutrality condition – a require-
ment for the MHD approximation, the macroscopic description of a plasma, where
the plasma is treated as a fluid and the assumption of a laminar and incompressible
flow. Analogous to the present thesis, the nonequilibrium plasma sheaths between
the plasma column and the electrodes are not modelled in Baudry’s work. As far as
physicochemical modelling is concerned, the LTE assumption is used in the whole do-
main of interest. Furthermore, Baudry uses the assumption of chemical equilibrium,
where a mixture of argon and hydrogen is treated as a single species.

A similar modelling approach can be found in the work of Blais [18]. This work
deals with the development of a numerical model for the deflection of DC trans-
ferred arcs using an external magnetic field. The simulations are performed with
the CFD finite-volumes commercial code ANSYS Fluent. Also in Blais’ work, the
assumption of local thermodynamic equilibrium is used and no account is taken of
the nonequilibrium electrode layers.

A more detailed modelling of thermodynamic processes can be found in the work
of Trelles et al. [19]. In the frame of that work, a two-temperature thermal nonequi-
librium model is developed and applied to the three-dimensional time-dependent si-
mulation of the flow inside a DC arc plasma torch, typically used in plasma spraying.
The authors justify the use of the two-temperature model by stating, that the occur-
rence of nonequilibrium effects in thermal plasma processes is the rule rather than the
exception. They also state that – to their best knowledge – no nonequilibrium model,
applied to a 3-D and time-dependent problem, has been reported in the literature yet
(as of 2007). Regarding the chemical-kinetic modelling, a four-component chemical
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equilibrium model of an argon plasma is used. The authors point out, that chemical
nonequilibrium effects could be important in the flow inside plasma torches.

The work of Wendelstorf [20] presents a modelling approach for analysing the over-
all thermal plasma gas discharge behaviour with the consideration of the nonequilib-
rium boundary layers (sheath and presheath) in front of the cathode and anode. The
model consists of three submodels that are applied to physically different regions. The
arc-plasma region and the electrode-solid regions are calculated by separate multidi-
mensional (2-D or 3-D) submodels. The very thin nonequilibrium layers between the
electrodes and the plasma are calculated by a further submodel that links the region
of the plasma column and the electrode-solid regions by a surface with implemen-
ted additional physical processes to be modelled. This layer submodel between the
plasma and the solid surface calculates the processes inside the sheath and presheath
and transfers plasma and solid surface parameters to new boundary-condition va-
lues for the next iteration step [20]. As a result, detailed plasma simulations can
be carried out taking into account, for example, such effects as heat conduction
within the solid electrodes, electron emission from the cathode surface, the electri-
cal and thermal transition from the electrode surface to the thermal plasma. The
mathematical model demonstrated in [20], is more general than the actual nume-
rical implementation, which is two-dimensional and is restricted to stationary DC
discharges with cylindrical symmetry. The electrodynamic modelling is based on the
MHD approximation. The two-temperature approach is used to separately calculate
the temperatures of electrons and heavy particles. Because only monatomic gases
(argon, xenon, vaporized mercury) are simulated, the heavy-particle energy includes
only the translational and electronic-excitation energy modes, which are considered
to be in equilibrium.

From the research works discussed above it becomes clear that the modelling depth
of thermochemical processes in the plasma can be increased considerably. Significant
progress in the modelling of high-temperature gases has been achieved in the last
decades in the field of aerospace research. Thus, calculation models from this field of
science are used in the present thesis for detailed modelling of thermodynamics and
chemical kinetics.

State of the Art in High-Temperature Gas Dynamics

The work of Chul Park [14] makes a decisive contribution to the development of
the physicochemical model in the present work. It provides detailed information on
physical phenomena occurring in nonequilibrium chemically reacting flows in the hy-
personic regime. This includes, among others, the governing equations of fluid dyna-
mics for a nonequilibrium chemically-reacting flow, formulas for calculating transport
properties based on collision integrals, and a detailed definition of thermodynamic
properties as well as equilibration models between internal states due to collisional
processes.

The thermodynamic model, proposed by Park, is a multitemperature model in
which the energy contained in the high-temperature gas is separated into three en-
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ergy pools: the translational-rotational, the vibrational, and the electron-electronic
energy pool. Consequently, by applying this model to an ionized gas, the fluid is cha-
racterized by three temperatures: translational-rotational (T ), vibrational (Tvib), and
electron-electronic temperature (Te). Furthermore, Park delivers a detailed kinetic
mechanism for high-temperature air, enabling calculations of chemical nonequilib-
rium in the fluid flow.

The general modelling strategy used in the present work is based primarily on
Park’s research. Moreover, several assumptions and simplifications are inherited from
Park’s work as well. This applies, for example, to the assumption of the thermo-
dynamic equilibrium between the translational and the rotational energy modes of
molecules, leading to a common translational-rotational temperature.

The translational-rotational assumption is also used in the work of Jong-Hun Lee
[21]. By combining and extending existing theories, Lee delivers basic governing
equations for nonequilibrium flows, occurring at flight regimes of aeroassisted orbital
transfer vehicles. In addition, Lee provides a complete set of formulas for the calcu-
lation of all transport variables. The transport-property models used in the present
thesis are mostly taken from Lee’s work. They represent a modified version of the
models introduced by Yos [22]. The modification consists in extending Yos’ models
from a one- to a multitemperature approach.

In Yos’ work the transport properties are calculated for hydrogen, nitrogen, oxy-
gen, and air for temperatures from 1000 to 30,000 K and for pressures from 1 to 3 bar.
The calculation models are based on the Chapman-Enskog theory which gives the
transport properties in terms of the so-called collision integrals. Although this work
dates back to the 1960s, it has been used for a long time for the calculations of trans-
port variables. For example, Park [14] refers to the transport-property calculation
models and corresponding collision-integral data presented by Yos. Also in the report
of Gupta et al. [23], published in 1990, the results of Yos’ work are widely used. For
example, the collision cross-sections, required for calculating transport properties, are
recomputed in Gupta et al. using the same molecular data previously used by Yos.
The work of Gupta et al. provides a review of reaction rates and thermodynamic and
transport properties for an 11-species air model for chemical and thermal nonequilib-
rium calculations for temperatures up to 30,000 K. Based on previous works, Gupta
et al. provides more exact formulas for computing the properties of partially ionized
air and, also, gives them as curve-fit formulas, which is very convenient for numerical
implementations. In this thesis, the research works of Gupta et al [23] and Yos [22]
are used for the calculation of the collision integrals.

Takahashi et al. [12] also uses research work of Gupta et al. to evaluate transport
properties. The research work of Takahashi et al. deals with the effects of radia-
tive heat transfer in the numerical simulations of nonequilibrium flows. The system
under investigation is the gas flow inside a constrictor-type arc-heated wind tunnel.
The expansion flow in the nozzle section of such a testing facility is in the state of
thermodynamic and chemical nonequilibrium. This fact is taken into account in the
numerical model. The reaction rate coefficients for chemical reactions are obtained
from Park’s work [14]. In contrast to Lee [21] and Park [14], Takahashi et al. treats
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the rotational temperature separately from the translational temperature to take into
account the strong nonequilibrium in the arc heaters nozzle. On the other hand, in
contrast to the works of Lee and Park, electronic-excitation of molecules and atoms
is not taken into account. The authors justify this simplification with a negligibly
small contribution of the electronic-excitation energy Eel to the overall energy in the
system.

The computational model of Takahashi et al. provides a complete modelling
approach for the energy equilibration between the internal energy modes via energy-
exchange models. Some of these models are used in the present work. As far as
electrodynamics is concerned, Takahashi et al. derives the electric field and the
current density, required for the calculation of Joule heating, from the generalized
Ohm’s law and the potential expression of the charge conservation equation. The
calculation of the induced magnetic field and the Lorentz force, however, are not taken
into account. The simulated flow is laminar, steady, continuous, and axisymmetric.

The work of Yu et al. [24] is devoted to 2-D numerical simulations of inductively
coupled plasma flows in the state of thermodynamic and chemical nonequilibrium
inside a plasma wind tunnel. As in the research work of Takahashi et al., Yu et al.
use a four-temperature model for modelling the thermodynamic nonequilibrium and
the work of Gupta et al. for calculating the collision integrals, required for computing
transport properties. Similar to Takahashi et al., the electronic-excitation energy is
not taken into account in the thermodynamic modelling. The chemical nonequilib-
rium is modelled by using a kinetic mechanism for high-temperature nitrogen – the
working gas of the plasma wind tunnel. This kinetic mechanism represents a com-
bination of selected chemical reactions, taken from the work of Dunn and Kang [25]
and Park [14]. The same mechanism is used in the present research.

Of particular interest for the present work is the work of Casseau [26]. In the
frame of Casseau’s work, based on the open-source CFD platform OpenFOAM, a
solver called hy2Foam is developed. This is a two-temperature hypersonic CFD
solver developed for simulating flows past high-speed vehicles like they occur during a
planetary entry or at a hypersonic flight. According to Casseau, the solver hy2Foam
aims at providing a foundation for a future hybrid CFD-DSMC code within the
OpenFOAM framework. That is, for lower layers of the atmosphere, where the fluid
can be treated as a continuum and, consequently, the governing equations of fluid
dynamics hold, the hy2Foam solver can be used. For simulating low-density flow
conditions, appearing at high altitudes, OpenFOAM provides a direct simulation
Monte Carlo1 (DSMC) solver – named dcmsFoam. Coupling both methodologies
would allow to simulate the full range of regimes from the molecular regime in a
rarefied gas at high altitudes to the continuum regime in the lower layers of the
atmosphere.

The two-temperature formulation, implemented in hy2Foam, is based on the work
of Park [14]. There, the electron and electronic excitation energy modes are assumed

1DSMC is a technique used for analysing high Knudsen number flows. It emulates the same
physics as the Boltzmann equation by following the motions and collisions of a large number of
particles [27].
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to be in equilibrium with the vibrational energy mode. The same applies to the
translational and rotational energy modes. As a result, the fluid is characterized by
two temperatures, the translational-rotational and the vibro-electronic temperature
[26]. It is worth to mention that there is a multi-vibrational version of hy2Foam
in which the vibrational-vibrational energy exchange between molecules of different
species is taken into account.

Casseau’s work has many things in common with the work presented here. There
are many similarities in the physicochemical modelling and in both cases, the Open-
FOAM platform is used for the numerical realization. The main difference to the
present work, however, is that Casseau’s work focuses mainly on the development
of a numerical tool for simulating flow fields surrounding a reentry vehicle. For this
reason, no responses of the partially ionized gas on external electromagnetic fields
have been considered.

1.4 Dissertation Overview
The present thesis consists of six chapters. The present chapter – Chapter 1 – provides
the motivation, the aims and objectives of the present work as well as some informa-
tion on the state of research. Chapter 2 deals with the definition of a physicochemical
system, exemplarily representing the field of application of the new solver, and sub-
sequent elaboration of the basic concept of the physicochemical model, which is to be
implemented numerically. For this purpose, a preliminary analysis of the physicoche-
mical system is carried out, in which all potential assumptions and simplifications are
examined for their validity. Based on Chapter 2, a physicochemical model is derived
in Chapter 3 for the simulation of ionized nonequilibrium high-speed gas flows in the
presence of electric and magnetic fields. The chapter is divided into three sections,
one for chemical-kinetic, one for fluid-dynamic and one for electrodynamic modelling.
Chapter 4 focuses on the numerical realization of the physicochemical model derived
in Chapter 3. The validation of the numerical tool and the subsequent discussion
of the simulation results of the system under investigation are presented in Chapter
5. The last chapter – Chapter 6 – summarises the work, draws conclusions from the
numerical results and gives suggestions for future work.



Chapter 2

Physicochemical System under
Investigation

The development of the physicochemical model requires the definition and evaluation
of a test case - a physicochemical system that exemplarily represents the field of
application of the new solver. This system must be kept simple, while retaining the
most physical effects of interest.

This chapter opens with the definition of a suitable test case of an electric dis-
charge in a supersonic flow in Sec. 2.1. Subsequently, the defined physicochemical
system is analysed by first determining in Sec. 2.2 the type of the discharge under
investigation as well as its structure and physical properties. Subsequently, in Sec.
2.3, the system is studied from the view point of aerothermodynamics and chemi-
cal kinetics. During this process, the physicochemical system is analysed to obtain
information about what assumptions and simplifications can be used to construct
the physicochemical model as simple as possible, while retaining the physical and
chemical effects of interest. Based on the information obtained, a modelling concept
is then derived in Sec. 2.4.

2.1 Definition of the Physicochemical System

The physicochemical system under investigation consists of an aerodynamic model
and a plasma actuator embedded in this model. Both systems are described below.

2.1.1 Aerodynamic Model

For the test case geometry, a wedge with a length of 250 mm, a width of 120 mm
and an angle of 30◦ with a sharp leading edge is selected. On one of wedge’s surfaces
a possibility for installation of the actuator’s electrodes and pressure transducers is
provided (see Fig. 2.1, left). The experiments are carried out in the high-enthalpy
shock tunnel STA of the French-German Research Institute of Saint-Louis (ISL). The
wedge is mounted in the measurement section without angle of attack at a distance
of 10 mm from the nozzle exit (see Fig. 2.1, right).

11
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Figure 2.1: Aerodynamic model of a wedge mounted in the measurement section of
the shock tunnel.

The electric discharge is generated on the surface of the wedge in a high-speed
nitrogen flow between the electrodes installed flush with the surface in an electrically
insulating plate (see Fig. 2.2).

electrodes
a b c

insulation plate

Figure 2.2: Wedge surface with the electrodes embedded in an insulating plate.

After the membranes of the shock tunnel burst, the nitrogen is expanded and
accelerated in the nozzle forming a quasi-steady high-speed flow past the wedge of a
duration of 3 to 4 ms (Fig. 2.3) [10]. During this period of time, the gas discharge is

Figure 2.3: Schematic of the shock tunnel.
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generated and experimental measurements are conducted. A typical operation time
of electric discharges analysed in the present work is between 1 and 3 ms.

The free-stream conditions of the high-speed flow are as follows: p∞ = 0.34 bar,
T∞ = 234 K, and u∞ = 1452.44 m ·s−1, corresponding to conditions at approximately
8 km of altitude. At these conditions, an oblique shock wave, attached to the nose
of the wedge, occurs, as shown in the image sequence in Fig. 2.4.

t = 1.433 ms t = 1.533 ms

t = 2.0 ms t = 3.2 ms

Figure 2.4: Electric discharge generated on a wedge in a nitrogen flow in a shock-
tunnel experiment at: M = 4.6, p∞ = 0.34 bar, T∞ = 234 K.

The wave angle1 β can be calculated by using the so called θ-β-M relation [28]:

tan(α) = 2cot(β)
M2
∞sin

2(β)− 1

M2
∞ (γ + cos(2β)) + 2

, (2.1)

where θ denotes the deflection angle which is of 15◦, since the wedge angle amounts
to 30◦ and the angle of attack is 0◦. The quantity γ denotes the specific heat ratio.
The free-stream Mach number is calculated by [15]:

M∞ =
u∞
c

, (2.2)

where the speed of sound is given as [15]:

c =

(
γ
RT∞
M

)1/2

. (2.3)

At a free-stream flow temperature of T∞ = 234 K, the specific heat ratio of nitrogen
is estimated at γ = 1.4. The ideal gas constant is given in J ·K−1 ·mol−1 and amounts
toR = 8.3144598. The molar mass of nitrogen has a value ofMN2 = 0.028 kg·mol−1.
By inserting the free-stream conditions into Eqs. 2.1 - 2.3, the following values are

1The wave angle is the angle between the shock wave and the upstream-flow direction [28]
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obtained: c = 311.81 m · s−1, M∞ = 4.65, and β = 25.1◦. The density ρ∞ can be
calculated via the ideal gas law as follows:

ρ∞ =
p∞MN2

T∞R
= 0.4893 kg ·m−3 .

With the above calculated data, it is possible to determine the flow conditions
behind the shock wave (indicated by the subscript 2) where the electric discharge is
ignited. The Mach number behind the oblique shock, M2, is calculated by [28]:

(M2)2sin2(β − α) =
(γ − 1)M2

∞sin
2(β) + 2

2γM2
∞sin

2(β)− (γ − 1)
. (2.4)

The obtained value amounts to M2 = 3.318. The thermodynamic conditions behind
the oblique shock wave can be calculated with the following relations [28]:

ρ2

ρ∞
=

(γ + 1)M2
n,∞

2 + (γ − 1)M2
n,∞

, (2.5)

p2

p∞
= 1 +

2γ

γ + 1
(M2

n,∞ − 1) , (2.6)

T2

T∞
=

p2

p∞

ρ∞
ρ2

, (2.7)

where the Mach number normal to the shock wave is given as: Mn,∞ = M∞sin(β)
[28]. The obtained conditions amount to: p2 = 1.4866 bar, T2 = 389.43 K, c2 =
402.36 m · s−1, ρ2 = 1.2855 kg ·m−3 and u2 = 1335 m · s−1.

2.1.2 Electric Discharge Actuator

Operation Principle of the Electric Discharge Actuator

As shown in Fig. 2.2, the DC plasma actuator has three electrodes a, b, and c.
Actually, these are two pairs of electrodes, namely a - b and b - c, which belong to
two different systems forming the actuator. The anode a and the shared cathode b
belong to the high-voltage low-energy activating system – called discharge trigger.
This system is used to ignite the electric arc. The shared cathode b and the anode c
are the electrode pair of the low-voltage high-energy plasma generator for providing
the energy necessary for the gas discharge operation [10].

The ignition process of the actuator is shown schematically in Fig. 2.5. The high-
voltage low-energy activating system generates a high-voltage pulse in the kilovolts
range at the a - b - electrode pair. This causes an electrical breakdown, leading to
the ionization of a small gas volume between the electrodes. This step is called in
Fig. 2.5 as preionization. The preionized gas volume is advected and stretched by
the gas flow until it finally passes over the b - c - electrode pair. At that moment,
the electrical circuit of the low-voltage high-energy plasma generator closes. The gas
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a b c

preionization

U

convection closed electrical circuit ignition

Figure 2.5: Schematic representation of the ignition process of the plasma actuator.

discharge ignites and electric current begins to flow between the electrodes through
the ionized gas resulting in a self-sustained electric arc.

In the present work, copper electrodes embedded in an insulating polyamide plate
are used for experiments (see Fig. 2.6, left). The electrodes have a radius of 1.0 mm.
The distance between the centre lines of the electrodes of the a - b pair amounts to
5 mm and of the b - c pair to 7 mm. That is, the shortest distance between the
electrode edges of the b - c pair is 5 mm. This distance is essential for the intensity
of the discharge, since it is inversely proportional to the electric field strength.

a b c

Figure 2.6: Copper electrodes in a polyamide plate.

Consequences of the Electrode Erosion

In Fig. 2.6 on the right, the state of the electrodes after several experiments is shown.
A clear electrode surface erosion can be recognized which is limited to the right edge
of the electrode b and is distributed over the entire surface of the electrode c.

This is a clear disadvantage of copper electrodes in the study of a pure nitrogen
plasma, since contamination by copper vapour could significantly alter the transport
properties of the plasma. This is demonstrated in the work of Shayler and Fang
[29] where the transport properties of a copper-nitrogen mixture are calculated for
temperatures between 2000 and 28,000 K and pressures from 1 to 10 bar (see Fig.
2.7). The results show that for temperatures in the range of approximately 12,000
to 16,000 K, the presence of copper vapour would not significantly affect the trans-
port properties of the nitrogen plasma. At lower temperatures, however, even a low
concentration of copper would significantly enhance plasmas transport properties.
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Figure 2.7: Electrical and total thermal conductivities of copper-nitrogen mixture
at 1 bar as a function of number density ratio (here denoted by X) [29].

Operation Conditions of the Plasma Actuator

In the present work, a gas discharge with a constant input power of 10 kW is analysed.
To achieve this in an experiment, the power supply is regulated during the operational
time by a current controller which holds the current at values in the range of 70 to
90 A. Under these conditions, a voltage in the range of 120 - 140 V arises at the
main electrodes b and c.

Regarding the geometry and configuration it can be stated that the gas discharge
under investigation is stabilized from one side by the wall and from other sides by
the stream flow. Magnetic stabilization should play a rather minor role, since only
self-induced magnetic fields occur that are rather weak.

Based on all the information given above the system under investigation can be
schematically represented as shown in Fig. 2.8.

2.2 Analysis of the Electric Discharge

Based on the information obtained in Sec. 2.1 a theoretical analysis of the electric
discharge to be modelled is now undertaken. In the following, first the theoretical
background regarding the classification of gas discharges is given. Afterwards, the
subregions of a typical gas discharge and their basic physical features are examined.
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Figure 2.8: Schematic representation of the physical system under investigation.

2.2.1 Classification of the Electric Discharge

Classification through the Voltage-Current Characteristics

According to Hoyaux [30], electric discharges can be subdivided according to their
voltage-current characteristic into three major classes with the corresponding transi-
tions as follows: dark discharges (also called Townsend discharges), glow discharges,
and arc discharges (see Fig. 2.9).

The current threshold for the transition from a glow to an arc discharge lies
approximately between 0.1 and 1 A [30]. The electrode voltage drops during the
transition from a glow to a gas discharge from several hundreds to a few tens of volts.

Classification via the Operating Pressure Level

For electric arcs, a further distinction can be made between high-pressure and low-
pressure arc discharges, wherein the threshold for the transition from low- to high-
pressure discharge class is at approximately 0.1 bar [30, 11].

In high-pressure arcs, the translational temperature of free electrons and heavy
particles (ions and neutrals) and the temperatures that characterize the excitation of
different internal energy modes of atoms and molecules are relatively close together.
This assumption is often called local thermodynamic equilibrium (LTE). In the case of
low-pressure arcs, the translational temperature of free electrons considerably exceeds
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Figure 2.9: Approximate voltage-current characteristic of an electric discharge with
electrodes free from tips or edges [30].

the temperature of heavy particles, reaching temperature ratios of two orders of
magnitude. This behaviour results from a relatively large mean free path2 of free
electrons and from a large amount of energy, received from the external electric field
[30]. That is, in a diluted plasma, free electrons experience a longer acceleration time
between the successive collisions with heavy particles than in a denser plasma. In
such a case, the LTE assumption is violated and the plasma is said to be in the state
of local thermodynamic nonequilibrium (NLTE-sate).

Distinction between Thermal and Nonthermal Discharges

In the context of the concept of local thermal equilibrium, a further classification
of electric discharges is often made, namely between thermal and nonthermal dis-
charges. A glow discharge is considered a typical example of a nonthermal discharge.
Such systems can operate very far from the thermodynamic equilibrium and are cha-
racterized by a high selectivity with respect to the plasma-chemical reactions [11].
An arc discharge, on the other hand, is considered a traditional example of a thermal
discharge. In contrast to glow discharges, these discharges are usually powerful, easy
to sustain, and can operate close to LTE. However, at lower pressures, but still above
the threshold of 0.1 bar, the LTE assumption may be violated.

In summary it can be stated, that arc discharges can be both thermal and nonther-
mal, depending on operation conditions. Typical ranges of thermal and nonthermal
arc discharge parameters are depicted in Tab. 2.1 [11].

2The average distance travelled by a particle between successive collisions [16, 31]
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Table 2.1: Typical ranges of thermal and nonthermal arc discharge plasma parame-
ters [11].

Discharge plasma parameter Thermal arc discharge Nonthermal arc discharge
Gas pressure 0.1− 100 bar 1× 10−6 − 0.1 bar
Arc current 30− 30× 103 A 1− 30 A
Cathode current density 107 − 1011 A ·m−2 106 − 108 A ·m−2

Voltage 10− 100 V 10− 100 V
Power per unit length > 100 kW ·m−1 < 100 kW ·m−1

Electron density 1021 − 1025 m−3 1020 − 1021 m−3

Gas temperature > 10,000 K 300− 6000 K
Electron temperature > 10,000 K 2000− 20,000 K

Classification of the Gas Discharge under Investigation

Based on the information given above, the gas discharge under investigation can be
classified as follows:

◦ The electric discharge to be analysed belongs, with its amperage of 70− 90 A
and a voltage of 120− 140 V, rather to the arc-discharge class.

◦ In the system under investigation the static pressure behind the shock wave
amounts to 1.4866 bar, which means that the gas discharge to be modelled is
a high-pressure arc.

◦ Based on the operating conditions given in Fig. 2.8, the system under in-
vestigation may be assigned to the class of thermal gas discharges. However,
because the discharge is generated in a supersonic flow and on a cold wall, a
local deviation from the LTE assumption may occur.

2.2.2 Structure of an Arc Discharge

General Description of the Structure of an Arc Discharge

An electric arc can be divided into three regions: cathodic region, positive column,
and anodic region [30]. Since the system to be modelled is a surface discharge, a wall
region can also be distinguished and should be mentioned.

The most convenient way to describe the structure and the properties of a gas
discharge is by means of a simply shaped axially-symmetrical uniform arc, whose
plasma channel is not affected by the presence of a wall or any externally imposed
gas flow. As a further simplification, it is assumed that the electrodes, in contrast
to the system under investigation, are facing each other. The description of the
arc structure is carried out in the following by using the schematic representation
of a free-burning linear arc in Fig. 2.10. This illustration is prepared using the
works of Fridman and Kennedy [11], Wendelstorf [20], Zhukov and Zasypkin [32],
and Surzhikov [13].
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Figure 2.10: Schematic representation of a free-burning linear arc with correspon-
ding spatial distribution of the electric potential φ, electric field magnitude E, and
gas temperature T .

The positive column represents the largest part of the arc, the length of which
may vary between a few millimetres and a few centimetres, depending on the dis-
tance between the electrodes. In the cathode and anode regions, the cathodic and
anodic boundary layers can be identified, which provide the transition from the solid-
electrode surface to the plasma. Each of these layers consists of a sheath and a
presheath (see Fig. 2.10) [20]. The length of the cathode and anode layers in high-
pressure arcs is of the order of magnitude of 1−100 µm and is inversely proportional
to the gas density and pressure [11]. This length corresponds to the order of several
mean free path lengths, `, of the particles in the plasma [32].

Distribution of Arc Properties over the Discharge Length

The division of the arc into three regions allows to divide the total voltage drop over
the discharge into the voltage drop over the cathodic region Ucr, the positive column
Upc, and the anodic region Uar (see Fig. 2.10). Due to the ambiguity of the terms
"electrode region" and "electrode layer", the definition of the cathodic and anodic
voltage drops, Uc and Ua, is more difficult, although these terms are often used [30].

The cathodic and anodic voltage drops cause peaks in the electric field in the
vicinity of the cathode and anode (see Fig. 2.10). The potential drop in the major
part of the positive column, on the other hand, is often considered to be more or
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less linear. Thus, in the central part of the positive column the electric field remains
approximately of the same magnitude almost over the entire length of the discharge.

For simple analysis, the temperature profile over the positive column is often as-
sumed to be nearly constant. The temperature values range from several thousands
to a few tenths of thousand of Kelvin (see Fig. 2.10), depending on operating condi-
tions. However, at the constricted ends of the discharge, due to electric field peaks
and consequently a more intensive Joule heating, temperature peaks emerge. By fur-
ther approaching the electrodes, the temperature drops to the level of the electrode
surface temperature, which is much lower than in the positive column [11].

Positive Column

The positive column represents a long homogeneous region of the electric arc, con-
sisting of quasineutral plasma (ne ≈ ni). The main part of the discharge power is
released there [11, 30]. The discharge column can be constricted at both ends and is
separated from the electrodes by the cathode and anode regions (see Fig. 2.10).

The electric current in the positive column is provided almost completely by the
electrons due to their high mobility compared to ions [11]. This means that the
fraction of the electron current S of the total electric current has almost the value
of one: Jtot ≈ Je, and hence Je � Ji. This can be proved for the system under
investigation by comparing the velocity of free electrons Ve with the velocity of
ions Vi. Supposing that the gas temperature in the positive column amounts to
T = 12,000 K, it can be assumed that nitrogen is almost completely dissociated and
thus consists mostly of neutral and ionized atoms and free electrons. By assuming
that no significant pressure and concentration gradients of electrons and ions occur
inside the positive column, the only significant driving force of electrons and ions is
the external electric field. Thus, their drift velocities can be calculated as follows:

Ve = −neµeE and Vi = niµiE , (2.8)

where the electron and ion mobilities are given as [16]:

µe =
e

µehpνehp
and µi =

e

µinνin
. (2.9)

The elementary charge e amounts to 1.60217662 × 10−19 C. The reduced mass of
species s and r is defined as [16]:

µsr =
msmr

(ms +mr)
. (2.10)

For the reduced mass of electrons (e) and heavy particles (hp) it can be assumed
that: µehp ≈ me, since me + mehp ≈ mhp. For the reduced mass of ions (i) and
neutral atoms (n) it may be assumed that µin = mN/2, where the mass of nitrogen
atoms mN = 2.3259 × 10−26 kg. The collision frequencies of electrons with heavy
particles νehp, as well as of ions with neutral atoms νin, are calculated in Sec. 2.3.2.
For a nitrogen plasma at T = 12,000 K and a pressure of 1 bar these values are
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approximately as follows: νehp ≈ 3.0× 1011 s−1 and νin ≈ 4.7× 109 s−1. Substituting
these quantities into Eq. 2.9 yields the following mobilities: µe ≈ 0.58 m2 · V−1 · s−1

and µi ≈ 0.0029 m2 · V−1 · s−1. Due to quasineutrality of plasma (ne ≈ ni) from
Eq. 2.8 it becomes evident that for confirming the above statement it is sufficient to
compare the mobilities only. Since µe � µi, it can be stated that Je � Ji.

Cathode Region

The cathode region is divided into a cathode layer, consisting of a sheath and a
presheath, and a near-cathode plasma constriction zone. All these subregions are
characterized by different physics [33].

Looking from the cathode surface towards the positive column, the sheath – also
called space charge layer – forms the first subregion. This is a narrow, positively
charged, collisionless layer, in the non-LTE state [30]. The positive charge results
from the accumulation of ions on the cathode surface due to the ion drift towards
the cathode caused by the electric field. This leads to a high ion particle density
in the vicinity of the cathode surface (ni > ne) and, consequently, to a breakdown
of quasineutrality in the sheath. In high-pressure arcs the thickness of the sheath
is of the order of the Debye length λD approx. ∼ 10 nm. Most of the cathode
voltage drop takes place in the sheath having values between 10 and 20 V depending
on the cathode material [11]. Due to the extremely short length of the sheath,
this voltage drop generates a strong electric field in the immediate vicinity of the
cathode surface, which is the order of 108 − 1010 V · m−1 [32]. As a result, the
ions generated in the adjacent presheath are accelerated in the sheath towards the
cathode. This results in ion bombardment of the cathode surface, leading to a heating
of the cathode. Heat radiation from the positive column is a further contribution to
the temperature increase of the cathode surface. Both high surface temperature and
strong electric field activate different electron emission mechanisms from the cathode’s
surface, which are discussed in detail in Appendix A [11, 33]. The fraction of the
electron current in a high-pressure arc, generated by cathode emission mechanisms,
is of S ≈ 0.7− 0.9 [11]. That is, between 70 % and 90 % of the arc electron current
is generated in the sheath: Je = S · Jtot. The remaining 10 % to 30 % of the total
electric current Jtot result from the flux of positive ions towards the cathode surface.

The presheath, also known as ionization zone, is a longer quasineutral layer of
the order of thickness of several mean free path lengths ` of plasma particles, corres-
ponding to ∼ 100 µm. This layer is located between the sheath and the constricted
zone of the positive column and is responsible for the formation of positive ions due
to electron-impact ionization of neutral particles [34, 30]. Thus, one of the major
functions of the presheath is to provide a sufficient number density of ions, necessary
for the cathode heating [11]. Due to the electron-impact ionization and the resul-
ting electron avalanche, the electron current fraction in the presheath grows from
S ≈ 0.7− 0.9 to almost unity in the positive column [11].

The last subregion of the cathode region is the near-cathode plasma constriction
zone. It forms a transition from the cathode layer to the plasma column. Because of
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its strongly contracted cross section, this zone is characterized by significantly higher
electric field and temperature compared to the positive column.

Another feature of the cathode region is the so-called cathode spot through which
the arc discharge is connected to the cathode surface. The cathode spot is formed
when the energy flux to the cathode does not suffice to heat up the entire cathode
surface to temperature values necessary for activating electron-emission mechanisms.
Instead, the entire electrical current of the electric arc is transmitted to the cathode
through a small surface fraction [11]. Depending on electrodynamic effects, cathode
material and geometry as well as surface heterogeneities, the cathode spot may appear
in different configurations. It can appear as a single and relatively large contact
surface (diffuse spot), a small hot spot, or even as several microspots [20]. Moreover,
cathode spots have a tendency to move on the cathode surface [30].

It is worth to mention, that in high-pressure arcs the cathodic surface acts as a
heat sink. This property is not limited to the cathode spot only, but concerns the
entire cathode surface [30]. Additional energy removal occurs at cathodes with low
melting temperature, like copper or silver, due to melting, sputtering, and evaporation
of the cathode material under the cathode spot.

From Fig. 2.6 it can be seen that in the system under investigation the erosion
takes place at the right edge of the cathode, because it is closest to the anode. It is
assumed that the hot spot is likely to be smaller than the entire eroded zone. Con-
sequently, it probably moves during the discharge or appears as several microspots.

Anode Region

The structure of the anode region is analogous to the cathode region [33], where a
nonequilibrium layer can be identified, consisting of an anodic sheath and a presheath
[20]. Depending on the anode geometry and configuration, the anode-region cross
section may be contracted towards the anode surface and thus may form a near-
anode plasma constriction zone.

According to Benilov [33], the voltage drop in the anode sheath is considerably
lower than in the cathode sheath layer and may even have negative values under
certain circumstances. It occurs because the electrons attracted by the positively
charged anode form a negative space charge near their surface, which in turn repels
the ions leading to a voltage drop in the anode sheath. At high arc currents, this
voltage drop can have values of approximately the ionization potential [11]. Depen-
ding on the arc geometry, an additional voltage drop may occur when the discharge
column is constricted at the anode. This additional voltage drop sometimes exceeds
the voltage drop in the sheath by a factor of two [11].

The anode spots usually occur in high-pressure discharges on relatively small
and inhomogeneous anodes, having current densities of approx. 105 to 107 A ·m−2

[11]. The high electric field in the immediate vicinity of the anode, resulting from
the anodic voltage drop, causes a bombardment of the anode surface by electrons.
This effect together with the heat radiation coming from the arc, leads to the anode
heating. As a result, the anode temperature increases above the boiling point of the
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electrode material, leading to the erosion beneath the anode spot [30]. In Fig. 2.6, it
can be seen that almost the entire anode surface is eroded. This is probably to the
heat radiation from the positive column which is stretched by the high-speed flow
over the anode. An additional energy input could be received from the anodic spot.

Wall Region

The wall surface in the system under investigation is made of polyamide, meaning
that no current is flowing from the plasma to the wall or vice versa. Such an insulating
wall is called "inert" wall [30]. Similar to the electrodes, a sheath (space charge layer)
and a quasineutral presheath are formed on an inert wall [11, 30]. The sheath has a
thickness of the order of the Debye length and thus can be considered as collisionless,
whereas the thickness of presheath is several times larger. Formation of the sheath
takes place because the electrons have a faster thermal velocity than the much heavier
and hence less mobile ions. Thus, the electrons travel much faster towards the wall
and are able to stick to its surface, leaving the near-wall zone to the ions [11]. As a
result, a positively charged sheath is created over the wall [30]. More information on
this topic can be found, for example, in the book of Fridman and Kennedy [11].

For the present work, it is only important that all the effects occurring in the wall
region are more relevant to low-pressure arcs. In high-pressure arcs, these processes
are completely superseded by the function of the wall as a heat sink [30]. Since
the system to be investigated represents a high-pressure arc, it is assumed that the
physical phenomena in the sheath and presheath of the wall are also completely
superimposed by the cooling effects on the wall.

2.3 Analysis of the Aerothermodynamic System

From the thermo- and fluid dynamic perspective, it can be stated that the physical
system to be modelled is a gaseous, supersonic, high-temperature fluid flow, which
is partially ionized at certain locations (here between the electrodes and somewhat
downstream) and hence electrically conductive. The ionized fluid is subject to electric
and magnetic fields and therefore responds to them with certain physical effects.

In the following, the physicochemical system under investigation is analysed from
the view point of aerothermodynamics in order to determine the necessary modelling
depth. For this purpose, the characteristic scales of space and time of the physico-
chemical system are compared with spatial and temporal scales of several separate
physical and chemical processes, occurring in the system [13].

2.3.1 Characteristic Values of the System

Characteristic Electric Field

The voltage drop over the entire discharge amounts to 130 V. This is the approximate
average value measured at the power supply terminals during a gas discharge with
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constant input power of 10 kW. By assuming an overall voltage drop over the cathode
and anode layers of Ucr + Uar ≈ 30 V, the voltage drop over the positive column
becomes Upc ≈ 100 V. The shortest distance between the electrodes amounts to
5 mm. Thus, for the electric-field magnitude along the shortest field lines between
the electrodes the following value is obtained: 100 V/5 mm = 2× 104 V ·m−1. This
value is taken as the characteristic value of the electric-field magnitude Ec.

Characteristic Length

As the characteristic length of the system the radius of the arc column is selected,
since the strongest gradients of the arc properties occur there. However, even stronger
gradients may occur outside the plasma column in the cathode and anode regions.

To estimate the arc radius, the report of Wells [35] is used in which a detailed
study of axially-symmetrical uniform arc columns is given. Wells defines the radial
limit of an arc column as the radius from which the electrical conductivity becomes so
small that it is essentially negligible. For nitrogen plasmas at atmospheric pressures,
the electrical conductivity becomes negligibly small at temperatures below 5000 K,
which is why Wells chooses this temperature as the peripheral temperature of the
arc column TR. Further, he demonstrates that with increasing voltage gradient per
centimetre E and a constant input power per centimetre P , the radius of an axially-
symmetric positive column rpc tends to approach a specific value. Wells calculates
that for a gas discharge with P = 10 kW · cm−1, the arc radius approaches a value
of ≈ 0.00175 m for E > 40 V · cm−1. In the present study, E ≈ 200 V · cm−1 and
the input power per centimetre amounts to 20 kW · cm−1, since P = Parc/d and
Parc = 10 kW. It is therefore assumed that rpc approaches an even smaller value
due to a higher voltage gradients prevailing in the gas discharge to be modelled.
In addition, the system under investigation is a surface discharge in a supersonic
flow which is stretched and pressed against the surface by the gas flow. This could
lead to a further reduction of the radius. Consequently, such a gas discharge is not
radially symmetric. Therefore, the average arc column radius and thus the systems
characteristic length of rpc = lc = 1× 10−3 m are used in the present work.

Characteristic Temperature

In his work, Wells [35] uses arc-column similarity parameters previously defined by
Lord [36] and confirms their validity by numerical calculations. Of particular interest
to the present work is the so-called current parameter IE−1r−2

pc and it can be shown
that it is a function of the centre-line temperature of the arc column T0.

The value of the arc current I is given in Sec. 2.1.2 and is in the range of
approximately 70− 90 A. By inserting the above-mentioned values for the system to
be examined, the following value is obtained for the current parameter:

I

E r2
pc

=
80 A

200 V · cm−1 (0.1 cm)2 = 40 A · V−1 · cm−1 . (2.11)
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Fig. 2.11 shows the variation of current parameter with the centre-line tempera-
ture T0 for nitrogen arcs at p = 1 bar. From this diagram a value of T0 ≈ 12,000 K
can be read out for the system to be examined. This value is considered to be the
characteristic temperature of the positive column. However, due to the electric field
peaks at the electrode edges, higher temperatures are expected there.
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Figure 2.11: Variation of current parameter IE−1r−2
pc given in A · V−1 · cm−1 with

the centre-line temperature for arcs in nitrogen at atmospheric pressure (TR is the
peripheral temperature of the arc column) [35].

Characteristic Velocity

The fluid flow velocity behind the shock amounts to 1336 m · s−1. It is assumed
that the gas discharge protrudes beyond the boundary layer and is therefore located
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partly in the boundary layer and partially in the free-stream flow. For this reason,
for the characteristic velocity magnitude uc a flow speed of 1000 m · s−1 is assumed.

Characteristic Time

After ignition, the gas discharge is operated at a constant input power of 10 kW and
thus is considered to be in a steady state. For steady-state conditions the characte-
ristic time tc can be calculated as follows: tc = lc/uc = 1× 10−6 s [16].

Characteristic Electrical Conductivity

The value of the characteristic electrical conductivity σc for nitrogen at Tc = 12,000 K
is taken from the work of Yos [22] and amounts to 4.4× 103 S ·m−1.

Characteristic Magnetic Field

The estimation of induced magnetic field magnitude is carried out by using the in-
tegral form of Ampère’s law for a constant current I, meaning that the Maxwell’s
correction term can be neglected (magnetostatic case):∮

S

B ds = µ0I . (2.12)

Eq. 2.12 states that the integral of induced magnetic field around a loop is propor-
tional to the electric current passing through the surface enclosed by this loop. The
diameter of the positive column is estimated at ≈ 2lc = 2 × 10−3 m. The integral
of the magnetic field around the arc column is: s = 2lcπ = 0.00628 m. Thus, the
induced magnetic field magnitude can be estimated by: B = µ0I/s. At a current of
80 A, the magnetic field magnitude becomes Bc ≈ 0.016 T. By moving away from
the positive column this value would steadily decrease.

Characteristic Values of the Physicochemical System

All characteristic values of the system under investigation are listed in Tab. 2.2.

Table 2.2: Characteristic values of the system under investigation.

lc uc tc Tc σc Ec Ic Bc

1× 10−3 1× 103 1× 10−6 1.2× 104 4.4× 103 2× 104 80 1.6×10−2

m m · s−1 s K S ·m−1 V ·m−1 A T

2.3.2 Continuum Assumption

One of the requirements for the physicochemical model is its applicability to gas
flows at conditions, prevailing in lower layers of atmosphere. At these conditions, the
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matter may be sufficiently dense for using the so-called continuum description, where
the gas is considered on the macroscopic level and is treated as a fluid [15]. The
continuum description is not valid for low-density flows in which the molecules are
widely spaced. In such cases, the matter is considered as a conglomerate of particles
and therefore methods from kinetic theory must be used for calculations [15].

