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Kurzfassung
Diese Arbeit befasst sich mit Synchronisations- und Entzerrungsalgorithmen für frequenzse-

lektive Multiple-Input Multiple-Output (MIMO) Systeme. Der Schwerpunkt liegt auf Line-of-

Sight-MIMO-Übertragungen bei Millimeterwellenfrequenzen für Backhaul-ähnliche Szenari-

en. Der gewählte Ansatz ist ferner allgemein für MIMO-Systeme mit räumlichem Multiplexing

gültig. Es wird gezeigt, dass in einem drahtlosen Übertragungssystem typischerweise zwei

Synchronisationsbeeinträchtigungen vorhanden sind, nämlich Trägerfrequenzversatz und

Symboltaktunterschiede. Beide existieren aufgrund der Nachfrage nach Hardware- und ins-

besondere Oszillator-Implementierungen mit geringer Komplexität. Sie können mit einem

Phasenversatzprozess bezogen auf den jeweiligen idealen Sollwert charakterisiert werden. Die

Beeinträchtigungen führen dazu, dass die beobachtete Kanalübertragungsfunktion zwischen

Sender- und Empfängerbasisband im Allgemeinen zeitvariant ist. Für MIMO-Systeme, in

denen mehrere Transceiver verwendet werden, wird gezeigt, dass je nach Hardware-Aufbau

eine unterschiedliche Anzahl dieser Phasenprozesse zu beobachten ist. Wenn zum Beispiel

die Transceiver auf beiden Seiten der Verbindung weit voneinander entfernt sind, ist es oft nur

schwer möglich, eine Frequenzreferenz zwischen ihnen zu teilen. In diesem Fall existieren so

viele unabhängige Phasenprozesse wie Transceiver im System.

Es werden zwei auf Trainingssignalen basierende Kanalschätzverfahren vorgeschlagen, um die

Phasenprozesse und die zeitveränderlichen Kanaleigenschaften zu identifizieren. Eines davon

ist eine Korrelationsmethode, die ein aus der Literatur bekanntes Verfahren ist, aber in dieser

Arbeit erstmals für den Fall mehrerer Synchronisationsbeeinträchtigungen, insbesondere

mehrerer Symboltaktunterschiede, in einem MIMO-System untersucht wird. Als Alternative

wird die adaptive Filterung zur direkten Identifikation und Verfolgung des zeitvarianten Sys-

tems vorgeschlagen. Für beide Ansätze werden Empfehlungen zur Parameterauswahl gegeben.

Insbesondere werden einige neue Ergebnisse für die Schrittweitenwahl des adaptiven Filters

für MIMO-Systeme mit mehreren Synchronisationsbeeinträchtigungen abgeleitet. Standard

und adaptive Entzerrung werden zur Kompensation der Kanalbeeinträchtigungen diskutiert.

Es zeigt sich, dass die Komplexität der Entzerrung stark von der Oszillatoranordnung abhängt.

Für den allgemeinsten Fall wird beispielsweise der komplexeste Entzerrer benötigt, welcher

überabgetastet ausgeführt werden muss.

Simulations- und Messergebnisse bestätigen, dass die vorgeschlagenen Schätz- und Entzer-

rungsstrategien praktikabel sind und zeigen, dass eine drahtlose Übertragung mit mehreren

Gigabit pro Sekunde mit einem räumlich-multiplexenden Line-of-Sight-MIMO-System mög-

lich sind, selbst wenn für jede Transceiver-Kette unabhängige Oszillatoren verwendet werden.
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Abstract
This work considers the problem of synchronization and equalization for frequency-selective

multiple-input and multiple-output (MIMO) systems. The focus is on line-of-sight MIMO

transmission at millimeter-wave frequencies for backhaul-like scenarios, but the approach

is generally applicable to MIMO systems using spatial multiplexing. It is shown that two

timing impairments are typically present in a wireless transmission system, namely carrier fre-

quency offset and sampling frequency offset. They exist due the desire for low-complexity

hardware, and in particular oscillator, implementations. Both of them can be characterized

with a phase offset process with respect to their ideal nominal value. These impairments

cause the observed channel characteristic, between transmitter and receiver baseband, to

be time varying in general. For MIMO systems, where multiple transceivers are used, it is

discussed that a different number of these phase processes will be observed, depending on

the hardware setup. For example, when the transceivers are widely separated on either side

of the link, sharing a time reference between them may be infeasible, meaning that as many

independent phase processes as transceivers exist in the system.

Two training signal based channel estimation techniques are proposed, in order to identify

the phase processes, and the time-varying channel characteristics in general. One of them

is a correlation method, which is a standard technique known from the literature, but will

in this work be firstly investigated for the case of multiple timing impairments, especially

multiple sampling frequency offset processes, in a MIMO system. As an alternative, adaptive

filtering is proposed for direct identification and tracking of the time-varying system. Pa-

rameter selection recommendations for both approaches are given. In particular, some new

results for the step size selection of the adaptive filter for MIMO systems with multiple timing

impairments are derived. Standard and adaptive equalization are discussed for dealing with

the channel impairments. It is seen that standard equalization greatly simplifies, depending

on the oscillator setup. However, for the most general case, the equalizer needs to be fully

fractionally spaced.

Simulation and measurement results corroborate that the proposed estimation and equal-

ization strategies are viable, showing that multi-gigabit per second wireless transmission

is feasible with a spatial-multiplexing line-of-sight MIMO system, even when independent

oscillators are used for each transceiver chain.

Keywords: synchronization, equalization, MIMO, LoS, spatial multiplexing, frequency offsets,

symbol timing, parameter estimation, adaptive filters, mmWave, 60 GHz, multi-gigabit per

second, measurement
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1 Introduction

1.1 Synchronization and Communication

Synchronization is one of the fundamental processes in nature and technology, ranging from

nature spectacles like fireflies flashing in unison on the river banks of Mexico, in order to

attract mating partners, over the pulsing behavior of neurons to process information in the

brain, to the calibration of vast antenna arrays, in order to detect the faintest signals from

the beginning of the universe, [1, 2]. In essence, the task is described by matching the time

reference of two or more spatially-separated systems. This can be achieved in a number of

ways, like sharing the time reference between the systems, using high precision references for

each system, or adjusting the time references of the systems after measuring their differences.

Examples for these approaches are: distribution of a laser reference through fiber optic cables

in radio astronomy [2], using highly accurate atomic clocks to provide the time references

for navigation satellites, and adjusting a wrist watch after noticing a difference with respect

to (w.r.t.) the standard time. From these examples, we can already identify one of the main

goals in the field of synchronization, which is to use as few highly accurate time references

as possible, since they are typically bulky, complex and expensive. Going back, the current

navigation satellite standards have had such an incredible success because billions of users

can rely on the tight synchronization between the different satellites, and do not require such

a precise time reference themselves. Likewise, billions of watches can be set and updated

periodically, some of them automatically, to one highly precise standard time, lowering the

cost per watch significantly.

For communication systems, synchronization is required to reliably detect the message that

has been transmitted. This includes finding the beginning of the message, as well as matching

transmitter (Tx) and receiver (Rx) frequencies, and transmission rates [3, 4, 5]. The difference

in the frequencies and rates occurs because the time reference in Tx and Rx are, due to their

spatial separation, subject to different environmental impacts, and also simply vary due to

manufacturing variability. Only when they are matched can the maximum possible amount

of information be transmitted across the link. To be more specific, the focus of this work is

1



1.2. Application Examples & mmWave LoS MIMO

on undesired timing impairments in these systems, which have to be resolved. For example,

assume a radio broadcast station that is transmitting at 94.50 MHz, but a receiving radio

that is tuned to 94.40 MHz. Although automatic retuning of the Rx to 94.50 MHz could be

treated as a synchronization problem, the focus here is on the case where the receiver is set to

94.50 MHz, but the inherent impairments of the circuitry only allow frequency generation of,

e.g., 94.49 MHz.

The more transmit and receive nodes exist in the system, the more timing impairments have

to be corrected, when a joint processing, e.g., to cancel interference, is desired to achieve

high throughputs. In radio terms, imagine two different radio stations transmitting on the

same frequency, with two receivers each wanting to receive only one of the stations, but

actually receiving a superposition of both. The benefit of such a system is immediately clear,

the two radio stations do not need to be separated in frequency, but can transmit on the

same frequency resource, given that the interference of the other station can be canceled at

the corresponding receiver. This essentially doubles the throughput compared to the more

common system setup, where the stations are separated in frequency. It will be seen in this

work that in order to cancel the interference, it is required that some joint processing, having

knowledge about all the timing impairments in the system, is carried out. Such a system with

multiple transmitting nodes and multiple receiving nodes using some joint processing to

cancel interference, and transmitting on the same frequency resource, is called a multiple-

input and multiple-output (MIMO) system. For such systems, synchronization is relatively

straightforward when a shared time reference is considered for the nodes on the transmitter

and receiver side. The other configuration with independent time references for each node

has only been treated to a limited extent in the literature, is significantly more complex, and

will be the main focal point of this work.

1.2 Application Examples & mmWave LoS MIMO

This thesis is written with a main application in mind, namely high throughput backhaul

in a line-of-sight (LoS) scenario. With the increase in mobile data demand, the need for

flexible low power and high data rate backhaul solutions also rises [6]. One solution to the

increased backhaul traffic demand is to use wireless LoS MIMO systems at millimeter-wave

(mmWave) frequencies. These systems offer great deployment flexibility, and can achieve

high data rates in the order of 100 Gbit/s [7, 8, 9] through their large available bandwidths

[10, 11, 12], and good spatial-multiplexing capabilities [13]. Spatial multiplexing describes the

technique mentioned in the previous section, where multiple independent data streams may

be transmitted during the same time and on the same frequency, increasing the throughput

of the link. For spatial multiplexing to work in LoS conditions, the different transmitting and

receiving nodes need to be widely separated on each side of the link [14, 15, 16], making the

sharing of a common time reference difficult. Using multiple independent time references

can, thus, be a requirement for these systems. LoS MIMO as a technique is, furthermore,

particularly suited for mmWave systems, since such systems often require LoS conditions and

2
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highly directive antennas to start with, in order to generate sufficient link margin. Another

benefit is that due to the short wavelength and relatively short link distances, the required

node separation for LoS MIMO systems is in a practically feasible range.

The considered wireless LoS MIMO systems are also a feasible solution for other applications,

such as a short range wireless bus for data centers, short range fixed indoor data kiosk systems,

vehicle-to-vehicle transmissions, or satellite systems [17]. More generally, the synchronization

task dealing with multiple independent time references also needs to be addressed for other

spatially-separated MIMO configurations, e.g., spatially-multiplexed multi-user systems [18],

cooperative basestations, or other distributed antenna systems [19]. The last topic also leads

to beamforming systems, where synchronization of a potentially huge number of different

time references may be required [20, 21, 22, 23]. If synchronization cannot be achieved on

the array level for such systems, beamforming becomes infeasible, as the weights need to be

adapted continuously to compensate the variations due to the time reference differences.

1.3 Contributions of the Thesis

This section will briefly summarize the main outcomes of the thesis, what is different compared

to results from the literature, and which system cases will not be explicitly considered. The

following list sums up the main contributions:

• Full carrier and sampling phase process modeling, including the case where the sam-

pling phase offset process is continuously changing, and not just a fixed sample phase

offset as it is often approximated as in the literature.

• System description for different sampling scenarios, and under different timing impair-

ments.

• Consideration of parallel linear filters for each MIMO transceiver, to account for different

linear distortions of each chain.

• System model including multiple independent carrier and sampling phase processes.

• Correlation-based estimators for frequency-selective MIMO channels with multiple

independent carrier and sampling phase processes.

• Separation of transmitter and receiver contributions from the carrier and sampling

phase difference process estimates.

• Adaptive filter for estimating and tracking the complete time-varying MIMO channel

including the timing impairments.

• Selection of a well-performing step size for the adaptive filter in the MIMO system

estimation case with multiple carrier phase offset processes.
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• Selection of a well-performing step size for the adaptive filter in the MIMO system

estimation case with multiple sampling phase offset processes.

• Discussion of different oscillator setups and their impact, in particular, for equalization.

• Investigation of the viability of adaptive equalization for LoS MIMO systems with multi-

ple timing impairments, and step size selection guidelines for adaptive equalization in

such systems.

• Measurement results characterizing LoS MIMO systems at 60 GHz.

• Measured adaptive equalization results for a two- and four-antenna spatial-multiplexing

LoS MIMO system, achieving multi-gigabit per second data rates.

Compared to the literature, the main difference is that the two timing impairments, i.e.,

carrier frequency offsets (CFOs) and sampling frequency offsets (SFOs), as well as a frequency-

selective MIMO channel, are considered at the same time. In general, the goal is to give a

comprehensive overview of synchronization and equalization in spatial-multiplexing MIMO

systems with multiple timing impairments. Especially the presence of multiple sampling

phase processes is novel, and has only been treated scarcely in the literature. Frequently,

synchronization is about computing an error signal and using it for compensating the timing

impairments through some form of feedback. For MIMO systems with multiple timing im-

pairments, the situation is more complicated as the error signals contain multiple frequency

differences, which have to be matched to the corresponding transceiver chain. We will assume

that the frequencies of the independent oscillators of the spatially-separated transceivers are

approximately accurate, i.e., the residual frequency errors are in the parts-per-million (ppm)

range. The focus will be solely on digital synchronization algorithms, where no feedback to the

analog domain is assumed possible or necessary, because that has been the foregoing trend in

the communications engineering literature and system designs. This is especially beneficial

as only some common baseband processing is required, while the analog transceivers can be

fully separated. Throughout this work it will, accordingly, be assumed that a joint processing,

i.e., a central receiver collects the signals from all receivers, is possible. Note, however, that

for some oscillator setups or channel conditions, separate processing directly follows from

the shown results. Additionally, low-complexity adaptive filtering has not been considered in

order to deal with the multiple timing impairments in such MIMO systems. It was noted in

[24, 25, 26] that fractionally-spaced adaptive equalizers can deal with part of the timing im-

pairments in single-input and single-output (SISO) systems. Particularly, Gardner [25] noted

that symbol-timing adjustment is partly done by adaptive equalizers, but that this notion

should be reconsidered for high-speed systems. We propose here that adaptive equalization is

a viable solution especially for such systems, where data is abundant and the relative change

in the channel is fairly slow, in order to deal with both timing impairments.

This work will not consider coding, or joint equalization and decoding, mainly due to the

complexity and breadth that this topic brings, especially for multi-gigabit per second systems.
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Transmit signal shaping, e.g., precoding, will not be considered explicitly, as it can change the

correlation structure of the input signals, meaning that some of the assumptions, which are

used in this work, do not hold anymore. Additionally, the impact of Doppler shifts will not

be explicitly treated, as we are mostly interested in quasi-static backhaul-like transmission

links. However, most of the effects due to Doppler create a similar behavior as the carrier and

sampling frequency offsets, which will be treated extensively throughout the work. Finally,

the sample drop and add problem, which occurs for long-time continuous transmission due

to the difference between transmitter and receiver rate, will not be treated explicitly. We will,

however, briefly explain the problem, where it is coming from, and point to solutions from the

literature. For the results that are shown in this work, this problem was made negligible by

choosing burst transmissions of convenient length.

1.4 Thesis Organization

In chapter 2, the basic fundamentals for MIMO systems, and in particular LoS MIMO, are

described. It is derived how the system model arises, and why and when spatial multiplexing in

LoS conditions is feasible. The discrete-time models of different MIMO system configurations

are laid out, introducing several of the basic signal vectors that are used throughout the work.

A basic introduction into the influence and behavior of oscillators in communication systems

is included, describing the problem of frequency differences, and introducing a phase process

model that can be used to represent the frequency differences. Furthermore, the influence of

oscillators on MIMO systems is briefly discussed. Finally, the chapter contains a summary of

the most important results for MIMO systems with timing impairments.

Chapter 3 deals with parameter estimation for frequency-selective MIMO systems with mul-

tiple timing impairments. Some basic one-shot estimators, stemming from a maximum-a-

posteriori (MAP) approach, are derived, and the need for training signals in MIMO systems

is discussed. Further, one-shot estimators for different specific MIMO system models are

developed, which simplify processing and separate the different parameters. As an alternative

to these approaches, estimation based on adaptive filtering is proposed. The basics of adaptive

filtering based on the least-mean-squares (LMS) principle are described, and the significant

statistics for MIMO systems with timing impairments are derived. Convergence and tracking

behavior for estimation are investigated, and several different suggestions on how to select

the adaptive filter parameters are given. Some of them are optimal solutions under some

conditions and require certain approximations. At the end of the chapter, simulation results

for both estimation approaches are provided, showing their performance.

Equalization and synchronization for MIMO systems with multiple timing impairments is

described in chapter 4. It is shown how the estimated parameters can be used for equalization,

and how equalization and synchronization interact. Separation of the timing impairments

from the MIMO channel is discussed, and simplified equalization schemes for different

system configurations are derived. As an alternative, adaptive equalization, also based on
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adaptive filtering, is introduced to directly deal with all channel influences simultaneously.

Convergence and tracking for the equalization case are investigated, and some suggestions for

selecting the adaptive equalizer parameters are given. Simulation results are provided for the

adaptive equalizer in different system scenarios.

Chapter 5 provides experimental results with a practical mmWave setup. The basic measure-

ment setup is described, and the LoS MIMO spatial-multiplexing capabilities are measured.

Furthermore, some statistical variations of LoS MIMO channels and systems at mmWave

frequencies are quantified. In particular, the change in carrier phase difference processes

with different oscillators is shown. Finally, the adaptive equalization performance for a two-

and four-antenna setup, with independent oscillators for carrier frequency generation, is

investigated.

The thesis concludes with chapter 6, which summarizes the most important aspects of the

work, and describes open topics that require further investigation.

Two appendices augment the thesis. In appendix A, additional information about oscillators,

timing impairments, and their impacts, supplementing the material of chapter 2, can be found.

Appendix B contains additional derivations for the parameter selection of the adaptive filters

proposed for channel estimation in chapter 3.

