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Kurzfassung 

Diese Arbeit gibt einen vollständigen Überblick über Pseudo-Random Noise (PRN)-

Codes und deren für den Einsatz in der Satellitennavigation relevante Eigenschaften. 

Zunächst wird ein theoretischer Rahmen für das Verständnis der Rolle von Spreizcodes 

als Bestandteil von Navigationssignalen geschaffen. Es werden verallgemeinerte Ausdrücke 

zur Beschreibung heutiger Navigationssignale abgeleitet und der Einfluss von PRN-Codes auf 

die Spektren dieser Signale erklärt. Das Konzept von kurzen und langen Codes wird 

eingeführt, um zwischen Signalen zu unterscheiden, die mit einem Linienspektrum modelliert 

werden müssen beziehungsweise mit einem kontinuierlichen Spektrum modelliert werden 

können. 

Ausgehend von der mathematischen Darstellung von Navigationssignalen werden 

Ausdrücke für die Auto- und Kreuzkorrelation zwischen Spreizcodes als Grundlage für das 

Verständnis von Leistungskennzahlen von PRN-Codes wie dem Korrelationshistogramm und 

den Korrelationsperzentilen abgeleitet. Die vorgenannten Ausdrücke werden dann erweitert 

und verallgemeinert, um Sekundärcodes, Unterträgerkomponenten, Chipform und 

Integrationszeit berücksichtigen zu können. Sensitivitätsanalysen basierend auf den 

eingeführten Kennzahlen werden in Bezug auf die wesentlichen Designparameter der Signale, 

den Dopplerfrequenz-Offsets zwischen den Signalen verschiedener Satelliten und die 

Empfänger-Integrationszeit durchgeführt. Ergebnisse und Schlussfolgerungen hinsichtlich der 

Eigenschaften von PRN-Codes werden skizziert. 

Als Hauptbeitrag wird eine neue Hochfrequenzkompatibilitäts-Methodik zur Bewertung 

der Selbst- und Kreuzinterferenz von Spreizcodes vorgeschlagen. Ziel ist es, die ITU-

Empfehlung ITU-R M.1831 zu ergänzen, die ausschließlich auf der Abschätzung der 

aggregierten Störleistungspegel basiert. Die neue Methodik gilt grundsätzlich für 

Navigationssysteme, die auf der Code Division Multiple Access (CDMA)-Technologie 

basieren und sich das gleiche Funkfrequenzband teilen. Die auf PRN-Codes basierende RFC-

Analyse ist allgemeingültig, ihre Relevanz ist jedoch vor allem für Signale mit kurzen PRN-

Codes von Bedeutung. Die beschriebenen Bewertungskriterien liefern ein Maß für die 

CDMA-Isolationseigenschaften von PRN-Codesätzen. 

Umfangreiche Simulationsergebnisse belegen die Gültigkeit der vorgeschlagenen 

Methodik. Die Analysen zu spezifischen PRN-Codesätzen zeigen relevante Aspekte in Bezug 

auf die Kompatibilität von PRN-Codes und damit auf die gegenseitige Beeinflussung von 

Satellitensignalen auf. 





 

 

A Methodology for Spreading Codes  

Radio-Frequency Compatibility Assessment 

 

Diana Fontanella 

 

 

A Thesis submitted to the Faculty of Aerospace Engineering of Universität der Bundeswehr 

München in fulfilment of the requirements for the degree of  

Doctor of Engineering (Dr.-Ing.). 

 

 

 

Reviewer: 

1. Prof. (i. R.) Dr.-Ing. Bernd Eissfeller 

2. Prof. Dr. Fabio Dovis 

 

 

 

 

The Thesis was submitted on 15.02.2019 to the Universität der Bundeswehr München and 

accepted by the Faculty of Aerospace Engineering on the 04.09.2020. The oral examination 

took place on the 15.10.2020. 

 





Abstract 
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Abstract 

This thesis provides a complete overview on Pseudo-Random Noise (PRN) codes 

and their performance figures in the context of satellite navigation. 

First, a theoretical framework for understanding the role of spreading codes into 

navigation signals’ structure is provided. Generalised expressions to describe 

nowadays navigation signals are derived and the impact of PRN codes onto the 

signals’ spectral content is explained. The concept of short codes and long codes is 

introduced to distinguish between signals that can be modelled respectively with the 

line spectrum and continuous spectrum approach. 

Starting from the mathematical representation of navigation signals, expressions for 

the auto- and cross-correlation between spreading codes are given as a basis to 

understand PRN codes performance figures such as the correlation histogram and 

correlation percentiles. The aforementioned expressions are then extended and 

generalised to take into account for secondary codes, sub-carrier components, chip 

shape, and integration time. Sensitivity analyses based on the introduced figures of 

merit are carried out with respect to the main signals’ design parameters, Doppler 

frequency offset, and receiver integration time. Results and conclusions on the 

behaviour of PRN codes are outlined. 

As main contribution, a new radio-frequency compatibility methodology for the 

assessment of spreading codes self- and cross-interference is proposed. The 

objective is to complement the ITU Recommendation ITU-R M.1831 which is based 

solely on the estimation of aggregate interference power levels. The new 

methodology strictly applies to navigation systems based on Code Division Multiple 

Access (CDMA) technology that share the same radio-frequency band. The validity 

of the PRN codes based RFC analysis is general, however its relevance is mostly 

significant for short-code signals. The assessment criteria described provide a 

measure of the CDMA isolation properties of PRN code sets in the service volume. 

Extensive simulation results prove the validity of the proposed methodology. The 

analyses on specific PRN code sets allow observing relevant aspects related to the 

PRN codes compatibility. 
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ITU-R M.1831 was issued later in 2007 [32]. In this document a coordination 

methodology for RNSS inter-system interference estimation was established, mostly 

following the approach described in [31]. 

Later, other RFC assessment criteria have been proposed to complement and 

possibly improve Rec. ITU-R M.1831. Among these, a presentation from the 

European Commission in the framework of the ICG activities ([33], [34]) suggested 

to assess the noise floor increase caused by the current/planned transmitted GNSS 

signals in order to agree on a maximum interference level and to limit the 

contributions from each GNSS provider. 

An important aspect to take into account for RFC assessments is the frequency 

representation of the navigation signals. The analytical approach described in [31], 

[32] approximates the power spectral densities of the received signals as a 

continuous spectrum, where the fine structures of individual signal spectra are 

averaged together into a smooth shape. However real spectra of signals with periodic 

spreading codes are characterized by a fine structure of spectral lines, whose 

frequency and magnitude depends on the specific spreading code sequence, chip 

rate, presence of secondary codes and/or navigation data.  

The near-continuous noise-like spectral density modelling is valid for long-code 

signals but for short-code signals this assumption is not appropriate as the signal 

power is significantly concentrated into spectral lines. Since most modernized GNSS 

signals belong to the category of long-code signals, the analytical approach of Rec. 

ITU-R M.1831 is the most employed in ITU coordination activities for RNSS inter-

system interference estimation. Nevertheless it is believed in the navigation 

community that this approach has shortfalls when it comes to the GPS L1 C/A self-

interference and in general to GNSS signals that belong to the category of the so-

called short-code signals. 

From a first look, the inadequacy of the RFC methodology to assess the degradation 

caused by short-code signals could be neglected as the C/A code is the only short-

code currently transmitted and it is also since the beginning of satellite navigation. 

On the other hand, the risk is twofold: 

 An underestimation of the C/A code self-interference could lead to ITU 

multi-lateral agreements that do not protect the GPS L1 C/A users and 

expected performance. Models have been developed to reflect the qualitative 
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characteristics of L1 C/A self-interference and to assess its effects on 

receiver performance ([35], [36], and [37]), but no such model is recognised 

as standard reference and adopted for compatibility assessments. 

 An incomplete or inaccurate RFC methodology could allow the design and 

transmission of new short-code signals that significantly degrade the 

performance of other navigation services. As a matter of fact, while the 

effects of intra-system interference are under control of the navigation 

system provider, the same cannot be ensured for the inter-system 

interference. 

The main limitation of the RFC methodology discussed above consists of 

considering only the aggregate interfering power levels. The cross-correlation 

interference between desired and interfering spreading codes also plays an important 

role, especially when it comes to short-code signals. Every navigation system 

provider needs to ensure for each service not only a good isolation of the selected 

Pseudo-Random Noise (PRN) code set with it-self (self-interference, SI) but also 

with all other PRN code sets transmitted in the same radio frequency band (cross-

interference, CI). 

Until recently, GPS signals along with a few low-power SBAS signals were the only 

signals occupying L-band and investigation on PRN code correlation properties for 

the evaluation of self- and cross-interference was primarily of academic interest for 

the following reasons: 

 the power of individual navigation signals is far less than the noise power in 

a receiver front-end; 

 the aggregate power of interfering navigation signals is comparable to the 

receiver noise floor and the aggregate smooth spectrum is used for 

interference computation as described in the abovementioned methodologies 

[31], [32]; 

 the assumption of aggregate smooth spectrum is justified for most GNSS 

signals. 

Nevertheless, future signals’ design and choice of the spreading codes should be 

based on criteria that minimise not only the self-interference but also the cross-

interference with legacy GNSS signals. GPS L1 C/A currently represents the most 

relevant case of short-code signal for global systems but other system providers may 
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plan new services for fast acquisition based on short codes. The ITU methodology 

shall be ready to assess not only the compatibility between transmitted power levels 

but also between PRN code sets. 

The main objective of this thesis is to investigate the nature of short-code signals and 

to propose a new methodology complementary to Rec. ITU-R M.1831 for assessing 

the effects of self- and cross-correlation interference between spreading codes. 

1.2 Thesis Outline 

This thesis is organised as follows: 

 Chapter 2 provides a review of GNSS signal structures focussing on the 

expression of the different signal components such as chip shape, 

modulation, spreading codes, overlay codes, presence or absence of data. 

The mathematical model for a generic GNSS base-band signal is introduced 

both at transmitter side and at receiver side in the time and frequency 

domain. An overview on the transmit chain for a typical navigation payload 

and a high-level description of a typical receiver chain are also included. 

 Chapter 3 focuses on spreading codes and starts with an overview of all 

publicly known PRN code families currently (or planned to be) transmitted 

by GNSS providers. It follows a summary of the measures of randomness 

for a spreading code set, i.e. the three Golomb’s postulates [25]. The auto- 

and cross-correlation formulas at the basis of spreading codes performance 

figures are derived and well recognized figures of merit for PRN codes 

design are presented. The concepts of self-interference and cross-

interference are introduced as respectively the interference caused by a PRN 

codes set on it-self or onto a different PRN codes set. A sensitivity study, 

based on the figure of merits previously introduced, explores the PRN codes 

self-interference with respect to some signal design parameters (secondary 

codes, sub-carrier, chip shape) as well as Doppler frequency and receiver 

integration time. The analysis is then extended to the cross-interference case. 

 Chapter 4 is the core of the thesis and propose a new methodology, 

complementary to the Rec. ITU-R M.1831, based on the spreading codes 

cross-correlation interference. The new proposed method combines the PRN 

codes performance figures described in Chapter 3 with both the simulation 
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and analytical approaches in [32] to provide an overall PRN spreading codes 

performance figure. Extensive simulation results for the new methodology 

are provided. 

 Chapter 5 draws the conclusions of this thesis and provides the author’s 

recommendations for future work. 

 Appendix A shows the power spectral densities of the Galileo signals 

baseline (E1 OS, E6 CS, E5) as computed with the spectral line model 

described in Chapter 2. 

 Appendix A investigates the concept of nominal and non-nominal signal 

distortions for the Galileo signals. This topic is complex and quite 

controversial: substantial literature is available on the subject but no 

common understanding has been reached up to now in the scientific 

community. The Galileo system provider is still investigating the nature, 

effects, modelling, and detectability of such distortions. The content of this 

Appendix reflects only the author’s view. 

1.3 Thesis Contributions 

The main contributions of this thesis are summarised in the following: 

 A new radio-frequency compatibility methodology for the assessment of 

spreading codes self- and cross-interference is proposed. The objective is to 

complement Rec. ITU-R M.1831 which is based solely on the estimation of 

aggregate interference power levels. The assessment criteria described 

provide a measure of the CDMA isolation properties of PRN code sets in the 

service volume. 

 Extensive simulation results prove the validity of the proposed 

methodology. The analyses on specific PRN code sets allow observing some 

relevant aspects related to the PRN codes compatibility among signals. 

 A complete overview and description of spreading codes performance 

figures is provided as well as a sensitivity analysis with respect to the main 

design parameters (secondary codes, sub-carrier, chip shape), Doppler 

frequency and receiver integration time. 

 A general representation for current GNSS signal structures is provided, 

which allows expressing contributions from the different signal components 
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separately, accounting for various chip shapes, modulations, spreading 

codes, overlay codes, presence or absence of data. The mathematical 

formulation proposed is used to better explain the frequency representation 

of navigation signals and the spectral line model. 

 The concept of nominal and non-nominal signal distortions affecting 

navigation signals is investigated and a threat model for Galileo baseline 

modulations is proposed. 

1.4 Glossary of Terms 

Scope of this section is to provide fundamental definitions in the domain of satellite 

navigation for better understanding the topics analysed in the following chapters. 

 

GNSS – Global Navigation Satellite System (GNSS) is a term commonly used for 

indicating satellite navigation systems that provide autonomous geo-spatial 

positioning with global coverage. This term includes e.g. the GPS, GLONASS, 

Galileo, and Beidou. 

 

SBAS – A Satellite-Based Augmentation System (SBAS) is a civil aviation safety-

critical system that supports regional augmentation through the use of geostationary 

satellites which broadcast the augmentation information (integrity and error 

corrections). Currently there are some SBAS systems already operational, such as 

WAAS (USA), EGNOS (Europe), SDCM (Russia), and GAGAN (India). 

 

RNSS – According to ITU Radio Regulations, Section IV. Radio Stations and 

Systems – Article 1.43, a Radio-Navigation Satellite Service (RNSS) is “a 

radiodetermination-satellite service used for the purpose of radionavigation. This 

service may also include feeder links necessary for its operation”. GNSS and SBAS 

signals belong to the category of RNSS services and their frequency band allocation 

is regulated by the ITU. 

 

Spread Spectrum Technology – Method by which a radio-frequency signal 

generated with a particular bandwidth is artificially spread in the frequency domain 

to result in a signal with a wider bandwidth. Different Spread Spectrum (SS) 
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techniques are available, but they all have one thing in common: they perform the 

spreading and de-spreading operation by means of a pseudo random noise (PRN) 

code attached to the communication channel. The ratio (in dB) between the spread 

baseband and the original signal is called processing gain. Several advantages result 

from the use of this technology: 

 Resistance to interception: the power level drops below the radio-frequency 

noise floor, which makes the SS signal invisible for unauthorized users. 

 Resistance to interference: narrow-band interference degradation is reduced 

by the de-spreading operation in the receiver processing. 

 Resistance to fading. The broad bandwidth resulting from the spreading 

operation offer more robustness to channel propagation effects such as 

multipath fading. 

 Multiple access capability: multiple users can transmit simultaneously in the 

same frequency band as long as they use different PRN codes. 

Frequency-hopping spread spectrum (FHSS), direct-sequence spread spectrum 

(DSSS), time-hopping spread spectrum (THSS), chirp spread spectrum (CSS), and 

combinations of these techniques are forms of spread spectrum. Most of nowadays 

GNSS systems are based on DSSS signalling. More details are provided in Chapter 

3. 

 

When it comes to sharing the same frequency band resource among several 

transmitters, there are only few fundamental types of channel access schemes 

available: 

 CDMA – Code Division Multiple Access (CDMA) is a channel access 

method where multiple transmitters can send information simultaneously 

over a single communication channel. To minimise the interference between 

channels, CDMA employs spread spectrum technology and a special coding 

scheme (where each transmitter is assigned a code). GPS and Galileo are 

two very significant examples of CDMA in which every satellite is assigned 

a different code. This enables the receiver to determine the satellite from 

which each signal is coming and, consequently, to help the receiver 

calculate its position by simultaneous ranging to multiple satellites. 
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 FDMA –Frequency Division Multiple Access (FDMA) is a channel access 

method where multiple transmitters can send information simultaneously by 

dividing the bandwidth of the channel into separate non-overlapping 

frequency sub-channels and allocating each sub-channel to a separate 

transmitter. The number of different users is limited to the number of sub-

channels in the frequency spectrum. FDMA is the least efficient in term of 

frequency-band usage. GLONASS is the only satellite navigation system 

using FDMA. 

 TDMA –Time Division Multiple Access (TDMA) is a channel access 

method where several transmitters share the same frequency channel by 

dividing the signal into different time slots. Thus, different communication 

channels can be established for a unique carrier frequency. Nowadays no 

GNSS makes use of TDMA for satellite transmission. Examples of TDMA 

systems are GSM, DECT, TETRA, and IS-136. 

 

PRN Code – A Pseudo-Random-Noise code (PRN code) is a binary sequence that 

has a spectrum similar to a random sequence of bits but is deterministically 

generated. 

 

Compatibility – General definition from [30]: 

“Compatibility refers to the ability of space-based positioning, navigation, and 

timing services to be used separately or together without interfering with each 

individual service or signal. 

 Radiofrequency compatibility should involve thorough consideration of 

detailed technical factors, including effects on receiver noise floor and 

cross-correlation between interfering and desired signals. The International 

Telecommunications Union (ITU) provides the framework for discussions 

on radiofrequency compatibility. 

 Compatibility should also involve spectral separation between each system’s 

authorized service signals and other systems’ signals. 

 Any additional solutions to improve compatibility are encouraged.” 
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The definition of criteria together with binding thresholds that would assure 

compatibility in line with the above definition cannot be absolutely determined. 

Currently, the compatibility among RNSS services is regulated through the 

methodology described in Recommendation ITU-R M.1831 [32]. A comprehensive 

description of ITU-R M.1831 and its limitations is provided in Chapter 4. 

 

The concept of interoperability is strictly related to the one of compatibility. In 

particular, compatibility can be considered as a pre-requisite of interoperability. 

Interoperability – General definition from [30]: 

“Interoperability refers to the ability of open global and regional satellite navigation 

and timing services to be used together to provide better capabilities at the user level 

than would be achieved by relying solely on one service or signal. 

 Ideal interoperability allows navigation with signals from at least four 

different systems with no additional receiver cost or complexity. 

 Common center frequencies are essential to interoperability, and 

commonality of other signal characteristics is desirable. 

 Multiple constellations broadcasting interoperable open signals will result in 

improved observed geometry, increasing end user accuracy everywhere and 

improving service availability in environments where satellite visibility is 

often obscured. 

 Geodetic reference frames and system time standards should also be 

considered. 

 Any additional solutions to improve interoperability are encouraged.” 

The concept of interoperability was first introduced when the design of the Galileo 

OS signal in E1 and the GPS 2nd generation signal in L1 was under definition. It 

must be underlined that being compatible does not necessarily imply that two 

systems are also interoperable from the signal point of view. On the other hand, no 

interoperability can be achieved as far as the compatibility between the involved 

systems is not guaranteed. 

 

The terms ‘short-code’ and ‘long-code’ have been introduced in [32], in the context 

of radio-frequency interference assessment, for the purpose of discriminating the 

following two categories: 
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 Long-code signals – Signals for which the ‘continuous spectrum’ modelling 

is valid. In this case the Doppler shift between the different signals has a 

negligible effect in the overall interference assessment. 

 Short-code signals – Signals for which the ‘real spectrum’ modelling, also 

called ‘line spectrum’, is required. This more realistic modelling takes into 

account the real properties of the signals, such as data rate and spreading 

code characteristics (code lengths and presence of pilot and/or data 

channels), through time/frequency transformation of the modulated signal. 

The Doppler shift between the desired signal and the interfering signals is to 

be accounted for in this case. 

There is no mathematical criterion to determine whether a certain spreading code 

associated to a GNSS signal is ‘short’ or ‘long’. It is only a qualitative 

characterisation based on the frequency spectrum observation. 

 

Another uncommon terminology used in [32] but also in other sources ([21], [35], 

[36]) is the definition of ‘continuous spectrum’ and ‘line spectrum’. The distinction 

is of particular importance for radio-frequency interference assessment: 

 Line Spectrum – Real spectra of signals with periodic spreading codes are 

characterized by an envelope and a fine structure. The fine structure is a 

sequence of spectral lines, which have different levels. When there is data, 

the fine structure spectral lines are smoothed. The spectral lines depend on 

the chip rate, the code length, the presence of a pilot code, and on the code 

structure, as described in Chapter 2. For RFC evaluation, short-code signals 

shall be represented with the line spectrum model. 

 Continuous spectrum – This analytical model approximates the spectrum 

of the received signals as an aggregate spectrum, where the fine structures of 

individual signal spectra are averaged together into a smooth spectrum. The 

methodology in [32] adopts this modelling for the representation of long-

code signals spectrum. 

An in-depth analysis of ‘continuous spectrum’ and ‘line spectrum’ representation for 

Galileo signals is provided in Appendix A. 
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The main objective of this thesis is to propose a new methodology for assessing the 

CDMA isolation of a PRN code set with it-self and with another PRN code set. The 

definitions of ‘self-interference’ and ‘cross-interference’ are fundamental: 

 PRN Codes Self-interference – The interference caused by a PRN code set 

on it-self is referred to as self-interference (SI); in communications this is 

also called Multiple Access Interference (MAI) and it represents the 

opposite concept of CDMA isolation. Self-interference is also referred to as 

‘spreading codes auto- and cross-correlation characteristics’ or ‘PRN code 

family correlation performance’ (see [23],[24],[27],[29]). For a 

mathematical description of self-interference it is referred to Section 3.4. 

 PRN Codes Cross-interference – The interference cause by a PRN code 

set (interference source) onto another set (desired source) is called cross-

interference, abbreviated with CI. This effect is also referred to as ‘inter-

system spreading codes cross-correlation characteristics’ and it is 

investigated for the case of Galileo E1 OS and GPS L1C spreading codes in 

[24]. A mathematical description of cross-interference is provided in Section 

3.5. 

 

 





 

 Navigation2.
Most of the current

components: a data signal and a data

both signals result from the product of two elements which are a sinusoidal carrier 

and a sprea

multiplied by the binary data sequence.

Each of these elements has a specific scope. While the carrier puts the signal in the 

allocated region of the 

Random Noise (PRN) sequence is used to perform time measurements and to 

provide multiple access. The binary data sequence, also known as navigation 

message, carries out different important tasks like delivering the information used t

compute the satellite’s position and clock bias and the time reference to calculate the 

pseudorange. Regarding the overlay code, also called tiered or secondary code, there 

are various reasons that have brought to the introduction of it. One of the main 

purposes is indeed to modulate the primary code with the effect of spreading the 

power over more spectral lines; as a consequence, the signal results in an increased 

resistance to narrow

All these elements reflect on the 

them a unique spectral content. In most of the assessments on GNSS performance 

however the representation of signals in the frequency domain is done by an 

approximation of the actual Power Spectral Density (PSD). A common ass

in fact is to assume that PRN codes and overlay codes show ideal properties, i.e. 

random, non

sequences. Under this hypothesis the signal waveform simplifies to its chip 

waveform and 

considered

In reality, the non

function shape with effects that depend on the 

assessments, like

the susceptibility 

simplistic assumption just explained could be inadequate.

Scope of this 

structures which allows expressing the contribution from the different signal 

Navigation
ost of the current

components: a data signal and a data

both signals result from the product of two elements which are a sinusoidal carrier 

and a spreading code, with the option of an overlay code. The data signal is further 

multiplied by the binary data sequence.

Each of these elements has a specific scope. While the carrier puts the signal in the 

allocated region of the 

Random Noise (PRN) sequence is used to perform time measurements and to 

provide multiple access. The binary data sequence, also known as navigation 

message, carries out different important tasks like delivering the information used t

compute the satellite’s position and clock bias and the time reference to calculate the 

pseudorange. Regarding the overlay code, also called tiered or secondary code, there 

are various reasons that have brought to the introduction of it. One of the main 

purposes is indeed to modulate the primary code with the effect of spreading the 

power over more spectral lines; as a consequence, the signal results in an increased 

resistance to narrow-

All these elements reflect on the 

them a unique spectral content. In most of the assessments on GNSS performance 

however the representation of signals in the frequency domain is done by an 

approximation of the actual Power Spectral Density (PSD). A common ass

in fact is to assume that PRN codes and overlay codes show ideal properties, i.e. 

random, non-periodic, identically distributed, equiprobable, and independent 

sequences. Under this hypothesis the signal waveform simplifies to its chip 

waveform and the PSD assumes the characteristic smooth shape that is 

considered. 

In reality, the non-ideal 

function shape with effects that depend on the 

assessments, like the evaluation of 

the susceptibility of a signal 

simplistic assumption just explained could be inadequate.

Scope of this chapter

structures which allows expressing the contribution from the different signal 

Navigation Signal
ost of the current and new GNSS signals are built as a combination of two 

components: a data signal and a data

both signals result from the product of two elements which are a sinusoidal carrier 

ding code, with the option of an overlay code. The data signal is further 

multiplied by the binary data sequence.

Each of these elements has a specific scope. While the carrier puts the signal in the 

allocated region of the radio-frequency spectrum, the sp

Random Noise (PRN) sequence is used to perform time measurements and to 

provide multiple access. The binary data sequence, also known as navigation 

message, carries out different important tasks like delivering the information used t

compute the satellite’s position and clock bias and the time reference to calculate the 

pseudorange. Regarding the overlay code, also called tiered or secondary code, there 

are various reasons that have brought to the introduction of it. One of the main 

purposes is indeed to modulate the primary code with the effect of spreading the 

power over more spectral lines; as a consequence, the signal results in an increased 

-band interference.

All these elements reflect on the 

them a unique spectral content. In most of the assessments on GNSS performance 

however the representation of signals in the frequency domain is done by an 

approximation of the actual Power Spectral Density (PSD). A common ass

in fact is to assume that PRN codes and overlay codes show ideal properties, i.e. 

periodic, identically distributed, equiprobable, and independent 

sequences. Under this hypothesis the signal waveform simplifies to its chip 

the PSD assumes the characteristic smooth shape that is 

ideal spreading codes reflect

function shape with effects that depend on the 

the evaluation of 

of a signal 

simplistic assumption just explained could be inadequate.

chapter is to provide a flexible re

structures which allows expressing the contribution from the different signal 

Signal Structure
new GNSS signals are built as a combination of two 

components: a data signal and a data-free signal, also called pilot signal. In general 

both signals result from the product of two elements which are a sinusoidal carrier 

ding code, with the option of an overlay code. The data signal is further 

multiplied by the binary data sequence. 

Each of these elements has a specific scope. While the carrier puts the signal in the 

requency spectrum, the sp

Random Noise (PRN) sequence is used to perform time measurements and to 

provide multiple access. The binary data sequence, also known as navigation 

message, carries out different important tasks like delivering the information used t

compute the satellite’s position and clock bias and the time reference to calculate the 

pseudorange. Regarding the overlay code, also called tiered or secondary code, there 

are various reasons that have brought to the introduction of it. One of the main 

purposes is indeed to modulate the primary code with the effect of spreading the 

power over more spectral lines; as a consequence, the signal results in an increased 

band interference. 

All these elements reflect on the navigation 

them a unique spectral content. In most of the assessments on GNSS performance 

however the representation of signals in the frequency domain is done by an 

approximation of the actual Power Spectral Density (PSD). A common ass

in fact is to assume that PRN codes and overlay codes show ideal properties, i.e. 

periodic, identically distributed, equiprobable, and independent 

sequences. Under this hypothesis the signal waveform simplifies to its chip 

the PSD assumes the characteristic smooth shape that is 

spreading codes reflect

function shape with effects that depend on the 

the evaluation of radio-frequency 

of a signal to a certain 

simplistic assumption just explained could be inadequate.

is to provide a flexible re

structures which allows expressing the contribution from the different signal 

Chapter 

Structure
new GNSS signals are built as a combination of two 

free signal, also called pilot signal. In general 

both signals result from the product of two elements which are a sinusoidal carrier 

ding code, with the option of an overlay code. The data signal is further 

Each of these elements has a specific scope. While the carrier puts the signal in the 

requency spectrum, the sp

Random Noise (PRN) sequence is used to perform time measurements and to 

provide multiple access. The binary data sequence, also known as navigation 

message, carries out different important tasks like delivering the information used t

compute the satellite’s position and clock bias and the time reference to calculate the 

pseudorange. Regarding the overlay code, also called tiered or secondary code, there 

are various reasons that have brought to the introduction of it. One of the main 

purposes is indeed to modulate the primary code with the effect of spreading the 

power over more spectral lines; as a consequence, the signal results in an increased 

navigation signals’ waveform giving to each of 

them a unique spectral content. In most of the assessments on GNSS performance 

however the representation of signals in the frequency domain is done by an 

approximation of the actual Power Spectral Density (PSD). A common ass

in fact is to assume that PRN codes and overlay codes show ideal properties, i.e. 

periodic, identically distributed, equiprobable, and independent 

sequences. Under this hypothesis the signal waveform simplifies to its chip 

the PSD assumes the characteristic smooth shape that is 

spreading codes reflect on the PSD and the correlation 

function shape with effects that depend on the specific

frequency compatibility 

to a certain narrow-band interference

simplistic assumption just explained could be inadequate.

is to provide a flexible representation for current GNSS signal 

structures which allows expressing the contribution from the different signal 

Chapter 2. Navigation Signal Structure

Structure 
new GNSS signals are built as a combination of two 

free signal, also called pilot signal. In general 

both signals result from the product of two elements which are a sinusoidal carrier 

ding code, with the option of an overlay code. The data signal is further 

Each of these elements has a specific scope. While the carrier puts the signal in the 

requency spectrum, the spreading code or Pseudo

Random Noise (PRN) sequence is used to perform time measurements and to 

provide multiple access. The binary data sequence, also known as navigation 

message, carries out different important tasks like delivering the information used t

compute the satellite’s position and clock bias and the time reference to calculate the 

pseudorange. Regarding the overlay code, also called tiered or secondary code, there 

are various reasons that have brought to the introduction of it. One of the main 

purposes is indeed to modulate the primary code with the effect of spreading the 

power over more spectral lines; as a consequence, the signal results in an increased 

ls’ waveform giving to each of 

them a unique spectral content. In most of the assessments on GNSS performance 

however the representation of signals in the frequency domain is done by an 

approximation of the actual Power Spectral Density (PSD). A common ass

in fact is to assume that PRN codes and overlay codes show ideal properties, i.e. 

periodic, identically distributed, equiprobable, and independent 

sequences. Under this hypothesis the signal waveform simplifies to its chip 

the PSD assumes the characteristic smooth shape that is 

on the PSD and the correlation 

specific signal design. For some 

compatibility 

band interference

simplistic assumption just explained could be inadequate. 

presentation for current GNSS signal 

structures which allows expressing the contribution from the different signal 

Navigation Signal Structure

new GNSS signals are built as a combination of two 

free signal, also called pilot signal. In general 

both signals result from the product of two elements which are a sinusoidal carrier 

ding code, with the option of an overlay code. The data signal is further 

Each of these elements has a specific scope. While the carrier puts the signal in the 

reading code or Pseudo

Random Noise (PRN) sequence is used to perform time measurements and to 

provide multiple access. The binary data sequence, also known as navigation 

message, carries out different important tasks like delivering the information used t

compute the satellite’s position and clock bias and the time reference to calculate the 

pseudorange. Regarding the overlay code, also called tiered or secondary code, there 

are various reasons that have brought to the introduction of it. One of the main 

purposes is indeed to modulate the primary code with the effect of spreading the 

power over more spectral lines; as a consequence, the signal results in an increased 

ls’ waveform giving to each of 

them a unique spectral content. In most of the assessments on GNSS performance 

however the representation of signals in the frequency domain is done by an 

approximation of the actual Power Spectral Density (PSD). A common assumption 

in fact is to assume that PRN codes and overlay codes show ideal properties, i.e. 

periodic, identically distributed, equiprobable, and independent 

sequences. Under this hypothesis the signal waveform simplifies to its chip 

the PSD assumes the characteristic smooth shape that is typically 

on the PSD and the correlation 

signal design. For some 

compatibility between signals

band interference source

presentation for current GNSS signal 

structures which allows expressing the contribution from the different signal 

Navigation Signal Structure 

13 

new GNSS signals are built as a combination of two 

free signal, also called pilot signal. In general 

both signals result from the product of two elements which are a sinusoidal carrier 

ding code, with the option of an overlay code. The data signal is further 

Each of these elements has a specific scope. While the carrier puts the signal in the 

reading code or Pseudo-

Random Noise (PRN) sequence is used to perform time measurements and to 

provide multiple access. The binary data sequence, also known as navigation 

message, carries out different important tasks like delivering the information used to 

compute the satellite’s position and clock bias and the time reference to calculate the 

pseudorange. Regarding the overlay code, also called tiered or secondary code, there 

are various reasons that have brought to the introduction of it. One of the main 

purposes is indeed to modulate the primary code with the effect of spreading the 

power over more spectral lines; as a consequence, the signal results in an increased 

ls’ waveform giving to each of 

them a unique spectral content. In most of the assessments on GNSS performance 

however the representation of signals in the frequency domain is done by an 

umption 

in fact is to assume that PRN codes and overlay codes show ideal properties, i.e. 

periodic, identically distributed, equiprobable, and independent 

sequences. Under this hypothesis the signal waveform simplifies to its chip 

typically 

on the PSD and the correlation 

signal design. For some 

between signals or 

source, the 

presentation for current GNSS signal 

structures which allows expressing the contribution from the different signal 



Chapter 2. Navigation Signal Structure 

 

14 

components separately, accounting for various chip shapes, modulations, spreading 

codes, overlay codes, and presence or absence of data. A deep understanding of the 

navigation signal structure and models is at the basis of the spreading codes analysis 

performed later in this thesis. 

The chapter is composed of the following parts: 

 Section 2.1 provides an overview of the transmit chain for a typical 

navigation payload and the mathematical model to describe a generic 

navigation signal at the output of the transmit antenna. 

 Section 2.2 provides a high-level description of a typical receiver chain 

and the mathematical model to describe the received navigation signal at 

the input of the digital signal processing. 

2.1 Transmit Signal 

GNSS signals are typically transmitted by navigation payloads on board of MEO or 

GEO satellites. The transponder architecture may be a regenerative or a transparent 

one depending on the GNSS space segment design. A generic regenerative payload 

architecture is represented in Figure 2–1. 

 
Figure 2–1: Transmit Chain, Functional Block Diagram. 

The following five units can be identified in a conventional navigation signal 

generation chain: 

 The Clock Unit, composed of a set of atomic clocks and a Clock 

Management and Control Unit (CMCU). The CMCU is used to generate the 



Chapter 2. Navigation Signal Structure 

 

15 

Master Timing Reference (MTR), typically at 10.23 MHz for navigation 

signals, that is used by the whole generation block. 

 The Navigation Signal Generation Unit (NSGU), which generates the 

navigation signal, and is composed of a modulator and a pre-distortion 

digital filter. The modulator generates the base-band digital signals, and 

usually transposes it digitally towards an IF. The pre-distortion filter is used 

to limit out-of-band emissions, avoid spectrum mixing, and compensate for 

DAC shaping or any distortion brought by the following analog processing. 

 The Frequency Generation and Modulation Unit (FGMU), which is 

composed of frequency synthesizers, a Digital-to-Analog Conversion 

(DAC), and mixers. Usually, a wide-band analog filter is also used in order 

to limit out-of-band emissions, spectrum distortions due to the DAC, and 

spectrum re-combinations after up-conversion. At the output of the FGMU, 

the signals should be within its transmission frequency. 

 The Amplifier Unit, composed of Solid State Power Amplifiers (SSPAs) or 

Travelling Wave Tube Amplifiers (TWTAs). The characteristics of these 

amplifiers are given by their amplitude and phase response, as well as their 

bandwidth. In order to limit the distortions brought by the amplifier non-

linearities, constant envelope signals have been traditionally used by 

navigation satellites. However, this might not be the best solution for all 

cases and this work will investigate the impact of the use of signals with a 

non-constant envelope. 

 The Antenna Unit, composed of an Output MUltipleX (OMUX) filter that 

permits eliminating the inter-modulation products as well as the secondary 

lobes caused by the amplification stage, and a transmit antenna. 

The names CMCU, NSGU and FGMU are taken from the structure of the Galileo 

satellites payload (see [41]). 

Note that the mathematical models described later are valid under the assumption of 

no distortions in the payload generation chain. In other words, the transmit chain is 

simplified to an ideal base-band generation unit, RF up-conversion and transmission 

thorough the satellite antenna. An in-depth analysis of nominal and non-nominal 

signal distortions is provided in Appendix A. 
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2.1.1 Time Domain Representation 

Assume that ݏ(ݐ) is the navigation base-band signal as it is generated by an ideal 

base-band signal generation unit. It is possible to write separately the three elements 

contributing to the signal waveform as ݏ(ݐ), ݏௌ(ݐ) and ݏ(ݐ), being respectively the 

primary code, secondary code (or overlay code), and data stream: 

(ݐ)ݏ =  ܿ[݊] ∙ ݐ) − ݊ ܶ)
ାஶ

ୀିஶ

 (2.1) 

(ݐ)ௌݏ =  ܿௌ[݊] ∙ ݐ)ௌ − ݊ ௌܶ)
ାஶ

ୀିஶ

 (2.2) 

(ݐ)ݏ =  ܿ[݊] ∙ ݐ) − ݊ ܶ)
ାஶ

ୀିஶ

 (2.3) 

with ܿ[݊] the amplitude of the symbol sequence, ܶ the time interval between two 

consecutive symbols, and (ݐ) the symbol shape defined over [0, ܭ ܶ] and 

normalized to unit power. Note that the word ‘symbol’ is here used to refer to the 

generic information unit, not necessarily binary, which can be the chip of a PRN 

code or the data bit of a navigation message. Also the symbol shape is a generic 

definition that encompasses any kind of pulse function. The base-band normalized 

Signal-In-Space (SIS) can be written as the product of the three contributions: 

(ݐ)ݏ = (ݐ)ݏ ∙ (ݐ)ௌݏ ∙  (2.4) (ݐ)ݏ

 

Starting with the primary and secondary codes, it is well known that in actual GNSS 

signals these components are generated with periodic sequences so that ܿ[݊ +

ܰ] = ܿ[݊], being ܰ the number of chips characterizing the generic PRN code. 