Conditions for the Continuum Assumption

According to Mitchner and Kruger [16], a plasma can be considered as a continuum
if it is a collision dominated plasma. This assumption is subject to the following two
conditions:

1. In a collision dominated plasma, the mean free paths ` for all constituents
are much smaller than the characteristic length scale for macroscopic change:
`s � lc.

2. The characteristic time scale for macroscopic change must be much larger than
the time of collision intervals: tc � ν−1

s .

The quantity νs is the average collision frequency between particles of species s and
all other particles in the gas mixture [16].

To examine, whether the first condition applies, often the Knudsen number3 is
used. According to Anderson [15], the continuum assumption holds at Knudsen
numbers of Kn < 0.03. The Knudsen number is defined as follows [15]:

Kn =
`s
lc

. (2.13)

The mean free path of the species s may be written as [16]:

`s =
1

n∑
r=1

[
(ms/µsr)

1/2 nrπΩ
(1,1)

sr

] , (2.14)

where the quantity πΩ
(1,1)

sr denotes the weighted average of the collision cross sec-
tion for the momentum transfer between species s and r (also known as momentum
transfer collision integral). The upper bound n of summation in Eq. 2.14 denotes
the total number of species in the gas mixture. The quantity µsr is the reduced mass
of species s and r, defined in Eq. 2.10.

For verifying the second condition for its validity, the averaged momentum transfer
collision frequencies νs of each species s with all other species are required. They can
be calculated by the expression [16]:

νs =
n∑
r=1
r 6=s

nrvsrπΩ
(1,1)

sr , (2.15)

3The Knudsen number (Kn) is a dimensionless number which is defined as the ratio of the mean
free path of a particle to the characteristic length scale for macroscopic change [16].
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where vsr denotes the mean relative speed between particles s and r with Maxwellian
velocity distribution and is defined as [16]:

vsr =

(
8kBT

πµsr

)1/2

. (2.16)

With the help of Eqs. 2.13 - 2.16, the numerical analysis is now conducted to verify
the applicability of the continuum description for the system under investigation.

Continuum Assumption: Verification of the First Condition

Since most data for a nitrogen plasma in the literature are given for an atmospheric
pressure, a pressure of p = 1 bar is assumed for this numerical analysis. The number
densities of the nitrogen-plasma constituents are taken from the report of Pflanz and
ter Horst [37]. According to these data, at T = Tc = 12,000 K the nitrogen plasma is
almost completely dissociated and partially ionized, consisting mainly of N , N+, and
e. The number densities are: nN ≈ 4.6 × 1023 m−3 and nN+ = ne ≈ 6.5 × 1022 m−3.
The molecular masses of the nitrogen atoms, their atomic ions, and the electrons
amount to: mN ≈ mN+ = 2.3259× 10−26 kg and me = 9.109× 10−31 kg, respectively.
The averaged momentum transfer collision integrals of plasma constituents at T =
12,000 K are taken from Yos [22] and shown in Tab. 2.3, where QC denotes the
Gvosdover cross section for Coulomb collisions.

By inserting the given data into Eqs. 2.13 - 2.16, following mean free paths and
Knudsen numbers are calculated for each plasma constituent:

◦ `e = 1.01× 10−6 m and Kne = 0.00101,

◦ `N = 1.31× 10−6 m and KnN = 0.00131,

◦ `N+ = 4.72× 10−7 m and KnN+ = 0.000472.

All calculated mean free path values are much smaller than the characteristic length
value of lc = 1× 10−3 m. Thus, the first condition, `s � lc, for a collision dominated
plasma is met. By calculating the Knudsen number for each species individually, the
conditions of required minimum value of Kn = 0.03 are met as well.

Table 2.3: Averaged momentum transfer collision integrals given in m2 for a nitro-
gen plasma at T = 12,000 K [22].

QC πΩ
(1,1)

ee πΩ
(1,1)

eN πΩ
(1,1)

eN+ πΩ
(1,1)

NN πΩ
(1,1)

NN+ πΩ
(1,1)

N+N+

8× 10−18 0.8QC 5× 10−20 0.8QC 9.3× 10−19 1.7× 10−18 0.8QC

Continuum Assumption: Verification of the Second Condition

The results for the collision frequencies and collision intervals (reciprocal values of
the collision frequencies) are as follows:
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◦ νe = νee + νeN + νeN+ = 4.05× 1011 s−1 + 1.56× 1010 s−1 + 2.86× 1011 s−1

= 7.06× 1011 s−1 and ν−1
e = 1.41× 10−12 s,

◦ νN = νNe + νNN + νNN+ = 2.2× 109 s−1 + 6.63× 108 s−1 + 2.56× 109 s−1

= 5.42× 109 s−1 and ν−1
N = 1.84× 10−10 s,

◦ νN+ = νN+e + νN+N + νN+N+ = 2.86× 1011 s−1 + 4.69× 109 s−1 + 2.53× 109 s−1

= 2.93× 1011 s−1 and ν−1
N+ = 3.41× 10−12 s.

All collision interval values are much smaller than the characteristic time value tc.
That is, the second condition, tc � ν−1

s , is met and the plasma under investigation
is a collision dominated plasma for which the continuum description holds.

Continuum Assumption Verification for the Free-Stream Flow

In conclusion, the same numerical analysis is performed for the "cold" nitrogen gas
flow at T∞ = 234 K and p∞ = 0.34 bar. In this way, it is examined, whether the
continuum assumption also applies to the free-stream flow. The number density nN2 ,
required in Eq. 2.15, is calculated by the formula:

n = ρ
NA

M
, (2.17)

where the Avogadro constant amounts to NA ≈ 6.02214 × 1026 kmol−1, the molar
mass of molecular nitrogen has a value ofMN2 = 28 kg · kmol−1, and the density of
nitrogen at 0.34 bar is ρ∞ = 0.48930 kg ·m−3.

By inserting these values into the equation above, the number-density value results
at nN2 = 1.05 × 1025 m−3. The value of πΩ

(1,1)

N2N2
at T∞ = 234 K is estimated at

≈ 4× 10−19 m2. By using Eqs. 2.13 - 2.16, the following values are obtained for the
free-stream conditions: Kn = 1.68 × 10−4 � 0.03 and tc � ν−1 = 4.0 × 10−10 s.
Thus, the continuum assumption also holds for the free-stream flow.

2.3.3 Laminar-Flow Assumption

In the following, it is investigated whether the flow in the vicinity of the electrodes is
laminar or turbulent. Thus, the key question is whether the transition from a laminar
to a turbulent flow takes place in front of the electrodes or behind them – further
downstream. In the latter case, the flow next to the electrodes would be laminar and
the laminar flow assumption would hold.

The distance between the leading edge of the wedge and the first electrode is
≈ 0.1 m. The transition point xT, which gives the location of the transition region,
can be calculated by using the transition Reynolds number4 ReT as follows [15]:

xT =
ReT µe

ρeue
, (2.18)

4The Reynolds number Re is the dimensionless quantity which gives the ratio of internal forces
to viscous forces within a fluid: ReT = ρuxT/µ, where xT is the distance from the leading edge to
the end of transition.
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where the superscript e denotes the conditions at the edge of the boundary layer.
These values correspond to the values behind the oblique shock wave (see Fig. 2.8)
which are as follows: µ2 ≈ 2×10−5 Pa ·s, u2 ≈ 1336 m ·s−1, and ρ2 ≈ 1.2855 kg ·m−3.

According to Anderson [15], no theory yet exists for the prediction of ReT. How-
ever, for many conditions empirically derived equations exist. In the work of Hopkins,
Jillie, and Sorensen [38], several semiempirical methods derived by Deem and Murphy
for estimating the end of boundary-layer transition are presented. They are derived
for flat-plate wind-tunnel models with supersonic leading edges at an angle of attack
of 0◦. Since the experiments, conducted in the frame of this work, are carried out in
a shock tunnel, these methods seem to be appropriate. For a zero leading-edge blunt-
ness, Deem and Murphy derived the following formula for the transition Reynolds
number prediction [38]:

ReT,0 = 1× 106 + 0.36× 106 |M∞ − 3|3/2 , (2.19)

where M∞ is the free-stream Mach number. Since the system under investigation is
not a flat plate but a wedge with 0◦-angle of attack, the Mach number behind the
shock M2 must be used instead M∞ in Eq. 2.19. By substituting M2 into Eq. 2.19,
the transition Reynolds number becomes ReT,0 = 1.06478× 106.

It must be pointed out that Eq. 2.19 is derived based on a free-stream unit
Reynolds number of Reunit

∞ = 3× 105 inch−1 ≈ 1.18× 107 m−1. The value of Reunit
∞ in

the shock tunnel used for experiments amounts under given conditions to ≈ 5.12 ×
107 m−1. The variation of the transition Reynolds number with unit Reynolds number
can be calculated as follows [38]:

log10 (ReT) = C1 + 0.4 log10

(
Reunit
∞
)
, (2.20)

where C1 is a quantity that depends on such variables like: flat-plate sweep angle,
bluntness, and the unit Reynolds number. The unit Reynolds number in Eq. 2.20
must be given in inch−1. For a zero leading-edge bluntness and a zero flat-plate sweep
angle the expression for the calculation of C1 reduces to:

C1 = log10 (ReT,0)− 2.19 . (2.21)

The complete version of the formula given Eq. 2.21 can be found in [38].
By inserting Eq. 2.21 into Eq. 2.20, the transition Reynolds number for Reunit

∞ ≈
5.12 × 107 m−1 becomes ReT,0 = 1.9176 × 106. When inserting this value into Eq.
2.18, the distance between the leading edge and the transition point becomes xT =
0.02232 m, which is less than the distance between the leading edge and the first
electrode (0.1 m).

Nevertheless, in the frame of this work the flow is assumed to be laminar due to
time constrains and a tremendous complexity of plasma turbulence. The turbulence
modelling will therefore be subject of future research activities.

2.3.4 One-Fluid Approximation

In general, the calculation model for a partially ionized gas can be constructed in two
ways: as a one-fluid model and as a multi-fluid model.
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The idea behind a multi-fluid model arises from the fact that in the presence
of electromagnetic fields differently charged particles respond with different motions
[39]. If the continuum description holds and the plasma is considered as fluid, then
the different behaviour of charged particles can be taken into account by recognizing
each differently charged species as a separate fluid that interacts with other fluids
made up of other species [16]. In this assumption each fluid is represented by an
individual set of mass and momentum conservation equations which are supplemented
by additional source terms. These source terms are used for modelling interactions
between different species as well as their response to the electromagnetic fields, like
frictional drag forces due to collisions between different species or Lorentz forces.
More information on multi-fluid approaches can be found in Surzhikov [13].

For the phenomena with large spatial scales, where plasma is considered to be
neutral and collision dominated, the so-called one-fluid assumption may be used. This
is a simplification of the multi-fluid assumption discussed above. In this assumption,
the mass conservation in the fluid is described by only one equation. Furthermore,
mass-averaged velocity u can be introduced, where the momenta are averaged over
all plasma constituents [39]:

u =
n∑
s=1

msnsus/
n∑
s=1

msns . (2.22)

By summing up over all momentum equations of all species, a single set momentum
conservation equations can be obtained [40]. That is, the fluid is described by a single
set of mass and momentum conservation equations and is referred to as a one-fluid
approximation.

The assumption of a mass-averaged velocity, where u ≈ us, is to be enjoyed with
caution in cases in which electrons are accelerated between the collisions with heavy
particles to high velocities by strong external electromagnetic fields [40]. This may
apply in particular to those plasmas in which free electrons have a large mean free
path, that is, in rather dilute gases.

2.3.5 Perfect Gas Assumption

Anderson [15] defines perfect gas as a gas, where intermolecular forces are negligible.
This assumption holds for gases at pressures p < 10 bar and temperatures T > 300 K.
In the system under investigation, pressure values behind the shock are ≥ 1.4 bar.
The temperature behind the shock ranges from 389 K in the free-stream flow to
∼ 104 K in the gas discharge. That is, the fluid under investigation is assumed to be
a mixture of perfect gases.

In addition, it is assumed that the gas is thermally perfect in which, unlike ca-
lorically perfect gases, the specific heat capacities are not constant, but functions of
temperature and chemical composition. This is due to the fact that vibrational and
electronic excitations of molecules and atoms grow in importance with increasing gas
temperature [15]. Both forms of energy contribute non linearly to the specific heat
capacity.
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2.3.6 Chemical Nonequilibrium Assumption

The investigated system is a chemically reacting mixture. To take this into account,
the liquid is regarded as a multi-species gas in which the composition of the species
can change as a result of ongoing chemical reactions.

All processes in a gas, such as chemical reactions or vibrational and electronic
excitations, take place due to radiative interactions and collisions between gas con-
stituents [15]. It must be taken into account that collision processes in the gas occur
with a certain intensity, depending on factors such as gas temperature and particle
densities. Therefore, it takes some time for the system to reach chemical equilibrium
[15]. If the time scales of chemical reactions are longer than the characteristic time
scale of the system, then a chemical nonequilibrium must be assumed [15]. In this
case, the concentrations of plasma constituents, c1, c2, ..., cn, depend not only on the
thermodynamic state of the fluid, but also on time. The gas composition, in turn,
affects the gas properties.

To examine, whether the system is in the state of chemical nonequilibrium,
the Damköhler number5 is often used. For a system in chemical equilibrium, the
Damköhler number has to be larger than unity (Da� 1). According to Scott [41], in
continuous-flow reactors for a conversion of more than 90 % the Damköhler number
has to be larger than 10. The Damköhler number is defined as follows [14, 42]:

Da =
tc
tr

= k n(n−1)tc , (2.23)

where k is the reaction rate coefficient and the superscript n is the reaction order.
At 9000 K, the molecular nitrogen is almost completely dissociated [15]. It is

therefore assumed that at Tc = 12,000 K the collisional-ionization reaction N + e�
N+ + e+ e is rather the one to be investigated. When running forward, this reaction
represents a second order reaction, hence the superscript n− 1 in Eq. 2.23 becomes
unity. The number density of atomic nitrogen at Tc = 12,000 K is nN ≈ 4.6×1023m−3

[37]. The equation for the forward reaction rate constant kf is taken from Park [14]
and is for 12,000 K as follows:

kf = 2.5× 1033T−3.82exp

[
−168,200

T

]
= 5.34× 1011 cm3 ·mol−1 · s−1 (2.24)

Dividing kf by the Avogadro constant NA and bringing it into the MKS units yields:
kf = 8.87×10−19 m3·s−1. By inserting the above values in Eq. 2.23 yieldsDa = 0.408.
Therefore, chemical nonequilibrium must be assumed for the system.

2.3.7 Assumption of Separable Internal Modes

In accordance with Park [14], for three major molecular species in air (N2, O2, and
NO) the assumption of separable modes is approximately valid. For this assumption

5The Damköhler number (Da) is a dimensionless number defined as the ratio of the available
flow residence time (characteristic time) to the time required for equilibration [14]. It can give a
quick estimate of the degree of conversion that can be achieved in continuous-flow reactors [41].
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to apply, molecules must be considered as rigid rotators and their vibrational motion
is assumed to be harmonic. This assumption allows the separation of the internal en-
ergy of a molecule into four different energy modes, namely the translational, rotatio-
nal, vibrational and electronic-excitation mode. For atoms, the electronic-excitation
mode can also be characterized separately from the translational mode. Detailed
information on the subject of separable modes can be found in Park [14].

2.3.8 Thermal Nonequilibrium Assumption

In the system to be investigated, the area between the electrodes is exposed to a
strong energy input due to Joule heating. Free electrons are accelerated by the elec-
tric field after each collision with heavy particles. These collisions not only increase
the translational energy of the heavy particles, but also increase their vibrational,
rotational and electronic excitations. When entering or leaving the high-temperature
zone, the gas needs some time to balance its thermodynamic properties, since a cer-
tain number of collisions are necessary to reach equilibrium. Therefore, it is assumed
that the temperatures of individual energy modes may deviate locally [15].

The Damköhler number is now used to investigate whether the energy exchange
between different energy modes is fast enough for the LTE assumption. For this
purpose, instead of the equilibration time tr in Eq. 2.23, the relaxation time τ of
each equilibration process is set in relation to the characteristic time.

Translational-Vibrational Relaxation

The translational-vibrational relaxation time τtr-vib for the equilibration between
heavy particles and vibrating molecules is calculated by using the work of Millikan
and White [43], which is given as:

τtr-vib =
1

p (bar)
exp

[
A
(
T−1/3 − 0.015M1/4

)
− 18.42

]
. (2.25)

The molecular constant of the colliding species A and the reduced molecular weight
between the two colliding particles,M, for a nitrogen system are 220 and 14, respec-
tively [43]. So far, the characteristic temperature of Tc = 12,000 K has been used.
But at this temperature the molecular nitrogen is almost completely dissociated.
Therefore, a lower temperature is used in this particular calculation. At a tempera-
ture of T = 6000 K and a pressure value of p = 1 bar τtr-vib is approx. 3.0× 10−6 s.
This value is larger than the characteristic time tc = 1×10−6 s, which means that the
Damköhler number for this thermodynamic process is smaller than unity. Therefore,
in the low-temperature regions, like in the vicinity of the wall or at the arc column
periphery, vibrational nonequilibrium may occur.

Electron-Impact Vibrational Relaxation

The electron-impact vibrational relaxation time τvib-e is calculated by using the empi-
rical curve-fit formulas derived by Lee [44]. Since nitrogen molecules are also involved
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in this process, a lower temperature of T = 6000 K is also used here for the calculation.
For the electron temperature range of 1000 K ≤ Te ≤ 7000 K the electron-impact
vibrational relaxation time is given by [44]:

log10 (τvib-epe (bar)) = 3.91 (log10Te)
2 − 30.36 (log10Te) + 48.90 . (2.26)

The electron pressure can be calculated by the formula: pe = kBneTe. At T = 6000 K
the number density of the electrons has a value of approximately 3.3× 1019 m−3 [37].
By inserting these values into Eq. 2.26, the electron-impact vibrational relaxation
time yields τvib-e ≈ 1.34 × 10−6 s. This value is higher than the characteristic time
tc, that is at T = 6000 K the Damköhler number is smaller than unity. Therefore,
in cooler regions, for the electron-impact vibrational relaxation process the system is
considered to be in the state of nonequilibrium.

Translational Energy Exchange between Electrons and Heavy Particles

The rate of the energy exchange between the translational energy of free electrons
and the translational energy of heavy particles is defined by Park [14] as follows:

Q̇tr-e =
3

2
nekB (T − Te)

n∑
s=1
s 6=e

2me

ms

νe,s . (2.27)

By introducing this equation, Park refers to the calculations done by Morse [45] where
this energy exchange rate is defined as:

∂

∂t

(
3

2
kBT1

)
=

1

τtr-e

(
3

2
kB (T2 − T1) +

1

2
m2 |∆u|2

)
. (2.28)

The term |∆u|2 = 0 due to the one-fluid approximation used in the frame of this
work. This expression is similar to the general relaxation equation given as [15]:

de

dt
=

(eeq − e)
τ

, (2.29)

which is used in this work for modelling equilibration processes. Thus, the relaxation
time of the translational energy exchange between electrons and heavy particles τtr-e
(Morse refers to it as a relaxation coefficient) may be defined as follows:

1

τtr-e
=

n∑
s=1
s 6=e

2me

ms

νe,s . (2.30)

According to [37], at T = 12,000 K the nitrogen plasma consists mainly of N, N+,
and e. Consequently, ms ≈ mN = 2.3259× 10−26 kg for all heavy species. The mass
of an electron amounts to me = 9.109 × 10−31 kg. The collision frequency between
the electrons and heavy particles at T = 12,000 K is: νeN + νeN+ = 3.016× 1011 s−1
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(see Sec. 2.3.2). By substituting these values into Eq. 2.30, the relaxation time of
τtr-e ≈ 4.24× 10−8 s is obtained. This value is considerably below the characteristic
time value, that is, the Damköhler number is much greater than unity and the process
under investigation is considered to be in the state of equilibrium.

However, the relaxation time τtr-e increases dramatically for lower temperature
regions. To demonstrate this, the calculation of τtr-e is carried out again for T =
6000 K. According to [35, 37], the number densities nN2 , nN, nN+

2
, and nN+ at 6000 K

and p = 1 bar are approximately: 1 × 1024 m−3, 2.5 × 1023 m−3, 1.1 × 1019 m−3,
and 2.2 × 1019 m−3, respectively. The corresponding averaged momentum transfer
collision integrals at T = 6000 K are taken from Yos [22] and shown in Tab. 2.4. By
using the above listed data together with Eqs. 2.13 - 2.16, the value of relaxation time
at T = 6000 K amounts to τtr-e ≈ 4.18 × 10−7 s. This yields a Damköhler number
of 2.39. This value, although greater than one, is below the value of 10 necessary for
a conversion of more than 90 %. For this reason, a nonequilibrium is assumed for
the thermalisation between heavy particles and electrons in colder arc regions. Apart
from this, the physicochemical model should also be applicable to systems in which
the thermodynamic nonequilibrium is more likely to appear (e.g. electric discharges
in diluted gases).

Table 2.4: Averaged momentum transfer collision integrals in m2

in a nitrogen plasma at T = 6000 K [22].

QC πΩ
(1,1)

eN πΩ
(1,1)

eN+ πΩ
(1,1)

eN2
πΩ

(1,1)

eN+
2

5× 10−17 5× 10−20 0.8QC 1× 10−19 0.8QC

Thermal Nonequilibrium Assumption: Conclusion

From the above analysis, it can be seen that at 12,000 K the Damköhler number for
the equilibration between the translational energies of heavy particles and electrons
is much larger than unity. However, at temperatures below 6000 K the state of
nonequilibrium gradually begins. Furthermore, at 6000 K the Damköhler numbers
for electron-impact vibrational relaxation and the translational-vibrational relaxation
the values are slightly below the value of one. It might therefore be assumed that
LTE occurs somewhere between 6000 K and 12,000 K.

2.3.9 Assumption of Translational-Rotational Temperature

In the present work it is assumed that the translation and rotation temperatures are
equal (T = Ttr = Trot). This assumption is adopted from Park [14] and it states that
both rotational and translational energy modes can be merged into one energy pool
characterized by one translational-rotational temperature T . This assumption implies
a very fast relaxation of a possible rotational nonequilibrium with the translational
mode. Since under certain conditions a rotational nonequilibrium may occur, this
assumption should be used with caution.
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2.3.10 Assumption of Electron-Electronic Temperature

In his work, Park [14] states that electronic excitation of atoms and molecules takes
place mostly as a result of collisions with free electrons. Park assumes that the
energy contained in the translational mode of free electrons and the energy of elec-
tronic excitation of heavy particles can be characterized by a single temperature:
Te = Te,tr = Tel. That implies a very fast equilibration between these two energy
modes. Such an assumption might be useful for calculating high-temperature gas dy-
namics in processes, where free electrons are not exposed to external electric fields.
Park’s work, for example, deals with aerodynamics in nonequilibrium hypersonic flow
regimes. In the work presented here, however, the energy-exchange chain starts with
the energy of free electrons accelerated by an external electric field. These elec-
trons then transfer their energy to heavy particles through equilibration processes.
That is, the temperature of free electrons Te,tr would be possibly higher, than the
electronic-excitation temperature Tel. Nevertheless, the assumption of a common
electron-electronic temperature is used in this work due to time constrains. The
separate treatment of both energy modes will therefore be subject of future research
activities. A further discussion is needed on this issue.

It is worth to mention that in some research works the energy contained in the
electronic-excitation mode is neglected, on the justification that its contribution is
negligibly small. The impact of this simplification is now examined.

To simplify the calculation, the nitrogen is assumed to be in thermochemical
equilibrium. As previously estimated, at T = 12,000 K the nitrogen plasma consists
mainly of N, N+, and e, with the following number densities: nN ≈ 4.6 × 1023 m−3

and nN+ = ne ≈ 6.5× 1022 m−3. The electronic-excitation energy per cubic meter is
calculated as follows:

Eel =
n∑
s=1
s 6=e

ρcsRs
εel,s(T )

kB

=
n∑
s=1
s 6=e

kBεel,s(T ) .

The values of εel,s are calculated using Park [14] and Scalabrin [46]. The translational
energy of free electrons is obtained by:

Ee,tr =
3

2
ρceReT =

3

2
kBneT .

The calculation delivers the following values: Eel,N ≈ 43469.8 J · m−3, Eel,N+ ≈
1811.4 J ·m−3, and Ee,tr ≈ 16150 J ·m−3. This shows that the electronic-excitation
energy makes up a greater part of the common electron-electronic energy pool at
12,000 K and thus is taken into account in the present work.

2.3.11 Multitemperature Approach

The calculation of the species composition in the plasma requires the knowledge
of the reaction rates of the ongoing chemical reactions. The reaction rate of each
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chemical reaction is a function of temperature and concentration of reactants and
products. The system under investigation is assumed to be in a state of thermody-
namic nonequilibrium at the periphery of the arc column and in the electrode regions.
That is, the temperatures of different energy modes may significantly depart from
each other (Tvib 6= Te 6= T ). Vibrationally highly excited molecules (at high Tvib)
dissociate more easily than those of lower excitation levels because they require less
collisions with other particles. Consequently, Tvib must be included into the calcula-
tion of reaction rates of molecular dissociation. By following this strategy, it becomes
clear that for reaction mechanisms such as electron-impact dissociation or ionization,
the electron-electronic temperature Te must be taken for the calculation.

Summing up, it can be stated that for an accurate calculation of the species
composition of a nonequilibrium system, the multitemperature approach should be
used for calculating reaction rates, where all three temperatures: T , Tvib, and Te, are
taken into account in the reaction-rate calculations.

2.3.12 Harmonic Oscillator Model

According to Park [14], for the vibrational excitation of diatomic molecules near the
potential minimum all potential curves can be approximated roughly by a parabola.
That is, for lower vibrational energy levels the energy contained in the molecular
vibration of diatomic molecules can be calculated by means of the harmonic-oscillator
model. However, this concept must be used with caution, because in reality all
molecules are anharmonic oscillators [15]. This anharmonic behaviour is particularly
noticeable at higher vibrational energy levels. For more information see Park [14].

In the frame of this work, the concept of harmonic oscillator is used for the
calculation of the vibrational energy content in the gas. By means of statistical
thermodynamics the vibrational energy per molecule is derived as follows [15]:

εvib = kBT
2 d

dT
[ln (Qvib)] , (2.31)

where Qvib is the vibrational partition function of a molecule. For a rotationless
harmonic oscillator, Qvib is such that [14]:

Qvib =
1

1− exp [−E1/(kBT )]
, (2.32)

where E1 denotes the energy of vibrational excitation from the vibrational quantum
number v = 0 to v = 1. From the quantum mechanics it is known that E1 = hf =
hω/2π, where h denotes the Planck constant. For a harmonic oscillator the angular
frequency is calculated by: ω = (κ/µ)1/2, where κ denotes the spring constant of
the harmonic oscillator and µ the reduced (equivalent) mass of two nuclei, defined
in Eq. 2.10 [14]. By combining Eqs. 2.31 and 2.32 and evaluating the temperature
derivative, the average vibrational energy per molecule is calculated as follows [14]:

εvib =
E1

exp [E1/(kBT )]− 1
. (2.33)
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Again, the harmonic oscillator assumption is a good approximation for the first
few vibrational energy levels only. However, Lee [21] assumes that the contribution
of the vibrational energy of molecules at higher energy levels is negligible due to the
low concentration of those molecules. For this reason the harmonic oscillator model
is used in the frame of this work. Whether this statement is sufficiently precise for
the system under investigation will remain the subject of future investigations.

2.3.13 Quasineutrality Condition

On a macroscopic level a partially ionized gas can be considered as quasineutral. The
quasineutrality condition is defined as follows [39]:

ρc =
n∑
s=1

nsqs ' 0 , (2.34)

where ρc is the charge density in C ·m−3. Eq. 2.34 states that on a macroscopic level
in a given volume of plasma the electron and ion number densities are approximately
equal (ne ≈ ni). It happens, because electrostatic forces between electrically charged
particles in the gas do not allow noticeable charge accumulations or separations to
occur [16, 40]. However, on a microscopic level a deviation from the quasineutrality
can take place. The size of such a non-neutrality region has an extent of the order of
a Debye length λD [40]. Therefore, λD indicates the scale length of plasma quasineu-
trality [39, 47]. That is, over distances much larger than the Debye length plasma is
quasineutral [47]. The Debye length may be calculated as follows [16]:

λD ≡
√
TekBε0

e2ne
' 69.0

√
Te

ne
. (2.35)

For an electron temperature Te = Tc = 12,000 K and the electron number density of
ne ≈ 6.5× 1022 m3 the Debye length is ≈ 2.96× 10−8 m. According to Mitchner and
Kruger [16], the model in Eq. 2.35 is valid only when the number of electrons in a
sphere of a radius of λD is large. This can be examined via the condition [16]:

4

3
πλ3

Dne � 1 , (2.36)

where a sphere of a radius of λD is multiplied with the electron number density. By
using already calculated values Eq. 2.36 yields: 6.62 � 1. That is, the model used
for the Debye length calculation reaches its limits of applicability. But even already
for a sphere with the radius of 3 × λD the number of electrons would increase from
6,62 to 186. For this reason the model demonstrated in Eq. 2.35 is considered to be
valid for the present calculation.

Mitchner and Kruger [16] state that if the Debye length is small compared to other
macroscopic lengths of importance, the assumption of quasineutrality can be made.
They suggest to compare λD with electron mean free path, which is already calculated
for the verification of continuum assumption and has a value of `e = 1.01× 10−6 m.
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The Debye length is of about a factor of 34 smaller than the electron mean free path
and thus the condition `e � λD is fulfilled. Furthermore, according to Callen [39],
plasmas that are larger than a Debye length in size, are often said to be quasineutral.
By comparing the characteristic length lc = 1 × 10−3 m with λD, it is evident that
the condition lc � λD is also met. In the present work, the quasineutrality condition
is used as the basis for further assumptions discussed below.

2.3.14 Assumption of Ambipolar Diffusion

In an ionized gas, the diffusion of electrons and ions cannot be considered independent
from each other. When an electron pressure gradient exists, the much lighter and
consequently more mobile electrons will move away from the zone of higher electron
pressure [21, 11]. The much heavier ions are less mobile and thus cannot diffuse as
fast as the electrons. That is, the diffusion coefficient of electrons exceeds by several
orders of magnitude the diffusion coefficient of ions [30]. At the microscopic level, this
leads to a zone of charge separation, resulting in electric polarization fields between
fast electrons and much slower ions [11]. Due to these polarization fields, the motion
of electrons is restrained and the motion of ions is accelerated [13]. In this way,
the motions of electrons and ions are linked to each other and can be described as
a collective motion, meaning that electrons and ions move as a group. This is the
concept of the ambipolar diffusion which is often used for collision-dominated and
quasineutral plasmas. Since the plasma under investigation fulfils both requirements,
the diffusion of charged particles can be considered as ambipolar. However, this
concept does not account for the effects on the drift diffusion of charged particles
generated by the voltage drop on the electrodes. More information on this subject
can be found in Mitchner and Kruger [16] and Fridman and Kennedy [11].

2.3.15 MHD Approximation

For collision-dominated and conductive gases, for which the quasineutrality and con-
tinuum assumptions apply, the so-called magnetohydrodynamics (MHD) approxima-
tion can be used. The MHD approximation allows it to considerably simplify the
system of Maxwell’s equations and the Ohm’s law. In this assumption, the electri-
cally conductive media are regarded as continua. This is the difference to classical
plasma physics where the ionized gas is not recognized as a fluid but as consisting of
particles of various kinds [48].

The MHD approximation is discussed in detail and verified for the system under
investigation in Sec. 3.3.3. At this point, it is enough to mention that this assumption
is used in the present work for modelling.

2.3.16 Magnetostatic Approximation

In the system under investigation, direct current is used to operate the gas discharge.
According to Griffiths [49], steady currents produce magnetic fields that are constant
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in time. It is therefore assumed that the induced magnetic field surrounding the
positive column is static. This assumption is called magnetostatics and represents
a suitable approximation even for fluctuating currents, provided that the current
alternates very slowly compared to the system’s characteristic time. The verification
of this assumption is presented in Sec. 3.3.4.

2.4 General Modelling Concept

2.4.1 Definition of General Modelling Concept

Summary of Assumptions used in the Physicochemical Model

The following assumptions and simplifications were discussed in Sec. 2.3:

◦ continuum assumption,

◦ laminar-flow assumption,

◦ one-fluid approximation,

◦ perfect gas assumption,

◦ chemical nonequilibrium assumption,

◦ assumption of separable internal modes,

◦ thermal nonequilibrium assumption,

◦ assumption of translational-rotational temperature,

◦ assumption of electron-electronic temperature,

◦ multitemperature approach,

◦ harmonic oscillator model,

◦ quasineutrality condition,

◦ assumption of ambipolar diffusion,

◦ MHD approximation,

◦ magnetostatic approximation.

Impact of Assumptions on the Modelling Concept

The continuum assumption is fundamental to the whole physicochemical model. It
allows to use the governing equations of fluid dynamics. Furthermore, due to laminar-
flow assumption, turbulence modelling is not considered in this work. In addition,
the one-fluid approximation allows to describe the whole gas mixture by a single set
of mass and momentum conservation equations.
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The system under investigation is a multi-species flow in the state of chemical
nonequilibrium. This fact is taken into account by supplementing the fluid-dynamical
model with species conservation equations in which the species production and de-
struction due to ongoing chemical reactions are modelled by additional source terms.

The assumption of separable modes allows to distinguish between individual en-
ergy modes contained in the internal energy of the gas. It allows the consideration of
the thermodynamic nonequilibrium in the physicochemical system. Further, by ap-
plying the assumptions of translational-rotational and electron-electronic temperatu-
res, the number of energy modes can be reduced from five to three. That is, three sep-
arate energy conservations equations are needed for the calculation of thermodynamic
processes in the physicochemical system. The vibrational- and electron-electronic-
energy equations are used for obtaining Tvib and Te. The translational-rotational
temperature T is calculated by solving the total energy conservation equation and,
subsequently, subtracting all energy modes from it except Etr−rot.

The perfect-gas assumption allows to correlate the state variables of the gas mix-
ture (density, temperature, pressure) by two perfect-gas equations of state: one for
the electron pressure pe and one for the total pressure p.

The fluid under consideration is a partially ionized and thus electrically conducting
gas which is subject to electric and magnetic fields. Such a fluid behaves differently
than a neutral fluid, because it responds to electrical and magnetic fields with certain
physical phenomena. To take this into account the fluid-dynamical model is modified
in two ways. First, additional source terms are included in the conservation equations
for modelling the action of electric and magnetic fields on the ionized gas [16]. These
are the Joule heating Q̇Joule and the Lorentz force FLorentz. Second, the calculation of
the transport properties of the fluid must be set up for an ionized gas. In the present
work, it specifically concerns the diffusion coefficients of charged particles for which
the concept of ambipolar diffusion is used.

The calculation of Q̇Joule and FLorentz requires the information about the spatial
distribution of the electric and magnetic fields E and B, as well as information about
the electrical current density J in the system. These data are obtained by solving
Maxwell’s equations, which are considerably simplified. First, the set of Maxwell’s
equations is simplified by applying the concept of the so-called MHD approximation.
Then, a further appreciable simplification is achieved through the magnetostatic ap-
proximation. As a result, the total number of electrodynamic model equations de-
creased significantly. Finally, the simplified set of Maxwell’s equations is expressed in
its potential form, where the calculation of electromagnetic fields is based on solving
the electric potential Φ and the magnetic vector potential A.

Modelling Concept

The fluid flow in the system under investigation is characterized by following vari-
ables: p, pe, ρ, u = (ux, uy, uz)

T , T , Tvib, Te, and species concentrations c1, c2, ..., cn.
These are 9 +n variables, where n denotes the total number of species in the system.
All these variables are calculated by means of the thermo-fluid dynamic module that
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forms the core of the physicochemical model (see Fig. 2.12). The thermo-fluid dyna-
mic module consists of 7 + n conservation equations, plus two additional perfect-gas
equations of state for calculating p and pe.

CHEMICAL KINETICS

THERMO-FLUID DYNAMICS

mass conservation equation

3 momentum conservation equations for ux, uy, uz
FLorentz

species conservation equation for c1
...

ω̇1, . . . , ω̇n species conservation equation for cn

vibrational energy conservation equation

electron-electronic energy conservation equation
internal
energy

exchange

Q̇Joule

Q̇rad

total-energy conservation equation

ideal gas equation of state for pe

ideal gas equation of state for p

c1, . . . , cn

Tvib, Te, T

ELECTRODYNAMICS

Laplace’s equation for electric potential Φ

3 Poisson’s equations for magnetic vector potential
components Ax, Ay, Az E, B, J

generalized Ohm’s law (for calculating J)

σ(Te, c1, . . . , cn)

p = pe + php

Figure 2.12: Schematic representation of the basic concept.

All three energy conservation equations for calculating T , Tvib, and Te, are coupled
by additional source terms, representing the internal-energy exchange due to equilib-
ration processes between different energy modes (see Fig. 2.12). The energy exchange
between the system and the environment is represented in the present work by two
processes, namely the energy gain through the Joule heating effect Q̇Joule and the
energy loss via radiation Q̇rad.

The task of the chemical kinetics module consists in providing information on
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the species production and destruction due to ongoing chemical reactions in the gas
mixture via source terms for mass production rates: ω̇1, ω̇2 ..., and ω̇n (given in
kg · m−3 · s−1). For the calculation of these terms, the chemical kinetics module, in
turn, needs the information about the instantaneous species concentrations c1, c2 ...,
and cn, as well as temperatures T , Tvib, and Te (see Fig. 2.12). This results in a
mutual coupling between the fluid dynamics and the chemical modules.

The calculation of the fields E, B and J, required for computing Q̇Joule and
FLorentz, is carried out by the electrodynamics module (see Fig. 2.12). The electro-
dynamics module forms a closed equation system consisting of one Laplace equation
for the calculation of the scalar field Φ and three Poisson equations for the calcula-
tion of the vector field A. The electric current density J is calculated based on the
generalized Ohm’s law. The electrodynamic module requires information about the
temporal and spatial distribution of electrical conductivity in the arc discharge σ,
which is a function of c1, c2 ..., cn, and Te. This creates a mutual coupling between
fluid dynamics and electrodynamics modules explained in more detail in Sec. 3.3.6.

2.4.2 Arc Ignition Modelling

In the frame of this work, the preionization process depicted in Fig. 2.5 is not
considered. Therefore, the anode a is not taken into account in the modelling. The
arc ignition is modelled by locally heating up the gas between the electrodes b and c
via an additional source term in the energy conservation equation until the ionization
begins and the gas becomes a conductor. As a result, the electrical circuit closes and
the electric arc goes over into a self-sustaining operation mode.

2.4.3 Pollution of Plasma by Electrode Material

An appreciable contamination of nitrogen by copper is assumed due to the signi-
ficant erosion of the electrode material (see Fig. 2.6). However, the characteristic
temperature of the system is in the range of Tc = 12,000 K, which is why the copper
contamination should not significantly affect the transport properties of the plasma
in the core of the arc column (see Fig. 2.7). However, this assumption should
be treated with caution, because in colder peripheral zones of the arc column the
presence of copper vapour might significantly affect the transport properties of the
nitrogen plasma. Due to missing data for copper vapour, pure nitrogen plasma is
modelled in the present work.

2.4.4 Wall Modelling

In the present work, no information is available about the temperature profile on
the wedge surface during the gas discharge. At the beginning of the shock-tunnel
experiment, the surface of the wedge is at room temperature (293.15 K). Therefore,
the surface acts as a strong heat sink during discharge, which is why the assumption
of an adiabatic wall would be rather invalid. From the tempering colours that occur
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on the metallic part of the wedge surface after a discharge, it can be seen that the
assumption of room temperature on the wall is also unfavourable. These tempering
colours are recognizable in Fig. 2.6 on the right. The blue and grey colours indicate
that the wall temperature in this area was over 600 K. It can be assumed that
in the areas closer to the arc-column centre-line, the wall temperatures during the
discharge are even higher. For this reason and due to missing information, a maximum
temperature of 1000 K is used as a boundary condition for the wall modelling. This
simple assumption should be replaced by a more accurate model.

2.4.5 Modelling of Near-Electrode Nonequilibrium Layers

Dimensions of the Near-Electrode Layers

The thickness of the cathodic sheath is of the order of the Debye length λD. In Sec.
2.3.13, a value of 2.96 × 10−8 m has been determined for λD for the system under
investigation. The thickness of the cathodic presheath is of the order of several mean
free path lengths for which values between 4.72 × 10−7 m and 1.01 × 10−6 m were
determined in Sec. 2.3.2. That is, in the analysed physicochemical system, the thick-
ness of the cathodic presheath is approximately in the order of several microns, giving
a total thickness of the cathodic nonequilibrium layer of the order of ∼ 1...10 µm. As
far as the near-anode layer is concerned, it is assumed that the sheath and presheath
thicknesses are of the same order of magnitude as in the cathodic layer.

Modelling Concept of the Near-Electrode Layers

Due to the high complexity of the processes within the near-electrode layers (sheath
and presheath) and their small dimensions compared to the characteristic length of
the system, the cathode and anode layers are not modelled in the present work.
Consequently, neither electron emission processes nor electrode erosion are model-
led. That is, the electrode layers are skipped and the modelling domain at the
electrode surfaces begins directly with the constricted zones of the positive column.
Consequently, the gas conditions prevailing in the constricted zones represent the
electrode-surface boundary conditions.