1.5 Remarks on Notation and Normalizations

In this thesis, vectors and matrices are defined with bold letters, with vectors being, further-

more, defined as column vectors, e.g., x[k] =
[

x1[k] x2[k] · · · xN [k]
]T

. The discrete-time

index k will always be associated with the nominal receiver sampling rate. Accordingly, when

the oversampling factor is chosen as Q = 1, this means that ym[k] will correspond to the kth

received symbol from the mth antenna. For Q > 1, ẏm[k] corresponds to the kth sample

from the mth antenna. Oversampled quantities, like this sample, and variables related to the

sampling process are marked with a small dot above, i.e., (̇·). The discrete-time notation will

sometimes be overloaded, in that we write hmn[l + φ̇] for a discrete-time impulse response.

Rigorously, the discrete-time version is only defined for integer values in the squared brackets.

When we write hmn[l + φ̇], we mean the discrete samples of hmn(t) at sampling phase φ̇, in

order to make the difference compared to the nominal ideal sampling rate more visible. Most

of the variables should be considered complex, especially when dealing with signals. It should

be clear from the context when a variable is just real. Throughout this work, we tried to stick

to the convention of transmitter-receiver space-time (TxRx-ST) stacking, meaning that first

Tx/Rx space and then time are stacked, for vectors where this is applicable. For example,

consider the discrete-time finite-length channel impulse responses in a MIMO system hmn[l ]

that are associated with the mth receive antenna. The corresponding channel vector is then

stacked as hm =
[

hm1[0] · · · hmN [0] · · · hm1[L−1] · · · hmN [L−1]
]T

. The definition of

probability density functions will be a bit lax in order to avoid a lengthy notation. In particular,
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p(x) will mean the probability density function (PDF) of the random variable X , which is

mathematically and notationally more precisely defined as pX (x), in order to distinguish be-

tween the random variable itself and its realization. The same thing also applies to operators

on random variables, for example E[x], which should be E[X ]. To shorten notation, the time

index k will sometimes be omitted for quantities with time-varying statistical properties, e.g.,

the time-varying expected value E[X [k]] = E[x[k]] may be simplified to E[x]. It should be clear

from the context, when this is the case.

For practical reasons1, a per antenna average transmit power constraint will often be employed.

Furthermore, the channel impulse response of any sub-path, i.e., each connection between

the nth Tx and mth Rx, will be normalized to fulfill
∑

l |hmn[l ]|2 = 1. This impulse response

normalization, i.e., the same power for each sub-connection, implicitly means that there

is equal sum gain between all Tx and Rx antennas assumed, while in a practical scenario

sub-connection power differences, e.g., due to antenna pattern differences, can be observed.

To summarize, the two assumptions mean that adding transmit antennas increases the sum

transmit power of the complete system, while adding receiving antennas increases the amount

of transmitted power that is captured at the receiver. Additionally, the fixed input power of

one antenna is distributed over all multi-path components, according to the significance2 of

each path.

An overview of most of the used nomenclature and all abbreviations can be found at the end

of this work.

1In most cases, we will use the maximum amount of efficiently available power in a transmitter, unless otherwise
required, for example, through regulation, in order to maximize SNR.

2For example, when comparing a single-path with a multi-path channel, the complete transmitted power is
concentrated in one path for the first, while it is distributed over all paths in a certain manner for the second.
Practically, the power of one path does of course not reduce, when an additional one is observed. However, this
normalization is mathematically convenient, because it means that the received power does not depend on the
exact characteristics of the channel.
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2 MIMO System Modeling & Synchro-
nization Essentials

In this part, the main MIMO system modeling foundations are laid out, including generalized

formulations for the effects of frequency-selective channels and independent oscillators for

each of the MIMO antennas.

2.1 Continuous-Time Band-Pass MIMO Model

Before describing the more commonly used complex baseband notation for MIMO systems, a

brief description of the signal in the actual transmission band is carried out, in order to outline

why LoS MIMO can achieve spatial-multiplexing gains, and to describe some peculiar effects

that occur due to high carrier frequencies and large bandwidths.

Consider, without loss of generality, the transmitted real band-pass signal from the nth trans-

mit antenna to be given by

sn(t ) =
p

2Re
{

x̄n(t ) ·exp
(

j
(
2π fTx,n · t +φTx,n

))}
, (2.1)

where x̄n(t ) is the complex-valued baseband signal with symbol (or baud) rate 1/Ts , fTx,n is the

carrier frequency from the local oscillator (LO) of that nth transmitter and φTx,n is the phase of

that LO1. Figure 2.1 shows a typical Tx system diagram for one antenna and the corresponding

linear model, which will be used throughout the work, confer also [4]. The corresponding Rx

diagram can be seen in Figure 2.2. The different components will be described in more detail

in the following sections.

A linear time-invariant2 band-limited wireless-transmission channel can be modeled as a

1For ease of exposition, the independent oscillators are assumed to generate a single frequency or spectral line
with a fixed phase, both not necessarily the same, here. The practical case where deviations from those perfect
frequencies and phases occur will be considered later on. Although different frequencies occur, it is assumed that
the difference is very small, e.g., in the order of ppm, such that transmission still happens approximately in the
same frequency band.

2This assumption is made, since the focus of this work is on backhaul systems with stationary transmitters and
receivers. It will be seen later that the observed channel, including the hardware impairments, is time variant.
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DAC
Up-

converter
Band-Pass

Filter

Power
Amplifier

Baseband Signal

hP,n[l ] hTx,n(t )
xn[l ]

l ·TTx,n

x̄n(t )

p
2 ·e j(2π fTx,n t+φTx,n)

Re{·}
sn(t )

Analog Linear
Filter Effects

Figure 2.1: Exemplary transmitter system diagram, and the corresponding linear system model
components, for one antenna of a MIMO system.

Low-Noise
Amplifier

Down-
converter

Low-Pass
Filter

ADC
Baseband Signal

nm(t )

rm(t )

p
2 ·e− j(2π fRx,m t+φRx,m)

hRx,m(t )
ȳm(t )

k ·TRx,m

ym[k]
hP,m[k]

Analog Linear
Filter Effects

Figure 2.2: Exemplary receiver system diagram, and the corresponding linear system model
components, for one antenna of a MIMO system.

number of paths arriving at different times and with different gains [4, 27, 28] at the various

receive antennas, i.e.,

hBP,mn(t ) = 2Re

{
Lmn−1∑

l=0
amn,l sinc

(
π

t −τmn,l

Tnom

)
·exp

(
j 2π fnom · t

)
}

, (2.2)

where hBP,mn(t ) is the band-pass channel impulse response between nth transmit and mth

receive antenna. Furthermore, Lmn is the number of different paths for that antenna pair, a· is

an amplitude coefficient, sinc(·) is the sinc function, fnom is the nominal carrier frequency,

and Tnom is the nominal receiver sampling interval. The last two quantities will be discussed

in more detail later on. The parameter τ· is the respective propagation delay [4, 27] of the

different paths, which is given by the length of the particular path rmn,l and the speed of light
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2.1. Continuous-Time Band-Pass MIMO Model

c with

τmn,l =
rmn,l

c
. (2.3)

The band-pass signal at the mth receive antenna before downconversion is then given by

rm(t ) =
N∑

n=1
hBP,mn(t )∗ sn(t )+nm(t ) (2.4)

≈
N∑

n=1

Lmn−1∑

l=0
amn,l · sn(t −τmn,l )+nm(t ) (2.5)

=
N∑

n=1

Lmn−1∑

l=0
amn,l ·

p
2Re
{

x̄n(t −τmn,l ) ·exp
(

j
(
2π fTx,n · (t −τmn,l

)+φTx,n
))}

+nm(t ),

(2.6)

where ∗ denotes convolution3, and nm(t) is the noise process at the receiver, assumed

to be white and Gaussian. Additionally, it was assumed that Tnom ¿ Ts , meaning sn(t)∗
sinc

(
π

t−τmn,l

Tnom

)
≈ sn(t −τmn,l ). Finally, downconverting the mth received signal to baseband,

using suitable low-pass filters hL,m(t)4, see [4] for details, and omitting the impact of noise

yields

ȳm(t ) =
[

rm(t ) ·
p

2exp
(− j
(
2π fRx,m · t +φRx,m

))]∗hL,m(t ) (2.7)

=
N∑

n=1

Lmn−1∑

l=0
amn,l · x̄n(t −τmn,l ) ·exp

(
j
(
2π∆ fmn · t −2π fTx,n ·τmn,l +∆φmn

))
(2.8)

=
N∑

n=1

Lmn−1∑

l=0
amn,l · x̄n(t −τmn,l ) ·e j 2π∆ fmn ·t ·e j∆φmn ·e− j 2π fTx,n ·τmn,l , (2.9)

where ȳm(t) is the complex baseband signal at the mth receive antenna, ∆ fmn = fTx,n −
fRx,m is the frequency offset between the nth transmitter and mth receiver LO, and ∆φmn =
φTx,n −φRx,m is the corresponding phase offset. Special focus should be put on two terms

of equation (2.9). First, x̄n(t −τmn,l ) shows that depending on the symbol rate 1/Ts of the

transmitted baseband signal, and the propagation conditions in the channel, intersymbol

interference (ISI) can occur, which needs to be dealt with by using a suitable equalization

structure. Secondly, the last two terms in (2.9) determine the channel phases and, therefore,

capabilities of the MIMO system. If the channel phases are sufficiently independent between

the different antennas, spatial multiplexing can be used yielding maximum MIMO gain. Note

that the impact of the first important term of (2.9), x̄n(t −τmn,l ), depends on the symbol rate

1/Ts , while the impact of the second important term depends on transmit carrier frequency

fTx,n , which will be an important fact for LoS MIMO as considered in the following.

3Here, it is implicitly assumed that the system is linear.
4The low-pass filter hL,m (t) is not shown explicitly in the system model of Figure 2.2, but is contained in the

linear filter hRx,m (t ) expressing the combined linear-filtering characteristics of a particular receive chain.
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2.2 Properties of LoS MIMO

2.2.1 Spatial Multiplexing

Assume a linear time-invariant pure LoS transmission, i.e., Lmn = 1, meaning that only a LoS

propagation path is present. In that case, the propagation times τmn,0 depend only on the

path length between the nth transmit and mth receive antenna, as described by equation (2.3)

and shown in Figure 2.3, in a simple geometric way. Furthermore, the coefficients amn,0 are

purely real and have no phase contribution5, as they only contain the power losses in the

channel from the finite directivity of the antennas.

What generally matters is not the absolute time of τ·, but rather the differences ∆τ· = τmn,0 −
τi j ,0, with mn 6= i j , between all the different paths. Typically, it has been assumed that the

term fTx,n∆τ· = ∆r·/λTx,n , where ∆r· = rmn,0 − ri j ,0 is the path length difference and λTx,n

is the wavelength, is negligible or can be well approximated by a planar wavefront for LoS

transmission. While physically not correct, this is a valid approximation for closely-spaced

arrays at lower frequencies transmitting over long distances [33]. The effect of the approx-

imation is that all receiving antennas exhibit the same channel phase with respect to one

transmitting antenna, which obviates the possibility of spatial multiplexing because the rows

of the channel matrix H0, to be introduced later on, are always linearly dependent irrespective

of the antenna array geometry.

However, for a number of cases the term fTx,n∆τ· is significant and should be accounted for.

With some reordering and a slight change of notation from (2.9), we have first

ȳm(t ) =
N∑

n=1

Lmn−1∑

l=0
x̄n(t )·e j 2π∆ fmn ·t ·e j∆φmn ∗

(
amn,l ·e− j 2π fTx,n ·τmn,l · sinc

(
π

t −τmn,l

Tnom

))

︸ ︷︷ ︸
hmn (t )

, (2.10)

where hmn(t ) denotes the channel impulse response transformed to baseband. Then, consid-

ering the pure LoS case with Lmn = 1, and the additional assumption that the symbol duration

is much higher than all propagation time differences, i.e., ∀∆τ· ¿ Ts , the LoS MIMO channel

can be modeled6 by a fixed complex constant with a common propagation delay τ for all paths

as

hmn(t ) = amn,0 ·e− j 2π fTx,n ·τmn,0 · sinc

(
π

t −τmn,l

Tnom

)
(2.11)

≈ amn,0 ·e− j 2π fTx,n ·τmn,0 ·δ(t −τ) = amn,0 ·e
− j 2π

rmn,0
λTx,n ·δ(t −τ). (2.12)

It is seen that depending on the antenna arrangement on the transmitter and receiver side,

different values for rmn,0 and, therefore, ∆r· generating different channel phases, are obtained.

5Physically, it can happen that additional phase shifts aside from the propagation delay occur when the dielectric
properties of the propagation medium, e.g., due to rain [29, 30, 31], are not equal for all paths. However, this can
also be included in the last term of (2.9) by using the effective wavelength of that path [32].

6For the approximation in the second line it was again assumed that Tnom ¿ Ts .
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x̄N (t )

e j(2π fTx,N t+φTx,N )

x̄n(t )

e j(2π fTx,n t+φTx,n)

x̄1(t )

e j(2π fTx,1t+φTx,1)

ȳM (t )

e− j(2π fRx,M t+φRx,M )nM (t )

ȳm(t )

e− j(2π fRx,m t+φRx,m)nm(t )

ȳ1(t )

e− j(2π fRx,1t+φRx,1)n1(t )

DTx DRx

R

r11,0

rM1,0

Figure 2.3: Simplified band-pass model of a one-dimensional LoS MIMO system with inde-
pendent and ideal carrier frequencies for each antenna. Taking only the real part of the signals
on the transmitter side, and some normalization constants are omitted for brevity.

In order to gain some insight for when the term becomes significant, consider the example

from Figure 2.3, a thorough treatment of the topic can be found in [33]. If the maximum path

length difference ∆rmax = max∀mn rmn,0 −min∀mn rmn,0 is negligible compared to λTx,n , all

the smaller ones are too, and the phase shift between the different paths is insignificant. For

the example, this term can be written as

∆rmax/λTx,n = rM1,0 − r11,0

λTx,1
=∆τmax fTx,n (2.13)

=
p

R2 +D2

λTx,1
− R

λTx,1
(2.14)

≈
p

R2

λTx,1
+ 1

λTx,1

D2

2
p

R2
− R

λTx,1
(2.15)

= D2

2λTx,1R
, (2.16)

where R is the propagation distance between the arrays, D = DTx = DRx is the largest dimen-

sion of the array, and the root approximation in (2.15) can be made if R is much larger than

D . The ratio ∆rmax/λTx,n gives an indication how much phase shift between the shortest and

longest path in the system occurs. Thus, in order to have a significant phase shift between

these paths, equation (2.16) shows that, for the considered example, the terms D2 and 2λTx,1R

should be of similar magnitude.

This observation is in line with earlier results from the literature, e.g., [34] for one-dimensional
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antenna arrays, where it was shown that the possible number of spatially-multiplexed streams,

or spatial degrees of freedom (SDoF), for given array dimensions DTx, DRx, and wavelength-

distance product λTx,nR, is obtained by

SDoF = DTxDRx

λTx,nR
+1. (2.17)

Let us briefly consider the impact of different transmit wavelengths λTx,n . While the different

values, due to independent LOs, affect the LoS MIMO channel phases, the effect is in the

ppm range, proportional to the frequency difference of LOs, and does, therefore, not induce a

significant difference. An active control of the channel phases would be possible by changing

the wavelength λTx,n of each transmitter. This seems practically less relevant because only

substantial changes of λTx,n , in the order of several percent, would surmount to significant

variations. However, changing the wavelength by those orders of magnitude also changes

the carrier frequencies by the same amount, such that transmission happens in an entirely

different band, which the system would need to be able to operate in.

2.2.2 Frequency Selectivity

In this section, it will be shown that frequency-selective channel behavior can be exhibited for

certain systems, even in a pure LoS propagation channel. Part of equation (2.9) is the term

x̄n(t −τmn,l ) which accounts for the time shift of the baseband signal due to the propagation

time differences τmn,l of the different paths. Similar to the previous section the time differ-

ences or spreads ∆τ· of the different paths matter most. However, compared to the previous

considerations the magnitude of ∆τ· now needs to be compared to the average symbol rate

1/Ts of the baseband signal x̄n(t ), instead of the carrier frequency.

Considering the same example as above and given in Figure 2.3, and checking again just the

maximum difference ∆τmax = max∀mn τmn,0 −min∀mn τmn,0 compared to the symbol rate,

gives similarly

∆τmax/Ts =
p

R2 +D2

cTs
− R

cTs
(2.18)

≈ D2

2cTsR
. (2.19)

The ratio ∆τmax/Ts thus indicates how much ISI7, in terms of symbols, between the shortest

and longest path in a pure LoS MIMO system occurs. As in the previous section, D2 thus needs

to be comparable to the denominator, in this case 2cTsR. Since cR is typically a very large

quantity, the effect only becomes significant for very high symbol rates and widely-spaced

antenna arrays. Some example results for a wide range of practical values can be found in

Figure 2.4. The results show that delays in the symbol range occur only for arrays with a largest
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Figure 2.4: Example results for the level of ISI in pure LoS multiple antenna systems, expressed
by the spread ∆τmax/Ts in number of symbols, for different array sizes D and symbol-rate-
distance products TsR.

dimension of 1 m or bigger, in this example case.

Rotations due to misalignment between the transmitter and receiver array can further increase

the impact of the effect, as observed in [35]. In the rest of this work, this kind of interference will

be treated as part of the random frequency-selective channel, where no a-priori information

about the delay of the taps is available. Nevertheless, note that this interference has some

structure, which could be used for estimating it, as it is determined by the geometric setup of

the system.

2.2.3 Antenna Array Design

From section 2.2, it should be clear that the antenna array setup plays an important role for

the spatial-multiplexing capabilities of a LoS MIMO system. For the sake of completeness and

future reference, some of the design equations derived in the literature will be repeated here.