The expressions in Eq. (2.1) and (2.2) can be written as: 

(ݐ)ݏ̅ =   ܿ[݊] ∙ ݐ) − ݊ ܶ)
ேିଵ

ୀ

 
(2.5) 

Further, the PRN sequence can be expressed as the convolution of the pulse shape 

 with a unit impulse sequence, weighed by the code chips ܿ[݊] and as long as (ݐ)

the code length ܰ: 

(ݐ)ݏ̅ = (ݐ)  ∗   ܿ[݊] ∙ ݐ)ߜ − ݊ ܶ)
ேିଵ

ୀ

 (2.6) 

where (ݐ)ߜ is the Dirac delta function or impulse function, and ‘∗’ stands for linear 

convolution. 
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This expression allows writing Eq. (2.1) and (2.2) as the convolution of a basic PRN 

sequence with a unit impulse sequence whose inter-distance is the PRN code 

periodicity: 

(ݐ)ݏ = (ݐ)ݏ̅ ∗   ݐ൫ߜ − ݉ ܶௗ,൯
ାஶ

ୀିஶ

൩

= (ݐ)  ∗   ܿ[݊] ∙ ݐ)ߜ − ݊ ܶ)
ேିଵ

ୀ

 ∗   ݐ൫ߜ − ݉ ܶௗ,൯
ାஶ

ୀିஶ

൩

 (2.7) 

where ܶௗ, = ܰ ∙ ܶ is the code repetition period.  

The expression in Eq. (2.7) represents the starting point for the derivation of the 

frequency-domain representation in Section 2.1.2. 

 

Concerning the data component, also Eq. (2.3) can be written as to underline the 

contribution coming from the pulse shape and the contribution coming from the data 

stream: 

(ݐ)ݏ = (ݐ)  ∗   ܿ[݊] ∙ ݐ)ߜ − ݊ ܶ)
ାஶ

ୀିஶ

൩ (2.8) 

 

Most of nowadays GNSS signals based on Code Division Multiple Access (CDMA) 

technology can be expressed with Eq. (2.4) or as a summation of basic signals 

described by Eq. (2.4). 

 
Figure 2–2: Generic navigation SIS in the time domain as defined in Eq. (2.4). 

Figure 2–2 provides an illustration of the three navigation signal components 

described above: the primary code (top, red line) repeats 6 times within the 
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ܴ௦(߬) = න ݏ
(ݐ)∗ ∙ ݐ)ݏ + ݐ݀(߬

ାஶ

ିஶ

= ݏ
∗(−߬) ∗  (߬) (2.9)ݏ

The linear ACF ܴ௦(߬) relates to the linear convolution operator ‘*’ as expressed in 

Eq. (2.9) and to the power spectral density as: 

ܴ௦(߬) = න ܵ
∗(݂) ∙ ܵ(݂) ∙ ݁ଶగఛ݂݀

ାஶ

ିஶ

= ℱିଵ{|ܵ(݂)|ଶ} (2.10) 

where ܵ(݂) is the Fourier transform of ݏ(ݐ) and ℱିଵ{∙} represent the inverse 

Fourier transform operator. 

 

Up to now the basic components of conventional GNSS signals are described for 

their deterministic properties. However both data streams and spreading codes are or 

tend to behave like stationary random processes and their statistical properties, as 

often described in literature [1]-[5], must also be mentioned. 

Each signal defined in Eq. (2.6) and (2.8) can be described as the output of a linear 

time-invariant (LTI) system defined by its transfer function (ݐ). The mean 

function ߤ௦(ݐ) of a random process ݏ(ݐ) is defined by:  

(ݐ)௦ߤ = E{ݏ(ݐ)}  =  E ቐ න   ܿ[݊] ∙ α)ߜ − ݊ ܶ)
ାஶ

ୀିஶ

൩ ∙ ݐ) − ߙ݀(ߙ
ାஶ

ିஶ

ቑ

= න E ൝  ܿ[݊] ∙ α)ߜ − ݊ ܶ)
ାஶ

ୀିஶ

ൡ ∙ ݐ) − ߙ݀(ߙ
ାஶ

ିஶ

= න (ߙ)ߤ ∙ ݐ) − ߙ݀(ߙ
ାஶ

ିஶ

 

(2.11) 

While the statistical autocorrelation function ෨ܴ௦(ݐଵ,  :ଶ) is expressed asݐ
෨ܴ௦(ݐଵ, =  (ଶݐ E{ݏ(ݐଵ)ݏ

∗ {(ଶݐ)

= ඵ E ቐ  ܿ[݊] ∙ α)ߜ − ݊ ܶ)
ାஶ

ୀିஶ

൩ ∙   ܿ[݊] ∙ ߚ)ߜ − ݊ ܶ)
ାஶ

ୀିஶ

൩

∗

ቑ ∙
ାஶ

ିஶ

ଵݐ)                                                                                          − (ߙ ∙ 
∗ ଶݐ) − ߚ݀ ߙ݀(ߚ

= ඵ ෨ܴ(ߙ − (ߚ
ାஶ

ିஶ

∙ ଵݐ) − (ߙ ∙ 
∗ ଶݐ) − ߚ݀ ߙ݀(ߚ

 

(2.12) 

and by a substitution of variables (see [5]), it can be demonstrated that: 

෨ܴ௦(߬) = න (݂)|ܲ(݂)|ଶ݁ଶగఛ݂݀ܩ
ାஶ

ିஶ

= ෨ܴ(߬) ∗ ܴ(߬) (2.13) 

being ܩ(݂) the PSD of the symbol sequence ܿ[݊] and ܲ(݂) the FT of the pulse 

shape (ݐ).  
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Finally, the covariance ܥ௦(ݐଵ,  can be expressed as a (ݐ)ݏ ଶ) of the random processݐ

function of the statistical autocorrelation and the mean:  

,ଵݐ)௦ܥ (ଶݐ = E{[ݏ(ݐଵ) − [(ଵݐ)௦ߤ ∙ (ଶݐ)ݏ] − {∗[(ଶݐ)௦ߤ = ෨ܴ௦(ݐଵ, (ଶݐ − (ଵݐ)௦ߤ ∙ ௦ߤ
 (2.14) (ଶݐ)∗

 

To conclude on the time domain representation of transmit signals, the RF 

expression at the output of the satellite antenna is provided below: 

(ݐ)ோிݏ = ்ܣ ∙ (ݐ)ݏ ∙ ߨ2)ݏܿ ோ݂ி(2.15) (ݐ 

where ்ܣ is the signal amplitude and ோ݂ி the carrier frequency. Note that ்ܣ is 

related to the radiated power by the expression ܴܲܫܧ = ்ܣ
ଶ 2⁄ , being the Equivalent 

Isotropically Radiated Power (EIRP) defined as: 

(ߙ)ܴܲܫܧ  = ்ܩ்ܲ

ܮ
 (2.16) 

with: 

்ܲ transmission power at satellite [W] 

 transmit antenna gain for a given off-boresight angle α [unitless] ்ܩ

  loss of the transmission line [unitless]ܮ

2.1.2 Frequency Domain Representation 

As known from signal theory, a periodicity in the time domain corresponds to a 

sampling in the frequency domain and vice-versa. Thus, the repetition of the basic 

PRN code sequence every cܶode, = ܰ ∙ ܶ implies sampling its Fourier transform 

with a frequency step ∆ ݂ equal to 1/ cܶode,. In formulas: 

ܵ(݂) = ܵ̅(݂) ∙  ݂)ߜ − ݇∆ ݂)
ାஶ

ୀିஶ

= ܵ[݇] (2.17) 

being ܵ(݂) and ܵ̅(݂) the FT of respectively ݏ(ݐ) and ̅ݏ(ݐ). Note that the second 

term of the product represents a unit impulse sequence and stands for the sampling 

operation. 

A further step can be done by considering the representation of the repeating basic 

signal as given in Eq. (2.6). This expression allows writing the Fourier transform of 

 as a product of two elements: the FT of the pulse shape, ܲ(݂), and the FT of (ݐ)ݏ̅

a discrete sequence, which is the periodic FT of the PRN code sequence, ܥ(݂): 
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ܵ̅(݂) = ܲ(݂) ∙  ݂)ܥ − ݊ ݂)
ேିଵ

ୀ

 
(2.18) 

Being ݂ the chip rate equal to 1/ ܶ. Substituting Eq. (2.18) in Eq. (2.17), the 

following expression is obtained: 

ܵ[݇] = ܲ[݇] ∙  ݇]ܥ − ݊ ݂]
ேିଵ

ୀ

 
(2.19) 

This notation shows a very useful property when it comes to the spectral description 

of the signal. Note in fact that the periodicity of ܵ(݂), as observed in [21], allows a 

fast Discrete Fourier Transform (DFT) computation: it is sufficient to compute 

݊ (݂) forܥ = 0, to replicate it over the desired frequency band, and to weigh it with 

the pulse shape ܲ(݂). 

Starting from Eq. (2.19), it is straightforward to derive the PSD as: 

[݇]ௌܩ = [݇]ܩ ∙  ݇]ܩ − ݊ ݂]
ேିଵ

ୀ

 
(2.20) 

being ܩ
[݇] = | ܲ[݇]|ଶ and ܩ

[݇] =  [݇]|ଶ the discrete PSDs of respectivelyܥ|

the pulse shape and the repeating code sequence. Note that, as already mentioned in 

Section 2.1.1, a typical assumption in GNSS is to consider the PRN codes as ideal, 

i.e. to be statistically characterized as an infinite random noise sequence and not as a 

periodic one. Under the hypothesis of ideal PRN codes, the chips of the sequence 

ܿ[݊] are i.i.d. random variables that assume values in the discrete sample space 

{−1, +1}. The statistical autocorrelation ෨ܴ௦(ݐଵ,  ଶ) of such a process is a Dirac deltaݐ

in the origin E{ܿ[݇]ܿ∗[݊]} ≈ ܩ thus ,[0]ߜ
[݇] tends to be constant in the frequency 

domain. The statistical representation of the PSD becomes:  

[݇]ௌܩ ≈ | ܲ[݇]|ଶ (2.21) 

 

For the data component the Fourier transform ܵ(݂) is given by: 

ܵ(݂) = ܲ(݂) ∙  ܥ ൬݂ − ݉
1
ܶ

൰
ାஶ

ୀିஶ

 (2.22) 

In this case the data sequence ܿ[݊] represents a real stationary random process that, 

for binary transmission, assumes values in the discrete sample space {−1, +1}. The 

PSD of the data signal can be written as: 
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(݂)ௌವܩ =  ವ(݂) (2.23)ܩ

In other words, under the hypothesis of ideal random data, the PSD contribution of 

the data component is equal to the PSD of its pulse shape. 

 

Going back to the base-band expression of the overall signal-in-space in Eq. (2.4), it 

is possible to write its Fourier transform as: 

ܵ(݂) = ܵ(݂) ∗ ௌܵ(݂) ∗ ܵ(݂) (2.24) 

The PSD of (ݐ)ݏ is simply calculated as ܩ௦(݂) = |ܵ(݂)|ଶ. Under the hypothesis of 

statistical random process described above, the following simplification can be 

applied to the navigation signal representation: 

(݂)௦ܩ = |ܵ(݂) ∗ ௌܵ(݂) ∗ ܵ(݂)|ଶ ≈ | ܲ(݂)|ଶ (2.25) 

 

For illustration purposes the spectral contribution of a primary code, secondary code, 

and data stream taken from the Galileo E1 OS are shown below.  

Figure 2–4 displays the normalized PSD of the Galileo E1-B Code as transmitted by 

SVID 1 with ܰ = 4092. 

Figure 2–4: Power Spectral Density of Galileo E1-B SVID 1 Primary Code. 

Figure 2–5 shows the normalized PSD ܩௌು
(݉Δ ݂) for SVID 1 obtained from Eq. 

(2.20), where the pulse shape is a Binary Offset Carrier (BOC). In particular the 

modulation here adopted is the BOCs(1,1), which means that a PRN sequence with 

PS
D

 [d
B/

H
z]
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chip rate ݂ = ݂ is modulated by a sub-carrier that is a squared sine waveform with 

frequency ݂, being ݂ = 1.023 MHz the reference frequency. 

 
Figure 2–5: Spectral Contribution of Galileo E1-B SVID 1 Primary Code to the tansmitted SIS. 

The frequency step Δ ݂  can be easily computed starting from cܶode, = 4 ms and is 

equal to 250 Hz. The red lines in Figure 2–5 represent the normalized PSD sequence 

in Figure 2–4, periodically repeated every 1 ܶ =⁄ ݂ and modulated by the pulse 

shape, represented with the black dashed line. 

 
Figure 2–6: Power Spectral Density of Galileo E1-C Secondary Code. 

The same plots are proposed in Figure 2–6 and Figure 2–7 for the Galileo secondary 

code CS251 with ௌܰ = 25. Note that in this case the pulse shape is a rectangle of 



Chapter 2. Navigation Signal Structure 

 

24 

width ௌܶ = 4 ms and the frequency step, derived from the code period cܶode,ௌ =

100 ms, is equal to 10 Hz. 

 
Figure 2–7: Spectral Contribution of Galileo E1-C Secondary Code to the tansmitted SIS. 

The spectral contribution of the Galileo E1-B data signal is shown in Figure 2–8. In 

this case the pulse shape is a rectangle of width ܶ = 4 ms.  

 
Figure 2–8: Spectral Contribution of Galileo E1-B Data Stream to the tansmitted SIS. 

As last example, a frequency portion of the Galileo E1-B and Galileo E1-C signals 

PSDs for SVID 1 is displayed respectively in Figure 2–9 and Figure 2–10. The 

spectral contribution of the primary codes and the smooth spectrum are also 

represented respectively in red line and in dashed black line. 

Figure 2–9 shows how the effect of the data sequence is to smooth the spectra lines 

of the E1-B component; the same is observed in Figure 2–10 where the effect of the 
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secondary code is to modulate the primary code spreading the power over more 

spectral lines. Even with the effect of the secondary code, note that the power of E1-

C is by nature concentrated on spectral lines while the E1-B spectrum is continuous. 

 
Figure 2–9: PSD of Galileo E1-B SVID 1 transmitted SIS (detail). 

Further details on the Galileo E1 OS signal are given in Appendix A, where the 

computation of the PSD with the spectral line approach is applied to the complete 

Galileo signals baseline. 

 
Figure 2–10: PSD of Galileo E1-C SVID 1 transmitted SIS (detail). 
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2.2 Receive Signal 

Figure 2–11 depicts the block diagram of a generic GNSS user receiver from the 

antenna reception until the PVT computation. The following five functional units 

can be identified: 

 The Antenna Unit, that can be either a passive or active element, represents 

the first part of the receive chain and it acquires the broadcasted navigation 

signals. A typical GNSS antenna can be single-frequency (L1 only) or dual-

frequency (e.g. L1/L2 or L1/L5) depending on the application. Active 

antennas often include analog pass-band filtering for out-of-band rejection 

and a first stage Low-Noise Amplifier (LNA). 

 The RF Front-End Unit, that is responsible for conditioning the analog 

signal so that it is suitable for digital signal processing. The main stages are 

identified as low-noise amplification, band-pass filtering for Out-Of-Band 

(OOB) interference rejection, down-conversion and digitalization (sampling 

and quantization). The down-conversion can be performed either at 

intermediate frequency or directly to base-band. 

 
Figure 2–11: Receive Chain, Functional Block Diagram. 

 The Frequency Generation Unit, in charge of providing the reference 

frequency signal for all internal timing and synchronization. 
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 The Digital Signal Processing Unit, that takes as input the streams of In-

phase/Quadrature (I/Q) digitalized samples and implements the following 

functionalities: acquisition and tracking of the navigation signals, 

computation of pseudorange and carrier phase measurements, and decoding 

of navigation data messages. 

 The PVT Computation, that starts from the measures provided by the DSP 

Unit and calculates for all tracked signals the corresponding satellite 

positions, satellite velocities, and atmospheric corrections. This information 

is used for resolving the measurements ambiguity and generating 

pseudoranges that are combined to obtain the Position, Velocity, and Time 

(PVT) information. 

Before entering into the time and frequency domain representation of GNSS signals 

at receiver side, it is worth dedicating few more lines to the RF Front-End Unit. The 

key component of the front-end is the down-conversion that converts the RF signal 

to a lower frequency, while providing gain and filtering. In GNSS receivers, two 

approaches are commonly used to implement the down-conversion function. 

The first and oldest method is the heterodyning chain. In this approach the RF signal 

is first filtered and then multiplied with a sine wave to convert it to an IF frequency, 

usually between 50 and 400 MHz. A band-pass filter further rejects OOB signals, 

after which the IF signal is amplified. Sometimes the process is repeated in a second 

stage with similar topology. Finally the signal is quantized by the ADC. The 

sampling frequency of the ADC is directly related to the IF frequency to make sure 

that the signal is captured without aliasing effects. 

More recently the direct conversion architecture gained popularity. In this 

architecture the RF signal is multiplied with a complex sinusoid, introducing an in-

phase and quadrature branch. This is filtered by a low-pass filter and amplified. The 

amplified signal is quantized by a two-channel ADC running at a frequency higher 

than the targeted signal bandwidth. The approaches are almost equivalent but the 

latter is taken as assumption for the following signal description. 

Further, typical GNSS user receiver features such as secondary channels for aiding 

information, integrity algorithms for safety critical applications, and sensor fusion 

are not depicted in Figure 2–11 as they are out of the scope of this thesis. 
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The receive signal model introduced in the next section is based on the same 

assumption taken for the transmit signal that no distortions are introduced in the 

payload generation chain. Additionally, it is supposed that the propagation channel 

is not dispersive in time or frequency, thus the useful signal is only attenuated and 

delayed. 

2.2.1 Time Domain Representation 

The expression of the receive signal at the input of the receiving antenna is given by: 

(ݐ)ோிݎ = (ݐ)ோிݕ + (ݐ)ோிߥ + (ݐ)ோிߟ

= ோܣ ∙ ݐ)ݏ − τ) ∙ )ߨ2)ݏܿ ோ݂ி + ݂)ݐ + φ) + (ݐ)ோிߥ + (ݐ)ோிߟ

 (2.26) 

where: 

 navigation signal (ݐ)ோிݕ

 ோ amplitude coefficient at receptionܣ

߬ delay of the navigation signal 

݂ Doppler frequency of the navigation signal 

߮ phase offset of the navigation signal 

 interference term (ݐ)ோிߥ

 noise term (ݐ)ோிߟ

The amplitude ܣோ is related to the received power level by the relation ோܲ = ோ ଶܣ 2⁄ , 

that can be further expressed as a function of the user location (߮,  and time (ߠ

instant ݐ through the link budget: 

ோܲ(ݐ, ߮, (ߠ =
ܴܲܫܧ ∙ ோܩ

otherܮிௌܮ
ฬ

(௧,ఝ,ఏ)
 (2.27) 

where: 

ோܲ user received power [W] 

 EIRP as defined in Eq. (2.16) [W] ܴܲܫܧ

 ோ user receiver antenna gain [unitless]ܩ

 ிௌ free space path loss [unitless]ܮ

 other other losses [unitless]ܮ

 

The free space loss is the loss in signal strength of an electromagnetic wave that 

results from a Line-Of-Sight (LOS) path through free space, i.e. a space with no 



Chapter 2. Navigation Signal Structure 

 

29 

obstacles nearby to cause reflection or diffraction. This term is defined by the 

following well-known formula: 

ிௌܮ = ൬
ܿ

ߨ4 ோ݂ிܴ
൰ (2.28) 

being ܿ the speed of light [m/s2] and ܴ the distance [m] between the user receiver 

and the satellite vehicle (SV). The inter-distance between user and SV can be further 

expressed by the following equation: 

ܴ = ቐ
sin(ߨ 2⁄ − ߚ − (ߝ

sin(ߝ + ߨ 2⁄ ) , ߝ ≠ ߨ 2⁄

ܴௌ − ܴuser,           otherwise
 (2.29) 

with ܴௌ the SV position and ܴuser the user position in ECEF Cartesian coordinate 

frame. ߝ is the elevation angle [rad] of the satellite with respect to the user position 

and ߚ the off-boresight angle [rad]. 

For what concerns ܮother, it groups all the other contributions to the signal 

attenuation at the input of the receiver antenna. It can be broken down into the 

product of different terms, usually the atmospheric loss ܮ்ெ, the polarization 

mismatch loss ܮெ and the depointing loss ܮ. 

The dominant sources of signal attenuation in the atmosphere are atmospheric gases 

such as dry air (Oxygen, O2) and water vapour (or H2O molecules), rain fall, clouds 

or fog, tropospheric scintillation, and ionospheric effects. Each of these components 

has been studied in literature and various theoretical models exist to analyse the 

signal power attenuation caused by the attenuation sources described above. 

Another source contributing to the signal attenuation is the polarization mismatch 

loss, which occurs when the polarization of the incident wave is different from the 

polarization of the receiving antenna. This mismatch can be caused by two major 

reasons: the atmospheric effects or the Faraday rotation. Moreover, the transmitting 

and receiving antennas do have different polarizations with respect to each other, 

due to imperfections in manufacture. 

Finally an imperfect alignment of the transmitting and receiving antennas due to 

satellite attitude error, array antenna pointing misalignment, or gain fluctuation by 

temperature variation, can cause a fallout of the antenna gain with respect to the 

maximum gain. This is referred to as depointing loss. 
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With reference to the block diagram in Figure 2–11, assuming an ideal RF Front-

End Unit, the following digital signal model is obtained at the output of the ADC 

module: 

݊)ݎ ௦ܶ) = ோܣ ∙ ݊)ݏ ௦ܶ − ߬) ∙ ߨ2)ݏܿ ݂݊ ௦ܶ + ߮) + ݊)ߥ ௦ܶ) + ݊)ߟ ௦ܶ) (2.30) 

being ௦ܶ the sampling period, inverse of the sampling frequency ௦݂.  

In the following, the notation ݔ[݊] or ݔ is used to indicate discrete-time signals 

݊]ݔ ௦ܶ] obtained by sampling continuous-time signals (ݐ)ݔ with a sampling 

frequency of ௦݂. The digital received signal is then written as: 

[݊]ݎ = ோܣ ∙ ݊]ݏ − [ߒ ∙ ݊ߠߨ2]ݏܿ + ߮] + [݊]ߥ +  [݊] (2.31)ߟ

where ߒ = ߬ ௦ܶ⁄  and ߠ = ݂ ௦݂⁄ . 

A convenient choice is normally to sample the down-converted BB signal with a 

sampling frequency ௦݂ =  ிா is the front-end frequency. In this caseܤ ிா, whereܤ2

the discrete-time random process ߟ[݇] is a white sequence with zero mean and 

variance ߪఎ
ଶ = ܰ ௦݂ 2⁄ . 

The term ߥ[݊] represents various sources of interference. The first source of in-

band interference is represented by the so-called GNSS intra- and inter-system 

interference: 

[݊]ߥ =   ோܣ
, ∙ ݏ

,ൣ݊ − ,൧ߒ ∙ ߠߨ2ൣݏܿ
,݊ + ߮,൧

ே


ୀଵ

ெ

ୀଵ

 
(2.32) 

where ܯ is the number of visible satellites in the constellation identified by ܺ (e.g. 

GPS, Galileo, BeiDou, IRNSS), ܰ݉
ܺ  is the number of signals transmitted by the m-th 

satellite in the constellation identified by ܺ, and all variables are defined as for the 

desired navigation signal in Eq. (2.31). The relevance of this interference 

contribution is strongly related to the main objective of this thesis and it is widely 

discussed in the following chapters. 

Regarding the external sources of interference, depending on the GNSS signal 

bandwidth it may be categorized as being of the narrow-band (NB) type, if the 

interferer bandwidth ܤ ≪   is comparable orܤ ேௌௌ, or wide-band (WB) type, ifீܤ

larger than ீܤேௌௌ. Looking at its characteristics in the time domain, an interfering 

signal may be either continuous or pulsed. Additionally, an interference source may 

be either in-band, partially in-band, or out-of-band with respect to the radio-

frequency spectrum occupied by the GNSS signal of interest. Figure 2–12 displays 



Chapter 2. Navigation Signal Structure 

 

31 

typical external interference sources and ITU allocations versus the RNSS frequency 

spectrum. 

 

 
Figure 2–12: Interference sources frequency bands. 

A very useful operator at receiver side is represented by the linear Cross-Correlation 

Function (CCF) between the sampled received signal ݎ[݊] and the digital local 

replica. The CCF is at the basis of the acquisition and tracking functions of the DSP 

Unit shown in Figure 2–11. The expression of the CCF is given by: 

ܴ,௦[݉] =
1

ூܰ
 [݊]∗ݏ̅ ∙ ݊]ݎ + ݉]

ேିଵ

ୀ

= [݉−]∗ݏ̅ ∗  [݉]ݎ
(2.33) 

being ̅ݏ[݊] the discrete-time version of the ݏ(ݐ) periodic sequence described in Eq. 

(2.6) and ூܰ the number of samples in the integration window. The CCF ܴ,௦[݉] 

relates to the linear convolution operator ‘*’ as expressed in Eq. (2.33) and to the 

power spectral density as: 

ܴ,௦̅[݉] = ௦ܶ න ܵ̅∗(݂)ܴ(݂)݁ଶగ ೞ்݂݀

ାଵ/ଶ ೞ்

ିଵ/ଶ ೞ்

= ℱିଵ{ܵ̅∗(݂)ܴ(݂)} (2.34) 

where ܵ̅(݂) and ܴ(݂) are the Fourier transform of respectively ̅ݏ[݊] and  ݎ[݊]. 

By considering the random nature of the navigation signals it is possible to express 

the statistical cross-correlation function ෨ܴ,௦̅(ݐଵ,  :ଶ) as defined byݐ

෨ܴ,௦̅[݉ଵ, ݉ଶ]  = E{̅ݏ∗[݉ଵ]ݎ[݉ଶ]}

= ඵ E ൝  ܿ[݊] ∙ α)ߜ − ݊ ܶ)
ାஶ

ୀିஶ

൩ ∙   ܿ[݊] ∙ ߚ)ߜ − ݊ ܶ)
ାஶ

ୀିஶ

൩ൡ ∙
ାஶ

ିஶ
௦̅(݉ଵ                                                                                          − (݉ଶ(ߙ − ߚ݀ ߙ݀(ߚ

= ඵ ෨ܴ(ߙ − (ߚ
ାஶ

ିஶ

ଵݐ)௦̅ − ଶݐ)(ߙ − ߚ݀ ߙ݀(ߚ

(2.35) 

and by a substitution of variables (see [5]), it can be demonstrated that: 

Lower L-Band

Interference Sources

Upper L-Band

RNSS RNSS

ARNS ARNS

1164 1300

1215

1559 1610

DVB-T/TV harmonics

MMS

ATV

1240 1525

MMS

1626.5 1660.5

Frequency [MHz]
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෨ܴ,௦̅[݉] = ௦ܶ න (݂)ܩ ௦ܲ̅(݂) ܲ
∗(݂)݁ଶగ ೞ்݂݀

ାଵ/ଶ ೞ்

ିଵ/ଶ ೞ்

= ෨ܴ[݉] ∗ [݉]௦̅ ∗ 
∗[݉] (2.36) 

 

Note that in general the pulse shape of the transmit signal and the receiver local 

replica is the same, leading to the following simplification:  

෨ܴ,௦̅[݉] = ෨ܴ[݉] ∗ ܴ[݉] (2.37) 

An exception is represented by the Galileo E1 OS service that is transmitted with the 

CBOC modulation and it is processed by aviation receivers as a BOC(1,1) signal. 

2.2.2 Frequency Domain Representation 

The periodic structure of navigation signals results in a frequency spectral content of 

discrete nature. As a result, the linear CCF operation described before turns out to be 

equivalent to a circular CCF. Approximating the linear CCF with the circular one 

has the advantage that the correlation values can be calculated in the frequency 

domain with the FFT approach allowing for a fast computation. 

The difference between linear and circular CCF is illustrated in Figure 2–13 and 

Figure 2–14: 

 Linear CCF (Figure 2–13): for each relative delay ݉, the conjugated local 

replica ̅ݏ[݊] is multiplied by a portion, of equal duration ூܶ, of the receive 

signal ݎ[݊ + ݉]; the product is then integrated over the local replica 

length. The portion of the receive signal shifts with index ݉ and the samples 

discarded on one side are substituted with zeros on the other (zero-padding). 
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identification of pseudo-random sequences as much as possible uncorrelated is 

essential for distinguishing one signal source from any other in CDMA systems. 

The selection of spreading sequences showing optimal auto- and cross-correlation 

properties must be performed considering some design constraints related to the 

following parameters: 

 code rate or chip rate, 

 code length or period, 

 chip shape and/or modulation. 

System designers need to select the best code structure and, within it, the best PRN 

code set from the spreading code family.  

Two methods for the generation of spreading codes can be identified when looking 

at the current open service navigation signals. The first one is based on m-sequences 

produced by shift registers. Operations like shifting and combining m-sequences 

enables the creation of more complex pseudo-random codes. This is the case of the 

Gold codes for the GPS L1 C/A signal. Other examples are the Galileo E5a and E5b 

and GPS L5 codes which are truncated Gold-codes. A detailed description of the 

generation of this type of codes can be found in [8], [9], [11]. The second method is 

based on the design of an optimization algorithm to fulfil simultaneously different 

selection criteria (see [23]). Such codes are referred as randomly optimized 

spreading codes and a typical example is represented by the Galileo E1 OS signals. 

A good overview of spreading code families commonly adopted in GNSS signals 

design is provided in [28]. The investigation of new PRN code families or a 

mathematical analysis on the randomness properties of existing ones is out of scope 

of the thesis. 

The objective of this chapter is to provide the means for assessing the CDMA 

isolation of a PRN code set with it-self (self-interference) and with another PRN 

code set (cross-interference). A deep understanding of the PRN code properties, 

design parameters, and performance figures is at the basis of the radio-frequency 

compatibility analysis performed in Chapter 4. 

The chapter is composed of the following parts: 

 Section 3.1 provides an overview of all publicly known PRN codes currently 

(or planned to be) transmitted by GNSS providers. 
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 Section 3.2 recalls for completeness the measures of randomness for a 

spreading code set, i.e. the three Golomb’s postulates. 

 Section 3.3 derives the auto- and cross-correlation formulas at the basis of 

spreading codes performance figures and describes well recognized figures 

of merit for PRN codes design. 

 Section 3.4 presents a sensitivity study based on the figures of merit 

introduces in Section 3.3 that explores the CDMA isolation of a PRN code 

set with respect to some signal design parameters as well as Doppler 

frequency and receiver integration time. 

 Section 3.5 describes the approach of how to extend the figures of merit in 

Section 3.3 for assessing the CDMA isolation between two different PRN 

code sets. 

Note that GLONASS signals are left out from the spreading codes overview and 

from the following correlation performance analysis. The Russian satellite 

navigation system is currently the only one adopting a combination of FDMA and 

CDMA techniques for implementing multiple access. The allocation of PRN 

sequences and frequency sub-channels to the SVs is based on the constellation 

geometry with the purpose of minimising intra-system interference. GLONASS 

signals require a dedicated analysis as the correlation properties of PRN codes need 

to be analysed in combination with the frequency allocation. 

3.1 Overview on GNSS Legacy PRN Codes 

An overview on the current and planned GNSS signal characteristics is provided 

below. Table 3-1, Table 3-2, Table 3-3, Table 3-4, and Table 3-5 summarize the 

main parameters related to PRN codes for GPS, Galileo, BeiDou, QZSS, and IRNSS 

legacy signals. The information is mostly taken from public ICDs and refers to open 

services. 
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3.2 Randomness Properties 

The main target in the design of pseudo-random codes is to approach as much as 

possible the characteristics of pure random sequences. The measure of randomness 

for a spreading code set can be computed by evaluating the three Golomb’s 

postulates as described in [25]. For completeness, the postulates are stated below and 

the figures of merit derived in [25] for evaluating the postulates are also recalled. 

Note that it is out of scope of this thesis to assess the randomness properties of 

existing spreading code families. This section however helps understanding the 

performance figures at the basis of the PRN code set selection. 

3.2.1 Definitions 

Let ܿ[݊] = ܿ[0], ܿ[1], … , ܿ[ܰ − 1] be a finite binary sequence of length ܰ. A run of 

ܿ[݊] is defined as a sub-sequence consisting of uninterrupted equal symbols (0’s or 

1’s) preceded and succeeded by the opposite symbol. A run of 0’s is called ‘gap’ and 

a run of 1’s is called ‘block’. The sequence ܿ[݊] can be considered random if it 

satisfies the three Golomb’s postulates: 

1. Balance: the number of 1’s should differ from the number of 0’s by at 

most one. 

2. Run Property: at least half of the total number of runs should have length 

1, at least one-fourth length 2, one-eight length 3, and so forth until the 

number of runs left is one. Additionally, for each of these equal-length 

groups, there should be almost an equal number of blocks and gaps. 

3. Ideal Autocorrelation: The autocorrelation function ACF should be two-

valued, i.e. ܴ[݉] = 1 for ݉ = 0, and ܴ[݉] = −1/ܰ  for ݉ ≠ 0. 

3.2.2 Randomness Performance Criteria 

The performance figures derived in [25] for evaluating the postulates are 

summarised in the following. 
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Normalised Balance Factor (NBF): 

ܨܤܰ =

⎩
⎪
⎨

⎪
⎧1

ܭ


| ܰ
 − ܰ

ଵ|
ܰ



ୀଵ

for ܰ even

1
ܭ


| ܰ

 − ܰ
ଵ| − 1

ܰ



ୀଵ

for ܰ odd

 (3.1) 

where ܭ is the cardinality of the PRN code set, ܰ
 is the number of 0’s and ܰ

ଵ is 

the number of 1’s for the spreading code ܿ[݊]. 

Run Factor (RF) and Average RF: 

Let ܥ
ℓ be the number of runs of length ℓ, ℓ ∈ [1,  ,[݊]max] for the spreading code ܿܮ

and let ܥ  be the total number of runs. 

ܨܴ =
1

max,ܮ
 ቆ

ܥ
ℓ

ܥ
ቇ

ଶ

ቆ1 − 2ℓ ܥ
ℓ

ܥ
ቇ

ଶmax,ೖ

ℓୀଵ

 
(3.2) 

ܨܴܣ =
1
ܭ

 ܨܴ



ୀଵ

 (3.3) 

Gaps to Blocks Factor (GBF) and Average GBF: 

Let ܥ
ீ,ℓ be the number of gaps and ܥ

,ℓ the number of blocks of length ℓ, ℓ ∈

[1,  .[݊]max] for the spreading code ܿܮ

ܨܤܩ =
1

max,ܮ
 ቆ

ܥ
ℓ

ܥ
ቇ

ଶ

ቆ1 −
ܥ

ீ,ℓ

ܥ
,ℓቇ

ଶmax,ೖ

ℓୀଵ

 
(3.4) 

ܨܤܩܣ =
1
ܭ

 ܨܤܩ



ୀଵ

 (3.5) 

Auto-Correlation Deviation Factor (ACDF) and Average ACDF: 

ܨܦܥܣ =
1

ܰ − 1
 ൬1 −

[݊]ܨܥܣ
−1/ܰ

൰
ଶே

ୀଶ

 (3.6) 

ܨܦܥܣܣ =
1
ܭ

 ܨܦܥܣ



ୀଵ

 (3.7) 

 

The randomness properties are strictly linked to the auto- and cross-correlation 

properties discussed in Section 3.3. 

3.3 Auto- and Cross-Correlation Properties 

As already mentioned above, two commonly used metrics to weight the goodness of 

spreading codes are the auto-correlation and the cross-correlation. 

The derivation of the correlation function between spreading codes is well known 

from literature ([3] and others), therefore it is out of the scope of this thesis to repeat 
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it. The correlation expressions valid for any PRN code family are only recalled, as 

they constitute the basis for the following analysis. Below the assumptions 

underlying the correlation expressions are listed: 

 With reference to the notation adopted in Chapter 2, no distinction is done 

whether the spreading code family is for primary or secondary use, thus the 

subscripts ܲ, ܵ, or ܺ are omitted. 

 As this chapter focusses on the PRN codes properties, only the discrete code 

sequence ܿ[݊] is considered instead of the complete navigation signal (ݐ)ݏ 

described in Eq. (2.4). The discrete code sequence is sampled at chip rate. 

 It is assumed that the generic couple of codes ܿℓ[݊] and ܿ[݊] belong to the 

same code family with length ܰ. The removal of this assumption is 

discussed in Section 3.5. 

 In a first place the integration window length ூܰ, as defined in Eq. (2.33), is 

assumed to be equal to the code length ܰ. Section 3.4.1 explains the impact 

of the integration window on the correlation properties in relation to other 

parameters. 

 Symbols overlying the spreading codes (navigation data bits or secondary 

code chips) have an impact on the correlation properties. A stream of binary 

symbols modulated with BPSK technique is assumed as it is the most 

commonly adopted for navigation signals. 