It is essential to mention that in the present work no drift diffusion of electrons
and ions between the electrodes, caused by external electric and magnetic fields,
is modelled. Instead, only the species concentrations of the gas constituents are
considered (one-fluid assumption). The composition of the gas and, consequently,
its ionization degree are dictated by the gas temperatures: T , Tvib, and Te. This
approach eliminates the need of modelling the electron emission from the cathode.

The fraction of the electron current S with respect to the total electric current
grows over the thickness of the cathodic layer from ≈ 0.8 at the electrode surface
to approximately 1 in the constricted part of the positive column. This means that
the electric current density in the modelled area consists almost exclusively of the
electron current density: J ≈ Je. For the ion current, it is assumed that: Ji ≈ 0.
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2.4.6 Joule Heat Efficiency

Later in Sec. 3.3.2 it will be shown that the induction current may be neglected for
the system under investigation. In this way, Ohm’s law for the calculation the electric
current density can be reduced to: J = σE. Thus, the energy input into the gas by
the Joule-heating effect may be estimated by the following simplified expression:

Q̇Joule = J · E ≈ σE2 . (2.37)

However, there are several factors that reduce the effectiveness of the Joule hea-
ting, which is why an efficiency coefficient η is introduced as follows: Q̇Joule =
η (J · E). The value of η is usually in the range of η ∼ 0.1 − 0.9, depending on
the physical system [13]. According to Takahashi et al. [12], η takes into account
losses due to voltage drop on the electrodes and heat losses on the electrode surface.

In the following, an attempt is made to estimate the value of η for the system
under investigation. The typical characteristic value of the cathodic voltage drop
for a copper electrode in a high-pressure arc amounts to 18 V [11]. The voltage
drop in the anodic sheath is of a value of about the ionization potential, which is
7.72 eV for copper. Additional anodic voltage drop occurs due to the arc channel
constriction in the anode region, which may sometimes exceed the anodic-sheath
voltage drop by a factor of two [11]. In the following, it is assumed that the total
voltage drop over the electrode layers amounts to 30 V. In this work, an electric-
potential difference at the electrodes of 130 V is assumed. Thus, the voltage drop
over the positive column is of 100 V. For an electrode distance of d = 5 mm, a simple
estimation (E ≈ ∆Φ/d) yields for the voltage drops of 130 V and of 100 V electric
field magnitudes of 26,000 V · m−1 and 20,000 V · m−1, respectively. For a simple
estimation of Joule heating, Eq. 2.37 is now used. By assuming a characteristic
electrical conductivity of σc = 4.4× 103 S ·m−1, Eq. 2.37 yields for a voltage drop of
130 V a heat power of Q̇Joule = 2.974× 1012 W ·m−3 and for 100 V a heat power of
Q̇Joule = 1.760×1012 W·m−3. As a result, the consideration of the voltage drops at the
electrodes leads to a reduction of the heat input power down to 59.17 % (η = 0.5917).

A further reduction of the heat input power efficiency could result from the heat
losses on the electrodes due to such effects, like sputtering and evaporation of the
electrode material and heat radiation from the electrode surface. The individual con-
tributions of these effects to the efficiency reduction were not investigated. However,
it is clear that the value of η would be further reduced by these energy sinks. In the
present work the value of η = 0.5 is used. Whether this value is accurate enough for
the physical system to be modelled, remains the subject of future investigations.



Chapter 3

Physicochemical Model

The purpose of this chapter is to define a physicochemical model describing electric
discharges in supersonic gas flows. The system under investigation is a multi-physical
system that involves chemical kinetics, thermo-fluid dynamics, and electrodynamics.
Therefore, the physicochemical model is divided into three blocks, which are discussed
separately. Sec. 3.1 describes the chemical kinetics modelling. In Sec. 3.2 the thermo-
fluid dynamics modelling is discussed. Sec. 3.3 is devoted to the electrodynamics
modelling. The chapter ends with closing remarks given in Sec. 3.4.

3.1 Chemical Kinetics Modelling

The aim of this section is to set up a model for calculating the mass production rates
of chemical species: ω̇1, ω̇2 ..., and ω̇n. The equations used herein originate from the
field of chemical kinetics – a domain of physical chemistry.

3.1.1 Kinetic Mechanism for High-Temperature Nitrogen

The fluid to be examined is a high-temperature nitrogen. In the frame of this work,
only singly charged and positive ions are taken into account. Therefore, the gas
mixture includes the following five species: N2, N, N+

2 , N+ and e.
Since a temperature of 12,000 K is expected in the centre line of the arc column,

no doubly- or triply-charged ions (N++ and N+++) have to be considered for this arc
region. However, near the electrode edges in the constricted zones of the positive
column much higher temperatures are expected, especially at the cathode. From a
temperature of over 25,000 K, the production of N++ becomes noticeable, as exem-
plified in Fig. 3.1, and will affect the properties of the gas. In addition, the required
second ionization energy would be extracted from the gas, leading to the cooling of
the plasma at the electrode edges. It is therefore important to include the production
of N++ in the kinetic mechanism for intensive high-pressure arc discharges. However,
it is extremely difficult to obtain all necessary data. For this reason, doubly-charged
ions are not included in the present work for now.

47
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Figure 3.1: Mole fractions X of nitrogen species versus temperature at atmospheric
pressure [50].

The kinetic mechanism for the ionized nitrogen used in this work consists of eight
chemical reactions shown in Tab. 3.1. This kinetic mechanism is taken from Yu et al.
[24]. It represents a combination of selected chemical reactions for high-temperature
nitrogen, taken from the work of Dunn and Kang [25] and the work of Park [14].
Both works provide data for kinetic mechanisms of high-temperature air.

Table 3.1: Kinetic mechanism for high-temperature nitrogen∗ [24].

r Reactants Products Tf Tb A η θa Ref.

1 N2 + N2 
 N + N + N2

√
TTvib T 4.700× 1017 −0.50 113,200 [25]

2 N2 + N 
 N + N + N
√
TTvib T 4.085× 1022 −1.50 113,200 [25]

3 N2 + N+
2 
 N + N + N+

2

√
TTvib T 7.000× 1021 −1.60 113,200 [14]

4 N2 + N+ 
 N + N + N+
√
TTvib T 3.000× 1022 −1.60 113,200 [14]

5 N + N 
 N+
2 + e T Te 1.400× 1013 0.00 67,800 [25]

6 N2 + e 
 N + N + e Te

√
TTe 3.000× 1024 −1.60 113,200 [14]

7 N + e 
 N+ + e+ e Te Te 1.100× 1032 −3.14 169,000 [25]
8 N2 + N+ 
 N+

2 + N
√
TTvib

√
TTvib 2.020× 1011 0.81 13,000 [25]

∗ Forward rate coefficients kf calculated by using these data, have the unit of cm3 ·mol−1 ·
s−1. The temperature of activation θa is calculated as follows: θa = Ea/R, where Ea is the
activation energy, given in cal ·mol−1 and R is the ideal gas constant in cal ·mol−1 ·K−1.
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All reactions shown in Tab. 3.1 are written in their endothermic direction, mean-
ing they absorb energy to proceed from left to right. In the field of aerospace, this
is a common way to write a chemical reaction equation [14]. This convention makes
it possible to clearly define the forward and the backward direction of the reaction,
namely the endothermic direction is the forward direction. Furthermore, all reactions
are binary, that is, they take place as a result of collisions between two particles. Re-
actions r = 1− 4 represent thermal dissociation of N2 by collisions with N2, N, N+

2 ,
and N+. Reaction r = 5 represents the process of associative ionization. The re-
verse reaction would be the dissociative recombination. Reactions r = 6 and r = 7
are the electron-impact dissociation and the electron-impact ionization, respectively.
Reaction r = 8 is a charge-exchange reaction between molecular and atomic nitrogen.

3.1.2 Species Production Rates

Production Rate Calculation

The mass production rate of species s, which has the units of kg ·m−3 · s−1, can be
written as a product of the reaction rate dΥs/dt, given in kmol ·m−3 · s−1, and the
molar massMs, given in kg · kmol−1:

ω̇s =
dρs
dt

=
dΥs

dt
Ms . (3.1)

The molar concentration per unit volume Υs has a unit of kmol ·m−3. The values of
molar massMs for all species in the system are given in Appendix B in Tab. B.3.

A general equation for the calculation of the forward reaction rate is given by [15]:(
dΥs

dt

)
f

= (ν ′′s − ν ′s) kf
n∏
j=1

Υ
ν′j
j , (3.2)

where the quantities ν ′s and ν ′′s denote the stoichiometric mole numbers of the re-
actants and products, respectively. The subscript j in Eq. 3.2 denotes all species
participating in the reaction. The constant of proportionality kf is the forward reac-
tion rate constant. The backward reaction rate is given by [15]:(

dΥs

dt

)
b

= − (ν ′′s − ν ′s) kb
n∏
j=1

Υ
ν′′j
j . (3.3)

where kb is the backward reaction rate constant. The net reaction rate is the com-
bination of forward and backward reaction rates:

dΥs

dt
= (ν ′′s − ν ′s)

[
kf

n∏
j=1

Υ
ν′j
j − kb

n∏
j=1

Υ
ν′′j
j

]
. (3.4)

As an example, the reaction for thermal dissociation of molecular nitrogen (N2 +
M
 2N + M) is now considered, where M denotes the collision partner (e.g. M = N



50 Chapter 3: Physicochemical Model

for reaction r = 2 in Tab. 3.1). In this particular reaction mechanism, the subscript
j stands for the species N2, N, and M. The stoichiometric mole numbers have the
following values: ν ′N2

= 1, ν ′N = 0, ν ′M = 1, ν ′′N2
= 0, ν ′′N = 2, and ν ′′M = 1. The

forward and backward reaction rates for the formation of atomic nitrogen N can be
calculated as: (

dΥN

dt

)
f

= 2kfΥN2ΥM and
(
dΥN

dt

)
b

= −2kbΥ2
NΥM .

The net reaction rate for N is then calculated as follows:

dΥN

dt
= 2

[
kfΥN2ΥM − kbΥ2

NΥM

]
.

By summing up Eq. 3.4 over all chemical reactions occurring in the system under
investigation and substituting it into Eq. 3.1, the equation for the net production
rate of chemical species s is obtained by [24]:

ω̇s =Ms

nr∑
r=1

{(
ν ′′s,r − ν ′s,r

) [
kf,r

n∏
j=1

(
ρj
Mj

)ν′j,r
− kb,r

n∏
j=1

(
ρj
Mj

)ν′′j,r]}
. (3.5)

The molar concentrations per unit volume Υj are replaced by ρj/Mj. The stoi-
chiometric mole numbers of the reactants and products ν ′s,r and ν ′′s,r are dictated by
the chemical equations shown in Eq. 3.2. The partial densities ρj are obtained from
the species concentration equations, which are a part of the fluid-dynamical model,
discussed in Sec. 3.2. The only unknown values to be determined yet are the reaction
rate constants kf and kb.

Reaction Rate Constants

The values of the forward reaction rate constant kf are generally found experimentally
and may be expressed by means of the modified form of Arrhenius’ equation [15]:

kf(Tf) = AT ηf exp
(
−θa

Tf

)
. (3.6)

The values of the constants A and η and of the temperature of activation θa are given
in Tab. 3.1 for each reaction r. A forward reaction rate constant kf , obtained by Eq.
3.6, has a unit of cm3 ·mol−1 · s−1. In the present work, however, the MKS system
of units is used. Furthermore, kilomoles are used instead of moles. Therefore, the
value of kf after the calculation by Eq. 3.6 has to be converted to the required units
by multiplying it by a conversion factor of 1× 10−3.

The backward reaction rate constant can be obtained by using the equilibrium
constant Keq as follows [14]:

kb(Tb) =
kf(Tb)

Keq(Tb)
. (3.7)
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The equilibrium constant is calculated via a curve-fit formula taken from Park [14]:

Keq(Tb) = exp

[
A1

(
Tb

10,000

)
+ A2 + A3ln

(
10,000

Tb

)
+A4

(
10,000

Tb

)
+ A5

(
10,000

Tb

)2
]

.
(3.8)

For reactions r = 1 − 7 the values of Ai are taken from Park [14]. For the reaction
r = 8 no data are available in Park’s work. Therefore, for this reaction the data from
Gupta et al. [23] are taken and adapted to the curve-fit formula given in Eq. 3.8.
The curve-fit coefficients Ai are depicted in Appendix B in Tab. B.1. All data given
in Tab. B.1 are valid only for fluids in which the total number density n ≥ 1024m−3.
The curve-fit coefficients for more diluted gases can be found in Park [14] and Gupta
et al. [23]. The number density of the gas to be analysed is higher than 1024 m−3 for
all temperature and pressure ranges of interest.

It is important to mention that the equilibrium constant may be dimensionless
or non-dimensionless depending on the reaction. Keq for dissociation reactions of the
form AB
 A + B, for example, can be written as follows [14]:

Keq =
ΥAΥB

Υm

. (3.9)

In this case, when using the CGS system of units, the equilibrium constant has the
unit mol · cm−3 and has to be converted into kmol · m−3 (unit used in the present
work) by multiplying it by the conversion factor of 1000. This concerns reactions 1,
2, 3, 4, 6, and 7 in Tab. 3.1. For the reactions 5 and 8, however, Keq is dimensionless.

The quantities kf(Tf), kb(Tb), and Keq(Tb) are functions of temperature only,
where Tf and Tb may be different for forward- and backward-reaction directions and
may also be different for different reactions. This is due to the fact that the system
under investigation is considered to be locally in thermal nonequilibrium. That is,
temperatures T , Tvib, and Te may diverge from each other. To take this into account,
the kinetic mechanism in Tab. 3.1 is based on the multitemperature approach, where
the nonequilibrium between different energy modes is respected by using geometric-
ally averaged temperatures

√
TTvib and

√
TTe as well as T and Te.

It is worth to mention, that if the system under investigation reaches thermal equi-
librium, all temperatures become equal (Te = Tvib = T ) and the kinetic mechanism
of chemical reactions becomes a function of one temperature only.

3.2 Fluid-Dynamics Modelling

3.2.1 Governing Equations of Fluid Dynamics

Mass and Momentum Conservation Equations

The mass conservation equation – often called the continuity equation – states that
mass can be neither created nor destroyed [28]. The global mass conservation equa-
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tion is given in its conservative form and in terms of vector notation by [14]:

∂ρ

∂t
+ ∇ · (ρu) = 0 . (3.10)

The momentum conservation equation is expressed in its conservative form and
in terms of vector notation as follows [14]:

∂(ρu)

∂t
+ ∇ · (ρu⊗ u) = ∇ · T + FLorentz . (3.11)

The momentum conservation equation is a vector equation, based on the Newton’s
second law: F = ma. Basically, it states that force is equal to the time rate of
change of momentum [28]. Forces acting on an infinitesimally small control volume
of fluid, can be divided into surface and body forces [51]. In Eq. 3.11, the Lorentz
force FLorentz represents a body force. The stress tensor T represents the surface
forces. For compressible Newtonian fluids it is defined as:

T = −pI + λ (∇ · u) I + 2µD︸ ︷︷ ︸
viscous part

of the stress tensor =τ

,
(3.12)

where I denotes the identity tensor. When applying the Stokes hypothesis, the bulk
viscosity becomes [15]: λ = −µ2

3
. Further, the deformation rate tensor is given such

that [52]: D = 1
2

[
∇⊗ u + (∇⊗ u)T

]
, where ⊗ is the dyadic product. Hence, the

viscous part of the stress tensor can be written as:

τ = −µ2

3
tr
(

(∇⊗ u)T
)

︸ ︷︷ ︸
(∇·u)

I + µ∇⊗ u + µ (∇⊗ u)T ,
(3.13)

where tr is the trace of a matrix. Furthermore, it can be shown that: ∇ · (−pI) =
−∇p. Hence, the momentum conservation equation may be written as follows:

∂(ρu)

∂t
+ ∇ · (ρu⊗ u) = −∇p+ ∇ · τ + FLorentz . (3.14)

Species Conservation Equation

The species conservation equation is defined in terms of species mass fractions cs =
ρs/ρ such that [14]:

∂(ρcs)

∂t
+ ∇ · (ρcsu) = −∇ · (ρVscs) + ω̇s , (3.15)

where ω̇s is the rate of creation or extinction of species s as a result of chemical
reactions and Vs is the diffusion velocity of species s. The species conservation
equation is solved for each species in the system with the following requirements [15]:

sn∑
s=1

ρs = ρ or
sn∑
s=1

cs = 1 . (3.16)
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Energy Conservation Equations

An energy conservation equation is based on the first law of thermodynamics, stating
that the energy can neither be created nor destroyed – it only changes the form [28].
In the following, all energy conservation equations are defined in terms of energy per
cubic meter (J ·m−3). Thus, the relation to the specific energy e is given as: E = ρe.

The energy conservation equation for the energy contained in the vibrational mode
is such that [14]:

∂Evib

∂t
+ ∇ · (uEvib) = −∇ · qvib +

(
∂Evib

∂t

)
int

, (3.17)

where qvib denotes the heat flux vector due to the diffusion of the vibrational energy.
The source term (∂Evib/∂t)int denotes the rate of change of vibrational energy due
to internal energy exchange with other energy modes.

The electron-electronic energy conservation equation is expressed by [14]:

∂Ee

∂t
+ ∇ · [u(Ee + pe)] = −∇ · qe +

(
∂Ee

∂t

)
int

+ Q̇Joule − Q̇rad , (3.18)

where qe denotes the heat flux vector due to the diffusion of the electron-electronic
energy. The source term (∂Ee/∂t)int denotes the rate of change of electron-electronic
energy due to internal energy exchange with other energy modes. The source terms
Q̇Joule and Q̇rad represent the energy gain due to Joule heating effect and the energy
loss due to radiation, respectively.

The energy conservation equation for the overall energy E can be written as [14]:

∂E

∂t
+ ∇ · [u(E + p)] = −∇ · q + ∇ · (τ · u) + Q̇Joule − Q̇rad + u · FLorentz , (3.19)

where the quantity q denotes the total heat flux vector.
In present research, the work done on the fluid due to the Lorentz force (u ·

FLorentz) in Eq. 3.19 is neglected because of its insignificant contribution. This can
easily be shown by comparing the contribution of Q̇Joule with u · FLorentz. Using the
characteristic values of the system under investigation shown in Tab. 2.2, the Joule
heating can be estimated as follows: Q̇Joule = η (J · E) ≈ ησcE

2
c = 8.8×1011 W ·m−3.

The work due to the body force FLorentz is: u·FLorentz ≈ ucησcEcBc = 7.0×108 W·m−3,
that is by 3 orders of magnitude lower than the Joule heating.

Equations of State

The ideal gas law is used for calculating the electron gas pressure pe and the overall
pressure p:

pe = nekBTe , (3.20)

p =
n∑
s=1
s 6=e

ρcs
R
Ms

T + pe . (3.21)
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Concluding Remarks

Additional submodels are required to calculate unknown variables and source terms
contained in the equations introduced above. Firstly, the relations between the en-
ergies Evib, Ee and E and the corresponding temperatures Tvib, Te and T must be
established. This issue is discussed in Sec. 3.2.2. Secondly, additional models are
needed for the calculation of the yet unknown viscosity µ as well as heat fluxes qvib,
qe and q and the diffusion velocities Vs (see Sec. 3.2.3). Finally, following source
terms must be defined: FLorentz, Q̇Joule, Q̇rad, (∂Evib/∂t)int and (∂Ee/∂t)int. This is
the subject of Sec. 3.2.5. The source terms ω̇1, ..., ω̇n are already defined in Sec. 3.1.

3.2.2 Thermodynamic Properties

The connection between the temperatures (T , Te, Tvib) and the specific energies
(etr−rot, ee, evib) is defined via the following caloric equation of state [23]:

de = cv(T )dT , (3.22)

where cv denotes the specific heat at constant volume.
In the following, models used in the present work for the calculation of energies

and the associated specific heat capacities are presented.

Vibrational Temperature

The vibrational temperature characterizes the amount of energy contained in the
vibrational energy mode. In this work the model of a rotationless harmonic oscillator
is used for the calculation of the vibrational energy of diatomic molecules. The overall
vibrational energy contained in the system may be calculated as follows [15]:

Evib =
∑
s=m

nsεvib,s =
∑
s=m

ρcsRs
εvib,s

kB

= ρevib , (3.23)

where εvib,s denotes the average vibrational energy per molecule of species s and evib

is the specific vibrational energy in J · kg−1 [14]. The calculation of εvib is already
derived in Sec. 2.3 (see Eq. 2.33). By introducing the characteristic vibrational
temperature Θvib = E1/kB and substituting Eq. 2.33 in Eq. 3.23 the vibrational
energy per unit mass may be modelled as follows:

evib =
1

ρ

∑
s=m

nskB
Θvib,s

exp (Θvib,s/Tvib)− 1
=
∑
s=m

csRs
Θvib,s

exp (Θvib,s/Tvib)− 1
, (3.24)

where the summation is taken over all molecular species m contained in the system.
For N2 the value of Θvib,N2 is taken from Park [14] and amounts to 3393 K. The same
Θvib is assumed for the molecular nitrogen ion N+

2 . The vibrational specific heat at
constant volume in J · kg−1 ·K−1 is calculated as follows:

cv,vib =
∑
s=m

csRs
(Θvib,s/Tvib)2 exp (Θvib,s/Tvib)

(exp (Θvib,s/Tvib)− 1)2 . (3.25)
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Electron-Electronic Temperature

The electron-electronic energy is defined as [14]:

Ee = ρee =
3

2
ρceReTe +

n∑
s=1
s 6=e

ρcsRs
εel,s

kB

. (3.26)

The first part of Eq. 3.26 provides the energy contained in the translational mode
of free electrons. The second part yields the electronic excitation of atoms and mo-
lecules. Both parts are functions of electron-electronic temperature Te. The electronic
excitation energy per atom or molecule is modelled as follows [46]:

εel,s = kB

∑∞
i=1 gi,sΘel,i,sexp (−Θel,i,s/Te)∑∞

i=0 gi,sexp (−Θel,i,s/Te)
. (3.27)

The quantities Θel,i and gi are the characteristic electronic temperature and the de-
generacy of the i-th energy level, respectively. In this work the first seven excited
electronic levels are considered. The values of Θel,i and gi are given in Appendix B in
Tab. B.2. The electron-electronic specific heat at constant volume is given by [46]:

cv,e = cv,el + cv,e,tr =
n∑
s=1
s 6=e

csRs

{∑∞
i=1 gi,s (Θel,i,s/Te)

2 exp (−Θel,i,s/Te)∑∞
i=0 gi,sexp (−Θel,i,s/Te)

− [
∑∞

i=1 gi,sΘel,i,sexp (−Θel,i,s/Te)] [
∑∞

i=0 gi,s (Θel,i,s/T
2
e ) exp (−Θel,i,s/Te)]

[
∑∞

i=0 gi,sexp (−Θel,i,s/Te)]
2

}
+

3

2
ceRe︸ ︷︷ ︸
cv,e,tr

. (3.28)

Translational-Rotational Temperature

The energy contained in the translational-rotational mode Etr−rot may be modelled
as follows [14]:

Etr−rot = ρetr + ρerot =
n∑
s=1
s6=e

3

2
ρcsRsT +

∑
s=m

ρcsRsT . (3.29)

The translational-rotational specific heat at constant volume is given by:

ctr−rot = ctr + crot =
n∑
s=1
s 6=e

3

2
csRs +

∑
s=m

csRs . (3.30)

The total energy E is given such that [14]:

E = Evib + Ee + Etr−rot +
n∑
s=1

ρcs(∆hf)
0
s +

1

2
ρ|u|2 , (3.31)
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where (∆hf)
0
s denotes the enthalpy of formation (heat of formation) of species s at

0 K. The values of (∆hf)
0
s are taken from the report of the Glenn Research Center

[53] and are depicted in Appendix B in Tab. B.4 in J · kmol−1. That is, for using
(∆hf)

0
s in Eq. 3.31, the values must be transformed into J ·m−3 by multiplying them

with a correspondingMs. The energy contained in the translational-rotational mode
Etr−rot is governed by solving the total energy equation Eq. 3.19 and subtracting all
other energy parts from the total energy. Afterwards, the translational-rotational
temperature T is calculated by means of Eqs. 3.30 and 3.22.

In the total energy conservation equation, Eq. 3.31, enthalpies of formation h0
f

at 0 K are used instead of internal energies of formation at absolute zero e0
f . This

is the usual practice where it is assumed that: h0
f ≈ e0

f . Since ∆E = ∆H − p∆V
this is a reasonable assumption for solids and liquids, for which p∆V ≈ 0. For
gases that behave like an ideal gas, the term p∆V can be replaced by ∆nRT , where
∆n represents the change in the number of moles at 0 K during the formation of
the species [54]. Here it could be suggested that ∆nRT would disappear or at least
become negligibly small when T approaches 0 K. But even if p∆V 6= 0, the calculation
would still be correct, since all thermodynamic and gas dynamic problems are about
changes of enthalpy and internal energy and not about their absolute values [15].

3.2.3 Transport Properties and Fluxes

The calculation models for transport properties used in this work are derived from
the Chapman-Enskog theory, which results from solving the Boltzmann equation by
assuming that the velocity distribution function of the particles is close to Maxwellian
distribution [55, 21]. More information on the Chapman-Enskog theory can be found
e.g. in Chapman and Cowling [55]. This theory was developed by both, Chapman
and Enskog independently and delivers formulas for calculating transport properties
of neutral-gas mixtures in the state of thermodynamic equilibrium [56, 16].

In his work, Yos [22] uses the Chapman-Enskog theory for deriving formulas for
the transport properties of nitrogen, hydrogen, oxygen, and air, for temperatures
from 1000 to 30,000 K and pressures from 1 to 30 bar. Lee [21] extended Yos’s
formulas to the multi-temperature approach by using the translational temperature
T for the Maxwellian velocity distribution of the heavy particles, whereas Te is taken
for the electron gas. The same approach can also be found in the transport property
formulas presented in the work of Gupta et al. [23]. In the present work, the models
of Yos, Lee, and Gupta et al. are used for the calculation of transport properties.
The work of Sutton and Gnoffo [57] is used for the calculation of the diffusion fluxes.

All equations for the transport properties are based on two variables, namely
∆

(1)
ij (T ) and ∆

(2)
ij (T ). They give information about the dynamics of two-particle

interactions leading to a momentum or energy transfer between species i and j. The
two-particle momentum transfer is defined by [14]:

∆
(1)
ij (T ) =

8

3

(
2mimj

πkBT (mi +mj)

)1/2

πΩ
(1,1)

ij , (3.32)
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where πΩ
(1,1)

ij denotes the collision integral for momentum transfer between species i
and j [14]. The energy transfer is given by [14]:

∆
(2)
ij (T ) =

16

5

(
2mimj

πkBT (mi +mj)

)1/2

πΩ
(2,2)

ij , (3.33)

where πΩ
(2,2)

ij is the collision integral for the energy transfer between species i and
j. Again, for collision processes with free electrons Te is used in ∆

(1)
ij (T ) and ∆

(2)
ij (T )

and for those involving heavy particles only the temperature T is taken.
The collision integrals πΩ

(1,1)

ij and πΩ
(2,2)

ij , sometimes referred to as weighted avera-
ges of the collision cross sections for momentum and energy transfer, play the crucial
role in the physicochemical model because all transport properties are linearly related
to them. They are treated separately in Sec. 3.2.4.

Viscosity

The viscosity of the gas mixture is calculated as follows [21]:

µ =
n∑
s=1
s 6=e

msys

/ n∑
r=1
r 6=e

yr∆
(2)
sr (T ) + ye∆

(2)
se (Te)


+

 meye
n∑
r=1

yr∆
(2)
er (Te)

 . (3.34)

Effective Diffusion Coefficient

The effective diffusion coefficient for a neutral particle is obtained as follows [21]:

Ds =
1− ys
n∑
r=1
r 6=s

yr/Dsr

. (3.35)

The quantity Dsr denotes the binary diffusion coefficient of an s − r pair of heavy
particles and is given by [21]:

Dsr =
kBT

p∆
(1)
sr (T )

. (3.36)

The binary diffusion coefficient between electrons and neutrals is defined as [21]:

Der =
kBTe

p∆
(1)
er (Te)

, (3.37)

where the electron temperature Te is used for the calculation.
As for the diffusion of ionic species, it is recalled that for the system under investi-

gation the concept of ambipolar diffusion is used. The ambipolar diffusion coefficient
of ions may be defined as follows [16, 21]:

Da
i = 2Di , (3.38)
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whereDi denotes the effective diffusion coefficient of the ionic species. The calculation
of the effective diffusion coefficients for individual ions Di is rather expensive, since
it includes the calculation of the charge separation effects. Therefore, Lee suggests
the following simplification: Di = Ds. Here, Ds is the effective diffusion coefficient of
the ionic species (s = i) in absence of electric fields and is calculated by Eq. 3.35.

For the calculation of the effective diffusion coefficient of electrons, Lee suggests
an assumption that the mass averaged diffusion velocity of all ionic species is equal
to the diffusion velocity of electrons. Thus, De may be expressed as follows [21]:

De =

me

∑
s=i

Da
sys∑

s=i

msys
. (3.39)

However, such a simplification does not guarantee the quasineutrality. In order to
preserve quasineutrality, the diffusion term must include an additional term, which,
in the case of nonuniformity in number densities of ions and electrons (charge sepa-
ration), would calculate polarization fields and the resulting restoring forces.

Thermal Conductivity

The electron thermal conductivity is given as [21, 23]:

κe,tr =
15

4
kB

ye
n∑
r=1
r 6=e

1.45yr∆
(2)
er (T ) + ye∆

(2)
ee (Te)

. (3.40)

According to Park [14], only a fraction of the heat flux κe,tr∇Te is transmitted to the
electron gas. Therefore, the electron thermal conductivity due to collisions between
the electrons only has to be reformulated as follows [21]:

κ′e,tr = κe,tr

 ye∆
(2)
ee (Te)

n∑
r=1

yr∆
(2)
er (Te)

 . (3.41)

The thermal conductivity due to electronic excitation is such that [23]:

κel = kB

n∑
s=1
s 6=e

ys(cv,el,s

Rs

)/ n∑
r=1
r 6=e

yr∆
(1)
sr (T ) + ye∆

(1)
se (Te)


 . (3.42)

The vibrational thermal conductivity is given as [21]:

κvib = kB

∑
s=m

ys(cv,vib,s

Rs

)/ n∑
r=1
r 6=e

yr∆
(1)
sr (T ) + ye∆

(1)
se (Te)


 , (3.43)
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where the contribution of molecule-molecule collisions to the overall vibrational thermal
conductivity is calculated as follows [21]:

κ′vib = κvib

∑
s=m

∑
r=m

yr∆
(2)
sr (T )

/ n∑
r=1
r 6=e

yr∆
(2)
sr (T ) + yr∆

(2)
se (Te)


 , (3.44)

The translational thermal conductivity is calculated by the following expression [21]:

κtr =
15

4
kB

n∑
s=1
r 6=e

ys/
 n∑
r=1
r 6=e

αsryr∆
(2)
sr (T ) + 3.54ye∆

(2)
se (Te)


 , (3.45)

where the factor αsr is given by [21]:

αsr = 1 +
[1− (ms/mr)] [0.45− 2.54 (ms/mr)]

[1 + (ms/mr)]
2 . (3.46)

The rotational thermal conductivity is defined by the following equation [21]:

κrot = kB

∑
s=m

ys(cv,rot,s

Rs

)/ n∑
r=1
r 6=e

yr∆
(1)
sr (T ) + ye∆

(1)
se (Te)


 . (3.47)

Electrical Conductivity

The equation for calculating the electrical conductivity is taken from Yos [22] and is
modified in the present work by using the temperature Te instead of T :

σ =
e2

kBTe

ye

/ n∑
s=1
s 6=e

ys∆
(1)
es (Te)


 , (3.48)

where the quantity e denotes the elementary charge.

Diffusion Velocity

The diffusion velocity is required for the calculation of diffusion fluxes (ρVscs) in the
species conservation equations and heat fluxes (qe, qvib, q) in the energy conservation
equations.

According to Sutton and Gnoffo [57], for an approximate calculation of the multi-
component diffusion fluxes the following expression is often used:

ρVscs = −ρDs∇cs . (3.49)
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Sutton and Gnoffo state that by using the approximate equation, Eq. 3.49, the
requirement of the diffusion mass fluxes summing to zero is not guaranteed. For this
reason, a corrected form of the approximate equation is used in the present work,
which ensures that the sum of diffusion mass fluxes yields zero [26, 57]:

Vs = − 1

cs
Ds∇cs +

n∑
r=1
r 6=e

Dr∇cr , (3.50)

where for neutral species Ds is calculated by means of Eq. 3.35. For ions Ds = 2Di
and electrons Ds = De, calculated by Eqs. 3.38 and 3.39, respectively.

Heat Fluxes

The heat flux vector qe represents the flux of energy contained in the electron-
electronic energy mode and consists of three components [21, 14]:

qe = −κ′e,tr∇Te − κel∇Te +
n∑
s=1
s 6=e

ρcsVsee,s . (3.51)

The first component in Eq. 3.51 arises due to elastic collisions between free electrons.
The second component results from the electronic excitation of heavy particles. The
third term represents the species diffusion due to concentration gradients.

The heat flux vector qvib represents the flux of energy contained in the vibrational
energy mode and it consists of two parts [21, 14]:

qvib = −κ′vib∇Tvib +
∑
s=m

ρcsVsevib,s . (3.52)

The first component in Eq. 3.52 arises due to molecular collisions, whereas the second
component models the heat flux due to molecular diffusion.

The vector q represents the overall energy flux [21]:

q = −κe,tr∇Te − κel∇Te − κvib∇Tvib − κ∇T +
n∑
s=1

ρcsVses , (3.53)

where es = es,tr−rot + es,vib + es,e + (∆hf)
0
s. The quantity κ denotes the translational-

rotational thermal conductivity and is defined as: κ = κtr + κrot.

3.2.4 Collision Integrals

According to Yos [22], the collision integrals πΩ
(1,1)

ij and πΩ
(2,2)

ij have the physical
significance of effective cross sections between molecules of species i and j. In ma-
thematical terms, the collision integrals are described as weighted averages of the
collision cross sections as follows [22]:

πΩ
(l,s)

ij =

∫∞
0

∫ π
0
exp (−γ2) γ2s+3

(
1− coslχ

)
4πσijsinχdχdγ∫∞

0

∫ π
0
exp (−γ2) γ2s+3 (1− coslχ) sinχdχdγ

, (3.54)
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where the reduced velocity γ is given by:

γ = g

(
mimj

2(mi +mj)kBT

)1/2

. (3.55)

The quantity g is the relative velocity of the colliding particles, σij denotes the
differential cross section for the i-j pair of particles, and χ is the scattering angle
in the centre of mass of the system [22].

In the present work collisions between neutral particles as well as neutral-ion and
neutral-electron collisions are calculated by means of the curve-fit formulae provided
by Gupta et al. [23]. For the calculation of collision integrals Gupta et al. utilise
cross sections previously used by Yos [22]. The curve-fit functions are [23]:

πΩ
(1,1)

ij =
[
exp

(
D

Ω
(1,1)
ij

)]
T

[
A

Ω
(1,1)
ij

ln(T )2+B
Ω

(1,1)
ij

ln(T )+C
Ω

(1,1)
ij

]
, (3.56)

πΩ
(2,2)

ij =
[
exp

(
D

Ω
(2,2)
ij

)]
T

[
A

Ω
(2,2)
ij

ln(T )2+B
Ω

(2,2)
ij

ln(T )+C
Ω

(2,2)
ij

]
. (3.57)

The values of the curve-fit coefficients A, B, C and D for the calculation of πΩ
(1,1)

ij

are given in Appendix B in Tab. B.5 and for πΩ
(2,2)

ij in Tab. B.6. For all calculated
collision integrals the symmetrical equality applies, meaning (ij) = (ji). In order
to convert πΩ

(1,1)

ij and πΩ
(2,2)

ij calculated by Eqs. 3.56 and 3.57 into MKS units, the
obtained values must be multiplied by a factor of 1× 10−20.

In the frame of the present work, the system is assumed to be in the state of
thermal nonequilibrium. For this reason, temperature Te is used in Eqs. 3.56 and
3.57 instead of T for collisions with electrons.

For the calculation of collision integrals πΩ
(1,1)

ij and πΩ
(2,2)

ij for Coulomb collisions
the work of Yos [22] is used. The calculation requires the Gvosdover cross section,
QC, which is defined as follows [22]:

QC =

(
e2

kBT

)2

lnΛ = 3.22× 10−6 log10Λ2

T 2
, (3.58)

where the cut-off parameter Λ is calculated by:

Λ2 =
9 (kBT )3

4πe6ne
+

16 (kBT )2

e4n
2/3
e

. (3.59)

Then the Coulomb collision integrals are calculated using the following formulae [22]:

πΩ
(1,1)

e−e = 0.80QC , πΩ
(2,2)

1−1 = 0.30QC ,
πΩ

(2,2)

e−e = 0.75QC , πΩ
(1,1)

e−1 = 0.80QC ,
πΩ

(1,1)

1−1 = 0.80QC , πΩ
(2,2)

e−1 = 0.75QC ,
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where the subscript 1 indicates singly charged ions. In this way the collision integrals
for the following species pairs can be determined:

e− e , e− N+
2 , e− N+ , N+

2 − N+
2 , N+

2 − N+ , N+ − N+ .

Since the system is assumed to be in the state of thermal nonequilibrium, temperature
T is used in Eqs. 3.58 and 3.59 for collisions between ions, whereas Te is utilized for
ion-electron and electron-electron collisions.

Eqs. 3.58 and 3.59 are given in CGS units where for the elementary charge e
electrostatic CGS units (ESU) are used and hence e = 4.803× 10−10 esu.

3.2.5 Energy Exchange Models

General Information on Energy Exchange

Particular attention must be paid to the overall energy balance in the system under
investigation. Fig. 3.2 shows a schematic diagram of the overall energy balance,
where the system boundaries are indicated by solid lines.

Etot

Evib(Tvib) Ee(Te) = Eel(Te) + Ee,tr(Te)

Ekin Etr-rot(T ) = Etr(T ) + Erot(T ) ∆H0
f

Q̇R
vib Q̇R

el Q̇R
e,tr Q̇D

e,tr Q̇I
e,tr

Q̇vib-e

Q̇vib-tr Q̇vib-rot Q̇tr-e Q̇rot-ee

Q̇Joule

Q̇rad

Figure 3.2: Schematic representation of the internal energy exchange between dif-
ferent energy modes in the system.

The set of governing equations, described in Sec. 3.2.1, includes three energy con-
servation equations. For modelling the system-internal energy exchange, the electron-
electronic and the vibrational energy conservation equations are supplemented by ad-
ditional source terms

(
∂Ee

∂t

)
int

and
(
∂Evib

∂t

)
int
, respectively. The total energy equation

does not require any consideration of internal energy exchange, since it calculates the
whole energy in the system. However, the energy exchange with the surroundings
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must be considered in the total energy equation as well as in the electron-electronic
energy equation, since the electron-electronic energy mode is the one that exchanges
the energy with the surroundings via Q̇Joule and Q̇rad (see Fig. 3.2).

As shown Fig. 3.2, the total energy E consists of five different energy parts:

◦ Evib – energy contained in the vibrational energy mode,

◦ Ee – energy contained in the electron-electronic energy mode,

◦ Ekin – kinetic energy contained in the fluid due to its macroscopic motion rela-
tive to some reference frame,

◦ Etr-rot – energy contained in the translational-rotational energy mode,

◦ ∆H0
f – overall enthalpy of formation of all species in the system at T = 0 K.

Energy Exchange with the Surroundings

Both processes, the Joule heating effect and the energy loss through radiation, are
modelled as unidirectional processes. The Joule-heating source term, defined as
Q̇Joule = η (J · E), is discussed in detail in Sec. 3.3.6.

The heat losses due to radiation are modelled by using the continuum radiation
formula of Yos [22]:

Q̇rad = ζ
64π3/2e6p2∆ν

3
√

6 m
3/2
e c3 (kBTe)

5/2
ye

n∑
s=1
s 6=e

ysZ
2
s , (3.60)

where ζ = 3 is an empirical constant introduced to make the correspondence bet-
ween the calculated values of the total radiated power Q̇rad and the experimentally
measured values as good as possible. The quantities h and c denote the Planck’s
constant and the speed of light, respectively. The value Zs denotes the charged state
of ions (e.g. +1 for singly- and +2 for doubly-charged ions). The bandwidth of the
spectrum ∆ν is assumed to be equal to the width of the blackbody distribution:
∆νB = 4kBTe/h [22]. Molecular-band and atomic-line radiations are not included in
the calculation in Eq. 3.60. In addition, the absorption effects are neglected in Yos’
formula, that is, the assumption of an optically thin plasma1 is used. It should be
noted that all values and constants in Eq. 3.60 are in CGS units, except the pressure
p, which is in bar. Furthermore, it must be pointed out that Te is used in Eq. 3.60
in the frame of this work, instead of originally proposed temperature T .

As already mentioned, the presence of N++ in the plasma is noticeable above
25,000 K. At a temperature above 30,000 K and at atmospheric pressure, the number
density of N++ would even exceed that of N+. However, the production of N++ is
not included in this work. In order to take into account the effects of N++ at high
temperatures on the radiation losses, the charge state Zs of N+ in Eq. 3.60 is switched
over from +1 to +2 at a temperature above 35,000 K.

1Wells [35] states that: "if the plasma is defined as optically thin, all energy radiated from within
the plasma escapes without being re-absorbed within the plasma column."
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System-Internal Energy Exchange

The internal energy exchange models can be divided into two groups:

1. equilibration processes between the energy modes,

2. energy sources and sinks due to species production and destruction.

Equilibration Processes between Energy modes

The equilibration processes between the energy modes are calculated by using the
works of Park [14], Lee [44], and Millikan and White [43]. All these processes are
indicated with arrows in Fig. 3.2 and modelled as bidirectional processes, meaning
they may run in both directions between the energy modes.