The earliest derivation of an optimal-spacing criterion, supporting full spatial multiplexing

with N = N1×N2 transmit and M = M1×M2 receive antennas for a given wavelength-distance

product λR, using uniformly-spaced one- and two-dimensional arrangements can be found

7A typical assumption is that a channel can be considered frequency non-selective or frequency flat, when
∆τmax/Ts < 0.1 [4].
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2.3. From Discrete Time to Continuous Time and Back

in [36, 37, 38]. For the two-dimensional case on transmitter and receiver side, the smallest8

optimal spacing in the first dimension of the array is derived by

dTx,1dRx,1 =
λR

max(N1, M1)
, (2.20)

and in the second array dimension it is given by

dTx,2dRx,2 =
λR

max(N2, M2)
, (2.21)

where dTx,·, dRx,· is the antenna spacing at the respective side of the link for that array di-

mension. Thus, the total size of the antenna array in the respective dimension is defined

by DTx,· = (N·−1) ·dTx,· and DRx,· = (M·−1) ·dRx,·. Furthermore, N· and M· denote the num-

ber of antennas in the corresponding array dimension. Note that the possible number of

spatially-multiplexed streams is limited by SDoF = min(M , N ) and, hence, the most efficient

system designs, in terms of array size, occur when M = N . Additional antennas between the

optimally-spaced ones may still be used, but do not provide additional multiplexing gain in

the pure LoS case. For the one-dimensional case on both sides, one can simply use one of the

two equations.

The equations show that when the propagation distance R changes, the spacing should change

with it in order to preserve the optimal channel. As in the previous section, also rotations of the

array have an impact on the optimal spacing. Sensitivity analysis, e.g., with respect to rotations

and offsets, as well as modified-spacing equations for such cases, and optimal equations when

mixtures between one- and two-dimensional arrays occur can also be found in the mentioned

papers [36, 37, 38]. A way of designing more compact one-dimensional arrays was suggested

in [32] by using specially designed dielectric media in the propagation paths. Since it may

not be feasible to adapt the spacing for every wavelength-distance product in practice, more

involved antenna array designs have been proposed in [39, 40, 41], which have a more stable

performance over a wider λR range, but do not achieve optimal channel conditions. Three-

dimensional array architectures, i.e., arrays that also expand in the transmission direction,

have also been considered in the literature [42], but were shown to yield only small benefits in

pure LoS scenarios.

2.3 From Discrete Time to Continuous Time and Back

In this section, the sampling operations that are used to convert to and from the continuous-

time signals x̄n(t ) and ȳm(t ) in equation (2.9) at transmitter and receiver, are briefly described.

A block diagram of the conversion process is given in Figure 2.5. The most important aspect

is that a representation of the continuous-time signals in the discrete-time domain is found

with as little information loss as possible. This can be done by fulfilling the Nyquist-Shannon

8It should be noted that for each wavelength-distance product λR, there are multiple optimal spacings, as can
be inferred from section 2.2, and will also be seen in chapter 5.
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Figure 2.5: Simplified baseband sampling model for a MIMO system with independent and
ideal sampling frequencies.

sampling theorem, see [4] for details, whereas more sophisticated methods based on sub-

Nyquist sampling are also available, e.g., [43, 44]. Consider the idealized, in terms of memory

and amplitude resolution, translation from discrete to continuous time at the transmitter to

be given by

x̄n(t ) = hTx,n(t )∗
∞∑

l=−∞
xn[l ] ·δ(t − l ·TTx,n) (2.22)

=
∞∑

l=−∞
xn[l ] ·hTx,n(t − l ·TTx,n), (2.23)

where xn[l ] are the samples of the transmit signal at discrete-time index9 k, 1/TTx,n is the

sampling rate of the nth transmitter, and hTx,n(t ) are analog low-pass filters performing the

interpolation10 between the discrete-time samples to a continuous-time signal. Note that as

for the carrier frequencies, this notation also models independent LOs for the generation of

the sampling rates.

Similarly, the sampled representation ym[k] of the continuous-time received signal ȳm(t ) is

9xn [l ] is not necessarily symbol spaced and 1/TTx,n is not necessarily the symbol rate 1/Ts . For example, for
standard linear modulations using a digital raised-cosine pulse shape with Q samples per symbol, the symbol rate
is 1/(TTx,nQ), and is thus also slightly different for each transmitter.

10Recall from section 2.1 that these filters actually contain the complete linear-filtering behavior of the transmitter
chain. Furthermore, due to this linear filter, x̄n (l ·TTx,n ) 6= xn (l ·TTx,n ).
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2.3. From Discrete Time to Continuous Time and Back

given by

∞∑

k=−∞
ym[k] ·δ(t −k ·TRx,m) = (ȳm(t )∗hRx,m(t )

) ·
∞∑

k=−∞
δ(t −k ·TRx,m) (2.24)

=
∞∑

k=−∞

∞∑

l=−∞
ȳm([k − l ] ·TRx,m) ·hRx,m(l ·TRx,m) ·δ(t −k ·TRx,m), (2.25)

where the analog filters hRx,m(t ) contain low-pass filters, which are suitably chosen in order to

avoid aliasing, and 1/TRx,m is the sampling rate of the mth receiver. Generally, as for the Tx side,

this filter contains all linear-filtering effects of a particular receiver chain, e.g., the combined

characteristic of the anti-aliasing filters and the low-pass filters used in equation (2.7). Thus,

hRx,m(t) is assumed to contain the complete linear analog filter characteristic of the mth

receiver chain. The kth received sample is then given by

ym[k] =
∞∑

l=−∞
ȳm([k − l ] ·TRx,m) ·hRx,m(l ·TRx,m) (2.26)

= ȳm(k ·TRx,m)?hRx,m(k ·TRx,m), (2.27)

where ? indicates discrete convolution. This equation, more generally, can be used to spec-

ify the complete linear chain in discrete notation. Using a slight abuse of notation, and

additionally (2.1), (2.4), and (2.7), yields

ym[k] = e− j(2π∆ fRx,m TRx,m k+φRx,m) ·hRx,m(kTRx,m)

?

(
N∑

n=1
hmn(kTRx,m)? x̄n(kTRx,m) ·e j(2π∆ fTx,n TRx,n k+φTx,n) +nm(kTRx,m)

)
(2.28)

= hRx,m[k]?
N∑

n=1
hmn(kTRx,m)

? x̄n(kTRx,m) ·e j(2π∆ fmn TRx,m k+∆φmn) +hRx,m[k]?nm[k]

(2.29)

= hRx,m[k]?
N∑

n=1
e j(2π∆ fmn TRx,m k+∆φmn) ·hmn[k]

?
∞∑

l=−∞
xn[l ]hTx,n

(
kTRx,m − lTTx,n

)+hRx,m[k]?nm[k]

(2.30)

=
N∑

n=1
e j(2π∆ fmn TRx,m k+∆φmn) · h̄mn[k]

?
∞∑

l=−∞
xn[l ]hTx,n

[
k − l

TTx,n

TRx,m

]
+hRx,m[k]?nm[k],

(2.31)
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2.3. From Discrete Time to Continuous Time and Back

where ∆ fRx,m , ∆ fTx,n are the deviations from the nominal desired carrier frequency fnom
11

of the oscillators on the transmitter and receiver side, i.e., ∆ fRx,m = fRx,m − fnom and ∆ fTx,n =
fTx,n − fnom. Furthermore, we use h̄mn[k] = hRx,m(kTRx,m)?hmn(kTRx,m) = hRx,m[k]?hmn[k],

hmn(t ) =∑Lmn−1
l=0 amn,l ·e− j 2π fTx,n ·τmn,l · sinc

(
π

t−τmn,l

Tnom,Rx

)
, and the circularity of the noise, i.e., the

stochastic invariance of the complex noise process to complex phase rotations. Equation (2.31)

is the general linear discrete-time baseband frequency-selective input/output model for MIMO

systems, impaired by independent sampling and carrier frequency offsets for each transmit

and receive chain. Its properties will be described later on, for now the focus will just be on

the impact of the sampling processes.

The received discrete-time baseband signal, consisting of the multiple superimposed transmit-

ted signals, exhibits the normalized, w.r.t. the sampling rate, angular rotations, or frequency

shifts, of ∆ fmnTRx,m , which will in this work be estimated and compensated by suitable digital

processing algorithms. Likewise, the ISI generated from the sampling phase shifts due to the

term TTx,n/TRx,m can be be estimated by capturing an oversampled version of the received

signal, and compensated digitally with some form of interpolation [4, 25].

The previous discussion is somewhat simplified, since TRx,m and TTx,n are, in practice, not

constant over time, i.e., there is no perfectly periodic uniform sampling, but they slowly vary

around some mean value. Due to this, and the fact that the fraction between the two is practi-

cally never an integer, it has been noted in the literature that in a continuous transmission

there will eventually a sample over- or underflow occur, see also appendix A, which needs to

be appropriately dealt with. Additionally, especially in distributed systems it can happen that

the sampling points in time, i.e., the time instants where a new sample is generated, are not

synchronized between different front ends. Then, an additional time shift between the differ-

ent front-ends is observed, which has a different impact depending on whether it appears on

the transmitter or receiver side. Even more specifically, it can happen in I/Q sampling systems

that the in- and quadrature phase sampling instants are not perfectly aligned, generating

interference between the two branches. While the former effect can be treated as different

delays in the complete channel impulse response, the latter can be treated as part of an I/Q

imbalance compensation scheme, to be discussed later on. Since those effects depend on the

oscillator setup that is used for generating the sampling frequencies, they will be discussed

in more detail at a later stage. Other non-ideal effects of the sampling circuitry, e.g., sinc

shaping of the output spectrum due to finite time duration of the sampling pulses, can be

assumed as part of the analog filters hTx,n(t) and h̄Rx,m(t) at the transmitter and receiver,

respectively. Whether or not sufficient statistics are generated by the sampling processes in

general, i.e., ym[k] contains all information that ȳm(t ) contains, depends on the roll-off of the

analog filter h̄Rx,m(t) and the amount of oversampling used in the system [4]. Finally, as is

common in the sampling literature, the effect of finite amplitude resolution, or quantization,

11Throughout this work, we try to stick to the notation that fnom values are related to the carrier frequency, and
Tnom values are related to the sampling interval. This leads to the dilemma that even though fnom and Tnom seem
synonymous, they are fundamentally different as one relates to the carrier process, while the other relates to the
sampling process.
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2.4. A Primer on Oscillators and Frequency Accuracy

has not been discussed. It is thus inherently assumed that the effects due to finite resolution

are negligible or, in other words, moderate resolution digital-to-analog converters (DACs)

and analog-to-digital converters (ADCs) are used. In general, however, taking the influence

properly into account requires a fundamentally different system design approach [45].

2.4 A Primer on Oscillators and Frequency Accuracy

Oscillators are the most crucial component when it comes to synchronization in communica-

tions systems. In the previous section, it was seen that oscillators are necessary for generating

the carrier frequency for up- and downconversion, and for generating the sample timing

reference at transmitter and receiver, respectively. Ideally, an oscillator only creates a single

spectral12 line at a desired nominal frequency, e.g., the left plot in Figure 2.6 or the complex ex-

ponential seen in equation (2.7). If such oscillators were realizable, no synchronization would

be needed. However, due to temperature variations, mechanical variations, manufacturing

mismatches [12, 47], and other small scale effects, e.g., variations in the power supply, two

independent oscillators will never have exactly the same frequency. A lot of effort can be spent

on stabilizing the frequency by, e.g., controlling the temperature or using a laser reference [2].

In most communications systems, however, low-complexity solutions are preferred in order

to reduce size and cost. Then, some form of synchronization that can cope with the frequency

difference and its variations, preferably through digital signal processing techniques, is always

required.

In section 2.1, ideal oscillators have been assumed, which generate only a single frequency with

a fixed phase, albeit not the same for the different front ends. For example, the offsets from the

nominal carrier frequency on the receiver side were characterized with e− j(2π∆ fRx,m TRx,m k+φRx,m),

where ∆ fRx,m = fRx,m − fnom. A general description of oscillator behavior can be obtained by

considering the progression of its phase over (discrete) time, i.e., the phase process13 φ[k]

[51]. In this work, phase process will mean the difference compared to the nominal desired

frequency, i.e., the part that needs to be estimated and compensated in order to achieve

synchronization. In the previous sections, the phase process was simply a linearly-increasing

function with a fixed initial offset, and where the slope depends on the frequency offset. For

the previous example this would be denoted as e− jφRx,m [k] with φRx,m[k] = 2π∆ fRx,mTRx,mk +
φRx,m[0].

In the rest of this work, the following phase process model will be considered for both oscilla-

tors used for carrier frequency generation, and oscillators used to derive the sampling instants.

12Likewise, oscillators can also be evaluated in terms of their time domain stability using, for example, the Allan
variance. Since phase noise data is often more readily available for system components, we will not treat time
domain stability measures further. However, it should be noted that one can convert between time and frequency
domain stability measures [46].

13Physically, oscillators also experience variations in the amplitude due to noise, which also affect the system
[12, 47, 48, 49], but are typically assumed less severe than the phase variations. On the other hand, [50] argues that
especially for mmWave systems, the amplitude noise should be taken into account.
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Figure 2.6: Qualitative power spectral density of an ideal and a real oscillator.

It is a variant of the model derived in [49]. For the carrier frequency, the corresponding carrier

phase process is given by

φ[k] =φw[k]+ϕn[k] (2.32)

= φw[k −1]+ϕw[k]︸ ︷︷ ︸
Wiener process with drift

+ ϕn[k]︸ ︷︷ ︸
white noise process

, (2.33)

where φw[0] is the initial phase state of the oscillator, assumed to be distributed with φw[0] ∼
U (−π,π). Furthermore, all random processes are assumed independent. The random process

ϕw[k] expresses a fixed mean drift and a random variation per sample. It will be assumed

normally distributed with ϕw[k] ∼N (µϕw ,σ2
ϕw

), where µϕw = 2π∆ f Tnom is the mean phase

change from sample to sample, related to the frequency offset with Tnom being the sampling

interval of the discrete process, and where σ2
ϕw

specifies the level of random variation per

sample, related to the close-in phase noise (PN) of the oscillator [49]. For example, for 60 GHz

oscillators∆ f = 100kHz (1.7 ppm) [52, 53] and one sided 3 dB PN bandwidths of 1 kHz [54, 55]

are reasonable values. These numbers yield with Tnom = 1ns, µϕw = 2π · 10−4 rad/ns and

σ2
ϕw

= 4π ·10−6 rad2/ns2, respectively. Further, with these definitions, φw[k] can be seen as

a Wiener process with drift. The white noise region far from the carrier, also called far-out

PN, is modeled with the random process ϕn[k] ∼N (0,σ2
ϕn

), where σ2
ϕn

= K0
Tnom

with K0 being

the white noise floor level of the oscillator, which can be read directly from the measured

PN spectrum. For example, for a 60 GHz LO a typical value is K0 = 10
−120 dBc/Hz

10 [9, 12, 50],

yielding with Tnom = 1ns a variance ofσ2
ϕn

= 10−3 rad2/ns2. The conversion between datasheet

values and model parameters will be further explained in appendix A, see also [49]. Example

realizations of the phase process model with the just mentioned parameters can be found in

Figure 2.7.

The motivation of the model14 in (2.33) is as follows. The drifting of the oscillator from the

nominal frequency fnom and around the mean frequency difference ∆ f is modeled through

the Wiener process φw[k], while fast variations are modeled through the white noise process

14Note that this model covers the steady-state behavior of an oscillator. It does not accurately model erratic
behavior, such as aperiodic mechanical vibrations.
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Figure 2.7: Ten example realizations of the phase process model given in (2.33), with
parameters relevant for carrier phase processes in mmWave systems: φw[0] ∼ U (−π,π),
µϕw = 2π ·10−4 rad, σ2

ϕw
= 10−5 rad2, and σ2

ϕn
= 10−3 rad2.

ϕn[k]. By changing the parameters µϕw , σ2
ϕw

, and σ2
ϕn

, this model can cover a wide range of

oscillator behaviors. For example, it has been noted in the literature [7, 49, 50] that for high

symbol rate systems, e.g., mmWave communications, the far-out PN is dominant, and can

even be the performance limiting factor. This is inherently included in the model through

the scaling of the variance σ2
ϕn

with 1/Tnom, and can also be seen from the example values

calculated in the previous paragraph. Note, however, that in the present form no correlation

across time, except for the mean part µϕw , among consecutive samples of the phase process is

considered in the model. For certain system setups, e.g., when using a phase-locked loop (PLL),

the samples will be correlated in a more complicated way and the model can be modified to

take that into account [54]. In the remainder of this work, this type of correlation across time

will not be considered, as it is assumed that the drifting of the phase process model sufficiently

describes the behavior of most oscillators. Nevertheless, better results might be achieved by

taking this circuit-dependent knowledge about the correlation w.r.t. time into account. The

goal will be to find suitable estimation and compensation algorithms for multiple of these

slowly varying phase processes in MIMO systems.

For the sampling processes, the positive zero crossings or, similarly, edges of a periodic signal

determine the sample instants [51]. Consider, for example, the ideal sine wave used at a

receiver with sin
(
2π t

Tnom,Rx

)
, where a sample of the continuous-time signal is taken with ideal

equal spacing every nominal period Tnom,Rx = Tnom, see Figure 2.8. In practice, as for the
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Figure 2.8: Qualitative example of the generation of the sampling instants from a time reference
using: an ideal oscillator with Tnom (dashed), and a practical oscillator with a varying phase
process (blue). The difference between the two contains a fixed mean offset and random
variations, e.g., due to jitter, see (2.33). In this example, the practical reference is on average
faster than the ideal nominal one, and the initial phase difference is zero, i.e., φ̇w[0] = 0. The
additional sample problem is further explained in appendix A.3.

carrier frequency, the period varies over time, i.e., has a fixed offset from the nominal value and

a drift around it, which can be described by the model in (2.33), see the example realization in

Figure 2.8. Continuing with the example this means sin
(
2π t

TRx,m (t )

)
, with TRx,m(t ) = Tnom,Rx +

∆TRx,m(t), where ∆TRx,m(t) is the continuous-time version of the sampling phase process

offset of the mth front end (FE) describing the offset. The conversion to a discrete-time

process is done by considering that only the difference with respect to the nominal value Tnom

is important, refer to Figure 2.8. Thus, for the example, the relative period of two neighboring

samples at discrete time k is given by
TRx,m(kTnom,Rx)

Tnom,Rx
= 1+ φ̇Rx,m[k]. We can then model model

the sampling phase processes w.r.t. their nominal period in a similar way as the carrier phase

processes with φ̇[k] = φ̇w[k]+ φ̇n[k], which describes an offset from the nominal period or

frequency, and a jitter process15 of the corresponding DAC or ADC.