3.3.1 Definitions 

The discrete-time linear correlation function between codes ܿℓ[݊] and ܿ[݊] is 

defined as: 

ܴ,ℓ[݉] =
1

ூܰ
 ܿ

∗[݊] ∙ ܿℓ [݊ − ݉]
ேିଵ

ୀ

, for ݉ ߳ [0, 2 ூܰ − 1] 
(3.8) 

where ‘*’ as superscript denotes the complex conjugation. The expression above 

gives an indication about the interaction between the two codes. In order to 

distinguish one signal from the other, the function ܴ,ℓ[݉] shall be: 

 as small as possible for ݆ ≠ ℓ and for any value of ݉, 

 as small as possible for ݆ = ℓ and for any value of ݉ ≠ 0, 

 as big as possible for ݆ = ℓ and for ݉ = 0. 
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and by zero-padding the local replica. The software implementation of the 

correlation function becomes: 

ܴ,ℓ[݉] =
1

2 ூܰ
 ܥ̅

∗[݇] ∙ ℓܥ
[݇] ∙ ݁ଶగ 

ଶே


ଶேିଵ

ୀ

= IDFT൛̅ܥ
∗[݇] ∙ ℓܥ

[݇]ൟ 
(3.11) 

where ̅ܥ[݇] is the DFT of the local replica zero-padded over 2 ூܰ and ܥℓ
[݇] is the 

Fourier Transform of the received signal including the Doppler frequency offset 

defined over 2 ூܰ. Figure 3–3 provides a visual representation of Eq. (3.11). 

 
Figure 3–3: Correlation Values Implementaiton.  

The result of this operation is displayed in Figure 3–4 where the even and odd ACF 

are computed for Galileo E1-C SVID 1. 

Figure 3–4: Auto-Correlation Function for Galileo E1-C PRN Code 1. 

Note that correlation values are doubled due to the circular nature of the DFT 

computed over a support twice the length of the PRN code (2 ூܰ = 8184). In the 

same way, spreading codes correlation characteristics do not change by integrating 

over multiple replicas. The effect obtained by applying the correlation operation 
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over multiple PRN codes is that the signal power, i.e. the correlation magnitudes, 

grows linearly with the number of replicas. However, when looking at the 

normalized ACF and CCF magnitudes the amplitude of the correlation peaks is 

unchanged. 

Eq. (3.11) is the selected approach adopted in the next sections for computing the 

statistics at the basis of spreading codes performance criteria. The integration over 

multiple replicas is further discussed in Section 3.4.3. 

Finally, note that the statistical correlation formulas provided in Chapter 2 are also 

recalled later and shall be considered as asymptotic behaviour for the linear and 

circular correlation functions of pseudo-random codes.  

3.3.2 Correlation Performance Criteria 

Designing codes optimized for all potential GNSS applications and various types of 

receiver implementations is practically impossible. Therefore, given that the design 

space of PRN codes is already highly complex and multi-dimensional, the 

application of a code-centric approach seems the one followed by both Galileo and 

GPS when designing PRN code sets in the last years. 

Calculating all correlation levels for any PRN code set, accounting not only for their 

relative delay but also including the impact of Doppler frequency offset and data 

modulation, results in an extremely huge amount of data, which needs to be 

condensed in some way in order to result in a small number of significant figures 

being able to characterize the goodness of the set itself. Here are some very well-

known approaches taken from [28]. 

A benchmark for PRN code correlation properties is represented by the so-called 

Welch Lower Bound, which defines the theoretical minimum of the maximum 

achievable out-of-phase auto- and cross-correlation magnitudes. [27] provides a 

mathematical definition of the Welch Bound for any set of PRN sequences. The 

expression is reported in Eq. (3.12), where ܭ is the cardinality of the PRN code set 

and ܰ is the length of the sequence. ܴௐ is normalized to the ACF peak. 

max
,ℓ,

൛ ܴ,ℓ[݉]ൟ ≥ ܴௐ = ඨ ܭ − 1
ܰܭ − 1

 
(3.12) 
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Taking GPS L1-C/A as an example, the 32 Gold codes with length ܰ = 1023 chip 

result in a maximum side-lobe higher or equal to 20݈݃ଵ ቆට ଷଶିଵ
ଷଶ∙ଵଶଷିଵ

ቇ ≅

−30.2 dB. 

One criterion to measure the performance of PRN code sequences is to compare the 

maximum correlation magnitude with the Welch Lower Bound. The comparison 

tells, for a given cardinality ܭ and code length ܰ, how good the PRN code family is 

and if there is margin for improvement. This approach however does not take into 

account for the statistical distribution of the correlation values, which in some cases 

can be very low except few outliers. 

A way to overcome the limitations represented by this criterion is to look at the so-

called Correlation Percentiles (CP). The correlation percentile criterion is a highly 

valuable figure of merit as it identifies not only potential outliers but also the 

maximum correlation magnitude and some information about the statistical 

distribution. 

For a given family of PRN codes, the percentiles are computed on the cumulative 

distribution function of the auto- and cross-correlation magnitudes. In probability 

theory, given a set of PRN codes ൛ ܿ[݊]ൟ
ୀଵ
 , the following countable sample spaces 

can be defined: 

 Ωி ⊂ ℚ
ା, is the sample space represented by all possible correlation 

values ܴ,ℓ
ி[݉], computed according to Eq. (3.8) and (3.9) respectively for 

the even and odd case, with ݉ ∈ {1, … , ܰ}, ݆ ∈ {1, … , ,{ܭ ℓ = ݆. 

 Ωி ⊂ ℚ
ା, is the sample space represented by all possible correlation 

values ܴ,ℓ
ி[݉], computed as in Eq. (3.10), with ݉ ∈ {1, … , ܰ}, (݆, ℓ) ∈

{1, … , ℓ ,{ܭ ≠ ݆ and for a given ߠ. 

ܴ݆,ℓ
and ܴ݆,ℓ [݉]ܨܥܣ

 are considered as magnitudes (absolute value) and normalized [݉]ܨܥܥ

to ܴ݆,ℓ
 .[0]ܨܥܣ

Defining the Probability Density Function (PDF) ோ݂(ݎ): Ω → [0,1] for ܴ as ோ݂(ݎ) =

ܲ(ܴ =  :is expressed by the equality ܲܥ the correlation percentile ,(ݎ
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 ܲ(ܴ ≤ (ܲܥ = න ோ݂(ߩ)݀ߩ


ିஶ
= ܲ (3.13) 

where ܲ is a given probability. In words, the ܲ-th percentile is the value ܲܥ below 

which ܲ percent of the correlation magnitudes fall, in the group of all possible 

correlation values. 

Figure 3–5 shows the histogram of occurrences for the discrete set of auto-

correlation magnitudes Ωܨܥܣ of Galileo E1-C primary PRN codes. Note that 

formally an histogram of occurrences is not a probability density function, however 

in this case it is treated as an approximation of ோ݂(ݎ). The PDF is intentionally not 

normalized to 1 so that the number of occurrences can be read. The number of 

events is represented by 50 PRN codes times a code length of 4092 chip (204,600 

events). Note that the distribution is mostly concentrated around zero as it is 

expected for pseudo random noise codes: Figure 3–6 (left) and Figure 3–6 (right) 

represent narrow slices of the PDF in Figure 3–5, respectively for ACF values 

respectively close to 0 and 1. A small peak shows the occurrence of ܴ݆,ℓ
[0]ܨܥܣ = 1 that 

is equal to 50 for a PRN code family of 50 codes. 

Going back to the correlation percentiles computation, the smaller the probability ܲ, 

the smaller the ܲܥ. On the other hand, for ܲ = 100% the correlation percentile ܲܥ 

corresponds to the maximum normalized correlation magnitude, which is always 

equal to 1 (or 0 dB) for the case of even and odd auto-correlation analysis. 

 

 

Figure 3–5: Even Auto-Correlation Histogram for Galileo E1-C Primary PRN Codes. 
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Figure 3–6: Even Auto-Correlation Histogram for Galileo E1-C Primary PRN Codes (details). 

Correlation percentiles for Galileo E1-C PRN codes family are provided in Table 

3-6. 
Table 3-6: Correlation Percentiles for Galileo E1-C PRN Codes. 

  Percentiles 
  68% 95% 99.7% 99.99% 99.999% 100% 
ACF 
[dB] 

Even -36.1 -30.4 -27.5 0 0 0 
Odd -36.1 -30.5 -27.4 0 0 0 

CCF 
[dB] 

Even -36.0 -30.3 -27.1 -25.5 -24.9 -24.5 
Odd -36.0 -30.3 -27.1 -25.6 -25.0 -24.4 

 

Note that, while the limits for the normalised correlation magnitudes are set by 

definition, the resolution or bin width used for the generation of the histogram plays 

an important role. A typical choice in this thesis is to assume the resolution equal to 

1 ܰ⁄ , however smaller bins can be used especially when comparing correlation 

performance of PRN code sets with different length. The percentiles computed from 

the histogram of occurrences may slightly differ depending on the histogram scale. 

 

The last figure of merit here considered is the correlation histogram that consists in a 

two-dimensional plot representing the relative occurrence of correlation magnitudes 

in dB. The frequency of occurrence is normalized by the amount of correlation 

operations which are computed over the set of spreading codes. Figure 3–7 and 

Figure 3–8 show respectively the auto- and cross-correlation histograms for Galileo 

E1-C PRN code set. 
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Figure 3–7: Auto-Correlation Histograms for Galileo E1-C PRN Codes. 

 

Figure 3–8: Cross-Correlation Histograms for Galileo E1-C PRN Codes. 

Three series are depicted for each correlation histogram: 

 The minimum/maximum relative frequency of occurrence of each 

correlation magnitude over all given couples ൫ ܿ , ܿℓ൯ are represented with 

blue ‘+’ connected by a continuous line. When at least one couple does not 

show a correlation magnitude, the minimum relative frequency is zero and 

the blue line disappears beyond the axis representation. 

 The mean frequency of occurrence of each correlation magnitude over the 

whole set of correlation operations are represented with black ‘o’. 
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 The cumulative frequency of occurrence of correlation amplitudes is 

depicted with a red line. This curve must not be confused the cumulative 

density function ܲ(ܴ ≤  used to compute the correlation percentiles. In (ݎ

this case the cumulative frequency corresponds to ܲ(ܴ ≥  .(ݎ

Finally, the following rule-of-thumb for the average PRN codes properties is 

recalled from [3]: 

 From a statistical analysis, it is demonstrated that the standard deviation for 

auto-correlation side-lobes tends to 20݈݃ଵ൫1 √ܰ⁄ ൯. As an example, the 

side-lobes for a ܰ = 1023 code are approximately 30 dB below the main 

peak. 

 The standard deviation for cross-correlation side-lobes is the same as for 

auto-correlation side-lobes. 

Note that the Welch Bound approaches the above rule-of-thumb for long spreading 

codes: 

ܴௐ ≈
1

√ܰ
, for ܰ → ∞ (3.14) 

3.4 PRN Code Set Self-Interference 

In this thesis the interference caused by a PRN code set on it-self is referred to as 

self-interference (SI); in communications this is also called Multiple Access 

Interference (MAI) and it represents the opposite concept of CDMA isolation. 

In the previous section the properties and performance criteria of spreading codes 

are described only by looking at the pure binary PRN sequences. This section 

provides a sensitivity analysis on the influence of signal design parameters such as 

overlay codes, chip shape, and sub-carrier onto the PRN code set self-interference. 

The effects of Doppler frequency offset and integration time are also analysed with 

computational examples taken from legacy GNSS signals. 

3.4.1 Tiered Codes 

It is well known that a method of generating longer ranging codes is to use a slower 

and smaller length code, the secondary code, in combination with a faster and 

medium length primary code to form the so-called tiered code. Tiered codes are a 

common feature of new GNSS signals; however understanding the pros and cons of 
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this code structure is not so straight forward. According to literature, the use of 

secondary codes brings the following advantages: 

 Narrow-band interference resistance. Secondary codes modulate the 

primary codes with the effect of spreading the power over more spectral 

lines; as a consequence, the signal results in an increased resistance to 

continuous waves and narrow-band interference. This is most likely the 

main reason for the extensive use of overlay codes in GNSS L5 band which 

lies within the ARNS band (see Figure 2–12). 

 Bit synchronization. For data components, when the bit duration is equal to 

multiple primary code periods (e.g. GPS L1-C/A), a bit synchronization 

algorithm based on the histogram of sign changes is generally adopted. The 

introduction of a secondary code allows for easy and fast bit synchronization 

through the sequence alignment. This is for instance the design choice for 

the Galileo E5a-I and E5b-I data components. 

 Time ambiguity resolution. Spreading codes longer than the travel time 

allow the receiver to determine unambiguously the time of transmission 

without the need to demodulate the navigation message. In other words, if 

the a-priori course time is known to within the length of the overlay code, 

the precise time of transmission can be determined through code alignment. 

An example is represented by the Galileo E1-C secondary code which 100 

ms periodicity covers the Galileo satellites maximum ranging distance, in 

numbers: (29600 km − 6.371 km) ∙ 10ଷ (3 ∙ 10଼ m/s)⁄ = 98.6 ms. 

 CDMA isolation. The modulation of primary code sequences with a 

secondary code also enables the receiver to perform longer coherent 

integrations in weak signal conditions. It is common understanding that 

longer ranging codes result in reduced multiple access interference. 

Focusing on the last point, in the author’s knowledge there is currently no reference 

in the literature that showing the actual advantage introduced by tired codes on the 

correlation properties. 

In the following, an assessment of the CDMA isolation properties characterizing 

tiered codes is presented. The starting point for investigating CDMA isolation 

properties of tiered sequences is represented by the current and planned GNSS signal 
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characteristics summarized in Section 3.1. By looking at the PRN codes parameters 

from Table 3-1 to Table 3-5, the following general observations can be done. 

 All primary codes are characterized by a length integer multiple of 1023 

chips, as well as a chip rate multiple (or fraction) of the fundamental 

frequency 1.023 Mcps. This results in a primary code periodicity always 

multiple (or fraction) of 1 ms. 

 L1 Band: The primary code length varies from 1023 to 10,230 chip. The 

secondary code in some cases is not present (GPS L1-C/A, Galileo E1-B), 

while in some other cases it is either only one sequence (Galileo E1-C, 

BeiDou B1) transmitted by all SVs or a full set of overlay sequences (GPS 

L1-C pilot). 

 L5 Band: Galileo E5 and GPS L5 signals are all characterized by a primary 

code length of 10,230 chips and the presence of secondary codes. 

o Galileo E5a-I, E5b-I and GPS L5-I, L5-Q present the same secondary 

code for all SVs. Three different lengths of secondary codes are used 

(4 chip, 10 chip, 20 chip), in accordance with the three different data 

rates (250 bps, 100 bps, 50 bps). 

o Galileo E5a-Q and E5b-Q on the other hand present a whole PRN 

secondary code family, which means that each SV transmits a 

different couple of primary and secondary codes. 

 

In [25] the effect of secondary codes on the Galileo E5a-I spreading sequences are 

briefly discussed and it is concluded that tiered codes benefit from the additional 

CDMA isolation provided by the secondary codes as long as the relative delay 

between the two spreading sequences is not a multiple of the secondary code period. 

However simulations of the Galileo constellation over one day with 1 s step show 

that the difference between the minimum and maximum pseudoranges observed by 

any user on the Earth can be up to about 20 ms. When comparing this relative delay 

with the periods of secondary codes in Galileo signals baseline, it is clear that the 

case described in [25] never occurs for the pilot components E1-C, E5a-Q and E5b-

Q; on the other hand, data components E5a-I, E5b-I, and E1-B are subject to self-

interference when integrating over the secondary codes duration. 
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It is of interest to compute the correlation performance of tiered codes in case each 

SV transmits the same overlay code and in case each SV transmit a different couple 

of primary and secondary codes, and to compare the obtained results with the 

CDMA isolation properties of the primary codes alone. 

Starting from the navigation signal description provided in Section 2.2.1, the 

periodic pattern combining primary codes ݏ(ݐ) and secondary codes ݏௌ(ݐ) is 

constructed by multiplying in Eq. (2.6) the generic secondary code pulse shape ௌ(ݐ) 

with the periodic sequence of the primary code ̅ݏ(ݐ): 

⎩
⎪⎪
⎨

⎪⎪
(ݐ),ௌݏ̅⎧ =  ൫̅ݏ(ݐ) ∙ ൯(ݐ)ௌ ∗   ܿௌ[݊ௌ] ∙ ݐ)ߜ − ݊ௌ ௌܶ)

ேೄିଵ

ೄୀ



(ݐ)ݏ̅ = (ݐ)  ∗   ܿ[݊] ∙ ݐ)ߜ − ݊ ܶ)
ேುିଵ

ುୀ



 (3.15) 

Further, it is assumed that the pulse shapes (ݐ) and ௌ(ݐ) are rectangular functions 

normalised to unit area: 

(ݐ),ௌݏ̅ =    ܿ[݊] ∙ ݐ)ݐܿ݁ݎ − ݊ ܶ)
ேುିଵ

ುୀ

 ∗   ܿௌ[݊ௌ] ∙ ݐ)ߜ − ݊ௌ ௌܶ)
ேೄିଵ

ೄୀ

 (3.16) 

being ௌܶ = ܰ ∙ ܶ, and by sampling at sampling frequency ݂ = 1 ܶ⁄ , it results: 

[݊],ௌݏ̅ =   ܿௌ[݊ௌ] ∙  ܿ[݊ − ݊ − ܰ ∙ ݊ௌ]
ேುିଵ

ುୀ

ேೄିଵ

ೄୀ

 (3.17) 

The statistical auto-correlation function of the signal described in Eq. (3.17) can be 

expressed as (see [5]): 

෨ܴ௦̅[݉] = ෨ܴೄ[݉] ∗ ෨ܴು[݉]  (3.18) 

Additionally, the statistical cross-correlation function between two period patterns 

 :,ௌ[݊] transmitted respectively by SVIDs ݆ and ℓ is provided belowݏ̅

෨ܴ௦̅,,ℓ[݉] = ෨ܴೄ,,ℓ[݉] ∗ ෨ܴು,,ℓ[݉] (3.19) 

Note that, in case the same secondary code is transmitted on all signals, ෨ܴೄ,,ℓ[݉] 

assumes always the same value ෨ܴೄ
[݉]. 

 

In the following the even/odd correlation histograms and percentiles are computed 

for the Galileo E5a legacy signal which represents the best candidate for this 

analysis as its spreading codes design on components E5a-I and E5a-Q offers both 

types of tiered codes under investigation. 
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The percentiles of interest for this analysis are the 68%, 95% and 99.7% 

corresponding respectively to 1-σ, 2-σ and 3-σ of a Gaussian distribution. The 100% 

percentile corresponds to the maximum normalized correlation magnitude, which is 

always equal to 1 (or 0 dB) for the case of even and odd auto-correlation analysis. 

The Doppler frequency offset is not considered in this section and ߠ is set to 0 in 

Eq. (3.9) and (3.10). 

 

Galileo E5a-I 
Galileo E5a-I data component transmits a 10,230 chip primary code at 10.230 Mcps. 

The spreading code periodicity is thus 1 ms as for GPS L1-C/A. However, being the 

sequence 10 times longer that the L1-C/A Gold codes, the CDMA isolation is also 

on average 10 dB better. This statement is confirmed by computing the Welch 

Bound in Eq. (3.12) for the following two cases: 

 GPS L1-C/A: ܰ = 1023 chip and ܭ = 32, ܴௐ ≅ −30.2 dB 

 Galileo E5a-I: ܰ = 10,230 chip and ܭ = 50, ܴௐ ≅ −40.2 dB 

As already shown in Eq. (3.14), the cardinality of the PRN code set tends to be 

negligible for long codes. The auto- and cross-correlation histograms for Galileo 

E5a-I primary codes are shown in Figure 3–9 and Figure 3–10. 

Figure 3–9: Galileo E5a-I Primary PRN Codes, Auto-Correlation Histograms. 
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Figure 3–10: Galileo E5a-I Primary PRN Codes, Cross-Correlation Histograms. 

Note that the maximum normalized magnitude for auto-correlation side-lobes is 

about -28.5 dB, and for cross-correlation side-lobes about -25.5 dB. These values are 

quite far from the Welch Bound. 

 

Combining E5a-I primary codes with the 20 chip secondary code transmitted at 1 

kcps, a tiered sequence 204,600 chip long and with 20 ms periodicity is obtained. 

The secondary code sequence period matches with the data bit duration, resulting in 

a data rate of 50 bps. The analogy with GPS L1-C/A is again strong as both signals 

transmit the navigation message at 50 bps. However, while L1-C/A transmits 20 

consecutive primary codes without modulation, E5a-I secondary sequence 

modulates the 20 primary codes by adding on average a sign flip at each primary 

code change.  

The auto- and cross-correlation histograms for Galileo E5a-I tiered codes are shown 

in Figure 3–11. While the cross-correlation properties show a good behaviour and 

even an improvement w.r.t. the E5a-I primary PRN codes, the auto-correlation 

function presents high side-lobes at -14 dB and -20 dB. These undesired correlation 

peaks are no surprise as they originate from the auto-correlation of the secondary 

code. 
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Figure 3–11: Galileo E5a-I Tiered PRN Codes, Correlation Histograms. 

 

Figure 3–12 shows that the normalized correlation magnitudes of Galileo E5a-I 

secondary code assume values in the discrete set {0.2, 0.1, 0}, which in dB 

corresponds to {-14dB, -20dB, -Inf}. Even case is marked with blue ‘o’ and odd 

case with red ‘*’. 

Table 3-7 provides a summary of E5a-I correlation properties in terms of percentiles. 

Even if the maximum correlation magnitude is not close to the Welch Bound, the 

68th correlation percentile for E5a-I primary codes follows the average performance 

for standard deviation as expressed by Eq. (3.14). The same cannot be stated for the 

tiered codes: PRN codes 204,600 chip long would result in a standard deviation of 
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about -53.1 dB, while the tiered codes show a 1-σ value of -61.5dB and -57.5dB for 

respectively the even and odd case. 

 

Figure 3–12: Galileo E5a-I Secondary PRN Code, Auto-Correlation Amplitudes. 

With reference to the CDMA isolation property, it can be stated that the tiered codes 

show some improvement in cross-correlation performance with respect to the simple 

primary code sequence mainly for low correlation values. On the other hand, the 

auto-correlation analysis reveals inconveniently high side-lobes that could lead to 

false lock during acquisition. The integration over the full E5-I tired code period 

does not seem to be an advantage from the point of view of the correlation 

properties. 
Table 3-7: Galileo E5a-I, Correlation Percentiles. 

   Percentiles 
   68% 95% 99.7% 99.99% 99.999% 100% 

E
5a

-I
 

Pr
im

ar
y ACF 

[dB] 
Even -40.4 -34.1 -30.7 -28.6 0 0 
Odd -40.4 -34.2 -30.7 -28.6 0 0 

CCF 
[dB] 

Even -40.4 -34.1 -30.5 -28.3 -27.2 -25.7 
Odd -40.4 -34.1 -30.5 -28.3 -27.2 -25.9 

E
5a

-I
 

Ti
er

ed
 

ACF 
[dB] 

Even -61.5 -47.4 -35.5 -31.2 -14.0 0 
Odd -57.6 -47.1 -35.4 -30.4 -14.0 0 

CCF 
[dB] 

Even -61.5 -47.3 -35.4 -31.2 -29.7 -27.2 
Odd -57.5 -47.0 -35.4 -31.2 -29.7 -27.3 

 

Galileo E5a-Q 
Like Galileo E5a-I, Galileo E5a-Q pilot component transmits a 10,230 chip primary 

code at 10.230 Mcps, resulting in a spreading code periodicity of 1 ms. The auto- 
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and cross-correlation histograms for Galileo E5a-Q primary codes are shown in 

Figure 3–13. 

 

Figure 3–13: Galileo E5a-Q Primary PRN Codes, Correlation Histograms. 

 

The correlation properties of E5a-Q primary codes are the same as those of E5a-I 

primary sequences as it can be seen by comparing the correlation percentiles in 

Table 3-7 with the values provided in Table 3-8. 
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Table 3-8: Galileo E5a-Q, Correlation Percentiles. 

   Percentiles 
   68% 95% 99.7% 99.99% 99.999% 100% 

E
5a

-Q
 

Pr
im

ar
y ACF 

[dB] 
Even -40.4 -34.3 -30.7 -28.6 0 0 
Odd -40.4 -34.1 -30.6 -28.6 0 0 

CCF 
[dB] 

Even -40.4 -34.1 -30.5 -28.3 -27.2 -26.2 
Odd -40.4 -34.1 -30.5 -28.3 -27.2 -25.2 

E
5a

-Q
 

Ti
er

ed
 ACF 

[dB] 
Even -70.0 -60.5 -40.3 -31.9 -21.9 0 
Odd N/A N/A N/A N/A N/A N/A 

CCF 
[dB] 

Even -62.6 -53.5 -47.1 -42.9 -40.9 -35.4 
Odd N/A N/A N/A N/A N/A N/A 

E
5a

-Q
 

Se
co

nd
ar

y ACF 
[dB] 

Even -28.0 -21.9 0 0 0 0 
Odd N/A N/A N/A N/A N/A N/A 

CCF 
[dB] 

Even -20.0 -14.0 -10.5 -8.4 -7.5 -7.5 
Odd N/A N/A N/A N/A N/A N/A 

 

Combining E5a-Q primary codes with 100 chip overlay codes, a tiered sequence 

1,023,000 chip long and with 100 ms periodicity is obtained. Figure 3–14 provides 

the auto- and cross-correlation histograms for the E5a-Q tired codes. Only the even 

case is displayed as no navigation message is transmitted on the pilot component. 

Figure 3–14: Correlation Histograms for Galileo E5a-Q Tiered PRN Codes. 

Note that: 

 the cross-correlation properties are improved w.r.t. the E5a-Q primary PRN 

codes; 

 the auto-correlation function presents some side-lobes starting from -22 dB 

and -28 dB. These values can be observed also in the auto-correlation 

histogram of the E5a-Q secondary codes family (Figure 3–15). 
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With reference to the CDMA isolation property, it can be stated that the E5a-Q 

tiered codes show a significant improvement in cross-correlation performance with 

respect to the simple E5a-Q primary codes. The auto-correlation analysis on the 

other hand shows high side-lobes. The integration over the full E5-Q tired code 

period is feasible from the point of view of the correlation properties. 

The results in Table 3-8 also reveal that the 68th correlation percentile for E5a-Q 

tiered codes reaches the -60.2 dB average performance for standard deviation as 

expressed by Eq. (3.14). 

Figure 3–15: Galileo E5a-Q Secondary PRN Codes, Correlation Histograms. 

To summarise on the findings of this section, the following conclusions on the 

CDMA isolation of tired codes can be drawn: 

 The use of ‘short’ secondary codes, whether they are the same for all SVs or 

different ones, results in degraded auto-correlation properties. This 

represents a disadvantage on the receiver side for signal acquisition 

operations. 

 When the transmitted secondary code is the same on all SVs, the cross-

correlation properties do not show a significant improvement compared to 

the cross-correlation properties of the primary code set. 

 The use of different secondary codes on the SVs improves significantly the 

cross-correlation properties compared to the cross-correlation properties of 

the primary code set. 
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3.4.2 Sub-Carrier and Chip Shape 

Second generation GNSS signals are mostly characterized by a BOC-type 

modulation, where the chip sequence is multiplied by a rectangular sub-carrier of 

frequency equal or higher to the chip rate. Following this sub-carrier multiplication, 

the spectrum of the signal is split into two parts, therefore BOC modulation is also 

known as a split-spectrum modulation (see [19]). 

The multiplication with one or more square sub-carriers results in a multi-modal 

autocorrelation function that makes acquisition and tracking operations more 

difficult. In some cases, like for the CBOC modulation adopted for the transmission 

of Galileo E1 OS described in [18], the multiplication with square sub-carriers also 

results in a multi-level chip shape as the one depicted in Figure 3–16 representing 

the anti-phase E1 pilot component. 

 
Figure 3–16: Castle Chip Shape for Galileo E1-C. 

The effect of a multi-level chip shape can be observed through the performance 

criteria described in Section 3.3.2. The expression of the auto- and cross-correlation 

function can be easily derived taking into account the statistical properties of the 

spreading codes. By recalling Eq. (2.13), the statistical auto-correlation function can 

be expressed in the discrete domain as: 

෨ܴ௦[݉] = ෨ܴ[݉] ∗ ܴ[݉]  (3.20) 

were the sampling frequency is higher than the chip rate and shall be chosen to 

satisfy the Shannon theorem for the pulse shape, the sign ‘~’ stands for ‘statistical’, 

and ܴ[݉] is the deterministic auto-correlation of the pulse or chip shape. The same 

hold for the statistical cross-correlation:  
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෨ܴ[݉] = ෨ܴ,,ℓ[݉] ∗ ෨ܴ[݉]  (3.21) 

 

Following the example of Galileo E1-C, it is of interest to compute the correlation 

percentiles and the correlation histogram for the E1-C PRN code family by 

introducing the effect of the chip shape in the following two cases: BOC(1,1) 

modulation, and CBOC(6,1,1/11) modulation. 

The auto- and cross-correlation histograms for Galileo E1-C signal in the two 

abovementioned cases are shown respectively in Figure 3–17 and Figure 3–18. 

Figure 3–17: Galileo E1-C, Correlation Histograms, BOC(1,1) Chip Shape. 
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The PRN code auto-correlation histograms for BOC(1,1) chip shape clearly show 

the presence of the secondary lobes with magnitude -6 dB and occurrence twice the 

occurrence of the main ACF peak. The cross-correlation histograms do not present 

any sensitive improvement or deterioration with respect to the case of the pure E1-C 

PRN codes analysed in Section 3.3.2. 

Figure 3–18: Galileo E1-C, Correlation Histograms, CBOC(6,1,1/11) Chip Shape. 

For the CBOC(6,1,1/11) modulation, the PRN code ACF properties are strongly 

impacted by the multi-level chip shape which results in very high correlation values 

such as -5 dB, -5.5 dB, -8 dB, -8.5 dB etc. The CCF magnitudes on the other hand 

are more spread towards lower values revealing some improvement with respect to 



Chapter 3. Pseudo-Random Noise Codes 

 

67 

the pure E1-C PRN codes. This can be observed by comparing the CPs in Table 3-9. 

It has to be noted however that the maximum values of the CCF are those that 

represent the worst self-interference case and these remain unchanged in all three 

modulation cases. 
Table 3-9: Galileo E1-C, Correlation Percentiles. 

   Percentiles 
   68% 95% 99.7% 99.99% 99.999% 100% 

N
o 

C
hi

p 
Sh

ap
e 

ACF 
[dB] 

Even -36.1 -30.4 -27.5 0 0 0 
Odd -36.1 -30.5 -27.4 0 0 0 

CCF 
[dB] 

Even -36.0 -30.3 -27.1 -25.5 -24.9 -24.5 
Odd -36.0 -30.3 -27.1 -25.6 -25.0 -24.4 

B
O

C
 

C
hi

p 

ACF 
[dB] 

Even -37.9 -31.6 -27.9 0 0 0 
Odd -37.8 -31.6 -27.8 0 0 0 

CCF 
[dB] 

Even -37.6 -31.4 -27.7 -25.9 -25.1 -24.5 
Odd -37.6 -31.4 -27.7 -25.8 -25.2 -24.4 

C
B

O
C

 
C

hi
p 

ACF 
[dB] 

Even -43.3 -35.6 -29.6 -5.5 0 0 
Odd -43.2 -35.6 -29.7 -5.5 0 0 

CCF 
[dB] 

Even -43.1 -35.5 -29.8 -26.6 -25.7 -24.5 
Odd -43.1 -35.5 -29.7 -26.6 -25.6 -24.4 

 

Table 3-9 also reveals the limitations of the CP criterion with respect to other 

methods like the correlation histogram: ACF side-lobe values are not entirely 

captured by the selected CPs but these are all visible on the correlation histogram. 

Note that the correlation points highlighted by the correlation histogram are ‘proper’ 

side-lobes only for the case of the BOC(1.1) modulation, where ‘proper’ means that 

these are stationary points (or local maxima/minima) of the correlation function. The 

specific shape of the CBOC(6,1,1/11) results in an ACF with saddle points, still 

difficult to handle in tracking. This is the main reason for limiting the choice of 

early-late spacing values in Galileo E1 OS tracking. 

From the results of this section, the following observations can be made: 

 Multi-level coded symbols, such as BOC(1,1) CBOC(6,1,1/11) modulations, 

do not lead to a significant improvement of the spreading codes CDMA 

isolation in terms of cross-correlation properties; 

 On the other hand, the analysed chip shapes introduce undesired high peaks 

in the auto-correlation function that can lead to false acquisition or tracking. 

Being the position of secondary lobes deterministic w.r.t. the main peak, 

several techniques have been proposed in literature for ensuring the correct 

code phase lock. 
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3.4.3 Integration Time and Doppler Frequency 

In Eq. (3.10) the expression of the CCF is provided as a function of the Doppler 

frequency offset. This parameter, up to now neglected, also plays an important role 

in the CDMA isolation, especially in relation to the integration window. 

As widely discussed in Chapter 2, the fine structure of GNSS signals is represented 

by spectral lines which magnitude and location depend on the specific spreading 

code. By looking at the cross-correlation operation in the frequency domain, the 

Doppler frequency offset between two signal spectra translates into a relative 

displacement on the frequency axis. It is straightforward that the CCF amplitude is 

higher when the spectral lines overlap and it is lower in all other cases. In other 

words the self-interference is maximized for Doppler frequency offsets integer 

multiple of the lines spacing ([35]). 

On the other hand, the ‘line spectrum’ as described in Chapter 2 is represented by an 

analytical expression that matches the measured PSD only for an infinite observation 

time. The receiver however works with finite integration windows which duration 

depends on many factors, both related to the navigation signal structure and to the 

receiver technological constraints. The presence of data symbols or overlay code 

chips intrinsically limit the coherent integration to the chip or symbol duration. 

The best example to clarify this concept is represented by the GPS L1-C/A signal, 

which is designed to transmit 20 spreading codes in a symbol period. It is a typical 

approach for commercial receivers to acquire and track this signal by integrating 

over multiple PRN code sequences. However, as shown in [38], the average bit 

alignment loss increases as the coherent interval increases. The coherent interval for 

the C/A code continues to be useful up to 13 ms. It is of interest in the following to 

analyse the effect of multiple integrations in terms of auto- and cross-correlation 

performance. To this scope, the even and odd normalised auto-correlation function 

computed according to the methodology in Section 3.3.1 is represented in Figure 3–

19 for an integration time of 1 ms. 
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Figure 3–19: GPS L1-C/A PRN Code 1, Auto-Correlation Function, ࡵࢀ =  ms. 

Further, the same functions are provided in Figure 3–20 and Figure 3–21 for an 

integration time of respectively 3 ms and 7 ms. 

Note that by increasing the integration time the statistics is unchanged for the even 

CF values, while new peaks and magnitude values appear in the odd case. The 

explanation is straightforward as the sign flip causes the elimination of opposite 

contributions accumulated by coherent integration. 

Figure 3–20: GPS L1-C/A PRN Code 1, Auto-Correlation Function, ࡵࢀ =  ms. 

In particular, for the case of 3 ms integration time the normalised odd ACF presents 

four peaks with value 0.33, that corresponds to -9.6dB. While for the case of 7 ms, 
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the normalized odd correlation presents high peaks in the set {0.71, 0.43, 0.14}, 

which in dB corresponds to {-3dB, -7.3dB, -17.1dB}. 

Figure 3–21: GPS L1-C/A PRN Code 1, Auto-Correlation Function, ࡵࢀ = ૠ ms. 

 

The GPS L1-C/A correlation percentiles are provided in Table 3-8 for three different 

values of coherent integration and 0 Hz Doppler offset. 
Table 3-10: GPS L1-C/A CPs versus Integration Time, 0 Hz Doppler Offset. 

   Percentiles 
   68% 95% 99.7% 99.99% 99.999% 100% 
TI = 
1 ms 

ACF 
[dB] 

Even -60.2 -23.9 -23.9 0 0 0 
Odd -30.4 -23.9 -20.3 0 0 0 

CCF 
[dB] 

Even -60.2 -23.9 -23.9 -23.9 -23.9 -23.9 
Odd -30.4 -23.9 -20.6 -18.4 -17.7 -16.5 

TI = 
3 ms 

ACF 
[dB] 

Even -60.2 -23.9 -23.9 0 0 0 
Odd -38.4 -25.7 -23.3 0 0 0 

CCF 
[dB] 

Even -60.2 -23.9 -23.9 -23.9 -23.9 -23.9 
Odd -38.4 -25.7 -23.3 -22.1 -21.5 -20.8 

TI = 
7 ms 

ACF 
[dB] 

Even -60.2 -23.9 -23.9 0 0 0 
Odd -44.4 -26.0 -23.8 0 0 0 

CCF 
[dB] 

Even -60.2 -23.9 -23.9 -23.9 -23.9 -23.9 
Odd -44.8 -26.1 -23.9 -23.3 -23.0 -22.6 

The previous observation is confirmed by looking at the even percentiles of the 

ACF: these values are unchanged w.r.t. the integration time. The odd percentiles, on 

the other hand, fluctuate but not significantly. As pointed out in Section 3.4.2, the 

limitations of the CP criterion with respect to the correlation histogram are evident: 

ACF peak values are not entirely captured by the selected CPs but these are all 

visible on the correlation histogram (see Figure 3–21). 
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Figure 3–22: GPS L1-C/A PRN Code 1, Auto-Correlation Histograms, ࡵࢀ = ૠ ms. 

 

The relationship between the correlation values and the integration window can be 

further extended to the Doppler frequency offset for the cross-correlation case. In the 

following, a set of CCF percentiles {60%, 90%, 98%, 99.9%} is displayed as a 

function of the Doppler frequency offset for different durations of the integration 

window. The percentiles have been selected in order to allow a comparison with 

those provided in [1] Table 4.8 and 4.9. For visualisation purposes, and give the 

periodic behaviour of the curves, in the following figures the frequency axis is 

limited to the interval 0 Hz – 5,000 Hz; the Doppler offset however can reach values 

up to about 8,000 Hz for the GPS constellation as shown in Chapter 4, Figure 4–22. 