For the calculation of the time rate of change of vibrational energy due to collisions
with heavy particles the general relaxation equation (Eq. 2.29) is used. By using Eq.
2.29, the vibrational-translational relaxation source term can be written as [14]:

Q̇vib-tr =
∑
s=m

Evib(T )− Evib(Tvib)

τvib-tr
, (3.61)

where the hypothetical equilibrium vibrational energy Evib(T ) is evaluated by solving
Eq. 3.24 for the translational-rotational temperature T . The vibrational-translational
relaxation time τvib-tr for molecular species m is calculated as follows [26]:

τm,vib-tr =

n∑
s=1
s 6=e

ys

n∑
s=1
s 6=e

ys/ (τMW
ms + τP

ms)
, (3.62)

where τMW denotes the vibrational-translational relaxation time proposed by Millikan
and White [43] and τP is the correction suggested by Park [58]. The Millikan and
White formula is given such that:

τMW
ms =

1

p
exp

[
Ams

(
T−1/3 − 0.015M1/4

ms

)
− 18.42

]
, (3.63)

where p is in bar. The quantityM is the reduced molecular weight between the two
colliding particles r and s given as:

Mrs =
MsMr

(Ms +Mr)
. (3.64)

The constant Ams is proportional to the characteristic temperature Θ, to the reduced
mass of the colliding pair µ, and to the length parameter l such that: A ∼ µ2/3θ2/3l2/3.
According to the data given in [43], for nitrogen A = 220 andM = 14. Eq. 3.63 gives
a good approximation of the experimental data for temperatures below 5000 K. For
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higher temperatures, however, it delivers lower values than experimentally measured
[14]. That is why Park suggests to correct τvib-tr by adding the collision limited
relaxation time τP given as [58]:

τP
ms =

(
ntot

[
8kBT

πµms

]1/2

σv

)−1

. (3.65)

The quantity ntot denotes the total number density of colliding particles. The value
of σv can be obtained as follows [58]:

σv = σ′v (50,000/T )2 , (3.66)

where σ′v is the limiting cross section whose values for N2, O2, and NO are chosen to
be 3× 10−21 m2.

The general relaxation equation is also used for the calculation of the electron-
impact vibrational relaxation [14]:

Q̇vib-e =
∑
s=m

Evib(Te)− Evib(Tvib)

〈τs〉vib-e
, (3.67)

where the hypothetical equilibrium vibrational energy Evib(Te) is evaluated by solving
Eq. 3.24 for the electron-electronic temperature Te. The electron-impact vibrational
relaxation time τvib-e is calculated by the following two empirical formulas of Lee [44]:

log10 (peτvib-e) = 3.91 (log10Te)
2 − 30.36 (log10Te) + 48.90

for 1000 K 6 Te 6 7000 K ,
(3.68)

log10 (peτvib-e) = 1.3 (log10Te)
2 − 9.09 (log10Te) + 5.58

for 7000 K 6 Te 6 50,000 K .
(3.69)

It is important to mention that the electron pressure pe is given in in bar.
The energy exchange due to vibrational-rotational relaxation is calculated by [12]:

Q̇vib-rot =
∑
s=m

0.4
Evib(Trot)− Evib(Tvib)

τvib-rot

= 0.4Q̇vib-tr , (3.70)

where Trot = T and the relaxation time τvib-rot = τvib-tr. The hypothetical equilibrium
energy Evib(Trot) is evaluated by solving Eq. 3.24 for the translational-rotational
temperature T .

The elastic energy transfer between electrons and heavy particles is calculated as
[14, 45]:

Q̇tr-e =
∑
s 6=e

ne
2me

ms

νe,s
3

2
kB (T − Te) , (3.71)

where νe,s denotes the collision frequency between free electrons and heavy particles
of species s. This equation couples translational energy of free electrons with the
energy contained in the translational mode of heavy particles.
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The coupling between the rotational energy mode and the translational energy of
free electrons is given by [12]:

Q̇rot-e =
∑
s=m

ne
2me

ms

βrot,sνe,s
3

2
kB (Trot − Te) , (3.72)

where the coefficient βrot,s is assumed to be of the same value for all heavy species
and amounts to βrot,s = 10 [12].

The collision frequencies νe,s between electrons and heavy particles are calculated
by the expression [16]:

νse =
n∑
s=1
s 6=e

nsvseπΩ
(1,1)

se , (3.73)

where vse denotes the mean relative speed of particles with Maxwellian velocity dis-
tribution defined as [16]:

vse =

(
8kBT

πµse

)1/2

. (3.74)

Energy Sources and Sinks due to Species Production and Destruction

The energy sources and sinks due to species production and destruction in the system
are indicated in Fig. 3.2 by dashed circles. These processes also represent a system-
internal energy exchange, because the removal of energy from one energy mode may
appear as energy gain in another energy mode.

The dissociation of molecular species caused by collisions with other particles
leads to a removal of energy from the vibrational mode [14]. The opposite happens
when the recombination of two or more atoms to a molecule takes place. This rate
of change of energy density Evib is given by [14]:

Q̇R
vib =

∑
s=m

Es,vib(Tvib)ω̇s , (3.75)

where the superscript R stands for rate of change.
The rate of change of energy density contained in the electronic excitation of

species Es,el is defined as [14]:

Q̇R
el =

n∑
s=1
s 6=e

Es,el(Te)ω̇s . (3.76)

Just like in the case of Q̇R
vib, this process also takes place, because the species com-

position in the gas undergoes changes due to ongoing chemical reactions. Park [14]
explains this process by stating that any species produced as a result of chemical
reaction is already electronically excited.
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The gain or loss in translational energy of free electrons Ee,tr due to ongoing
ionization and recombination is calculated as follows:

Q̇R
e,tr = Ee,tr(T )ω̇e for ω̇e > 0 , and Q̇R

e,tr = Ee,tr(Te)ω̇e for ω̇e < 0 . (3.77)

It must be noted that when new electrons occur due to ionization, they are born with
a finite energy density, which is a function of the translational-rotational temperature
(Ee,tr(T )). However, when the amount of electron gas decreases due to recombination,
the electrons are already accelerated by the external electric field and thus the energy
to be extracted is a function of electron-electronic temperature: Ee,tr(Te).

When a neutral particle is ionized as a result of collisions with free electrons, the
ionization energy EI is extracted from the electron gas. Thus, the rate of change of
Ee due to ionization process, forming the ionic species s, is given as [14]:

Q̇I
e,tr = −

∑
s=i

EI
sω̇

I
s , (3.78)

where the superscript I stands for the ionization. The source term ω̇I
s represents

the rate of change of mass of species s due to ionization by electron collisions only.
In the kinetic mechanism in Tab. 3.1 this process is represented by the endothermic
reaction direction of the reaction r = 7. The ionization energy for ionizing the atomic
nitrogen amounts to EI

N+ = 1.00083× 108 J · kg−1.
Likewise, during a molecular dissociation due to collisions with free electrons, the

dissociation energy ED is extracted from the electron gas. This process is described
by the following equation [14]:

Q̇D
e,tr = −

∑
s=m

ED
s ω̇

D
s , (3.79)

where the superscript D stands for dissociation. Here, only the rate of change of
mass due to dissociation is taken into account, meaning the association of atoms to
a molecule is not considered in ω̇D

s . The dissociation energy of nitrogen amounts to
ED

N2
= 3.374512386× 107 J · kg−1. In the system under investigation the dissociation

of nitrogen due to electron impacts is represented in Tab. 3.1 by the endothermic
reaction direction of the reaction r = 6.

Assignment of Individual Energy Exchange Processes to Energy Conser-
vation Equations

The individual processes of the internal energy exchange are assigned to the corres-
ponding energy conservation equations as follows [14, 12]:

◦ the rate of change of vibrational energy due to internal energy exchange:(
∂Evib

∂t

)
int

= Q̇vib-tr + Q̇vib-rot + Q̇vib-e + Q̇R
vib , (3.80)

◦ the rate of change of electron-electronic energy due to internal energy exchange:(
∂Ee

∂t

)
int

= Q̇rot-tr + Q̇tr-e − Q̇vib-e + Q̇R
el + Q̇R

e,tr + Q̇D
e,tr + Q̇I

e,tr . (3.81)
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3.3 Electrodynamic Modelling

In the frame of this work, the response of the partially ionized fluid to the electromag-
netic fields is represented via the Joule heating Q̇Joule and the Lorentz force FLorentz.
Both physical phenomena significantly influence the system under investigation and
are the last two quantities that still need to be calculated to close the system of
governing equations described in Sec. 3.2.1.

Three additional vector fields are introduced to the physical model in order to
obtain the two unknown Q̇Joule and FLorentz, namely the electric field E, the magnetic
field B, and the current density J. E and B are governed by solving the Maxwell’s
equations described in Sec. 3.3.1. The current density J is calculated by means of
the generalized Ohm’s law discussed in Sec. 3.3.2. The electrodynamic modelling
is significantly simplified by means of the MHD approximation, the magnetostatic
approximation and the potential formulation of Maxwell’s equations.

3.3.1 Maxwell’s Equations

Common Form of Maxwell’s Equations and Force Law

The system of Maxwell’s equations together with the force law represent the entire
theoretical content of classical electrodynamics [49]. These equations describe how
electric charges and currents in vacuum or continuum are related to electromagnetic
fields. The Maxwell’s equations in their differential form are given as follows [49]:

∇ · E =
1

ε0

ρc Gauss’s law, (3.82)

∇ ·B = 0 no name, (3.83)

∇× E = −∂B
∂t

Faraday’s law, (3.84)

∇×B = µ0J + µ0ε0
∂E
∂t

Ampère’s law with
Maxwell’s correction.

(3.85)

The force law describes a force on a charged particle which is moving with ve-
locity u and is subject to electric and magnetic fields. When charged particles are
summarized over a unit volume, the volumetric-force law can be written in terms of
charge density ρc, given in C ·m−3, as follows [59]:

F = ρc (E + u×B) = ρcE + J×B . (3.86)

The Gauss’s law in Eq. 3.82 states that the flux of the electric field E through
a closed surface is proportional to the charge inside the volume surrounded by this
surface [49]. A corresponding law for the magnetic field B is shown in Eq. 3.83. It
states that the flux of the magnetic field through a closed surface is zero, meaning
that there exist no magnetic charges (monopoles) [49].



3.3. Electrodynamic Modelling 69

The Faraday’s law in Eq. 3.84 states that a temporally changing flux of the
magnetic field induces electric vortex fields.

The Ampère’s law in Eq. 3.85 states that an electrical current induces a magnetic
field. The second term on the right hand side of Eq. 3.85 is called displacement
current. It was not included in the original form of Ampère’s law and was introduced
by Maxwell in order to take into account the effect of nonsteady currents. For steady
currents (magnetostatic case) the Maxwell’s term becomes zero.

The charge conservation equation is taken into account in Maxwell’s equations
automatically and is defined as follows [49]:

∇ · J = −∂ρ
c

∂t
. (3.87)

It can be derived from the Ampère’s law by applying the divergence operator to it.
The total electric field E can be decomposed into the electrostatic field Est and

the electric field Eind induced due to the change of the magnetic field [59]:

E = Est + Eind . (3.88)

In the system under investigation Est arises due to the voltage drop on the elec-
trodes. Taking into account this fact, Gauss’s law together with Faraday’s law give
the following information about these two fields [59]:

∇ · Est =
1

ε0

ρc and ∇× Est = 0 , (3.89)

which means that the electrostatic field is the one which arises due to electric charges
and is irrotational. For the induced electric field, the following applies [59]:

∇ · Eind = 0 and ∇× Eind = −∂B
∂t

, (3.90)

meaning that the induced electric vortex field has zero divergence. However, this
field is the one that arises due to a temporally changing flux of the magnetic field
and thus has a finite curl [59]. The Faraday’s law reduces to ∇×E = 0 in the static
case, meaning when B remains constant over time [49].

The magnetic field B includes both the imposed and the induced magnetic fields.
In the system under investigation no external magnetic field is imposed, thus only
the induced magnetic field is considered.

Maxwell’s Equations in Matter

When the electromagnetic field penetrates matter, electric and magnetic polarizations
occur, causing so called bound charges and currents in the substance. In the usual
form of Maxwell’s equations given in Eqs. 3.82 - 3.85, these bound charges and
currents are not distinguished from free charges and currents. However, in a physical
system, only free charges and currents can be controlled directly. That’s why a more
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convenient form of Maxwell’s equations is usually used for calculations in matter,
where a distinction between bound and free charges and currents is made [49].

For bringing Maxwell’s equations into this more convenient form, only Gauss’s
and Ampère’s laws, depicted in Eqs. 3.82 and 3.85, have to be modified, while Eqs.
3.83 and 3.84 remain unchanged [49]:

∇ ·D = ρc
f Gauss’s law, (3.91)

∇×H = Jf +
∂D
∂t

Ampère’s law with
Maxwell’s correction.

(3.92)

The electric displacement D in Eq. 3.91 is a vector field and is defined as [49]:

D = εE = ε0 (1 + χe)︸ ︷︷ ︸
εr

E = ε0εrE = ε0E + ε0χeE︸ ︷︷ ︸
P

= ε0E + P . (3.93)

The constant ε0 in Eq. 3.93 is electric permittivity of free space which has a value
of ε0 = 8.854187817... × 10−12 F · m−1. The relative permittivity εr, also known as
dielectric constant, is dimensionless and gives a ratio between the electric permittivity
of the material ε and the permittivity of free space: (εr = ε/ε0). The relative
permittivity is related to the electric susceptibility χe as it shown in Eq. 3.93. The
electric polarization P is a vector field and defines the dipole moment per unit volume
of the polarized material. The polarization is induced by the external electric field E
which lines up each atomic or molecular dipoles in the material along the electric-field
lines [49]. By applying Eq. 3.93 on Eq. 3.91 the Gauss’s law can be rewritten as:

∇ · ε0E︸ ︷︷ ︸
ρc

+∇ ·P︸ ︷︷ ︸
−ρc

b

= ρc
f , (3.94)

where ρc, ρc
b, and ρc

f denote total, bound and free charge densities, respectively.
Analogically to the electric displacement D in Eq. 3.93, the auxiliary field H is

introduced to Ampère’s law in Eq. 3.92 which permits to distinguish bound from free
current (Jb from Jf) in the physical system. The relationship between the magnetic
field B and the auxiliary field H is given as follows [49]:

B = µH = µ0 (1 + χm)︸ ︷︷ ︸
µr

H = µ0µrH = µ0H + µ0 χmH︸ ︷︷ ︸
M

= µ0H + µ0M , (3.95)

hence the auxiliary field is defined as [49]:

H =
1

µ0

B−M . (3.96)

The magnetizationM in Eq. 3.96 is a vector field and is analogous to the polarization
P in Eq. 3.93. The permeability of free space µ0 is a constant of a value of: µ0 =
4π × 10−7 H ·m−1 [49]. The magnetic susceptibility χm is substance-dependent and
gives the value of the relative permeability µr and thus the value of the permeability
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of the substance defined as: µ = µ0µr. A relation between Eq. 3.85 and Eq. 3.92 can
be established by substituting Eqs. 3.93 and 3.95 into Eq. 3.85 and dividing by µ0:

∇×H = J−∇×M︸ ︷︷ ︸
Jb

− ∂P
∂t︸︷︷︸
Jp

+
∂D
∂t

, (3.97)

whereby the free current Jf is calculated by subtracting bound current and polariza-
tion current from total current: Jf = J− Jb − Jp.

Neglecting Matter-Polarization Effects

The relative permittivity in vacuum is εr = 1, meaning that in vacuum ε = ε0, which
is not the case in the presence of matter. The relative permittivity of gases is very
low compared to εr of solids and liquids. As an example, the value of εr for nitrogen
at 1 bar and 293.15 K is εr = 1.00055 and for hydrogen εr = 1.00025. The relative
permittivity of water on the other hand is εr = 80.1 [49]. Under the assumption that
in gases εr ≈ 1, the electric susceptibility χe becomes zero and consequently ε ≈ ε0.

Analogous to the electrical susceptibility, the magnetic susceptibility χm in gases
is very low. For example, the susceptibility of nitrogen at 0.781 bar and 293.15 K is
χm = −5.06× 10−9 and the one of oxygen at 1 bar and 293.15 K is χm = 1.9× 10−6

[49]. Under the assumption that in gases the magnetic susceptibility χm ≈ 0 the
relative permeability becomes µr ≈ 1 and consequently µ ≈ µ0.

By applying the above assumptions to Eqs. 3.93 and 3.97, the polarization P and
the magnetization M become zero. As a result, the following applies to the electric
displacement and the magnetic field: D = ε0E and B = µ0H. Consequently, the
bound charge density ρc

b in Eq. 3.94 becomes zero and thus the total charge density
becomes ρc = ρc

f . As a direct consequence of M being zero, the bound current Jb

also becomes zero. Furthermore, due to the assumption that ε0 ≈ ε and P = 0, the
polarization current Jp becomes zero too.

The assumptions ε ≈ ε0 and µ ≈ µ0 have the consequence that the Gauss’s law
in Eq. 3.91 can be left in its traditional form shown in Eq. 3.82, with the constraint
that the matter is not polarized and thus ρc = ρc

f . Likewise, Eqs. 3.85 and 3.92
become identical with the restriction that J = Jf .

3.3.2 Generalized Ohm’s Law

General Information on Generalized Ohm’s Law

According to Mitchner and Kruger [16], the generalized Ohm’s law describes how
a current flows in a conducting fluid in response to electric and magnetic fields.
This form of Ohm’s law is used together with the so-called MHD approximation for
calculations in partially ionized gases. The generalized Ohm’s law can be derived
by establishing a set of momentum conservation equations for electrons, ions, and
neutral particles. It is worth to mention that the fore law shown in Eq. 3.86 emerges
as the electromagnetic body force term in these momentum conservation equations



72 Chapter 3: Physicochemical Model

and thus lies behind the Ohm’s law. By adding all momentum equations together
and eliminating several terms via appropriate assumptions the generalized Ohm’s law
for partially ionized gases is obtained [16]:

J = σ

(
E + u×B +

1

nee
∇pe −

B

nee
J× b

)
− sb× (J× b) . (3.98)

In this form, it applies to most conditions of interest involving collision-dominated
plasmas [16]. The derivation of Eq. 3.98 is extensively described in Mitchner and
Kruger [16]. The vector b is defined as: b = B/B where B is the magnitude of the
magnetic field. The quantity s denotes the ion slip factor. The electrical conductivity
σ is often estimated by the so-called mean free path formula such that [16]:

σ = µenee =
nee

2

meνehp
, (3.99)

where the electron mobility µe is given as [16]:

µe =
e

meνehp
. (3.100)

The quantity νehp is the average electron heavy-particle collision frequency. According
to Mitchner and Kruger [16], the method of calculating σ given in Eq. 3.99 is generally
accurate within a factor of two or three. In this work, a more advanced method for the
calculation of σ is used (see Eq. 3.48). However, Eq. 3.99 is normally used to verify
the applicability of the generalized Ohm’s Law to the system under investigation. By
using Eqs. 3.99 and 3.100, Eq. 3.98 can be rewritten as follows:

J = σ (E + u×B)︸ ︷︷ ︸
electromagnetic term

+ µe∇pe︸ ︷︷ ︸
electron-

pressure term

− βeJ× b︸ ︷︷ ︸
Hall term

− sb× (J× b)︸ ︷︷ ︸
ion-slip term

. (3.101)

The electron Hall parameter βe is given such that [16]:

βe =
σ

ene
B =

ωe
νehp

, (3.102)

where the electron cyclotron frequency is given as [16]:

ωe =
e B

me

. (3.103)

The average electron heavy-particle collision frequency is composed of electron-ion
and electron-neutral collision frequencies as follows: νehp = νei + νen. The electron-
electron collisions would also interrupt the gyrations of electrons, but by definition
νee is not included in the average electron heavy-particle collision frequency. This
affects the interpretation of βe by at most a factor of two [16].

Later in this section, it is proved that the last three terms on the right hand side
of Eq. 3.101 can be neglected, reducing the generalized Ohm’s law to the following
expression:

J = σ (E + u×B) . (3.104)
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Applicability of Generalized Ohm’s Law

The first two conditions that a system must fulfil in order to be able to use the
generalized Ohm’s law for the calculation of J are the continuum description and the
quasineutrality condition. Both assumptions are examined for their validity in Sec.
2.3 and hold for the system under investigation.

The third condition implies that the characteristic time tc for the macroscopic
change is sufficiently large such that [16]:

tc �
νehp
ω2

p

, (3.105)

where the characteristic angular plasma frequency is given by the expression:

ω2
p =

(
n e2

ε0me

)
. (3.106)

The values of νehp at Tc = 12,000 K are already calculated for the validation of the
continuum assumption in Sec. 2.3.2 and amount to: νehp ≈ 3.0× 1011 s−1. The total
number density n at νehp is taken from [37] and is n ≈ 5.9×1023 m−3. This results in
the following value for the plasma frequency: ω2

p = 1.875×1027 s−1. For the condition
in Eq. 3.105, the following inequality results: 1.0× 10−6 � 1.60× 10−16. Thus, this
condition is considered to be valid.

The fourth condition for the generalized Ohm’s law to be applicable is [16]:

tc � ν−1
ehp , (3.107)

which is clearly fulfilled since ν−1
ehp is approximately 3.33 × 10−12 s which is much

smaller than the characteristic time (tc = 1.0× 10−6 s).
The last condition that must be satisfied is [16]:

tc � (νin + νni)
−1 . (3.108)

The values of νNN+ and νN+N are already calculated in Sec. 2.3.2 and for Tc =
12,000 K they amount to: 6.63 × 108 s−1 and 4.69 × 109 s−1. From Eq. 3.108,
it follows: 1.0 × 10−6 � 1.87 × 10−10. Thus, all conditions are satisfied and the
generalized Ohm’s law is applicable for the system under investigation.

Neglecting the Electron-Pressure Term

The second term on the right hand side of Eq. 3.101 is the electron-pressure term. It
defines the current density due to electron pressure gradient. It can be set in relation
to the current density caused by the electrostatic field Est. The electron pressure can
be calculated as follows: pe = nekBTe. This results in the following ratio [13]:

µe∇pe
σEst

=
∇pe
neeEst

∼ nekBTe

lcneeEst

=
kBTe

lceEst

. (3.109)

By assuming for both Est and Te the characteristic values given in Tab. 2.2, the
ratio value amounts to 0.0517, which is much less than unity. Therefore, the electron
pressure term is neglected in the present work.
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Neglecting the Hall Term

The Hall current flows in the direction perpendicular to both the electric and magnetic
fields [16]. In a system in which no exterior magnetic fields are imposed and only
induced magnetic fields occur, this current can be neglected if the electron Hall
parameter βe is much less than unity. For the estimation of βe the characteristic
value of the induced magnetic field magnitude is used:

βe =
e Bc

meνehp
≈ 0.00937 , (3.110)

which is much less than unity. From the definition of the Hall parameter it is clear
that the magnetic field induction should be rather high to have an appreciable effect
on the dynamics of the gas discharge [13]. Thus, the Hall term can be neglected.

Neglecting the Ion-Slip Term

The ion-slip factor s in the ion slip term is defined as follows [16]:

s =

(
ρn
ρ

)2

βeβi , (3.111)

where βe is already estimated above. The ion Hall parameter is given by:

βi =
e Bc

µinνin
. (3.112)

At Tc = 12,000 K the nitrogen plasma consists mostly of N and N+ and thus the
reduced mass amounts to µin ≈ 1

2
mN = 1.16 × 10−26 kg. The value of νN+N is

estimated at 6.63×108 s−1. By using these values, the ion Hall parameter is estimated
at: βi = 3.32× 10−4. The ratio (ρn/ρ)2 is calculated by using the ideal gas law and
the number densities n+

N = 6.5× 1022 m−3 and nN = 4.6× 1023 m−3 and amounts to
approximately ≈ 0.76. By inserting all these values into Eq. 3.111, the ion-slip factor
s is estimated at 2.36 × 10−6, which is much less than unity and thus the ion-slip
term is neglected.

Significance of the Induction Current

Finally, it should be investigated whether the induction current which occurs due to
the movement of the conductive fluid in an induced magnetic field (J = σ (u×B)),
is significant compared to the current generated by the electrostatic field (J = σEst).
The ratio of both currents results in:

σ (u×B)

σEst

∼ ucBc

Ec

= 0.008 . (3.113)

That is, the current arising due to electrostatic field is much larger and thus the
induced current may be neglected for the system under investigation:

J = σE + σ (u×B)︸ ︷︷ ︸
≈0

≈ σE , (3.114)

which is basically the form of the Ohm’s law for stationary conductors.
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3.3.3 Verification of the MHD Approximation

In this work, the so-called MHD approximation is used to simplify the Maxwell’s
equations. The use of this approximation presumes the applicability of the generalized
Ohm’s law, which is proved in Sec. 3.3.2.

The assumption of quasineutrality (ρc ' 0) allows to simplify of the Gauss’s law
and the charge conservation equation to the following expressions [16]:

∇ · E = 0 and ∇ · J = 0 . (3.115)

This is due to the fact that in a volume of a radius much larger than the Debye
length, the positive and negative charges cancel each other, making the fluid in this
volume behaving as neutral matter.

Now it should be investigated if it is possible to neglect the displacement current
compared to the conduction current. Using the assumption ε ≈ ε0, the displacement
current ∂D/∂t in Eq. 3.92 becomes ε0∂E/∂t, that is, identical to the traditional
form of the Ampère’s law in Eq. 3.85. The ratio of the displacement current to the
conduction current J = σE which occurs due to the electrostatic field, becomes [16]:

∂D/∂t
J

= ε0
∂E/∂t
σE

∼ ε0Ec

tcσEc

=
ε0

tcσ
. (3.116)

Hence, the displacement current may be neglected if the following restriction applies:

tc �
ε0

σ
. (3.117)

When the so-called mean free path formula (see Eq. 3.99) is used for the calculation
of σ, the above condition may be rewritten as:

tc �
νehp
ω2

p

, (3.118)

which is the same condition as in Eq. 3.105 used for validating the applicability of
the generalized Ohm’s law. It has already been proven that this condition applies
and the displacement current can be neglected, reducing the Ampère’s law to [16]:

∇×B = µ0J . (3.119)

The MHD approximation and the use of the simplified generalized Ohm’s law
lead to the following set of simplified Maxwell’s equations:

∇ · E = 0 Gauss’s law, (3.120)

∇ ·B = 0 no name, (3.121)

∇× E = −∂B
∂t

Faraday’s law, (3.122)

∇×B = µ0J Ampère’s law, (3.123)

∇ · J = 0 charge conservation, (3.124)

J = σE Ohm’s law. (3.125)
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3.3.4 Verification of the Magnetostatic Approximation

In the system under investigation direct current is used to sustain the gas discharge.
According to Griffiths [49], steady currents produce magnetic fields that are constant
in time. Thus, the induced magnetic field is static in the area surrounding the current-
carrying fluid region. This assumption is called magnetostatics and represents a
suitable approximation even for fluctuating currents, provided that the current varies
very slowly with time. As a consequence, the term −∂B

∂t
in the Faraday’s law can be

neglected and this law reduces to:

∇× E = 0 . (3.126)

Actually, the term −∂B
∂t

represents the only remaining coupling between electric and
magnetic fields in Eqs. 3.120 - 3.123, since the displacement current in the Ampère’s
law is already neglected. By neglecting −∂B

∂t
, the Maxwell’s equations of electrostatics

become completely decoupled from the Maxwell’s equations of magnetostatics [49]:

∇× E = 0 , ∇ · E = ρc/ε0︸ ︷︷ ︸
here ≈0

-Maxwell’s equations of electrostatics; (3.127)

∇×B = µ0J , ∇ ·B = 0 -Maxwell’s equations of magnetostatics. (3.128)

Thus, for the given physical system only four equations would suffice to obtain the
electromagnetic fields and the current density, namely:

∇ ·B = 0 , ∇×B = µ0J , ∇ · J = 0 , J = σE . (3.129)

In the following, the applicability of the magnetostatic assumption for the system
under investigation is verified. For this, it is assumed that the induced magnetic field
alternate with the characteristic time tc. According to Eqs. 3.89 and 3.90, only the
induced electric field Eind arises due to changing magnetic field B. The magnitude
of the externally imposed electrostatic field Est is given by Ec. The magnitude of
the induced magnetic field is Bc (see Tab. 2.2). By using the Faraday’s law, the
approximate value of Eind may be obtained by:

Eind

lc
∼ −Bc

tc
and thus |Eind| ∼

Bclc
tc

. (3.130)

The comparison of the induced and electrostatic electric fields yields:

Bclc
tcEc

= 0.002 , (3.131)

which means that the temporal fluctuations of B have to be rather fast to have an
appreciable effect on the dynamics of the physical system under investigation.

3.3.5 Potential Expression

The number of Maxwell’s equations shown in Eqs. 3.120 - 3.123 can be reduced by
representing electromagnetic fields in terms of electromagnetic potentials.
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Electric and Magnetic Potentials

The electric field E can be expressed in terms of a scalar potential as follows [49]:

E = −∇Φ , (3.132)

where the minus sign is purely conventional. In this way, the vector quantity E
reduces to a scalar quantity Φ called the electric potential.

The magnetic field B can be represented by a vector potential as follows [49]:

B = ∇×A . (3.133)

It is important to mention that although the divergence of B is always zero,
the curl of the electric field E is non-zero in the original (unreduced) version of the
Faraday’s law (see Eq. 3.122). That is, for systems in which the magnetic induction
in the Faraday’s law cannot be neglected, the potential expression shown in Eq. 3.132
is not applicable. Instead, the following potential expression must be used for the
electric field:

E = −∇Φ− ∂A
∂t

.

More information on the potential expression can be found in Griffiths [49].

Potential Expression of Maxwell’s Equations

Since the curl of a gradient of a scalar field is always zero (∇ × (∇Φ) = 0), the
Gauss’s law in Eq. 3.120 is automatically fulfilled. Likewise, since the divergence
of a curl is always zero, the potential formulation of B automatically satisfies Eq.
3.121. Furthermore, the Gauss’s law can now be replaced by the charge conservation
equation given in Eq. 3.124, since the electric field and the current density are directly
related to each other by the Ohm’s law (see Eq. 3.125). Thus, only the Ampère’s
law and the charge conservation equation have to be brought into the potential form.

The charge conservation equation is brought into the potential form by replacing
the current density J with the help of the Ohm’s law by σE. In the next step,
the electric field is expressed in terms of a scalar potential, leading to the following
Laplace’s equation:

∇ · (σ∇φ) = 0 . (3.134)

The same procedure is used to replace the current density in the Ampère’s law.
Additionally, by replacing B through the magnetic vector potential given in Eq.
3.133, the following expression is obtained for the Ampère’s law [49]:

∇×B = ∇× (∇×A) = ∇ (∇ ·A)−∇2A = µ0σ∇φ . (3.135)

It is mathematically possible to add to the magnetic potential any function whose
curl vanishes without affecting B. By using this rule, the term ∇ (∇ ·A) in Eq.
3.135 can be eliminated and the Ampère’s law becomes [49]:

∇2A = σµ0∇φ , (3.136)
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which has a form of a Poisson’s equation. Both Eq. 3.134 and Eq. 3.136 satisfy all
electromagnetic equations of the MHD model given by Eqs. 3.120 - 3.124. That is,
the equation system reduces to equations for solving the four variables Ax, Ay, Az
and Φ. This is a significant reduction in the number of equations compared to the
electromagnetic equations of the MHD model described in Sec. 3.3.4. The equations
are accomplished by the Ohm’s law, given in Eq. 3.125. The electric and magnetic
fields E and B are obtained by Eq. 3.132 and Eq. 3.133, respectively.

3.3.6 Joule Heating and Lorentz Force

Joule Heating

The Joule heating is evaluated by the following formula [13]:

Q̇Joule = η (J · E) , (3.137)

where η is the efficiency coefficient of the Joule-heating effect. This source term is in-
cluded in the electron-electronic energy conservation equation (Eq. 3.18). Therefore,
it directly influences the electron-electronic energy Ee and thus the temperature Te.
Via the system-internal energy exchange, the impact of Q̇Joule on Ee is transmitted to
Evib and Etr−rot. In this way, the Joule heating impacts on all three temperatures: Te,
Tvib and T . This process is marked with the number 1 in Fig. 3.3 where the coupling
between the fluid dynamics and the electrodynamics via the Joule heating is repres-
ented schematically. Changes in temperatures are reflected in mass production rates

Joule heating
Q̇Joule

energy equations
Te, Tvib, T

chemical kinetics
ω̇1, ω̇2, . . ., ω̇n

electromagnetic fields
E, B

electrical conductivity
σ

mass fractions
c1, c2, . . ., cn

6

1 2

3

45

Figure 3.3: Coupling between electromagnetic fields and thermodynamic proper-
ties.

and, therefore, also in the mass concentrations of plasma constituents (Fig. 3.3, steps
2 and 3). Since the electrical conductivity σ of the gas is a function of the species
composition and of Te, σ would change as well. Since σ is included in the calcula-
tion of E and B, there is a mutual coupling between the electromagnetic fields and
the thermodynamic properties of the system, because changes in the electromagnetic
fields are reflected in the intensity of Q̇Joule (steps 4, 5, and 6).
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Lorentz Force

By using Eqs. 3.86 and 3.88, the force law can be written as [49]:

F = ρcEst + ρcEind + J×B . (3.138)

The first term ρcEst represents the electrostatic force, also known as Coulomb force.
The second term ρcEind arises due to a time-varying magnetic field. The third term
ρcuc ×B = J×B arises due to the motion of a conducting fluid in a magnetic field
and is called Lorentz force [59].

The system under investigation is a DC discharge where a steady arc current can
be assumed. A constant current induces a constant magnetic field and thus the term
ρcEind can be neglected.

Furthermore, the Coulomb force has a negligible effect on the fluid motion. This
can be demonstrated by comparing the Coulomb force with the inertial force necessary
for a uniform deceleration of the fluid element with the volume V from a velocity
magnitude uc to 0 m · s−1. The electrostatic and the inertial forces can be defined
as follows: FCoulomb = ρcEstV and Finertial = ρaV ∼ ρV u2

c/2lc, where a is the
acceleration in m · s−2 and uc is the magnitude of the characteristic velocity of the
fluid. The charge density ρc is estimated by using the Gauss’s law in Eq. 3.82 as
follows: ρc = ε0∇ · E ∼ ε0Ec/lc. The characteristic values are given in Tab. 2.2 and
the density of nitrogen at 1 bar and T = Tc is ρ ≈ 0.05 kg ·m−3. The following value
is obtained when putting both forces into a ratio [13]:

FCoulomb

Finertial

∼ 2ε0E
2
c

ρu2
c

≈ 3.54× 10−8 . (3.139)

Thus, the contribution of the Coulomb force is negligible. An analogous calculation
is performed in the following for the Lorentz force:

FLorentz

Finertial

∼ 2σcEcBclc
ρu2

c

≈ 5.63× 10−2 . (3.140)

It can be seen, that the Lorentz force also has a rather minor effect on the free-stream
flow. However, it is larger by several magnitudes than the Coulomb force. Thus, the
Lorentz force completely dominates the force law.

Since the induced magnetic field depends on the current density and the current
density in turn is a function of the electrostatic field (see Eq. 3.125), it seems to
make sense to multiply the Lorentz force by the efficiency coefficient η:

F ≈ FLorentz = η (J×B) . (3.141)

The inertial force in the boundary layer is lower due to a lower velocity. Therefore,
the Lorentz force could play a role there. For this reason, in the present work the
Lorentz force is included in the momentum conservation equation Eq. 3.14.
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3.4 Closing Remarks
The physicochemical model presented in this chapter is complete and can be used
directly in the form it is presented. All equation systems represented in the physico-
chemical model are closed and all thermodynamic and transport properties as well as
fluxes and source terms are represented by corresponding submodels. All listed data
are given for the high-temperature nitrogen. For simulations of high-temperature
oxygen or air, appropriate data can be taken from Dunn and Kang [25], Park [14],
Gupta et al. [23], and Yos [22].

The physicochemical model is not only suitable for the simulation of high-pressure
gas discharges, but generally for the modelling of high-temperature gases regardless
of the field of application and irrespective of whether the gas is exposed to external
electromagnetic fields or not. Thus, it could be used to simulate, for example, flows in
a DC plasma torch as well as to simulate high-speed and high-enthalpy flows, as long
as the MHD approximation is valid, the magnetostatic assumption is true, and the
continuum conditions are met. The model is based on the one-fluid approximation
and takes into account the chemical and thermal nonequilibria in the gas mixture.
However, special attention should be paid to the validity of all assumptions and sim-
plifications used in the model. This applies in particular to the assumption of the
harmonic oscillator for calculating the vibrational energy. Furthermore, it should not
be forgotten that turbulence modelling is not yet included in the model. Further,
since rotational nonequilibrium may become significant under certain conditions, the
assumption of the translational-rotational temperature must be considered with cau-
tion. The same applies to the assumption of the electron-electric temperature.
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Numerical Realization

This chapter is devoted to the numerical realization of the physicochemical model
defined in Chapter 3. In Sec. 4.1 the software used for numerical implementation is
introduced. Sec. 4.2 briefly explains the numerical implementation procedure. Since
the software used is based on the finite volume method (FVM), Sec. 4.4 first gives
a brief overview of FVM. Subsequently, in Sec. 4.4, the finite volume discretization
techniques are explained in detail using the example of the generic conservation equa-
tion and the software used. Only the discretization and interpolation techniques used
in this work are discussed. Finally, in Sec. 4.5, the solver developed in this work is
described in detail.

4.1 Software Description

OpenFOAM is a finite volume based software package developed for numerical simu-
lations of continuum mechanics problems [60]. This tool can be considered primarily
as a collection of precompiled C++ libraries, from which executable files are created
[61]. The OpenFOAM libraries are grouped into several subdirectories according to
their scope of tasks. For example, there are libraries that provide the classes needed
for finite volume discretization, libraries with memory management tools and with in-
terpolation schemes, as well as mesh manipulation and post-processing libraries [61].
In the context of this thesis it is important to draw attention to the so-called model
libraries which specify physical models. These libraries provide, for example, models
for the calculation of thermodynamic and transport properties as well as radiation
and turbulence calculation models.

The object classes contained in the OpenFOAM libraries can be regarded as
building blocks from which executable files, so-called applications, are created. Open-
FOAM already contains a large number of ready-made official applications that can
be used directly. These applications can be divided into two main categories, namely
utilities and solvers [61]. Utilities are designed to perform pre- and post-processing
tasks. As far as numerical solvers are concerned, OpenFOAM does not have a generic
solver capable of solving all classes of continuum mechanical problems, but rather a
set of predefined solvers, each for a specific class of problems [61].

81
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The object oriented C++ frame work of OpenFOAM allows to design new custo-
mized libraries, utilities and solvers [60]. This fact, together with the free availability
of the software, are two main reasons for choosing this CFD tool for the present work.

4.2 Numerical Implementation Procedure
In the present work, a new numerical solver is developed together with the associated
model library based on the OpenFOAM C++ libraries. In the following, the model
library and the solver are discussed in more detail.

4.2.1 Development of the Model Library

The new model library is developed in the spirit of the ready-made official ther-
mophysical OpenFOAM libraries. It consists of several object classes which can be
divided into three modules:

◦ module containing classes for finite-rate chemical kinetics,

◦ module for the calculation of thermodynamic and transport variables,

◦ module with classes for complementary electrodynamic calculations.

Finite-Rate Chemical Kinetics Module

The classes contained in this module are, in principle, an extension of the original
OpenFOAM classes from single-temperature to multi-temperature chemical kinetics.
With their help, the contribution of chemistry in each control volume is represented
via an independent matrix-vector system of ordinary differential equations (ODE).
Each system of equations is solved iteratively by means of an ordinary differential
equation solver (ODE solver). For this purpose, several variants of ODE solvers are
available in OpenFOAM. The theory of the chemical kinetics module is described
in Sec. 3.1. The numerical calculation of species production rates is based on the
following equations: Eqs. 3.5, 3.6, 3.7, and 3.8. The coefficients required in Eq. 3.8
(see Tab. B.1) must be listed by the user in a particular file so that they can be read
out during the calculation. The same applies to the data listed in Tab. 3.1.

Module for Calculation of Thermodynamic and Transport Variables

These classes are used to declare and initialize all variables required for thermo- and
fluid dynamic calculations. Furthermore, the classes of the thermodynamic module
contain calculation models for all necessary thermodynamic and transport properties
as well as all energy exchange models. The implemented calculation models can be
divided into three groups:

◦ Models for thermodynamic relations: These models relate changes in en-
ergies ee, evib, and e, to changes in temperatures Te, Tvib, and T , respectively.
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Their numerical implementation is based on Eqs. 3.23 - 3.31, discussed in Sec.
3.2.2.

◦ Calculation models for transport variables: These models are used for
the calculation of transport properties µ, σ, κ′vib, κ′e, κtr, κrot, and Ds, as well
as diffusion fluxes ρVscs and heat fluxes qvib, qe, and q. The numerical im-
plementation of these quantities is based on Eqs. 3.32 - 3.53, given in Sec.
3.2.3.

◦ Calculation models for energy exchange: These models are required for
the calculation of all internal energy exchange processes that are summarized
in Eqs. 3.80 and 3.81 under

(
∂Evib

∂t

)
int

and
(
∂Ee

∂t

)
int

(see Sec. 3.2.5) as well as
radiation losses Q̇rad. The corresponding equations are Eqs. 3.60 - 3.79.

Module for Electrodynamic Calculations

The declaration and initialization of electrodynamic variables is executed with these
classes. In addition, they provide calculation models for the Lorentz force FLorentz

and the Joule heating Q̇Joule. The numerical implementation of these two physical
phenomena is based on Eqs. 3.141 and 3.137.

The relations between the fields E and B and the potentials Φ and A are also
defined in the electrodynamic module. They are given by Eqs. 3.132 and 3.133.