From the examples discussed above, it should be clear that for both cases, carrier and sampling

frequency, the deviation from the nominal value is what is disturbing the system, and it can

15Jitter [51] in sampling devices has two components [56]. First, there is jitter due to the sampling circuitry, called
aperture jitter, which can be assumed Gaussian and modeled by the white noise process with σ2

ϕ̇n
. Second, there

is jitter due to the variation of the sampling frequency that determines the sampling instants, i.e., the variation
due to phase noise, called clock jitter. The variance of the Wiener process σ2

ϕ̇w
can be related to square root of the

root-mean-square (RMS) cycle jitter. Both parameters are readily found in the data sheets of sampling devices and
clock generators, respectively.
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be described by the discrete phase processes φ[k] in rad/sample and φ̇[k] in samples/sample,

respectively. The two timing impairments are known as CFO, describing the differences in

carrier frequencies, and SFO, describing the differences in sample timing. Furthermore, due to

the one being defined for frequency and the other for time, it holds that the carrier frequency

is higher than its nominal value, when E
[
φ[k]

]−φ[0] > 0, while the sampling frequency is

higher than its nominal value, when E
[
φ̇[k]

]−φ̇[0] < 0, see also the two examples in the figures.

Typical parameter ranges for both of them in mmWave systems can be found in Table 2.1. The

units of the parameters characterizing the phase processes are to be understood per sampling

interval, even though later on in the work this will sometimes be omitted for brevity, when

noting the values, see also appendix A.1. For some general additional details on the topic, refer

also to appendix A.

Table 2.1: Typical parameters found in the literature and data sheets of components for carrier
and sampling frequency generation in mmWave systems, i.e., carriers in the tens of GHz
range and bandwidths in the GHz range. Normalized values for the model of (2.33) are given
per discrete sample with an assumed sample period of Tnom = 1ns, and an assumed carrier
frequency of fnom = 60GHz. For a description of how the conversion to the model parameters
is done, see appendix A.

Parameter Carrier Frequency Sampling Frequency Parameter

Accuracy in ppm ±1 ∼±200 ±1 ∼±200 Accuracy in ppm
PN @ 1 MHz in dBc/Hz −125 ∼−85 10 ∼ 400 RMS Jitter in fs
far-out PN in dBc/Hz −140 ∼−120 50 ∼ 500 Apert. Jitt. in fs

µϕw / rad
ns ±3.8 ·10−4 ∼±7.5 ·10−2 ±10−6 ∼±2 ·10−4 µϕ̇w / samples

ns

σ2
ϕw

/ rad2

ns2 1.25 ·10−8 ∼ 1.25 ·10−4 10−10 ∼ 1.6 ·10−7 σ2
ϕ̇w

/ samples2

ns2

σ2
ϕn

/ rad2

ns2 10−5 ∼ 10−3 2.5 ·10−9 ∼ 2.5 ·10−7 σ2
ϕ̇n

/ samples2

ns2

φw[0]/rad U (−π,π) U (−0.5,0.5) φ̇w[0]/samples

The final topic in this section will deal with deriving a high frequency oscillation from a low

reference frequency, usable for both carrier and sampling frequency generation, see Figure 2.9.

This is a particularly important technique and widely used, to have flexible frequency gen-

eration [47], and to synchronize multiple distributed systems. Application examples are the

synchronization of clocks in measurement equipment using a 10 MHz reference [57], or using

a 10 MHz reference for the synchronization of 100 front ends in a massive MIMO base station

implementation [22]. In many of these cases, distributing the desired frequency directly is

impractical due to significant power losses, or requires very demanding circuit design, e.g.,

splitting a 60 GHz sinusoid for upconversion to several widely-separated mixers. A better

option is to have a shared reference that is multiplied by a factor, often using a PLL within a

frequency synthesizer [47] for each device, in order to generate the actual desired frequency.

The close-in PN of such a system is determined by the phase noise of the reference, the multi-

plication factor that is necessary to generate the desired frequency, and the parameters of the

control loop [58]. In particular, the phase deviation is increased by the multiplication factor,

such that there is a trade-off between simplicity of reference distribution, and phase noise

23



2.4. A Primer on Oscillators and Frequency Accuracy

Frequency Synthesizer
(Multiplication of Reference)

Low Reference
Frequency

Multiple of Reference to
Mixer/Sampling Circuit

Figure 2.9: General model of a frequency synthesizer that generates a high frequency oscilla-
tion from a low frequency reference signal.

performance16. The far-out phase noise, on the other hand, is determined by the LO in each

synthesizer and can be assumed independent for each device. To summarize, the accuracy of

the generated frequency and the close-in phase noise is determined by the reference and the

loop parameters, whereas the far-out PN is determined by the synthesizer implementation

[47]. In general, the phase processes of such systems can be modeled by (2.33), but they

experience certain correlations between the Wiener processes of the different devices, since

they are determined by the shared reference. In this work, such system configurations will

not be treated separately, but assumed to be equivalent to cases where the desired frequency

is shared directly. Finally, consider the initial phases φw[0] and φ̇w[0] of the generated phase

processes for different synthesizers with a common reference. Even though a shared reference

is used, the output starting phases of the synthesizers cannot necessarily be assumed equal

[57], as they depend on the distribution of the reference frequency, and the implementation

of the frequency generation, i.e., where and how frequency dividers are used. Thus, for the

rest of this work it will be assumed that the initial phases of the synthesizers are random and

uniformly distributed over the complete phase range, e.g., φw[0] ∼U (−π,π), although some

synthesizers do allow phase synchronization.

2.4.1 Oscillator Configurations for MIMO Setups

Depending on the system settings and requirements, a variety of synchronization configura-

tions, i.e., distribution of sampling and carrier frequency, can be applicable for MIMO systems.

There are four basic oscillator setups that will be considered, namely,

1. Shared between transmitter and receiver side, and all of their front ends,

2. Shared between all front ends on transmitter and receiver side, respectively,

3. Shared on one side, either Tx or Rx, and independent on the other side, either Rx or Tx,

4. Independent on both sides.

These setups are applicable separately to the carrier and sampling frequency distribution, such

that different setups can be used for each of the two depending on system prerequisites. For

16The lower the reference, the easier it is to distribute between different devices [57]. However, the lower the
reference, the higher the required multiplication factor and, thus, the amount of phase noise. Another benefit of
higher reference frequencies is improved long-term phase stability.
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the remainder of this work, we mostly consider cases where carrier and sampling frequency

distribution has the same setup. Furthermore, subgroups composed of a couple of FEs could

share clocks, which will not be considered, but could be viewed as one of the above setups

with appropriate grouping. The impact of the different setups on estimation and equalization

will become apparent later in this work. A system diagram of the different setups is given in

Figure 2.10. Please note that, as described in the previous section, it is not necessary to directly

share the sampling or carrier frequency for setups 1, 2, 3. Instead, a reference frequency can

be shared that is then multiplied in a frequency synthesizer for each transceiver.

An example for each of the setups will be discussed next. Setup 1 occurs, when some additional

resource or part of the spectrum, like in early amplitude modulation broadcasting, is allocated

in order to transmit a reference clock or the Tx-shared frequency directly. It is then extracted in

the receivers, and used in all front ends for downconversion and sampling. This setup generally

requires a more complicated FE design and is spectrally less efficient, due to the spectrum

part allocated to transmitting the reference. The benefit is that it should incur no frequency

difference between transmitter and receiver. Setup 2 is, e.g., a common choice for MIMO

systems where the antennas are closely co-located, as in single-user digital-beamforming

systems [58, 59], or multi-user systems with multiple antennas per user and time-division

or frequency-division multiple access. As in the previous setup, routing of the references to

all transceivers needs to be handled on each side of the link, but no resources are spent for

transmitting the frequency, making it more spectrally efficient than setup 1. Such a system

incurs one frequency difference, due to the one independent oscillator on the transmitter and

receiver side, respectively.

Setup 3 is, for example, relevant for the uplink of multi-user MIMO systems with spatial-

division access. In such a system, the antennas and front ends on the basestation are co-

located and can use a shared reference, although some effort has to be spend in order to assure

synchronism [21]. Each user, on the other hand, has an independent LO. Thus, this type of

system is influenced by as many frequency differences as there are independent oscillators on

one side of the link. Finally, setup 4 represents, e.g., the case of a distributed MIMO system

[18, 60], where multiple basestations cooperate in order to achieve a performance gain. Note

that this setup is the most general and includes all of the previous ones, but also requires the

most signal processing effort to achieve synchronization, as will become apparent later. It

incurs all combinations of frequency differences that occur due to the independent oscillators

on the transmitter and receiver side. The general model described in the next sections will,

thus, be based on setup 4.
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Figure 2.10: The four basic MIMO synchronization configurations, which are applicable
separately to carrier and sampling frequency distribution. Setup 3 also includes the case,
where sharing happens on the other side of the link (not shown here).

2.5 Discrete-Time Baseband MIMO Model with Realistic Oscillators

Restating the sampling equations (2.23), (2.24) to include the defined sampling phase pro-

cesses, i.e., φ̇Tx,n[k] and φ̇Rx,m[k], yields

x̄n(t ) =
∞∑

k=−∞
xn[k] ·hTx,n

(
t − (k + φ̇Tx,n[k]) ·Tnom,Tx

)
(2.34)

and

∞∑

k=−∞
ym[k] ·δ(t − (k + φ̇Rx,m[k]) ·Tnom,Rx

)

= (ȳm(t )∗hRx,m(t )
) ·

∞∑

k=−∞
δ
(
t − (k + φ̇Rx,m[k]) ·Tnom,Rx

)
, with

(2.35)

ym[k] = ȳm
(
(k + φ̇Rx,m[k]) ·Tnom,Rx

)
?hRx,m

(
(k + φ̇Rx,m[k]) ·Tnom,Rx

)
. (2.36)

Combining these equations and including the effects due to the channel, as was done for
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(2.31), gives

ym[k] = e− jφRx,m((k+φ̇Rx,m [k])·Tnom,Rx) ·
( N∑

n=1
hmn

(
(k + φ̇Rx,m[k]) ·Tnom,Rx

)

? x̄n
(
(k + φ̇Rx,m[k]) ·Tnom,Rx

) ·e jφTx,n((k+φ̇Rx,m [k])·Tnom,Rx)

+nm
(
(k + φ̇Rx,m[k]) ·Tnom,Rx

))
?hRx,m

(
(k + φ̇Rx,m[k]) ·Tnom,Rx

)
(2.37)

≈ e− jφRx,m (k·Tnom,Rx) ·
( N∑

n=1
hmn

(
(k + φ̇Rx,m[k]) ·Tnom,Rx

)

? x̄n
(
(k + φ̇Rx,m[k]) ·Tnom,Rx

) ·e jφTx,n (k·Tnom,Rx)

+nm(k ·Tnom,Rx)
)
?hRx,m

(
(k + φ̇Rx,m[k]) ·Tnom,Rx

)
(2.38)

= hRx,m
[
k + φ̇Rx,m[k]

]
?

N∑
n=1

e j∆φmn [k] ·hmn
[
k + φ̇Rx,m[k]

]

?
∞∑

l=−∞
xn[l ]hTx,n

(
(k + φ̇Rx,m[k]) ·Tnom,Rx − (l + φ̇Tx,n[l ]) ·Tnom,Tx

)

+hRx,m
[
k + φ̇Rx,m[k]

]
?nm[k]

(2.39)

= hRx,m
[
k + φ̇Rx,m[k]

]
?

N∑
n=1

e j∆φmn [k] ·hmn
[
k + φ̇Rx,m[k]

]

?
∞∑

l=−∞
xn[l ]hTx,n

[
k + φ̇Rx,m[k]− (l + φ̇Tx,n[l ]) · Tnom,Tx

Tnom,Rx

]

+hRx,m
[
k + φ̇Rx,m[k]

]
?nm[k].

(2.40)

The term ∆φmn[k] = φTx,n[k] −φRx,m[k] denotes the difference between the transmitter

and receiver carrier phase processes. An approximation has been made by assuming that

φRx,m
(
(k + φ̇Rx,m[k]) ·Tnom,Rx

) ≈ φRx,m(k ·Tnom,Rx), and also φTx,n
(
(k + φ̇Rx,m[k]) ·Tnom,Rx

) ≈
φTx,n(k ·Tnom,Rx). From a signal processing point of view this has no impact on further perfor-

mance, since the errors that occur due to non-ideal sampling can be treated as part of the ran-

dom variation17 of the carrier phase processes φRx,m[k] and φTx,m[k]. Furthermore, the noise

process nm[k] is assumed to retain its white property, regardless if it is sampled at the nominal

rate or the slightly impaired one, while the filtered noise process hRx,m
[
k + φ̇Rx,m[k]

]
?nm[k]

will generally be colored.

Equation (2.40) is the general, sampling and carrier frequency offset impaired, discrete linear

system model for MIMO links with realistic LOs. The goal is to get back to the transmitted

samples (or symbols) xn[k], meaning that the impact of all of the other terms should be

17Consider a small example, where the carrier phase process is linear, i.e., linearly drifting, time-continuous, has
µϕw = 10−2 rad

ns , and is observed over a time interval of 20 ns. The total phase variation in that time interval is thus

0.2 rad. When sampled ideally with Tnom,Rx = 1ns this gives of course 10−2 rad/sample. On the other hand, when
sampling with Tnom,Rx +∆TRx,m (t ) = 1.5ns, to exaggerate, yields a carrier phase variation of 1.5 ·10−2 rad/sample.
Thus, the model is still valid, but the values of the carrier phase parameters change, when the sampling is not ideal.
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e jφTx,n [k]

hmn
[
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hTx,1
[
k − φ̇Tx,1[k]+ φ̇Rx,m[k]

]x1[k]

e jφTx,1[k]

hm1
[
k + φ̇Rx,m[k]

]

ym[k]
hRx,m

[
k + φ̇Rx,m[k]
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e− jφRx,m [k]nm[k]

Tx SFOs Tx CFOs MIMO Channel

Rx SFO Rx Noise Rx CFO

Figure 2.11: Discrete-time symbol-spaced baseband signal model of the mth received signal
in a linear MIMO system with multiple timing impairments. The CFOs effects are expressed as
parallel rotating complex exponentials with independent phase processes on the receiver and
transmitter, respectively. The SFOs influences are conveyed through time-variant sampling
on the Tx and Rx side, based on independent sampling phase processes. The parallel filters
on the transmitter and receiver side contain the analog linear-filtering characteristics of each
front end. They include, for example, interpolation, image rejection, and anti-aliasing filters.

reduced as much as possible. Each of the sampled received streams ym[k] is a superposition

of multiple phase rotating and time-varying transmit streams xn[k] in correlated noise. Note

that the physical wireless channel impulse responses hmn[k] are sometimes assumed to be

linear and time invariant. However, due to the variations in the sampling and the variations of

the transmit carriers, the observed responses vary in general slowly with time. A system block

diagram of the equation is given in Figure 2.11. In the following, specific instances of (2.40)

will be explored.
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2.5.1 Synchronized Symbol-Spaced Model

Consider the case where the nominal Tx rate is equal to the symbol rate and the Rx rate, i.e.,

1/Tnom,Tx = 1/Ts = 1/Tnom,Rx. Additionally, φ̇Rx,m[k] = φ̇Tx,n[k] = 0 and φRx,m[k] = φTx,n[k].

Note that for the carrier phase processes it is sufficient to be equal to completely cancel their

effect, whereas the sampling phase processes have to be equal and zero in order to always

sample at the correct symbol time instant.

The model then simplifies to

ym[k] = hRx,m [k]?
N∑

n=1
hmn [k]?

∞∑

l=−∞
hTx,n [k − l ] xn[l ]+hRx,m [k]?nm[k]. (2.41)

Assuming further that the transmitter and receiver characteristic is flat within the signal

bandwidth, i.e., hTx,n[k] = hRx,m[k] = sinc[π ·k], yields the common model18

ym[k] =
N∑

n=1

Lmn−1∑

l=0
hmn [l ] xn[k − l ]+nm[k], (2.42)

where the wireless channel impulse response is considered to be of finite length Lmn , with L

being the maximum length across all responses. Continuing with the more common vector-

matrix notation, and using TxRx-ST stacking, gives

ym[k] =
[

hT
m[0] hT

m[1] · · · hT
m[L−1]

]

︸ ︷︷ ︸
hT

L,m




x[k]

x[k −1]
...

x[k −L+1]




︸ ︷︷ ︸
xL [k]

+nm[k], (2.43)

where hm[l ] =
[

hm1[l ] hm2[l ] · · · hmN [l ]
]T

and x[k] =
[

x1[k] x2[k] · · · xN [k]
]T

. The

signals from the different receive antennas can then be stacked, giving for flat transmit and

receive characteristics

y[k] = HxL[k]+n[k], (2.44)

with the variables being y[k] =
[

y1[k] y2[k] · · · yM [k]
]T

, H =
[

hL,1 hL,2 · · · hL,M

]T
,

and n[k] =
[

n1[k] n2[k] · · · nM [k]
]T

, where nm[k] ∼C N (0,σ2
nm

). When the transmit and

receive filters are not flat, the kth received sample from all antennas is given by the more

general model as

y[k] = HRxHLRx HTx,LD︸ ︷︷ ︸
HC

xLC [k]+HRxnLRx [k], (2.45)

18In some works, it is assumed that hmn [k] contains the Tx and Rx characteristics. This will not be done here, as
it obscures the effects of the timing impairments to some extent.
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where it was also assumed that the receive and transmit filters hRx,m [k] and hTx,n [k] are of

finite lengths LRx,m , LTx,n , with LRx, LTx being the maximum, respectively. Note that since

there is a convolution of different discrete-time and finite-length filters for each received

stream, the total spread of the signal in time can be calculated by combining their individual

lengths with LC = LRx +L−1+LTx −1. Additionally, define the maximum length of the spread

excluding the transmitter part as LD = LRx +L−1.

Using these quantities, the vectors and matrices in (2.45) can be defined, with their dimensions

below the name, as follows

HRx
(M×MLRx)

=
[

diag(hRx[0]) diag(hRx[1]) · · · diag(hRx[LRx −1])
]

,

HLRx
(MLRx×N LD)

=




H 0M×N (LRx−1)

0M×N H 0M×N (LRx−2)

. . .