 

Figure 3–23 displays the behaviour of the correlation percentiles for an integration 

window of 1 ms. Note that for this value of integration the correlation percentiles are 

almost constant with respect to the Doppler frequency offset variation. The result 

seems in contradiction with the statement above, i.e. that the self-interference is 

maximized for Doppler frequency offsets integer multiple of the lines spacing which 

for GPS L1-C/A is equal to 1 kHz. 
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Figure 3–23: GPS L1-C/A CPs versus Doppler Offset, ࡵࢀ =  ms. 

 

By looking at the correlation percentiles in Figure 3–24, the forecasted behaviour is 

already visible with an integration time of 3 ms: the correlation percentile values 

repeat, after the first interval 0 – 500 Hz, with 1 kHz periodicity and the maximum 

values correspond to frequency values integer multiples of 1 kHz. 

 

Figure 3–24: GPS L1-C/A CPs versus Doppler Offset, ࡵࢀ =  ms. 

 

Further, Figure 3–25 shows the correlation percentiles for an integration time of 7 

ms. Note that the percentiles at integer multiples of 1 kHz are unvaried disregarding 
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the integration time. The correlation percentiles in between fluctuate following the 

side lobe of a sinc function. 

Figure 3–25: GPS L1-C/A CPs versus Doppler Offset, ࡵࢀ = ૠ ms. 

 

Figure 3–26 and Figure 3–27 show the behaviour of the 99.9% correlation percentile 

as a function of the Doppler frequency offset for different integration windows (1, 3, 

7, 13 and 20 ms). 

 

Figure 3–26: GPS L1-C/A 99.9% Even CP versus Doppler Offset. 

From this analysis it can be concluded that the curves corresponding to 1 ms 

integration window represent an envelope or the worst-case correlation interference 



Chapter 3. Pseudo-Random Noise Codes 

 

74 

w.r.t. integration time. The results are further confirmed in [26] where the maximum 

of the CAF is represented as a function of the integration time and Doppler 

frequency for the GPS L1-C/A and Galileo E1 OS signals. 

 

Figure 3–27: GPS L1-C/A 99.9% Odd CP versus Doppler Offset. 

 

Another intersting result is obtained by computing the correlation statistics over the 

entire Doppler freuquency offset axis. In this case, a reference interval of 0 – 8,000 

Hz is taken and the occurrence of PRN code couples w.r.t. Doppler offset values is 

assumed uniform. The outcome is provided in terms of correlation percetiles in 

Table 3-11. As expected, the worst-case is represented by 1 ms integration, and for 

increasing integration time the correlation percentiles decrease. With respect to 

Table 3-10, a difference of almost -6 dB can be observed on the highest value of the 

even cross-correlation function. 

 
Table 3-11: GPS L1-C/A CPs versus Integration Time, Uniform Doppler Offset Weighting. 

   Percentiles 
   68% 95% 99.7% 99.99% 99.999% 100% 
TI = 
1 ms 

CCF 
[dB] 

Even -29.6 -24.9 -22.4 -20.5 -19.8 -19.0 
Odd -29.3 -25.2 -22.2 -20.1 -19.1 -16.4 

TI = 
3 ms 

CCF 
[dB] 

Even -36.3 -28.1 -23.9 -21.4 -21.1 -20.9 
Odd -34.9 -29.2 -25.4 -22.9 -21.6 -20.5 

TI = 
7 ms 

CCF 
[dB] 

Even -44.6 -30.8 -24.3 -21.9 -21.1 -21.1 
Odd -40.6 -31.8 -26.7 -23.7 -22.3 -20.8 
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Signals with a ‘continuous spectrum’, smoothed by the presence of data bits or 

secondary code chips transmitted with relatively high rate, do not behave like GPS 

C/A codes, i.e. they do not present sensitivity to particular values of the Doppler 

frequency offset. An example is represented by Galileo E1-C spreading codes whose 

correlation percentiles as a function of the Doppler frequency offset are represented 

in Figure 3–28. In this case the coherent integration window is set to 4 ms as the 

only possible value. Note the flat behaviour of correlation percentiles w.r.t. the 

Doppler frequency offset. 

Figure 3–28: Galileo E1-C CPs versus Doppler Offset, ࡵࢀ =  ms.. 

 

It is also interesting to observe the case of Galileo E5a-I primary codes with overly 

code. One of the main reasons for introducing the secondary codes on Galileo E5 

signals was in fact smoothing the spectral lines, with consequent improvement of 

narrow-band interference resistance and CDMA isolation. Figure 3–29 shows the 

correlation percentiles for Galileo E5a-I when an integration time of 20 ms is 

chosen. The behaviour w.r.t. the Doppler frequency in this case is not as flat as for 

Galileo E1-C but varies of several dBs. Despite the presence of the overlay code, the 

periodicity of the correlation percentile values at integer multiples of the spectral 

line spacing is still visible. 
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Figure 3–29: Galileo E5a-I CPs versus Doppler Offset, ࡵࢀ =  ms. 

 

To conclude on the analysis presented in this section, the following can be stated: 

 The effect of multiple integrations onto auto- and cross-correlation 

performance is investigated taking as reference case the GPS L1-C/A signal. 

As expected, the even ACF and CCF are left unvaried by multiple 

integrations. On the other hand, odd auto-correlation over multiple 

sequences shows high peaks in correspondence of the PRN codes 

periodicity. This result was expected and it does not represent any 

impairment for acquisition/tracking operations, as the receiver can lock on 

the code phase of any PRN sequence within the integration time. It is up to 

the bit synchronization algorithm to detect sign changes corresponding to 

data symbols’ transitions. 

 The analysis between correlation values and integration window is further 

extended to the Doppler frequency offset. For short codes it is shown that 

the worst cross-correlation interference results from the shortest integration 

time. The curve of correlation percentiles versus Doppler frequency offset 

obtained with the smallest integration window represents an envelope for the 

other cases. 

 Long-code signals with a ‘continuous spectrum’, smoothed by the presence 

of data bits or secondary code chips transmitted with relatively high rate, do 

not present sensitivity to particular values of the Doppler frequency offset. 
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3.5 PRN Code Sets Cross-Interference 

With the increasing number of GNSS signals sharing the same navigation bands and 

– in some cases – even the same modulation, the impact of spreading codes 

transmitted by other system providers cannot be neglected. In the previous sections 

some of the most common figures of merit to measure the CDMA isolation are 

described and the effect of other signal and receiver design parameters onto the 

cross-correlation characteristics is assessed. It is of interest to extend the spreading 

codes’ figures of merit for assessing the CDMA isolation between two different 

PRN code sets that can be transmitted either by the same GNSS provider or by two 

different ones. 

For the purpose of this analysis, the spreading codes subject to interference are 

identified with the desired PRN code set ൛ܿℓ
DES[݊]ൟℓୀଵ

ேವಶೄ
, while the spreading codes 

representing the source of interference are referred to as the interfering PRN code set 

൛ ܿ
INT[݊]ൟ

ୀଵ

ேಿ
. Additionally, the interference cause by a PRN code set onto another 

set is called cross-interference, abbreviated with CI. 

Before calculating the cross-interference, the problem of working with different 

code lengths has to be solved. In general it is assumed that the code length of the 

desired PRN code set ܰDES is different from the one of the interfering code set ܰINT. 

It is also assumed that the chip rate used to transmit the two PRN code sets can be 

different. For this reason the code periods ܶDES and ܶINT are taken as a reference 

instead of the code lengths. In this case the two PRN code sets under analysis need 

to be sampled at the same sampling frequency ݂ = max(݂ாௌ, ݂ூே்). With respect 

to the code periods, three possibilities can occur: 

 ܶINT > ܶDES: This case is handled by applying a zero-padding to the desired 

spreading sequences so to reach the code length of the interfering code set. 

Because the interfering sequence is longer than the desired one, there can be 

only one sign flip in the interfering signal due to the presence of two 

consecutive symbols with opposite sign. A number of zeros to cover the time 

difference ܶINT − ܶDES is added to the desired code set for calculating the 

even and odd cross-correlation (Figure 3–30). 
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In formulas, the cross-interference between different PRN code sets can be 

expressed as: 

ܴ,ℓ
 [݉] =

1
ூܰ

 ൫ܿ̂
ாௌ[݊]൯∗ ∙ ܿ̂ℓ

ூே்[݊ − ݉] ∙ ݁(ଶగఏವାఝ) 
ேିଵ

ୀ

, for ݉ ߳ [0, 2 ூܰ − 1] 
(3.22) 

where the integration time depends on the relationship between ܶINT and ܶDES as 

explained before, ܿ̂
ாௌ[݊] is an extended version of ܿ

ாௌ when ܰINT > ܰDES, and 

ܿ̂ℓ
ூே் is an extended and version of ܿℓ

ூே் that takes into account the sign flip pattern 

ܾ. 

 

The most discussed case of cross-interference is represented by the Galileo E1-OS 

and GPS L1-C interoperable signals. These two signals are both transmitted in L-

band at the central frequency of 1575.42 MHz. As described in [18] and [19], the 

Galileo E1-OS modulation called CBOC slightly differs from the TMBOC 

modulation adopted for GPS L1-C but the two signal waveforms result in the same 

MBOC(6,1,1/11) power spectral density. This design choice, while ensures a high 

level of interoperability between the two systems, also raised concerns about the 

PRN codes cross-correlation interference level. 

The analysis proposed in [24] computes the PRN codes performance figures 

described in Section 3.3.2 between the Galileo E1-OS and GPS L1-C PRN code sets 

in order to assess whether GPS could lead to high level of interference for Galileo 

signals or vice versa. For this purpose the two following cases are analysed: 

 Galileo E1-OS interference onto GPS L1-C, 

 GPS L1-C interference onto Galileo E1-OS. 

The analysis proposed in [24] is repeated below for verification purposes and later 

other cases are investigated. 

3.5.1 Galileo E1-OS and GPS L1-C 

The CDMA isolation between Galileo E1-OS and GPS L1-C spreading codes is 

assessed below by using the Correlation Percentiles (CP) as performance figure. The 

parameters describing the two PRN code sets under analysis are summarised in 

Table 3-12. 
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Table 3-12: Galileo E1-OS and GPS L1-C Code Sets parameters. 

 Galileo E1-OS GPS L1-C 
Primary Code Length [chip] 4,092 10,230 
Primary Chip Rate [Mcps] 1.023 1.023 
Secondary Code Length [chip] 25 1800 
Secondary Chip Rate [cps] 250 100 
Symbol Rate [sps] 250 100 
PRN Code Set Size [-] 50 x 2 = 100 63 x 2 = 126 
Integration Time [ms] 4 10 

 

GPS L1-C → Galileo E1-OS 

This combination falls into the case ܶINT > ܶDES described above. Table 3-13 

provides the correlation percentiles for the even and odd CCF between the two PRN 

code sets. Additionally, the cross-correlation percentiles for the Galileo E1-OS PRN 

code set are provided for comparison. According to the results in Table 3-13 the 

interference caused by GPS L1-C signals is higher than the self-interference of 

Galileo E1-OS, up to 3 dB on the highest peak. 
Table 3-13: GPS L1-C → Galileo E1-OS CPs, TI = 4 ms, 0 Hz Doppler Offset. 

   Percentiles 
   99.0% 99.9% 99.99% 99.999% 99.9999% 100% 

L1
-C

 →
 

E
1-

O
S Even CCF 

[dB] 50% -27.9 -25.7 -24.3 -23.2 -22.4 -21.1 

Odd CCF 
[dB] 50% -27.9 -25.7 -24.3 -23.2 -22.3 -21.2 

E
1-

O
S Even CCF 

[dB] 50% -28.2 -26.5 -25.5 -24.9 -24.6 -24.5 

Odd CCF 
[dB] 50% -28.2 -26.5 -25.6 -24.9 -24.5 -24.4 

 

Galileo E1-OS → GPS L1-C 

This case is characterised by ܶINT < ܶDES, thus multiple combinations need to be 

taken into account for the cross-correlation between the two PRN code sets. In 

particular, the following four correlation patterns are identified: 

P1 = 12.5% +1 +1 +1 +1 
P2 = 50% +1 +1 +1 –1 
P3 = 25% +1 +1 –1 –1 
P4 = 12.5% +1 –1 +1 –1 

 

Table 3-14 shows the computed correlation percentiles for the even and odd CCF 

between the two PRN code sets. Additionally, the cross-correlation percentiles for 

the GPS L1-C PRN code set are provided for comparison. Also in this case, the self-
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interference of the desired code set is lower than the cross-interference produced by 

the interfering code set. 
Table 3-14: Galileo E1-OS → GPS L1-C CPs, TI = 10 ms, 0 Hz Doppler Offset. 

   Percentiles 
   99.0% 99.9% 99.99% 99.999% 99.9999% 100% 

E
1-

O
S 

→
 

L-
1C

 

Even CCF 
[dB] 12.5% -31.9 -29.7 -28.3 -27.2 -26.4 -25.2 

Odd CCF 
[dB] 50% -31.9 -29.7 -28.3 -27.2 -26.3 -25.1 

Odd CCF 
[dB] 25% -31.9 -29.7 -28.3 -27.2 -26.3 -25.2 

Odd CCF 
[dB] 12% -31.9 -29.7 -28.3 -27.2 -26.4 -25.3 

L-
1C

 Even CCF 
[dB] 50% -32.5 -30.6 -29.1 -28.1 -27.5 -27.2 

Odd CCF 
[dB] 50% -32.1 -29.9 -28.5 -27.4 -26.6 -26.2 

 

3.5.2 GPS L1-C/A and SBAS L1 

The cross-interference between GPS L1-C/A and SBAS L1 represents an interesting 

case as both services transmit short codes. Additionally, the two PRN code sets are 

broadcasted at the same centre frequency with the same modulation. This case is 

expected to show high cross-correlation peaks. 

The parameters describing the two PRN code sets under analysis are summarised in 

Table 3-15. 
Table 3-15: GPS L1-C/A and SBAS L1 Code Sets parameters. 

 GPS L1-C/A SBAS L1 
Primary Code Length [chip] 1,023 1,023 
Primary Chip Rate [Mcps] 1.023 1.023 
Secondary Code Length [chip] - - 
Secondary Chip Rate [cps] - - 
Symbol Rate [sps] 50 500 
PRN Code Set Size [-] 32 39 
Integration Time [ms] 1, 20 1, 2 

 

SBAS L1 → GPS L1-C/A 

This combination falls into the case ܶINT = ܶDES. Table 3-16 provides the 

correlation percentiles for the following cases: 

 Even and odd CCF for the GPS L1-C/A PRN code set; 

 Even and odd CCF for the SBAS L1 PRN code set; 
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 Even and odd CCF between the two PRN code sets. 

Table 3-16: SBAS L1 → GPS L1-C/A CPs, TI = 1 ms, 0 Hz Doppler Offset. 

   Percentiles 
   99.0% 99.9% 99.99% 99.999% 99.9999% 100% 

SB
A

S 
L1

 
→

 L
1-

C
/A

 Even 
CCF [dB] 50% -23.8 -23.8 -23.8 -23.8 -23.8 -23.8 

Odd CCF 
[dB] 50% -21.8 -19.8 -18.4 -17.8 -16.5 -16.4 

L1
-C

/A
 Even 

CCF [dB] 50% -23.8 -23.8 -23.8 -23.8 -23.8 -23.8 

Odd CCF 
[dB] 50% -21.8 -19.8 -18.4 -17.7 -16.4 -16.4 

SB
A

S 
L1

 Even 
CCF [dB] 50% -23.8 -23.8 -23.8 -23.8 -23.8 -23.8 

Odd CCF 
[dB] 50% -21.8 -19.8 -18.4 -17.6 -17.0 -17.0 

 

According to the results, the interference caused by SBAS L1 signals onto GPS L1-

C/A is exactly the same as the self-interference of GPS L1-C/A. 

 

Further, given the spectral line nature of these PRN code sets, the analysis is 

extended to include the Doppler frequency offset values by computing the 

correlation statistics in the following cases: 

 Even and odd CCF for the GPS L1-C/A PRN code set over 0 – 8,000 Hz; 

 Even and odd CCF for the SBAS L1 PRN code set over 0 – 200 Hz; 

 Even and odd CCF between the two PRN code sets over 0 – 4,500 Hz. 

Table 3-17: SBAS L1 → GPS L1-C/A CPs, TI = 1 ms, Uniform Doppler Offset Weighting. 

   Percentiles 
   99.0% 99.9% 99.99% 99.999% 99.9999% 100% 

SB
A

S 
L1

 
→

 L
1-

C
/A

 Even 
CCF [dB] 50% -23.4 -21.5 -20.4 -19.5 -18.8 -17.0 

Odd CCF 
[dB] 50% -23.3 -21.4 -20.0 -19.0 -18.1 -16.5 

G
PS

 L
1-

C
/A

 Even 
CCF [dB] 50% -23.4 -21.6 -20.5 -19.8 -19.4 -19.0 

Odd CCF 
[dB] 50% -23.3 -21.5 -20.1 -19.1 -18.0 -16.4 

SB
A

S 
L1

 Even 
CCF [dB] 50% -23.8 -23.5 -23.2 -22.8 -22.5 -22.4 

Odd CCF 
[dB] 50% -21.9 -19.9 -18.5 -17.8 -17.1 -17.0 
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For the even CCF, the interference caused by SBAS L1 signals onto GPS L1-C/A is 

slightly higher than the self-interference of GPS L1-C/A. 

3.5.3 Galileo E5b-I and BeiDou B2-I 

Another case for investigation is represented by the Galileo E5b-I and BeiDou B2-I 

signals which are transmitted at the same centre frequency of 1207.140 MHz. The 

two signals are characterised by different modulations, respectively a BPSK(10) for 

Galileo E5b-I ([8]) and a BPSK(2) for BeiDou B2-I ([12]). While filtering the 

Chinese signal decreases the spectrum overlap and thus reduces the interference, the 

same cannot be done for the European signal which occupied bandwidth fully 

includes the BPSK(2). The CDMA isolation between the Galileo E5b-I and BeiDou 

B2-I is analysed below by looking at the correlation percentiles. The parameters 

describing the two PRN code sets under analysis are summarised in Table 3-18. 
Table 3-18: Galileo E5b-I and BeiDou B2-I Code Sets parameters. 

 Galileo E5b-I BeiDou B2-I 
Primary Code Length [chip] 10,230 2,046 
Primary Chip Rate [Mcps] 10.230 2.046 
Secondary Code Length [chip] 4 20 
Secondary Chip Rate [cps] 1000 1000 
Symbol Rate [sps] 250 50 
PRN Code Set Size [-] 50 37 
Integration Time [ms] 1, 4 1, 20 

 

BeiDou B2-I → Galileo E5b-I 

As shown in Table 3-18, both signals are composed of primary codes, secondary 

codes, and navigations symbols. The integration time values considered in this 

analysis are the primary code period and the secondary code period. The following 

cases are taken into account: 

 ூܶ = 1 ms for Galileo E5b-I and ூܶ = 1 ms for BeiDou B2-I 

 ூܶ = 4 ms for Galileo E5b-I and ூܶ = 1 ms for BeiDou B2-I 

 ூܶ = 4 ms for Galileo E5b-I and ூܶ = 20 ms for BeiDou B2-I 

The case of ூܶ = 1 ms for Galileo E5b-I and ூܶ = 20 ms for BeiDou B2-I is 

discarded as an integration time window of 1 ms does not allow to see the tired 

codes of BeiDou B2-I and this case falls back into the first one listed above. 

Table 3-19 provides the correlation percentiles for the even and odd CI between the 

two PRN code sets when only the primary codes are taken into account. 
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Additionally, the cross-correlation percentiles for the Galileo E5b-I primary code set 

are provided for comparison. 
Table 3-19: BeiDou B2-I → Galileo E5b-I CPs, TI = 1 ms, 0 Hz Doppler Offset. 

   Percentiles 
   99.0% 99.9% 99.99% 99.999% 99.9999% 100% 

B
2-

I →
 

E
5b

-I
 Even CCF 

[dB] 50% -31.8 -29.7 -28.3 -27.2 -26.3 -25.1 

Odd CCF 
[dB] 50% -31.8 -29.7 -28.3 -27.2 -26.1 -25.4 

E
5b

-I
 Even CCF 

[dB] 50% -31.7 -29.7 -28.3 -27.2 -25.9 -25.2 

Odd CCF 
[dB] 50% -31.7 -29.7 -28.3 -27.2 -26.3 -25 

 

Note that the correlation percentiles for B2-I → E5b-I are almost equal to the values 

for the E5b-I self-interference. 

Assuming now an integration time of 4 ms for the Galileo E5b-I tired codes, the 

interfering PRN codes of BeiDou B2-I fall in the case ܶINT < ܶDES, being the 

primary code period 1 ms long. Thus multiple combinations need to be taken into 

account for the cross-correlation between the two PRN code sets. In particular, the 

following four correlation patterns with probabilities of occurrence are identified: 

P1 = 6.25% +1 +1 +1 +1 +1 
P2 = 31.25% +1 +1 +1 +1 –1 
P3 = 31.25% +1 +1 +1 –1 –1 
P4 = 31.25% +1 +1 –1 +1 –1 

 

Table 3-20 provides the computed CCF correlation percentiles in all above 

correlation patterns (B2-I → T-E5b-I). 

Finally, the case for BeiDou B2-I tired codes interfering to Galileo E5b-I tired codes 

is analysed. This time ܶINT > ܶDES and only the even and odd CCF percentiles are 

computed (T-B2-I → T-E5b-I, Table 3-20). The cross-correlation percentiles for the 

Galileo E5b-I tired PRN code set are provided for comparison. 

Looking at the results in Table 3-19 and Table 3-20 it turns out that the case B2-I → 

T-E5b-I presents a highest correlation peak around -25 dB 62.5% of the times, 

similarly to B2-I → E5b-I; the other correlation values however are lower. The case 

T-B2-I → T-E5b-I on the other hand can be seen as an ‘average’ of the correlation 

percentiles for the four correlation patterns in B2-I → T-E5b-I. 

The analysis shows the benefit of increasing the integration time to the secondary 

code duration. 
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Table 3-20: BeiDou B2-I → Galileo E5b-I CPs, TI = 4 ms, 0 Hz Doppler Offset. 

   Percentiles 
   99.0% 99.9% 99.99% 99.999% 99.9999% 100% 

B
2-

I →
 

T-
E

5b
-I

 
Even CCF 
[dB] 6.25% -37.8 -35.7 -34.3 -33.2 -32.3 -31.1 

Odd CCF 
[dB] 31.25% -35.0 -32.0 -30.1 -28.7 -27.6 -25.2 

Odd CCF 
[dB] 31.25% -35.0 -32.0 -30.1 -28.7 -27.6 -25.3 

Odd CCF 
[dB] 31.25% -39.1 -36.7 -35.0 -33.8 -32.8 -31.3 

T-
B

2-
I →

 
T-

E
5b

-I
 Even CCF 

[dB] 50% -37.4 -34.9 -33.1 -31.8 -30.7 -28.7 

Odd CCF 
[dB] 50% -37.5 -34.9 -33.1 -31.8 -30.7 -28.7 

T-
E

5b
-I

 Even CCF 
[dB] 50% -34.6 -31.8 -30.1 -29.0 -28.2 -27.2 

Odd CCF 
[dB] 50% -34.2 -31.5 -29.9 -28.8 -27.8 -26.5 
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 The ܥ ܰ⁄  Degradation caused by the presence of a new interfering system 

onto the effective ܥ ܰ⁄  observed by a reference receiver processing the 

desired signal. 

The two identified criteria act complementarily: on the one hand the user 

performance needs to be ensured following the effective ܥ ܰ⁄  criterion; on the other 

hand, for a fair regulation of all systems sharing the same radio frequency band, the 

impact of each transmitted service needs to be limited by the ܥ ܰ⁄  degradation 

criterion. A combination of both criteria together with criteria limits can provide a 

full picture of the RNSS compatibility analysis of a desired signal for a given 

interference scenario. 

Further, the methodology described in [31] presents two alternative approaches or 

models at the basis of the RFC assessment that differentiate for the underlying 

assumptions and thus the approximation of the computed results. Looking at the 

major differences, in the analytical approach the fine spectral structures of the 

received navigation signals coming from the same RNSS are averaged together into 

a smooth spectrum. As a result, the Doppler shift between the desired and interfering 

signals is negligible and it is not taken into account in the analytical model. The 

‘combined’ interfering signals are characterized in terms of maximum received 

power and worst-case aggregate gain factor over the constellation repetition cycle, 

and the computation of each interference contribution is done for each location on 

the Earth. Conversely, the simulation approach propagates each RNSS constellation 

for the constellation period and computes the dynamic link budget for every location 

on the Earth at each time. The worst-case assumption is in this case replaced by 

punctual power levels and aggregate gain. Additionally, the model allow 

representing the signals considered in the assessment either with line spectra or 

continuous spectra, depending on which assumption fits best with the specific PRN 

codes length. 

 

In the evolving GNSS scenario, compatibility assessments on a multilateral base are 

gaining more and more importance. In particular there is the need for assessing the 

effects of the growing number of GNSS and SBAS signals that will be sharing the 

L-band portion of the radio frequency spectrum in the next years. In order to 

regulate this complex scenario a specific ITU recommendation called Rec. ITU-R 
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M.1831 was issued in 2007 [32]. In this document a coordination methodology for 

RNSS inter-system interference estimation was established, mostly following the 

approach described in [31]. 

In this context, other RFC assessment criteria have been proposed to complement 

and possibly improve Rec. ITU-R M.1831. Among these, a special mention should 

be given to the proposal from the European Commission in the framework of the 

ICG activities ([33], [34]): the suggested approach is to assess the noise floor 

increase caused by the current/planned transmitted GNSS signals in order to agree 

on a maximum interference level and to limit the contributions from each GNSS 

provider. 

Another important aspect is represented by the assumption on the frequency 

representation of the signals. The analytical approach described later in this chapter 

approximates the spectrum of the received signals as a continuous spectrum, where 

the fine structures of individual signal spectra are averaged together into a smooth 

spectrum. This near-continuous noise-like spectral density modelling is valid for 

long-code signals and assumes that the Doppler shift between the different signals 

has a negligible effect onto the overall interference assessment. 

However, as widely described in Chapter 2, real spectra of signals with periodic 

spreading codes are characterized by a fine structure of spectral lines, whose 

frequency position and magnitude depends on the specific spreading code sequence, 

chip rate, presence of secondary codes and/or navigation data. For short-code signals 

the continuous spectrum modelling is not appropriate as the signal power is 

significantly concentrated in the spectral lines. Since most modernized GNSS 

signals belong to the category of long-code signals, the analytical approach of Rec. 

ITU-R M.1831 is the most employed in ITU coordination activities for RNSS inter-

system interference estimation. Nevertheless it is believed in the navigation 

community that this approach has shortfalls when it comes to the GPS L1 C/A self-

interference and in general to GNSS signals that belong to the category of the so-

called short-code signals (see [35], [36]). 

Models have been developed to reflect the qualitative characteristics of L1 C/A self-

interference and to assess its effects on receiver performance (e.g. in [37]), but no 

currently available model is recognised as standard reference and adopted for 

compatibility assessments. 
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The RFC methodologies mentioned above are mainly based on the assessment of 

aggregate interfering power levels. However, another important compatibility aspect 

is the degradation of spreading codes isolation of the desired signal caused by the 

presence of other RNSS systems also based on CDMA. As widely discussed in 

Chapter 3, every navigation system provider needs to ensure for each service not 

only a good isolation of the selected PRN code set with it-self (self-interference, SI) 

but also with all other PRN code sets transmitted in the same radio frequency band 

(cross-interference, CI). Until recently, GPS signals along with a few low-powered 

SBAS signals were the only signals occupying L-band and investigation on PRN 

code correlation properties for the evaluation of self- and cross-interference was 

primarily of academic interest for the following reasons: 

 the power of individual navigation signals is far less than the noise power in 

a receiver front-end; 

 the aggregate power of interfering navigation signals is comparable to the 

receiver noise floor and the aggregate smooth spectrum is used for 

interference computation as described in the abovementioned methodologies 

[31], [32]; 

 the assumption of aggregate smooth spectrum is justified for most GNSS 

signals. 

Nevertheless, while the effects of SI and intra-system CI are under control of the 

navigation system provider and are duly taken into account in the signal design, the 

same cannot be ensured for the inter-system CI. The signal design and the choice of 

the spreading codes should be based on criteria that minimise the inter-system 

interference with legacy GNSS signals, but the navigation services are constantly 

increasing and new signals are upcoming. GPS L1 C/A currently represents the most 

relevant case of short-code signal for global systems but other system providers 

already plan new services for fast acquisition also based on short codes. If this will 

happen, the ITU methodology should be ready to assess not only the compatibility 

between transmitted power levels but also between PRN code sets. 

In the following a new methodology complementary to Rec. ITU-R M.1831 is 

proposed based on the computation of spreading codes cross-correlation 

interference. The new method combines the PRN codes performance figures 
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described in Chapter 3 with the RFC approaches in [31] and [32] to provide an 

overall PRN codes CI performance figure. 

This chapter is composed of the following parts: 

 Section 4.1 provides a complete description of Rec. ITU-R M. 1831. The 

overall assumptions, computation steps, and performance criteria are 

explained as well as the two methodology approaches (analytical and 

simulation). A deep understanding of [31] is fundamental for the 

introduction of the proposed method. 

 Section4.2 describes the new proposed RFC analysis based on PRN codes 

and the assessment criteria for the evaluation of self-interference and cross-

interference within and between PRN code sets. 

 Section 4.3 lists all the reference assumptions required for carrying out the 

PRN codes based RFC assessments. The systems under analysis are GPS, 

Galileo, EGNOS and BeiDou. 

 Section 4.4 provides several simulation results that prove the effectiveness 

of the proposed methodology and highlight relevant aspects related to the 

PRN codes compatibility among signals. 

4.1 Recommendation ITU-R M.1831 

4.1.1 Methodology 

This methodology is intended to provide a technique for assessing RNSS inter-

system interference. The methodology applies to RNSS systems that use CDMA and 

FDMA to allow sharing of RNSS bands, and recognizes that a simple summation of 

transmission power density is inadequate to determine what effect an RNSS system 

has on others. Two are the criteria defined in [32] for assessing compatibility 

between RNSS systems: 

 Effective ܥ ܰ⁄ , 

 ܥ ܰ⁄  Degradation. 

As already explained, the effective ܥ ܰ⁄  measures the absolute ܥ ܰ⁄  level that a 

reference receiver would observe. This value should be higher than a given 

operational threshold, typically defined in system ICDs, in order to ensure that the 

performance of the service is satisfactorily provided. On the other hand, the 
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degradation of the ܥ ܰ⁄  measures the decrease of the ܥ ܰ⁄  when additional 

interference is introduced. In other words, the degradation criterion gives a relative 

measure while the effective criterion provides an entire picture of the interference 

environment. 

The methodology adopted in order to estimate the Effective ܥ ܰ⁄  and ܥ ܰ⁄  

Degradation can be summarized in five high-level steps: 

1. Link budgets are computed from each satellite to each user location. This 

computation is done in order to get the desired signal power, the aggregate 

power level, and the Doppler shifts for each satellite. 

2. Spectral separation coefficients are computed based on the power spectral 

densities and the Doppler shifts. 

3. The effective power of the desired signal and each interference source are 

computed. 

4. These results, combined with the thermal noise and external interference, 

yield to the Effective ܥ ܰ⁄ ܥ] : ܰ⁄ ]eff. 

5. Combining this result with a reference allows assessing the ܥ ܰ⁄  

Degradation: Δ[ܥ ܰ⁄ ]. 

In order to apply the methodology just described, it is fundamental to identify and 

compute some key parameters required for the Effective ܥ ܰ⁄  estimation. The main 

elements needed for computing the RFC assessment criteria are: 

 respective orbit and constellation parameters; 

 respective satellite parameters (antenna gain pattern); 

 desired and interfering signals’ characteristics (modulation, data rate and 

spreading codes characteristics) and minimum/maximum received power 

levels (link budget assumptions for propagation); 

 external interference from other RNSS and/or non-RNSS sources; 

 reference receiver parameters (implementation losses, user antenna gain); 

 reference receiver locations. 

4.1.2 Assessment Criteria 

The Effective ܥ ܰ⁄  of the desired signal transmitted by a given navigation system 

interfered by RF signals coming from other RNSS systems is defined as follows:  
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ܥ] ܰ⁄ ]eff =
ܥ

ߥ ܰ + ோாிܫ + ூே்ܫ + ா்ܫ
 (4.1) 

with 

ூே்ܫ = ்ܫ +  ோாெ (4.2)ܫ

where: 

 User received power of the desired signal [W] ܥ

ܰ Receiver thermal noise floor density [W/Hz] 

 :Effective thermal noise factor [dimensionless], defined as ߥ

ߥ = න ݂݀(݂)ௌܩ
 ଶ⁄

ି ଶ⁄
≤ 1 

with ்ܤ the bilateral bandwidth of the transmit filter. 

 ோாி Equivalent noise power density introduced into the system and originatingܫ

from signals transmitted by the same navigation satellite system than the 

desired signal [W/Hz] 

 ூே் Equivalent noise power density introduced into the system and originatingܫ

from signals transmitted by all other RNSS satellites than the desired 

constellation [W/Hz] 

 ் Equivalent noise power density introduced into the system and originatingܫ

from signals transmitted by a specific alternate RNSS satellite system 

[W/Hz] 

 ோாெ Equivalent noise power density introduced into the system and originatingܫ

from signals transmitted by all remaining RNSS systems [W/Hz] 

 ா் External interference originating from other sources than RNSS [W/Hz]ܫ

 

The above expression comes out from the total interference power density 

formulation which, in the most general case, is the sum of the four interference 

components:  

ை்்ܫ = ோாிܫ + ்ܫ + ோாெܫ +  ா் (4.3)ܫ

Observe that ܫூே் gives the total contribution to the interference coming from RNSS 

satellite systems other than the reference one. 
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The ܥ ܰ⁄  Degradation concept can be transferred into mathematical equations in 

different ways. The different ܥ ܰ⁄  Degradation formulas here considered according 

to [32] are listed below. 

ܥ]∆ ܰ⁄ ]ଵ = 1 +
்ܫ

ߥ ܰ + ோாிܫ
 (4.4) 

ܥ]∆ ܰ⁄ ]ଶ = 1 +
்ܫ

ߥ ܰ + ோாிܫ + ோாெܫ + ா்ܫ
 (4.5) 

In the next sections all the elements to be computed for the estimation of [ܥ ܰ⁄ ]eff 

and Δ[ܥ ܰ⁄ ] are explained. 

4.1.3 Link Budget 

In the framework of RFC assessment the link budget computation is fundamental for 

the determination of the user received power levels to be considered for both the 

desired and interfering signals. 

In order to compute the minimum and maximum user received power, some 

assumptions have to be made about the constellation and satellite models, as well as 

for the propagation environment and the user receiver.  

Starting from the transmit chain and the receive chain, simplified models are 

considered in [32] with respect to the functional block diagrams in Figure 2–1 and 

Figure 2–11. The transmitter model is characterized by the signal generation block, 

the transmit filter and the transmit antenna (Figure 4–1).  

 
Figure 4–1: Transmit Chain Model for RFC Assessment, Functional Block Diagram. 

Regarding the user receiver model, the first stage is the receiver antenna, the output 

of which is input to the receiver front-end filter. Then the AGC loop is used to keep 

the voltage input to the ADC within its dynamic range. Finally, correlation is 

performed using the received signal and a locally generated replica matched to the 

transmitted signal. The considered losses, namely filtering, ADC and the correlator 

mismatch losses, are grouped into a single loss factor (Figure 4–2). 
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Figure 4–2: Receive Chain Model for RFC Assessment, Functional Block Diagram. 

For each individual signal the received power level is computed according to the 

user location and time instant as described by Eq. (2.27). Three possible ways of 

computing the signal power levels on ground are considered, depending on the 

information made available to perform the RFC assessment: 

a) If the power transmitted by the navigation payload is known, the 

computation of the link budget is done ‘forward’ from the SV to the 

reference receiver. The assumptions on the antenna gain patterns, 

propagation environment, and additional losses allow identifying the 

minimum and maximum power levels on ground. In other words, the two 

received power levels are the results of a best-case and worst-case link 

budget computation. The transmit power however in an information typically 

not shared by RNSS system providers. 

b) If only the minimum received power is known, the link budget is first 

computed ‘backward’ from the reference receiver to the satellite payload 

under worst-case assumptions. Once the transmit power is derived, the best-

case link budget is computed ‘forward’ from the SV to the reference receiver 

to obtain the maximum received power. 

c) Finally if the minimum and maximum power levels on ground are both 

known, the worst-case and best-case link budget computations are performed 

‘backward’. This operation may result in a minimum and maximum transmit 

power levels that differ. The offset could reflect transmit antenna gain 

fluctuations, typically in in the order of 1 dB, or flexible power capabilities. 

An example of best-case and worst-case link budget computation based on case c) is 

provided below in Figure 4–3 and in Table 4-1 for an isotropic user antenna. 
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Figure 4–3: Link Budget Values over Elevation: Example for Galileo E1 OS. 

As explained later in Section 4.1.5, the analytical approach makes use of the 

minimum received power on ground for the desired signal (marked in Figure 4–3 as 

Pmin), and the maximum received power curve for pre-computing the aggregate gain 

of the interfering signals. On the other hand, the simulation approach computes 

dynamically the received power for each location and time instant: the worst-case 

link budget applies for the desired signal and the best-case link budget applies for 

the interfering signal. 

 
Table 4-1: Link Budget Computation: Example for Galileo E1 OS. 