4.2.2 Development of the Solver

The new solver is based in part on two official OpenFOAM solvers, namely reacting-
Foam and sonicFoam. The solver reactingFoam is a multi-species solver developed for
calculations of combustion with chemical reactions. The solver sonicFoam belongs
to the compressible family of OpenFOAM solvers and is developed for the simula-
tion of transient, subsonic, transonic, supersonic and turbulent flows [62]. It is a
pressure-based, compressible solver which solves governing equations in a segregated
manner.

For the development of the new solver, basic chemical features were first imple-
mented in sonicFoam by incorporating parts of reactingFoam into it. This modifi-
cation extended the capabilities of sonicFoam to simulations of chemically-reacting
multi-species flows. In the next step, the thermodynamic part of sonicFoam was ex-
tended to multi-temperature approach to account for thermodynamic nonequilibrium
in the gas. Finally, the new solver was extended by equations of magnetostatics to
account for plasma responses to electric and magnetic fields.

4.3 General Comments on Finite Volume Method
Finite Volume Method (FVM) is a discretization method that approximates par-
tial differential equations representing conservation laws by a system of algebraic
equations for a set of discrete places in space and time [51, 60]. Other important
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discretization methods are, for example, the finite difference method (FDM) and the
finite element method (FEM).

The application of FVM requires a temporal discretization over the time axis as
well as a spatial discretization of the solution area into finite volumes. Afterwards, the
partial differential equations are transformed into algebraic equations by integrating
them over a time interval and over each finite volume [60]. This procedure results
in a large nonlinear algebraic equation system [51]. To obtain the solution, after
discretization and linearisation, the system of linear equations is solved using an
iterative technique (linear solver). In this way, the variables in the conservation laws
are calculated in each discrete point of the solution area.

4.3.1 Spatial Discretization: Computational Grid

To spatially discretize the geometric region of interest, a numerical grid is created
which divides the solution region into a limited number of discrete elements referred
to as control volumes (CV). The centroids of each CV represent the computational
nodes in which the variable values are calculated [51]. The geometry of the grid (also
called computational mesh) defines the location of these discrete points. Some of
the possible grid geometry options are: structured grids, block-structured grids, and
unstructured grids. The finite volume method can be applied to any type of compu-
tational grids, which makes it suitable for complex geometries (for more information
on this topic see Ferziger and Perić [51]).

4.3.2 Discretization of Partial Differential Equations

FVM uses the integral form of the conservation equations as a starting point [51].
The conservation equations are applied to each control volume and transformed into
a set of algebraic equations by integrating them over each CV [60]. According to
Moukalled et al. [60], this transformation involves two basic steps:

1. The partial differential equation is integrated over the CV and Gauss theorem
is applied to transform the volume integrals of the convection and diffusion
terms into surface integrals. Then, the integrated equation is transformed into
a balance equation over a control volume by applying quadrature formulas,
such as a Gaussian quadrature rule [51, 60]. The result is the so-called semi-
discretized equation, which means that the equation is discretized in space, but
not in time. The subsequent temporal discretization yields a discrete equation.

2. An interpolation procedure is used to approximate the variation of the variables
within the control volume and on the CV’s surfaces by the values in the CV
centroids [60].

The result is a set of algebraic equations, each for one CV, where each equation
contains the value of the dependent variable from its own control volume centroid
and values from the centroids of adjacent or neighbouring CVs [51].
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4.3.3 Solution of Linear Equation System

For the solution of the algebraic equation system, iterative solution algorithms are
usually used. An iterative method starts with an estimated solution and uses the
equation to systematically improve this solution [51]. If the differential equation to
be discretized is nonlinear, its algebraic form will also contain some nonlinear terms.
In such a case, successive linearisation of the algebraic equations is performed followed
by the iterative solution of the linear equation system.

Explicit and Implicit Numerical Solution Schemes

It is generally possible to distinguish between explicit and implicit numerical solution
schemes. A numerical method is said to be explicit when the dependent variable in
each algebraic equation is computed via already known variable values from the last
available solution. In an implicit method, however, all dependent variables are treated
as unknowns and calculated via an iterative solution algorithm in a coupled set of
equations for the current time step [60].

Simultaneous and Separate Solution Methods

The governing equations of fluid dynamics represent a system of coupled equations
in which the dependent variable in one equation also occurs in some other equations.
There are two types of solvers for such problems. In the first type, all equations for
all variables are solved simultaneously. In the second type, each equation is solved
separately for its own variable, assuming the other variables as known. The two
methods are referred to as simultaneous and separate solution methods [51].

4.4 Finite Volume Discretization
Conservation equations of fluid dynamics contain terms that represent different phy-
sical processes. For example, the advectional process represented by the convective
terms is highly directional, while the diffusion terms represent non-directional phe-
nomena. For this reason, the individual terms in the conservation equations are
discretized by using different methods in order to best mimic the underlying physics
of each term.

This section explains the discretization process of the governing equations of fluid
and electrodynamics using the example of the general conservation equation. For this
purpose, the general conservation equation is first derived in Sec. 4.4.1. Afterwards,
in Sec. 4.4.2 - 4.4.8, all the discretization schemes used in this work are presented and
then applied to the general conservation equation to obtain an algebraic equation.

4.4.1 General Conservation Equation

All governing equations of fluid dynamics described in Sec. 3.2.1 are of the same
structure. They all are given in their conservation and differential form and are
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written in terms of intensive properties. By replacing these intensive properties with
a generic intensive scalar/vector property φ, all of these governing equations may be
described by the following general conservation equation [51]:

∂ρφ

∂t
+ ∇ · (ρuφ)︸ ︷︷ ︸

FC
φ

= Tφ . (4.1)

The generic variable φ stands in the governing equations of fluid dynamics for the
following intensive properties:

◦ φ = 1 in the mass conservation equation,

◦ φ = u = (ux, uy, uz)
T in the momentum conservation equation,

◦ φ = c1, c2, ..., cn in the species conservation equation,

◦ φ = ee in the electron-electronic energy conservation equation,

◦ φ = evib in the vibrational energy conservation equation,

◦ φ = e in the overall energy conservation equation.

The quantity Tφ in Eq. 4.1 denotes all the transport mechanisms of φ, except the
transport due to convection fluxFC

φ , as well as all sources and sinks [51]. The diffusive
transport mechanisms are always present in a fluid. They can be represented by
means of the diffusion flux as follows: T D

φ = ∇ ·FD
φ . The diffusion fluxes are usually

described by the spatial gradient of the transport variable and the corresponding
diffusion coefficient Γφ as follows: FD

φ = Γφ∇φ [51]. Thus, Eq. 4.1 can be rewritten
as [52, 60, 51]:

∂ρφ

∂t︸︷︷︸
unsteady
term

+∇ · (ρuφ)︸ ︷︷ ︸
convection

term

= ∇ ·
(
Γφ∇φ

)︸ ︷︷ ︸
diffusion
term

+ Q̇φ︸︷︷︸
source
term

. (4.2)

In the species conservation equation the diffusion term is described by the Fick’s law
as∇·(ρDs∇cs). In the momentum conservation equation, the transport mechanisms,
denoted in Eq. 4.1 by Tφ, include pressure forces and forces due to viscous normal
and shear stress and the Lorentz force (see Eqs. 3.13 and 3.14):

Tu = ∇ ·
[
−pI − µ2

3
(∇ · u) I + µ∇⊗ u + µ (∇⊗ u)T

]
+ FLorentz .

The diffusion term is then: T D
u = ∇ · (µ∇⊗ u), where Γu = µ. The rest of the

mechanisms may be assigned to the source term Q̇u [60]. The same procedure can
be performed for each of the three energy conservation equations (Eqs. 3.17, 3.18,
and 3.19), where the transport mechanisms denoted in Eq. 4.1 by Tφ include, besides
source terms, the rate of work due to surface forces. The thermal diffusion can be
then described by the Fourier’s law as follows [51]: T D

e = ∇ · (κ∇T ).
In the magnetostatic part of the solver the general conservation equation is re-

duced to Laplace and Poisson equations in which the generic variable stands for the
following variables:
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◦ φ = Φ in the Laplace’s equation,

◦ φ = A = (Ax, Ay, Az)
T in the Poisson’s equation.

The partial differential equation, Eq. 4.2, can be derived in several ways. One of
the possibilities is to derive it from its integral form by allowing the control volume
V to become infinitely small. The integral form of Eq. 4.2 is [60, 51]:∫

V

[
∂ρφ

∂t
+ ∇ · (ρuφ)−∇ ·

(
Γφ∇φ

)
−Qφ

]
dV = 0 . (4.3)

By rearranging Eq. 4.3 and applying the Gauss’ theorem to its convection and
diffusion terms the following expression is obtained [51]:∫

V

∂ (ρφ)

∂t
dV +

∫
S

(ρφu) · n dS =

∫
S

(
Γφ∇φ

)
· n dS +

∫
V

QφdV . (4.4)

This is the integral form of the general conservation equation used in the FVM. It
may be derived by applying the fundamental physical principle of conservation of φ
to a finite control volume which is fixed in space. This finite control volume has a
volume V and a surface that bounds it ∂V (called control surface). The fluid moves
through this fixed control volume across its control surface [52]. Thus, the physical
meaning of Eq. 4.4 may be interpreted as follows [60, 52]:

Rate of change
of φ inside the
control volume

+
Net flux of φ

into the control volume
via advective flux

=
Net flux of φ

into the control volume
via diffusive flux

+
Source/sink of φ

within the
control volume

.

For more information on the derivation of Eq. 4.4 Anderson’s book [52] is recom-
mended.

4.4.2 Gradient Evaluation at Cell Centroids

Gradient Operator in the Conservation Equations

The evaluation of gradients at cell centroids is crucial for the discretization of the
governing equations. For example, the gradient operators directly appear as pressure
gradients in the momentum conservation equations and as mass fraction gradients in
the species conservation equations. It will be shown in later sections that gradients
at cell centres are also needed for the calculation of gradients at cell faces, which, in
turn, occur during discretization of the diffusion terms. Furthermore, in unstructured
meshes the gradients are used for the calculation of the so-called virtual upwind
nodes, since defining upwind nodes directly is not straightforward in unstructured
grid systems [60]. These virtual nodes are used, for example, in the high-resolution
interpolation schemes utilized for the discretization of convection terms. At this
point it should be mentioned that the software used in this work is based on an
unstructured grid platform with the so-called face-addressing storage [60].
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Gradient Scheme Used

There are various techniques for discretization of gradients at cell centroids, such as
the least-squares or the Green-Gauss method. In the present work, the Green-Gauss
method (or just Gauss method) is used for the gradient evaluation, which requires the
interpolation of values from cell centres to face centres of the CV (see Eq. 4.5). For
this interpolation procedure, linear interpolation (or central differentiation) is chosen
in the present work. For the interpolation of the energy and temperature gradients
an additional limiting scheme (the cellLimited scheme) is switched on. According
to [61], this scheme limits the gradients in such a way that when extrapolating cell
centroid values to cell faces using the calculated gradient, the cell face values are
not outside the limits of the values in the surrounding cells. The corresponding
keywords in the OpenFOAM directory fvSchemes in which all the numerical schemes
used are defined, are entered in the sub-directory gradSchemes and read as follows:
Gauss linear and cellLimited Gauss linear 1 for the energy and temperature
gradients, where the entry 1 activates the limiting.

Green-Gauss Gradient Evaluation Method

The discretization of the gradient at cell centroid by using the Green-Gauss method
is defined as follows [60]:

(∇φ)C =
1

VC

nb(C)∑
f

φfSf . (4.5)

In the following, the variable value at the centroid of the cell C is denoted by φC and
the variable values of all neighbouring cell centroids F by φF . The corresponding
computational molecule is shown in Fig. 4.1 left. OpenFOAM uses the cell-centred
and collocated variable arrangement, where all variables are stored at the centroids
of discrete elements. That is, the variable values at the face centroids φf in Eq. 4.5
must be evaluated by using φC and φF .

C

F1

Sn,1

f1

F2
f2

F3

f3

F4

f4

F5
f5

F6

f6

f f

Ff ′

Sf

Figure 4.1: left: Computational molecule of the spatial element C; right: Two dis-
crete elements in a skewed numerical grid (adapted from Moukalled et al. [60]).
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Linear Variable Interpolation

The computational grid used in this work is of a low skewness, which is why the
linear interpolation scheme provides a sufficiently accurate evaluation of the values
at the face centroids. Linear interpolation of any variable between the cell points C
and F is given by the following generic formulation [60]:

�f = gf�C + (1− gf )�F , (4.6)

where the weighting function gf is calculated as:

gf =
dFf

dFf + dfC
=
dFf
dCF

. (4.7)

Thus, the value of the generic variable φf may be calculated as follows:

φf = gfφC + (1− gf )φF . (4.8)

In unstructured non-orthogonal grids with strong skewness, however, the point of
intersection f ′ of the surface Sf with the line connecting the centroids C and F does
not usually coincide with the face centroid f (see Fig. 4.1 right). For this reason,
the variable can not be approximated by linear interpolation alone, but requires an
additional correction term. For more information on the correction procedure the
book of Moukalled et al. [60] is recommended.

4.4.3 Divergence Operator Evaluation

The evaluation of the divergence operators is not only required for the discretization
of convective terms that describe a highly directional processes. It is also used, for
example, for the discretization of the components of the viscous stress tensor (see
Eq. 3.13) which describe diffusive phenomena. Therefore, depending on the type
of physical phenomenon, the divergence operators must be discretized by different
schemes [61].

Divergence Schemes Used

Following numerical schemes are used for the evaluation of the divergence operators:

◦ Convection terms of the momentum conservation equations:

Gauss limitedLinearV 1.

◦ Convection terms of the energy and species conservation equations:

Gauss limitedLinear 1.

◦ Viscous stress tensor terms in the momentum equation as well as terms of the
rate of work due to the surface forces in the energy conservation equation:

Gauss linear.
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The keyword Gaussmeans that for all discretization schemes the Gaussian integration
rule is used. The keyword limitedLinear 1 stands for a particular High Resolution
(HR) interpolation scheme which is based on the Total Variation Diminishing1 (TVD)
formulation and uses the Sweby limiter for the bounding of convective fluxes [61].
The entry 1 denotes the strongest limiting. The limitedLinearV 1 scheme is a
special version of the limitedLinear 1 scheme designed for vector fields [61]. The
Gauss linear scheme uses the linear profile approximation (see Eq. 4.6) which is a
physically reasonable scheme for diffusive phenomena.

Gaussian Quadrature Integration: Convection Term

The Gaussian quadrature integration for the fluxFφ of variable φ through the surface
of face f is given such that [60]:

∫
f

Fφ · dS =

∫
f

(Fφ · nf ) dS =

nip(f)∑
ip

(Fφ · nf )ip ωipSf , (4.9)

where the flux Fφ for a convective process is defined as: FC
φ = ρuφ. In Eq. 4.9 the

subscript ip denotes the integration point on the surface f and nip(f) is the number
of integration points along surface f . Further, the quantity ωip denotes the weighting
function of the integration point and Sf is the area of the surface f .

In the finite volume method, it is customary to use one integration point located at
the centroid of the discrete element, which is why the following applies: ip = ωip = 1.
This assumption results in a discretization accuracy of the second order [60].

The discretized convection term can be obtained by replacing the surface integral
in Eq. 4.4 by a summation over all discrete element faces and applying the Gauss
quadrature rule to each face of the CV [60]:

∫
SC

(ρφu) · n dS =

nb(C)∑
f

∫
f

(ρuφ) · dS

 =

nb(C)∑
f

(ρφu)f · Sf =

nb(C)∑
f

Ffφf , (4.10)

where the mass flux through the cell face f is defined as: Ff = ρfuf · Sf .

High Resolution Interpolation Scheme: Convection Term

The next step in the discretization of the convection term consists in expressing the
face values φf in Eq. 4.10 in terms of the cell centroid values φC and φF .

High-resolution methods are used because general methods are subject to severe
limitations. For example, the first-order upwind scheme (UD) is characterized by
being able to correctly mimic the basic physics of the advection process, since the cell
face value φf depends on the value of the upwind node. This scheme is stable and gives

1Total Variation Diminishing (TVD) framework represents an approach for developing High
Resolution (HR) convective schemes [60].
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physically plausible results. However, the UD scheme introduces strong numerical
diffusion to the solution, resulting in the smearing of sharp gradients of the transport
variable. To minimize numerical diffusion, the so-called upwind-biased higher-order
schemes have been developed, such as SOU, QUICK or FROMM schemes. These
high-order schemes significantly increase the accuracy while remaining stable, but
show strong unboundedness, resulting in oscillations near sudden jumps or steep
gradients. This type of error is known as dispersion error [60]. These limitations led
to the development of the high-resolution schemes.

According to Ferziger and Perić [51], the idea behind a higher-resolution scheme
is always to produce a sharp discontinuity in the right place without falsifying the
solution in the smooth area. One possible technique to achieve this, is the so-called
flux limiter approach. The function of a flux limiter consists in limiting the flux of
the transport variable (here φ) into a control volume in such a way that no local
maximum or minimum of the profile of this quantity in the considered CV arises
[51]. The formation of these local maxima and minima results from the above-
mentioned numerical dispersion which is typical for higher-order schemes. To achieve
the boundedness of the interpolation profile, the limiter function reduces the order of
approximation near the discontinuity from the high-order scheme towards the first-
order upwind scheme. At the discontinuity itself, the order of approximation becomes
first order. In this way high-resolution, high-order, oscillation free (TVD) difference
schemes are obtained.

According to Jasak [63], a HR scheme can be expressed as a linear combination
of the first-order differencing scheme and a higher order correction as follows:

φf = (φ)UD + ψ(r) [(φ)HO − (φ)UD] , (4.11)

where (φ)UD and (φ)HO denote the face values of φ obtained by the first-order upwind
scheme and the higher-order (HO) scheme, respectively. The quantity ψ(r) denotes
the flux limiter which is a function of consecutive gradients of φ given as [63]:

r =
φC − φU
φD − φC

. (4.12)

Nodes D and U are the neighbouring nodes of C lying downwind and upwind from
C, respectively. In the present work, these nodes and all other neighbouring nodes of
C are generally denoted by the subscript F . The cell face f lies between the nodes D
and C. This means that for the face f the nodes D, C and U represent downwind,
upwind and far upwind nodes, respectively (see Fig. 4.2 left). In unstructured grids
with face-addressing storage no information is available about U which is required for
the calculation of r. Only the information about the owner (C) and the neighbour
(D) of the face f is available. This hurdle is overcome by creating a virtual node U
as follows [60]:

φU = φD − 2∇φC · dCD . (4.13)

In this particular method it is assumed that U lies at the line joining the nodes C
and D such that C represents the midpoint of the segment UD [60].
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Figure 4.2: left: Schematic representation of the U , C and D node locations in an
unstructured grid; right: Discrete element in a non-orthogonal computational grid
(adapted from Moukalled et al. [60]).

The HR scheme used in this work uses the second-order central differencing scheme
(CD) as a HO scheme and limits it towards the first-order upwind scheme in regions
of rapidly changing gradients by using the limiter proposed by Sweby [61, 64].

The first-order UD scheme is defined as follows [60]:

φf = φC if Ff > 0 and φf = φF if Ff < 0 . (4.14)

By introducing an operator ||a, b|| that represents the maximum of a and b, the
convective flow calculated by the upwind scheme is such that [60]:

Ffφf = ||Ff , 0||φC − ||−Ff , 0||φF . (4.15)

The second-order central differencing scheme is given in Eq. 4.8. By substituting
Eqs. 4.8 and 4.14 into Eq. 4.11, the following expression is obtained for a positive
flux direction (Ff > 0) [60]:

φf = φC + (gfψ + 1− ψ)︸ ︷︷ ︸
ω

(φC − φF ) = φC︸︷︷︸
upwind

+ (ω − 1) (φF − φC)︸ ︷︷ ︸
anti-diffusive flux

. (4.16)

The approach described in Eq. 4.16 for the derivation of a HR scheme can be under-
stood as adding a limited anti-diffusive flow to the highly diffusive first-order upwind
scheme. The quantity ω is the so-called downwind weighting factor (DWF). The
DWF method is implemented in OpenFOAM [60]. The complete expression for the
discretized convective term is:

Ffφf = ||Ff , 0||
[
ω+φC +

(
1− ω+

)
φF
]
− ||−Ff , 0||

[
ω−φF +

(
1− ω−

)
φC
]
. (4.17)

The values ω+ and ω− must be calculated for positive and negative flow directions.
As far as the flow through the cell surface, Ff , is concerned, the quantity (ρu)f
is calculated in this work by means of linear interpolation (see Eq. 4.6), which
is acceptable because of a low mesh non-orthogonality. For this, values from the
last available solution are used for the velocity vector. In this way, the nonlinear



4.4. Finite Volume Discretization 93

convective term of the momentum equation can be linearised: Ffuf = (ρ◦fu
◦
f ·Sf )u∗f ,

where the superscripts ◦ and ∗ denote the values of the last available solution and
instantaneous values, respectively. The face surface vectors Sf are calculated from
the computational grid geometry.

The original Sweby limiter is defined as [64]:

ψ(r) = max {0,min (βr, 1) ,min (r, β)} , where 1 ≤ β ≤ 2 . (4.18)

In OpenFOAM the Sweby limiter is implemented as follows:

ψ(r) = max {0,min (2r/k, 1)} , (4.19)

where k = 1 in the present work (the entry 1 in the keyword: limitedLinear 1).

4.4.4 Gradient Evaluation at Cell Faces

The evaluation of spatial gradients (∇φ)f on the cell faces in the direction normal
to the cell surface is needed for the discretization of the diffusion terms (Laplacian
terms), discussed in the following section.

The gradient evaluation procedure is complicated by the fact that most computa-
tional grids for real-world engineering applications are nonorthogonal. The gradient
evaluation procedure is divided into three steps:

◦ calculation of the non-orthogonal contribution to the gradient,

◦ approximation of the gradient at the CV face via gradients at CV centroids,

◦ evaluation of the gradients at the CV centroids (see Sec. 4.4.2).

Non-Orthogonal Contribution

In an orthogonal computational grid the gradient at the face f with the surface vector
Sf may be evaluated by using the nodal values of two neighbouring computational
cells C and F as follows [60]:

(∇φ)f · Sf = (∇φ · n)f Sf =

(
∂φ

∂n

)
Sf =

φC − φF
dCF

Sf , (4.20)

where dCF is the distance between the nodes C and F . However, in unstructured
grids the non-orthogonality is the rule rather than the exception. For this reason, the
surface normal gradient term is split into an orthogonal and a non-orthogonal part
as follows [60]:

(∇φ)f · Sf︸ ︷︷ ︸
surface normal

gradient

= (∇φ)∗f · Ef︸︷︷︸
Efe

+ (∇φ)◦f ·Tf =

(
∂φ

∂e

)∗
f

Ef︸ ︷︷ ︸
orthogonal-like
contribution

+ (∇φ)◦f ·Tf︸ ︷︷ ︸
non-orthogonal like

contribution

, (4.21)
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where Ef represents the surface vector, which is collinear with the vector dCF joi-
ning the centroids of the elements C and F (see Fig. 4.2 right). Vector e is the
unit vector of Ef . Surface vector Tf is orthogonal to the cell face f . There exist
several approaches for calculating Ef and Tf , such as minimum correction approach,
orthogonal correction approach, and over-relaxed approach (for more information see
Moukalled et al. [60]). The minimum correction approach, for example, is defined as
follows:

(∇φ)f · Ef = (∇φ)f · (e · Sf ) e = (∇φ)f · (Sf cos Θ) e , (4.22)

(∇φ)f ·Tf = (∇φ)f · (Sf − Ef ) = (∇φ)f · (n− cos Θe)Sf . (4.23)

The non-orthogonal contribution in Eq. 4.21 contains the gradient on the control
volume surface, which according to [60] can be evaluated as follows:

(∇φ)f = (∇φ)f +

[
φF − φC
dCF

+
(

(∇φ)f · eCF
)]

eCF with eCF =
dCF
dCF

. (4.24)

The orthogonal contribution in Eq. 4.21 can be calculated analogous to Eq. 4.20
by using the linear profile of φ along the e direction. Thus, the surface normal
gradient can be calculated by the following expression:

(∇φ)f · Sf =

φ∗C − φ∗F
dCF

Ef︸ ︷︷ ︸
implicit ortho-

gonal contribution

+

(
(∇φ)f +

[
φC − φF
dCF

−
(

(∇φ)f · eCF
)]

eCF

)◦
·Tf︸ ︷︷ ︸

explicit non-orthogonal contribution

. (4.25)

In Eq. 4.25, the orthogonal part is treated implicitly. The non-orthogonal correction,
however, is calculated explicitly, meaning it is treated in a deferred correction manner
by using the values currently available.

Gradient Interpolation

The interpolated gradient at the face, (∇φ)f , in Eq. 4.25 is obtained by linear
interpolation between the values at points C and F given by Eq. 4.6, which leads to
the following formulation:

(∇φ)f = gf (∇φ)C + (1− gf ) (∇φ)F . (4.26)

The evaluation of the surface gradients is completed by the calculation of the gradients
at the centroids (∇φ)C and (∇φ)F , as discussed in Sec. 4.4.2.

4.4.5 Laplacian Operator Evaluation

The evaluation of the Laplacian operator is required for the discretization of the
diffusion term in Eq. 4.2.
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Laplacian Scheme Used

The Laplacian scheme used in the frame of this work is defined in the OpenFOAM’s
directory fvSchemes by the keyword: Gauss linear limited 1.0.

The keyword Gauss means that the Gaussian integration rule is used for the eva-
luation of the surface integral in the diffusion term. This is the only available scheme
for the diffusion term evaluation in OpenFOAM [61]. Further, the keyword linear
denotes that linear interpolation scheme given in Eq. 4.6 is used for the surface in-
terpolation of the diffusivity Γφ. Finally, the keyword limited 1.0 means that the
explicit non-orthogonality correction is performed in the evaluation of the surface
gradient (see Sec. 4.4.4). This explicit non-orthogonal contribution is added to the
orthogonal component (see Eq. 4.25). With high non-orthogonality of the computa-
tional grid, this explicit part can become very large, which leads to instabilities during
the solution process. The stabilization is achieved by limiting the non-orthogonal con-
tribution over a coefficient ζ, which can have values of 0 ≤ ζ ≤ 1 [61]. The coefficient
0.5 in the entry limited 0.5 would mean that the non-orthogonal contribution can
be smaller or equal to the orthogonal part. Since the computational grid used in the
present work has a low non-orthogonality, the non-orthogonal correction is added to
the orthogonal component without limitations (that is ζ = 1.0).

Gaussian Quadrature Integration: Diffusion Term

The discretization of the diffusion term is carried out analogous to the convection
term, whereby Fφ in Eq. 4.9 represents in this case the diffusive flux given as follows:
FD
φ = Γφ∇φ. This results in the following relation for the diffusion term when one

integration point is used [60]:

∫
SC

(
Γφ∇φ

)
· n dS =

nb(C)∑
f

(
Γφ∇φ

)
f
· Sf . (4.27)

The evaluation of the surface gradient (∇φ)f is carried out as described in Sec. 4.4.4.

4.4.6 Source Term: Linearisation and Spatial Discretization

Source terms are used in the transport equations not only for modelling such effects
as radiation losses or body forces. Another task of the source terms is to treat all
those terms that cannot be written as convection, diffusion or unsteady terms [63].

Linearisation of the Source Term

The linearisation (or implicit treatment) of the source term plays an essential role in
the solution process, because this enhances the solution robustness of the algebraic
system of equations [63, 60]. It is therefore recommended to treat the source terms
as implicitly as possible.
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The source term Qφ can be a function of φ. As described in [60], Q(φ) can be
treated purely explicitly by using the last available solution of the generic variable
(φ◦), or implicitly by linearising it using the Taylor-like series expansion:

Q (φC) = Q (φ◦C)+

(
∂Q

∂φ

)◦
(φC − φ◦C) =

(
∂Q

∂φ

)◦
φC︸ ︷︷ ︸

implicit part
= QφimφC

+Q (φ◦C)−
(
∂Q

∂φ

)◦
φ◦C︸ ︷︷ ︸

explicit part = Qφex

. (4.28)

For the sake of convenience, the coefficient of the implicit part of the linearised
source term is in the following denoted by Qφ

im and the explicit part by Qφ
ex. More

information on this topic can be found in Moukalled et al. [60] and Patankar [65].

Spatial Discretization of the Source Term

By applying the Gaussian quadrature integration to the control volume and using
the relation in Eq. 4.28, the discretized source term is obtained as follows [60]:

∫
VC

QφdV =

nip(VC)∑
ip

(
ωipQ

φ
ipVC

)
=

nip(VC)∑
ip

ωip

(
Qφ

imφC +Qφ
ex

)
ip
VC . (4.29)

In Eq. 4.29, the upper bound of summation nip(VC) stands for the number of integ-
ration points in the volume of the discrete element C. By using only one integration
point for the discretization (e.g. cell centroid) the following expression for the source
term is obtained: ∫

VC

QφdV =
(
Qφ

imφC +Qφ
ex

)
VC . (4.30)

4.4.7 Spatial Discretization of the Transient Term

According to Moukalled et al. [60], for fixed grids in which the volume and the surface
area of each discrete element are constant in time, the transient (unsteady) term can
be integrated as follows:

∫
VC

∂ (ρφ)

∂t
dV =

∂

∂t

∫
VC

ρφ dV

 =
∂
(
ρφ
)
C

∂t
VC =

∂ (ρφ)C
∂t

VC , (4.31)

where:
ρφC =

1

VC

∫
VC

ρφ dV = (ρφ)C +O
(
∆2
)
. (4.32)

In Eq. 4.32 the symbol O (∆2) denotes the truncation error, meaning that the nu-
merical scheme is of the second order accuracy.
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4.4.8 Temporal Discretization

Temporal Discretization Scheme Used

The temporal discretization is required for the evaluation of the time derivative ap-
pearing in the unsteady term of the general conservation equation. In the context of
the present work, the implicit Euler scheme, which is a first-order scheme, is used for
temporal discretization.

Semi-Discretized Equation

By inserting Eqs. 4.10, 4.27, 4.30, and 4.31 into the general conservation equation,
Eq. 4.4, the following relation is obtained:

∂ (ρφ)C
∂t

VC +

nb(C)∑
f

(
ρφu− Γφ∇φ

)
f
· Sf =

(
Qφ

imφC +Qφ
ex

)
VC . (4.33)

This is the so-called semi-discretized conservation equation. The expressions of face
values �f in Eq. 4.33 in terms of the nodal values �C and �F are described in the
previous sections. In the following, the integration over time is performed in order
to obtain a discrete equation.

Temporal Discretization Procedure

As described in Moukalled et al. [60], in the FV method the temporal discretization
is performed in a manner similar to spatial discretization, with the difference that
integration is carried out over a temporal rather than a spatial element. The centroid
of the temporal element in the transient domain is situated in t, the faces of the
element are at t − ∆t

2
and t + ∆t

2
, and ∆t can be thought of as the volume of the

temporal element. By introducing a spatial operator L(φC) that includes all non-
transient terms and integrating over the time interval from t− ∆t

2
to t+ ∆t

2
, Eq. 4.33

becomes [60]:
t+∆t/2∫
t−∆t/2

[
∂ (ρφ)C
∂t

VC

]
dt+

t+∆t/2∫
t−∆t/2

L(φC)dt = 0 . (4.34)

The integration yields a transient discrete finite volume equation for the discrete
element C [60]:

(ρCφC)t+∆t/2 − (ρCφC)t−∆t/2

∆t
VC + L(φtC) = 0 . (4.35)

The implicit first-order Euler scheme is obtained by using a first-order interpolation
profile analogous to the spatial upwind scheme. Thus, the values at the faces of
temporal element are set to be equal to the values at the centroids of the temporal
elements t−∆t and t yielding [60]:

(ρCφC)t+∆t/2 = (ρCφC)t and (ρCφC)t−∆t/2 = (ρCφC)t−∆t . (4.36)
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4.4.9 Discretized Equation

Applying Eq. 4.35 to Eq. 4.36 and evaluating the spatial operator L(φtC) yields the
following expression for the transient discrete equation:

(ρCφC)t − (ρCφC)t−∆t

∆t
VC︸ ︷︷ ︸

transient term

+

nb(C)∑
f

Ffφ
t
f︸ ︷︷ ︸

convection term

−
nb(C)∑
f

Γφf (∇φ)tf · Sf︸ ︷︷ ︸
diffusion term

= Q̇φ
imφ

t
CVC + Q̇φ

exVC︸ ︷︷ ︸
source term

. (4.37)

Eq. 4.37 is the balance equation of the generic variable φ over the discrete element
C. In the following the individual terms are considered in more detail, whereby all
surface values are represented in terms of variable values at cell centroids. To simplify
the notation, the values from the last available solution or the previous time step are
in the following marked with the superscript ◦ (�t−∆t → �◦). For the values from
the current time step or iteration the superscript ∗ is used (�t → �∗).

Transient Term

(ρCφC)t − (ρCφC)t−∆t

∆t
VC =

ρ∗CVC
∆t

φ∗C −
ρ◦CVC

∆t
φ◦C . (4.38)

Convection Term

nb(C)∑
f

Ffφ
t
f =

NB(C)∑
F

{
||Ff , 0||

[
ω+φ∗C +

(
1− ω+

)
φ∗F
]

− ||−Ff , 0||
[
ω−φ∗F +

(
1− ω−

)
φ∗C
]}

, (4.39)

where:
Ff = [gfρ

∗
C + (1− gf )ρ∗F ] [gfu◦C + (1− gf )u◦F ] · Sf . (4.40)

Diffusion Term

nb(C)∑
f

Γφf (∇φ)tf · Sf =

NB(C)∑
F

[
gfΓ

φ
C + (1− gf )ΓφF

]{φ∗C − φ∗F
dCF

Ef

+

((
∇φ
)◦
f

+

[
φ◦C − φ◦F
dCF

−
((

∇φ
)◦
f
· eCF

)]
eCF

)
·Tf

}
, (4.41)

where: (
∇φ
)◦
f

= gf
(
∇φ
)◦
C

+ (1− gf )
(
∇φ
)◦
F

. (4.42)
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The gradient
(
∇φ
)◦
C
is calculated as follows:

(
∇φ
)◦
C

=
1

VC

nb(C)∑
f

φ◦fSf , where φ◦f = gfφ
◦
C + (1− gf )φ◦F . (4.43)

The gradient
(
∇φ
)◦
F

is calculated analogous, but for the computational molecule
with the node F in the centre.

4.4.10 Algebraic Equation

Inserting Eqs. 4.38, 4.39, and 4.41 into Eq. 4.37 yields a balance equation that
contains only values from the control volume centroids. By rearranging the terms
according to the transport variables φ∗C and φ∗F , the algebraic equation for the control
volume C is obtained [60]:

aCφ
∗
C +

NB(C)∑
F

a∗FφF = bC , (4.44)

where the source term bC includes the explicit part of the source term, Qφ
ex, as well

as all terms calculated explicitly from the currently available solution (denoted by ◦).

4.4.11 System of Algebraic Equations

The discretization of the generic conservation equation and its subsequent transfor-
mation into the algebraic form is performed for each CV in the solution domain. The
result is a set of algebraic equations that can be summarized into a matrix equation
as follows [51, 60]:


a11 a12 · · · a1N−1 a1N

a21 a22 · · · a2N−1 a2N
...

... · · · ...
...

aN1 aN2 · · · aNN−1 aNN



φ1

φ2
...
...
φN

 =


b1

b2
...
...
bN

 . (4.45)

Eq. 4.45 can be written in matrix notation as follows [60]:

Aφ = b . (4.46)

In Eq. 4.46, the vector φ contains the sought-after variable values in the cell centroids
(unknowns), and b is the vector containing all source terms as well as all explicitly
calculated terms and boundary conditions. The matrix A is a sparse quadratic coef-
ficient matrix, which may be symmetric or asymmetric depending on the governing
equation to be discretized. According to [61], the transient and Laplacian (e.g. dif-
fusion) terms form coefficients of a symmetric matrix, whereas the discretization of
advective derivatives introduces asymmetry.
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The equation system in Eq. 4.45 can be linear or nonlinear, depending on go-
verning equation to be solved. If the equation system is nonlinear, a linearisation
of the algebraic equations is performed during the solution process, resulting in a
linear system of equations. The solution techniques for linear systems of equations
are generally grouped into direct and iterative methods. In the field of CFD, itera-
tive techniques are usually preferred for the solution of linear systems of equations.
The reasons are, for example, the lower computational costs and a lower memory
requirement. In addition, if the equation system is not linear, the linearisation of the
algebraic equations is performed during the iterative solution process [51, 60].

The iterative techniques for the solution of linear systems of algebraic equations
are not explained in detail in this work. In the following it is mentioned only briefly
which class of linear solvers is used in the present work. It is the class of gradient
methods that includes the Steepest Descent methods and the Conjugate Gradient
methods (CG). The latter method is relevant to the present work. The CG method
belongs to the category of Krylov-space methods and is developed for solving linear
equation systems whose coefficient matrix is symmetric. However, in CFD applica-
tions coefficient matrices resulting from the discretization of conservation equations
are usually asymmetric. To solve linear systems with asymmetric matrices with the
CG method, the Bi-Conjugate Gradient method (BiCG) was developed. However,
this method has a low stability, which is why modifications such as the Bi-CGSTAB
method of Van Der Vorst [66] are usually used, which are more stable and robust
[60]. More information about the solution of algebraic systems of equations can be
found, for example, in Moukalled et al. [60].

4.5 New Numerical Solver
The numerical solver developed in the frame of this work is segregated and pressure-
based. The individual conservation equations are solved implicitly. As mentioned
above, the solver is used with the flux-limited schemes. The PIMPLE algorithm is
utilized in the numerical solver for the calculation of velocity and pressure fields.
PIMPLE is a combination of SIMPLE2 and PISO3 algorithms belonging to a family
of pressure-momentum coupling algorithms used in pressure-based solvers for calcu-
lating velocity and pressure fields that satisfy mass conservation. More information
about pressure-momentum coupling algorithms can be found in Moukalled et al. [60].

In the following the functionality of the new solver is explained in detail. All
conservation equations are listed in their discretized form. However, for reasons of
clarity, the variable values on the cell faces, φf , are not represented by corresponding
interpolation schemes in terms of nodal values. All interpolation methods used in
this work have been discussed extensively in the previous sections.

The following notation is used for the algorithm description:

◦ Superscript �IC denotes the initial condition values.
2Semi-Implicit-Method-of-Pressure-Linked-Equations.
3Pressure-Implicit-Split-Operator.
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◦ Superscript �◦ denotes the values currently available.

◦ Superscripts �∗, �∗∗, and �∗∗∗ are intermediate values of the current iteration.

4.5.1 Preliminary Remarks

Reformulation of the Heat Flux Vectors

For the numerical implementation, the heat flux vectors qe and qvib given in Eqs.
3.51 and 3.52, respectively, are reformulated and renamed as follows:

qe = −κel∇Te − κ′e,tr∇Te +
n∑
s=1
s 6=e

ρcsVsee,s

︸ ︷︷ ︸
α′e

=

− κel∇T ◦e − κ′e,tr∇T ◦e +
α′e
e◦e︸︷︷︸
αe

e∗e = −
(
κel + κ′e,tr

)
∇T ◦e +αee

∗
e (4.47)

and

qvib = −κ′vib∇Tvib +
∑
s=m

ρcsVsevib,s︸ ︷︷ ︸
α′vib

=

− κ′vib∇T ◦vib +
α′vib

e◦vib

e∗vib = −κ′vib∇T ◦vib +αvibe
∗
vib . (4.48)

The overall heat flux q, given in Eq. 3.53 is reformulated analogue to qe and qvib

such that:

q = −
(
κel + κ′e,tr

)
∇Te − κ′vib∇Tvib − κ∇T +

n∑
s=1

ρcsVses =

−
(
κel + κ′e,tr

)
∇T ◦e − κ′vib∇T ◦vib − κ∇T ◦ +αe∗ . (4.49)

Initial Condition Values Calculation

Variables pIC, T IC, uIC, and cIC

s are predefined and are read from the corresponding
files. The following variables are automatically initialized by starting the solver:

ψIC =
1

RT IC
, ρIC =

pIC

ψIC
, F IC

f = ρIC

f u
IC

f · Sf , T IC

e = T IC

vib = T IC , and ψ̃IC =
ψIC

γIC
,

where the heat capacity ratio is γ = cp/cv. The electron pressure is initialized by the
expression: pIC

e = T IC

e n
IC

e kB. The quantities ψ and ψ̃ denote the compressibility and
the isentropic compression/expansion coefficient, respectively. The initial energies
eIC

e , eIC

vib, and eIC are calculated from the corresponding initial temperatures.
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Derivation of the Compressible Pressure Equation

The algebraic form of the momentum conservation equation can be written as follows:

au
Cu
∗
C +

NB(C)∑
F

au
Fu
∗
F = r−∇p . (4.50)

By introducing a new operator

H(u) = r−
NB(C)∑
F

au
Fu
∗
F , (4.51)

where r denotes all source terms, Eq. 4.50 can be rewritten so that [63]:

u∗C = (au
C)−1 (H(u)−∇p) . (4.52)

The pressure term in Eq. 4.52 is left for better clarity in vector notation (not dis-
cretized). By substituting Eq. 4.52 into the convection term of the compressible
continuity equation, Eq. 3.10, the following equation is obtained [67]:

∂ρ

∂t
+ ∇ · (ρu) =

∂ρ

∂t
+ ∇ ·

[
ρ (au

C)−1 H (u)
]
−∇ ·

[
ρ (au

C)−1 ∇p
]

= 0 . (4.53)

For the derivation of the pressure equation the equation of state for ideal gases is
usually used: ρ = p

RT
= ψp. Replacing ρ in Eq. 4.53 with ψp yields the compressible

pressure equation, for which an isothermal compression/expansion is assumed [67]:

∂ (ψp)

∂t
+ ∇ ·

[
ψ (au

C)−1 H (u) p
]
−∇ ·

[
ρ◦ (au

C)−1 ∇p
]

= 0 . (4.54)

The second term on the left hand side of Eq. 4.54 may be reformulated as [67]:

∇ ·
[
ψ (au

C)−1 H(u)p
]

= ∇ · (Fpp) , (4.55)

where Fp is the convective flux for the pressure. According to Uroić, Jasak, and
Rusche [67], this term is the one which is responsible for the appearance of shocks.