0M×N (LRx−1) H




,

HTx,LD
(N LD×N LC)

=




HTx 0N×N (LD−1)

0N×N HTx 0N×N (LD−2)

. . .

0N×N (LD−1) HTx




with HTx
(N×N LTx)

=
[

diag(hTx[0]) diag(hTx[1]) · · · diag(hTx[LTx −1])
]

,

nLRx [k]
(MLRx×1)

=




n[k]

n[k −1]
...

n[k −LRx +1]




, xLC [k]
(N LC×1)

=




x[k]

x[k −1]
...

x[k −LC +1]




.

The matrices HRx and HTx are concatenated diagonal matrices of their filter taps hRx[lRx] =[
hRx,1[lRx] hRx,2[lRx] · · · hRx,M [lRx]

]T
on the receiver side, and, on the transmitter side,

hTx[lTx] =
[

hTx,1[lTx] hTx,2[lTx] · · · hTx,N [lTx]
]T

. If there is additional coupling between

different transmitter or receiver chains it could be included here, by removing the diagonal

property. It could also be included directly in the channel matrix H. The matrices HLRx and

HTx,LD have a block banded and circulant structure. To get more familiar with the notation the

small Example 1 will be considered next.

Example 1. Consider a small MIMO system with M = N = 2 having mildly-selective transmit

and receive filters of length LRx = LTx = 2 with hRx[0] = hTx[0] =
[

1 1
]T

, hRx[1] =
[

0.05 0.1
]T

,

and hTx[1] =
[
−0.15 0

]T
. The wireless channel is also mildly selective with L = 2 and hL,1 =
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[
1 − j 0.1 −0.1

]T
, hL,2 =

[
− j 1 0.5 0

]T
. Using the notation, the matrices are given by

HC = HRxHLRx HTx,LD =
[

1 0 0.05 0

0 1 0 0.1

]
·




1 − j 0.1 −0.1 0 0

− j 1 0.5 0 0 0

0 0 1 − j 0.1 −0.1

0 0 − j 1 0.5 0




·




1 0 −0.15 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 −0.15 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 −0.15 0

0 0 0 0 0 1 0 0




.

It is possible to combine HRx, HLRx , and HTx,LD into HC, and consider the complete system as

one frequency-selective and time-invariant system with spread of LC. However, there is some

structure in the generation of that matrix which can be leveraged to reduce the computational

complexity of equalization and synchronization, especially, once the timing impairments are

considered.

2.5.2 Symbol-Spaced Model Containing Only CFOs

Similar to the previous section with Tnom,Tx = Ts = Tnom,Rx and φ̇Rx,m[k] = φ̇Tx,n[k] = 0, we get

from (2.40) the model containing only CFOs as

ym[k] = hRx,m [k]?
N∑

n=1
e j∆φmn [k] ·hmn [k]?

∞∑

l=−∞
hTx,n [k − l ] xn[l ]

+hRx,m [k]?nm[k]

(2.46)

= hRx,m [k]?e− jφRx,m [k] ·
N∑

n=1
hmn [k] ·e jφTx,n [k]?

∞∑

l=−∞
hTx,n [k − l ] xn[l ]

+hRx,m [k]?nm[k].

(2.47)

Using vector-matrix notation and assuming, again, that the Rx and Tx filters are ideally flat

over the relevant signal bandwidth, i.e., they do not contribute to the characteristic of the

complete transmission channel, including the shift due to the frequency offsets, gives

y[k] =ΦRx[k]HΦTx,L[k]xL[k]+n[k] (2.48)

= (∆Φ[k]¯H)xL[k]+n[k], (2.49)

whereΦRx[k] = diag(e− jφRx,1[k],e− jφRx,2[k], . . . ,e− jφRx,M [k]) = diag(φRx[k]),ΦTx,L[k] = IL ⊗ΦTx[k]

withΦTx[k] = diag(e jφTx,1[k],e jφTx,2[k], . . . ,e jφTx,N [k]) = diag(φTx[k]). The complete carrier phase
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rotation matrix is given by∆Φ[k] =φRx[k](1L×1 ⊗φTx[k])T.

When the Tx and Rx filters are not flat over the relevant bandwidth, the more general model of

the kth received sample from all antennas can be written as

y[k] = HRxΦRx,LRx [k]HLRxΦTx,LD [k]HTx,LD xLC [k]+HRxnLRx [k], (2.50)

using the previously defined matrices, and ΦRx,LRx [k], ΦTx,LD [k] being defined as ΦTx,L[k].

Compared to (2.45), the impact of CFOs is thus that the transmission is time varying due to

the carrier phase variations from the different antennas. In the following small Example 2, this

should become more clear.

Example 2. Consider a small MIMO system with M = N = 2, having ideal transmit and receive

filters of length LRx = LTx = 1 with hRx[0] = hTx[0] =
[

1 1
]T

. The wireless channel is also flat

and orthogonal with L = 1 and hL,1 =
[

1 − j
]T

, hL,2 =
[
− j 1

]T
. Three different points in

time will be considered, i.e., k = {0,1,2}, with the carrier phase process progressions φRx,1[k] =
φRx,2[k] = {0, π2 , π2 }, φTx,1[k] = {0,0, π2 }, and φTx,2[k] = {0,0,−π

2 }. Note that this corresponds to

setup 3, where the same phase process is experienced at all Rx antennas and independent phase

processes are experienced at all Tx antennas.

ΦRx,LRx [0]HLRxΦTx,LD [0] =
[

e− j ·0 0

0 e− j ·0

][
1 − j

− j 1

][
e j ·0 0

0 e j ·0

]
=
[

1 − j

− j 1

]

ΦRx,LRx [1]HLRxΦTx,LD [1] =
[

e− j · π2 0

0 e− j · π2

][
1 − j

− j 1

][
1 0

0 1

]
= e− j · π2

[
1 − j

− j 1

]

ΦRx,LRx [2]HLRxΦTx,LD [2] = e− j · π2
[

1 − j

− j 1

][
e j · π2 0

0 e− j · π2

]
=
[

1 j

− j −1

]

2.5.3 Symbol-Spaced Model Containing Only SFOs

Consider Tnom,Tx = Ts = Tnom,Rx and φRx,m[k] =φTx,n[k]. This yields

ym[k] = hRx,m
[
k + φ̇Rx,m[k]

]
?

N∑
n=1

hmn
[
k + φ̇Rx,m[k]

]

?
∞∑

l=−∞
xn[l ]hTx,n

[
k + φ̇Rx,m[k]− l − φ̇Tx,n[l ]

]+hRx,m
[
k + φ̇Rx,m[k]

]
?nm[k].

(2.51)

Note that idealized Rx and Tx filters do not exist in this case because as the sampling phase

processes progress, relevant filter coefficients, aside from a δ[k], will appear at the symbol

positions generating ISI between consecutive symbols. In fact, these filters are infinitely long

if the sample timing is not perfect. Fortunately, the higher coefficients have significantly less

impact, i.e., their magnitude is very low, such that the infinite-length filters hRx,m
[
k + φ̇Rx,m[k]

]
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and hTx,n
[
k + φ̇Rx,m[k]− l − φ̇Tx,n[l ]

]
can be approximated by finite-length filters with lengths

LRx and LTx. Example 3 shows the effect of a fixed sampling phase offset on the sampling of

one analog receive filter.

Example 3. Consider the analog Rx filter characteristic of the second antenna to be ideally

flat with hRx,2(t) = sinc
(
π · t

Tnom,Rx

)
= sinc

(
π · t

Ts

)
. Assume its discrete-time version to be of

finite length LRx = 7 with hRx,2[l = 3] = 1, hRx,2[l 6= 3] = 0, for the ideal case of φ̇Rx,2[k] = 0.

Assume the case where φ̇Rx,2[k] is a constant for at least LRx symbols. Then, the filter coefficients

are given by shifting the ideal filter to that constant, with non-integer values being obtained

from interpolation using the analog filter response. Fig. 2.12 shows the filter coefficients for

three different shift values, where the actual sampling clock is slower than the nominal one

(φ̇Rx,m[k] > 0).
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Figure 2.12: Example of the observed receive filter coefficients for different constant sampling
phases, and with symbol rate sampling.

It is crucial to note that the observation of the wireless channel and transmit filters in each

received stream also depends on the receiver sampling processes φ̇Rx,m[k]. Thus, including

the effects of multiple SFOs needs a slightly different notation. We can start with the kth

sample for the mth receive antenna, given by

ym[k] = hT
Rx,m[k]HLRx,m[k]HTx,LD,m[k]xLC [k]+hT

Rx,m[k]nLRx,m[k], (2.52)

where all of the filters vary with time according to the sampling phase process of the mth
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receiver. The following definitions are needed

hRx,m[k] =




hRx,m
[
0+ φ̇Rx,m[k]

]

hRx,m
[
1+ φ̇Rx,m[k]

]

...

hRx,m
[
LRx −1+ φ̇Rx,m[k]

]




,

HLRx,m[k] =




hT
L,m[k] 01×N (LRx−1)

01×N hT
L,m[k] 01×N (LRx−2)

. . .

01×N (LRx−1) hT
L,m[k]




with hL,m[k] =




hm
[
0+ φ̇Rx,m[k]

]

hm
[
1+ φ̇Rx,m[k]

]

...

hm
[
L−1+ φ̇Rx,m[k]

]




,

and, additionally,

HTx,LD,m[k] =




HTx,m[k,0] 0N×N (LD−1)

0N×N HTx,m[k,1] 0N×N (LD−2)

. . .

0N×N (LD−1) HTx,m[k,LD −1]




with

HTx,m[k, lD] =
[

diag(hTx,m[k, lD,0]) diag(hTx,m[k, lD,1]) · · · diag(hTx,m[k, lD,LTx −1])
]

,

and hTx,m[k, lD, l ] =




hTx,1
[
l − φ̇Tx,1[k − l − lD]+ φ̇Rx,m[k]

]

hTx,2
[
l − φ̇Tx,2[k − l − lD]+ φ̇Rx,m[k]

]

...

hTx,N
[
l − φ̇Tx,N [k − l − lD]+ φ̇Rx,m[k]

]




, nLRx,m[k]




nm [k]

nm [k −1]
...

nm [k −LRx +1]




,

where the auxiliary variable lD is needed in order to apply the appropriate value of the trans-

mitter sampling phase process to the corresponding transmit symbol, and the lengths LC, LD

are defined as before in section 2.5.1.

The general model for the kth received sample from all antennas, including the Tx and Rx

filters, can then be specified by a more complex stacking, using the convention of TxRx-ST,

with

y[k] = HRx[k]HLRx [k]HTx,LD [k]xLC [k]+HRx[k]nLRx [k], (2.53)

where some of the matrices need to be defined differently compared to (2.45) due to the
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sampling process, which will be done next. The received filters are defined by the matrix

HRx[k]
(M×MLRx)

=
[

diag(hRx[k,0]) diag(hRx[k,1]) · · · diag(hRx[k,LRx −1])
]

with hRx[k, l ] =




hRx,1
[
l + φ̇Rx,1[k]

]

hRx,2
[
l + φ̇Rx,2[k]

]

...

hRx,M
[
l + φ̇Rx,M [k]

]




,

and are thus similar to the one used in (2.45) except for the variation with k. The wireless

channel response can be written as

HLRx [k]
(MLRx×M N LD)

=




HL[k] 0M×M N (LRx−1)

0M×M N HL[k] 0M×M N (LRx−2)

. . .

0M×M N (LRx−1) HL[k]




with HL[k] =
[

H[k,0] H[k,1] · · · H[k,L−1]
]

,

using H[k, l ] = blkdiag
(
hT

1 [k, l ],hT
2 [k, l ], . . . ,hT

M [k, l ]
)

and hm[k, l ] =




hm1
[
l + φ̇Rx,m[k]

]

hm2
[
l + φ̇Rx,m[k]

]

...

hmN
[
l + φ̇Rx,m[k]

]



= hm[l + φ̇Rx,m[k]].

Finally, the transmit filters are given as

HTx,LD [k]
(M N LD×N LC)

=




HTx[k,0] 0M N×N (LD−1)

0M N×N HTx[k,1] 0M N×N (LD−2)

. . .

0M N×N (LD−1) HTx[k,LD −1]




with HTx[k, lD] =




HTx,1[k, lD]

HTx,2[k, lD]
...

HTx,M [k, lD]




.

Compared to (2.45), note in particular that the size of HLRx [k] and HTx,LD [k] is increased to

MLRx ×M N LD and M N LD ×N LC, respectively, due to the independent sampling process

for each receiver. It should also be noted that in a continuous transmission, as mentioned

before and discussed in appendix A.3, the lengths of the filters change as time progresses,

because eventually the same symbol from the transmitter will be sampled twice or it will be

missed. This can be seen, for example, when considering that one of the receiver sampling
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phase processes reaches a value of |φ̇Rx,m[k]| = 1, while the others are smaller than one. In

that case the corresponding receive filter will be shifted by one sample, also equal to a symbol

here, forward or backward, which extends through to the transmitter side, i.e., one additional

previous or next symbol is needed in order to compute y[k]. This problem will not be treated

further in this work, approaches and solutions can be found, for example, in [4].

2.5.4 Symbol-Spaced Model Containing CFOs and SFOs

Using (2.40) with Tnom,Tx = Ts = Tnom,Rx and the definitions from the previous two sections,

the symbol-spaced model containing both timing impairments, and the transmit and receive

filter effects, can be specified in vector matrix notation, and is given by

y[k] = HRx[k]ΦRx,LRx [k]HLRx [k]ΦTx,LD [k]HTx,LD [k]xLC [k]+HRx[k]nLRx [k], (2.54)

with all the quantities being defined in the previous two sections. We can see that due to the

timing impairments, the input-output relation is time varying through the different matrix

terms, where the CFO terms influence mostly the phase and the SFO terms mostly influence

the amplitude of the filters, see their respective definitions.

As in the synchronized case, it is possible to combine all effects into one frequency-selective

and time-varying matrix with spread of LC. However, the variation happens due to the MIMO

mixing in a very complicated, albeit slow, way, such that estimating it accurately at every time

step k poses a serious problem. Additionally, some of the processing steps can be parallelized

by recognizing the structure of the system19.

2.5.5 Intermission on Oversampling

So far, we have only considered the case, where the transmitter and receiver sample rates are

equal and match the symbol rate, i.e., 1/Tnom,Tx = 1/Tnom,Rx = 1/Ts . If the timing impairments

are not compensated by analog means, such a sampling can only yield suboptimal digital

synchronization performance [4, 61, 62]. The reason for this is the occurrence of aliasing due

to the CFO and SFO, as will be explained next. The CFO shifts the received signals spectrum

from ideal zero to the frequency offset, which creates aliasing when sampled at the symbol

rate assuming no offset, violating the first Nyquist criterion. Likewise, when the transmitter

sample rate is slightly different from the nominal one (this is true in the same way for the

receiver sampling), the actual physical bandwidth is different, e.g., higher, compared to the

nominal one. Sampling can then also create aliasing, violating the first Nyquist criterion.

Due to these limitations, most systems sample at a rate that is higher than the symbol rate

on the receiver side , i.e., 1/Tnom,Rx > 1/Ts , in order to generate a sufficient statistic from

19Note for example that M ·N different phase trajectories can be observed with setup 4 for both CFO and SFO,
refer also to matrix Φ∆[k] in equation (2.49). However, they are linear combinations of the M +N actual phase
processes from transmitter and receiver.
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the continuous-time received signal. The oversampling factor Q̄ = Ts
Tnom,Rx

≥ 1 is in practical

systems often chosen in the range 1.1 < Q̄ < 2.5, in order to achieve good performance, while

not demanding excessive sampling speeds from the ADC. The actual required value depends

on the level of CFO, SFO, and the shape of the spectrum of the received signal. In general,

the oversampling factor should be chosen such that most of the signal power is captured

within the sampling bandwidth, while simultaneously avoiding aliasing due to the timing

impairments. Note that an increase in oversampling increases the required digital processing

rate by the same amount, which can be a limiting factor especially for high-rate systems. As is

common for discrete-time processing, we will assume that the signal has been interpolated

such that an integer oversampling factor Q = ⌈Q̄⌉ can be used. In the following, the signal

model for the ideally synchronized case, and for the case where both timing impairments are

occurring, will be presented.

2.5.6 Synchronized Oversampled Model

For the oversampled case, all the filters and signals need to be specified on the oversampled

grid, denoted through (̇·). The general model for the kth sample from all receive antennas can

be defined as

ẏ[k] = ḢRxḢL̇Rx
ḢTx,L̇D

ẋL̇C
[k]+ ḢRxṅL̇Rx

[k], (2.55)

where the filters ḢRx, ḢL̇Rx
, and ḢTx,L̇D

, are essentially the same as in section 2.5.1, but contain

the responses on the oversampled grid. Comparing between a symbol-spaced and an oversam-

pled instance of the system, the filter lengths are increased, i.e., L̇Rx =QLRx, L̇D =QLD, and

L̇C =QLC. The statistical properties of ṅL̇Rx
[k] can still be assumed that of a white Gaussian

noise process with equal power across all frequencies20. However, it should be visible that the

actual noise that is added as a perturbation, i.e., the term ḢRxṅL̇Rx
[k] is not necessarily white,

but correlated over time depending on the receive filters.

Finally, consider the relationship between the input symbols or samples, and their oversam-

pled description ẋL̇C
[k]. For this, consider the kth sample at the nth antenna, where all of

them are used to stack the previously mentioned vector, which can be defined as

ẋn[k] =
[

hP,n[1+mod(k,Q)] hP,n[1+Q +mod(k,Q)] · · · hP,n[1+ (LP −1)Q +mod(k,Q)]
]

·




xn

[⌊
k
Q

⌋]

xn

[⌊
k
Q

⌋
−1
]

...

xn

[⌊
k
Q

⌋
−LP +1

]




,

(2.56)

20For fair comparison, it is important that the signal-to-noise ratio (SNR) inside the signal bandwidth is equal to
the SNR of the symbol-spaced case.
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where hP,n[l ] is a filter of length L̇P =QLP on the receiver sampling grid that represents the

digital pulse-shaping filter of the nth transmitter. The operators mod(·) and b·c denote the

modulo and flooring operation, respectively. Note that the transmit symbols, which influence

the current sample, only change every Q samples. From a receiver perspective, the pulse-

shaping filter can be combined with the analog filter ḢTx,L̇D
. However, the digital filter can, up

to some limitations, be freely chosen in order to improve performance, whereas the analog

filter is fixed for a given hardware setup.