ࡼ 
ࢄࡾ → ࡼ

ࢄࢀ ࢞ࢇࡼ 
ࢄࡾ → ࢞ࢇࡼ

ࢄࢀ  

Min/Max Received Power [dBW] -157.25 -152 
@ [deg] 5 50 
FSL [dB] 185.45 184.15 
Other Losses [dB] 1.5 0 
EIRP [dBW] 29.86 32.15 
Transmit Antenna Gain [dB] 15.12 16.19 
Min/Max Transmit Power [dBW] 14.74 15.96 

 

4.1.4 Spectral Separation Coefficients 

The Spectral Separation Coefficient (SSC) is a powerful indicator of the level of 

interference that a signal suffers due to another interfering signal sharing the same 

frequency band. The concept at the basis of SSC is measuring the power of the 

desired signal and its reduction due to the interfering signal at the correlator output. 



Chapter 4. Radio Frequency Compatibility Analysis 

 

97 

In Rec. ITU-R M.1831 it is assumed that the RNSS interfering signal is band limited 

at the satellite transmitter. The transmit filter is modelled as an ideal rectangular 

band-pass transfer function with linear phase, centred at the signal’s carrier 

frequency, with bandwidth ்ܤ. Thus, the spectrum of the signal, normalized to unit 

power, is given by: 

(݂)ௌܩ̅ = ൞

(݂)ௌܩ

∫ ௌ(݂)݂݀ܩ ଶ⁄
ି ଶ⁄

for |݂| ≤ ்ܤ 2⁄

0                          for |݂| > ்ܤ 2⁄
 (4.6) 

where ܩௌ(݂) is the two-sided power spectral density [1/Hz], at frequency ݂, of the 

unfiltered signal, normalized to unity over an infinite bandwidth. 

The spectral separation coefficient between the desired signal and an interfering 

signal is defined as: 

,(∆݂)ܥܵܵ = න ூܩ̅(݂)ௌܩோ|ଶ̅ܪ|
,(݂ − ∆݂)݂݀

ೃ ଶ⁄

ିೃ ଶ⁄
 (4.7) 

where: 

 Normalized transfer function of the receiver front-end filter [unitless] ܴܪ

 ,ௌ(݂) Two-sided normalized power spectral density of the desired signalܩ̅

computed according to Eq. (4.6) [1/Hz] 

ூܩ̅
,(݂) Two-sided normalized power spectral density of the interfering signal, 

computed according to Eq. (4.6), where ݉ identifies the transmit satellite 

and ݊ the signal number transmitted by the ݉-th satellite [1/Hz] 

∆݂ Doppler difference at user position between the desired satellite and the 

interfering ݉-th satellite [Hz] 

 ோ Receiver bandwidth [Hz]ܤ

Note that, when ܪோ(݂) = 1, the ܵܵܥ is equal to the cross-correlation between the 

desired and the interfering normalized PSDs:  

,(∆݂)ܥܵܵ = (݂)ௌܩ̅ ∗ ூܩ̅
,(݂)ห

ୀ∆  (4.8) 

 

Regarding the power spectral densities ̅ܩௌ(݂) and ̅ܩூ
,(݂) representation, it is 

common assumption to approximate them by a continuous spectrum, where the fine 

structures of individual signal spectra are averaged together into a smooth shape. 

Under this hypothesis, the dependency of ܵܵܥ from the Doppler difference is 

negligible. This leads to the most commonly used formulation:  
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,(0)ܥܵܵ = (݂)ௌܩ̅ ∗ ூܩ̅
,(݂)ห

ୀ
 (4.9) 

Effects of spreading code lines need to be considered in case of short-code signals 

for which the assumption of continuous spectrum is not accurate. The analytical 

approach as described in [31] and [32] does not allow simulating the effects of line 

spectra. In this case, the use of the simulation model is required. The computation of 

SSCs for short-code signals is out of scope of this thesis. For further details see [40]. 

4.1.5 Interference Computation 

The equivalent noise power densities ܫோாி, ܫ் and ܫோாெ are calculated according to 

the following generic formula: 

ܫ =  
ܺܥܵܵ

݉,݊(∆݂݉)ܴܲ,ܺ
݉,݊

ܺ,ܴܮ
݉,݊

ܰ݉
ܺ

݊=1

ܺܯ

݉=1

 
(4.10) 

where: 

  Equivalent noise power density [W/Hz] for GNSSܫ

ܺ ∈ ,ܨܧܴ} ,ܶܮܣ  {ܯܧܴ

 ܺ  Number of visible satellites in the constellation identified byܯ

ܰ
 Number of signals transmitted by the ݉-th satellite in the constellation 

identified by ܺ 

ܴܲ,ܺ
݉,݊ User received power of the ݊-th interfering signal transmitted by the 

݉-th satellite in the constellation identified by ܺ [W] 

ܺܥܵܵ
݉,݊൫∆݂݉൯ Spectral separation coefficient between the desired signal and the ݊-th 

interfering signal transmitted by the ݉-th satellite in the constellation 

identified by ܺ [1/Hz], expressed as a function of the Doppler 

difference between the two satellites of interest 

ܺ,ܴܮ
݉,݊ Additional implementation losses of the ݊-th interfering signal 

transmitted by the ݉-th satellite in the constellation identified by ܺ 

[unitless] 

As already stated previously, in [31] and [32] two different methods for assessing 

the RNSS inter-system interference are described, based on a different way to 

compute the interference contribution in Eq. (4.10). 

The simulation approach provides highly accurate results at the cost of requiring a 

significantly complex simulation of the environment. For generating the RFC 
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metrics according to the simulation model a full orbit propagator needs to run over 

time. In this case the interference scenario is processed at every user location on 

Earth at each time instant. Clearly the computational load required to perform the 

RFC assessment according to the simulation model is significant in most occasions. 

To the contrary, for the analytical approach the complexity required to carry out the 

interference analysis is significantly lower. Indeed, the impact of the satellites’ orbits 

as well as the influence of the user and satellite antenna gain is accounted for in a 

simplified way by means of the Aggregate Gain factor. This figure is one of the 

main input of the analytical model. In spite of this simplification, the analytical 

model is still capable of reproducing accurate results comparable with the more 

complex simulation tools. 

Sections 4.1.5.1 and 4.1.5.1 describe the interference computation respectively for 

the simulation and the analytical approach. 

4.1.5.1 Simulation Model 

The fundamental characteristic of the simulation model is that, in order to calculate 

the user received signal power, the link budget has to be performed for each user 

position and at each time instant. The user received power from each satellite is 

therefore evaluated as a function of the instantaneous satellite elevation, off-

boresight angle, and distance between user position and satellite vehicle. 

With this approach, the equivalent noise power density expressed by Eq. (4.10) is 

further expanded for each user position at each time instant: 

,ݐ)ܫ ߮, (ߠ = 
,ݐ)ܶܩ ߮, ,ݐ)ܴܩ(ߠ ߮, (ߠ
ܺ,ܵܨܮ

݉ ,ݐ) ߮, ܺ,otherܮ(ߠ
݉ 

ܺܥܵܵ
݉,݊(∆݂݉)ܲܶ,ܺ

݉,݊

ܺ,ܴܮ
݉,݊

ܰ݉
ܺ

݊=1

(ߠ,߮,ݐ)ܺܯ

݉=1

 
(4.11) 

where: 

,ݐ)ܫ ߮,  Equivalent noise power density [W/Hz] for RNSS (ߠ

ܺ ∈ ,ܨܧܴ} ,ܶܮܣ  {ܯܧܴ

,ݐ)ܫ ߮,  ܺ Number of visible satellites in the constellation identified by (ߠ

ܬ
  Number of signals transmitted by the ݉-th satellite in the 

constellation identified by ܺ 

,ݐ)்ܩ ߮,  Transmitting antenna gain at place identified by position coordinates (ߠ

(߮,  for the ݉-th satellite of the constellation ݐ and at time (ߠ
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identified by ܺ [unitless] 

,ݐ)ோܩ ߮,  User receiver antenna gain at place identified by position coordinates (ߠ

(߮,  for the ݉-th satellite of the constellation ݐ and at time (ߠ

identified by ܺ [unitless] 

ிௌ,ܮ
 ,ݐ) ߮,  Free space path loss from the ݉-th satellite of the constellation (ߠ

identified by ܺ to the place identified by position coordinates (߮,  (ߠ

and at time ݐ [unitless] 

other,ܮ
  Other losses (atmospheric loss, polarization mismatch loss, 

depointing loss) [unitless] 

்ܲ ,
, Transmit power of the ݊-th interfering signal transmitted by the ݉-th 

satellite in the constellation identified by ܺ [W] 

ܥܵܵ
,(∆݂) Spectral separation coefficient between the desired signal and the ݊-

th interfering signal transmitted by the constellation identified by ܺ 

[1/Hz] 

ோ,ܮ
, Additional implementation losses of the ݊-th interfering signal 

transmitted by the ݉-th satellite in the constellation identified by ܺ 

[unitless] 

 

Note that, differently from the analytical approach, the simulation model allows 

taking into account for the Doppler frequency offset between the desired signal and 

the interfering signal. However, as explained in Section 4.1.4, for long-code signals 

the dependency of SSCs from the Doppler difference is negligible. 

The defined equivalent noise power density ܫ(ݐ, ߮,  is used to evaluate the (ߠ

different interference metrics. As a result, also the Effective ܥ ܰ⁄  and ܥ ܰ⁄  

Degradation depend on (ݐ, ߮,  and therefore a strategy to represent the metrics is ,(ߠ

needed. A common approach is to take the mean over time, reducing the dependency 

only to geographical coordinates (߮,  and then to represent the results in a plot ,(ߠ

over the Earth. Representative values can be also extracted by taking the variance or 

the minimum/maximum values over time. 
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4.1.5.2 Analytical Model 

In case the analytical model is selected, the equivalent noise power densities coming 

from the interfering systems are computed according to the following formula, 

which is a simplified expression for equation (4.10): 

ܫ =  ܺ,aggܩ
݊

ܺܥܵܵ
݊(0)max൛ܴܲ,ܺ

݊ ൟ
ܺ,ܴܮ

݆

ܰ݉
ܺ

݊=1

 
(4.12) 

where 

ܺ  Equivalent noise power density [W/Hz] for RNSSܫ ∈ ,ܨܧܴ} ,ܶܮܣ  {ܯܧܴ

ܰ
 Number of signals transmitted by the ݉-th satellite in the constellation 

identified by ܺ 

agg,ܩ
  Aggregate gain factor [unitless] 

max൛ ோܲ,
 ൟ Maximum user received power of the ݊-th interfering signal transmitted 

by the constellation identified by ܺ [W] 

ܺܥܵܵ
݊ (0) Spectral separation coefficient between the desired signal and the ݊-th 

interfering signal transmitted by the constellation identified by ܺ [1/Hz], 

the Doppler difference is assumed to be 0 

ܺ,ܴܮ
݊  Additional implementation losses of the ݊-th interfering signal transmitted 

by the constellation identified by ܺ [unitless] 

Note that, as explained in Section 4.1.4, the assumption of Doppler frequency offset 

equal to 0 is justified only for long PRN codes. In case of short codes, the analytical 

model cannot be adopted and the simulation approach needs to be used instead. 

The Aggregate Gain ܩagg factor is a fundamental element of the analytical 

interference methodology. As described in [32], the ܩagg factor depends on a specific 

simulation scenario, i.e. satellite constellation, satellite antenna gain pattern, user 

antenna gain pattern and carrier frequency of the signal. The overall ܩagg 

computation is based on the link budget which provides the user receiver power 

level. 

Given a user position defined by longitude ߮ and latitude ߠ, and a time instant ݐ, the 

aggregate user received power ோܲ agg,(ݐ, ߮,  from all satellites of a given RNSS (ߠ

constellation is given by: 
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ܴܲ agg,ܺ(ݐ, ߮, (ߠ =  ܴܲ,ܺ
݉ ,ݐ) ߮, (ߠ

(ߠ,߮,ݐ)ܺܯ

݉=1

 
(4.13) 

where: 

,ݐ)ܫ ߮,  Number of visible satellites within the constellation identified by ܺ at (ߠ

time instant ݐ and user position (߮,  (ߠ

ோܲ,
 ,ݐ) ߮,  User received power transmitted by the ݉-th satellite in the (ߠ

constellation identified by ܺ at time instant ݐ and user position (߮,  (ߠ

The aggregate user received power is dependent on both time and user location on 

Earth. For simulation purposes, the aggregate user received power is calculated over 

an Earth and time grid, which resolution and granularity strongly influence the time 

of computation. 

In order to obtain the ܩagg factor, the aggregate user received power ோܲ agg,(ݐ, ߮,  (ߠ

is normalized by the maximum received user power for an isotropic user antenna. 

The maximum ܩagg value is expressed by 

,߮)ܺ,aggܩ (ߠ =
max

ݐ
൛ܴܲ agg,ܺ(ݐ, ߮, ൟ(ߠ

max൛ܴܲ iso,ܺൟ
 (4.14) 

The maximum ܩagg factor is the maximum ܩagg,(߮,  over all longitudes and (ߠ

latitudes:  

ܺ,aggܩ = max
ߠ,߮

൛ܩagg,ܺ(߮,  ൟ (4.15)(ߠ

 

In addition to the methodology expressed by equation (4.15) adopted in [32], it is 

also possible to assess the aggregate impact of a GNSS constellation by keeping the 

spatial information of the ܩagg. Therefore a variant of the methodology described in 

[32] takes into account the ܩagg(߮,  matrix over the Earth. In this way, the (ߠ

geographical distribution of RNSS interference is taken into account and the 

resulting interference analysis is more realistic, especially when considering regional 

RNSS systems. 
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4.2 New RFC Analysis based on PRN Codes 

This new methodology is intended to complement Rec. ITU-R M.1831 by providing 

the means for estimating the spreading codes cross-interference within and between 

RNSS systems. The methodology strictly applies to navigation systems based on the 

CDMA technology that share the same radio-frequency band. The validity of the 

PRN codes based RFC analysis explained in this chapter is general, however its 

relevance is mostly significant for short-code signals. 

The main idea behind the proposed method is an adaptation of Rec. ITU-R M.1831 

that, starting from the consolidated models and assumptions described in Section 

4.1, computes the spreading codes correlation performance criteria presented in 

Chapter 3. When looking at the transmission of spreading codes from a real RNSS 

constellation, the following two important aspects shall be introduced in the auto- 

and cross-correlation metrics. 

Signal power levels: It is always assumed that signals are normalised to unit power 

and the cross-correlation interference evaluation takes into account only for the 

spreading code properties. In reality, as detailed in Section 4.1.3, each navigation 

signal of a RNSS service is received with different power levels depending on the 

satellite orbit, payload characteristics, propagation environment, and reference 

receiver parameters. The minimum and maximum receive power can be derived 

from the link budget computation provided realistic assumptions on the previously 

mentioned elements. With respect to Rec. ITU-R M.1831, the analytical approach 

assumes the worst-case power levels: for each user location on Earth, the desired 

signal is received with minimum power while the interfering signals are received 

with maximum power. On the other hand, the assessment based on the simulation 

model computes the actual power levels by calculating the link budget for each user 

location and at each time instant. The signal power levels need to be introduced in 

the cross-correlation interference evaluation as the signal power has a direct impact 

on the correlation magnitudes.  

Doppler offset values: in Chapter 3 the effect of the Doppler frequency offset onto 

the CDMA isolation is analysed by computing the correlation percentiles in a typical 

frequency offset range (0 kHz – 5 kHz). The analysis however evaluates the cross-

correlation for every PRN codes couple and for each Doppler offset value by 

assuming that all PRN code combinations are possible and with equal probability. In 
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reality, even by considering all user locations and time instants, there are 

combinations that never appear. The distribution of Doppler offset values for each 

PRN code couple needs to be taken into account for a more accurate assessment, 

especially for short-code signals which spreading code properties are strongly 

impacted by spectral lines. 

In order to remove the two above-mentioned simplifications, the actual RNSS 

constellation geometry must be considered and in particular the association between 

SVs and PRN codes. The Doppler shift between the desired signal and the 

interfering signals needs to be accounted for as well as the link budget. 

4.2.1 Methodology 

The methodology here described is meant for assessing the following cases: 

 Self-Interference of a PRN code set with it-self; 

 Cross-Interference between two PRN code sets, one called ‘desired’ and the 

other ‘interfering’. 

The method can be extended to the case of more than two RNSS services sharing the 

same navigation frequency band by computing the ‘aggregate’ cross-interference. 

The multi-RNSS scenario however is not investigated in this thesis. 

With respect to the in-band interference classification presented in Rec. ITU-R 

M.1831, the mapping between naming conventions is described below. 

 Interference caused by a PRN code set on it-self is referred to as PRN code 

set self-interference (e.g. GPS L1-C/A transmitted by different SVs). The 

PRN code set self-interference contributes to the term ܫோாி. 

 Interference cause by a PRN code set onto another set is referred to as PRN 

code sets cross-interference and can refer to one of the following two cases: 

o Intra-system interference between signals transmitted by the same 

GNSS system and sharing the same frequency band (e.g. GPS L1-

C/A and L1-C); this contribution is also part of ܫோாி. 

o Inter-system Interference between signals with the same band 

allocation but belonging to different navigation systems (e.g. GPS 

L1-C and Galileo E1-OS signals); the Inter-system interference 

belongs to the term ܫூே். 
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The following methodology focusses on the spreading codes correlation interference 

between CDMA based systems, thus external sources ܫா் are not taken into 

account. 

 

Two are the assessment criteria identified for the PRN codes based RFC analysis: 

 Self-interference histogram of the desired PRN code set correlation values, 

 Cross-interference histogram of correlation values between the desired and 

the interfering PRN code sets. 

Recalling the definition provided in Section 3.3, the self-interference histogram is 

the histogram of occurrences for the discrete set of cross-correlation magnitudes 

Ωܨܥܥ of a given PRN code set. Similarly, the cross-interference histogram is the 

histogram of occurrences for the discrete set of cross-correlation magnitudes Ωܨܥܥ 

obtained by computing the cross-correlation between the desired and the interfering 

PRN code sets. 

The methodology proposed for the assessment of a PRN code set self-interference 

can be summarized with the following steps: 

1. Satellite orbits of the reference system are computed over the simulation time 

in order to generate satellites’ position and velocity. 

2. Link budgets and Doppler shifts are computed from each satellite to each 

reference receiver location. 

3. Based on the power levels and the Doppler frequency offsets, the SI 

histograms are computed. 

A representation of the algorithm steps is depicted in Figure 4–4. The block diagram 

provides a high-level view of the input parameters, output values and key functions. 
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Figure 4–4: Methodology Synthesis for Self-Interference Assessment. 

Similarly, the methodology proposed for the assessment of the cross-interference 

between desired and interfering PRN code sets can be summarized with the 

following steps: 

1. Satellite orbits are computed over the simulation time for the reference 

system and the interfering system in order to generate satellites’ position and 

velocity. 

2. Link budgets and Doppler shifts are computed from each satellite to each 

reference receiver location for the desired signals and the interfering signals. 

3. Based on the power levels and the Doppler frequency offsets, the CI 

histograms are computed. 

Figure 4–5 shows the block diagram of the above described methodology. 
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Figure 4–5: Methodology Synthesis for Cross-Interference Assessment. 

Note that in both cases of self- and cross-interference assessment the Doppler 

frequency shift takes into account only for the relative motion of the SV w.r.t. the 

receiver location. As in Rec. ITU-R M.1831 user dynamics are neglected. This 

assumption is justified by considering the general scope of the methodology that 

aims at providing system performance on a service volume. 

In order to apply the methodology just described, it is fundamental to identify some 

key parameters required for computing the PRN codes based RFC assessment 

criteria: 

 respective orbit and constellation parameters; 

 respective satellite parameters (antenna gain pattern); 
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 desired and interfering signals’ characteristics (modulation, data rate and 

spreading codes characteristics) and minimum/maximum received power 

levels (link budget assumptions for propagation); 

 reference receiver parameters (implementation losses, user antenna gain); 

 reference receiver locations. 

Section 4.3 provides the complete set of assumptions and key parameters at the basis 

of the simulation results presented in Section 4.4. 

In the following the PRN codes based RFC assessment criteria are explained in 

details. Note that a description of constellation models and satellites’ orbit 

propagation is out of scope of this thesis. For a general understanding of orbital 

equations it is reminded to the literature [1],[2],[3]. The transmit payload model, 

receive model, and link budget computation are already described in Section 4.1.3 

therefore they are not repeated here. 

4.2.2 Assessment Criteria 

Similarly to Rec. ITU-R M.1831, two different approaches are proposed in order to 

assess the PRN code set self-interference and cross-interference. Before providing 

the expression of the SI and CI some variables need to be defined. 

The total number of reference receiver locations [߮,  defined for the RFC [ߠ

assessment is called [ܰఝ,ఏ]. Each analysis is performed over a selected simulation 

time ௦ܶ broken down into discrete time instants ݐ uniformly spaced at ∆ܶ; both 

௦ܶ and ∆ܶ shall be chosen carefully, taking into account the repetition cycle of the 

RNSS system constellation and the relative motion performed by its SVs with 

respect to ground in the time interval ∆ܶ. The total number of simulated time 

instants is referred to as ௧ܰ. 

4.2.2.1 Simulation Model 

The simulation approach implies that the received power levels as well as Doppler 

shifts due to satellite motion are computed dynamically through link budgets based 

on the orbital parameters of the different systems, satellite and user antenna gain 

patterns, as well as user receiver location. 

Starting from the computation of self-interference, for any reference receiver 

location [߮, ,ݐ]ܯ ,[ߠ ߮,  for ݐ represents the number of visible satellites at time [ߠ
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the RNSS system identified by ܺ. Assuming that each satellite transmits a different 

PRN code, ݆ and ℓ are the indices of two PRN codes belonging to the set {ܿℓ[݊]}ℓୀଵ
ே  

and visible at time ݐ from the location [߮, ,ݐ],ℓߠAdditionally, Δ .[ߠ ߮, [ߠ =

Δ ݂,ℓ[ݐ, ߮, [ߠ ௦݂⁄  is the normalized Doppler frequency offset between PRN codes ݆ 

and ℓ, and ܲ(ݐ, ߮,  is the power received from satellite ݆ computed according to (ߠ

Eq. (2.27) at time ݐ from location [߮,  According to Section 4.1.3, the worst-case .[ߠ

link budget applies for the desired signal and the best-case link budget applies for 

the interfering signal. 

The expression of the correlation function in Eq. (3.10) is recalled with the addition 

of the power levels contribution: 

ܴ,ℓ
ாாே[݉, ,ݐ ߮, [ߠ =

1
ூܰ

 ൫ ܲ
௫[ݐ, ߮, [ߠ ∙ ܿ[݊]൯∗ ∙ ൫ ℓܲ

[ݐ, ߮, [ߠ ∙ ܿℓ[݊ − ݉]൯
ேିଵ

ୀ
∙ exp൛݅൫2ߨΔߠ,ℓ[ݐ, ߮, ݊[ߠ + ߮൯ൟ, for ݉ ߳ [0, 2 ூܰ − 1]  

(4.16) 

ܴ,ℓ
ை[݉, ,ݐ ߮, [ߠ =

1
ூܰ

 (−1) ∙ ൫ ܲ
௫[ݐ, ߮, [ߠ ∙ ܿ[݊]൯∗ ∙ ൫ ℓܲ

[ݐ, ߮, [ߠ ∙ ܿℓ[݊ − ݉]൯
ேିଵ

ୀ
∙ exp൛݅൫2ߨΔߠ,ℓ[ݐ, ߮, ݊[ߠ + ߮൯ൟ , for ݉ ߳ [0, 2 ூܰ − 1]  

ܾ = ቊ
1 if  ݊ ≤ ݉

0 else
 

(4.17) 

For a given PRN code set {ܿℓ[݊]}ℓୀଵ
ே  transmitted by RNSS ܺ, the even/odd SI 

histogram of correlation values is computed for each receiver location over time as: 

,݉]ௌூܪ ߮, [ߠ =    ܴ,ℓ[݉, ,ݐ ߮, [ߠ
ெ[௧,ఝ,ఏ]

ℓୀଵ
ℓஷ

ெ[௧,ఝ,ఏ]

ୀଵ

ே

ୀଵ

 (4.18) 

where ܴ,ℓ[݉, ,ݐ ߮,  is computed according to Eq. (4.16) for the even case and to [ߠ

Eq. (4.17) for the odd case. 

The histogram of correlation values for the self-interference analysis is nothing else 

than the probability density function ோ݂(ݎ) of the cross-correlation magnitudes 

ܴ݆,ℓ
 described in Section 3.3.2, extended to account for the actual power levels [݉]ܨܥܥ

and Doppler over receiver locations and simulation time instants. 

Regarding the integration time ூܰ, a conservative assumption is to take the smallest 

possible value, i.e. the length of one PRN code sequence. It is demonstrated in 

Section 3.4.3 that this corresponds to the worst-case scenario. 

 

In the same way, the cross-interference between a desired PRN code set 

൛ܿℓ
DES[݊]ൟℓୀଵ

ேವಶೄ
 transmitted by RNSS ܺ and an interfering PRN code set 
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൛ ܿ
INT[݊]ൟ

ୀଵ

ேಿ
 transmitted by RNSS ܻ is computed as the histogram of correlation 

values for each receiver location over time: 

,݉]ூܪ ߮, [ߠ =    ܴ,ℓ[݉, ,ݐ ߮, [ߠ
ெ[௧,ఝ,ఏ]

ℓୀଵ

ெೊ[௧,ఝ,ఏ]

ୀଵ

்

ୀଵ

 
(4.19) 

ܴ,ℓ[݉, ,ݐ ߮,  :is defined as in Eq. (3.22) with the addition of the power levels [ߠ

ܴ,ℓ[݉, ,ݐ ߮, [ߠ =
1

ூܰ
 ൫ ܲ

௫[ݐ, ߮, [ߠ ∙ ܿ̂
ூே்[݊]൯∗ ∙ ൫ ℓܲ

[ݐ, ߮, [ߠ ∙ ܿ̂ℓ
ாௌ[݊ − ݉]൯

ேିଵ

ୀ
∙ exp൛݅൫2ߨΔߠ,ℓ[ݐ, ߮, ݊[ߠ + ߮൯ൟ , for ݉ ߳ [0, 2 ூܰ − 1] 

(4.20) 

where the integration time ூܰ depends on the relationship between ܶINT and ܶDES as 

explained in Section 3.5, ܿ̂ℓ
ாௌ[݊] is an extended version of ܿℓ

ாௌ when ܰINT > ܰDES, 

and ܿ̂
ூே் is an extended and version of ܿ

ூே் that takes into account the sign flip 

pattern ܾ. In this case there are as many CI histograms ܪூ[݉, ߮,  as the identified [ߠ

correlation patterns. 

The SI and CI histograms computed with the simulation approach depend on 

[݉, ߮,  and therefore a strategy to represent the metrics is needed. In Section 4.4 a [ߠ

selected set of correlation percentiles are displayed over the geographical 

coordinates [߮,  .[ߠ

4.2.2.2 Analytical Model 

Given the extremely high computational load required to perform the PRN codes 

based RFC assessment according to the simulation model just described, the 

analytical approach is introduced as a simplified computation that can be adopted by 

taking some elements into consideration. 

Similarly to Rec. ITU-R M.1831, the dynamic link budget calculation over receiver 

locations and simulation time instants is substituted by taking instead the pre-

computed minimum and maximum power levels for respectively the desired PRN 

codes and the interfering ones. However, in the RFC analytical approach explained 

in Section 4.1.5.2 the maximum interfering power for an isotropic user antenna is 

scaled by the aggregate gain that is representative for the maximum number of 

visible satellites and the user receiver antenna gain. For the PRN codes based RFC 

assessment the aggregate gain cannot be used as the correlation interference is 

computed signals’ couple wise. The absolute power levels are in this case not 

relevant and what counts is only the offset between power levels. It can be 
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demonstrated by simulation that the average offset tends to the difference between 

the best-case and worst-case link budget curves that is constant over the elevation 

(see results in Section 4.4). In other words, in the analytical approach the received 

power offset Δܲ is pre-computed and it is assumed constant for each PRN code 

couple. This simplification clearly represents a worst-case assumption when 

compared to the simulation model. 

 

In the same way, the Doppler frequency offset statistics can be pre-computed for 

each PRN code couple over the receiver locations and simulation time instants 

,ݐ] ߮,  The occurrences of Doppler offset values between code pairs can be used to .[ߠ

weight the summation of cross-correlation values ܴ,ℓ[݉] that generate the SI and CI 

histograms.  

Let ݇,ℓ(݀) be the histogram of occurrences for the Doppler frequency offset values 

Δߠ,ℓ[ݐ, ߮,  between spreading codes ܿ[݊] and ܿℓ[݊] over the entire set of [ߠ

receiver locations [ܰఝ,ఏ] and time instants ௧ܰ: 

݇,ℓ(݀) =
n° of occurrences forߠ߂,[ݐ, ߮, [ߠ ∈ [(݀ − 1) ∙ ,߆∆ ݀ ∙  (߆∆

[ܰఝ,ఏ] ∙ ௧ܰ
, ݀ = {1, … , ௗܰ} (4.21) 

where ݀ is the counter of Doppler offset bins, ∆߆ is the bin width, and ௗܰ is the total 

number of frequency bins. The product [ܰఝ,ఏ] ∙ ௧ܰ represents the total number of 

observations. An illustration of ݇,ℓ(݀) histograms for different PRN code couples 

is provided in Figure 4–6. 

The integral of ݇,ℓ(݀) over Doppler offset bins gives the probability of occurrence 

for the PRN code couple (݆, ℓ) w.r.t. the total number of observations. The following 

cases are identified: 

,ℓܭ =  ݇,ℓ(݀)
ே

ௗୀଵ

  ቐ
= 0, couple (݆, ℓ) never occurs
= 1, couple (݆, ℓ) is always visible
< 1, for MEO constellations

 (4.22) 

The case of PRN code couple (݆, ℓ) always visible happens for instance for GEO 

satellites when the reference receiver locations are all in the service area. The 

correlation performance assessment is Section 3.4.3 with uniformly distributed 

Doppler offset values corresponds to the case of ݇,ℓ(݀) = 1 ௗܰ⁄ , ∀݀ and ܭ,ℓ =

1. 
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By further normalising the histogram ݇,ℓ(݀) with the probability of occurrence 

 ,ℓ, the numerical probability density function of each PRN code couple Dopplerܭ

offset ݂,ℓ(݀) is obtained. 

 
Figure 4–6: Doppler Offset Statistics for different PRN code couples: Example for GPS. 

Let ܭ be the sum of all probabilities of occurrence ܭ,ℓ: 

ܭ =   ,ℓܭ

ெ

ℓୀଵ
ℓஷ

ெ

ୀଵ

  ൜
= ܰ௨௦, all couples always visible
< ܰ௨௦, for MEO constellations  (4.23) 

For a given PRN code set {ܿℓ[݊]}ℓୀଵ
ே  transmitted by RNSS ܺ, the even/odd SI 

histogram of correlation values is computed as: 

[݉]ௌூܪ =  
,ℓܭ

ܭ
 ݂,ℓ(݀) ∙ ,݉],ℓܪ ݀]
ே

ௗୀଵ

ெ

ℓୀଵ
ℓஷ

ெ

ୀଵ

 (4.24) 

Where the histogram ܪ,ℓ[݉, ݀] is derived for each PRN code couple (݆, ℓ) from the 

correlation functions ܴ,ℓ[݉, ݀] defined as: 

ܴ,ℓ
ாாே[݉, ݀] =

1
ூܰ

 Δܲ ∙ ܿ[݊]∗ ∙ ܿℓ[݊ − ݉]
ேିଵ

ୀ
∙ exp{݅(2݀ߨ ∙ ߆∆ ∙ ݊ + ߮)}, for ݉ ߳ [0, 2 ூܰ − 1]  

(4.25) 

For the even case, and for the odd case: 

ܴ,ℓ
ை[݉, ݀] =

1
ூܰ

 (−1) ∙ Δܲ ∙ ܿ[݊]∗ ∙ ܿℓ[݊ − ݉]
ேିଵ

ୀ
∙ exp{݅(2݀ߨ ∙ ߆∆ ∙ ݊ + ߮)} , for ݉ ߳ [0, 2 ூܰ − 1]  

ܾ = ቊ
1 if  ݊ ≤ ݉

0 else
 

(4.26) 
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The cross-interference between a desired PRN code set ൛ܿℓ
DES[݊]ൟℓୀଵ

ேವಶೄ
 transmitted by 

RNSS ܺ and an interfering PRN code set ൛ ܿ
INT[݊]ൟ

ୀଵ

ேಿ
 transmitted by RNSS ܻ is 

computed as the histogram of correlation values for each receiver location over time: 

[݉]ூܪ =  
,ℓܭ

ܭ
 ݂,ℓ(݀) ∙ ,݉],ℓܪ ݀]
ே

ௗୀଵ

ெ

ℓୀଵ

ெೊ

ୀଵ

 (4.27) 

ܴ,ℓ[݉, ݀] is defined as: 

ܴ,ℓ[݉, ݀] =
1

ூܰ
 Δܲ ∙ ܿ̂

ூே்[݊]∗ ∙ ܿ̂ℓ
ாௌ[݊ − ݉]

ேିଵ

ୀ
∙ exp{݅(2݀ߨ2ߨ ∙ ∆݀ ∙ ݊ + ߮)} , for ݉ ߳ [0, 2 ூܰ − 1] 

(4.28) 

The representation of ܪௌூ[݉] and ܪூ[݉] can be done as in Chapter 3 since the 

analytical approach reduces the assessment metrics to a histogram of one-dimension. 
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4.3 Reference Assumptions and Scenarios 

The assumptions and scenarios described in this section are used for producing the 

simulation results in Section 4.4. 

4.3.1 Orbit and Constellation Parameters 

Nominal parameters for the RNSS constellations under analysis are provided in this 

section. The tables below are mainly indicative as the precise satellite orbit 

parameters used in the simulations are the Two-Line Element (TLE) files 

downloaded from [39]. TLE is a data format for encoding a list of orbital elements 

describing the motion of any Earth-orbiting object for a given point in time or epoch. 

Further details on the data format and the orbit parameters description can be found 

in [39]. 

Note that the association between orbital slot, SV number, and PRN code for each 

RNSS system is done according to the constellations status on January 2nd, 2017. 

When the SV number is not indicated in the table it means that the orbital slot is 

currently empty or the satellite does not transmit in nominal mode. As the scope of 

simulation results in Section 4.4 is to validate the proposed methodology by 

providing some computational examples of PRN codes based RFC assessment, 

constellation variations following the reference date are not taken into account. 

4.3.1.1 GPS 

Nominal parameters for the GPS satellite orbits are provided in Table 4-2. The 

constellation is composed of 36 satellites in 6 orbital planes. The so called ‘repeat 

cycle’ for the GPS satellite orbits is 1 day. The situation on the reference date is that 

5 orbital slots are not active and, with respect to the GPS L1-C/A family of 32 PRN 

codes, PRN code n° 4 is not transmitted. 
Table 4-2: GPS Nominal Orbital Parameters. 

Plane/Slot SV Semi-major 
axis 

Ecc. Inclination RAAN Argument 
of Perigee 

Mean 
Anomaly 

 - [km] - [deg] [deg] [deg] [deg] 
A01 24 26559.8 0 55 296.23 0 272.394 
A02 31 26559.8 0 55 296.23 0 296.124 
A03 30 26559.8 0 55 296.23 0 59.124 
A04 07 26559.8 0 55 296.23 0 168.874 
A05 - 26559.8 0 55 296.23 0 32.594 
A06 - 26559.8 0 55 296.23 0 160.000 
B01 16 26559.8 0 55 356.23 0 332.174 
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B02 25 26559.8 0 55 356.23 0 76.774 
B03 28 26559.8 0 55 356.23 0 110.624 
B04 12 26559.8 0 55 356.23 0 213.674 
B05 26 26559.8 0 55 356.23 0 191.294 
B06 20 26559.8 0 55 356.23 0 170.000 
C01 29 26559.8 0 55 56.23 0 359.224 
C02 27 26559.8 0 55 56.23 0 126.774 
C03 19 26559.8 0 55 56.23 0 238.424 
C04 17 26559.8 0 55 56.23 0 262.674 
C05 08 26559.8 0 55 56.23 0 22.974 
C06 - 26559.8 0 55 56.23 0 210.000 
D01 02 26559.8 0 55 116.23 0 35.874 
D02 01 26559.8 0 55 116.23 0 62.124 
D03 21 26559.8 0 55 116.23 0 151.174 
D04 06 26559.8 0 55 116.23 0 175.124 
D05 11 26559.8 0 55 116.23 0 287.574 
D06 - 26559.8 0 55 116.23 0 195.000 
E01 03 26559.8 0 55 176.23 0 82.174 
E02 22 26559.8 0 55 176.23 0 201.174 
E03 05 26559.8 0 55 176.23 0 222.554 
E04 18 26559.8 0 55 176.23 0 304.724 
E05 - 26559.8 0 55 176.23 0 337.574 
E06 10 26559.8 0 55 116.23 0 195.000 
F01 14 26559.8 0 55 236.23 0 123.224 
F02 15 26559.8 0 55 236.23 0 146.954 
F03 09 26559.8 0 55 236.23 0 246.474 
F04 23 26559.8 0 55 236.23 0 355.224 
F05 32 26559.8 0 55 236.23 0 20.654 
F06 13 26559.8 0 55 236.23 0 170.000 
 

Figure 4–7 represents the ground track of GPS satellites for 1 day orbits propagation 

starting from the reference date. 

 

 
Figure 4–7: GPS Constellation Groud Track. 
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A world chart with the average number of GPS visible satellites is shown in 

4–8. The masking angle used to produce the figure is 5° elevation.