The problem with this technique is that as the compressibility ψ approaches zero,
the compressible formulation of the pressure equation, Eq. 4.54, will not reduce to the
incompressible formulation of pressure equation. This problem is discussed in detail
in Uroić, Jasak and Rusche [67]. This behaviour would adversely affect the stability
of the algorithm if there are zones in the simulation domain where the effective Mach
number approaches zero. In order to obtain a pressure equation which reduces to the
incompressible formulation at ψ → 0, [67] propose an alternative technique based
on the isentropic compression/expansion assumption. By using this technique the
following expression is obtained for the density [67]:

ρ∗ = ρ◦ + ψ̃ (p∗ − p◦) . (4.56)
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Substituting this expression into the convective term in Eq. 4.53 yields the following
formulation for the new convection term [67]:

∇ ·
[
ρ∗ (au

C)−1 H(u)
]

= ∇ ·
[
ψ̃ (au

C)−1 H(u)p∗
]

︸ ︷︷ ︸
implicit part

+∇ ·
[(
ρ◦ − ψ̃p◦

)
(au
C)−1 H(u)

]
︸ ︷︷ ︸

explicit part

, (4.57)

where the isentropic compression coefficient ψ̃ = 1
RTγ

. Using Eq. 4.57 yields a
compressible pressure equation that reduces to the incompressible form at ψ → 0:

∂
(
ψ̃p
)

∂t
+ ∇ ·

[
ψ̃ (au

C)−1 H(u)p∗
]

+ ∇ ·
[(
ρ◦ − ψ̃p◦

)
(au
C)−1 H(u)

]
−∇ ·

[
ρ◦ (au

C)−1 ∇p
]

= 0 . (4.58)

As already mentioned, the new solver is partially based on the pressure-based
solver sonicFoam from the software package foam-extend-4.0. This solver uses Eq.
4.58 proposed by Uroić, Jasak and Rusche for pressure correction.

4.5.2 Solver Algorithm

The sequence of events during the solution procedure of the new solver is schemati-
cally represented in Fig. 4.3 and contains the following steps:

1. Initialize all the variables as well as all transport properties and source terms
used in the solver.

2. Start of the time loop: t = tstart.

3. Use the values from the converged solution of the last time step or initial con-
dition values as initial guess for the current time step t: x◦ = xt+∆t or x◦ = xIC.

4. Activate chemistry solver: The finite-rate chemistry solver calculates the mass
production rates (ω̇1, ω̇2, · · · , ω̇n) of all species participating in the gas mixture
for the current time step t by means of the following quantities: c◦1, c◦2, · · · , c◦n,
ρ◦, T ◦e , T ◦vib, and T ◦. The calculation of the production rates is carried out by
means of the Euler-implicit ODE solver.

5. Start PIMPLE loop: The number of PIMPLE loops can be defined in the Open-
FOAM directory fvSchemes under the keyword nOuterCorrectors. If the
PIMPLE loop is executed only once, the solution algorithm is analogue to the
PISO algorithm [61]. In the present work the number of outer correctors is set
to one, which is why the PIMPLE loop is executed only once per each time
step and thus the solver operates in the PISO mode.

6. Solve mass conservation equation explicitly for density ρ∗C :

VC
∆t

(ρ∗C − ρ◦C) +

nb(C)∑
f

F ◦f = 0 . (4.59)
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1. Set initial conditions for all variables
and transport properties: pIC, T IC

e , T IC

vib, · · ·

2. Start time loop: set t = tstart

3. Advance in time: set t = t + ∆t and use the con-
verged solution from previous time step for initial values

4. Calculate mass production rates ω̇1, ω̇2, · · · , ω̇n, by using chemistry solver

5. Start PIMPLE loop

6. Solve mass conservation equation for an initial guess of ρ∗

7. Momentum predictor step: solve momentum conservation equation for u∗

8. Solve species conservation equation for c∗s for each species s

9. Calculate all source terms by using the model library

10. Solve electron-electronic energy conservation equation for e∗e

11. Solve vibrational energy conservation equation for e∗vib

12. Solve overall energy conservation equation for e∗

13. Update all thermodynamic and transport properties (T ∗, ψ̃∗, ...)

14.Start PISO loop

15. Recalculate u∗∗ without influence of pressure

16. Recalculate F ∗f by using u∗∗ and prepare pressure fluxes Fp and Fp2

17. Solve pressure equation for p∗

18. Update F ∗f to obtain F ∗∗f

19. Correct velocity u∗∗ by using pressure p∗ to obtain u∗∗∗

20. Number of corrector steps reached?

21. Calculate p∗e

22. PIMPLE loop solution converged?

23. Calculate E∗ and B∗ by using the magnetostatic solver

24. Set solution at time t + ∆t to be equal to the converged solution

25. Time reached?

Stop

yes
no

yes
no

yes
no

Figure 4.3: Flow chart of the numerical solver.



4.5. New Numerical Solver 105

7. Momentum predictor step: Solve momentum conservation equation implicitly
for velocity field u∗C using pressure values p◦ from the previous corrector step
or previous time-step:

VC
∆t

(ρ∗Cu
∗
C − ρ◦Cu◦C) +

nb(C)∑
f

F ◦f u
∗
f

−
nb(C)∑
f

µ◦fSf · (∇⊗ u)∗f︸ ︷︷ ︸
implicit part of ∇·τ

treated as laplacian term

−
nb(C)∑
f

µ◦fSf ·
[
(∇⊗ u)◦T − 2

3
tr
(

(∇⊗ u)◦T
)
I
]
f︸ ︷︷ ︸

explicit part of ∇·τ treated as source term

= −
nb(C)∑
f

Sfp◦f + F ◦Lorentz . (4.60)

8. Solve species conservation equation implicitly for each species s to obtain c∗1,
c∗2, · · · , and c∗n:

VC
∆t

(
ρ∗Cc

∗
s,C − ρ◦Cc◦s,C

)
+

nb(C)∑
f

F ◦f c
∗
s,f −

nb(C)∑
f

ρ∗fD◦s,fSf · (∇cs)
∗
f = ω̇s . (4.61)

9. Perform the following operations by using the new model library:

I. If necessary, correct mass fractions such that:
n∑
s=0

c∗s = 1.

II. Calculate mole fractions: y∗1, y∗2, · · · , y∗n, as well as particle numbers: n∗1,
n∗2, · · · , n∗n.

III. Calculate B◦, E◦, and J◦, based on potentials A◦ and Φ◦.

IV. Calculate the following quantities:

- Source terms: Q̇rad, Q̇vib-rot, Q̇R
vib, Q̇R

el, Q̇R
e,tr, Q̇I

e,tr, Q̇D
e,tr, Q̇Joule, FLorentz.

- Coefficient q◦tr,rot-e for calculating source terms Q̇tr-e and Q̇rot-e.
- Relaxation times τ ◦vib-tr and τ ◦vib-e for vibrational-translational and
electron-impact vibrational-relaxation source terms.

V. Calculate the electric potential on the cathode surface Φc, to be used in
the next time step as cathode boundary condition.

10. Calculate the electron-electronic heat flux over the cell face due to species dif-
fusion: Fαe,f = αe,f · Sf . Solve electron-electronic energy conservation equation
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implicitly for e∗e,C :

VC
∆t

(
ρ∗Ce

∗
e,C − ρ◦Ce◦e,C

)
+

nb(C)∑
f

F ◦f e
∗
e,f +

nb(C)∑
f

Fα◦e,fe
∗
e,f −

nb(C)∑
f

(
κ◦el + κ′◦e,tr

)
f

(∇Te)
◦
f

+

nb(C)∑
f

F ◦f
ρ∗f
p◦e,f +

q◦tr,rot-eT ◦e
e◦e,C

e∗e,C︸ ︷︷ ︸
implicit part of
Q̇tr-e and Q̇rot-e

= q◦tr,rot-eT
◦︸ ︷︷ ︸

explicit part of
Q̇tr-e and Q̇rot-e

+Q̇I
e,tr + Q̇D

e,tr

+ Q̇R
e,tr + Q̇R

el + Q̇Joule − Q̇rad +
ρ∗C
τ ◦vib-e

(
e◦vib,C − evib,C (T ◦e )

)
. (4.62)

11. Calculate the vibrational heat flux over the cell face due to species diffusion:
Fαvib,f = αvib,f · Sf . Solve vibrational energy conservation equation implicitly
for obtaining e∗vib,C :

VC
∆t

(
ρ∗Ce

∗
vib,C − ρ◦Ce◦vib,C

)
+

nb(C)∑
f

F ◦f e
∗
vib,f+

nb(C)∑
f

Fα◦vib,fe
∗
vib,f−

nb(C)∑
f

κ′◦vib,fSf ·(∇Tvib)◦f

+
1.4ρ∗C
τ ◦vib-tr,rot

e∗vib,C︸ ︷︷ ︸
implicit part of

Q̇vib-tr and Q̇vib-rot

+
ρ∗C
τ ◦vib-e

e∗vib,C︸ ︷︷ ︸
implicit part
of Q̇vib-e

=
1.4ρ∗C
τ ◦vib-tr,rot

evib,C(T ◦)︸ ︷︷ ︸
explicit part of

Q̇vib-tr and Q̇vib-rot

+
ρ∗C
τ ◦vib-e

evib,C(T ◦e )︸ ︷︷ ︸
explicit part
of Q̇vib-e

+Q̇R
vib .

(4.63)

12. Calculate the total heat flux over the cell face due to species diffusion: Fαf =
αf · Sf . Solve total energy conservation equation implicitly for obtaining e∗C :

VC
∆t

(ρ∗Ce
∗
C − ρ◦Ce◦C) +

nb(C)∑
f

F ◦f e
∗
f +

nb(C)∑
f

Fα◦f e∗vib,f −
nb(C)∑
f

κ◦fSf · (∇T )◦f

−
nb(C)∑
f

(
κ◦el + κ′◦e,tr

)
f
Sf · (∇Te)

◦
f −

nb(C)∑
f

κ′◦vib,fSf · (∇Tvib)◦f +

nb(C)∑
f

F ◦f
ρ∗f
p◦f

−
nb(C)∑
f

µ◦fSf ·
[{

(∇⊗ u)∗f + (∇⊗ u)∗T − 1

3
tr
[
(∇⊗ u)∗ + (∇⊗ u)∗T

]
I
}
· u∗
]
f︸ ︷︷ ︸

∇(τ ·u)

= Q̇Joule − Q̇rad . (4.64)

13. Perform the following operations by using the new model library:

I. Calculate T ∗e , T ∗vib, and T ∗ from e∗e, e∗vib, and e∗, respectively.
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II. Recalculate transport properties: D∗s , V∗s, µ∗, σ∗, κ′∗vib, κ∗el, κ′∗e,tr, κ∗, α∗e,
α∗vib, α∗, ψ∗, and γ∗.

III. Recalculate isentropic compression coefficient and density: ψ̃∗ = ψ∗/γ∗,
ρ∗∗ = p◦ψ∗.

14. Start PISO loop. In the PISO loop the pressure correction is performed. The
user may define the execution number of PISO loops (number of pressure correc-
tions) in the OpenFOAM directory fvSchemes under the keyword nCorrectors.
The settings in the present work are nCorrectors 2, which is why the steps
15 - 19 are executed twice per each time step.

Before starting PISO loop calculate the following quantity outside of the loop:

ρref = ρ∗∗f − ψ̃∗fp◦f , (4.65)

which is necessary for assembling the pressure equation.

15. Calculate the velocity field u∗∗ without any influence of pressure gradient by
using u in the H operator (for H operator see Eq. 4.51) [68]:

u∗∗C = (au
C)−1 H(u∗) . (4.66)

16. Perform the following calculations:

I. Recalculate the mass flux: F ∗f = ρ∗∗f u
∗∗
f · Sf .

II. Calculate the convective pressure flux for the implicit term in Eq. 4.58:

Fp =
ψ̃∗f
ρ∗∗f

F ∗f . (4.67)

III. Calculate the convective pressure flux for the explicit term in Eq. 4.58 by
using the quantity ρref calculated outside of the PISO loop in Eq. 4.65:

Fp2 =
ρref

ρ∗∗f
F ∗f =

(
ρ∗∗f − ψ̃∗fp◦f

)
u∗∗f · Sf . (4.68)

The derivative of Fp2 with respect to pressure is needed for the linearisa-
tion (or implicit treatment) of the explicit convective term in the pressure
equation. The derivation yields the following expression:

dFp2

dp
=
ψ̃∗f
ρ∗∗f

F ∗f . (4.69)
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17. Solve the pressure equation for obtaining p∗ (pressure correction step):

VC
∆t

(
ψ̃∗Cp

∗
C − ψ̃◦Cp◦C

)
+

nb(C)∑
f

Ffp
∗
f︸ ︷︷ ︸

implicit
convection term

−

nb(C)∑
f

Fp

 p∗C︸ ︷︷ ︸
implicit part

+

nb(C)∑
f

Fp

 p◦C +

nb(C)∑
f

Fp2︸ ︷︷ ︸
explicit part︸ ︷︷ ︸

linearised explicit convection term

−
nb(C)∑
f

ρ∗∗f (au
C)−1 Sf · (∇p)∗f︸ ︷︷ ︸

Laplacian term

= 0 . (4.70)

This equation is a discretized compressible pressure equation (see Eq. 4.58) for
the control volume C.

18. Update the face flux F ∗f :

F ∗∗f = Fp2 − ρ∗∗f (au
C)−1 Sf · (∇p)∗f︸ ︷︷ ︸

pressure Laplacian in Eq. 4.70

. (4.71)

19. Update the velocity field by using the corrected pressure p∗:

u∗∗∗C = u∗∗C − (∇p)∗C (au
C)−1 . (4.72)

The pressure gradient in Eq. 4.72 is evaluated at the centroid of CV by using

the face values of p∗ as follows: (∇p)∗C =
nb(C)∑
f

Sfp∗f . PISO loop ends with this

step.

20. If the number of pressure correction steps (PISO loops) is reached, go to the
next step, if not go back to step 15 and execute the pressure correction again.

21. Recalculate electron pressure required in the electron-electronic energy equa-
tion:

p∗e = T ∗e n
∗
ekB . (4.73)

22. If the PIMPLE mode is used, in this step it is reviewed whether the solution has
converged. If not, the algorithm returns back to step 6 and repeats the PIMPLE
loop. Since PISO mode is used in this work, this step is not performed.
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23. Magnetostatic solver: The magnetostatic solver is activated at the end of each
time step to update the electric and magnetic potential fields, Φ and A, in the
simulation domain. To avoid computational stiffness, a stationary solver is used
for this purpose. The number of executed iterations is variable and depends on
the user-defined residual values to be achieved.

I. Manipulate the electrical conductivity σ to avoid the division by zero:

σ = max
(
σ , 1× 10−15

)
for each computational cell. (4.74)

This step is necessary for the numerical solution of the Laplace equation.

II. Start the iterative solution.

III. Solve the Laplace equation for Φ:

nb(C)∑
f

σ∗fSf · (∇Φ)∗f = 0 . (4.75)

IV. Solve the Poisson equation for A:

nb(C)∑
f

Sf · (∇⊗A)∗f = σ∗CµC

nb(C)∑
f

SfΦ∗f︸ ︷︷ ︸
(∇Φ)∗C

. (4.76)

The quantity µ in Eq. 4.76 denotes the magnetic permeability.

V. Check if the solution has converged. If not, go back to step 23− III.
VI. Recalculate σ to remove the manipulation in step 23− I.

24. Set solution at current time step to the converged solution.

25. End of time loop: If the simulation time is reached, stop the algorithm. If not,
go back to step 3 and repeat the time loop.

4.5.3 Two Operational Modes of the Magnetostatic Solver

The magnetostatic solver has two different operating modes regarding the calculation
of the electric-potential boundary condition at the cathode Φc. The anode-potential
boundary condition is always set to zero: Φa = 0. The potential difference across the
electrodes (electrode voltage drop) is calculated as follows: ∆Φ = Φa − Φc.

Magnetostatic Solver: Mode 1

The electrical potential at the cathode, Φc, is not predefined by the user but calculated
by the solver at each time step. The only quantities given by the user are the
maximum power of the arc discharge Pmax, the internal resistance of the electrical
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circuit Ri (but not of the plasma arc), and the maximum potential difference across
the terminals of the power supply ∆Φmax. The cathode potential for the current time
step is calculated as follows:

Φ∗c = max

[
−Pmax

I◦c
, (−∆Φmax + I◦cRi)

]
. (4.77)

The cathode current is calculated by the relation: I◦c = J◦c · Sc, where Sc denotes the
cathode-surface vector. The cathode-surface current density Jc is obtained by the
generalized Ohm’s law given in Eq. 3.125. The electrical conductivity σ in Eq. 3.125
is taken from the cathode surface where it is obtained by interpolation from the first
cell layer (zero-gradient boundary condition).

The calculated boundary condition Φc is used for computing the fields Φ and A in
the simulation domain. From these values the fields E, B and J are calculated. The
advantage of this procedure is that the unknown value of Φc is calculated directly
by the solver. The drawback of this operational mode lies in very long calculation
times, because even small changes in σ on the cathode surface lead to changes in Jc.
Therefore Φ and A have to be recalculated at each time step, which increases the
computation effort considerably.

Magnetostatic Solver: Mode 2

The value of Φc is not modelled, but is defined by the user. This reduces the calcu-
lation effort enormously, since the recalculation of the fields Φ and A is associated
with minimal effort. However, this reduces the modelling depth.

It is therefore recommended to use the solver in mode 1 until the quasi-stationary
state in the gas discharge is reached. After that, the modelled average of Φc calculated
by the solver in mode 1 can be used as the user defined value in mode 2 to reduce
the computation time.



Chapter 5

Solver Validation and Simulation
Results

This chapter deals with the validation of the new numerical solver and the evaluation
of the simulation results. The validation is carried out by comparing the simulation
results of the system under investigation - a surface discharge in a supersonic flow -
with experimental measurements and analytically calculated values.

5.1 General Information on Solver Verification and
Validation

The solver verification and validation are structured as follows: a one-dimensional
analysis, which is presented in Appendix C, and a three-dimensional analysis, which
is discussed in this chapter. The 1-D analysis is carried out for the verification of
the chemical module of the solver as well as all submodels for the calculation of
transport and thermodynamic properties. For the 3-D analysis, the test case defined
in Chapter 2 is used, because it exemplarily represents the field of application of
the new solver. During the 3-D validation, the simulation results are compared with
analytical calculations from Chapter 2 and the experimental measurements presented
in Appendix D.

5.1.1 One-Dimensional Solver Verification

In the frame of the 1-D analysis, a total of 12 numerical calculations are carried
out for a temperature range from 2000 K to 24,000 K with temperature increments
of 2000 K. The results of this analysis are presented in Appendix C. Physically,
the 1-D test case may be interpreted as a thin tube in a constant temperature heat
bath. Since the new solver is transient, the simulations are transient as well. Each
of the twelve simulations is carried out until the thermal and chemical equilibria are
reached, that is: T ≈ Te ≈ Tvib and cs ≈ const, where s stands for each species.

The results of the 1-D analysis for the kinetic and thermodynamic properties

111
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generally show very good agreement with the analytically calculated data, with the
exception of the specific heat capacity, which drops in the temperature range between
12,000 K and 20,000 K up to 6.7 % below the analytical data. From 20,000 K,
however, the deviation reduces to 2− 3 %.

The verification of the transport properties shows that at temperatures below the
characteristic temperature of the system under investigation (Tc = 12,000 K), all
models show a good agreement with other research works, except for the viscosity
model, which delivers significantly higher values already at T > 10,000 K. At tempe-
ratures above Tc, the radiation model used provides overestimated values, while the
electrical and thermal conductivities are underestimated by 8− 12 %.

5.1.2 Three-Dimensional Solver Validation

The multidimensional analysis is performed by means of a 3-D simulation. An at-
tempt to simulate this system in two dimensions would not consider the energy losses
in the arc column due to lateral heat diffusion, which would affect the energy balance
in the system. During this multi-dimensional analysis, the validation of the fluid
dynamic and electrodynamic modules of the numerical solver is carried out.

5.1.3 Experimental Measurements

The experimental measurements discussed in Appendix D are performed to obtain
the temperature and pressure distributions in the arc discharge and in its vicinity.

All temperature measurements are conducted with a constant arc input power of
10 kW. For the surface pressure distribution, however, only experimental results of
plasma arcs with uncontrolled capacitor discharge are available. Nonetheless, in the
present work, an attempt is made to use these data for validation as well.

5.2 Data for Three-Dimensional Solver Validation
Two types of information sources are generally used for the 3-D solver validation:

◦ Analytical calculations of the system under investigation in Sec. 2.1 - 2.3.

◦ Data obtained from the experimental measurements described in Appendix D.

In the following, all data available for solver validation are summarized in Tab.
5.1 – 5.4. In addition, following two conclusions can be made:

◦ In the centre line of the electric discharge, thermal equilibrium is expected.
At the gas discharge periphery, however, nonequilibrium may occur, since a
deviation between T vib and T rot is experimentally measured.

◦ Quasineutrality in the system may not be guaranteed because the ambipolar
diffusion model used does not include calculation of polarization fields and the
resulting restoring forces in the case of charge separation (see Sec. 3.2.3).
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Table 5.1: Data obtained from analytical calculations in Sec. 2.1.

quantity description value

p∞ free-stream pressure 0.34 bar

p2 pressure behind the shock wave 1.4866 bar

T∞ free-stream translational-rotational temperature 234 K

T2 translational-rotational temperature behind the shock wave 389 K

u∞ free-stream velocity magnitude 1452.44 m · s−1

u2 velocity magnitude behind the shock wave 1335 m · s−1

ρ∞ free-stream density 0.4893 kg ·m−3

ρ2 density behind the shock wave 1.2855 kg ·m−3

β oblique shock wave angle 25.1◦

Table 5.2: Data obtained from the calculation of characteristic values for a 10 kW
nitrogen gas discharge at 1 atm in Sec. 2.3.1.

quantity description value

Ec electric field magnitude in the positive column 2.0×104 V·m−1

Bc
induced magnetic field magnitude in the positive column at a

distance of 1 mm from the centre line 1.6× 10−2 T

Tc
translational-rotational temperature in the centreline of the

positive column 12,000 K

Table 5.3: Data obtained from time-resolved emission spectroscopy.

quantity description value

T rot mean rotational temperature from exp. 1 and 3 only 7017 K

T vib mean vibrational temperature from exp. 1 and 3 only 8306 K

T el mean electronic-excitation temperature from exp. 4 10,672 K

U electrical voltage at the electrodes during the discharge 120− 128 V

I electric current in the electrical circuit during the discharge 79− 80 A

Table 5.4: Data obtained from pressure measurements.

quantity description value

p pressure in the discharge between the electrodes b and c ≈ 1.85± 0.05 bar

ps surface pressure on the wedge outside the gas discharge ≈ 1.45± 0.05 bar
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5.3 Three-Dimensional Test Case

5.3.1 Computational Grid

In the frame of the 3-D analysis, the symmetry of the aerodynamic model is exploited
in order to reduce the size of the computational domain (see Fig. 5.1). Only a quarter
of the wedge surface is considered, namely the electrode side of the wedge, of which
only one half is modelled due to the symmetry.

wedge

3-D simulation domain

b

c

Figure 5.1: Location of the 3-D simulation domain on the wedge.

The computational grid used for the three-dimensional analysis is shown in Fig.
5.2. The overall domain bounding box has a length of 0.29 m, a height of 0.18 m and
a depth of 0.03 m. The grid is created using the mesh generation utility, blockMesh,
supplied with OpenFOAM. It is a three-dimensional block structured computational
grid consisting of 1.88 million hexahedral cells. The mesh density is increased at
the leading edge of the wedge, towards the wedge surface, and in the vicinity of the
electrodes (see Fig. 5.2). The thickness of the first computational cell layer on the
wedge surface amounts to ≈ 32 µm. This grid density at the surface is sufficient for
the resolution of a laminar boundary layer profile (as a reminder: in the present work
the laminar assumption is used for the flow).

In the following, using the equations for the flat-plate boundary layer theory given
in Schlichting [69], it is examined which near-wall mesh density would be necessary
for resolving a turbulent boundary layer. The equations are as follows:

y =
y+µ

ρu∗
, (5.1)

u∗ =
τw

ρ
, (5.2)

τw = Cf
1

2
ρu2
∞ , (5.3)
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Figure 5.2: Computational grid for the 3-D analysis.

Cf = (2 log10 (Rex)− 0.65)−2.3 for Rex < 109 , (5.4)

Rex =
ρu∞x

µ
. (5.5)

The quantities y+, y, u∗, τw, and Cf denote the so-called dimensionless wall distance,
the absolute distance from the wall, the friction velocity, the wall shear stress and
the skin-friction correlation, respectively. Rex is the Reynolds number based on the
current length x, which is chosen as the distance from the leading edge of the wedge
to the electrode b. For a correct resolution of a turbulent boundary layer, the first
cell centre must be placed in the viscous sublayer, that is y+ must be approximately 1
(the value of 5 must not be exceeded). When inserting the stream-flow properties that
prevail behind the oblique shock wave (u∞ = 1334 m · s−1, µ = 2×10−5 kg ·m−1 · s−1,
ρ = 1.27 kg ·m−3, x = 0.1 m), the following value is obtained: y = 3.2 × 10−7 m =
0.32 µm. That means for a good resolution of the turbulent boundary layer, the
thickness of the first cell layer should be ≈ 0.7 µm. This means that the grid spacing
at the wedge surface in the 3-D mesh used in the present work would not suffice for
a turbulent flow. Although the computational grid used is sufficiently dense for the
resolution the laminar velocity and temperature profiles at the wall, it is assumed
that a higher grid density in the near-wall zone is required in order to resolve the
physicochemical processes at the cold surface more precisely.
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5.3.2 Boundary Conditions

The boundary conditions used in the 3-D simulations are listed in Tab. 5.5.

Table 5.5: 3-D test case boundary conditions.

variable inlet outlet wedge cathode anode exterior

u
[m
s
]

(1443, 0, 0) ∂ui

∂n = 0 (0, 0, 0) (0, 0, 0) (0, 0, 0) ∂ui

∂n = 0

T [K] 234 ∂T
∂n = 0 calculateda calculateda calculateda ∂T

∂n = 0

Tvib [K] Tvib = T ∂Tvib

∂n = 0 calculateda calculateda calculateda ∂Tvib

∂n = 0

Tel [K] Tel = T ∂Tel

∂n = 0 calculateda ∂Tel

∂n = 0 ∂Tel

∂n = 0 ∂Tel

∂n = 0

p [bar] 0.34 ∂p
∂n = 0 ∂p

∂n = 0 ∂p
∂n = 0 ∂p

∂n = 0 ∂p
∂n = 0

cN2 [−] 1.0 ∂c
∂n = 0 ∂c

∂n = 0 ∂c
∂n = 0 ∂c

∂n = 0 ∂c
∂n = 0

cN,N+
2 ,N+,e [−] 0.0 ∂c

∂n = 0 ∂c
∂n = 0 ∂c

∂n = 0 ∂c
∂n = 0 ∂c

∂n = 0

A
[kg m
s2 A

]
(0, 0, 0) (0, 0, 0) ∂Ai

∂n = 0 ∂Ai

∂n = 0 ∂Ai

∂n = 0 (0, 0, 0)

Φ
[kg m2

s3 A

]
∂Φ
∂n = 0 ∂Φ

∂n = 0 ∂Φ
∂n = 0 calculatedb 0.0 ∂Φ

∂n = 0

a If for the temperature value in the first cell on the wedge surface the following applies:
T < Tmax, then ∂T

∂n = 0, otherwise Tmax, which is 2900 K for the electrodes, 1000 K for T
and Tvib and 5000 K for Te for the wedge surface.
b Φ-value on the cathode surface is calculated via mode 1 (see Sec. 4.5.3).

According to Wendelstorf [20], near the electrode surfaces, the electron tempera-
ture decouples from the heavy particles temperature. Wendelstorf states that while
the heavy particles equilibrate with the electrode solid, a thermal isolation of the
electron gas occurs at the electrode surface due to sheath effects. For this reason, the
zero gradient boundary condition is used for the electron-electronic temperature at
the electrode surface, while for T and Tvib, the temperature is limited to the copper
evaporation temperature of 2900 K. Further, for T and Tvib, the temperature at the
wedge surface is limited to a maximum of 1000 K to model the cold wall. The electron-
electronic surface temperature is limited to a maximum of 5000 K, because only from
this temperature the electronic excitation and the presence of free electrons, includ-
ing all associated transport processes, become noticeable. Physical phenomena on
the cold wall have not been investigated in the present work (e.g. no finite-catalytic
wall model). That is, chemical and thermodynamic properties, such as electronic
and vibrational thermal conductivities on the surface are currently unknown. For
this reason, the wall-surface values of the following quantities are obtained by the
interpolation from the first cell layer (zero-gradient boundary condition): κvib, κe,tr,
κel, κtr, κrot.
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5.3.3 Solver Settings

Spatial and Temporal Discretization

For spatial discretization of the convection terms, a high-resolution scheme is used
in which the second-order central differencing scheme and the Sweby limiter are
utilized for the higher-order correction. The diffusion terms are evaluated using
the Green-Gauss method for gradient evaluation and the central-differencing inter-
polation scheme with an explicit non-orthogonality correction. All other gradient-
containing terms are evaluated via the Green-Gauss method using linear interpola-
tion. For the interpolation of the energy and temperature gradients an additional
limiting scheme is switched on. The methods mentioned are discussed in detail in
Sec. 4.4. For the temporal discretization the implicit first-order Euler scheme is used.

Computational Time Step

Based on the experience gained in the present work, it can be stated that the size
of the maximum possible simulation time step decreases with increasing gas tem-
perature. Exceeding this time step leads to oscillations of the source terms in the
governing conservation equations for ee, evib and e, since all three energy equations
are solved in a segregated manner and thus their source terms can only be implemen-
ted semi-implicitly or explicitly. The oscillations would eventually result in the crash
of the chemical solver. While a time step of ∆t = 1×10−6 s is absolutely sufficient at
4000 K, a time step of ∼ 10−9 s has to be used at gas temperatures of 24,000 K. At
temperatures that significantly exceed the 30,000 K mark, an even smaller time step
may be required. In the present work the temperature at the edge of the cathode
approaches 30,000 K and the time step used amounts to 2.0× 10−10 s.

Linear Solver Settings

The following iterative methods (linear solvers) are used for the solution of linear
algebraic equation systems:

◦ The variable ρ is obtained by explicitly solving the mass conservation equation,
Eq. 4.59, by means of the diagonal solver, which is a direct method for solving
linear algebraic systems of equations [60].

◦ The variablesA, p, u, ee, evib, e, and cs are calculated by using the stabilised Bi-
Conjugate Gradient solver (BiCGStab). The preconditioning of the coefficient
matrices is carried out with the diagonal incomplete-LU preconditioner (DILU )
developed for asymmetric matrices.

◦ For the calculation of Φ smoothSolver is used, which is an iterative solver that
uses a smoother. The smoother used is DICGaussSeidel, which is a diagonal-
based incomplete Cholesky smoother for symmetric matrices where smoothing
is carried out by a Gauss-Seidel solver to ensure that any “spikes” created by
the DIC sweeps are smoothed out [60].
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5.3.4 Simulation Procedure

The simulation procedure is as follows:

1. The electrodynamic module of the new solver is switched to mode 1. The
maximal power Pmax is set to 10 kW. The maximal voltage at the terminals
of the power supply Φmax and the internal resistance of the electrical circuit Ri

are set to 450 V and 0.5 Ω, respectively.

2. After 1.4 ms of the simulated time, a quasi-stationary flow stream is formed
past the wedge and the gas discharge can be ignited.

3. With the help of additional ignition source terms in the energy conservation
equations, the gas is locally heated between the electrodes to a temperature of
over 5000 K. As a result, the gas becomes electrically conductive and the Joule
heating between the electrodes builds up.

4. The Joule heating leads to a further increase in the temperature and con-
sequently to a more intensive ionization of the gas eventually resulting in a
self-sustaining gas discharge.

5. After a quasi-steady state is reached in the electric arc, the electrodynamic
module is switched from mode 1 to mode 2.

6. The simulation is executed until the desired time. If necessary, the solver is
repeatedly switched from mode 2 to mode 1 in order to verify the Φc value.

For the simulation, parallel computing is used. The computational mesh and the
associated field data are decomposed into 32 parts using the decomposePar utility
provided with OpenFOAM. The parallel calculation is carried out via the openMPI
implementation (an open source Message Passing Interface). For the calculation a
server equipped with 2 Intel Xeon Gold 6130 processors is used with 16 cores each.

In Appendix E, computational costs are discussed. All values and calculations
presented are given first only for the system under investigation. Subsequently, pos-
sibilities for enhancing the speed of numerical calculations are discussed.

5.4 Flow Conditions across the Oblique Shock

Fig. 5.3, left, shows the simulation results for the static pressure field around the
wedge. The oblique shock formed on the leading edge is clearly recognizable. The
simulation results yield a wave angle value of approximately 25◦. This value is in
a good correlation with the analytically calculated value of 25.1◦ in Sec. 2.1 (see
Tab. 5.1). Thus, it can be stated that the numerical solver correctly reproduces the
shock-wave theory at least for the system to be analysed.

Fig. 5.3, right, shows the line of data capturing across the oblique shock for the
pre- and post-shock validation of the flow variables p, T , ρ and the velocity mag-
nitude u. In Fig. 5.4, the simulation results of the pressure profile across the oblique
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Figure 5.3: Shock wave angle measurement by using the static pressure field (left).
Data capturing across the shock wave (right).

shock together with the analytical calculations are presented. It can be seen that
the shock wave resolution is rather poor, which is due to the low computational grid
density in the zone of shock propagation (see Fig. 5.2). An excellent agreement is
observed between the simulation results and the analytical calculations of pressure.
Furthermore, the simulated pressure values are in a good correlation with the expe-
rimentally obtained results: 0.34 bar for the pre-shock and 1.45 ± 0.05 bar for the
post-shock pressure (see Tab. 5.4).
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Figure 5.4: Static-pressure profile across the oblique shock at M∞ = 4.5.

Fig. 5.5 and 5.6 show the temperature and mass density profiles across the shock
wave. In Fig. 5.7 the velocity magnitude u parallel to the free-stream velocity u∞ is
plotted across the oblique shock. For all three flow variables, an excellent agreement
of the simulation results with the analytical calculations is found.

Overall, it can be stated that the numerical solver correctly reproduces both the
flow pattern and the thermodynamic conditions in front of the shock and behind it
in a nitrogen flow at Mach 4.5.
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Figure 5.5: Translational-rotational temperature profile across the oblique shock in
a nitrogen flow at M∞ = 4.5.
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Figure 5.6: Mass-density profile across the oblique shock at M∞ = 4.5.
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Figure 5.7: Velocity-magnitude profile parallel to the free stream velocity u∞
across the oblique shock at M∞ = 4.5.
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5.5 Gas Discharge Geometry and Impact on the Flow

5.5.1 Impact of the Gas Discharge on the Flow

In the present analysis, only a very short operating time of the gas discharge of ap-
prox. 75 µs is simulated due to the high computational effort and limited computing
resources. Nevertheless, this simulation time is sufficient to reach a quasi-steady state
in the gas discharge and its vicinity. Due to the electric arc, a shock wave builds up
and eventually interacts with the oblique shock, as shown in Fig. 5.8. This shock
wave is rather unsharp due to the low computational grid density in the regions fur-
ther away from the discharge (see Fig. 5.2). Physically, this shock wave is caused by
the rapid local temperature increase due to the strong energy input associated with
the gas discharge. As a result of the temperature increase, the flow stagnates and a
local high-pressure zone is created, which acts as an obstacle on the flow.

wedge

obli
que

shoc
k

bow shock

gas discharge

U

p [bar]

Figure 5.8: Static pressure field around the wedge at Mach 4.5. The location of the
electric discharge is marked with an arrow.

5.5.2 Gas Discharge Geometry

Fig. 5.9 shows the three-dimensional view of the gas discharge under investigation.
The peripheral temperature of the arc column TR is set to 5000 K, that is all control
volumes in the simulation domain with T < 5000 K are blanked out. The distance
between the symmetry axes of the electrodes amounts to 6 mm. The fact that the
electric discharge is stretched by the supersonic flow and pressed against the surface
leads to a rather flat and wide shape of the arc column.

In Fig. 5.10, the cross-section through the gas discharge direct above the wedge
surface is presented. It can be seen that the translational-rotational temperature
at the cathode edge facing the anode reaches 30,000 K, while the temperature of
the rest of the cathode surface is significantly lower. In contrast, the anode surface
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Figure 5.9: 3-D view of the gas discharge at the wedge surface. Peripheral tempera-
ture of the arc column is set to TR = 5000 K.
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Figure 5.10: Cross-section through the gas discharge above the wedge surface.

is completely covered by the hot tail of the gas discharge in which temperatures of
approximately 10,000 K to 15,000 K prevail. This is consistent with the erosion traces
on the electrode surfaces shown in Fig. 2.6 where the electrode erosion is limited to
the right edge of the cathode and is distributed over the entire anode surface.

As can be observed in Fig. 5.11, the gas discharge downstream of the anode lifts
off slightly from the surface and forms a tail. Fig. 5.12 shows two cross-sections of
the gas discharge: one at 1 mm behind the cathode and another at 1 mm in front of
the anode. The width of the gas discharge is in both cases approximately 2.8 mm.
The heights of the arc column at these two points are approx. 0.3 mm and 0.5 mm,
respectively. According to Wells [35], an axially-symmetrical uniform arc column
with P = 10 kW · cm−1 and E > 40 V · cm−1 has an arc radius of ≈ 1.75 mm. At
higher electric fields and input power this diameter would further decrease with a
strongly declining tendency. In the present work, E ≈ 200 V · cm−1 and the input
power per centimetre amounts to 20 kW · cm−1. Furthermore, the electric arc to be
examined is a surface discharge and thus its radius is not constant. Nonetheless, the
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Figure 5.11: Cross-section through the symmetry plane of the arc (x-y-plane).

width of the gas discharge of 2.8 mm correlates well with the estimations of Wells
near the wedge surface, where the flow velocity is low. In addition, it can be stated
that the radius of the positive column rpc = 1× 10−3 m chosen in Sec. 2.3.1 for the
characteristic length of the system represents a reasonable estimate.

xz

y I II

surface surface

T [K]

1 mm

Figure 5.12: Cross-sections through the arc column 1 mm downstream of the ca-
thode (left) and 1 mm upstream of the anode (right).

5.6 Flow Variables across the Gas Discharge
In this section, the impact of the gas discharge on the flow variables T , Tvib, Te, p, ρ
and u in its vicinity is discussed.

5.6.1 Data Acquisition from 3-D Simulation Results

For the qualitative evaluation of the 3-D simulation results, the two planes shown in
Fig. 5.13 are used. The x-y-plane is the symmetry plane of the gas discharge. The
y-z-plane is placed perpendicular to the flow in the middle between the electrodes.

For the quantitative evaluation, data are collected along the following lines:

◦ Data along the centre line of the gas discharge: x-line (see Fig. 5.14 left). This
line is located 0.1 mm above the surface.

◦ Data acquisition along the y- and z-axes in the middle between the electrodes
in the y-z-plane: y1- and z1-lines (Fig. 5.14 right). The z1-line passes the
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locations of the pressure transducers P15, P30, and P45. The z1-line is located
0.1 mm above the surface.

◦ Data acquisition along the y- and z-axes in the middle of the imaged volume
VM – the measuring point used in the time-resolving emission spectroscopy for
temperature measurements: y2- and z2-lines (see Fig. 5.14 right).
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x-y-plane
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z b

c

y-z-plane

Figure 5.13: Data acquisition from 3-D simulations: x-y-plane crossing the elec-
trodes b and c (left), y-z-plane perpendicular to the arc centre line (right).
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Figure 5.14: Data capturing along the x-axis between the electrodes b and c (left).
Data capturing along the y- and z-axes (right). Location of the image volume of
the spectroscopic measurements VM is marked with a circle.

5.6.2 Gas Discharge Impact on the Flow Variables

Gas Discharge Impact on Temperature Field

In Fig. 5.15 the translational-rotational temperature field in the gas discharge is de-
picted. Fig. 5.16 shows the distributions of T , Tvib, and Te along the x-line. This line
runs 0.1 mm above the surface and therefore does not capture the hottest zones at
the edges of the electrodes. For this reason, in Fig. 5.16 the highest temperatures in
the near-electrode constriction zones are additionally indicated by markers. It can be
seen that the temperature profiles in the positive column have a nearly linear distri-
bution, while temperature peaks occur near the electrode edges in the near-electrode
zones. This temperature pattern is consistent with the theoretical temperature dis-
tribution in the centre line of a free burning axially-symmetrical electric arc shown in
Fig. 2.10. The temperature peaks, especially at the cathode, result from the electric
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field peaks and the associated increased Joule heating in the near-electrode constric-
ted zones. The temperature in the gas column, where the experimental temperature
measurements were carried out, is on average 15,000 K.

cathode

anode

T [K]

Figure 5.15: Simulation results of the translational-rotational temperature field:
x-y-plane (left), y-z-plane (right).
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Figure 5.16: Simulation results of T , Tvib and Te along the x-line plotted 100 µm
above the wedge surface. The highest temperatures in the near-electrode constric-
tion zones are indicated by markers.