2.5.7 Oversampled Model Containing CFOs and SFOs

For the CFO and SFO impaired oversampled model we get

ẏ[k] = ḢRx[k]ΦRx,L̇Rx
[k]ḢL̇Rx

[k]ΦTx,L̇D
[k]ḢTx,L̇D

[k]ẋL̇C
[k]+ ḢRx[k]ṅL̇Rx

[k] (2.57)

= ḢRx[k]ΦRx,L̇Rx
[k]ḢL̇Rx

[k]ΦTx,L̇D
[k]ḢTx,L̇D

[k]HP[k]
︸ ︷︷ ︸

ḢC[k]

xLP [k]+ ḢRx[k]ṅL̇Rx
[k], (2.58)

where the same definitions as above apply. Aside from the change in length for all filters, it

just needs to be mentioned that the carrier and sampling phase processes φ·[k] and φ̇·[k] are

now defined on the receiver sampling grid.

2.6 Results from the Literature

In this section, some results for the synchronization of MIMO systems available in the liter-

ature, and their relation to the models specified above, will be laid out. A recent survey of

synchronization research for SISO and MIMO systems can be found in [5]. Most of the works

in the literature only deal with one of the two timing impairments, i.e., assume the other one

compensated, and also assume block-wise frequency-flat channels. Furthermore, almost all of

them assume that the phase processes characterizing the timing impairments are sufficiently

well modeled, at least over the considered block, by linear phase ramps, or purely linear phase

drifts, i.e., σ2
ϕw

= σ2
ϕn

= 0 and σ2
ϕ̇w

= σ2
ϕ̇n

= 0. Tables 2.2, 2.3, and 2.4 summarize the most

relevant works. In case of a single CFO and/or SFO between transmitter and receiver, certain

SISO approaches and results can be used. Specifically, one may use approaches, which are not

influenced by the linear superposition of multiple signals such as data-aided algorithms based

on correlation with orthogonal training sequences, or blind approaches where the utilized

statistic is not affected by the superposition. More results about the synchronization of CFO

and SFO in SISO systems can be found in [5], confer also the standard books [3, 4].

In the following, there will be additional details on some of the most important results.

2.6.1 Important Results for CFOs

Besson and Stoica [63] derive the Cramér-Rao bound (CRB) for flat-fading MIMO channels
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Table 2.2: Summary of research on CFO synchronization for MIMO systems, under different
oscillator setups and channel assumptions.

Authors CFO Channel Contribution

Besson and Stoica
[63]

multiple flat fading Derivation of CRB and ML estima-
tor for CFOs and channel.

Yao and Ng
[64]

multiple flat fading Correlation-based estimator and
CRB for CFOs.

Qu et al.
[65]

multiple selective fading Training sequences and subspace-
based methods to lower estimation
complexity.

Ghogho and Swami
[66]

single selective fading Training sequences based on CRB,
improving performance and lower-
ing ML complexity.

Ahmed et al.
[67]

multiple selective fading Approximate ML estimator and re-
cursive MMSE equalizer.

Zhang et al.
[68]

multiple selective fading Frequency-domain estimation and
equalization, by approximating
CFOs as constant phase shifts per
sample block.

Mehrpouyan et al.
[69]

multiple flat fading CRB, LS estimator, and tracking of
phase processes with weighted LS
and extended Kalman filter.

Cheng and Larsson
[70]

multiple flat fading CRB and ML estimator for CFO,
and achievable rate analysis for
massive MIMO.

with multiple CFOs, i.e., setup 4. One important result from the work is that the CRB is block-

diagonal, meaning that the estimation of the parameters of interest can be carried out for

each receive antenna m independently. Furthermore, it is noted that the estimation of the

channel and CFOs for each antenna depends on all channel parameters and frequency offsets

associated with that antenna. On the other hand, when a LO is shared at the transmitter

side, i.e., setup 3, the CRB for estimating the CFO is shown to become independent of the

frequency offsets. This is intuitive since each received stream experiences only a single, albeit

different for each receive antenna, frequency offset in this case. Since the exact expression

of the general CRB is rather complicated w.r.t. the mentioned dependencies, the work also

proposes using an asymptotic, or large-sample, CRB (asCRB). This result from [63] is given, in

our notation, by

asCRB(hmn[0]) =
5σ2

nm

2LTrσ
2
xTr,n

, asCRB
(
∆µϕw,mn

)=
6σ2

nm

L3
Trσ

2
xTr,n

|hmn[0]|2 , (2.59)

where the frequency offset is ∆µϕw,mn =µϕw,n −µϕw,m assuming, as mentioned above, σ2
ϕw

=
σ2
ϕn

= 0. Additionally, the noise power is σ2
nm

= E[|nm[k]|2] and σ2
xTr,n

= E[|xTr,n[k]|]2 is the
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average power of the training signal from antenna n with total length LTr. The maximum-

likelihood (ML) estimation of the parameters is proposed to be carried out in two steps. First,

estimate the CFOs. Then, estimate the channels. CFO estimation requires an N -dimensional

minimization of a likelihood function for each received antenna, which is computationally very

complex. Significant simplifications are achieved by using uncorrelated training sequences

from the different Tx antennas. In this case, each CFO can be estimated independently,

since the contribution of the other ones are suppressed due to the uncorrelated nature of the

transmitted signals. Then, either one-dimensional searches with periodogram techniques

or correlation-based estimators can be used to get the offsets. For channel estimation, the

obtained frequency offset estimates are used in a standard least-squares (LS) channel estimator.

Numerical evaluations show that the asCRB is very close to the CRB, and that the simplified

estimators achieve the CRB in the mid to high SNR regime.

In Ahmed et al. [67], the same simplified ML procedure as above is proposed, but for frequency-

selective MIMO channels with multiple CFOs, i.e., setup 4. The work also derives a recursive

minimum-mean-square-error (MMSE) equalizer, and shows that for the equalization of such

a channel, the equalizer needs to be updated for every symbol due to the CFO. Fortunately,

consecutive equalization matrices experience some structure, such that it is not necessary

to update the complete matrix for every symbol. Numerical results show that the proposed

approach performs almost as good as a system that does not incur timing impairments.

Mehrpouyan et al. [69] investigate the case of flat-fading MIMO channels with multiple CFOs,

i.e., setup 4, under the assumption that the phase process is solely a Wiener process, i.e.,

∆µϕw,mn =σ2
ϕn

= 0. One significant contribution is the proposal of tracking the phase during

data transmission, using a weighted LS or an extended Kalman estimator. The estimation

structure makes use of several training signals. First, there are long, orthogonal between

different Tx, training sequences that are used for LS channel estimation to obtain the initial

state of the channel, similar to the previous two works. Then, there are data symbols inter-

spersed with pilot symbols, which are used for tracking in a decision-directed manner. The

numerical results show that the approaches perform well, but incur a 3 dB to 6 dB performance

degradation compared to a system with perfect channel estimation.

2.6.2 Important Results for SFOs

Wu et al. [62] derive an estimator for flat-fading MIMO channels that are oversampled and

incur a single SFO, i.e., setup 2. As is common in the SFO literature, it is assumed that the

sampling phase process is sufficiently well modeled by a constant for a block of symbols, see

Example 3. The first discussion in the work is focused on the optimum sample selection algo-

rithm, originally proposed in [61], which works by correlating the received oversampled signal

containing the training signal with said training signal, and choosing the sampling phase as

the sample that yields the highest correlation. In order to make the estimate independent of

the carrier phase, and lower the impact of other channel influences, the magnitude squared of
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the correlation is used for finding the sample phase. Additionally, since the same SFO is expe-

rienced at all Rx antennas, the result can be averaged across all training sequences and receive

antennas, in order to improve the performance. Naturally, this algorithm cannot estimate sam-

ple phases that lie between two sample points and, thus, only achieves a good performance for

high values of Q. A better performance is achieved by noting that the log-likelihood function,

which is used to find the best sample, is smooth. Essentially, an interpolated version of the

discrete log-likelihood function can be generated by employing a discrete Fourier transform

(DFT), which can then be used to obtain a more accurate estimate of the sample phase. Similar

approaches have also been proposed for SISO systems, e.g., in [71]. Numerical examples show

a significant performance gain compared to the optimum sample selection algorithm, and

suggest that the algorithm is viable for Q ≥ 4. The results, furthermore, show that at high SNR,

the performance is limited by aliasing of the sampled likelihood function. In other words, a

higher Q is needed to improve the estimation performance further in such cases, rather than

a higher SNR of the estimation procedure, i.e., a longer training sequence or more receive

antennas.

Table 2.3: Summary of research on SFO synchronization for MIMO systems, under different
oscillator setups and channel assumptions.

Authors SFO Channel Contribution

Wu et al.
[62]

single flat fading Correlation-based timing estima-
tor working well with low Q, and
analytical MSE expression for it.

Rajawat and Chaturvedi
[72]

single flat fading Extension of [62], improving per-
formance by exploiting knowledge
about the Tx pulse shape.

Nasir et al.
[73]

multiple flat fading CRB-based training sequence de-
sign and performance evaluation.

Nasir et al. [73] investigate optimal training sequences for flat-fading MIMO channels that are

oversampled and incur multiple SFOs, i.e., setup 4, also modeled as deterministic constants

for a block of symbols. The following conditions for optimal training sequences, in the sense

of a hybrid CRB, are obtained: training sequences from every Tx exhibit a π radians phase

shift every symbol, they are mutually orthogonal, and the training sequence from any Tx is

orthogonal to ±Ts-shifted training sequence from every other Tx. A MAP estimator for channel

and SFO is derived, which works similar to the CFO estimators outlined in the previous section,

by first estimating the SFO through some search, and then estimating the channel through LS.

Simulation results show that a significant performance gain can be achieved when training

sequences are used that meet the three conditions approximately, e.g., a certain set of Walsh-

Hadamard codes, compared to ones that violate them. It is also seen that a relatively low

estimation error is achieved with Q = 2.
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Table 2.4: Summary of research on joint CFO and SFO synchronization for MIMO systems,
under different oscillator setups and channel assumptions.

Authors CFO SFO Channel Contribution

Naguib et al.
[61]

single single flat fading Full MIMO system concept and per-
formance evaluation, correlation-
based estimators.

Kannan et al.
[74]

multiple multiple flat fading ML-based timing estimator and ex-
tended Kalman filter for channel
tracking.

Komninakis et al.
[75]

multiple multiple sel. fading Kalman-filter-based channel esti-
mation and tracking, as well as
MMSE DFE equalization.

2.6.3 Important Results for Both Timing Impairments

As in the previous section, it is assumed for the following works that the SFO processes can be

modeled as a constant for a block of samples or symbols.

In Naguib et al. [61], a full modem concept for flat-fading MIMO channels that are oversampled

and incur a single CFO and a single SFO, i.e., setup 2 for each of them, is proposed. The frame

structure is made up of a long training sequence at the start of each frame, and shorter

pilot blocks between the data, both of which are assumed to be mutually orthogonal among

different transmitters. SFO compensation is done by the optimum sample selection algorithm

discussed in the previous section. CFO estimation is treated as part of the MMSE channel

estimation, assuming that there is only a small residual offset of less than 0.1 ppm. In order to

gain channel estimates including the CFO for the data part, an interpolation is used between

the spread out pilot blocks. Numerical results show the viability of the concept, also including

Doppler effects and mildly frequency-selective channels, with a training/pilot overhead of

20%.

Kannan et al. [74] explore flat-fading MIMO channels that are oversampled and incur multiple

CFOs and multiple SFOs, i.e., setup 4 for each of them. Due to the complexity, it is proposed to

separate the estimation and compensation of SFO and CFO. First, the sampling phase offset is

estimated using a training sequence in an ML procedure, by performing a grid search over

reasonable values. Compensation is done with a parallel filtering structure, whose weights

are suggested to be precomputed for different timing offsets during system design, due to the

immense complexity involved in determining them. The timing corrected output signal is then

downsampled to symbol rate, and fed into the CFO and channel estimation and compensation

part. Here, an extended Kalman filter, which is initialized with a known training signal, is used

to deal with both of them at the same time. Decision directed updating of the filter is used

during the data part in order to improve the performance. The simulation results show that

the approach is feasible, leading to a performance degradation between 3 dB to 6 dB w.r.t. a

system with perfect channel estimation and synchronization. They also suggest that sampling
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offset errors are less severe compared to CFO/channel errors, and that catastrophic error

propagation can occur in the decision directed part for certain SNR regions.

The paper of Komninakis et al. [75] investigates a general time-varying frequency-selective

MIMO channel. The MIMO channel is modeled as an autoregressive process, and a Kalman

filter that is able to track the time variations based on that model is designed. One drawback of

this approach is that the timing impairments are not described explicitly, which can make the

model more complex than necessary. A MMSE decision-feedback equalizer (DFE) is proposed

for MIMO channel equalization, where due to the time gap between the Kalman filters channel

estimates, an additional channel predictor is required. Simulation results show the viability

of the approach, but also show that there are significant performance gaps compared to an

ideally synchronized system for certain parameter ranges.

2.7 Summary & Main Results

In this chapter, the system fundamentals of frequency-selective MIMO systems with multiple

timing impairments have been laid out. It was first shown, based on the general continuous-

time system model, that the spatial multiplexing gain and frequency selectivity in LoS MIMO

systems occurs due to spherical wave propagation, and depends on the geometric arrange-

ment of the antennas. A general phase process model that can describe the timing impair-

ments of independent, non-ideal oscillators, which are used for carrier and sampling frequency

generation in the MIMO transceivers, has been introduced. It consists of a Wiener process

with drift, and a white noise process. The possible oscillator configurations that can be used

in MIMO systems have been described, and the discrete-time model for the general case with

independent oscillators has been derived. It is seen that even for static pure-LoS transmission

channels, the complete system including the timing impairments is time varying due to the

CFOs, and both time varying and frequency selective due to the SFOs. It was also briefly

discussed where the sample drop/add problem for continuous transmission comes from,

which will, however, not be treated further in this work.

Finally, relevant results from the literature have been surveyed. It was seen that most of

the results focus on one of the two impairments and assume the other one compensated

or negligible. One important conclusion is that mutually uncorrelated training sequences

from different transmitters simplify the estimation procedure for the channel and timing

parameters significantly. Furthermore, if the channel is frequency selective, the training

sequences should have a well-localized autocorrelation function to make channel estimation

easier. Due to the number of parameters that need to be estimated, the procedure is generally

very complex and most works suggest to perform the estimation consecutively. The most

common estimation order seems to be: first SFO, then CFO, and finally channel. Correlation-

based estimators are shown to yield good performance with reasonable complexity for CFO

and channel. In the case of multiple SFOs, the few proposed methods rely on some form of

grid search over the possible parameter range, making these approaches rather complex. It is
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also seen that tracking of the channel, e.g., in a decision directed manner, can improve the

performance during data transmission.
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3 Parameter Estimation in MIMO Sys-
tems

This chapter deals with estimating the multiple channel and timing parameters that occur in

MIMO systems and impair the transmission of data.

3.1 General MAP and ML Data Estimation

Ultimately, the receiver should be optimized in order to minimize the detection error of any

sequence of transmitted symbols xLT , given the received sample sequence ẏL̇R
[4]. In order to

achieve this goal, the following derivations can be used for the MIMO case, similarly to the

SISO case discussed in [4]. Generally, the sequence of symbols xLT needs to be found that

maximizes the a-posteriori probability, i.e.,

x̂LT = argmax
xLT

[
p
(
xLT |ẏL̇R

)]= argmax
xLT

[
p
(
ẏL̇R

|xLT

)
p
(
xLT

)

p
(
ẏL̇R

)
]

(3.1)

= argmax
xLT

[
p
(
ẏL̇R

|xLT

)
p
(
xLT

)]
, (3.2)

where x̂LT are the estimates of the transmitted symbols and p(·) is a PDF or a probability

mass function (PMF). Assuming all possible transmitted symbol sequences xLT to be equally

probable, this MAP approach reduces to the ML approach that just depends on the conditional

density p
(
ẏL̇R

|xLT

)
, which describes the connection between input symbols and received

samples. In order to generalize the following derivation, a generic form of the oversampled

MIMO model, which includes all previously mentioned system setups and where all of the

impairing effects are combined into a single time-varying matrix, will now be used.

The connection between LT input symbols from N transmitters, denoted by the vector xLT [k] =[
x[k] x[k −1] · · · x[k −LT +1]

]T
, and L̇R received samples from M receivers, denoted by

ẏL̇R
[k] =

[
ẏ[k] ẏ[k −1] · · · ẏ[k − L̇R +1]

]T
, at time k can then be written as

ẏL̇R
[k] = HC̃[k]xLT [k]+ ñL̇R

[k], (3.3)
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3.1. General MAP and ML Data Estimation

where HC̃[k] is a block-Toeplitz matrix containing all effects due to CFOs, SFOs, frequency se-

lectivity due to the channel and Tx/Rx filters, as well as Tx pulse shaping. The structure of HC̃[k]

will be revisited at a later stage. Furthermore, ñL̇R
[k] =

[
ñ[k] ñ[k −1] · · · ñ[k − L̇R +1]

]T

with ñ[k] = ḢRx[k]ṅL̇Rx
[k], which is a complex Gaussian noise process that is shaped by the

receive filters, see also section 2.5.7. The PDF of the noise is a multivariate complex1 Gaussian,

given by

p
(
ñL̇R

)= 1

det(πCñ)
exp
(
−ñH

L̇R
C−1

ñ ñL̇R

)
, (3.4)

where the noise is assumed to have zero mean, i.e., E[ñL̇R
] = 0ML̇R×1 based on E[ṅL̇Rx

[k]] =
0ML̇Rx×1 with E[ṅm[k]] = 0. To simplify the notation, the time dependence of the PDF has been

omitted here. It will be seen in the next section that the noise correlation Cñ = E
[

ñL̇R
[k]ñH

L̇R
[k]
]

varies with time due to the variation caused by the SFO. For a given trial value of xLT , the

variable transformation p
(
ñL̇R

)= p
(
ẏL̇R

−HC̃xLT

)
yields the conditional density

p
(
ẏL̇R

|xLT ,HC̃

)= 1

det(πCñ)
exp
(
−(ẏL̇R

−HC̃xLT

)H C−1
ñ

(
ẏL̇R

−HC̃xLT

))
. (3.5)

Like for the correlation matrix Cñ, the combined MIMO channel matrix HC̃ is also time

varying, due to the CFOs and SFOs, but the dependence is omitted in the notation for now.