4.3.1.2 

Nominal parameters for the Galileo satellite orbits ar

constellation is composed of 
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days, neverthe
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B03 22 29599.8 0 56.0 145.0 0.0 83.33 
B04 - 29599.8 0 56.0 145.0 0.0 128.33 
B05 11 29599.8 0 56.0 145.0 0.0 173.33 
B06 12 29599.8 0 56.0 145.0 0.0 -141.67 
B07 - 29599.8 0 56.0 145.0 0.0 -96.67 
B08 26 29599.8 0 56.0 145.0 0.0 -51.67 
C01 05 29599.8 0 56.0 265.0 0.0 8.33 
C02 09 29599.8 0 56.0 265.0 0.0 53.33 
C03 04 29599.8 0 56.0 265.0 0.0 98.33 
C04 19 29599.8 0 56.0 265.0 0.0 143.33 
C05 20 29599.8 0 56.0 265.0 0.0 -171.67 
C06 07 29599.8 0 56.0 265.0 0.0 -126.67 
C07 08 29599.8 0 56.0 265.0 0.0 -81.67 
C08 03 29599.8 0 56.0 265.0 0.0 -36.67 
 

For illustration purposes the ground track of Galileo satellites for 1 day orbits 

propagation is provided in Figure 4–9 starting from the reference date. 

 

A world chart with the average number of Galileo visible satellites is shown in 

Figure 4–10. As for GPS, the masking angle used to produce the figure is 5° 

elevation. 

 

 
Figure 4–9: Galileo Constellation Ground Track. 
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 Phase III or BD-3 (future): the operational constellation is composed of 3 

GSO, 3 IGSO, and 24 MEO satellites deployed in 3 orbital planes (Walker 

24/3/1) plus 3 spares. 

Nominal parameters for the BeiDou GSO SVs are provided in Table 4-5. The first 

column indicates for each satellite its deployment phase. With respect to the 5 GSOs 

planned for Phase II, G7 has been added for reliability redundancy improving. 
Table 4-5: BeiDou GSO Nominal Orbital Parameters. 

SV Name Slot PRN Semi-Major 
Axis 

Ecc. Inclination Status 

 [deg] - [km] - [deg]  
BD-2/3 G 1 140 E 1 42164.2 0 0 active 
BD-2/3 G 3 110.5 E 3 42164.2 0 0 active 
BD-2 G 4 160 E 4 42164.2 0 0 active 
BD-2 G 5 58.75 E 5 42164.2 0 0 active 
BD-2/3 G 6 80 E 2 42164.2 0 0 active 
BD-2/3 G 7 144 E 17 42164.2 0 0 active 

 

Table 4-6 summarises the nominal parameters for the BeiDou IGSO/MEO satellites. 

The first 6 IGSOs and the following 4 MEOs belong to Phase II. The PRN codes 

assignment is indicated according to the current status. 
Table 4-6: BeiDou IGSO/MEO Nominal Orbital Parameters. 

Plane/Slot SV Semi-major 
axis 

Ecc. Inclination RAAN Argument 
of Perigee 

Mean 
Anomaly 

 - [km] - [deg] [deg] [deg] [deg] 
IGSO 1 6 42164.2 0 55 248.82 0 0 
IGSO 2 7 42164.2 0 55 128.82 0 120 
IGSO 3 8 42164.2 0 55 8.8247 0 240 
IGSO 4 9 42164.2 0 55 175.73 0 60 
IGSO 5 10 42164.2 0 55 55.732 0 180 
IGSO 6 13 42164.2 0 55 N/A 0 N/A 
M 3 11 27878 0 55 120 0 105 
M 4 12 27878 0 55 120 0 150 
M 5 - 27878 0 55 240 0 300 
M 6 14 27878 0 55 240 0 345 
BD-3 I1 31 42164.2 0 55 0 0 187.6 
BD-3 I2 32 42164.2 0 55 120 0 67.6 
BD-3 I3 - 42164.2 0 55 240 0 307.6 
BD-3 M1 33 27878 0 55 0 0 0 
BD-3 M2 34 27878 0 55 0 0 45 
BD-3 M3 35 27878 0 55 0 0 90 
BD-3 M4 - 27878 0 55 0 0 135 
BD-3 M5 - 27878 0 55 0 0 180 
BD-3 M6 - 27878 0 55 0 0 225 
BD-3 M7 - 27878 0 55 0 0 270 
BD-3 M8 - 27878 0 55 0 0 315 
BD-3 M9 - 27878 0 55 120 0 15 
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Plane/Slot SV Semi-major 
axis 

Ecc. Inclination RAAN Argument 
of Perigee 

Mean 
Anomaly 

 - [km] - [deg] [deg] [deg] [deg] 
BD-3 M10 - 27878 0 55 120 0 60 
BD-3 M11 - 27878 0 55 120 0 105 
BD-3 M12 - 27878 0 55 120 0 150 
BD-3 M13 - 27878 0 55 120 0 195 
BD-3 M14 - 27878 0 55 120 0 240 
BD-3 M15 - 27878 0 55 120 0 285 
BD-3 M16 - 27878 0 55 120 0 330 
BD-3 M17 - 27878 0 55 240 0 30 
BD-3 M18 - 27878 0 55 240 0 75 
BD-3 M19 - 27878 0 55 240 0 120 
BD-3 M20 - 27878 0 55 240 0 165 
BD-3 M21 - 27878 0 55 240 0 210 
BD-3 M22 - 27878 0 55 240 0 255 
BD-3 M23 - 27878 0 55 240 0 300 
BD-3 M24 - 27878 0 55 240 0 345 
BD-3 M25 - 27878 0 55 0 0 10 
BD-3 M26 - 27878 0 55 120 0 55 
BD-3 M27 - 27878 0 55 240 0 105 
 

 
Figure 4–13: BeiDou Phase II Constellation Groud Track. 

 

For the simulations in Section 4.4 only BeiDou Phase II constellation is taken into 

account. In Figure 4–13 the ground track of BD-2 satellites is represented over 24 

hours. A world chart with the average number of BeiDou satellites is shown in . The 

masking angle used to produce the figure is 5° elevation. 

 



Chapter 

 

122 

Figure 

4.3.2 

Representative 

EGNOS

values 

assumption is a simplification and it does not take into account the variation of 

antenna patterns among satellites of the same constellation. This simplified approach 

is still considered to be a good approximation for the

4.3.2.1 

Table 4

 

4.3.2.2 

Table 4

Chapter 4. Radio Frequency Compatibility Analysis

Figure 4–14: BeiDou 

 Satellite Antenna Characteristics

Representative satellite antenna 

EGNOS, and BeiDou

values reported are no

assumption is a simplification and it does not take into account the variation of 

antenna patterns among satellites of the same constellation. This simplified approach 

is still considered to be a good approximation for the

 GPS 

4-7 provides reference antenna gain patterns for GPS L1 and L5 bands.

 Galileo 

4-8 provides reference antenna g

Radio Frequency Compatibility Analysis

: BeiDou Phase II 

Satellite Antenna Characteristics

satellite antenna 

, and BeiDou systems

are nominal mean values over az

assumption is a simplification and it does not take into account the variation of 

antenna patterns among satellites of the same constellation. This simplified approach 

is still considered to be a good approximation for the

provides reference antenna gain patterns for GPS L1 and L5 bands.
Table 4-7: 

Off-Boresight 
Angle 
[deg] 
0 
2 
4 
6 
8 
10 
12 
14 
16 

provides reference antenna g

Radio Frequency Compatibility Analysis

Phase II Constellation, Average Number of Visible

Satellite Antenna Characteristics

satellite antenna gain patterns are provided 

systems for the navigation frequency bands of interest

minal mean values over az

assumption is a simplification and it does not take into account the variation of 

antenna patterns among satellites of the same constellation. This simplified approach 

is still considered to be a good approximation for the

provides reference antenna gain patterns for GPS L1 and L5 bands.
: GPS Nominal Satellite Antenna Gain

Boresight L1 Band Gain
@1575.42 MHz
[dBic] 
13.6 
13.4 
13.2 
13.4 
14.3 
15.0 
15.1 
14.4 
12.7 

provides reference antenna gain patterns for Galileo E1 and E5 bands.

Radio Frequency Compatibility Analysis

Constellation, Average Number of Visible

Satellite Antenna Characteristics 

gain patterns are provided 

for the navigation frequency bands of interest

minal mean values over azimuth.

assumption is a simplification and it does not take into account the variation of 

antenna patterns among satellites of the same constellation. This simplified approach 

is still considered to be a good approximation for the

provides reference antenna gain patterns for GPS L1 and L5 bands.
Nominal Satellite Antenna Gain

1 Band Gain 
@1575.42 MHz 

L5
@1176.45 MHz

 [dBic]
13.6
13.5
13.1
12.6
12.5
12.8
13.3
13.5
13.2

ain patterns for Galileo E1 and E5 bands.

Radio Frequency Compatibility Analysis 

Constellation, Average Number of Visible

gain patterns are provided below for

for the navigation frequency bands of interest

imuth. It is understood that this 

assumption is a simplification and it does not take into account the variation of 

antenna patterns among satellites of the same constellation. This simplified approach 

is still considered to be a good approximation for the purpose of

provides reference antenna gain patterns for GPS L1 and L5 bands.
Nominal Satellite Antenna Gain

L5 Band Gain 
@1176.45 MHz
[dBic] 
13.6 
13.5 
13.1 
12.6 
12.5 
12.8 
13.3 
13.5 
13.2 

ain patterns for Galileo E1 and E5 bands.

Constellation, Average Number of Visible Satellites.

below for GPS, 

for the navigation frequency bands of interest

It is understood that this 

assumption is a simplification and it does not take into account the variation of 

antenna patterns among satellites of the same constellation. This simplified approach 

of this study.

provides reference antenna gain patterns for GPS L1 and L5 bands.
Nominal Satellite Antenna Gain. 

Band Gain 
@1176.45 MHz 

ain patterns for Galileo E1 and E5 bands.

 
Satellites. 

GPS, Galileo, 

for the navigation frequency bands of interest. The 

It is understood that this 

assumption is a simplification and it does not take into account the variation of 

antenna patterns among satellites of the same constellation. This simplified approach 

this study. 

provides reference antenna gain patterns for GPS L1 and L5 bands. 

ain patterns for Galileo E1 and E5 bands. 



Chapter 4. Radio Frequency Compatibility Analysis 

 

123 

Table 4-8: Galileo Nominal Satellite Antenna Gain. 

Off-Boresight 
Angle 

E1 Band Gain 
@1575.42 MHz 

E5 Band Gain 
@1191.795 MHz 

[deg] [dBic] [dBic] 
0 13.9 13.7 
1 13.9 13.7 
2 14.2 13.8 
3 14.5 14.0 
4 14.9 14.4 
5 15.25 14.8 
6 15.6 15.1 
7 16 15.4 
8 16.2 15.6 
9 16.2 15.7 
10 16.1 15.7 
11 15.9 15.6 
12 15.4 15.3 
13 14.7 14.9 
14 13.7 14.2 
15 12.9 13.5 

4.3.2.3 EGNOS 

Table 4-9 provides reference antenna gain patterns for EGNOS L1 and L5 bands. 
Table 4-9: EGNOS Nominal Satellite Antenna Gain. 

Off-Boresight 
Angle  

L1 Band Gain 
@1575.42 MHz 

L5 Band Gain 
@1176.45 MHz 

[deg] [dBic] [dBic] 
0 18.8 18.8 
1 18.8 18.8 
2 18.6 18.6 
3 18.4 18.4 
4 18.1 18.1 
5 17.8 17.8 
6 17.3 17.3 
7 16.8 16.8 
8 16.2 16.2 
9 15.6 15.6 

 

4.3.2.4 BeiDou 

Table 4-13 provides reference antenna gain patterns for BeiDou Phase II satellites 

transmitting in B1 and B2 bands. 
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Table 4-10: BeiDou Nominal Satellite Antenna Gain. 

 GSO/IGSO MEO 
Off-Boresight 
Angle  

B1 Band Gain 
@1561.098 MHz 

B2 Band Gain 
@1207.140 MHz 

B1 Band Gain 
@1561.098 MHz 

B2 Band Gain 
@1207.140 MHz 

[deg] [dBic] [dBic] [dBic] [dBic] 
0 14.2 13.4 12.5 12.4 
1 14.2 13.4 12.5 12.4 
2 14.2 13.5 12.6 12.5 
3 14.3 13.6 12.8 12.7 
4 14.4 13.7 13 12.9 
5 14.4 13.9 13.3 13.1 
6 14.5 14.1 13.6 13.4 
7 14.5 14.2 13.9 13.7 
8 14.5 14.4 14.1 13.9 
9 14.4 14.5 14.3 14.2 
10 14.3 14.5 14.2 14.3 
11 14.0 14.6 14 14.4 
12 13.6 14.5 13.6 14.4 
13 13.1 14.4 13 14.3 
14 12.5 14.2 12.3 14.1 
15 11.8 14 12.3 14.1 
 

4.3.3 Signal Characteristics 

The navigation signal characteristics of interest are provided below for GPS, Galileo 

and EGNOS systems. The information reported in the tables is mainly taken from 

the navigation systems’ respective SIS ICDs. 

Note that the ‘PRN Code Set Size’ indicates the cardinality of the full spreading 

codes set reported on the SIS ICD, however the PRN codes used in the simulations 

are only those actually transmitted according to the constellations status described in 

Section 4.3.1. 

Note also that the values reported under ‘Integration Time’ are to be meant as values 

of interest for the simulations and not necessarily all possible values. The primary 

code period is always indicated as the minimum integration time. When the signal is 

modulated by navigation symbols, the symbol period is also indicated as the 

maximum integration time. If secondary codes are present, the secondary code chip 

length and secondary code period are possible integration time values. 
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4.3.3.1 GPS 

Table 4-11: GPS Signals Characteristics. 

 L1-C/A L1-C data L1-C pilot L5-I L5-Q 
Carrier Frequency [MHz] 1575.42 1575.42 1575.42 1176.45 1207.14 
Modulation BPSK(1) BOC(1,1) TMBOC BPSK(10) BPSK(10) 
Tx Bandwidth [MHz] 30.69 30.69 30.69 24.0 24.0 
Primary Code Length [chip] 1,023 10,230 10,230 10,230 10,230 
Primary Chip Rate [Mcps] 1.023 1.023 1.023 10.230 10.230 
Secondary Code Length [chip] - - 1800 10 20 
Secondary Chip Rate [cps] - - 100 1000 1000 
Symbol Rate [sps] 50 100 - 100 - 
PRN Code Set Size [-] 32 63 63 37 37 
Integration Time [ms] 1, 20 10 10 1, 10 1, 20 
Fraction of Power (%) 100 25 75 50 50 
Min Power [dBW] -158.5 -157 -154.9 
Max Power [dBW] -153.0 -152 -148.0 

 

In Table 4-11 the minimum received power is measured at the output of a 3 dBi 

linearly polarised terrestrial user receiving antenna (located near ground) at worst 

normal orientation, when the SV is at or above 5 degree elevation angle, accounting 

for free space path loss, 0.5 dB excess atmospheric loss, and worst-case polarization 

ellipticity (4 dB) of the transmitted signal. The maximum received power is 

measured at the output of a 0 dBi circularly polarised user receiving antenna (located 

near ground), for any elevation angle, accounting for free space path loss, no excess 

atmospheric loss, and no polarization loss. 

4.3.3.2 Galileo 

Table 4-12: Galileo Signals Characteristics. 

 E1-B E1-C E5a-I E5a-Q E5b-I E5b-Q 
Carrier Frequency [MHz] 1575.42 1575.42 1176.45 1176.45 1207.14 1207.14 
Modulation CBOC+ CBOC- BPSK(10) BPSK(10) BPSK(10) BPSK(10) 
Tx Bandwidth [MHz] 32.84 32.84 55.59 55.59 55.59 55.59 
Primary Code Length [chip] 4,092 4,092 10,230 10,230 10,230 10,230 
Primary Chip Rate [Mcps] 1.023 1.023 10.230 10.230 10.230 10.230 
Sec. Code Length [chip] - 25 20 100 4 100 
Sec. Chip Rate [cps] - 250 1000 1000 1000 1000 
Symbol Rate [sps] 250 - 50 - 250 - 
PRN Code Set Size [-] 50 50 50 50 50 50 
Integration Time [ms] 4 4, 100 1, 20 1, 100 1, 4 1, 100 
Fraction of Power (%) 50 50 50 50 50 50 
Min Power [dBW] -157.25 -155.25 -155.25 
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Max Power [dBW] -152 -150 -150 
 

In Table 4-12 the minimum and maximum received power levels are measured at the 

antenna port of a RHCP 0 dBi terrestrial user receiving antenna on-ground when the 

SV is at any elevation angle above a 5 degree. For the minimum link budget, 0.5 dB 

excess atmospheric loss and 1 dB polarisation mismatch loss are considered. 

4.3.3.3 EGNOS 

Table 4-13: EGNOS Signals Characteristics. 

 L1 L5-I L5-Q 
Carrier Frequency [MHz] 1575.42 1176.45 1207.14 
Modulation BPSK(1) BPSK(10) BPSK(10) 
Tx Bandwidth [MHz] 24.0 24.0 24.0 
Primary Code Length [chip] 1,023 10,230 10,230 
Primary Chip Rate [Mcps] 1.023 10.230 10.230 
Secondary Code Length [chip] - - - 
Secondary Chip Rate [cps] - - - 
Symbol Rate [sps] 500 500 TBD 
PRN Code Set Size [-] 39 39 39 
Integration Time [ms] 1, 2 1, 2 1, TBD 
Fraction of Power (%) 100 50 50 
Min Power [dBW] -158.5 -161.0 
Max Power [dBW] -152.5 -153.0 

 

In Table 4-13 the minimum and maximum received power levels assumption is the 

same as for Table 4-12. 

4.3.3.4 BeiDou 

Table 4-14: BeiDou Signals Characteristics. 

 B1-I B2-I 
Carrier Frequency [MHz] 1561.098 1207.140 
Modulation BPSK(2) BPSK(2) 
Tx Bandwidth [MHz] 20.46 20.46 
Primary Code Length [chip] 2,046 2,046 
Primary Chip Rate [Mcps] 2,046 2,046 
Secondary Code Length [chip] - - 
Secondary Chip Rate [cps] - - 
Symbol Rate [sps] 500 500 
PRN Code Set Size [-] 37 37 
Integration Time [ms] 1, 2 1, 2 
Fraction of Power (%) 100 100 
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Min Power [dBW] -158.2 (GSO/IGSO) 
-156.4 (MEO) 

-157.7 (GSO/IGSO) 
-156.0 (MEO) 

Max Power [dBW] -153.0 (GSO/IGSO) 
-151.3 (MEO) 

-152.9 (GSO/IGSO) 
-151.0 (MEO) 

 

4.3.4 Reference Receiver Parameters 

The front-end filter of the reference receiver is designed according to the desired 

navigation signal and it results from a trade-off between the target performance and 

the receiver complexity, cost and size. For the RFC assessment only the receive 

bandwidth is relevant as it determines the filtering loss and thus impacts the link 

budget computation. In accordance with Rec. ITU-R M.1831, the steps to compute 

the filtering loss for each signal under analysis are the following: 

1. Calculate the signal power spectral density from the analytical expression of 

the signal modulation (continuous spectrum); 

2. Normalise the PSD to unit power in the defined transmit bandwidth, as 

expressed by Eq. (4.6); 

3. Compute the received power by integrating the resulting PSD over the 

reference receiver bandwidth, assuming an ideal rectangular filter. 

For the simulations in Section 4.4 three are the reference receivers or use cases taken 

into account, each related to a different application: Mass-Market, Aviation, and 

RIMS Station. Table 4-15 provides the receive bandwidth assumptions for the three 

use cases and for each frequency band of interest. 
Table 4-15: Reference Receiver Bandwidth. 

 Mass Market 
User 

Aviation User RIMS Station 

L1/E1/B1 Rx Bandwidth [MHz] 4 12 24 
L5/E5/B2 Rx Bandwidth [MHz] N/A 12 24 

 

Table 4-16 provides the antenna gain patterns for each of the three use cases’ 

reference receivers. 
Table 4-16: Reference Receiver Antenna Gain. 

 Mass Market 
User 

Aviation User RIMS Station 

Elevation All Bands All Bands L1 L5 
[deg] [dBic] [dBic] [dBic] [dBic] 
0 0 -7.0 -5 -5.5 
5 0 -5.5 -3 -3.5 
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10 0 -1.4 -2.5 -2.5 
15 0 0.0 -1 -1.5 
20 0 0.8 0 -0.5 
25 0 1.1 0.5 0.5 
30 0 1.2 1 1.5 
35 0 1.2 2 2.25 
40 0 1.2 3 3 
45 0 1.3 3.5 3.75 
50 0 1.3 4 4.5 
55 0 1.5 4.25 5 
60 0 1.6 4.5 5.5 
65 0 1.8 4.75 6 
70 0 1.9 5 6.5 
75 0 2.1 5 6.75 
80 0 2.2 5 7 
85 0 2.3 5 7 
90 0 2.3 5 7 

 

4.3.5 Reference Receiver Locations 

Three different sets of reference receiver locations are taken into account in the 

following simulations. 

The first one is composed of 4586 points uniformly distributed over an Earth grid 

with about 3 degrees resolution. This scenario is adopted for global RFC 

assessments of the mass-market and aviation users (Figure 4–15). 

 
Figure 4–15: Reference Receiver Locations: Earth Grid. 

The second set, illustrated in Figure 4–16, is composed of 587 points that correspond 

to the Earth population sites with more than 500,000 inhabitants. These reference 

receiver locations are used only in combination with the mass-market use case. 
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Figure 4–16: Reference Receiver Locations: Cities. 

The last set of interest is represented by the EGNOS RIMS Network. The EGNOS 

ground segment is continuously evolving and new sites have been added recently to 

the original network. For the purpose of the following RFC assessment only the 39 

stations depicted in Figure 4–17 are considered. 

 

 
Figure 4–17: Reference Receiver Locations: RIMS Network. 

The RIMS sites locations are also provided in Table 4-17. Following the North East 

Down (NED) coordinate system, positive latitudes indicate North and positive 

longitudes East. Clearly this scenario is used only for the RIMS station use case.  
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Table 4-17: RIMS Sites Coordinates. 

Station ID Latitude [°] Longitude [°]  Station ID Latitude [°] Longitude [°] 

ALB 57.10 9.09  MON 46.07 -64.78 

ACR 38.51 -28.62  RKK 64.13 -21.93 

BRN 52.32 13.25  ROM 41.80 12.58 

CNR 27.95 -15.38  LAP 61.53 27.55 

CTN 37.47 15.07  SDC 42.92 -8.42 

CRK 51.85 -8.50  SOF 42.80 23.42 

WRS 52.22 21.07  GVL 60.67 17.13 

DJA 33.87 10.77  TLS 43.42 1.50 

EGI 65.28 -14.40  TRD 63.45 10.90 

GLG 55.70 -4.10  TRO 69.67 18.95 

HBK -25.88 27.70  ZUR 47.45 8.57 

GOL 39.63 32.80  LYR 78.24 15.52 

KOU 5.17 -52.68  JME 70.99 -8.48 

LSB 38.78 -9.13  NOU 18.10 -15.95 

SWA 50.88 -1.28  LPI 28.61 -17.76 

MAD 32.75 -16.70  ATH 37.85 23.78 

MLG 36.68 -4.52  ALY 31.18 29.96 

KIR 69.68 29.92  AGA 30.40 -9.60 

PDM 39.57 2.73  ABS 22.35 31.61 

PAR 48.83 2.33     
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link budget assumptions that are the same for three cases. The power offset is the 

most relevant element that sums up linearly to the correlation values (in logarithmic 

scale). 

 
Figure 4–20: GPS L1-C/A Received Power Levels, All Scenarios. 

The received power statistics are represented in Figure 4–21 for the Open Sky 

scenario. The plot on the left shows the numerical probability density function of the 

received power for each of the 31 transmitted PRN codes. Two distributions are 

displayed: one represents the worst-case link budget applied to the desired signal 

(dashed line), and the other one the best-case link budget used for the interfering 

signals (continuous line). 

Figure 4–21: GPS L1-C/A Power Offset Statistics, Open Sky. 
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The horizontal shift between the two curves matches with the 3.4 dB received power 

offset displayed in Figure 4–20. In Figure 4–21 (right), the receiver power offset 

statistics is obtained by counting the number of occurrences over the total number of 

observations. Note that, as anticipated in Section 4.2.2.2, the average receiver power 

offset tends to 3.4 dB. 

 

The Doppler frequency statistics computed over simulation time are represented in 

Figure 4–22. On the left, the numerical probability density function for the Doppler 

frequency values is build up for the transmitted PRN codes. Each curve takes into 

account for all reference receiver locations over the simulation time. The Doppler 

frequency resolution of the histogram is set to 50 Hz. Figure 4–22 (right) represents 

the Doppler offset statistics computed for each PRN code couple over reference 

receiver locations and simulation time instants. The histogram of occurrences is 

generated according to Eq. (4.21). 

Figure 4–22: GPS L1-C/A Doppler Frequency Statistics, Open Sky. 

The analytical approach described in Section 4.2.2.2 makes use of the curves in 

Figure 4–22 (right), called ݇,ℓ(݀), to compute the even and odd SI histograms 

 ௌூ[݉]. In Table 4-20 the correlation percentiles computed with the analyticalܪ

model are summarised for the three scenarios under analysis. 
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Table 4-20: GPS L1-C/A CPs, Analytical Model, TI = 1 ms, All Scenarios. 

  Percentiles 
  68% 95% 99.7% 99.99% 99.999% 100% 
Open 
Sky 

CCF Even 
[dB] -26.0 -21.4 -19.0 -17.1 -16.3 -15.6 

CCF Odd 
[dB] -26.0 -21.7 -18.8 -16.6 -15.5 -13.1 

Urban CCF Even 
[dB] -26.0 -21.4 -19.0 -17.0 -16.3 -15.6 

CCF Odd 
[dB] -26.0 -21.7 -18.8 -16.6 -15.4 -13.1 

RIMS 
Sites 

CCF Even 
[dB] -26.0 -21.5 -19.0 -17.1 -16.4 -15.6 

CCF Odd 
[dB] -26.0 -21.7 -18.8 -16.6 -15.5 -13.1 

 

Again, the correlation percentiles are almost identical for the three use cases 

analysed. By a comparison between Table 4-19 and Table 4-20 it is observed that 

the results of the analytical model match with those of the simulation model. 

The GPS L1-C/A self-interference assessment with analytical model is repeated for 

the three scenarios by varying the value of the integration time. Results are reported 

in Table 4-21 only for Open Sky. Urban and RIMS Sites are omitted as the obtained 

CPs are almost identical. 
Table 4-21: GPS L1-C/A CPs versus Integration Time, Analytical Model, Open Sky. 

  Percentiles 
  68% 95% 99.7% 99.99% 99.999% 100% 
ࡵࢀ
=  ms 

CCF Even 
[dB] -33.3 -24.6 -20.5 -18.0 -17.7 -17.6 

CCF Odd 
[dB] -31.6 -25.7 -22.0 -19.5 -18.1 -17.2 

ࡵࢀ
= ૠ ms 

CCF Even 
[dB] -41.7 -27.6 -21.1 -18.7 -17.7 -17.7 

CCF Odd 
[dB] -37.4 -28.3 -23.3 -20.4 -18.9 -17.5 

ࡵࢀ
=  ms 

CCF Even 
[dB] -46.9 -31.3 -21.4 -18.7 -17.7 -17.7 

CCF Odd 
[dB] -42.6 -30.7 -23.8 -20.6 -18.9 -17.6 

 

As expected, the distribution of correlation magnitudes shifs significantly to lower 

values for increasing integration time. On the other hand, maximum correlation 

peaks are almost the same except for ூܶ = 1 ms which represensts the worst-case. 

The behaviour of maximum correlation percentiles over Doppler offset bins is 

shown in Figure 4–23. Here an even/odd SI histogram of correlation values is 

constructed for each Doppler offset bin ഥ݀ as: 
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,ௌூൣ݉ܪ ݀̅൧ =  
,ℓܭ

ܭ ݂,ℓ൫݀̅൯ ∙ ,,ℓൣ݉ܪ ݀̅൧
ெ

ℓୀଵ
ℓஷ

ெ

ୀଵ

 (4.29) 

Note that the histogram of each correlation couple (݆, ℓ) is weighted by the 

occurrence of the couple it-self over the number of observations. 

 

 

Figure 4–23: GPS L1-C/A 100% CP versus Doppler Offset, Open Sky. 

4.4.2 EGNOS L1→GPS L1-C/A Cross-Interference 

It is of interest to assess the cross-interference caused by EGNOS L1 singals onto 

the GPS L1-C/A spreading codes. The assumptions undelying this RFC assessment 

are summarised in Table 4-22. 
Table 4-22: EGNOS L1→GPS L1-C/A Cross-Interference Scenario. 

 Open Sky RIMS Sites 
Des. RNSS System GPS 
Des. Constellation Table 4-2 
Des. Satellite Antenna Pattern L1 from Table 4-7 
Des. Signal L1-C/A from Table 4-11 
Int. RNSS System EGNOS 
Int. Constellation Table 4-4 
Int. Satellite Antenna Pattern L1 from Table 4-9 
Int. Signal L1 from Table 4-13 
Reference Receiver Aviation User RIMS Station 
Rx Bandwidth [MHz] Table 4-15 for L1 band 
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Table 4-23: EGNOS L1→GPS L1-C/A CPs, Simulation Model, RIMS Sites. 

 Percentiles 
 68% 95% 99.7% 99.99% 99.999% 100% 
ALB CCF Even [dB] -29.3 -22.8 -18.6 -15.8 -14.8 -13.4 

CCF Odd [dB] -29.3 -22.8 -18.5 -15.7 -14.4 -11.7 
ACR CCF Even [dB] -27.3 -20.4 -15.1 -12.2 -10.9 -8.8 

CCF Odd [dB] -27.3 -20.4 -15.2 -11.9 -10.5 -8.6 
BRN CCF Even [dB] -28.6 -22.2 -17.7 -15.2 -14.0 -12.6 

CCF Odd [dB] -28.6 -22.2 -17.9 -14.8 -13.4 -10.5 
CNR CCF Even [dB] -24.5 -17.7 -12.8 -10.0 -8.9 -7.5 

CCF Odd [dB] -24.6 -17.7 -12.9 -9.9 -8.5 -6.3 
CTN CCF Even [dB] -25.9 -19.4 -14.6 -11.8 -10.5 -9.0 

CCF Odd [dB] -26.0 -19.4 -14.7 -11.6 -10 -7.6 
CRK CCF Even [dB] -28.2 -21.8 -17.5 -14.8 -13.7 -11.7 

CCF Odd [dB] -28.2 -21.8 -17.5 -14.6 -13.2 -11.2 
WRS CCF Even [dB] -28.6 -22.1 -17.8 -15.2 -13.9 -12.4 

CCF Odd [dB] -28.6 -22.2 -17.9 -14.9 -13.4 -11.2 
DJA CCF Even [dB] -25.4 -18.7 -14.0 -11.1 -9.9 -8.2 

CCF Odd [dB] -25.4 -18.8 -14.0 -11.0 -9.6 -8.1 
EGI CCF Even [dB] -30.7 -24.6 -20.5 -17.7 -16.6 -15.1 

CCF Odd [dB] -30.7 -24.6 -20.5 -17.7 -16.3 -14.4 
GLG CCF Even [dB] -28.8 -22.4 -18.2 -15.5 -14.4 -12.6 

CCF Odd [dB] -28.8 -22.5 -18.1 -15.3 -13.9 -11.8 
HBK CCF Even [dB] -24.5 -18.0 -13.2 -10.1 -8.8 -7.3 

CCF Odd [dB] -24.6 -18.0 -13.2 -10.0 -8.6 -6.7 
GOL CCF Even [dB] -26.6 -20.0 -15.3 -12.3 -10.9 -9.3 

CCF Odd [dB] -26.6 -20.0 -15.3 -12.2 -10.6 -8.3 
KOU CCF Even [dB] -26.2 -18.9 -14.1 -11.6 -10.3 -8.9 

CCF Odd [dB] -26.0 -19.1 -14.2 -11.0 -9.6 -8.1 
LSB CCF Even [dB] -26.4 -19.4 -14.6 -11.8 -10.7 -8.5 

CCF Odd [dB] -26.4 -19.5 -14.6 -11.6 -10.3 -7.6 
SWA CCF Even [dB] -28.6 -22 -17.5 -14.8 -13.6 -12.1 

CCF Odd [dB] -28.6 -22.1 -17.5 -14.6 -13.1 -10.9 
MAD CCF Even [dB] -25.2 -18.4 -13.6 -10.8 -9.5 -8.3 

CCF Odd [dB] -25.2 -18.5 -13.6 -10.6 -9.2 -7.1 
MLG CCF Even [dB] -26.6 -19.4 -14.4 -11.6 -10.3 -8.5 

CCF Odd [dB] -26.6 -19.4 -14.5 -11.4 -9.9 -7.6 
KIR CCF Even [dB] -31.9 -26 -22.0 -19.2 -18.2 -16.4 

CCF Odd [dB] -31.9 -26 -22.0 -19.2 -17.9 -16.4 
PDM CCF Even [dB] -26.6 -19.9 -15.0 -12.1 -10.9 -9.5 

CCF Odd [dB] -26.6 -19.9 -15.1 -12 -10.6 -8.9 
PAR CCF Even [dB] -28.4 -21.7 -17.0 -14.4 -13.2 -11.5 

CCF Odd [dB] -28.4 -21.8 -17.1 -14.1 -12.7 -10.3 
MON CCF Even [dB] -31.3 -24.8 -20.0 -17.1 -15.9 -14.2 

CCF Odd [dB] -31.6 -24.8 -20 -17.0 -15.5 -14.2 
RKK CCF Even [dB] -30.7 -24.6 -20.4 -17.5 -16.3 -14.8 
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 Percentiles 
 68% 95% 99.7% 99.99% 99.999% 100% 

CCF Odd [dB] -30.7 -24.6 -20.4 -17.5 -16.1 -14.2 
ROM CCF Even [dB] -26.8 -20.1 -15.4 -12.7 -11.3 -9.7 

CCF Odd [dB] -26.8 -20.2 -15.5 -12.4 -10.9 -8.5 
LAP CCF Even [dB] -30.1 -23.8 -19.7 -16.9 -15.7 -14.0 

CCF Odd [dB] -30.1 -23.8 -19.7 -16.8 -15.5 -13.4 
SDC CCF Even [dB] -26.9 -20.2 -15.4 -12.6 -11.4 -9.7 

CCF Odd [dB] -26.9 -20.2 -15.5 -12.5 -11.1 -8.9 
SOF CCF Even [dB] -26.9 -20.5 -15.7 -12.9 -11.5 -9.9 

CCF Odd [dB] -26.9 -20.5 -15.8 -12.7 -11.1 -8.6 
GVL CCF Even [dB] -29.8 -23.5 -19.4 -16.5 -15.4 -14.0 

CCF Odd [dB] -29.8 -23.5 -19.4 -16.5 -15.2 -13.9 
TLS CCF Even [dB] -27.3 -20.6 -15.7 -12.9 -11.7 -9.9 

CCF Odd [dB] -27.5 -20.6 -15.8 -12.6 -11.3 -8.9 
TRD CCF Even [dB] -30.1 -24.2 -20.0 -17.3 -16.2 -14.6 

CCF Odd [dB] -30.4 -24.2 -20 -17.3 -16 -14.4 
TRO CCF Even [dB] -31.9 -26.0 -21.9 -19.2 -18.3 -16.6 

CCF Odd [dB] -31.9 -26.0 -21.9 -19.1 -17.8 -16.5 
ZUR CCF Even [dB] -27.9 -21.4 -16.8 -14.1 -12.9 -11.1 

CCF Odd [dB] -27.9 -21.5 -16.9 -13.8 -12.3 -10.0 
LYR CCF Even [dB] NaN NaN NaN NaN NaN NaN 

CCF Odd [dB] NaN NaN NaN NaN NaN NaN 
JME CCF Even [dB] -31.9 -26.2 -22.2 -19.4 -18.3 -16.9 

CCF Odd [dB] -31.9 -26.2 -22.1 -19.3 -18 -16.1 
NOU CCF Even [dB] -23.4 -16.7 -11.8 -8.9 -7.7 -6.3 

CCF Odd [dB] -23.5 -16.7 -11.8 -8.8 -7.4 -5.9 
LPI CCF Even [dB] -24.8 -17.9 -13.1 -10.2 -9.1 -7.7 

CCF Odd [dB] -24.8 -17.9 -13.1 -10.0 -8.7 -6.8 
ATH CCF Even [dB] -26.2 -19.5 -14.8 -11.9 -10.6 -9.0 

CCF Odd [dB] -26.2 -19.6 -14.9 -11.7 -10.3 -8.4 
ALY CCF Even [dB] -25.2 -18.5 -13.8 -10.9 -9.6 -8.0 

CCF Odd [dB] -25.2 -18.5 -13.8 -10.7 -9.4 -7.6 
AGA CCF Even [dB] -29.3 -22.8 -18.6 -15.8 -14.8 -13.4 

CCF Odd [dB] -25.4 -18.4 -13.4 -10.5 -9.0 -7.3 
ABS CCF Even [dB] -27.3 -20.4 -15.1 -12.2 -10.9 -8.8 

CCF Odd [dB] -24.1 -17.4 -12.6 -9.5 -8.2 -6.0 
 

The significant difference in correlation percentiles among RIMS sites can be 

explained by remembering that the EGNOS satellites are on geostationaly orbits and 

therefore do not move significantly over time when observed from the Earth. 

Therefore the EGNOS L1 signal power received from a specific location is almost 

constant during the GPS constellation repeat cycle and it can be always high in some 

sites and always low in some others. 



Chapter 4. Radio Frequency Compatibility Analysis 

 

142 

In Figure 4–26 the minimum and maximum power levels versus elevation are 

provided for the two scenarios under analysis. The received power offset Δܲ 

between the GPS minimum link budget and the EGNOS maximum link budget is 

independent from the scenario however, differently from Figure 4–20, Δܲ is not 

constant anymore w.r.t. elevation due to the different transmit antenna patterns for 

GPS and EGNOS. The offset ranges from 1.4 dB to 5.5 dB for highest elevations. 