In Figs. 5.17 and 5.18, temperature profiles together with the corresponding per-
centage deviations of Tvib and Te from T along the y- and z-axes 1.5 mm upstream of
the anode (y2- and z2-lines) are shown. It may be observed that significant deviations
from LTE occur in the areas with temperatures below 11,000 K, that is at the wall
and towards the arc periphery. They reach 5−7 % for Tvib and > 10 % for Te. In the
centreline of the plasma column, the deviations of Tvib and Te from T are only 1−2 %.
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Therefore, in the centreline the plasma is close to local thermodynamic equilibrium.
This is to be expected for collision-dominated high-pressure (p > 0.1 bar) thermal
arcs, such as the system under investigation.
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Figure 5.17: Simulation results of T , Tvib and Te along the y2-line (top) and the
corresponding percentage deviations of Tvib and Te from T (bottom).

When analysing the relaxation times along the z2-line in Fig. 5.19 and comparing
them with the temperature curves in Fig. 5.18, the reasons for the temperature
decoupling can be recognized. Approximately 1.1 mm away from the centre line where
the temperature drops below 11,000 K, the electron-impact vibrational relaxation
time τvib−e increases extensively. This leads to a decreasing energy exchange between
the electron-electronic and the vibrational energy modes resulting in a decoupling of
Te from Tvib. From Eq. 3.67 for the calculation of τvib−e, it can be seen that τvib−e

increases with decreasing electronic pressure. Later it will be shown that pe decreases
considerably at this zone (see Fig. 5.25). In addition, an increasing nonequilibrium
between the energy modes etr,rot and ee is observed in Fig. 5.18 from 1.0 mm onwards.
This correlates well with the increasing relaxation time τtr,rot−e in this region.

In summary, it can be said that at T < 11,000 K nonequilibrium occurs between
all three energy modes (etr,rot, evib, ee) and at T > 11,000 K the LTE state is largely
reached. At T < 5000 K, T and Tvib approach equilibrium while the deviation
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Figure 5.18: Simulation results of T , Tvib and Te along the z2-line (top) and the
corresponding percentage deviations of Tvib and Te from T (bottom).
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Figure 5.19: Relaxation times along the z2-line.

between Te and T further increases. It should be mentioned that the temperature
distribution in the positive column may vary due to dynamic effects. For example,
at a high free-stream velocity, hydrodynamic instabilities may occur due to density
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gradients between the hot and cold gas regions. Such effects lead to a continuous
change in the cross-sectional area of the plasma channel over its length and, as a
result, its temperature [30].

From the results shown in Fig. 5.16 it is recognizable that the highest tempe-
ratures in the electric discharge occur at the cathode edge. In addition, a strong
thermal nonequilibrium prevails in that zone. In the present work it is assumed that
the electron-electronic temperature there is overpredicted, since no doubly-charged
ions are taken into account. By considering N++ in the calculations, the required
second ionization energy would be extracted from the gas, leading to a lower plasma
temperature at the cathode edge.

Validation of Temperature Field via Analytical Calculations

In the following, the simulation results of the maximum temperature in the arc column
are validated. The numerical results yield for all three temperatures T , Te and Tvib an
approximately equal value of around 15,000 K (see Figs. 5.17 and 5.18). According to
calculations of Wells [35], the central temperature in an axially-symmetrical uniform
arc column generated in nitrogen with 10 kW input power amounts to 12,000 K (see
Tab. 5.2). This temperature is 20 % lower compared to the numerically calculated
value. The following factors may generally lead to this deviation:

◦ Wells’ calculations have been performed for magnetically propelled discharges,
which are electrodeless in contrast to the investigated system. Therefore, they
have no hot constricted zones in the vicinity of the electrodes. These zones
might cause additional heating of the gas.

◦ Wells analyses axially symmetric arcs while the plasma arc to be investigated
is generated on a surface. In the present study no information about the tem-
perature profile on the wedge surface is available. The surface temperature is
limited to a maximum value of 1000 K. The influence of this assumption on
the calculated plasma temperature is currently unclear.

◦ Wells considers only energy losses due to diffusion and radiation in his cal-
culations. However, the gas discharge to be examined is exposed to a strong
advection which reduces the residence time of the gas in the electric discharge.
This might lead to additional cooling of the plasma.

◦ Wells studies systems at atmospheric pressure, while the gas discharge under
investigation is generated in a flow under a static pressure of 1.4 bar. This
could lead to a higher temperature of the gas.

Validation of Temperature Field via Experimental Measurements

The experimentally obtained average electronic-excitation temperature of the copper
atoms amounts to T el ≈ 10,670 K (see Tab. 5.3). This value is 28.26 % below the
numerically calculated maximum temperature of 15,000 K. However, it should be
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noted that the experimental values do not necessarily provide the maximum tempe-
rature in the plasma column due a large imaged volume used in the measurements
(see Fig. D.3). Fig. 5.20 shows the experimentally determined electronic-excitation
temperature of copper atoms compared to analytically calculated and numerically
obtained maximum temperature of nitrogen in the plasma column.
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Figure 5.20: Electronic-excitation temperature Tel of copper atoms obtained by
emission spectroscopy vs. analytical and numerical calculations of T .

Following factors may lead to the discrepancy between the experimentally ob-
tained and the numerically calculated maximum temperature:

◦ From the experimental measurements it can be observed that the experimen-
tally obtained Tel does not reach a quasi steady state, but decreases from
13.000 K to 9000 K during the arc discharge. Since only one experiment for
the measurement of Tel could be evaluated in the frame of the present work,
the value of T el ≈ 10,670 K should be treated with caution.

◦ In addition, the value of 10,670 K is representative for the entire measuring
volume. For this reason and due to the fact that plasma has a certain opa-
city, the value of 10,670 K is affected by averaging and screening phenomena.
It is therefore reassuring that this value is below the numerically calculated
maximum temperature of 15,000 K.

◦ For the experiments a contamination of the nitrogen plasma by copper is as-
sumed due to the significant erosion of the electrode material. In the present
work, however, a pure nitrogen plasma is modelled. The presence of copper
vapour can have a considerable influence on the transport properties of the
nitrogen plasma in regions with temperatures below 12,000 K (see Fig. 2.7).
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The use of experimentally obtained rotational and vibrational temperatures of
the cyano radical for validation proves difficult. This species was not modelled and it
is unclear whether the CN molecule equilibrates with N2 and N+

2 . The experimental
measurements yield for the arc column zones with the highest CN number densities
Trot ≈ 7000 K and Tvib ≈ 8300 K. That is, Tvib deviates by 18.5 % from the rotational
temperature. In the present work the maximum deviation between T and Tvib occurs
in the plasma column regions with T ≈ 9000 K, showing values of approx. 7.0 % (see
Fig. 5.18). Both experiment and numerical calculations thus confirm that thermal
nonequilibrium occurs in the peripheral areas of the plasma column.

Parameters of the Physicochemical Model Influencing the Temperature

As far as the physicochemical model is concerned, the following main factors may
affect the temperature in the gas discharge:

◦ The 1-D analysis in Sec. 5.1.1 has shown that at T > 15,000 K the thermal
conductivity model used provides values that are ≈ 6 − 7 % below the results
of Capitelli and Devoto [71] and Murphy and Arundell [72] which are generally
considered accurate. The resulting underprediction of thermal conductivity
may lead to higher temperature values.

◦ Further, the 1-D analysis has demonstrated that the radiation model used de-
livers overestimated values. Nonetheless, the radiation losses in high-pressure
gas discharges have a rather insignificant effect on the overall energy balance.

◦ In the present work, an attempt has been made to estimate the value of the
Joule heating efficiency coefficient η. The calculations in Sec. 2.4.6 yield a
value of η = 0.5. Whether this value is sufficiently accurate for the electric arc
to be modelled remains the subject of future investigations.

◦ Less intensive mixing of the gas and a laminar boundary layer profile due to
the absence of turbulence (laminar flow assumption is currently used).

Gas Discharge Impact on Pressure Field

As shown in Fig. 5.21 and 5.22, the temperature rise in the arc discharge is accom-
panied by an increase in pressure and a decrease in mass density. The shock wave
induced by the gas discharge can be clearly recognized in Fig. 5.21.

Fig. 5.23 shows the simulation results of pressure distribution on the wedge surface
near the electrodes. The zone of increased pressure near the cathode is clearly visible.
It is assumed that exactly this effect and the associated resulting force can be used
to steer a projectile, as mentioned at the very beginning of this thesis (see Sec. 1.1).

The results in Fig. 5.24 show the static and electron pressure along the x-line. It
can be seen that the static pressure in the vicinity of the hot cathode edge reaches
a value of 1.8 bar and then drops almost linearly downstream in the direction of the
anode to approximately 1.5 bar.
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Figure 5.21: Static pressure field: x-y-plane (left), y-z-plane (right).
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Figure 5.22: Mass density field: x-y-plane (left), y-z-plane (right).
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Figure 5.23: Static pressure field on the wedge surface near the electrodes.

In Fig. 5.25, the pressure distribution along the z1-line is shown. The z1-profile
runs 0.1 mm above the mounting locations of the P15, P30 and P45 pressure trans-
ducers (see Fig. D.12). From the results in Fig. 5.25 it can be observed that the static
pressure increases towards the arc column centreline to approximately 1.6−1.65 bar.
The pressure measurements yield for the surface pressure outside the gas discharge
1.45± 0.05 bar and in the discharge of 1.85± 0.05 bar (see Fig D.14 time period of
performance decrease at t ≈ 1.1 ms). That is, the experimentally measured value
near the P15, P30 and P45 pressure transducers exceeds the numerical calculated va-
lue. However, this value is in good agreement with the simulated maximum pressure
at the cathode (see Fig. 5.24). Overall, however, it is assumed that the available
pressure measurements are rather less suitable for validation due to uncontrolled
capacitor discharge and peak powers of up to 70 kW. Therefore, further surface pres-
sure measurements have to be carried out, where the gas discharge is operated with
a constant input power of 10 kW.
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Figure 5.24: Static pressure and electron-pressure profiles along the x-line.
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Figure 5.25: Static pressure and electron-pressure distribution along the z1-line.

Gas Discharge Impact on Velocity Field

In Fig. 5.26 the velocity magnitude in the gas discharge is presented and in Fig. 5.27
the components ux, uy and uz and the magnitude umag along the x-line are shown.

The velocity curves in Fig. 5.27 are plotted 0.1 mm above the wedge surface. It is
recognizable that uz is nearly zero along the whole measuring distance. The velocity
component uy contributes noticeably to the velocity only in the near-electrode zones.
The x-component provides the largest contribution to the overall velocity. Further,
the gas discharge acts on the flow as an obstacle because the gas tends to expand
in all directions as it heats up. This creates a stagnation point above the cathode.
Behind the cathode, the gas is accelerated in the direction of flow and its velocity
increases to ≈ 800 m · s−1. At the anode, the gas undergoes a further acceleration
(see Fig. 5.27). It can be concluded that the characteristic velocity uc = 1000 m · s−1
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obtained in Sec. 2.3 is somewhat overestimated, but presents an acceptable guess.
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Figure 5.26: Velocity magnitude field: x-y-plane (left), y-z-plane (right).
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Figure 5.27: Velocity components ux, uy, uz and magnitude umag along the x-line.
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Figure 5.28: Velocity components ux, uy, uz and magnitude umag along the y1-line.
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In Figs. 5.28 and 5.29, the velocity profiles along the y1- and z1-lines are shown.
The relatively high contribution of the z-component to the total velocity in Fig. 5.29
indicates the lateral escape of the gas from the arc column.

0.0 0.0005 0.001 0.0015 0.002 0.0025 0.003 0.0035
−500

0

500

1000

1500

2000

z [m]

V
el
oc
ity

[m
·s
−

1
]

ux
uy
uz
umag

ar
c
co
lu
m
n
ce
nt
re
lin

e

arc column
periphery

Figure 5.29: Velocity components ux, uy, uz and magnitude umag along the z1-line.

With the above data, the available flow residence time inside the arc discharge
can now be estimated. The residence time in the positive column for u = 800 m · s−1

and a column length of 5.0 mm is approx. 6.25 × 10−6 s. In the cathode area, the
residence time is about 3.3×10−6 s at ≈ 300 m ·s−1 and a distance covered of 1.0 mm.
The relatively long residence time of the gas in the cathode zone combined with the
high Joule heating leads to a temperature peak in this area. It can be stated that
1.0× 10−6 s chosen for the characteristic time tc in Sec. 2.3 is a reasonable estimate.

5.6.3 Species Number Densities across the Gas Discharge

Spatial Structure of Plasma Constituents in the Gas Discharge

It can be seen from Fig. 5.30 and 5.31 how the molecular nitrogen partially dissociates
to atomic nitrogen due to high temperatures prevailing in the gas discharge. The
atomic nitrogen forms a kind of shell, in which its number density nN reaches the
maximum values. A similar shell structure is also observed for the molecular ions
shown in Fig. 5.32. Both N and N+

2 reach maximum number densities in the zones
with T ≈ 8000 K. This can be seen when comparing the temperature distributions
along the y2- and the z2-lines in Figs. 5.17 and 5.18 with the number density profiles
in Fig. 5.36 and 5.37. In the core of the gas discharge, where the temperature is the
highest, atomic nitrogen ions are increasingly generated (see Fig. 5.33). The number
densities of N, N+ and e in the core of the arc column are approximately equal and
amount to around 3× 1023 m−3 (see Fig. 5.35). In the cold near-wall region, partial
electron recombination as well as recombination of neutral atoms to molecules occur
(see Fig. 5.36). However, in order to take these effects more precisely into account,
the computational grid density must be increased in the vicinity of the wall.
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Figure 5.30: Number density field of N2: x-y-plane (left), y-z-plane (right).
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Figure 5.31: Number density field of N: x-y-plane (left), y-z-plane (right).
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Figure 5.32: Number density field of N+
2 : x-y-plane (left), y-z-plane (right).
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Figure 5.33: Number density field of N+: x-y-plane (left), y-z-plane (right).
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Figure 5.34: Number density field of e: x-y-plane (left), y-z-plane (right).

Preservation of Quasineutrality in the Gas Discharge

The results in Fig. 5.35, 5.36 and 5.37 show that inside the arc discharge at tempe-
ratures above 4000 K, the quasineutrality is preserved (ne ≈ ni). At lower tempe-
ratures, however, the number densities of electrons and ions differ considerably. It
follows that charge separation takes place outside the plasma and thus quasineutra-
lity is not maintained in colder regions. This presents a problem because, firstly, the
assumption of quasineutrality serves as a basis for several further assumptions of the
physicochemical model and, secondly, the charge separation occurring without the
restoring forces is unphysical.
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Figure 5.35: Number densities of nitrogen plasma constituents along the x-line.

The species conservation equation shown in Eq. 3.15 is responsible for changes in
species concentration due to advection, diffusion, and production/destruction caused
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Figure 5.36: Number densities of nitrogen plasma constituents along the y2-line.
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Figure 5.37: Number densities of nitrogen plasma constituents along the z2-line.

by chemical reactions. Since the one-fluid assumption is used in the physicochemical
model, the convection term does not contribute to the charge separation. Further-
more, it is assumed that the source terms ω̇s for species production/destruction op-
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erate correctly. Thus, only the diffusion term, or more specifically the diffusion flux
ρVscs, remains as the possible cause of charge separation. In the present work, the
diffusion velocity Vs given in Eq. 3.50 only accounts for the fluid diffusion due to
gradients in species concentration. According to Park [14], however, there exist also
thermal and pressure diffusion effects in the fluid, which are relatively weak, and a
considerable diffusion of charged particles due to electrostatic forces. For reasons of
time, the latter effect has not yet been considered in the present work and will be
investigated in further research. This effect arises in the case of slight nonuniformity
in number densities of ions and electrons (charge separation), whereby polarization
fields and the resulting restoring forces between the charged particles are induced. It
is assumed that, due to the neglect of this effect in the diffusion term of the species
conservation equation, nothing counteracts a possible emerging charge separation.

Apart from the fact that the charge separation in the simulation results is unphys-
ical, the plasma, which cools down downstream, cannot recombine completely due to
differences in ion and electron concentrations. As a result, areas with cool electrons
or ions are formed behind the gas discharge. This leads to incorrect calculations of
transport properties that negatively affect the stability of the calculation.

5.6.4 Electromagnetic Properties in the Gas Discharge

Electric Potential and Electric Field in the Gas Discharge

Fig. 5.38 shows the electric potential distribution along the x-line. It can be seen that
the voltage drop in the positive column of the arc is nearly linear, which is consistent
with a theoretical electric potential distribution in the centre line of a free burning
axially-symmetrical electric arc shown in Fig. 2.10.
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Figure 5.38: Electric potential Φ along the centre line of the gas discharge (x-line).

The time-averaged voltage drop at the electrodes of ∆Φ ≈ 139.5 V calculated with
solver mode 1 (see Sec. 4.5.3) is in fair agreement with the voltage measurements
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performed during the time-resolving emission spectroscopy experiments where time
averaged values between 120 V and 128 V were measured (see Appendix D). Further,
the numerical simulation yields for the electric current I at the cathode a value of
70.690 A and at the anode 70.694 A. The deviation of Ia from Ic is 0.004 A, which is
very low. The values of Ia and Ic are approximately 9 A below the the characteristic
electric current of 80 A and the experimentally measured values ranging from 79.3 A
to 80 A listed in Tab. 5.3. However, it was to be expected since the numerically
determined time averaged voltage drop at the electrodes of ∆Φ ≈ 139.5 V exceeds
slightly the values measured at the power supply terminals. At this point, it must be
recalled that electrode voltage drops are not modelled in the present work. Whether
and to what extent the consideration of Ucr and Uar in the model would affect the
arc current I is currently unclear. The comparison of the experimental and the
numerically calculated values of I and U is shown in Fig. 5.39.
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Figure 5.39: Voltage and current measured at the electrodes compared to numeri-
cally calculated values.

The potential difference at the electrodes creates an electrostatic field in the gas
discharge area. Due to the electrical conductivity of plasma (see Fig. 5.40), the elec-
tric field strength is reduced in the conducting area. This results in a discontinuity in
the electric field distribution, which is visible over the anode in Fig. 5.41. Physically,
this discontinuity may be explained by the fact that due to free charge carriers in the
plasma, a partial charge redistribution takes place within the conducting area, which
leads to a voltage reduction in that zone (electrostatic induction).

The maximum electrical conductivity in the core of the plasma column is approx.
7500 S · m−1. This value exceeds the characteristic electrical conductivity σc consi-
derably (see Tab. 2.2). However, it is to be expected since the numerically obtained
maximum temperature in the plasma column of T = 15,000 K is higher than the
analytically calculated characteristic temperature Tc.

It must again be pointed out that electrode voltage drops are not modelled. By
considering Ucr and Uar, the curve in Fig. 5.38 would have a flatter slope (smaller
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Figure 5.40: Electrical conductivity: x-y-plane (left), y-z-plane (right).
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Figure 5.41: Electric field magnitude: x-y-plane (left), y-z-plane (right).

gradient value in x-direction, as schematically shown Fig. 2.10). As a result, E
directly at the electrodes would increase while decreasing in the positive column. The
electric field influences the current density J and consequently the induced magnetic
field B (see the Ampère’s and the Ohm’s laws in Eqs. 3.123 and 3.125, respectively).
The fact that the electric and magnetic fields are slightly overestimated should not
be forgotten in the following analysis. In the present work, this fact is taken into
account by means of the efficiency coefficient η = 0.5 (see Sec. 2.4.6). This coefficient
is implemented in the calculation of Q̇Joule and FLorentz (see Sec. 3.3.6).

Fig. 5.42 shows the electric field components Ex, Ey and Ez and the magnitude
Emag along the x-line. It can be seen that the electric field in the positive column tends
to have an approximately linear and horizontal distribution, while peaks occur near
the electrode edges. This pattern is consistent with the theoretical distribution of E
in the centreline of a free burning electric arc shown in Fig. 2.10. The approximately
horizontal distribution of E between the electrodes results from the nearly constant
spatial electric potential gradient shown in Fig. 5.38.

The characteristic field Ec calculated in Sec. 2.3.1 is 20,000 V ·m−1. This value is
obtained by assuming a plasma column voltage drop of 100 V, which results from the
subtraction of the cathodic and anodic voltage drops of 30 V from the total voltage
drop over the arc of 130 V. Without subtracting 30 V, the characteristic field in the
arc column would have the following value: 130 V voltage drop divided by 0.005 m
electrode gap yields 26,000 V · m−1. This value is in a good agreement with the
numerically obtained electric field magnitude between the electrodes in Fig. 5.42.
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Figure 5.42: Electric field components Ex, Ey and Ez and the corresponding mag-
nitude Emag along the x-line.

Electric Current Density and Magnetic Field in the Gas Discharge

Fig. 5.43 shows the electric current density J between the electrodes. The electric
current is caused by the electrostatic field and the free charge carriers in the plasma.
In addition, the partially ionized gas is transported along with the flow and forms
a tail behind the anode (not visible in Fig. 5.43 due to the colour scale used). The
electric current thus flows not only between the anode and cathode, but also a certain
distance downstream, forming a tail that eventually recombines to a neutral gas.
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Figure 5.43: Electric current density magnitude: x-y-plane (left), y-z-plane (right).

The constant arc current between the electrodes induces a static magnetic field
B shown in Fig 5.44. In Figs. 5.45 and 5.46 the magnetic field components Bx,
By and Bz and the magnitude Bmag are plotted along the x-line and the y1-line,
respectively. The magnetic field along the x-line 100 µm above the wedge surface
varies from 0.027 T to 0.008 T. Above the cathode it reaches peak values of up to
0.05 T (not visible in the diagram). The magnetic field along the y-line shown in
Fig. 5.46 amounts at the periphery of the plasma column to 0.021 T and decreases
continuously with distance from the discharge. It can be stated that the characteristic
value Bc = 0.016 T provides a reasonable estimate for the system (see Tab. 2.2).
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Figure 5.44: Magnetic induction field magnitude: x-y-plane (left), y-z-plane (right).
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Figure 5.45: Magnetic field components Bx, By and Bz and the corresponding mag-
nitude Bmag along the x-line.
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Figure 5.46: Magnetic field components Bx, By and Bz and the corresponding mag-
nitude Bmag along the y1-line.

At this point it is important to note that the numerically calculated induced mag-
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netic field does not take into account induction effects due to the electric circuit wires
under the wedge surface. This is explained in detail at the end of this chapter. How-
ever, the presented results of B are intended to demonstrate the functionality of the
new numerical solver and to provide first validation by comparison with characteristic
magnetic field magnitude Bc.

In Fig. 5.47, the magnitudes of E and J in the cross-section through the gas
discharge directly above the wedge surface are presented. It can be recognised that
both fields occur most strongly at the electrode edges, which is physically correct. The
peak values of E at the cathode and anode edges facing each other are 8.7×104 V·m−1

and 7.4 × 104 V · m−1, respectively. The value for the electric field strength in the

cathode anode cathode anode

E [V · m−1] J [A · m−2]

Figure 5.47: Electric current density and electric field magnitude at the electrodes.

cathode sheath estimated analytically in this work in Sec. 2.2 and in Appendix A is ∼
109 V·m−1. In the present work, however, the electrode nonequilibrium layers (sheath
and presheath) are not modelled and the values in Fig. 5.47 are more applicable
to the near-electrode constricted zones where the plasma channel becomes wider.
This explains why they are much lower than the analytically calculated values. The
numerically calculated peak values of J at the cathode and anode edges in Fig. 5.47
amount to 1.8×109 A ·m−2 and 0.53×109 A ·m−2, respectively. The current density
in the cathode sheath estimated analytically in Appendix A is Jc ∼ 1010 A · m−2,
which is by one magnitude higher than the numerically calculated value. But again, it
should be pointed out that the numerically obtained value of J is outside the cathode
sheath. For a symmetric and smooth anode, literature provides for Ja a value in the
range of 105− 107 A ·m−2. This value is lower than the numerically calculated value,
which is probably due to the anode geometry used in the system under investigation.

Plasma Response to Electric and Magnetic Fields

The response of the partially ionized fluid to the electric and magnetic fields is mo-
delled in the present work by the Joule heating and the Lorentz force.

In Fig. 5.48, Q̇Joule per cubic meter in the electric arc is presented and in Fig. 5.49
its distribution along the x-line is shown. The Joule heating includes the efficiency
coefficient η = 0.5 calculated in Sec. 3.3.6. It can be seen that due to the peaks in
the electric field near the electrodes shown in Fig. 5.47, peak values in Joule heating
also occur.
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Figure 5.48: Joule heating per cubic meter: x-y-plane (left), y-z-plane (right).
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Figure 5.49: Joule heating per cubic meter along the x-line.

Figs. 5.50 and 5.51 show the radiation losses per cubic meter in the discharge.
From the comparison of Figs. 5.49 and 5.51 it can be concluded that the radiation
losses in the arc column are by two orders of magnitude lower than the Joule heating.
This property is typically for thermal high-pressure arcs. In his work, Wells [35]
concludes that radiation losses are negligible for arcs created by high electric fields and
therefore formed in narrow channels. However, for lower fields, which correspond to
arcs in wider channels, the radiation losses have a strong influence on the temperature
distribution and thus on the properties of the arc and cannot be neglected.
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Figure 5.50: Radiation losses per cubic meter: x-y-plane (left), y-z-plane (right).
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Figure 5.51: Radiation losses per cubic meter along the x-line.

In Fig. 5.52 the Lorentz force magnitude per cubic meter in the gas discharge
is presented. In Figs. 5.53 and 5.54 the components Fx, Fy, Fz and the magnitude
Fmag of Lorentz force per cubic meter along the x-line and the y1-line are shown,
respectively. The magnitude of the Lorentz force per cubic meter near the centreline
of the positive column is ≈ 1.5 × 106 N · m−3 and reaches values of more than
6.0 × 106 N · m−3 in the vicinity of the cathode. Further, as shown in Fig. 5.54,
FLorentz reaches 1.7 × 106 N · m−3 at a distance 0.2 mm above the wedge surface
between the electrodes.
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Figure 5.52: Lorentz force magnitude per cubic meter: x-y-plane (left), y-z-plane
(right).

When discussing the simulation results of the induced magnetic field, it was men-
tioned that the numerical calculation does not consider the induction effects due to
the electric wiring under the wedge surface. The solid material under the wedge sur-
face, which consists of polyamide and the copper supply lines (see Fig. 2.2), is not
considered in the simulation domain. Only the flow around the wedge is modelled
(see Fig. 5.1). This results in the following two effects:

First, the static magnetic field induced by the arc current is formed not only in the
nitrogen but also in the polyamide plate, as shown schematically in Fig. 5.55 on the
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Figure 5.53: Components Fx, Fy, Fy and magnitude Fmag of Lorentz force per cubic
meter along the x-line.
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Figure 5.54: Components Fx, Fy, Fy and magnitude Fmag of Lorentz force per cubic
meter along the y1-line.

left. This means that the magnetic field lines in the solid represented by black dashed
lines are missing in the numerical simulation (compare Fig. 5.55 with Figs. 5.44 and
5.46). Consequently, the corresponding Lorentz forces are also missing (depicted by
red dashed arrows in Fig. 5.55 on the left). That is, the Lorentz forces acting on
the plasma column from above are not compensated by those acting from below.
In contrast, the plasma column is laterally stabilized by the corresponding lateral
Lorentz forces. It is assumed that due to a rather weakly induced magnetic field
in the system under investigation, the generated Lorentz forces have no significant
influence on the shape and position of the plasma column.

The sketch in Fig. 5.55 in the middle and the corresponding experimental image
on the left demonstrate the influence of the electrode power supply lines on the
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Figure 5.55: Induced magnetic field and corresponding Lorentz forces generated by
the arc current in the nitrogen flow and in the polyamide plate (left). Induction
effects due to the electric wiring under the wedge surface (middle and right) [1].

magnetic field around the gas discharge. This is the second effect to be discussed,
which depends on the position of the power lines in the solid and the material used.
In this particular case, the electromagnetic effect shown in Fig. 5.55 is analogous to
that of a linear motor (e.g. railgun).

The physical system shown in the photograph in Fig. 5.55 is comparable to
the test case under investigation. However, it has a larger electrode distance of
9.5 mm. Furthermore, the electric current of 1200 A and the voltage of 248 V at the
time of image recording are substantially higher than in the examined system, where
I ≈ 71 A and U ≈ 139 V. The magnetic field induced by the high electric current
generates strong resulting Lorentz forces acting on the electric arc and its tail. This
pushes both the arc and the tail upwards away from the surface (see Fig. 5.55 on the
right). Experiments show that while the electric current drops during the capacitor
discharge, the plasma column returns to the surface.

In the following, the influence of the Lorentz forces on the system under investiga-
tion is briefly examined. The flow velocity in the plasma column is approx. 800 m·s−1

(see Fig. 5.28). As shown in Sec. 3.3.6, the inertial force during a uniform decele-
ration of a fluid volume over the characteristic length lc during the time tc from a
velocity magnitude uc to 0 m · s−1 can be estimated by: Finertial = ρaV ∼ ρV u2

c/2lc,
where a is the acceleration in m · s−2 and uc is the magnitude of the characteristic
velocity of the fluid. The mass density of the fluid flow behind the shock wave is
approximately 1.28 kg ·m−3. For ρ = 1.28 kg ·m−3, V = 1.0 m3, uc = 800 m · s−1 and
lc = 1 mm, the inertial force of the fluid is ≈ 4.0 × 108 N ·m−3. The Lorentz force
per cubic meter is estimated as follows: FLorentz = η (J×B)V ≈ ηJBcV , where J
is the magnitude of the electric current density. Between the electrodes J has an
average value of ≈ 1.5 × 108 A · m−2 and in the area of the cathode approximately
5 × 108 A · m−2. Since the relative magnetic permeability of polyamide is µr ≈ 1,
the characteristic magnetic field Bc = 1.6× 10−2 T is assumed for the field strength
around the electrode lines in the insulating plate (the calculation of Bc is given in Sec.
2.3.1). The contributions of Lorentz forces generated by the magnetic field around
the arc column would cancel each other out and are therefore not included in the
calculation. By using the superposition principle, an approximate value of 0.032 T
is obtained for the magnetic field between the electrode supply lines. This results
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in an estimated value of ≈ 2.4 × 106 N · m−3 for the resulting Lorentz force in the
arc column and ≈ 8.0 × 106 N · m−3 for the cathode region. The resulting Lorentz
forces do not necessarily act in the direction opposite to the flow, but rather per-
pendicular to the surface upwards. Nevertheless, when putting FLorentz in relation to
Finertial, the effects of the Lorentz forces can be approximately predicted. The ratio
of the Lorentz force to the inertial force in the arc column between the electrodes
amounts to ≈ 0.006 and in the cathode region to approximately 0.02. This means
that only near the surface in lower areas of the boundary layer the gas discharge to
be investigated could probably counteract the flow due to the low velocity there. It
is therefore assumed that in the system under investigation the arc current is rather
low to significantly lift the plasma column from the surface.



Chapter 6

Closure

This last chapter summarises the work, draws conclusions from the numerical results
and gives suggestions for future work.

6.1 Conclusion

This research work is concerned with the development of a physicochemical model
and its subsequent numerical implementation and validation for the simulation of
ionized, high-enthalpy and high-speed gas flows in the state of nonequilibrium and
in the presence of external electric and magnetic fields.

At the beginning of this work, a physicochemical system, a test case, which exem-
plarily represents the field of application of the new solver is defined. It is a wedge
which is placed without angle of attack in a nitrogen flow with a free-stream Mach
number of M = 4.5, a static temperature of 234 K and a static pressure of 0.34 bar.
A high-intensity direct-current gas discharge with a constant input power of 10 kW
is generated on the surface of the wedge between the electrodes installed flush with
the surface, which leads to a partial ionisation of the flow and an intensive heating
of the gas in that zone.

After defining, the physicochemical system is analysed by first determining the
type of gas discharge to be investigated, its structure and physical properties. Then,
the system is examined from the point of view of aerothermodynamics and chemi-
cal kinetics to determine the necessary modelling depth. During this process, the
physicochemical system is analytically evaluated to obtain information on which as-
sumptions and simplifications may be used to construct the physicochemical model as
simply as possible, while retaining the most important physical and chemical effects.

After the analytical evaluation of the system, a physicochemical model is de-
veloped on the basis of the information obtained. This model is based on the single-
fluid assumption and takes the chemical and thermal nonequilibria in the gas mixture
into account. Therefore, the assumption of separable modes is used to calculate the
energy contents of individual energy modes of the gas and the corresponding tem-
peratures. The response of the partially ionized fluid to the electromagnetic fields
is modelled via the Joule heating and the Lorentz force. The radiation losses are
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also taken into account in the model. The electrodynamic modelling is simplified by
means of the MHD approximation, the magnetostatic assumption and the potential
formulation of Maxwell’s equations.

Due to the high complexity of the processes within the nonequilibrium regions near
the electrodes and their small dimensions compared to the characteristic length of the
system, the modelling of the plasma nonequilibrium layers is simplified. Furthermore,
the preionization process during the arc ignition is not considered. The ignition is
modelled by locally heating the gas between the electrodes until the ionization begins
and the gas becomes a conductor.

The numerical implementation of the physicochemical model is carried out using
the open-source finite volume based software package OpenFOAM. The numerical
solver developed in this thesis is a transient, segregated and pressure-based solver for
modelling high-speed flows. The solver is developed together with the corresponding
model library, which provides models for calculating the thermodynamic and trans-
port properties as well as the radiation losses and plasma responses to the electric
and magnetic fields.

The solver verification and validation consist of a one-dimensional and a three-
dimensional analyses. The 1-D analysis is carried out for the verification of the
finite-rate chemical module of the solver as well as all submodels for the transport
and thermodynamic properties. For the three-dimensional validation, the previously
defined and analytically evaluated system – a high-pressure arc discharge generated
on the surface of a wedge in a supersonic flow – is numerically calculated. The nume-
rical results are then compared with the experimental measurements and theoretical
values obtained from the analytical evaluation of the system.

6.2 Results Summary

The results of the present work have been assessed and discussed in detail in the
previous chapters. The most important results and conclusions are summarised in
the following:

◦ The electric arc to be investigated is a surface discharge in a supersonic flow.
This causes the arc column of the discharge to be pressed against the surface and
severely stretched, giving it a flat shape and forming a long tail downstream.
Its height amounts to 0.5 mm on average and its width to 2.8 mm.

◦ The plasma in the arc column is close to the LTE state. This is to be expected
for collision-dominated high-pressure gas discharges to which the system under
investigation belongs. At the edges of the gas discharge at temperatures below
11,000 K the thermodynamic nonequilibrium gradually emerges. The deviation
of Te from T exceeds 10 %.

◦ The maximum numerically calculated temperature in the arc column is appro-
ximately 15,000 K. The experimentally determined electronic excitation tem-
perature of the copper atoms decreases during the experiment from 13,000 K
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to 9000 K and is on average T el ≈ 10,670 K. This value is representative for
the entire measuring volume, which is larger than the plasma column diameter.
Because of the resulting averaging effects and due to the opacity of the plasma,
the measured value of 10,670 K does not represent the maximum temperature
in the arc column. It is therefore reassuring that the measured temperature is
below the numerically calculated maximum value of 15,000 K.

◦ As far as the cathode zone is concerned, no reliable comparative values have
been found for this region. It is assumed that the numerically calculated tem-
peratures T ≈ 28,000 K and Te ≈ 36,000 K near the cathode are exaggerated
since no formation of doubly charged nitrogen ions was taken into account.
However, these values confirm the assumption of a strong nonequilibrium in
the near-cathode region often used for electric discharges.

◦ The gas discharge acts on the flow as an obstacle, since the gas expands in
all directions during rapid heating of the fluid, especially in the cathode area.
This creates a stagnation point above the cathode and the static pressure in-
creases. As a result, a shock wave occurs in a supersonic flow due to the gas
discharge. The numerical calculations provide a value of approximately 1.8 bar
for the static pressure at the cathode, while the pressure in the free-stream flow
amounts to 1.45 bar.

◦ The numerical results show that at temperatures above 4000 K the preserva-
tion of quasineutrality is largely ensured. At lower temperatures, however, the
concentrations of electrons and ions can decouple considerably. As a result,
charge separation takes place in regions with lower temperatures and thus qua-
sineutrality is not preserved. Therefore, the physicochemical model should be
extended to ensure quasineutrality.

◦ The magnetostatic calculations show physically correct behaviour and provide
acceptable agreement with the analytically calculated values. As expected,
peak values in the electrostatic field and the electric current density occur at
the electrode edges, which in turn result in peak values in the Joule heating
and as a consequence in the temperature.

◦ The simulation results confirm the frequently used assumption that in thermal
arcs maintained by high electric fields, the radiative cooling effects are neg-
ligible. However, according to Wells [35], the radiation losses in less intense
gas discharges that form wider arc channels significantly affect the temperature
distribution and all related arc properties.

◦ With regard to the Lorentz forces, the numerical calculation does not take into
account the induction effects due to the electric circuit wiring under the wedge
surface. However, it has been shown that the Lorentz forces caused by self-
induction in the system under investigation have a rather weak influence on the
high-speed flow.
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In general it can be said that the simulation results provide a very detailed in-
sight into the physical processes in an electric discharge and are generally in a fair
agreement to analytical calculations and experimental measurements. For more reli-
able statements on solver validation, however, further experiments are necessary to
determine the plasma temperature, the pressure and the plasma species composition.

6.3 Suggestions for Future Work

6.3.1 Further Development of the Physicochemical Model

The following suggestions represent the lessons learnt from this work.

Inclusion of Doubly-Charged Ions

In a nitrogen plasma, the production of doubly-charged ions in areas with a tempe-
rature of over 25,000 K is significant. It not only affects the gas properties there,
but also leads to lower temperature values than without consideration of N++ due
to the extraction of the second ionization energy from the gas. This applies to the
gas discharge to be investigated only for the area near the cathode. However, the
excessive temperature values there may influence the entire electric discharge. For
more accurate calculations it is therefore important to consider the production of
doubly charged ions in the kinetic mechanism for high intensity arc discharges.

Individual Treatment of Rotational Excitation as well as Translational
Energy of Free Electrons

In the present work it is assumed that the translational and rotational temperatures
are equal (T = Ttr = Trot). In case of a strong thermodynamic nonequilibrium,
e.g. in an arc-heated wind tunnel at the nozzle exit, the rotational excitation of the
expansion flow may differ significantly from the translational temperature. In such a
case it would be interesting to calculate Ttr and Trot separately.

Furthermore, the present work assumes a common energy pool for the energy
contained in the translational mode of the free electrons and the electronic excita-
tion of heavy particles. Thus, both energy fractions are characterized by a common
temperature Te = Te,tr = Tel. Such an assumption might be useful for calculating
high-temperature gas dynamics in processes, where free electrons are not exposed to
external electric fields. In the work presented here, however, the energy exchange
chain starts with the energy of free electrons accelerated by an electrostatic field.
That is, the temperature of free electrons Te,tr would be possibly higher, than the
electronic-excitation temperature Tel. For further investigations of gas discharges it
would therefore be requested to separate both energies from each other.
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Turbulence Consideration

The turbulence modelling is not yet included in the physicochemical model due to
a tremendous complexity of plasma turbulence. However, it would be useful for the
beginning at least to consider the turbulence in the fluid entering the gas discharge
area by means of a common turbulence model.

Implementation of More Sophisticated Wall Modelling

In the present work, no information is available about the temperature profile on
the wedge surface during the gas discharge. However, it is assumed that the surface
acts as a strong heat sink during discharge. For this reason and due to missing
information, a maximum temperature of 1000 K is used as a boundary condition for
the wall modelling. This simple assumption should be replaced by a more accurate
boundary condition.

Additionally, a closer look at the catalytic processes on the wall would increase
the modelling accuracy (finite-catalytic wall).

Induction Effects due to the Electric Circuit Wiring under the Surface

The solid material under the wedge surface, which consists of polyamide and the cop-
per supply lines, is not considered in the simulation domain. It would be interesting
to include this area in the modelling, because the magnetic field induced by the arc
current is not only formed in the flow, but also in the solid below. Additionally, there
is an influence of the electrode power supply lines on the magnetic field around the
gas discharge, which depends on the position of the power lines in the solid and the
material used.

Calculation of Charge Separation for Preservation of Quasineutrality

The numerical results show that in the areas with lower temperatures at the discharge
periphery a charge separation may occur and thus the quasineutrality is not preserved.
This is an important issue because, firstly, several assumptions of the physicochemical
model are based on the assumption of quasi-neutrality and, secondly, that charge
separation without restoring forces is unphysical. To preserve quasineutrality, the
calculation of diffusion must be extended by an additional term, which calculates
polarization fields and the resulting restoring forces in the case of non-uniformity of
the number densities of ions and electrons.

6.3.2 Further Development of the Numerical Solver

The numerical tool developed in this thesis is based on a pressure-based compressible
OpenFOAM solver that solves governing equations in a segregated manner, making
a fully implicit treatment of source terms impossible. The implicit treatment of
source terms, however, increases the solution robustness of the algebraic equation
system in a numerical solver [63, 60]. In the present work it is particularly topical
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for the source terms in the energy conservation equations. In a coupled method, the
discretized equations are combined to a block structure and solved simultaneously
after linearisation by means of iterative solution methods for coupled systems. The
use of a coupled method would not only allow the implicit implementation of the
energy source terms, but also the implicit treatment of thermal diffusion terms in the
energy equations. This would contribute to the stability of the numerical solver and
allow to perform calculations with larger computational time steps, thus reducing the
computation time.

6.3.3 Proposals for Further Numerical Investigations

The next step towards a more accurate model would be to consider the contamination
of the plasma with the electrode material and the material from the ablating insulat-
ing plate. This would help to perform a more accurate validation of the system, as
CN (cyano radical) and Cu were used to experimentally determine the temperature
in the gas discharge in the frame of this work. Further, the kinetic mechanism for
high-temperature nitrogen used in this work can be extended to the mechanism for
high-temperature air (11-species air model for chemical and thermal nonequilibrium)
by using for example the work of Dunn and Kang [25] and the work of Park [14].
The collision integrals for the thermodynamic and transport properties can be found
for example in Gupta et al. [23] and Yos [22].