Note that compared to (3.2), this PDF is additionally dependent on the channel parameters

HC̃. With respect to optimal detection, those parameters should, thus, be seen as unwanted or

a nuisance, and can be removed through marginalization, i.e.,

x̂LT = argmax
xLT

[
p
(
xLT

)
p
(
ẏL̇R

|xLT

)]
(3.6)

= argmax
xLT

[
p
(
xLT

)∫
p
(
ẏL̇R

|xLT ,HC̃

)
p
(
HC̃

)
dHC̃

]
, (3.7)

where p
(
HC̃

)
is the joint PDF of the MIMO channel parameters describing the potential a-

priori knowledge about their statistical properties [4]. This optimal processing structure is

very complex because the previous integration needs to be computed for all possible values of

HC̃ for each trial sequence xLT , especially considering that the parameters are time varying in

general.

Another approach is to view the channel parameters as desired parameters and maximize the

probability w.r.t. the symbols and the MIMO channel, i.e.,

[
x̂LT ,ĤC̃

]= argmax
xLT ,HC̃

[
p
(
ẏL̇R

|xLT ,HC̃

)
p
(
xLT

)
p
(
HC̃

)]
, (3.8)

where independence between data and channel is implied. It is seen that in this approach

1To be precise, this complex form of the distribution only contains all information about the signal if it is circular,
i.e., real and imaginary part are uncorrelated and of equal variance [28, 76]. This property will be encountered
again in chapter 5, which is concerned with practical implementation and where IQ imbalance is of importance.
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3.1. General MAP and ML Data Estimation

there is no separate channel estimation or synchronization unit. Instead, joint estimation and

detection needs to be carried out. In most cases this procedure cannot be implemented, due

to the enormous parameter range of HC̃. On the other hand, the possible values of xLT are

known, based on the type of modulation. Thus, a possible, but suboptimal strategy, because

we may get stuck in local maxima, is to proceed as follows

ĤC̃(xLT ) = argmax
HC̃

[
p
(
ẏL̇R

|xLT ,HC̃

)
p
(
HC̃

)]
(3.9)

x̂LT = argmax
xLT

[
p
(
ẏL̇R

|xLT ,HC̃ = ĤC̃(xLT )
)

p
(
xLT

)]
, (3.10)

where an estimate of the MIMO channel parameters ĤC̃(xLT ) for each possible symbol se-

quence is first derived, which is then used in the second step as if it were the true value in

order to compute the symbol estimates. Still, computing channel estimates for each possible

symbol sequence is very complex, especially for time-varying MIMO systems. However, this

approach leads towards separating the tasks of estimating the MIMO channel parameters ĤC̃,

and detecting (or estimating) the symbol sequence x̂LT .

To be precise, the detection is performed with a channel parameter estimate ĤC̃, assuming

that this estimate is close to the actual value of the channel and independent of the transmitted

symbol sequence, i.e.,

x̂LT = argmax
xLT

[
p
(
ẏL̇R

|xLT ,HC̃ = ĤC̃

)
p
(
xLT

)]
. (3.11)

Solving this problem will be treated further in the next chapter. For now, the focus is on

obtaining the estimate ĤC̃. There are two approaches that are commonly taken to solve this

problem. The first one, often referred to as data-aided (DA) estimation, works by doing the

same thing for the channel estimation procedure that was done for the data detection above.

Specifically,

ĤC̃ = argmax
HC̃

[
p
(
ẏL̇R

|xLT = xTr,HC̃

)
p
(
HC̃

)]
, (3.12)

where xTr is a training sequence2 of known symbols that is sent separately from the data

in order to identify the channel. If there is no prior information about the distribution of

the channel parameters, which is often the case in practice, p
(
HC̃

)
can be omitted from the

maximization. This implicitly means that all channel realizations are equally likely. A related

approach is called decision-directed (DD) estimation, where decoded data symbols are used

instead of a training sequence in (3.12). For this approach to work, it is necessary that the

decoded data is correct with a high reliability. It is helpful for systems where the channel

parameters vary with time, e.g., due to CFO and SFO, so that the estimate can be updated

2In general, the channel estimate depends on the training sequence, i.e., ĤC̃ = ĤC̃

(
xTr
)
. With a suitable choice of

training sequence, however, this dependence can be almost eliminated. It is also important that the training signal
resembles the data signal that ought to be transmitted in certain aspects, e.g., in terms of occupied bandwidth.
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3.2. DA Channel Estimation

without retransmission of a training sequence.

The second approach for estimating ĤC̃ works similarly to (3.7), but instead of marginalizing

out the channel, the data is removed. This is done as follows

ĤC̃ = argmax
HC̃

[
p
(
HC̃

) ∑

∀xLT

p
(
ẏL̇R

|xLT ,HC̃

)
p
(
xLT

)
]

(3.13)

= argmax
HC̃

[
p
(
HC̃

)
p
(
ẏL̇R

|HC̃

)]
. (3.14)

These approaches are called non-data-aided (NDA) or blind.

3.2 DA Channel Estimation

The problem of estimating the channel, for which a solution is sought, is given for Gaussian

noise by

ĤC̃ = argmax
HC̃

[
p
(
ẏL̇R

|xLT = xTr,HC̃

)
p
(
HC̃

)]
(3.15)

= argmax
HC̃

[
1

det(πCñ)
exp
(
−(ẏL̇R

−HC̃xTr
)H C−1

ñ

(
ẏL̇R

−HC̃xTr
))

p
(
HC̃

)]
, (3.16)

assuming that the training signal xTr is known. This problem can be simplified by taking the

logarithm of the PDF, i.e.,

ĤC̃ = argmax
HC̃

[
log
(
p
(
ẏL̇R

|xLT = xTr,HC̃

)
p
(
HC̃

))]
(3.17)

= argmax
HC̃

[
log

1

det(πCñ)
− (ẏL̇R

−HC̃xTr
)H C−1

ñ

(
ẏL̇R

−HC̃xT
)+ log p

(
HC̃

)]
(3.18)

= argmax
HC̃

[
log

1

det(πCñ)
− ẏH

L̇R
C−1

ñ ẏL̇R
+ ẏH

L̇R
C−1

ñ HC̃xTr

+ (HC̃xTr
)H C−1

ñ ẏL̇R
− (HC̃xTr

)H C−1
ñ HC̃xTr + log p

(
HC̃

)]
.

(3.19)

It is seen that in order to compute the above, knowledge about Cñ is required. This correlation

matrix is given through

Cñ[k] = E
[

ñL̇R
[k]ñH

L̇R
[k]
]

(3.20)

= E

[(
HC̃,Rx[k]ṅL̇C̃,Rx

[k]
)(

HC̃,Rx[k]ṅL̇C̃,Rx
[k]
)H]

(3.21)

= HC̃,Rx[k]E
[

ṅL̇C̃,Rx
[k]ṅH

L̇C̃,Rx
[k]
]

HH
C̃,Rx

[k] (3.22)

= HC̃,Rx[k] · Ṅ ·HH
C̃,Rx

[k], (3.23)
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3.2. DA Channel Estimation

where Ṅ = IL̇C̃,Rx
⊗diag(σ2

ṅ1
,σ2

ṅ2
, . . . ,σ2

ṅM
) contains the noise powers of the different receivers,

i.e.,σ2
ṅm

= E[|ṅm[k]|2], which are assumed to be constant over time and are often also assumed

to be equal between different receivers. The length L̇C̃,Rx is defined by L̇C̃,Rx = L̇R + L̇Rx −1,

consisting of the length of the received sample sequences L̇R and the length of the receive

filters L̇Rx. Furthermore, the combined receive filter matrix HC̃,Rx[k] is given by

HC̃,Rx[k]
(ML̇R×ML̇C̃,Rx)

=




ḢRx[k] 0M×M(L̇R−1)

0M×M ḢRx[k] 0M×M(L̇R−2)
. . .

0M×M(L̇R−1) ḢRx[k]




, (3.24)

which is a block-Toeplitz matrix of the receive filters, see section 2.5.3 for their definition.

Furthermore, the first two terms in (3.19) can in general not be omitted, because they are

dependent on a part of the complete channel through ḢRx[k]. Let us briefly revisit why

the discrete-time noise correlation matrix Cñ[k] is time varying, when SFOs are present. In

continuous time, the noise process is shaped by the linear analog filter hRx,m(t ) of each receiver

front end. The statistics of this continuous-time colored-noise process are time invariant.

However, when this process is sampled with a non-ideal sampling phase process, the statistics

of the discrete-time colored-noise process change over time, due to the non-flat characteristic

of the colored noise. The noise process can, thus, be equivalently modeled in the discrete-time

domain with a time-invariant, in terms of its statistics, white Gaussian noise process nm [k],

and a discrete-time low-pass filter hRx,m
[
k + φ̇Rx,m[k]

]
, whose coefficients slightly change

according to the sampling phase process.

The maximization of (3.19) requires a search over the continuous parameter space of HC̃,

which is practically infeasible for most systems. In order to continue with the ML derivation,

the term HC̃xTr will be restructured to XTrḣC, which consists of a matrix containing the training

signals, and a vector containing all channel parameters. The estimation problem then becomes

ˆ̇hC = argmax
ḣC

[
log

1

det(πCñ)
− (ẏL̇R

−XTrḣC
)H

C−1
ñ

(
ẏL̇R

−XTrḣC
)+ log p

(
ḣC
)]

(3.25)

= argmax
ḣC

[
log

1

det(πCñ)
− ẏH

L̇R
C−1

ñ ẏL̇R
+ ẏH

L̇R
C−1

ñ XTrḣC

+ ḣH
C XH

TrC−1
ñ ẏL̇R

− ḣH
C XH

TrC−1
ñ XTrḣC + log p

(
ḣC
)]

.

(3.26)

= argmin
ḣC

[
logdet(πCñ)+ ẏH

L̇R
C−1

ñ ẏL̇R
− ẏH

L̇R
C−1

ñ XTrḣC

− ḣH
C XH

TrC−1
ñ ẏL̇R

+ ḣH
C XH

TrC−1
ñ XTrḣC − log p

(
ḣC
)]

.

(3.27)

A way of minimizing this equation is to take the partial derivatives w.r.t. the desired channel

49



3.2. DA Channel Estimation

parameters, and set them equal to zero3, i.e.,

0 = ∂

∂ḣC
log
(
p
(
ẏL̇R

|xLT = xTr, ḣC
)

p
(
ḣC
))

(3.28)

= ∂

∂ḣC

(
logdet(πCñ)+ ẏH

L̇R
C−1

ñ ẏL̇R
− ẏH

L̇R
C−1

ñ XTrḣC

− ḣH
C XH

TrC−1
ñ ẏL̇R

+ ḣH
C XH

TrC−1
ñ XTrḣC − log p

(
ḣC
)) (3.29)

≈−ẏH
L̇R

C−1
ñ XTr + ḣH

C XH
TrC−1

ñ XTr −
∂

∂ḣC
log p

(
ḣC
)

, (3.30)

where for (3.30) it was assumed that C−1
ñ is independent of ḣC. Although not exact, this

approximation is well justified, when the receive filters have limited impact on the complete

transmission characteristic, i.e., hRx,m(t ) ≈ sinc
(
π t

Tnom,Rx

)
.

It is now further assumed that there is no information about the prior distribution of the

channel parameters p
(
ḣC
)
, which leads to

ḣH
C XH

TrC−1
ñ XTr = ẏH

L̇R
C−1

ñ XTr (3.31)

XH
TrC−1

ñ XTrḣC = XH
TrC−1

ñ ẏL̇R
(3.32)

=⇒ ˆ̇hC[k] = (XH
TrC−1

ñ [k]XTr
)−1

XH
TrC−1

ñ [k] · ẏL̇R
[k], (3.33)

with (C−1
ñ )H = (CH

ñ )−1 = C−1
ñ since Cñ is a Hermitian matrix, and accounting for the time

dependence of the parameter estimates due to the timing impairments.

Similarly, an ML estimator for the noise correlation matrix can be obtained, by using the same

method and assumptions, with

0 = ∂

∂Cñ

(
logdet(πCñ)+ (ẏL̇R

−XTrḣC
)H

C−1
ñ

(
ẏL̇R

−XTrḣC
)− log p

(
ḣC
))

(3.34)

≈ C−1
ñ −C−1

ñ

(
ẏL̇R

−XTrḣC
)(

ẏL̇R
−XTrḣC

)H
C−1

ñ (3.35)

=⇒ Ĉñ[k] = (ẏL̇R
[k]−XTrḣC[k]

)(
ẏL̇R

[k]−XTrḣC[k]
)H

, (3.36)

using again the Hermitian property of Cñ. It is seen that the estimators of (3.33) and (3.36)

influence each other in general. In order to decouple them, we can consider a part of the

training signals, where a zero signal is transmitted from all Tx simultaneously, i.e., XTr = 0 or

xTr = 0. In that case, the estimator becomes Ĉñ[k] = ẏL̇R
[k]ẏH

L̇R
[k] = ñL̇R

[k]ñH
L̇R

[k], and averaging

over several of these noise observations, i.e., Ĉñ[k] = 1
LI

∑
lI

ẏL̇R
[k+lI]ẏH

L̇R
[k+lI], will give a good

estimate. Averaging, and using the estimate for the estimation in (3.33) only makes sense if

the correlation matrix is approximately time invariant over the corresponding time frame,

i.e., Cñ[k] ≈ Cñ[k + lI] with lI = {1, . . . ,LI −1} being the time frame in samples. From here on

3Technically, the second derivative of the equation also needs to be checked.
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forward, it will be assumed that the noise correlation matrix is known, or estimated accurately

with the method just described.

3.2.1 Basics for Training Signals

DA channel estimation requires suitable training signals xTr of length LTr to identify the MIMO

channel parameters. Designing such signals is a wide area of research [77, 78, 79, 80], as it can

lower estimation complexity and improve estimation performance, confer section 2.6. The

following assumptions will be made about the training signals that will be used for parameter

estimation:

1. Training signals xTr are time multiplexed with data signals x[k]

2. Each transmitter has a training signal xTr,n that is uncorrelated to all of the other transmit-

ters training signals, i.e.,
∑

lTr
xTr,n1 [lTr + l ]x∗

Tr,n2
[lTr] = 0 or E

[
xTr,n1 [lTr + l ]x∗

Tr,n2
[lTr]
]
= 0

for ∀l ,∀n1 6= n2

3. Training signals have an ideal (impulse-like) autocorrelation function, or are uncorre-

lated to time shifted versions of themselves on the symbol time grid, i.e.,
∑

lTr
xTr,n[lTr +

l ]x∗
Tr,n[lTr] = 0 for ∀l 6= 0,∀n, or E

[
xTr,n[lTr + l ]x∗

Tr,n[lTr]
]
=σ2

xTr,n
·δ[l ]

4. Training signals are approximately uncorrelated to the data sections, i.e.,
∑

lTr
xn1 [lTr +

k]x∗
Tr,n2

[lTr] ≈ 0 for ∀k,∀n1,n2, or E
[

xn1 [lTr +k]x∗
Tr,n2

[lTr]
]
= 0

A general treatment of signals with good correlation properties can be found in [81]. Some

sequences that work good in practice and approximately fulfill those assumptions are: pseudo-

noise- and m-sequences, as well as Zadoff-Chu sequences.

A final question that needs to be answered is how long training sequences need to be in order

to identify the parameters. On the fundamental level, the channel has M ·N · L̇C parameters,

which change at every time step k due to the timing impairments. Clearly, in this case we

need to continuously transmit training signals to keep track of the ever changing channel

parameters. It is now assumed that the time variations are slow w.r.t. to the symbol duration,

meaning that the channel is approximately time invariant over a certain time frame, i.e.,

ḢC[k] ≈ ḢC[k + lI] see appendix A.2. In such a frame, where the channel is approximately

time invariant, at least (N +1) · L̇C−1 training symbols are required [82] from every Tx in order

to uniquely identify the responses to all Rx. A simple scheme is obtained by time multiplexing

a training signal xTr,A with an ideal autocorrelation function, see the following Example 4.

Example 4. Consider a small MIMO system with M = N = 2 and L̇C = 2, which is approximately

time invariant with ḢC[k] = ḢC[k+1] = ḢC[k+2] = ḢC[k+3], i.e., LI = 4. Furthermore, assume

the noise to be negligible. Accordingly, 5 training symbols are required. The training signals from

the two antennas can be chosen as xTr,1 =
[

0 xT
Tr,A 0 0

]T
, xTr,2 =

[
0 0 0 xT

Tr,A

]T
, where
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xTr,A =
[

1 0
]T

is chosen in this example. Transmitting these training signals gives the following

ẏ[k] = ḢC[k]xLC [k] = ḢC[k]xTr[0]

ẏ[k +1] = ḢC[k +1]xLC [k +1] = ḢC[k +1]xTr[1]
.= ḢC[k]xTr[1]

...

This can be written in a more compact form as

[
ẏ[k] ẏ[k +1] ẏ[k +2] ẏ[k +3]

]
= ḢC[k]

[
xTr[0] xTr[1] xTr[2] xTr[3]

]

= ḢC[k]




1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1




,

which means that organizing the received samples as
[

ẏ[k] ẏ[k +2] ẏ[k +1] ẏ[k +3]
]

di-

rectly gives an estimate of the channel matrix for this training signal structure. Note that the

first zeros in these particular training sequences, and the first L̇C −1 symbols in general, are

necessary to have known initial states of the channels.

In practice, we would not choose such impulse-like training signals as in the example due to

their bad envelope characteristics. However, any training sequence xTr,A with ideal autocorre-

lation properties can be time multiplexed in this fashion to estimate the MIMO channel in a

simple manner.