 
Figure 4–26: EGNOS L1 and GPS L1-C/A Received Power Levels, All Scenarios. 

Further, the received power statistics are represented in Figure 4–27 for the Open 

Sky scenario. 

Figure 4–27: EGNOS L1 and GPS L1-C/A Power Offset Statistics, Open Sky. 
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The plot on the left shows the numerical probability density function of the received 

power for each of the 31 GPS satellites (blue dashed lines) and the 4 EGNOS 

satellites (yellow lines). 

In Figure 4–27 (right), the receiver power offset statistics is obtained by counting the 

number of occurrences over the total number of observations. The offset ranges from 

-9.5 dB to +3 dB with a peak at -2 dB.  

Differently from the case of GPS L1-C/A self-interference where the power offset 

values are highly concentrated around -3.4 dB (Figure 4–21), in this case the 

distribution is triangularly shaped with highest occurrence for the value -2 dB. 

 

In Figure 4–28 (left) the Doppler frequency statistics of the EGNOS L1 signals are 

represented for the Open Sky scenario. As expected, Doppler frequency values are 

very limited around 0 Hz, being the signals transmitted from GEO satellites. The 

statistics for GPS L1 C/A is omitted as already provided in Figure 4–22 (left). Figure 

4–28 (right) shows the Doppler frequency offset computed for each PRN code 

couple over the simulation duration. 

Figure 4–28: EGNOS L1 and GPS L1-C/A Doppler Frequency Statistics, Open Sky. 

By comparing the EGNOS L1→GPS L1-C/A cross-interference results with the 

GPS L1-C/A self-interference correlation percentiles in Section 4.4.1, a significant 

difference can be noticed when looking at the highest correlation peaks (see Table 

4-24).  
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The explanation however cannot be found in the correlation properties between the 

GPS and the SBAS spreading code families: Table 3-16 shows that for 0 Hz Doppler 

offset the interference caused by SBAS L1 signals onto GPS L1-C/A is exactly the 

same as the self-interference of GPS L1-C/A; Table 3-17 demonstrates that by 

uniformly weighting the CPs over Doppler offset values the even cross-interference 

is only slightly higher than the self-interference. The reason for this significant 

difference in correlation percentiles has to be found mainly in the statistics of 

received power offset values. 
Table 4-24: EGNOS L1→GPS L1-C/A Worst-Case CPs, Simulation Model, Open Sky. 

  Percentiles 
  68% 95% 99.7% 99.99% 99.999% 100% 

E
G

N
O

SL
1 

→
 L

1-
C

/A
 CCF 

Even [dB] -25.5 -20.0 -16.3 -13.6 -12.3 -9.9 

CCF Odd 
[dB] -25.5 -20.3 -16.3 -13.0 -11.4 -9.9 

G
PS

 
L1

-C
/A

 CCF 
Even [dB] -26.2 -21.5 -19.1 -17.0 -16.3 -15.8 

CCF Odd 
[dB] -26.0 -21.7 -18.8 -16.6 -15.5 -13.1 

 

The cross-interference analysis for the Open Sky scenario is repeated with the 

analytical model. Clearly, the choice of the power offset parameter plays a key role 

for the analytical results to match with the simulation results. 
Table 4-25: EGNOS L1→GPS L1-C/A CPs, Analytical Model, Open Sky. 

  Percentiles 
  68% 95% 99.7% 99.99% 99.999% 100% 
Open 
Sky 

CCF Even 
[dB] -27.5 -22.8 -20.3 -18.3 -17.4 -15.7 

CCF Odd 
[dB] -27.5 -23.0 -20.2 -18.0 -16.8 -15.3 

RIMS 
Sites 

CCF Even 
[dB] -27.5 -22.9 -20.4 -18.3 -17.5 -15.7 

CCF Odd 
[dB] -27.5 -23.0 -20.2 -18.0 -17.0 -15.3 

 

For a power offset of -2 dB the results obtained with the analytical model do not 

match with the simulation model and the difference between the two increases for 

high percentiles. This outcome was expected as the correlation percentiles capture 

not only the 1-σ, 2-σ and 3-σ statistics (68%, 95% and 99.7% percentiles) but also 
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the values at the edge of the distribution (99.99%, 99.999%, 100%). The assumption 

of taking the average power offset can be representative of the average CPs but 

cannot capture the peaks. 

4.4.3 Galileo E1 OS Self-Interference 

The same three Scenarios analysed for GPS L1-C/A self-interference are proposed 

for the Galileo E1 OS signal (Table 4-26). Given the strong similarities between E1-

B and E1-C PRN code sets in terms of cross-correlation properties, the following SI 

histograms are computed only for Galileo E1-C component. 
Table 4-26: Galileo E1 OS Self-Interference Scenarios. 

 Open Sky Urban RIMS Sites 
GNSS System Galileo 
Constellation Table 4-3 
Satellite Antenna Pattern E1 Band from Table 4-8 
Signal E1-C from Table 4-12 
Reference Receiver Aviation User Mass Market User RIMS Station 
Rx Bandwidth [MHz] Table 4-15 for L1 band 
Integration Time [ms] 4 
Simulation Start GPS week: 906 

Seconds into week: 86400 
(02.01.2017) 

Duration 1 day 
Time Interval 60 s 
Reference Receiver Location Earth Grid Cities RIMS Network 
Masking Angle 10° 30° 5° 

 

Starting from the simulation approach, Figure 4–29 and Figure 4–30 show the 

Galileo E1-C self-interference for the Open Sky scenario. 
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  Percentiles 
  68% 95% 99.7% 99.99% 99.999% 100% 
Sites [dB] 

CCF Odd 
[dB] -32.6 -28.4 -25.5 -23.5 -22.5 -20.8 

 

By comparing Table 4-27 with Table 3-6 (CCF) a difference between 2 dB and 4 dB 

can be observed on the correlation percentile values. This offset cannot be solely 

explained with the power levels introduced by the RFC methodology that scale the 

cross-correlation values. It is in fact a combination of the Doppler frequency offset 

and power distribution. 

The minimum and maximum power curves versus elevation are displayed in Figure 

4–31 for the three scenarios under analysis. Even if the power levels are different for 

each scenario, the received power offset is always equal to 2.9 dB. 

 
Figure 4–31: Galileo E1-C Received Power Levels, All Scenarios. 

 

Further, the received power statistics are represented in Figure 4–32 for the Open 

Sky scenario. On the left, the curves represent the numerical probability density 

function of the received power for each of the 16 transmitted PRN codes. It is 

possible to identify two main distributions: one for the worst-case link budget 

applied to the desired signal, and one for the best-case link budget used for the 

interfering signals. The horizontal shift between the two curves matches with the 2.9 

dB received power offset displayed in Figure 4–31. 



Chapter 4. Radio Frequency Compatibility Analysis 

 

149 

In Figure 4–32 (right), the receiver power offset statistics is computed by summing 

up the number of occurrences for each power bin over the total number of 

observations. As expected, the average receiver power offset tends to 2.9 dB. 

Figure 4–32: Galileo E1-C Power Offset Statistics, Open Sky. 

Finally, the Doppler frequency statics for the Galileo satellites are provided in 

Figure 4–33. 

Figure 4–33: Galileo E1-C Doppler Frequency Statistics, Open Sky. 

On the left, the numerical probability density function for the Doppler frequency 

values is build up for the transmitted PRN codes. Each curve takes into account for 

all reference receiver locations over the simulation time. The Doppler frequency 
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resolution of the histogram is set to 50 Hz. Figure 4–33 (right) represents the 

Doppler offset statistics computed for each PRN code couple over reference receiver 

locations and simulation time instants. The histogram of occurrences is generated 

according to Eq. (4.21). 

Table 4-28 provides the self-interference RFC assessment results obtained with the 

analytical model for the three scenarios under analysis. 
Table 4-28: Galileo E1-C CPs, Analytical Model, All Scenarios. 

  Percentiles 
  68% 95% 99.7% 99.99% 99.999% 100% 
Open 
Sky 

CCF Even 
[dB] -32.6 -28.4 -25.5 -23.5 -22.6 -20.5 

CCF Odd 
[dB] -32.6 -28.4 -25.5 -23.6 -22.6 -21.0 

Urban CCF Even 
[dB] -32.6 -28.4 -25.5 -23.5 -22.6 -20.5 

CCF Odd 
[dB] -32.6 -28.4 -25.5 -23.6 -22.7 -21.3 

RIMS 
Sites 

CCF Even 
[dB] -32.6 -28.4 -25.5 -23.5 -22.6 -20.5 

CCF Odd 
[dB] -32.6 -28.4 -25.5 -23.6 -22.6 -21.0 

 

Again, by a comparison between Table 4-27 and Table 4-28 it is observed that the 

results of the analytical model match perfectly with those of the simulation model. 

4.4.4 GPS L1-C→Galileo E1-OS Cross-Interference 

It is of interest to assess the cross-interference caused by GPS L1-C singals onto the 

Galileo E1-OS spreading codes. The assumptions undelying this RFC assessment 

are summarised in Table 4-29. 
Table 4-29: GPS L1-C→Galileo E1-OS Cross-Interference Scenario. 

 Open Sky RIMS Sites 
Des. RNSS System Galileo 
Des. Constellation Table 4-3 
Des. Satellite Antenna Pattern E1 from Table 4-8 
Des. Signal E1-C from Table 4-12 
Int. RNSS System GPS 
Int. Constellation Table 4-2 
Int. Satellite Antenna Pattern L1 from Table 4-7 
Int. Signal L1-C pilot from Table 4-11 
Reference Receiver Aviation User RIMS Station 
Rx Bandwidth [MHz] Table 4-15 for L1 band 
Integration Time [ms] 4 
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 Open Sky RIMS Sites 
Simulation Start GPS week: 906 

Seconds into week: 86400 
(02.01.2017) 

Duration 1 day 
Time Interval 60 s 
Reference Receiver Location Earth Grid RIMS Network 
Masking Angle 10° 5° 

 

This scenario is characterised by ܶINT > ܶDES, thus only two bit flip patterns – Even 

and Odd – are to be taken into account for the CI histogram computation. Given the 

computational load required to perform the RFC assessment with the simulation 

model, only the results for the RIMS Sites scenario are computed and reported in 

Table 4-30. 

Table 4-30: GPS L1-C→Galileo E1-C CPs, Simulation Model, RIMS Sites. 

 Percentiles 
 68% 95% 99.7% 99.99% 99.999% 100% 
ALB CCF Even [dB] -30.1 -22.8 -17.6 -14.4 -13.0 -10.3 

CCF Odd [dB] -30.1 -22.8 -17.6 -14.4 -13.0 -10.5 
ACR CCF Even [dB] -30.0 -22.8 -17.6 -14.4 -13.0 -9.6 

CCF Odd [dB] -30.0 -22.8 -17.6 -14.4 -13.0 -9.6 
BRN CCF Even [dB] -30.1 -22.7 -17.4 -14.3 -12.9 -8.4 

CCF Odd [dB] -30.1 -22.7 -17.4 -14.3 -12.9 -8.4 
CNR CCF Even [dB] -29.8 -22.6 -17.5 -14.4 -13.0 -9.0 

CCF Odd [dB] -29.8 -22.6 -17.5 -14.4 -13.0 -8.7 
CTN CCF Even [dB] -30.2 -23.0 -17.7 -14.5 -13.1 -8.7 

CCF Odd [dB] -30.2 -23.0 -17.7 -14.5 -13.1 -8.7 
CRK CCF Even [dB] -29.9 -22.7 -17.5 -14.3 -12.9 -9.2 

CCF Odd [dB] -29.9 -22.7 -17.5 -14.3 -12.9 -9.2 
WRS CCF Even [dB] -30.1 -22.7 -17.4 -14.3 -12.8 -9.1 

CCF Odd [dB] -30.1 -22.7 -17.4 -14.3 -12.8 -9.1 
DJA CCF Even [dB] -30.0 -22.8 -17.6 -14.4 -13.0 -8.6 

CCF Odd [dB] -30.0 -22.8 -17.6 -14.5 -13.0 -8.6 
EGI CCF Even [dB] -30.2 -23.3 -18.0 -14.7 -13.3 -8.6 

CCF Odd [dB] -30.2 -23.3 -18.0 -14.7 -13.3 -8.7 
GLG CCF Even [dB] -30.0 -22.7 -17.5 -14.4 -13.0 -9.6 

CCF Odd [dB] -30.0 -22.7 -17.5 -14.4 -13.0 -9.9 
HBK CCF Even [dB] -30.0 -22.7 -17.5 -14.4 -13.0 -9.6 

CCF Odd [dB] -30.2 -22.9 -17.6 -14.4 -13.0 -9.5 
GOL CCF Even [dB] -30.4 -23.1 -17.6 -14.4 -13.0 -9.5 

CCF Odd [dB] -30.4 -23.1 -17.6 -14.4 -13.0 -9.7 
KOU CCF Even [dB] -30.7 -23.7 -18.3 -14.8 -13.3 -9.6 

CCF Odd [dB] -30.7 -23.7 -18.3 -14.8 -13.3 -9.6 
LSB CCF Even [dB] -29.8 -22.7 -17.5 -14.4 -13.0 -8.7 
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 Percentiles 
 68% 95% 99.7% 99.99% 99.999% 100% 

CCF Odd [dB] -29.8 -22.7 -17.5 -14.4 -13.0 -9.1 
SWA CCF Even [dB] -30.0 -22.8 -17.5 -14.4 -13.0 -9.2 

CCF Odd [dB] -30.0 -22.8 -17.5 -14.4 -13.0 -9.2 
MAD CCF Even [dB] -29.8 -22.6 -17.6 -14.4 -13.0 -9.1 

CCF Odd [dB] -29.8 -22.6 -17.6 -14.4 -13.0 -8.8 
MLG CCF Even [dB] -29.8 -22.6 -17.4 -14.3 -12.9 -8.7 

CCF Odd [dB] -29.8 -22.6 -17.4 -14.3 -12.9 -8.8 
KIR CCF Even [dB] -30.3 -23.4 -18.2 -14.8 -13.3 -10.1 

CCF Odd [dB] -30.3 -23.4 -18.2 -14.8 -13.3 -10.1 
PDM CCF Even [dB] -29.9 -22.6 -17.5 -14.4 -13.1 -9.6 

CCF Odd [dB] -29.9 -22.6 -17.5 -14.4 -13.1 -9.6 
PAR CCF Even [dB] -30.2 -23 -17.8 -14.6 -13.1 -8.7 

CCF Odd [dB] -30.2 -23 -17.8 -14.6 -13.2 -8.7 
MON CCF Even [dB] -30.0 -22.7 -17.5 -14.4 -13.0 -10.1 

CCF Odd [dB] -30.0 -22.7 -17.5 -14.4 -13.0 -10.3 
RKK CCF Even [dB] -30.2 -23.2 -18.0 -14.7 -13.3 -9.7 

CCF Odd [dB] -30.2 -23.2 -18.0 -14.7 -13.3 -9.6 
ROM CCF Even [dB] -30.1 -22.8 -17.6 -14.4 -13.0 -8.9 

CCF Odd [dB] -30.1 -22.8 -17.6 -14.4 -13.0 -8.9 
LAP CCF Even [dB] -30.2 -23.0 -17.8 -14.6 -13.1 -9.9 

CCF Odd [dB] -30.2 -23.0 -17.8 -14.6 -13.1 -9.7 
SDC CCF Even [dB] -29.9 -22.8 -17.6 -14.4 -13.0 -8.9 

CCF Odd [dB] -29.9 -22.8 -17.6 -14.4 -13.0 -8.9 
SOF CCF Even [dB] -30.4 -23.1 -17.7 -14.4 -13.0 -9.5 

CCF Odd [dB] -30.4 -23.1 -17.7 -14.5 -13.0 -9.5 
GVL CCF Even [dB] -30.2 -23.0 -17.8 -14.5 -13.1 -9.3 

CCF Odd [dB] -30.2 -23.0 -17.8 -14.6 -13.1 -9.3 
TLS CCF Even [dB] -30.0 -22.8 -17.7 -14.5 -13.1 -9.4 

CCF Odd [dB] -30.0 -22.8 -17.7 -14.5 -13.1 -9.4 
TRD CCF Even [dB] -30.2 -23.1 -17.9 -14.7 -13.2 -9.8 

CCF Odd [dB] -30.2 -23.1 -17.9 -14.7 -13.2 -10.1 
TRO CCF Even [dB] -30.3 -23.4 -18.2 -14.8 -13.4 -9.8 

CCF Odd [dB] -30.3 -23.4 -18.2 -14.8 -13.4 -9.7 
ZUR CCF Even [dB] -30.2 -23.0 -17.8 -14.6 -13.1 -8.9 

CCF Odd [dB] -30.2 -23.0 -17.8 -14.6 -13.1 -8.9 
LYR CCF Even [dB] -30.4 -23.7 -18.5 -15.1 -13.6 -10 

CCF Odd [dB] -30.4 -23.7 -18.5 -15.1 -13.6 -10.1 
JME CCF Even [dB] -30.4 -23.5 -18.3 -14.9 -13.4 -9.8 

CCF Odd [dB] -30.4 -23.5 -18.3 -14.9 -13.4 -9.7 
NOU CCF Even [dB] -29.6 -22.5 -17.5 -14.3 -12.9 -8.4 

CCF Odd [dB] -29.6 -22.5 -17.5 -14.3 -12.9 -8.4 
LPI CCF Even [dB] -29.9 -22.7 -17.6 -14.4 -13.0 -9.5 

CCF Odd [dB] -29.9 -22.7 -17.6 -14.4 -13.0 -9.9 
ATH CCF Even [dB] -30.4 -23.2 -17.8 -14.5 -13.1 -8.9 

CCF Odd [dB] -30.4 -23.2 -17.8 -14.5 -13.1 -8.9 
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 Percentiles 
 68% 95% 99.7% 99.99% 99.999% 100% 
ALY CCF Even [dB] -30.4 -23.3 -17.9 -14.6 -13.1 -10 

CCF Odd [dB] -30.4 -23.3 -17.9 -14.6 -13.1 -10 
AGA CCF Even [dB] -29.7 -22.5 -17.4 -14.3 -12.9 -8.7 

CCF Odd [dB] -29.7 -22.5 -17.4 -14.3 -12.8 -9.0 
ABS CCF Even [dB] -30.4 -23.1 -17.9 -14.6 -13.2 -9.5 

CCF Odd [dB] -30.4 -23.1 -17.9 -14.6 -13.2 -9.5 
 

In Figure 4–34 the minimum and maximum power levels versus elevation are 

provided for the two scenarios under analysis. The received power offset Δܲ 

between the Galileo minimum link budget and the GPS maximum link budget is 

independent from the scenario and it is almost constant along the elevation. 

 
Figure 4–34: GPS L1-C and Galileo E1-C Received Power Levels, All Scenarios. 

 

Further, the received power statistics are represented in Figure 4–35 for the Open 

Sky scenario. The plot on the left shows the numerical probability density function 

of the received power for each of the 16 Galileo satellites and the 31 GPS satellites. 

In Figure 4–35 (right), the receiver power offset statistics is obtained by counting the 

number of occurrences over the total number of observations. The power offset 

values are highly concentrated around -5 dB. 
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Figure 4–35: GPS L1-C and Galileo E1-C Power Offset Statistics, Open Sky. 

 

Figure 4–36: GPS L1-C and Galileo E1-C Doppler Frequency Statistics, Open Sky. 

In Figure 4–36 (left) the Doppler frequency statistics of the Galileo and GPS signals 

are represented for the Open Sky scenario. Figure 4–36 (right) shows the Doppler 

frequency offset computed for each PRN code couple over the simulation duration. 

Table 4-31 reports the correlation percentiles of the cross-interference caused by 

GPS L1-C pilot onto Galileo E1-C component computed with the analytical model. 

As expected, the CPs do not change significantly by comparing Open Sky to RIMS 

Sites results. 
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Table 4-31: GPS L1-C → Galileo E1-OS CPs, All Scenarios. 

  Percentiles 
  99.0% 99.9% 99.99% 99.999% 99.9999% 100% 
Open 
Sky 

Even CCF 
[dB] -33.5 -29.3 -26.4 -24.3 -23.1 -20.0 

Odd CCF 
[dB] -33.5 -29.3 -26.4 -24.3 -23.2 -19.3 

RIMS 
Sites 

Even CCF 
[dB] -33.5 -29.3 -26.4 -24.3 -23.2 -20.0 

Odd CCF 
[dB] -33.5 -29.3 -26.4 -24.3 -23.2 -19.3 

 

The difference between analytical model and simulation model for the RIMS sites 

scenario is significant. As already observed in Section 4.4.2, the assumption to take 

the average power offset is only representative of the average performance. In 

particular, the highly directive antenna of the RIMS sites is responsible for the big 

variation in received power levels that, as displayed in Figure 4–34, ranges from 

approximately -149 dB to -163 dB (14 dB offset). This justifies why percentile 

100% computed with the analytical model is about 10 dB lower than the one 

computed with the simulation model with the assumption of 5 dB power offset. 

4.4.5 BeiDou B2-I→Galileo E5b-I 

In this section the cross-interference caused by BeiDou B2-I singals onto the Galileo 

E5b-I spreading codes is evaluated. The assumptions undelying this RFC assessment 

are summarised in Table 4-32. 
Table 4-32: BeiDou B2-I→Galileo E5b-I Cross-Interference Scenario. 

 Open Sky 
Des. RNSS System Galileo 
Des. Constellation Table 4-3 
Des. Satellite Antenna Pattern E5 from Table 4-8 
Des. Signal E5b-I from Table 4-12 
Int. RNSS System BeiDou Phase II 
Int. Constellation Table 4-5, Table 4-6 
Int. Satellite Antenna Pattern B2 from Table 4-10 
Int. Signal B2-I from Table 4-14 
Reference Receiver Mass Market User 
Rx Bandwidth [MHz] Table 4-15 for L1 band 
Integration Time [ms] 1 
Simulation Start GPS week: 906 

Seconds into week: 86400 
(02.01.2017) 

Duration 1 day 
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 Open Sky 
Time Interval 60 s 
Reference Receiver Location Earth Grid 
Masking Angle 10° 

 

This scenario is characterised by ܶINT = ܶDES, thus only two bit flip patterns – Even 

and Odd – are to be taken into account for the CI histogram computation. Given the 

computational load required to perform the RFC assessment with the simulation 

model, only the analytical approach is used in this case. 

Table 4-33 reports the correlation percentiles of the cross-interference caused by 

BeiDou B2-I onto Galileo E5b-I component for the two scenarios under analysis. By 

comparing the results with Table 3-19 an offset of about 5 dB is observed on the 

correlation percentiles. 
Table 4-33: BeiDou B2-I → Galileo E5b-I CPs, Open Sky. 

  Percentiles 
  99.0% 99.9% 99.99% 99.999% 99.9999% 100% 
Open 
Sky 

Even CCF 
[dB] -35.2 -30.7 -27.3 -24.7 -23.4 -20.3 

Odd CCF 
[dB] -35.2 -30.7 -27.3 -24.7 -23.4 -20.2 

 

In Figure 4–37 the minimum and maximum power levels versus elevation are 

provided for the Open Sky scenario. 

 
Figure 4–37: BeiDou B2-I and Galileo E5b-I Received Power Levels, All Scenarios. 

In this case, the received power offset Δܲ between the Galileo minimum link budget 

and the BeiDou maximum link budget depends on the SV orbit and payload 
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characteristics. Two values are considered in the analytical simulation, respectively 

6 dB for MEO and 4 dB for GSO/IGSO. 

Further, the received power statistics are represented in Figure 4–38. The plot on the 

left shows the numerical probability density function of the received power for each 

of the 16 Galileo satellites (red) and the 15 BeiDou satellites. The difference 

between the MEO and GSO/IGSO link budget is clearly visible. In Figure 4–38 

(right), the receiver power offset statistics is obtained by counting the number of 

occurrences over the total number of observations. The power offset values are 

highly concentrated around -6 dB and -4 dB. 

Figure 4–38: BeiDou B2-I and Galileo E5b-I Power Offset Statistics, Open Sky. 

 

In Figure 4–39 (left) the Doppler frequency statistics of the Galileo and BeiDou 

signals are represented for the Open Sky scenario. Again, the difference between 

GSO, IGSO, and MEO satellites is visible from distribution of Doppler frequencies. 

The y-axis is cut to 0.05 in order to display all distributions however the numerical 

PDF for GSOs goes up to 1. Figure 4–39 (right) shows the Doppler frequency offset 

computed for each PRN code couple over the simulation duration. 
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Figure 4–39: BeiDou B2-I and Galileo E5b-I Doppler Frequency Statistics, Open Sky. 
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 The use of different secondary codes on the SVs improves significantly the 

cross-correlation properties compared to the cross-correlation properties of 

the primary code set. 

From the investigation on the effects of chip shape (Section 3.4.2), the following 

observations have been made: 

 Multi-level coded symbols, such as BOC(1,1) CBOC(6,1,1/11) modulations, 

do not lead to a significant improvement of the spreading codes CDMA 

isolation in terms of cross-correlation properties; 

 On the other hand, the analysed chip shapes introduce undesired high peaks 

in the auto-correlation function that can lead to false acquisition or tracking. 

Being the position of secondary lobes deterministic w.r.t. the main peak, 

several techniques have been proposed in literature for ensuring the correct 

code phase lock. 

To conclude on the integration time and Doppler frequency aspects, the following 

has been demonstrated: 

 The effect of multiple integrations onto auto- and cross-correlation 

performance is investigated taking as reference case the GPS L1-C/A signal. 

As expected, the even ACF and CCF are left unvaried by multiple 

integrations. On the other hand, odd auto-correlation over multiple 

sequences shows high peaks in correspondence of the PRN codes 

periodicity. This result was expected and it does not represent any 

impairment for acquisition/tracking operations, as the receiver can lock on 

the code phase of any PRN sequence within the integration time. It is up to 

the bit synchronization algorithm to detect sign changes corresponding to 

data symbols’ transitions. 

 The analysis between correlation values and integration window is further 

extended to the Doppler frequency offset. For short codes it is shown that 

the worst cross-correlation interference results from the shortest integration 

time. The curve of correlation percentiles versus Doppler frequency offset 

obtained with the smallest integration window represents an envelope for the 

other cases. 
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 Long-code signals with a ‘continuous spectrum’, smoothed by the presence 

of data bits or secondary code chips transmitted with relatively high rate, do 

not present sensitivity to particular values of the Doppler frequency offset. 

The analysis on PRN code set cross-interference (Section 3.5) has provided a 

generalised expression for the cross-correlation between PRN code sets that 

encompasses all cases of desired and interfering code periods. Three computational 

examples have been provided, namely Galileo E1-OS versus GPS L1-C, GPS L1-

C/A versus SBAS L1, and Galileo E5b-I versus BeiDou B2-I. The results have 

shown the validity of the mathematical model and provide cross-interference values 

for navigation signals of interest. 

 

Chapter 4 has presented a new methodology for assessing spreading codes 

interference within and between satellite navigation systems based on CDMA 

technology. 

First, the context of ITU radio frequency compatibility assessments has been 

described to the best knowledge of the author. The motivation for introducing a new 

methodology has been justified by highlighting the shortfalls of current methods that 

focus solely on the interfering power levels. As a starting point for the new proposed 

methodology, Rec. ITU-R M.1831 has been explained. The concept of self-

interference and cross-interference has been introduced and the computation of the 

assessment criteria with the simulation model and the analytical model has been 

described. Finally a long section of simulation results has proven the effectiveness of 

the methodology and has highlighted relevant aspects related to the PRN codes 

compatibility among signals. 

The main considerations on the RFC methodology with respect to the two proposed 

models are summarised in Table 5-1. 
Table 5-1: Conclusions on the PRN Codes based RFC Methodology. 

 PRN Code based RFC Methodology 
 Simulation Model Analytical Model 
Self-Interference Results from the two approaches match perfectly. Therefore the 

analytical model can be adopted instead of the simulation model for 
a reduced computational load. 

Computed examples: 
GPS L1-C/A in Section 4.4.1 
Galileo E1-OS in Section 4.4.3 

Cross-Interference Results obtained with the Results obtained with the 
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simulation model are 
representative for the whole 
correlation percentile statistics.  

analytical model are 
representative of the average CI 
behaviour but cannot capture the 
values at the edge of the 
distribution. This approach is 
more suitable for reflecting the 
1-σ, 2-σ and 3-σ statistics. 
The assumption of taking the 
average power offset between 
the two PRN code sets instead 
of the full distribution represents 
a limitation of the methodology. 

Computed examples: 
EGNOS L1→GPS L1-C/A in Section 4.4.2 
GPS L1-C→Galileo E1-OS in Section 4.4.4 
BeiDou B2-I→Galileo E5b-I in Section 4.4.5 

 

The major outcomes regarding the simulation results in Section 4.4 are listed below 

for each case considered: 

 GPS L1-C/A Self-Interference: By comparing the CPs for 1 ms integration 

time (worst-case) in Table 4-19 with those obtained in Table 3-10 (0 Hz 

Doppler offset) and in Table 3-11 (uniform Doppler offset), the increase of 

L1-C/A self-interference measured by the new RFC methodology is 

enormous. The values obtained for even and odd cross-correlation 

(maximum peaks at -15.8 dB and -13.1 dB) are significantly higher because 

of the method takes into account for the real power levels and Doppler 

frequency offset distribution. 

 EGNOS L1→GPS L1-C/A Cross-Interference: The levels or cross-

interference computed with the simulation model are extremely high: the 

maximum correlation value over the coverage is measured on the equatorial 

region below Europe and it is about -10.0 dB. Again, the proposed 

methodology reveals an inter-system interference scenario more severe than 

what can be observed by computing the simple cross-correlation figure (see 

percentiles in Table 3-16). 

 Galileo E1-OS Self-Interference: Simulation results show that the self-

interference of Galileo E1-OS spreading codes computed with the new 

method is about 4 dB higher than the one obtained with cross-correlation 

performance figure in Chapter 3 (compare Table 4-27 with Table 3-9). This 

case has revealed that the spreading codes RFC analysis can be relevant also 

for long-code signals and not only for shot-code ones. 
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 GPS L1-C→Galileo E1-OS Cross-Interference: The difference in CI between 

analytical model and simulation model for the RIMS sites scenario is huge. 

This case demonstrates the limitations of the analytical model as the 

assumption to take the average power offset is only representative for the 

average performance. Additionally, the highly directive antenna of the RIMS 

sites is responsible for the big variation in received power levels that explains 

why percentile 100% computed with the RFC methodology is about 11 dB 

above the ones computed with cross-correlation performance figure 

(compare Table 4-30 with Table 3-13). 

 BeiDou B2-I→Galileo E5b-I Cross-Interference: By comparing the CP 

results in Table 4-33 with those in Table 3-19 (0 Hz Doppler offset) an 

increase of about 5 dB is observed. Again, the RFC methodology here 

proposed is shown to be relevant also for long-code signals and not only for 

shot-code ones. 

Additionally, some considerations regarding the influence of reference assumptions 

onto the PRN codes self- and cross-interference assessment are summarised in Table 

5-2. 
Table 5-2: Considerations on the Impact of RFC Reference Assumptions. 

 Self-Interference Cross-Interference 
Power Level Absolute power levels are not 

relevant. Only the offset between the 
best-case and worst-case link budget 
is important. 

Absolute power levels are not 
relevant. Only the offset between the 
desired signal worst-case link budget 
and the interfering signal best-case 
link budget is important. 

Antenna 
Pattern 

The satellite transmit antenna and the 
reference receiver antenna gain 
patterns have a negligible impact. 

The transmit antenna gain patterns 
from the desired and the interfering 
systems are relevant. The reference 
receiver antenna pattern has a 
significant impact only when RNSS 
systems with non-uniform coverage 
are involved. 

Doppler 
Frequency 
Offset 

The Doppler frequency offset is relevant for short-codes for which the 
correlation values distribution varies w.r.t. the Doppler offset value. 

Elevation 
Angle 

When RNSS systems with non-uniform coverage are involved, the elevation 
angle determines the coverage area. However its impact on the CP values is 
negligible. 

 

To conclude, this thesis has provided new means to support future analysis in the 

field of radio-frequency compatibility. In view of extending Rec. ITU-R M.1831 by 

including the PRN codes based RFC methodology proposed in this thesis, the 
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following information should be specified in addition to the classical reference 

assumptions: 

 PRN codes, available from public SIS ICDs. 

 Association between spreading codes and SVs. Depending on the satellites 

constellation and the goodness of the PRN codes family, this information 

might not play a significant role for the RFC assessment. 

 Minimum integration time for the desired signal (worst-case assessment). 

Finally, note that Rec. ITU-R M.1831 does not provide ‘acceptable’ levels of 

Effective ܥ ܰ⁄  and ܥ ܰ⁄  Degradation as it is the task of service providers to reach 

a common agreement. Similarly, the PRN codes RFC methodology here proposed 

does not set a threshold for the cross-correlation interference generated by satellite 

navigation systems onto each other. However a detailed analysis should be carried 

out by each system provider to determine what is a tolerable figure. 

5.2 Recommendations for Future Work 

In order to guarantee the right coexistence of all current, planned, and future signals 

a complete understanding of all radio frequency compatibility aspects is 

fundamental. The PRN codes based RFC methodology presented in this thesis 

should be further investigated and consolidated though more self- and cross-

interference assessments. 

An extension to allow for multi-constellation PRN codes analysis is necessary to 

fully assess nowadays GNSS interference scenario. The aggregate level of cross-

interference cannot be computed by a simple addition of the correlation percentiles. 

The spatial and temporal information is needed for correctly considering the 

correlation peaks originating from PRN codes transmitted by different navigation 

systems. The simulation model seems to be the only approach suitable for a multi-

constellation assessment. 

The analytical model proposed for the PRN codes based RFC methodology could be 

improved by making use of the received power distribution instead of only the 

average power offset. This information should be carefully combined with the 

Doppler offset statistics in order not to lose the spatial-temporal correlation. 

Moreover the impact of PRN codes self- and cross-interference onto the receiver 

signal processing has not been discussed in this thesis. In particular, the effects 
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caused by the cross-correlation peaks onto the signal acquisition process should be 

investigated. Classical navigation literature always refers to the single cell detection 

approach in AWGN, but it would be of interest to modify the noise model by 

assuming self- and cross-interference contributions for the detection hypothesis. 

Additionally, temporary effects are produced on the tracking operations when 

interfering PRN codes slide into the correlator. As discussed in [35], for the case of 

GPS L1-C/A self-interference this happens when the Doppler offset between two 

spreading codes is a multiple of 1 kHz. In [37] a model for predicting C/A-code self-

interference is proposed. 

A final recommendation goes to the GNSS system providers with reference to the 

on-going discussions on GPS L1-C/A signal evolution ([38]) and on a future Galileo 

E1-D acquisition aiding component: spreading codes aggregate cross-interference 

should be carefully assessed on a global scale. It is dangerous to design new CDMA 

navigation services neglecting the complex radio-frequency interference scenario 

where they should coexist. 
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 The E1 OS data channel, or E1-B, which results from the combination of the 

navigation data stream, the ranging code, and the in-phase CBOC 

component. 

 The E1 OS pilot channel, or E1-C, resulting from the combination of 

primary code, secondary code, and the anti-phase CBOC component. 

The two channels E1-B and E1-C are generated independently and then summed up, 

as explained in [8]. The normalized PSD of the combined E1 OS service, without the 

effect of band-limiting filters and payload imperfections, is given by: 

(݂)ாଵିைௌܩ =
1
2

൫ܩாଵି(݂) +  ாଵି(݂)൯ܩ
(A.1) 

being the two channels statistically uncorrelated. 

Figure A–1 shows the normalized PSD of respectively Galileo E1-B (left) and E1-C 

(right) components as transmitted by SVID 19. The PSD is constructed following 

the spectral line model explained in Chapter 2. The real spectra are overlapped by 

the ideal smooth spectrum corresponding to the CBOC modulation (black dashed 

line).Note how spectral lines are far above the power level of the smooth spectrum 

especially in the case of the pilot component, where there are no navigation symbols 

to smooth the spectrum. 

Figure A–1: Galileo E1-B/C PSD trasmitted by SVID 19. 

Figure A–2 shows the combined Galileo E1 OS spectrum. 
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Figure A–2: PSD of Galileo E1 OS trasmitted by SVID 19. 

Figure A–3 represents the fine structure of the normalized PSDs displayed in Figure 

A–1, and the combined E1 OS spectrum (blue) obtained as the linear sum of E1-B 

(purple) and E1-C (green) components.  

 
Figure A–3: PSD of Galileo E1 OS (detail) trasmitted by SVID 19. 

A.2 Galileo E6 CS 

The E6 Commercial Service (CS) modulation is a Binary Offset Phase Shift Keying 

BPSK(5) at 5.115MHz. The Galileo E6 CS signal consists of the following two 

components: 

 The E6 CS data channel, or E6-B, that is the combination of the navigation 

data stream with the primary code sequence. 
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 The E6 CS pilot channel, or E6-C, which results from the combination of 

the primary code with the secondary code sequence. 

For E6 CS as for E1 OS the two channels E6-B and E6-C are generated 

independently and then summed up [8]. The normalized PSD of the combined E6 

CS service is given by: 

(݂)ாିௌܩ =
1
2

൫ܩாି(݂) +  ாି(݂)൯ܩ
(A.2) 

being the two channels statistically uncorrelated. 

Figure A–4 shows the normalized PSD of respectively Galileo E6-B (left) and 6-C 

(right) components as transmitted by SVID 19. 

Figure A–4: Galileo E6-B/C PSD trasmitted by SVID 19. 

Figure A–5 displays the normalized PSD of the Galileo E6 CS (blue) for SVID 19. 

The ideal smooth spectrum corresponding to the BPSK modulation is drawn with a 

black dashed line. 
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Figure A–5: PSD of Galileo E6 CS trasmitted by SVID 19. 

Figure A–6 represents the fine structure of the normalized PSD displayed in Figure 

A–5 together with the two components E6-B (purple) and E6-C (green). 