Furthermore, it would be useful to numerically investigate less intensive electric
discharges at lower pressures to analyse the equilibration processes in the plasma,
since such discharges tend to show stronger thermodynamic nonequilibrium.

Finally, for more reliable statements on solver validation, further simulations on
simple two-dimensional geometries are indispensable. In addition, further experi-
mental measurements are required to obtain more data for accurate validation.



Appendix A

Cathode Emission

A.1 Mechanisms of Cathode Emission
The most important factors influencing the cathode emission are: the electric field
at the cathode surface Ec, the cathode surface temperature Tc, the accumulation of
ions in the cathode region and the cathode material and geometry. In the following,
a distinction is made between four different electron emission mechanisms:

◦ secondary electron emission JSEE,

◦ thermoionic emission JT,

◦ field emission JF,

◦ thermo-field emission JTF.

Secondary emission (especially secondary ion-electron emission) plays a crucial
role in glow discharges. In high-pressure arcs, however, its contribution is rather
insignificant [11]. Therefore, secondary ion-electron emission is only briefly discussed
here. It occurs due to the bombardment of the cathode by positive ions. This
mechanism is not based on the collective effect of ion bombardment, but on individual
interactions during which a given positive ion may or may not release an electron
from the cathode surface [30]. This probability is given by the ion-electron emission
coefficient γi that usually has values between 0.01 and 0.1 [11]. The electron current
can thus be calculated as follows [20]:

JSEE = γiJi . (A.1)

Considering that in high-pressure arcs the ionic current accounts for only 10 % to
30 % of the total electric current in the cathode sheath, it becomes evident that
secondary emission is not able to provide a sufficient amount of electron current in
this electric discharge class.

The electron emission in high-pressure arcs is provided by thermoionic emission,
field emission, and thermo-field emission mechanisms. There, the ion bombardment
of the cathode surface also plays a key role. However, in contrary to the secondary
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emission, this is a collective contribution, leading to the development of a hot spot on
the cathode [30]. The Tc and Ec values in the cathode spot are high enough to activate
the thermoelectronic and field emission mechanisms or a combined action of the both
– the thermo-field emission. In contrary to secondary emission, the electron emission
in a high-pressure arc can generate γeff = 2− 9 electrons per one ion, providing 70 to
90 % of total arc current [11]:

S =
γeff

γeff + 1
≈ 0.7− 0.9 . (A.2)

A.2 Hot and Cold Cathodes

Cathodes in high-pressure arcs can be classified according to their electron emission
mechanisms in hot (thermoionic) and cold (nonthermoionic) cathodes [34].

Hot cathodes are made of refractory materials, like tungsten (W) or carbon (C),
and thus can sustain high temperatures without considerable melting or evaporation.
Due to high temperature values on the material surface, a sufficient amount of electron
current can be provided by a purely thermoionic emission (JT). The cathode spot on
a hot electrode can be both contracted or diffused, depending on cathode geometry
and current. The diameter of a diffused spot is usually of several 100 µm, with current
densities of about JT ∼ 107 − 108 A · m−2 [11, 20]. For a spot diameter of 500 µm
and a current density of 1 × 108 A ·m−2, an electric current of approximately 20 A
would result.

Cold cathodes, like copper (Cu) or silver cathodes (Ag), cannot sustain high
temperature values necessary for a sufficiently large thermoionic emission, due to
a low melting point of the cathode material. Instead, the electrons are emitted in
the thermo-field regime via a very small hot spot, leading to erosion of cathode
material [11, 34]. For copper electrodes, the current density ranges between 108 and
1012 A · m−2 [11]. The cathode spot of a cold cathode has a diameter of ∼ 10 µm
and can reach temperatures of approximately 3000 K and higher. These conditions
lead to the electron emission in the thermo-field regime.

A.3 Thermoionic Emission

The thermoionic emission can be calculated by the Richardson-Dushman equation as
follows [11, 20, 34]:

JT =
4πmeek

2
B

h3
T 2

s (1−R)exp

(
− Φeff

kBTs

)
, (A.3)

where kB = 8.617 × 10−5 eV · K−1. The quantity R is the quantum mechanical
coefficient describing the reflection of the electrons from the potential barrier related
to the material surface, which has typical values of 0 − 0.8 [11]. For the expression
4πmeek

2
B/h

3 it is convenient to use a numerical value, which amounts to 1.2×106 A ·
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K−2 ·m−2. For a purely thermoionic emission, the value Φeff is equal to the value of
the material’s work function Φ0, which is approximately 4.5 eV for copper. In such a
case, only the cathode surface temperature Tc affects the strength of the thermoionic
current density JT. If, however, a sufficiently large electric field Ec is established
on the cathode surface, a reduction of work function Φ0 occurs, known as Schottky
effect. This work-function decrease is calculated as follows [11, 20, 34]:

Φeff = Φ0 + δΦ , where δΦ = −
(
eEc

4πε0

)1/2

. (A.4)

It is convenient to use for Eq. A.4 the following numerical form:

δΦ = −3.8× 10−5E1/2
c . (A.5)

When Eq. A.3 is used together with Eq. A.4, the so-called field-enhanced thermoionic
emission can be calculated.

A.4 Field Emission
The field emission occurs purely due to the electric field on the cathode surface Ec. It
becomes significant at the electric field values of Ec > 109 V ·m−1 [11]. The electric
current due to field emission may be estimated by the Fowler-Nordheim equation
given as [11, 73]:

JF =
e

4πh (Φ0 + εF)

(
εF
Φ0

) 1
2

E2
c exp

(
−4κΦ

3
2

0 ξ

3Ec

)
, (A.6)

where κ2 = 8π2me/h
2. The quantity εF is the Fermi energy of the material and ξ is a

correction factor which is a function of the ratio δΦ/Φ0. The numerical form of Eq.
A.6 is as follows [11]:

JF =
0.062

(Φ0 + εF)

(
εF
Φ0

) 1
2

E2
c exp

(
−6.8× 109 Φ

3
2

0 ξ

Ec

)
. (A.7)

A.5 Thermo-Field Emission
As described before, the prediction of the emission current via the thermoionic-
emission mechanism is sufficiently accurate for hot cathodes with a diffuse cathodic
spot and a moderate surface electric field. For cold cathodes, however, this method
could lead to an underestimation of electron emission by a factor of several hundreds
[34]. The second important emission mechanism – field emission - becomes noticeable
only at very high electric fields. However, the combined action of the thermoionic
and field emission leads to a non-linear enhancement of the cathode emission, called
thermo-field emission. According to Jeanvoine [34], this emission mechanism is the
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most effective emission process and can lead to an increase by a factor of more than
500, compared to individual contributions of thermoionic- and field-emission mecha-
nisms together.

The thermo-field emission current density JTF can be predicted most accurately
by the equation of Murphy and Good as follows [34]:

JTF =

∫ ∞
−Wa

D(Ec,W ) ·N(W,Tc,Φ0)dW , (A.8)

where −Wa is the effective constant potential of electrons inside the emitter (cathode)
surface, and W is the energy of an electron incident on the potential barrier at the
metal surface [74]. The function D(Ec,W ) is the probability of an electron of energy
W to penetrate the barrier. The function N(W,Tc,Φ0) is the Fermi-Dirac energy
distribution of electrons moving towards the surface [34].

The results of the numerical calculation of the Murphy and Good equation for
Φ0 = 4.5 eV are shown in Fig. A.1. From this diagram, it can be deduced that
at low electric-field values the thermo-field emission tends to become independent
from Ec (purely thermoionic emission), whereas at large Ec it becomes temperature
independent (pure field emission) [74].

Figure A.1: Thermo-field emission [74].

The results in Fig. A.1 are now used for an estimation of Ec in the system
under investigation. The amperage in the arc under investigation amounts to 80 A.
Assuming a spot diameter of ∼ 30 µm (cold cathode), a cathode-spot current density
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of JTF ≈ 2.8 × 1010 A · m−2 is obtained. The cathode surface temperature in the
hot spot is estimated at ≈ 2900 K (evaporation temperature of copper is 2835 K).
By using the diagram in Fig. A.1, these values yield an electric field on the cathode
of Ec ≈ 2.2 × 109 V · m−1. This value can be verified by an equation, which gives
the relation between Ec, current density J, and the cathode voltage drop Uc. The
numerical form of this equation is given as follows [11]:

Ec = 5 · 103M1/4(1− S)1/2U1/4
c J

1/2
FT . (A.9)

The derivation of this equation can be found in Fridman and Kennedy [11]. The
quantity M is the molar mass, which is 14 for atomic nitrogen. By assuming a
cathodic voltage drop of Uc = 18 V [11] and an electric current fraction of S = 0.8,
Eq. A.9 yields an electric field of Ec ≈ 1.5 × 109 V · m−1. This value is close to
the value obtained from the diagram in Fig. A.1. The discrepancy may result from
difficulties in reading off the values in Fig. A.1 or from the rather arbitrary chosen
diameter of the cathode spot.

In the following, the value calculated above of the thermo-field emission current
density JTF is compared with the field-enhanced thermoionic emission current density
JT and the field emission current density JF.

By inserting the value calculated above (Ec ≈ 2.2×109 V·m−1) into Eq. A.5, yields
a reduction of the work function of δΦ = 1.78. The cathode-surface temperature and
the work function of copper are assumed to be of 2900 K and 4.5 eV, respectively. For
the quantum mechanical coefficient, the mean value is taken from the typical value
range: R = 0.4. By inserting these values in Eq. A.3, the field-enhanced thermoionic
emission current density amounts to JT ≈ 1.135× 108 A ·m−2.

The Fermi energy of copper amounts to εF = 7 eV. The correction factor ξ in Eq.
A.9 can be found in Fridman and Kennedy [11] and is 0.85 for the ratio δΦ/Φ0 ≈ 0.4.
Using these values together with Eq. A.7, yields a field emission current density of
JF ≈ 6.6× 108 A ·m−2.

The values of JT and JF added give an overall current density of ≈ 7.73× 108 A ·
m−2, which is by a factor of nearly 36 less than the thermo-field emission current
density, calculated above. This example shows that for cold cathodes the combined
action of the thermoionic and field emission leads to a non-linear emission enhance-
ment.
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Appendix B

Species Properties

Table B.1: Curve-fit coefficients for equilibrium constant Keq
∗ [14, 23]

reaction r A1 A2 A3 A4 A5

dissociation of N2 (N2 → N + N)
1, 2, 3, 4, 6 1.4766 1.6291 1.2153 −11.457 −0.009444

associative ionization (N + N→ N+
2 + e)

5 −2.3644 −5.0704 −4.9885 −5.7332 −0.039703

electron-impact ionization of N (N→ N+ + e)
7 −0.9026 −3.4255 −2.2526 −16.679 −0.008037

charge exchange between N2 and N (N2 + N+ → N+
2 + N)

8 −0.02208 −0.745209 −2.09774 0.1661 −0.1268

∗ These curve-fit coefficients are valid only for number densities n ≥ 1024m−3.

Table B.2: Species electronic data [14, 46, 26].

N2 N N+
2 N+

level i gi Θel,i [K] gi Θel,i [K] gi Θel,i [K] gi Θel,i [K]

ground 1 0.0 4 0.0 2 0.0 1 0.0

1 3 7.223157×104 10 2.766470×104 4 1.318997×104 3 7.006835×101

2 6 8.577863×104 6 4.149309×104 2 3.663323×104 5 1.881918×102

3 6 8.605027×104 12 1.199002×105 4 3.668876×104 5 2.203657×104

4 3 9.535119×104 6 1.240142×105 8 5.985305×104 1 4.703183×104

5 1 9.805635×104 12 1.268027×105 8 6.618366×104 5 6.731252×104

6 2 9.968267×104 02 1.346396×105 4 7.598992×104 15 1.327190×105

7 2 1.048976×105 20 1.364503×105 4 7.625508×104 9 1.571435×105
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Table B.3: Molar mass values of species in a high-temperature nitrogen [53].

species N2 N N+
2 N+ e

Ms

[
kg · kmol−1

]
28.01340 14.00670 28.01285 14.006157 5.4858×10−4

Table B.4: Enthalpy of formation (∆hf)
0
s at 0 K in J · kmol−1 [53]

N2 N N+
2 N+ e

(∆hf)
0
s −8.67× 106 4.70818×108 1.50331×109 1.873149×109 −6.197× 106

Table B.5: Curve-fit constants for collision cross-section Ω
(1,1)

ij
∗ [23].

pair
number

interaction
pair (i-j) A

Ω
(1,1)
ij

B
Ω

(1,1)
ij

C
Ω

(1,1)
ij

D
Ω

(1,1)
ij

1 N2 −N2 0 −0.0112 −0.1182 4.8464

2 N−N2 0 −0.0194 0.0119 4.1055

3 N−N 0 −0.0033 −0.0572 5.0452

4 e−N2 0.1147 −2.8945 24.5080 −67.3691

5 e−N 0 0 0 1.6094

6 N+ −N2 0 0 −0.4000 6.8543

7 N+ −N 0 −0.0033 −0.0572 5.0452

8 N+
2 −N2 0 0 −0.4000 6.8543

9 N+
2 −N 0 0 −0.4000 6.8543

∗ The collision cross-sections are obtained in Å2; 1 Å2 = 10−20m2.

Table B.6: Curve-fit constants for collision cross-section Ω
(2,2)

ij
∗ [23].

pair
number

interaction
pair (i-j) A

Ω
(2,2)
ij

B
Ω

(2,2)
ij

C
Ω

(2,2)
ij

D
Ω

(2,2)
ij

1 N2 −N2 0 −0.0203 0.0683 4.0900

2 N−N2 0 −0.0190 0.0239 4.1782

3 N−N 0 −0.0118 −0.0960 4.3252

4 e−N2 0.1147 −2.8945 24.5080 −67.3691

5 e−N 0 0 0 1.6094

6 N+ −N2 0 0 −0.4000 6.7760

7 N+ −N 0 0 −0.4146 6.9078

8 N+
2 −N2 0 0 −0.4000 6.7760

9 N+
2 −N 0 0 −0.4000 6.7760

∗ The collision cross-sections are obtained in Å2; 1 Å2 = 10−20m2.



Appendix C

One-Dimensional Verification

C.1 One-Dimensional Test Case
The computational grid of the test case for 1-D analysis consists of 250 cubic control
volumes of equal size with an edge length of 1 mm (see Fig. C.1). The boundary
conditions used are listed in Tab. C.1, where n = 1, 2, ..., 12. The time steps used in
the simulations vary between ∆t ∼ 10−4 at low and ∆t ∼ 10−9 at high temperatures.

1 mm

1 mm

inlet

wall

outlet

Figure C.1: Schematic diagram of the simulation domain for 1-D analysis.

Table C.1: Boundary conditions for 1-D analysis for n different temperatures∗.

boundary T [K] p [bar] U
[
m · s−1

]
cN2

[−] cN,N+
2 ,N+,e [−]

inlet 2000× n 1.0 1.0× 10−7 1.0 0.0

wall 2000× n 1.0 1.0× 10−7 ∂c
∂n = 0 ∂c

∂n = 0

outlet ∂T
∂n = 0 ∂p

∂n = 0 ∂U
∂n = 0 ∂c

∂n = 0 ∂c
∂n = 0

∗ n = 1, 2, ..., 12.

C.2 Number Densities of Constituents of a Nitrogen
Plasma

The focus is now set on the verification of the solver’s chemical module and on the
kinetic mechanism used in this work (see Tab. 3.1). For the verification, the work
of Pflanz and ter Horst [37] is used, which provides particle densities of hydrogen,
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Figure C.2: Number densities of constituents of a nitrogen plasma at 1 bar versus
temperature.

nitrogen and oxygen in the state of physicochemical equilibrium for pressures from 1
to 30 bar and temperatures to 50,000 K. The results of the verification are presented
in Fig. C.2. The data calculated in [37] are represented by dashed an solid lines.
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Results obtained in the present work are indicated by markers.
A good agreement is observed for the number densities of N2, N+, and e. The

number densities of N+
2 , however, are overestimated. The deviation from the calcu-

lations of Pflanz and ter Horst is of a factor 1.36 at 8000 K and of 1.86 at 12,000 K.
Although the number density of N+

2 is very low compared to other species, the overes-
timation of nN+

2
could noticeably affect the system. This becomes clear when looking

at the reaction 8 in the kinetic mechanism in Tab. 3.1. It has been found during the
simulations carried out in the present work that taking this reaction into account has
a noticeable impact on the whole species composition in the plasma. Furthermore, at
temperatures of over 15,000 K, the particle densities of N are slightly overestimated
as well. However, no significant influence is expected here since the number densities
of N at high temperatures are much lower compared to those of the electrons and
ions. The doubly-charged atomic ions, N++, are not considered in the present work.

C.3 Thermodynamic Properties
For the verification of the thermodynamic properties, the specific heat capacity at
constant volume cv and the overall specific energy e for a reference state of 0 K
are used. For cv, the so-called "frozen" specific heat is considered, which does not
account for species production or conversion due to chemical reactions. Since the
flow velocity in the 1-D test case is very low (see Tab. C.1), the contribution of the
kinetic energy per unit mass (1

2
|u|2) to the overall specific energy can be neglected.

In the present work, the comparative values of cv and e used for the verification
are calculated analytically based on the works of Pflanz and ter Horst [37] and Gupta
et al. [23]. The following two equations are used for the analytical calculation:

cv =
n∑
s=1

cscv,s and e =
n∑
s=1

cses , (C.1)

where cv,s and es, are calculated by using the curve fits and corresponding tabulated
data given in [23]. The mass fractions for each species are calculated as follows:

cs =
nsMs

n∑
r=1

(nrMr)
, (C.2)

where the number densities n are taken from [37].

C.3.1 Specific Heat Capacity

The verification results of cv are presented in Fig. C.3. A good correlation is observed
between the analytically calculated and numerically obtained data for temperatures
below 10,000 K. At higher temperatures, however, the simulation results deliver
lower values. The deviation of the simulation results from the analytical values,
for example at 14,000 K, is of 6.7 %. Whether and to what extent the deviations



166 Chapter C: One-Dimensional Verification

0 5000 10 000 15 000 20 000 25 000
500

1000

1500

2000

2500

T [K]

c v
[ J
·k

g−
1
·K
−

1
]

[23] and [37]
present work

Figure C.3: Specific heat capacity at constant volume of nitrogen plasma at 1 bar
versus temperature.

in number densities in Fig. C.2 have an influence on the underestimation of cv is
currently unclear. Furthermore, it has been found during the verification that at
temperatures > 12,000 K the value of cv is influenced by the number of energy levels
used for the calculation of the electronic-excitation specific heat via Eqn. 3.28.

C.3.2 Specific Internal Energy

An excellent agreement is observed between the simulation results and analytically
calculated data for the specific energy e (see Fig. C.4).

C.4 Transport and Radiation Properties

For the verification of the transport properties, results from five different research
works are used:

i. The work of Yos [22] has already been discussed in the previous chapters.

ii. In the report of Capitelli and Devoto [71], the transport properties are calcu-
lated for nitrogen at 1 atm pressure and temperatures from 5000 K to 35,000 K.
According to the authors a satisfactory agreement is found between the calcu-
lated and measured properties in the arc.

iii. In the work of Wells [35], a detailed study of the axially-symmetrical uniform
arc column in nitrogen at 1 atm is undertaken. For the calculations of arc
properties, Wells used data regarded as the best available (both experimentally
derived and calculated) on the variation of transport properties with tempera-
ture. These data are used in the present work for verification.
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Figure C.4: Specific internal energy of nitrogen at 1 bar versus temperature.

iv. In the research work of Monterde-Garcia [75] a calculation procedure is given
for the evaluation of the material functions from the measured electric-field
strength and radiated power per unit arc length as functions of current strength.
In this way, the material functions of the nitrogen plasma are evaluated from
available measurements. The radiation losses are derived from temperature
measurements at different electrical currents.

v. Murphy and Arundell [72] calculated transport properties of argon, nitrogen,
and oxygen plasmas, and mixtures of argon and nitrogen and of argon and
oxygen for atmospheric-pressure plasma. The calculations assume local ther-
modynamic equilibrium and are performed fo the temperature range from 300 K
to 30,000 K. Murphy and Arundell state that a number of the collision integ-
rals used in calculating the transport coefficients are significantly more accurate
than values used in previous theoretical studies, resulting in more reliable values
of the transport coefficients.

C.4.1 Viscosity

The viscosity verification results are presented in Fig. C.5. A good correlation is
found between the data given by Yos [22] and the simulation results for temperatures
below 12,000 K. At higher temperatures, the simulated values exceed the values
calculated by Yos. At 16,000 K, for example, the deviation from the Yos’ data is of
23.5 % and at 20,000 K of 16.05 %. As described in Sec. 3.2.3, the viscosity model
used in the present work is a further development of the formula presented by Yos.
The improvements consist in the extension of this formula to the multi-temperature
approach made by Lee [21] and using more recent collision integrals for neutral-
neutral and neutral-charged collisions presented in Gupta et al. [23]. Since the 1-D
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Figure C.5: Viscosity of equilibrium nitrogen at 1 bar versus temperature.

system to be investigated is in thermal equilibrium, it is assumed that the deviations
between the numerical simulations and the data calculated by Yos are mainly due
to differences in the collision integrals used. Yos’ calculations demonstrate a good
agreement with the results of other authors at temperatures below 8000 K. However,
at higher temperatures, Yos’s viscosity model provides a significant overestimation.

C.4.2 Frozen Thermal Conductivity

For the verification of the thermal conductivity the so-called frozen thermal con-
ductivity κf is used instead of total thermal conductivity κtot. The frozen thermal
conductivity is defined as follows [23]:

κf = κtot − κr = κtr + κrot + κvib + κel + κe,tr , (C.3)

where κr denotes the reactive contribution to the thermal conductivity for chemical
equilibrium conditions, defined as [23]:

κr = ρ

n∑
s=1

Dses
∂cs
∂T

. (C.4)

The consideration of κr requires the evaluation of the derivative ∂cs
∂T

, which is associ-
ated with a greater computational effort.

In Fig. C.6, the results of κf obtained in the present work are compared with the
data of other authors. There is a significant divergence, especially at temperatures
over 14,000 K, between the Yos’ data and the more recent results of Capitelli and
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Figure C.6: Frozen thermal conductivity, κf = κtr+κrot+κvib+κel+κe,tr, of nitrogen
at 1 bar versus temperature.

Devoto [71] and Murphy and Arundell [72], which in turn are in excellent agreement.
The fact that Yos’ calculations generally yield significantly lower values of κ compared
to other research works is also mentioned in Wells’ report [35]. The values of κf

obtained in the present work correspond well with [71] and [72] up to 16,000 K. At
higher temperatures, however, the simulation results are located between the results
of [71] and [72] and the data of Yos. The underestimate of the simulation results
compared to the calculations of [71] and [72] amounts at 20,000 K to approx. 10 %.

C.4.3 Electrical Conductivity

Fig. C.7 shows simulation results of electrical conductivity versus data of other
research works. An excellent agreement is found between the results of Capitelli and
Devoto [71] and Murphy and Arundell [72]. Yos’ data yield significantly lower values
of σ compared to [71] and [72]. The results obtained in the present work deliver
values which are between the calculations of [71] and [72] and the data given by Yos.
At lower temperatures, they also show good agreement with the data used by Wells.

The model used for the electrical conductivity is taken from the research of Yos,
with the difference that in the present work the electron-electronic temperature Te

is used instead of T . Since the simulation model used for the verification is brought
into the LTE state, it is assumed that the differences between the simulation results
and the data given by Yos stem from different collision integrals used.

C.4.4 Radiated Power

The results of the radiation-losses verification are shown in Fig. C.8. Yos’ data show
a strong overestimation of the Q̇rad values compared to Monterde-Garcia [75] and
Wells [35], which are in a good agreement. The fact that Yos’ model tends to provide
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Figure C.7: Electrical conductivity of nitrogen at 1 bar versus temperature.

higher radiation losses is also mentioned in Wells’ work. The simulation results
obtained in the present work deliver Q̇rad values above those of Yos at temperatures
over 12,000 K. This most likely results from the different collision integrals used.
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Figure C.8: Continuum radiated power per unit volume from nitrogen at 1 bar
versus temperature.

According to Wells, the radiation losses in high-pressure gas discharges have a
rather insignificant effect on the overall energy balance. Therefore, it is assumed
that the overestimation shown in Fig. C.8 will have no noticeable impact on the
simulation results. For less intensive electric discharges in the NLTE state, however,
this overestimation could influence simulation results.



Appendix D

Experimental Measurements

As already mentioned, the temperature measurements are conducted with a constant
arc input power of 10 kW, while the pressure measurement experiments were car-
ried out at uncontrolled discharge of the capacitor. Another difference between the
temperature and the pressure measurements are different diameters of the electrodes
used. For pressure measurements, electrodes with a diameter of 1.0 mm are used,
while the electrode diameter for temperature measurements is 2.0 mm. The distance
between the edges of the electrodes, which is crucial for the electric field strength, is
the same for all experiments and is of 5.0 mm.

D.1 Temperature Measurements

D.1.1 General Information

The temperature measurements are carried out by means of time-resolving emission
spectroscopy. This technique allows to obtain information about the time evolution of
parameters such as rotational, vibrational or electronic-excitation temperature [70].

Several experiments at different operating conditions have been carried out at ISL
for measuring the temperature of the plasma formed by an electric discharge actuator
in a nitrogen atmosphere. For the present work, only temperature measurements in
a discharge with a constant arc input power of 10 kW are considered.

From a total of 22 experiments with a constant input power, 4 experiments are
evaluable (see Tab. D.1). It should be noted that further experiments are needed for
a more reliable solver validation. The arc input power is controlled by means of the
current regulation. Typical time evolutions of current, voltage, and power during the
gas discharge operation are presented in Figs. D.1 and D.2.

The measuring point (imaged volume VM) is located between the electrodes di-
rectly in front of the anode (electrode c). The height of VM is of a few millimetres and
the diameter is around 3.5 mm. The measurements are carried out in two different
ways regarding the geometric orientation of the sample beam, namely perpendicularly
and horizontally to the wedge surface. In this way, the influence of the sample beam
position on the measurements may be investigated. The two different orientations of
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Table D.1: Emission spectroscopy experiments for the temperature evaluation.

exp. exp. number VM orientation∗ I [A] U [V] P [kW] evaluated quantity

1 141-181204-03 perpendicularly 79.4003 128.0696 10.1426 Trot, Tvib

2 143-181204-05 perpendicularly 79.3450 126.9925 10.0560 Trot, Tvib

3 144-181211-01 perpendicularly 80.0371 120.7113 9.6366 Trot, Tvib

4 150-181213-02 horizontally 79.3768 126.1249 9.9936 Tel

∗ The orientation of the measurement volume VM with respect to the wedge surface.

the imaged volume are visualized in Fig. D.3 via the backward illumination.
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Figure D.1: Voltage and current measured at the electrodes vs. time (exp. 1).
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Figure D.2: Power-time curve (exp. 1).

The calculation of Trot and Tvib is based on the evaluation of the CN violet system
(B2Σ+ − X2Σ+ system) with the bandhead at approx. 388.34 nm, for the upper
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and lower states of vibrational transitions: ν ′ = ν ′′ = 0. For the evaluation of
the electronic-excitation temperature, Tel, atomic line emission of copper identified
in experimentally measured emission spectra at approximately 520.0 nm is utilized
[70]. Both species CN (cyano radical) and Cu occur due to the contamination of the
nitrogen plasma by the electrode erosion and the ablation of the polyamide insulation
plate.

a b c a b c

10 mm

Figure D.3: Temperature measurement with the sample beam oriented perpendicu-
larly (left) and horizontally (right) to the wedge surface.

D.1.2 Experimental Setup and Procedure

For the optical access to the shock-tunnel measurement chamber, a silica window
is used, which has a constant transmittance of 0.92 in the wavelength range from
200 nm to approximately 2 µm. This transmittance is taken into account by the
calibration of the measurement system with a tungsten-ribbon strip source at known
temperature. The optical signal emitted from the measuring point is focused by
means of a lens into an optical fibre, as shown in Fig. D.4. The fibre is made of

driven tube

Laval
tnozzle

aerodynamic
model
(wedge)

dump tank
silica plate

quarz lens
f = 100 mm

silica fibre

quarz lens
f = 100 mm

camera:
FASTCAM SAX

Czerny-Turner
spectrograph:

grating = 3600 mm−1,
f = 500 mm

Figure D.4: Experimental setup for time-resolved emission spectroscopy in a shock
tube experiment (f denotes the focal length) [70].

high-grade fused silica with a transmittance of 0.55 in the wavelength range from
260 nm to 2.2 µm. Via this silica fibre, the signal is transmitted to the entrance slit
of the SPEX-500 Czerny-Turner spectrograph equipped with a 3600 grooves/mm−1
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grating. The entrance slit aperture of 25 µm is used for both the measured CN violet
system and the copper atomic lines. The function of the entrance slit is to ensure
an acceptable spectral resolution of the measured spectra. The signal is recorded by
means of a FASTCAM-SAX camera installed in the exit plane of the spectrograph.
The camera system is able to work with time frame ranges from 5 ms up to 40 µs [70,
76]. The spectral sensitivity of the system described allows using it for measurements
between 330 and 900 nm with good efficiency [70].

The experimental procedure is as follows:

◦ A capacitor of 330 µF serves as energy source. It is charged under 450 V leading
to a stored energy of 33.4 J. The diaphragm of the shock tube bursts and a
quasi-stationary flow is formed past the wedge.

◦ The electric discharge is generated on the wedge’s surface between the electrodes
b and c. The discharge is triggered at t = 0.0 s.

◦ The streak camera is triggered at t = 0.0 s by the signal from a delay generator
and a pressure transmitter installed upstream from the test section.

◦ The operation time of the electric discharge amounts to approximately 3.00 ms.
During this time span, the time-spectral picture of the electric-discharge radia-
tion is captured by 10 images, each with an exposure time of 40 µs.

Figure D.5: Time-resolved emission spectra of the CN violet band system with the
bandhead at around 3883 Å for ν ′ = ν ′′ = 0 transitions (exp. 1) [70].

As an example, Fig. D.5 shows the time-resolved emission spectra of the CN
violet-band system recorded in experiment 1 (see Tab. D.1). The band head of the
B2Σ+−X2Σ+ system is marked with an arrow. In Fig. D.6, the time-resolved atomic
copper emission spectra at around 520 nm obtained in experiment 4 are shown.
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Figure D.6: Time-resolved atomic emission spectra of copper at around 5200 Å
(exp. 4) [70].

D.1.3 Data Processing

For the evaluation of the temperatures, first a numerical technique is used to synthe-
tically generate spectra of the resolved CN violet band emission and atomic copper
spectral lines. The intensities of the CN violet-system band head and of the Cu lines

Figure D.7: Synthetically generated CN violet system spectra fitted to experimen-
tally measured spectra (exp. 3) [70].
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are then determined by fitting the synthetically generated spectra to the spectra
measured in the experiment (see Fig. D.7).

D.1.4 Results

The experimentally obtained temporal variations of Trot and Tvib are shown in Figs.
D.8 and D.9, respectively. In experiment 3, the first two values at t = 0.0 s and
t = 0.0003 s could not be evaluated. Furthermore, it can be that the temperatures
measured in exp. 2 exhibit a strong fluctuation and are significantly higher than
in exp. 1 and 3. The reasons of this behaviour are still unclear. The average
temperatures, T rot and T vib, calculated from the results are shown in Tab. D.2. The
experimentally obtained temporal variation of Tel is shown in Fig. D.10. The mean
temperature value amounts to: T el = 10,672.17 K.

Table D.2: Mean values of Trot and Tvib obtained by emission spectroscopy.

experiment 1 2 3 1, 2, and 3 only 1 and 3

T rot [K] 6860.14 8246.34 7214.79 7456.54 7017.76

T vib [K] 8312.40 11,158.98 8299.33 9325.30 8306.59
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Figure D.8: Rotational temperature Trot of the CN molecule obtained by time-
resolved emission spectroscopy [70].



D.1. Temperature Measurements 177

0.0 0.0005 0.001 0.0015 0.002 0.0025 0.003
0

2000

4000

6000

8000

10 000

12 000

14 000

16 000

t [s]

T
v
ib

[K
]

Tvib exp. 1
Tvib exp. 2
Tvib exp. 3

Figure D.9: Vibrational temperature Tvib of the CN molecule obtained by time-
resolved emission spectroscopy [70].
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Figure D.10: Electronic-excitation temperature Tel of copper atoms obtained by
time-resolved emission spectroscopy [70].
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D.1.5 Conclusions

For the analysis of the temperature measurements, the mean temperatures of the CN
molecule (cyano radical), T rot and T vib, calculated only with the data from exp. 1
and 3 are used (see Tab. D.2), since the data from exp. 2 exhibit strong fluctuations.

The results of the temperature measurements don’t provide information about the
spatial variation of the CN optical emission signals. In the following it is assumed
that the received optical signal originates from the areas of the arc column with
the highest cyano radical concentrations. For the system under investigation, this
would mean that the concentration of CN is highest and consequently the optical
signal is strongest in arc regions with Trot ≈ 7000 K and Tvib ≈ 8300 K. Assuming
that the temperature in the centre line of the arc column is substantially higher
than 7000 K (Tmax = Tc = 12,000 K), then the spatial distribution of cyano radical
concentration would form a kind of shell structure in an axisymmetric arc column. Of
course, in a surface discharge, such as the system under investigation, this structure
would not have a rotationally symmetric shape. In Fig. D.11, an attempt is made
to schematically illustrate this shell structure. This figure in no way represents a
quantitative analysis and is based on conjecture.
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Figure D.11: Schematic representation of CN concentration vs. temperature across
the arc column of the gas discharge, CN shows a maximum near 7000 K.

The above analysis can be confirmed by the works of Parigger et al. [77] and
Colonna [78]. Parigger et al. examined the atomic and molecular signatures of
hydrogen, cyano radical and carbon in laser-induced plasma by means of temporally-
resolved emission spectroscopy. It has been found that for both air and a CO2-N2

mixture at atmospheric pressure, the CN molecule shows a maximum concentration
at approximately 7000 K. A very similar result can be found in the work of Colonna,
where the thermodynamic properties of SiC-seeded air plasma are investigated in wide
pressure and temperature ranges. Furthermore, the temperatures experimentally
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measured in the present work show that the system under investigation is in the
zones of maximum CN concentration in the state of thermal nonequilibrium, because
T vib is noticeably higher than T rot.

The measured average electronic-excitation temperature of the copper atoms
amounts to T el ≈ 10,670 K. At this temperature, the plasma to be examined would
probably approach the LTE and hence Tel ≈ T . Whether the measured electronic-
excitation temperature of copper can be assumed as the maximum translational-
rotational temperature of the nitrogen-plasma species in the centre line of the arc
column is still unclear. In the present work no investigations of the relaxation times
between nitrogen species and copper atoms have been carried out. Therefore, this
issue remains a subject for future investigations. In addition, Fig. D.10 clearly shows
that Tel does not reach a steady state, but decreases during the discharge operation
from ≈ 13,000 K to approximately 9000 K. Therefore, T el determined from only one
experiment should be treated with caution.

D.2 Pressure Measurements
In the present work, three pressure transducers mounted laterally to the electrodes
marked with P15, P30, and P45 are used for pressure measurements (see Fig. D.12).

P30

P15

P45

b c
U

Figure D.12: Electrodes b and c and pressure transducers P15, P30, and P45 in a
polyamide plate.

All pressure transducers are from the Kulite-Semiconductor company. Their tech-
nical characteristics and their position regarding the distance from the symmetry axis
(axis through the centres of the electrodes b and c) are depicted in Tab. D.3. The

Table D.3: Pressure transducers: location and technical characteristics [79]

transducer distance from the
symmetry axis [mm]

model pressure range
[bar]

natural frequency
in [kHz]

P15 1.5 XCL-080 3.5 300

P30 3.0 XCQ-080 7.0 380

P45 4.5 XCL-080 7.0 380

accuracy of the measurements is 0.1 % of the rated absolute pressure. The pres-
sure sensing principle is based on the dielectrically isolated piezoresistive technology,
which makes these sensors not susceptible to electromagnetic interference [79].
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The experimental procedure is as follows:

◦ A capacitor of 1000 µF serves as energy source. It is charged under 450 V
leading to a stored energy of 101 J.

◦ The diaphragm of the shock tube bursts and a stream flow is formed past the
wedge. In Fig. D.14 it can be observed, how at time t = −0.0005 s the shock
wave passes the sensors P15, P30, and P45.

◦ The quasi-stationary flow is formed past the model for 2 ms. During this phase,
a constant static pressure of p∞ ≈ 0.310 bar is established in the flow, whereas
the surface pressure on the wedge is of p ≈ 1.45 bar (see Fig. D.14).

◦ After a quasi-stationary flow is formed around the model, the electric discharge
is generated on the wedge’s surface between the electrodes b and c. The gas
discharge is triggered at t = 0.0 s.

◦ The operation time of the gas discharge amounts to approximately 1.18 ms.
During the experiment, the electrical current and the voltage are measured at
the electrodes b and c (see Fig. D.13) in addition to the pressure. The recording
of the pressure measurements is shown in Fig. D.14.

To slow down the capacitor discharge, a coil is built into the electrical circuit.
As a result, the current peak at the beginning of the discharge is avoided and the
current-time curve takes the form of a wave which rises to reach a maximum of 460 A
after approximately 380 µs and, after exceeding the maximum, decreases slowly (see
Fig. D.13). At the beginning of the discharge the electrical voltage at the electrodes
amounts to 450 V. After the arc ignition, it falls to approximately 130 ± 20 V and
remains in this value during the whole operational time of the discharge.
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Figure D.13: Voltage and current vs. time measured at the electrodes and the re-
sulting power-time curve [79].
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The increase of the electric current I leads to an increase of the Joule heating and
thus to a temperature increase in the gas discharge. As a result, the gas pressure in the
high-temperature region also rises. Fig. D.14 clearly shows how the pressure values
of the three sensors follow over time the power-time curve. The high-temperature
region on the wedge surface is recognizable in Fig. D.3 by a darkening of the surface.

For the validation, pressure values at arc input power of 10 kW are needed. These
values can only be meaningfully read out during the time period of performance de-
crease at t ≈ 1.1 ms. At this time, all three pressure transducers yield approximately
of 1.85 ± 0.05 bar. This value is used for the validation. In addition, the surface
pressure outside the gas discharge will also be used for the solver validation. This
value can be read out from Fig. D.14 at −0.0004 s < t ≤ 0.0 s and is approximately
1.45 bar.
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Figure D.14: Pressure vs. time in comparison to power-time curve [79].
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Appendix E

Computational Costs

In this Appendix, computational costs are discussed. All values and calculations
presented are initially only given for the system under investigation and the compu-
ting capacities used in the present work. Afterwards, possibilities for the acceleration
of the numerical calculations are discussed.

Using the computational resources (2 Intel Xeon Gold 6130 processors with 16
cores each) and the test case described above, the new solver requires the following
computation times per one times step:

◦ Chemical module: < 1 s.

◦ Fluid-dynamic module: ≈ 10 s.

◦ Magnetostatic module in mode 1: 50− 100 s.

◦ Magnetostatic module in mode 2: < 1 s.

That is, in mode 2, a calculation time of ≈ 10 s is required for one time step on the
server used, while in mode 1 the same calculation can take up to 110 s. Therefore, it
is obvious that mode 1 should be used only at the beginning for obtaining the average
value of Φc. Thereafter, mode 2 should be utilized.

For the investigation of the gas-discharge impact on the flow variables around
the arc and further downstream, a simulation of an operational duration of 1 ms is
absolutely sufficient. The quasi-steady state in the gas discharge and in its vicinity is
reached even after several tens of microseconds. Assuming a spatial discretization of
∆t = 2.0× 10−10 s and a calculation time per one time step of 10 s, the simulation of
an operational duration of ≈ 1 ms using the computational resources described above
would take ≈ 13,900 hours. Increasing the number of computational cores from 32
to 128 or 256 may reduce the computational time by a factor of 3 to 4, which would
still result in a computational duration of around 4000 h (165 days).

The solver version used in this work is in its early stage of development and will
be further optimized in the future work. Many calculations can be simplified consi-
derably. For example, for the calculation of Coulomb-collision integrals, polynomial
equations with tabulated curve-fit coefficients may be used instead of using formulas.
It is assumed that the calculation time per time step of the fluid dynamic module can
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be reduced by at least a factor of 2 (most likely more). As a result, the calculation
time per time step on the server used would reduce to not more than 5 s. Con-
sequence, this would reduce the computing time for the system under investigation
from 4000 h (see further above) to 2000 h (83 days). The reduction the operational
time of the gas discharge from 1.0 ms to 0.25 ms would reduce the computational
time to ≈ 500 hours (21 days). By using a more powerful computer and further op-
timizing the solver, it may be possible to reduce these calculation times even further,
approaching a reasonable amount of time.

This simple calculation shows how resource-intensive transient 3-D calculations
of high-pressure gas discharges in the state of thermochemical nonequilibrium on
computational grids of several million cells can be. For this reason, such calculations
are rarely found in the literature. Usually, additional simplifications are made and
coarser computational grids are used to reduce the computational effort.

It is important to mention that by reducing the maximum temperature in the
simulation domain, larger computational time steps can be used. For this purpose,
it has to be investigated whether the consideration of doubly-charged nitrogen ions
would significantly contribute to the temperature reduction at the electrode edges. If
this should be the case, the formation of N++ should definitely be taken into account,
even if only to obtain correct temperatures in the near-electrode constricted zones.

According to Wells [35], the maximum temperature in the centre line of an axially-
symmetrical arc column of a magnetically propelled discharge with an input power of
20 kW ·cm−1 amounts to 12,000 K (see Fig. 2.11). For such temperatures, a temporal
discretization of the order of ∆t ∼ 10−9 s is absolutely sufficient. That is, for the
investigation of electrodeless arcs the computation time of ≈ 2000 h estimated above
for ∆t = 2.0 × 10−10 would decrease to at least 200 h (8.3 days). This time would
be further reduced by using a more powerful computer and further optimizing the
solver.
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