 
Figure A–6: PSD of Galileo E6 CS (detail) trasmitted by SVID 19. 

A.3 Galileo E5 

The Galileo E5 modulation receives the name of AltBOC and is a modified version 

of a BOC with code rate of 10.23 MHz and a sub-carrier frequency of 15.345 MHz 

[8]. The AltBOC multiplexing combines the E5a and E5b services in a composite 

constant envelope signal which is then injected through a very wideband channel. 

The different Galileo E5 signal components are generated according to the following 

scheme: 
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 The E5a data channel, or E5a-I: this channel is the combination of the E5a 

data stream with the E5a-I primary code sequence and the secondary code 

CS201. 

 The E5a pilot channel, or E5a-Q: this channel is the combination of the E5a-

I primary code sequence and the secondary code CS1001-50. 

 The E5b data channel, or E5b-I: this channel is the combination of the E5b 

data stream with the E5b-I primary code sequence and the secondary code 

CS41. 

 The E5b pilot channel, or E5b-Q: this channel is the combination of the E5a-

Q primary code sequence and the secondary code CS10051-100. 

The AltBOC multiplexing of the aforementioned signals is slightly more complex 

with respect to the previous cases where the components are simply summed up. To 

keep the envelope constant, four additional signals are constructed as a combination 

of the four single components ݁ாହିூ, ݁ாହିொ, ݁ாହିூ, ݁ாହିொ. These ‘product 

components’ are defined in [8] as: 
݁̅ாହିூ = ݁ாହିொ ∙ ݁ாହିூ ∙ ݁ாହିொ

݁̅ாହିொ = ݁ாହିூ ∙ ݁ாହିூ ∙ ݁ாହିொ

݁̅ாହିூ = ݁ாହିூ ∙ ݁ாହିொ ∙ ݁ாହିொ

݁̅ாହିொ = ݁ாହିூ ∙ ݁ாହିொ ∙ ݁ாହିூ

 (A.3) 

Following the signal description proposed in Section 2.1, it is possible to define the 

primary codes, secondary codes, and data rate for each of the product components as 

in Table A–2. 
Table A–2: AltBOC product components. 

 Primary Code Secondary Code Data Rate [sps] 

݁̅ாହିூ 
Length: 10230 
{ܿ}ாହିொ ∙ {ܿ}ாହିூ ∙ {ܿ}ாହିொ 

Length: 100 
{ܿௌ}ௌଵ ∙ {ܿௌ}ௌସ ∙ {ܿௌ}ௌଵ 250 

݁̅ாହିொ Length: 10230 
{ܿ}ாହିூ ∙ {ܿ}ாହିூ ∙ {ܿ}ாହିொ 

Length: 100 
{ܿௌ}ௌଶ ∙ {ܿௌ}ௌସ ∙ {ܿௌ}ௌଵ 250 

݁̅ாହିூ 
Length: 10230 
{ܿ}ாହିூ ∙ {ܿ}ாହିொ ∙ {ܿ}ாହିொ 

Length: 100 
{ܿௌ}ௌଶ ∙ {ܿௌ}ௌଵ ∙ {ܿௌ}ௌଵ 50 

݁̅ாହିொ Length: 10230 
{ܿ}ாହିூ ∙ {ܿ}ாହିொ ∙ {ܿ}ாହିூ 

Length: 100 
{ܿௌ}ௌଶ ∙ {ܿௌ}ௌଵ ∙ {ܿௌ}ௌସ 250 

 

The eight components are then modulated with two complex subcarriers to result in 

the Galileo E5 signal bi-modal spectrum. 
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From the analysis of the AltBOC constant envelope modulation provided in [20], it 

is known that the statistical autocorrelation function of the total signal is the sum of 

sixteen terms, i.e. four single components plus four product components, each of 

them modulated by the sub-carrier function in quadrature with a delayed version of 

it. The cross-terms cancel out under the hypothesis that the codes are ideally 

orthogonal with each other, that the cross correlation between the two subcarriers is 

zero, and that the cross-correlation between a sub-carrier and its delayed version is 

zero. 

Thus, the normalized PSD of the combined E5 service is computed as: 

(݂)ாହܩ =
1
8

൫ܩாହିூ
ௌ (݂) + ாହିூܩ

ௌሚ (݂) + ாହିொܩ
ௌ (݂) + ாହିொܩ

ௌሚ (݂) +

ாହିூܩ 
ௌ (݂) + ாହିூܩ

ௌሚ (݂) + ாହିொܩ
ௌ (݂) + ாହିொܩ

ௌሚ (݂) +

ாହିூܩ
 (݂) + ாହିூܩ

෨ (݂) + ாହିொܩ
 (݂) + ாହିொܩ

෨ (݂) +

ாହିூܩ
 (݂) + ாହିூܩ

෨ (݂) + ாହିொܩ
 (݂) + ாହିொܩ

෨ (݂)ቁ

 (A.4) 

where the superscript ܵ refers to the sub-carrier function for the single components 

and the superscript ܲ refers to the sub-carrier function for the product components; 

the sign ‘ ෩ ’ is used to indicate the delayed version (or quadrature component) of the 

sub-carrier function. 

Figure A–7 and Figure A–8 show the normalized PSD of the Galileo E5a-I and E5a-

Q single components transmitted by SVID 19 and their ideal smooth spectrum 

(black dashed line). As a convention, data components with a continuous spectrum 

are represented in purple, while line spectra are drawn in green. 

  

Figure A–7: PSD of Galileo E5a-I single component trasmitted by SVID 19. 
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Figure A–8: PSD of Galileo E5a-Q single component trasmitted by SVID 19. 

In the same way, Figure A–9 and Figure A–10 show the normalized PSD of the 

Galileo E5b-I and E5b-Q single components transmitted by SVID 19 and their ideal 

smooth spectrum (black dashed line). 

 

  

Figure A–9: PSD of Galileo E5b-I single component trasmitted by SVID 19. 
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Figure A–10: PSD of Galileo E5b-Q single component trasmitted by SVID 19. 

 

  

  
Figure A–11: PSD of Galileo E5a product components trasmitted by SVID 19. 
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Figure A–11 and Figure A–12 represent the 8 product components generated by 

multiplying the primary and secondary code sequences as reported in Table A–2. 

 

  

  
Figure A–12: PSD of Galileo E5b product components trasmitted by SVID 19. 

 

Finally, the Galileo E5 signal resulting from the sum of the 16 components is 

represented in Figure A–13. 
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Figure A–13: PSD of Galileo E5 trasmitted by SVID 19. 
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For this purpose, SBAS systems implement the so-called Signal Quality Monitoring 

(SQM) algorithms which are capable of recognizing distorted navigation signals and 

thus discarding the corrupted information. The advent of new GNSS signals 

introduces the necessity to perform a new characterisation for nominal/non-nominal 

signal distortions and to extend already accepted failure models to the new 

modulations techniques. 

Several models have been proposed to describe payload imperfections and non-ideal 

effects affecting a radio navigation signal, so as to recognize and discard the 

corrupted information. Appendix A investigates the concept of nominal and non-

nominal signal distortions for Galileo signals. This topic is complex and quite 

controversial. Substantial literature is available on the subject but no common 

understanding has been reached up to now in the navigation community. Galileo 

system provider is still investigating the nature, effects, modelling, and detectability 

of such distortions. The content of this Appendix reflects only the author’s view. 

B.1 Nominal Signal Distortions 

Nominal distortions are defined as imperfections of the navigation signal resulting 

from unideal payload elements behaviour. A performance indicator commonly used 

for measuring nominal signal distortions is represented by the S-Curve Bias (SCB). 

The expression below defines the SCB as:  

ܤܥܵ = ฬ ݔܽ݉
ఋఢ[,ఋೌೣ]

(ߜ)ܦܥ − ݉݅݊
ఋఢ[,ఋೌೣ]

 ฬ (B.1)(ߜ)ܦܥ

where the parameter ߜ is the early-late spacing of the code tracking loop defined in 

the range [0,  ௫]; the Code Delay (CD) is a function of the correlator spacing andߜ

is equal to the zero-crossing point of any unbiased DLL discriminator:  

(ߜ)ܦܥ = ݊݅݉ ݃ݎܽ
ఌ

,ߝ)ܥܵ|  (B.2) |(ߜ

For a non-coherent DLL discriminator, the S-Curve (SC) is computed as: 

,ߝ)ܥܵ (ߜ = ฬܨܥܥ ൬ߝ −
ߜ
2

൰ฬ
ଶ

− ฬܨܥܥ ൬ߝ +
ߜ
2

൰ฬ
ଶ

 
(B.3) 

being CCF the Cross-Correlation Function between the received signal and the local 

replica as defined by Eq. (2.33). 

The ideal case is represented by an SCB equal to zero. However filtering effects and 

amplifier non-linearities may cause significant distortions of the SCB.  

A measure of filter imperfections is represented by the Differential Group Delay 

(DGD) characteristics. In general the DGD is associated to the ranging function of 
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the navigation signal: for the ranging to be as accurate as possible, both GNSS 

system providers and user receiver manufacturers need to ensure an in-band Group 

Delay (GD) as flat as possible. For this purpose, GNSS satellites and SBAS 

navigation payloads are tested at different manufacturing stages to ensure that the 

resulting group delay characteristics satisfy a certain specification mask. Figure B–1 

provides an example of test results for group delay in-orbit measurements. 

 
Figure B–1: Example of E1 Group Delay In-Orbit Test Measurements. 

Also on the receiver side, group delay variations and asymmetries are typically 

introduced by user antennas and front-end filters whose behaviour fluctuate with 

environmental conditions. 

In order to protect aviation users from undesired range biases, the approach followed 

by the standardisation community in MOPS DO-229D [17] is to constrain the 

equipment contribution to the correlation distortions through a maximum DGD. This 

value changes according to the different services and user receiver types.. The DGD 

definition from [17] is reported in Figure B–2. 

 
Figure B–2: Extract from MOPS DO-229D [17]. 

The approach adopted in MOPS DO-229D [17] shows some criticalities that raise 

concerns in the standardisation community currently in the process of defining 

future Dual-Frequency Multi-Constellation (DFMC) MOPS. 
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First, there is only one maximum DGD value for each transfer function but there are 

infinite filter realisations with the same maximum DGD. Each of these filter 

realisations has a different impact on the correlation shape: the distortion caused can 

be none as well as severe, resulting in a ranging bias of several meters. This means 

that limiting the maximum DGD does not constrain the correlation distortions with a 

one-to-one relationship. As a result, starting from a maximum DGD value (e.g. 150 

ns) and few other filter requirements (e.g. bandwidth, minimum attenuation per 

octave) it is not possible to define the ‘worst-case’ filter, i.e. the filter resulting in the 

worst correlation distortions. 

Additionally, non-linear effects do not sum up linearly. Thus distortions introduced 

by the equipment DGD cannot be separated in principle from signal distortions 

characterising the SIS. In other words, the correlation distortions need to be 

constrained considering the complete chain from generation to reception and the 

worst correlation distortions result from a combination of the SIS and the equipment 

characteristics. 

 
Figure B–3: Illustration of the Stanford Filter Model. 

To overcome the issue of the definition of a worst-case filter, a theoretical model for 

the filter transfer function has been proposed by the Stanford community with the 

following constraints: 

 the nominal filter group delay profile should be of a ‘typical’ type (e.g., 

resonator or SAW) that, in general, magnifies the errors from signal 

distortion faults; 
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 the filter model should not create additional fault modes in and of itself. In 

other words, the filter is assumed to behave nominally. 

The Stanford filter model is illustrated in Figure B–3 for a generic bilateral receiver 

bandwidth ܤோ . 

 

In the context of defining future DFMC MOPS specifications, several studies have 

been carried out concerning the characterisation of nominal signal distortions for 

GPS and Galileo new signals ([47], [48]). 

Focussing on the Galileo system and on the signals that will be supported by 

EGNOS evolution (V3), nominal signal distortion analyses are based on the 

computation of user bias maps that provide an upper bound of ranging errors 

obtained by users with different receiver parameters than for the ground reference 

receivers. 

The bias maps are calculated using the code delay expression in Eq. (B.2) and 

depend on a set of key parameters: 

 receiver front-end bandwidth 

 receiver front-end characteristics (magnitude, group delay) 

 DLL discriminator type 

 correlation spacing 

The computation of worst-case user bias maps for Galileo satellites starts from 

recorded I/Q-sample-files measured via high gain antenna in E1/L1 and E5/L5 

frequency-bands. It is assumed that the measurement system is very well calibrated 

and that continuous signal recordings over satellite passes are available for post-

processing. For each sample-file the methodology described below can be adopted: 

 For each receiver bandwidth, the selected receiver filter is applied to the 

sample-file. 

 The filtered sample-file is processed with the selected DLL discriminator 

providing the code delay.  

 The obtained CD values are normalised by subtracting the reference receiver 

CD values.  

 The user bias map represents the worst-case CD value over time for each 

combination of receiver bandwidth and correlator spacing. 
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Note that the methodology described implies a very high computation load but the 

efficiency can be increased by inverting some of the implementation steps. 

Finally, as only the differential biases between different satellites are relevant for 

positioning errors, the average user biases over all satellites and time can be further 

subtracted for each value set of user receiver parameters in an additional optional 

step. This subtraction has the very important advantage that the results become 

independent from the absolute measurement system calibration accuracy. However 

this makes only sense if sufficient representative satellites and measurements are 

available. 

Figure B–4 provides an example of user bias map for Galileo E1-C component over 

the user space (correlator spacing, receiver bandwidth). 

 
Figure B–4: Example of User Bias Map Computation from [47]. 

The current proposal for the user space is summarised in Table B–5. 
Table B–1: Proposed User Space for future DFMC MOPS. 

 Receiver 
Bandwidth [MHz] 

Correlator Spacing 
[chip] 

 GPS L1-C/A, 
Galileo E1-OS 

12, 24 0.08, 0.12 

GPS L5, 
Galileo E5a 

12, 24 0.9, 1.1 

 

Additionally the following assumptions are under consideration: 

 Group Delay for both L1/E1 and L5/E5a less than 150 ns (including 

antenna); 

 DLL discriminator: only early minus late (E-L) 
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By taking into account the assumptions above, the maximum impact of nominal 

signal distortions onto GPS and Galileo signals is expected not to exceed 15 cm. The 

assessment is based on Stanford approach to define arbitrarily a worst-case filter. 

However this does not prevent a receiver manufacturer to design a receiver with 

transfer function characteristics respecting the maximum DGD value and resulting in 

correlation distortions worse than those obtained with the Stanford worst-case filter.  

A revised requirement on the Differential Group Delay seems to be needed for 

future DFMC MOPS. 

B.2 Non-nominal Signal Distortions 

The ICAO 2nd-Order Step (2OS) threat model defines a class of signal deformations 

that represent potential integrity threat to GPS-based aircraft landing systems. This 

model, as introduced in [44] and [45], consists of three possible failure modes: 

digital, analog, and combined. The names Threat Model A (TM-A), Threat Model B 

(TM-B) and Threat Model C (TM-C) refer to each of the respective failure modes. 

In particular the anomalous waveform, or Evil WaveForm (EWF), results from the 

combination of second-order ringing (analog failure mode) and lead/lag of the 

pseudorandom noise code (PRN) chips (digital failure mode). The effect of such 

deformations is described in the time domain and consists of dead zones, distortions, 

and false peaks on the receiver correlation shape. 

Always according to this model, the digital and analog distortions are defined by 

means of three parameters: the lead/lag for the digital distortion; the damped natural 

frequency and the damping factor for the analog one. Bounds for the three 

parameters are also provided (Table B–2). Note that ܶ is the chip period for GPS 

L1-C/A signal, i.e. ܶ = 1 (1.023 MHz)⁄ . 
Table B–2: ICAO Threat Model Parameters Space. 

Threat Model 
GPS L1-C/A Parameters 

∆ [s] ࢊࢌ [MHz] ࢊ࣌ [MNep/s] 

TM-A −0.12Tୡ, 0.12Tୡ - - 
TM-B - 4, 17 0.8, 8.8 
TM-C −0.12Tୡ, 0.12Tୡ 7.3, 13 0.8, 8.8 

 

An illustration of the digital and analog distortions is provided respectively in Figure 

B–5 and Figure B–6. 
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Figure B–5: Illustration of TM-A as defined for GPS L1-C/A signal. 

Although this model has been adopted by ICAO as the standard threat scenario for 

GPS L1-C/A signal, there is still no agreement for new signals such as GPS 

L5/Galileo E5a and GPS L1/Galileo E1. In this context, some assumptions are made 

in B.2.1 in order to extend the ICAO model to the signal modulations described in 

B.2.1. 
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Figure B–6: Illustration of TM-B as defined for GPS L1-C/A signal. 

B.2.1 Threat Model Formulation 

Unlike for the GPS constellation, Galileo satellites are relatively recent and no signal 

anomalies have been recorded up to now. For this reason, it is quite difficult to 

predict how potential payload failures could affect the navigation signal shape and 

even more to tell how the distortions could be modelled. It is no surprise that the 

Galileo system provider struggles in taking an official position on this matter in front 

of the aviation community that pushes to have realistic assumptions for the EGNOS 

V3 standardisation process.  

A lot of effort has been done by the scientific community to extend the ICAO threat 

model to the new modulations, but the payload architecture of Galileo satellites is in 

general different from the GPS one(s). This information, that is not in the public 

domain, would certainly help formulating the assumption at the basis of the threat 

model. Still, even with that knowledge, there is no guarantee that signal distortions 

will be as predicted. 

The main assumption taken here is to consider that the NSGU generates a code 

sequence already spread by the sub-carrier, thus both the digital and analog failures 

affect directly the sub-chip generation. A similar approach is adopted in [45], where 

the digital deformation is assumed to occur on the squared wave generator. Starting 

from the hypothesis to consider the sub-chip autocorrelation peak instead of the chip 

autocorrelation peak, some modifications have to be done to the mathematical 

description of the EWF threat model. 
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First, a particular representation of the navigation signals needs to be introduced 

before the derivation of the threat model expressions. As described in Section 2.1, 

each navigation component can be written as the product of symbols (or chips) times 

a sequence of pulses. The pulse shape or waveform can be in general a rectangle, a 

Square Root Raised Cosine, a Gaussian shape, or any number of equal-length 

deterministic segments. The name Multilevel Coded Symbol (MCS) is used to 

designate a generic symbol which can adopt in principle any value or shape. The 

expression for the chip waveform is given by: 

(ݐ) =  ܽ௦௨ ൬ݐ − ݅ ܶ

௦ܰ௨
൰

ேೞೠ್ିଵ

ୀ

 
(B.4) 

where ௦ܰ௨ is the number of equal-length segments, or sub-chips, within one chip, 

{ܽ} is the deterministic sequence of sub-chip amplitudes and ௦௨(ݐ) is a function 

representing the sub-chip shape.  

Assume that (ݐ)ݏ is the received DSSS signal as it is defined in base-band. It is 

possible to represent (ݐ)ݏ as a MSC sequence: 

(ݐ)ݏ =  ܿ(ݐ − ݊ ܶ)
ାஶ

ୀିஶ

 (B.5) 

being {ܿ} the amplitude of the PRN code sequence and (ݐ) the chip shape 

defined in Eq. (B.4). Under the hypothesis ideal PRN codes, the power spectral 

density (PSD) of (ݐ)ݏ simplifies to ܩ௦(݂) = |ܵ(݂)| ܶ⁄ , which can be written as (see 

[40] for the derivation): 

(݂)௦ܩ =
ଶ݊݅ݏ ൬݂ߨ ܶ

ܰ௦௨൰

ܶ(݂ߨ)ଶ ∙ ቮ  ܽ݁
ିଶగ ்

ேೞೠ್

ேೞೠ್

ୀଵ

ቮ

ଶ

 
(B.6) 

Being the sub-chip function ௦௨(ݐ) a rectangular shape. From this formulation it is 

possible to identify a first term corresponding to the PSD of a Binary Phase Shift 

Keying (BPSK) with chip rate ܰ௦௨ ∙ ݂, being ݂ = 1 ܶ⁄ , and a second term which 

represents the modulation: 

(݂)௦ܩ = ௦ܩ
௦௨(݂)ܩ௦

ௗ(݂) (B.7) 

Starting from the navigation signal formulation in Eq. (B.7), the expressions of the 

threat model A, B and C are derived in the following. 

TM-A 
The digital failure mode is described as a variation in the timing of the individual 

PRN chip transition with respect to ideal. This error is modelled as an advance or 
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delay (∆) of the falling edge of the code chip and is assumed to be introduced in the 

generation of the digital sequence. As demonstrated in [45], the correlation function 

for the distorted signal at the receiver can be written as:  

ܴ௦,௦
்ெି(ݐ) = (ݐ)ݏ̃ ∗ (ݐ)ݏ = ܴௗ,௦(ݐ) + ܴ௦  (B.8) (ݐ)

being:  

(ݐ)ݏ̃ = (ݐ)ݏ +  (B.9) (ݐ)݀

the distorted signal, resulting from the sum of the ideal signal (ݐ)ݏ, defined in Eq. 

(B.5), and the deformation ݀(ݐ). 

Taking into account of the aforementioned payload generation scheme, the lead/lag 

applies directly to the sub-chip generation. Since the ICAO model is described in 

terms of correlation functions, the signal PSD formulation given in Eq. (B.7) is 

written in the time domain as: 

ܴ௦(ݐ) = ܴ௦
௦௨(ݐ) ∗ ܴ௦

ௗ(ݐ) (B.10) 

Applying now Eq. (B.8) to ܴ௦
௦௨(ݐ) in Eq. (B.10), a new expression for the distorted 

correlation peak is obtained:  

ܴ௦,௦
்ெି(ݐ) = ൣܴௗ,௦

௦௨(ݐ) + ܴ௦
௦௨(ݐ)൧ ∗ ܴ௦

ௗ(ݐ) = ൣܴௗ,௦
௦௨(ݐ) ∗ ܴ௦

ௗ(ݐ)൧ + ܴ௦  (B.11) (ݐ)

This formulation applies to all the signal modulations described in Section B.2.2. 

Figure B–7 shows the correlation peak and the PSD of a distorted BOCs(1,1) signal, 

obtained by applying Eq. (B.11). 

Figure B–7: Illustration of TM-A for a BOCs(1,1) signal. 
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TM-B 
The analog failure mode is described as an amplitude modulation or ringing that 

occurs at every PRN chip transition independently of a digital failure. This error is 

modelled as a second order system with a pair of complex conjugate poles at 

߱ߞ ± ݆߱ඥ1 −  the damping ߞ ଶ, being ߱ the undamped natural frequency andߞ

ratio. The impulse response of this system is described as:  

ℎ(ݐ) = ቐ
0 ݐ < 0

߱

ඥ1 − ଶߞ
݁ିఠ௧݊݅ݏ൫߱ௗ ൯ݐ ݐ ≥ 0 (B.12) 

where ߱ௗ = ߱ඥ1 −  ଶ is the damping natural frequency and the damping factor isߞ

ௗߪ =   :. The classical formulation of the model is given by߱ߞ

ܴ௦,௦
்ெି(ݐ) = ℎ(ݐ) ∗ ܴ௦  (B.13) (ݐ)

 

Figure B–8: Illustration of TM-B for a BOCs(1,1) signal. 

Again, taking into account that the deformation applies on the sub-chip generation, 

Eq. (B.13) can be substituted in Eq. (B.10) giving: 

ܴ௦,௦
்ெି(ݐ) = [ℎ(ݐ) ∗ ܴ௦

௦௨(ݐ)] ∗ ܴ௦
ௗ(ݐ) = ℎ(ݐ) ∗ ܴ௦  (B.14) (ݐ)

It is evident that for TM-B nothing changes with respect to the formulation in [45]. 

Figure B–8 illustrates the effect of the analog distortion on the correlation peak a 

BOCs(1,1) signal. 
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TM-C 
Threat Model C describes the EWF as the combination of the digital and analog 

failure modes. As reported in Table B–2, the parameters space for TM-C are slightly 

different from the one characterizing TM-A and TM-B, thus it can’t be defined as 

the direct combination of both of them. Keeping in mind the underlying hypothesis 

that the deformation applies to the sub-chip autocorrelation peak, the combined 

threat model can be described from a mathematical point of view as follows:  

ܴ௦,௦
்ெି(ݐ) = ℎ(ݐ) ∗ ൣܴௗ,௦

௦௨(ݐ) + ܴ௦
௦௨(ݐ)൧ ∗ ܴ௦

ௗ(ݐ) (B.15) 

B.2.2 Signals Description 

All Galileo signals can be written according to Eq. (B.7), as a generalisation of Eq. 

(B.6). Table B–3 gives the sub-chip and the modulation components characterizing 

the PSDs for the Galileo signals generic formulation. 
Table B–3: PSDs for GNSS Signal Modulations. 

Modulations 
Power Spectral Densities 

 (ࢌ)ࢊࡳ (ࢌ)࢈࢛࢙ࡳ

BPSK(n) 
1
ܶ

݂ߨ)ଶ݊݅ݏ ܶ)
ଶ(݂ߨ)  - 

BOCs(p,q) 
࢈࢛࢙ࡺ =  ∙  /

ܰ௦௨

ܶ

ଶ݊݅ݏ ൬݂ߨ ܶ
ܰ௦௨൰

ଶ(݂ߨ)  ܰ௦௨ + 2  (−1)(ܰ௦௨ − ݏܿ(݅ ൬
݂݅ߨ2 ܶ

௦ܰ௨
൰

ேೞೠ್ିଵ

ୀଵ

 

BOCc(p,q) 
࢈࢛࢙ࡺ =  ∙  /

ܰ௦௨

ܶ

ଶ݊݅ݏ ൬݂ߨ ܶ
ܰ௦௨൰

ଶ(݂ߨ)  

ܰ௦௨ + 2

⎣
⎢
⎢
⎡

 (−1)ܿݏ ቆ
2݅)݂ߨ2 − 1) ܶ

௦ܰ௨
ቇ

ேೞೠ್
ଶ

ୀଵ

+

+  2(−1) ൬ ௦ܰ௨

2
− ݅൰ ݏܿ ቆ

(2݅)݂ߨ2 ܶ

௦ܰ௨
ቇ

ேೞೠ್
ଶ ିଵ

ୀଵ ⎦
⎥
⎥
⎤
 

MBOC(6,1,1/11) 

ை(ଵ,ଵ)ܩ
௦௨ (݂)

=
2
ܶ

ଶ݊݅ݏ ൬݂ߨ ܶ
2 ൰

ܶ(݂ߨ)ଶ  

ை(,ଵ)ܩ
௦௨ (݂)

=
12

ܶ

ଶ݊݅ݏ ൬݂ߨ ܶ
12 ൰

ଶ(݂ߨ)  

ை(ଵ,ଵ)ܩ
ௗ (݂) = 2 − ݂ߨ)ݏ2ܿ ܶ)

ை(,ଵ)ܩ
ௗ (݂) = 12 + 2 (−1)(12 − ݏܿ(݊ ൬

݂݅ߨ2 ܶ

12
൰

ଵଵ

ୀଵ

 

AltBOC(p,q) 
࢈࢛࢙ࡺ =  ∙ (/) 

ܰ௦௨

ܶ

ଶ݊݅ݏ ൬݂ߨ ܶ
ܰ௦௨൰

ଶ(݂ߨ)  
1

ܰ௦௨ ቮ  ܽ݁
ିଶగ ்

ேೞೠ್

ேೞೠ್ିଵ

ୀ

ቮ

ଶ
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Referring to Table B–3, first the general expression for the BPSK modulation is 

given as a reference. The notation BPSK(n) is used to indicate a BPSK modulation 

with ݂ = ݊ ݂, being ݂ = 1.023 MHz the reference frequency, and ݂ the chip rate. 

Then the expressions for Binary Offset Carrier (BOC) signals are given, as in [40], 

under the assumption that the PRN sequence with chip rate ݂ = ݍ ݂ is modulated by 

a sub-carrier that is a squared sine/cosine waveform with frequency ௦݂ =  ݂. The 

formulation is also extended to the Multiplexed Binary Offset Carrier (MBOC), the 

modulation introduced in 2007 for the GPS/Galileo interoperable signal [18]. Since 

it is a composed signal, the total spectrum is expressed as: 

(݂)ெை(,ଵ,ଵ/ଵଵ)ܩ =
10
11

ை(ଵ,ଵ)ܩ
௦௨ (݂) ∙ ை(ଵ,ଵ)ܩ

ௗ (݂) +
1

11
ை(,ଵ)ܩ

௦௨ ∙ ை(,ଵ)ܩ(݂)
ௗ  

(B.16) 

A similar approach is used for the Alternate BOC, AltBOC(p,q) modulated signals. 

In particular  and ݍ refers to the sub-carrier frequency and chip rate factors. With 

reference to the AltBOC modulation description provided in [20] and Section A.3, 

the expression of the constant envelope AltBOC spectrum under the hypothesis ideal 

PRN codes is given by: 

(݂)௧ை(,)ܩ =
1
2

(݂)௦௨ܩ ∙ ௌܩൣ
ௗ(݂) + ௌሚܩ

ௗ(݂) + ܩ
ௗ(݂) + ෨ܩ

ௗ(݂)൧ 
(B.17) 

where the four modulation spectra refers respectively to the four components: 

prompt or in-phase ‘single signal’ sub-carrier, delayed or quadrature ‘single signal’ 

sub-carrier, prompt or in-phase ‘product signal’ sub-carrier and delayed or 

quadrature ‘product signal’ sub-carrier. The modulation spectra of the four 

components are derived using the following sub-chip sequences: 
Table B–4: AltBOC Sub-Chip Sequences. 

Signal Sub-Chip Sequences 

൫√2 ࡿ{ࢇ} + 1൯
2

 
1
2

 −
1
2

 −
൫√2 + 1൯

2
 

෨ࡿ{ࢇ}  1
2

 ൫√2 + 1൯
2

 
൫√2 + 1൯

2
 

1
2

 

− ࡼ{ࢇ}
൫√2 − 1൯

2
 

1
2

 −
1
2

 ൫√2 − 1൯
2

 

෩ࡼ{ࢇ}  1
2

 −
൫√2 − 1൯

2
 −

൫√2 − 1൯
2

 
1
2
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Note that each of these sequences is repeated 2 ∙  times (with sign inversion) ݍ/

within one single chip. 

B.2.3 Threat Model Parameters Space 

As for the threat model formulation, the same difficulties apply for the definition of 

the parameters space applicable to each of the modulations defined in Table B–3. In 

particular, the Galileo signals of interest for this analysis are the Galileo E1 OS and 

the Galileo E5a. These two signals in fact are in the baseline for the future EGNOS 

V3 DFMC Service. In particular, the pilot components E1-C and E5a-Q are planned 

to be monitored by SQM algorithms for EWF detection. 

By definition an evil waveform occurs when the signal is distorted but tracking and 

acquisition operations are still possible. This is the situation when the distortion is 

‘evil’ as it causes an excessive ranging error and a faulty PVT. A severe deformation 

of the correlation shape on the other hand would cause the user receiver tracking 

loops to lose lock and the satellite pseudorange would be discarded from the PVT 

solution. The assumption of considering the sub-chip autocorrelation peak instead of 

the chip autocorrelation peak leads to the following observations: 

 the lead/lag parameter describing the digital distortion should be ‘scaled’ to 

the sub-chip duration and not anymore to the chip duration; 

 a damping natural frequency lower than the sub-chip frequency or a very 

high damping factor result in an excessive analog distortion. 

 

Since no official threat bounds have been derived yet, for the simulations presented 

in Section B.2.4 these considerations are taken into account.  

Table B–5 provides the parameters space used for the generation of the simulation 

results in Section B.2.4. 
Table B–5: Assumption on Parameters Space for Galileo Signals. 

Threat Model 
Galileo E1 OS Parameters 

∆ [s] ࢊࢌ [MHz] ࢊ࣌ [MNep/s] 
TM-A -0.24 Tsub, 0.24 Tsub - - 
TM-B - 4, 23 2.8, 8.8 
TM-C -0.24 Tsub, 0.24 Tsub 4, 23 2.8, 8.8 

Threat Model 
Galileo E5a Parameters 

∆ [s] ࢊࢌ [MHz] ࢊ࣌ [MNep/s] 
TM-A -0.25 Tc , 0.25 Tc - - 
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Threat Model 
Galileo E1 OS Parameters 

∆ [s] ࢊࢌ [MHz] ࢊ࣌ [MNep/s] 
TM-B - 4, 23 8.8, 18.8 
TM-C -0.25 Tc , 0.25 Tc 4, 23 8.8, 18.8 

 

It has to be underlined that a particular case is represented by the Galileo E1 OS 

modulation whose composed spectrum is characterized by two different sub-chip 

lengths (see [8]). Since the threat model here illustrated is purely theoretical, various 

are the possible assumptions on where the deformation is introduced in the signal 

generation chain: the distortion in fact could occur before or after the summing up 

the BOCs(1,1) and BOCs(6,1) components. From a formulation point of view the 

analog distortion is simulated simply by applying Eq. (B.11) to the two components 

separately: this corresponds to the assumption that the failure occurs before. In any 

case, as already said previously, remember that the advance or delay affecting the 

falling edges of the digital sequence can’t be longer than the sub-chip duration itself. 

Also for the TM-B it is reasonable to assume that the deformation can occur on the 

two components independently or on both of them with the same characteristics. In 

the last case remember that the principle of superimposition holds for LTI systems, 

thus the distortion can be equally applied to the single components before summing 

or directly to the composed signal. 

B.2.4 Performance Analysis 

In order to evaluate the impact of the EWF threat model here proposed on new 

generation signals, the tracking error bias with respect to an ideal correlation peak is 

analysed. No measurements noise or multipath delay is taken into account. The 

tracking error is computed for two different correlators, Narrow Early-minus-Late 

(E-L) and Double Delta (DD), and for various correlator spacing. The two different 

discriminators are defined as: 

,ߝ)ாܥܵ (ߜ = ܴ௦,௦
்ெ ൬ߝ −

ߜ
2

൰ − ܴ௦,௦
்ெ ൬ߝ +

ߜ
2

൰ 
(B.18) 

,ߝ)ܥܵ (ߜ = ܴ௦,௦
்ெ ൬ߝ −

ߜ
2

൰ − ܴ௦,௦
்ெ ൬ߝ +

ߜ
2

൰൨ −
1
2

ൣܴ௦,௦
்ெ(ߝ − (ߜ − ܴ௦,௦

்ெ(ߝ +  ൧(ߜ
(B.19) 

where ߜ is the correlator spacing and ܴ௦,௦
்ெ is the filtered distorted correlation peak, 

computed according to Eq. (B.11) and (B.14) for respectively TM-A and TM-B. The 

selection of the correlators is done according to the current standard for aviation 

receivers in MOPS DO-229D [17]. The same holds for the applied filtering that is 
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modelled according to Stanford assumptions (Figure B–3). Regarding the range of 

correlator spacing values and receiver bandwidth, the user space reported in Table 

B–1 is taken as a reference. 

In the following analysis of the Galileo signals user bias maps are computed for TM-

A and TM-B. As introduced in Section B.1, a user bias map represents the maximum 

code delay suffered by the user receiver as a function of its filter bandwidth and 

correlator spacing. First, the code delay is computed by applying Eq. (B.2) to the S-

curve expressions in (B.18) and (B.19); the worst-case value is then obtained by 

normalising the code delay with respect to a reference receiver value. It is here 

assumed for the reference receiver a filter bandwidth ܤതோ of 24 MHz and correlator 

spacing ̅ߜ of 0.1 chips. Being Π the set of parameters identified for each threat 

model, it is possible to express the maximum code delay or worst-case user bias as: 

,ߜ)ݏܽ݅ܤ (ோܤ = max
ஈ

หܦܥ௦(ߜ, ,ோܤ Π) − ,̅ߜோ൫ܦܥ ,തோܤ Π൯ห (B.20) 

Π = ൝  
∆ TM-A

ௗ݂ , ௗߪ TM-B
∆, ௗ݂ , ௗߪ TM-C

  

Galileo E1 OS 
The first signal under analysis is the Galileo E1 OS. The latest standardization plan 

foresees that future aviation receivers will process E1 signals by correlating with the 

BOCs(1,1) component and neglecting the BOCs(6,1) component; further, of the two 

E1-B and E1-C components, only the pilot would be subject to signal quality 

monitoring. Figure B–9 shows the ideal and filtered S-curve bias for the Early-Late 

and Double-Delta correlators. 
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the digital ones. By comparing the maximum impact of nominal signal distortions 

(15 cm) with the TM-A user bias map for the EL discriminator, it is clear that most 

of the user space is below that threshold. Only the up-left portion (0.08 – 0.09 chips, 

16 – 24 MHz) is above 15 cm. By further reducing the allowed user space, or by 

slightly increasing the nominal distortions assumption, the TM-A could be excluded 

from the signal quality threats or feared events. 

Galileo E5a 
The second signal under analysis is the Galileo E5a. This service is composed by 

two components, E5a-I and E5a-Q, that are multiplexed with other components to 

form the Galileo E5 AltBOC(15,10) signal. The latest standardization plan foresees 

that future aviation receivers will process E5a components as a BPSK(10) 

modulation and that only the pilot will be under signal quality monitoring. Figure B–

12 shows the ideal and filtered S-curve bias for the Early-Late and Double-Delta 

correlators. 

Figure B–12: Galileo E5a: Ideal and Filtered S-Curve for EL and DD correlators. 

Figure B–13 and Figure B–14 below provide the user bias maps for respectively the 

TM-A and TM-B. The results for Galileo E5a confirm the worse performance of the 

DD discriminator in presence of non-nominal signal distortions. On the other hand, 

the EL user bias map for the TM-A scenario is below the nominal signal threshold of 

15 cm. In other words, by keeping the current assumption on the TM-A parameters 

space, analog distortions would be hidden by the Galileo E5a signal nominal 

behaviour. 
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