Some trade-offs and comments about training signals should be mentioned. In general, longer

training sequences, i.e., allocating more power towards training, improves the quality of the

estimates, but lowers the overall data transmission rate of the link. However, when the timing

impairments influence4 the correlation with the training signals, increasing the length of

the training signals will not always improve estimation performance. On the other hand,

the channel estimate obsolesces due to the timing impairments, which means that frequent

reestimation is required given that there is no structure for the timing impairments. Finally,

it was assumed that the training signals are sent from all transmitters simultaneously. For

distributed systems and also for independent sample clock generation on the Tx side, this

may not generally be the case. With training signals that are uncorrelated to the data, we can

still estimate the MIMO channels, but observe the responses from different transmitters at

different points in time. Whether or not they can be combined in a meaningful way depends

on the time variation of the channels between the observation points.

4This is important when the time variation due to CFO and SFO is significant w.r.t. to the length of the training
signal.
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3.2.2 On the Need for DA Estimation in MIMO Systems

Blind methods have been mentioned as a means for parameter estimation at the beginning of

this chapter. The problem with fully blind receiver structures is that, aside from the complexity

that they often entail, they also suffer from a phase ambiguity, which needs to be somehow

resolved. For MIMO systems this problem is further enhanced, as each received stream suffers

from this ambiguity. Thus, as long as no additional coding across the streams is considered,

some training signals are always required to resolve the ambiguities. In the following, the focus

will, hence, be on transmission schemes using training signals. Nevertheless, the estimation

of certain parameters in the system, such as CFOs and SFOs, can be carried out blind for some

oscillator setups, as will be briefly discussed in chapter 4.

3.3 Estimators for Different MIMO Setups

In the following, MIMO system setups under different timing impairment conditions will be

investigated, and the simplifications of the ML channel parameter estimators will be shown in

these cases. Only oscillator setup 4, i.e., independent phase processes in each Tx/Rx chain for

carrier and sampling phase generation, respectively, will be considered, as it encompasses

all the other cases. For a discussion on the applicability of other known timing estimators to

MIMO systems with different oscillator setups, refer to section 4.2 of the next chapter.

3.3.1 Synchronized Symbol-Spaced Model

When no timing impairments are present, the MIMO channel parameters do not depend on

k in the case of a static link setup, e.g., a backhaul scenario. The combined MIMO channel

matrix is given for symbol rate sampling (Q = 1) as

HC̃ =




HC 0M×N (LR−1)

0M×N HC 0M×N (LR−2)

. . .

0M×N (LR−1) HC




,

which is a block-Toeplitz matrix, depending only on the time-invariant transfer characteristic

HC = HRxHLRx HTx,LD . The vector of the desired channel parameters is given by

hC = vec
(
HT

C

)=
[

hT
C,LC,1 hT

C,LC,2 · · · hT
C,LC,M

]T
,
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and the training signal matrix follows from the convention in (3.3) as

XTr =




IM ⊗
[

xT
Tr[LT −1] · · · xT

Tr[LTr −LC]
]

...

IM ⊗
[

xT
Tr[LC] · · · xT

Tr[1]
]

IM ⊗
[

xT
Tr[LC −1] · · · xT

Tr[0]
]




,

with xTr[l ] =
[

xTr,1[l ] xTr,2[l ] · · · xTr,N [l ]
]T

, and from the previous section LTr ≥ (N +1) ·
LC −1. As is pointed out in the literature and also seen here from the Kronecker structure, the

estimation is decoupled for every receive stream m. This means that the channel estimation

can be carried out at each receive stream in parallel5 from the following




ym[k]
...

ym[k −LR +1]




︸ ︷︷ ︸
yLR,m [k]

=




xT
Tr[LTr −1] · · · xT

Tr[LTr −LC]
...

...

xT
Tr[LC] · · · xT

Tr[1]

xT
Tr[LC −1] · · · xT

Tr[0]




︸ ︷︷ ︸
XTr,M=1

hC,LC,m +




ñm[k]
...

ñm[k −LR +1]




︸ ︷︷ ︸
ñLR,m [k]

, (3.37)

where LR = LTr −LC +1. With the estimate of the noise correlation matrix Ĉñ, this gives the

estimator6 for the complete system, or for each receive antenna as

ĥC[k] = (XH
TrĈ−1

ñ XTr
)−1

XH
TrĈ−1

ñ ·yLR [k], (3.38)

or

ĥC,LC,m[k] =
(
XH

Tr,M=1Ĉ−1
ñm

XTr,M=1

)−1
XH

Tr,M=1Ĉ−1
ñm

·yLR,m[k]. (3.39)

In general, no further simplifications are possible on these estimators due to the structure of

Cñ.

When the receive filter characteristic is approximately ideal, i.e. hRx,m(t) ≈ sinc
(
π t

Tnom,Rx

)

meaning that the noise correlation matrix becomes diagonal, and using the assumptions

about the cross- and autocorrelation properties of the training sequences from the previous

section, i.e., XH
TrXTr = IM N LC and XH

Tr,M=1XTr,M=1 = IN LC , the estimators simplify further to

ĥC[k] = XH
Tr ·yLR [k], (3.40)

5This is only possible if the noise correlation matrix Cñ can also be decoupled for each received stream, which
holds true.

6The estimates of the channels in the right order are only obtained if the used received sample set yLR [k]
matches with the arrangement of the training signal matrix XTr. This requires some form of finding the training
sequences in the received sample stream, which can, for example, be achieved with correlation and peak detection.
Furthermore, the estimate varies with time as it depends on the current observation of the output yLR [k], which
varies with time due to the noise.
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and

ĥC,LC,m[k] = XH
Tr,M=1 ·yLR,m[k]. (3.41)

In other words, in this case the estimation for each mnth channel characteristic is done by

using the mth received stream and the training signal from the nth antenna, and performing

a matched filtering (or correlation) between the two. Note that this is an ML estimator only

when the aforementioned conditions can be met.

3.3.2 Symbol-Spaced Model Containing Only CFOs

When only CFOs are considered, the MIMO channel varies according to the combined effects

of the different carrier phase processes. The combined channel matrix is then, for the symbol

rate case, given as

HC̃[k] =




HC[k] 0M×N (LR−1)

0M×N HC[k] 0M×N (LR−2)

. . .

0M×N (LR−1) HC[k]




,

which is again a block-Toeplitz matrix, but depending on the time-variant transfer characteris-

tic HC[k] = HRxΦRx,LRx [k]HLRxΦTx,LD [k]HTx,LD . The vector of the desired channel parameters

can be given as

hC[k] = vec
(
HT

C[k]
)=
[

hT
C,LC,1[k] hT

C,LC,2[k] · · · hT
C,LC,M [k]

]T
.

It is seen that the channel parameters change every time step k due to the carrier phase

processes, which makes estimation difficult. Continue by assuming that the channel is approx-

imately time invariant w.r.t. the length of the training sequence7, i.e., hT
C,LC,1[k] ≈ hT

C,LC,1[k+lTr],

or φTx[k] ≈φTx[k + lTr] and φRx[k] ≈φRx[k + lTr] for lTr = {1, . . . ,LTr −1}. This leads to a very

similar signal model as above, i.e.,

yLR,m[k] = XTr,M=1hC,LC,m[k]+ ñLR,m[k], (3.42)

and, thus, the same estimators as above can be used, e.g.,

ĥC,LC,m[k] = XH
Tr,M=1 ·yLR,m[k], (3.43)

but where the channel vector estimate now varies due to measurement noise as well as the

CFOs.

When looking at the variation of the channel estimate for this model over time, investigated

7There are other results in the literature that do not require this assumption, but require the phase processes to
be linearly increasing, or, in other words, linearly drifting [63, 65, 67].
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more deeply in section 3.4.4, we can see that in the noise free case only the phases of the

estimates, i.e., arg
(
ĥC,LC,m[k]

)
, vary with time while the magnitudes are constant. A model

for the lCth channel tap of the mnth antenna pair in this case is given by hC,mn[k, lC] =
e j ·∆φmn [k,lC] ·hC,mn[lC], where ∆φmn[k, lC] =φTx,n[k − lC +1]−φRx,m[k]. Thus, an estimate of

the phase processes can be obtained, by observing the phase change of the estimates over

time. In particular the phase change between two estimates, which corresponds to the carrier

phase changes, can be given as

∆φ̂LC,m[k] = ĥ∗
C,LC,m[k]¯ ĥC,LC,m[k +LE], (3.44)

where LE is the number of samples between the two estimates, and∆φ̂LC,m[k] contains the

carrier phase differences between all transmitters and the mth receiver, weighted by the power

of the corresponding tap. In general, the phase variation is the same for every tap of a given

Tx/Rx antenna pair, which means that they can be combined in a sensible way depending on

the quality of the estimate, e.g., by averaging the argument of different taps for an mn pair.

Compared to the combined phase process matrix∆Φ[k], which was defined in section 2.5.2,

the estimate ∆φ̂LC,m[k] contains the phase processes across LE samples instead of one, is

not normalized, and only corresponds to the mth row. When the phase processes are simple

linearly-increasing (or linearly-drifting) functions for those LE samples, i.e., σ2
ϕw

=σ2
ϕn

≈ 0 for

these samples, the mapping between the two becomes

∆Φ̂[k] =




e
j · 1

LE
arg
(
∆φ̂T

LC,1[k]
)

e
j · 1

LE
arg
(
∆φ̂T

LC,2[k]
)

...

e
j · 1

LE
arg
(
∆φ̂T

LC,M [k]
)



=




e
j · 1

LE

(
arg
(
ĥT

C,LC,1[k+LE]
)
−arg

(
ĥT

C,LC,1[k]
))

e
j · 1

LE

(
arg
(
ĥT

C,LC,2[k+LE]
)
−arg

(
ĥT

C,LC,2[k]
))

...

e
j · 1

LE

(
arg
(
ĥT

C,LC,M [k+LE]
)
−arg

(
ĥT

C,LC,M [k]
))




. (3.45)

Depending on the shape of the phase processes, e.g., linear drift or more complicated function,

the interval LE can be increased and the mode of combining several estimates can be adapted.

When the contribution8 of the Wiener process is high, i.e., severe close-in phase noise, a low

value for LE is necessary and only the most recent estimates may be used for averaging. On

the other hand, when the linear phase ramp dominates, averaging can be performed over a

long time frame, or, equivalently less frequent estimation is required. However, even in such

a case LE cannot be arbitrarily large, as phase ambiguities need to be avoided. Considering

the highest linear increase from section 2.4 µϕw , which yields a combined phase process with

twice that value as a slope, we need to measure the phase change before the drift due to that

8Note that this needs to hold for the oscillators on both the Tx and Rx side. In other words, combining two
linearly drifting phase processes yields a combined linearly-drifting phase process, while a nonlinear process on
one side leads to a combined nonlinear phase process.
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increase reaches a value of 2π, or something smaller. This can be expressed by

2π

a
> 2µϕw ·LE (3.46)

=⇒ LE < π

a ·µϕw

(3.47)

∼ LE ≤
⌈

π

4µϕw

⌉
, (3.48)

where a is a factor that needs to be suitably chosen, e.g., a = 4 has been found to work well in

practice, and d·e is the ceiling operation.

So far, the estimation of all N ·M , or N ·M ·LC, when they are different for each channel tap,

phase processes that can be observed at the receiver has been considered without taking the

structure of the problem into account. However, there are only N +M phase processes present

in the system, which are combined into the rank-one matrix∆Φ[k] through a vector product.

Taking this property into account will be briefly investigated in the next section, as it can

improve estimation performance and allows for efficient equalization, as will be seen in the

next chapter, especially for large system sizes.

Exploiting the Structure of the Combined Phase Processes

Consider that an estimate of the combined phase process matrix ∆Φ̂[k] is available. It was

described in section 2.5.2 that this matrix is generated by a multiplication of the transmit and

receive phase process vectors, i.e.,∆Φ[k] =φRx[k](1LC×1 ⊗φTx[k])T. Thus, we need to find a

method to get from the matrix estimate ∆Φ̂[k] to the estimates of the individual processes

φ̂Tx[k] and φ̂Rx[k]. It is important to note that there is some scaling and ordering ambiguity,

when considering just one instance of the estimate. For example, exchanging the phase

process values between Tx and Rx yields the same matrix. The problem is further complicated

by the fact that the matrix estimates are noisy, meaning that the observed matrix will not

always be of rank one. Let us briefly elaborate on that point. Assume the estimates can be

written as∆Φ̂[k] =∆Φ[k]+n[k]11×N LC , where n[k] is a vector of independent Gaussian noise

entries. The last term thus presumes that the same noise process of a receiver9 is seen for all

phase difference estimates associated with it. Since the term n[k]11×N LC is a multiplication of

two vectors, like∆Φ[k], it is also a rank-one matrix. Then, we can use the subadditivity of ranks,

which is rank
(
∆Φ[k]+n[k]11×N LC

)≤ rank(∆Φ[k])+rank
(
n[k]11×N LC

)
, showing that the rank

can be higher than one. A general iterative solution to the noisy rank-one decomposition can

be found in [83].

Only a simple method, assuming that the noise is negligible, and aided by the fact that the

magnitude of the matrix and vector entries should always equal to one, will be described here.

9Whether this is true or not is left open. However, the worst case assumption is that a noise matrix N[k] with
completely independent entries is added to∆Φ[k], in order to yield the estimate∆Φ̂[k]. In this case, N[k] is full
rank, to be specific rank(N[k]) = min

(
M , N LC

)
. The rank can in this case, thus, also be higher than one.
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Given these assumptions, any row of∆Φ[k] can be taken to be an estimate for the Tx processes,

or any column of it to be an estimate for the Rx processes. Whichever row or column is chosen,

the corresponding transmitter or receiver phase process acts as a reference for the rest of the

system, meaning that the estimates only show the differences w.r.t. that phase process. The

following operations10 need to be carried out in order for the mth receiver to be the reference

φ̂Tx[k] = 1

LC

(
11×LC ⊗ IN

)
∆Φ̂T[k]em (3.49)

φ̂Rx[k] = 1

N LC
∆Φ̂[k]

(
1LC×1 ⊗ φ̂∗

Tx[k]
)

, (3.50)

where em is the mth basis vector, i.e., a zero vector with a one in the mth entry. For a transmitter

to be the reference, the operations change to

φ̂Rx[k] =∆Φ̂[k]en,lC (3.51)

φ̂Tx[k] = 1

MLC

(
11×LC ⊗ IN

)
∆Φ̂T[k]φ̂∗

Rx[k]. (3.52)

Without loss of generality, e1 can be chosen for both approaches, since it does not matter

which stream is chosen as the reference11. Through substitution it can, furthermore, be

seen that φ̂Rx[k](1LC×1 ⊗ φ̂Tx[k])T = ∆Φ̂[k]. Finally, the effect when this approach is used

for compensation will be investigated. The phase processes effects can be compensated by

multiplying the received and equalized streams with the complex conjugate of the estimated

phase process, see also the next chapter. If the multiplication of estimated value and actual

value yields one, the effect is optimally compensated. Assume receiver one as the reference

and∆Φ̂[k] =∆Φ[k], which yields for the transmitter part

1N×1
!=φTx[k]¯ φ̂∗

Tx[k] (3.53)

!=φTx[k]¯ 1

LC

(
11×LC ⊗ IN

)
∆Φ̂H[k]e1 (3.54)

!=φTx[k]¯ 1

LC

(
11×LC ⊗ IN

)
(1LC×1 ⊗φ∗

Tx[k])φH
Rx[k]e1 (3.55)

!=φTx[k]¯φ∗
Tx[k]φ∗

Rx,1[k] (3.56)

!=1N×1 ·φ∗
Rx,1[k]. (3.57)

10If the phase processes are different for the taps of a Tx/Rx antenna pair, the Kronecker products can be removed
and longer vectors can be used.

11If there are significant SNR differences between the Tx/Rx pairs, the reference should be chosen to be the one
with the highest SNR. For example, if one transmitter has significantly higher transmit power than the other ones,
it should be chosen as the reference.
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Using this result, the receiver part is given by

1M×1
!=φRx[k]¯ φ̂∗

Rx[k] (3.58)

!=φRx[k]¯ 1

N LC
∆Φ̂∗[k]

(
1LC×1 ⊗ φ̂Tx[k]

)
(3.59)

!=φRx[k]¯ 1

N LC
φ∗

Rx[k](1LC×1 ⊗φ∗
Tx[k])T (1LC×1 ⊗ φ̂Tx[k]

)
(3.60)

!=φRx[k]¯ 1

N LC
φ∗

Rx[k](1LC×1 ⊗φ∗
Tx[k])T (1LC×1 ⊗φTx[k]φRx,1[k]

)
(3.61)

!=φRx[k]¯φ∗
Rx[k]φRx,1[k] (3.62)

!=1M×1 ·φRx,1[k]. (3.63)

It is seen that the residual parts do not equal one. The term from the receiver side is seen to

be the phase process of the chosen reference receiver, while the term from the transmitter

side is seen to be the conjugate complex of that process. Since joint phase variations can be

shifted throughout the processing chain, see the next chapter, the two terms actually cancel

out and the estimates φ̂Tx[k] and φ̂Rx[k], derived here based on∆Φ̂[k], can be used directly

for equalization.

3.3.3 Symbol-Spaced Model Containing Only SFOs

It was already discussed that SFOs can only be compensated to a certain extent, when the

received signal is not oversampled. The same also holds true for the estimation of the sampling

phase processes because the aliasing, which creates ISI when the sampling is not aligned,

is rarely known. Nevertheless, some simple methods can be derived, which yield satisfying

results in certain circumstances. As for the CFOs, it will be assumed that the channel is

approximately time invariant w.r.t. the length of the training sequence, i.e., constant sampling

phase processes with φ̇Tx[k] ≈ φ̇Tx[k + lTr] and φ̇Rx[k] ≈ φ̇Rx[k + lTr] for lTr = {1, . . . ,LTr −1}.

In this case, the channel taps are then time varying due to the differences in the sampling

phase processes. The same signal model as in the CFO case above applies, and the same

estimators can be used, for example,

ĥC,LC,m[k] = XH
Tr,M=1 ·yLR,m[k]. (3.64)

Looking at the variations of channel estimates over time, as was done in the CFO case, pro-

vides only little insight here, as the variations depend strongly on the aforementioned filters.

However, since the variation is cyclical, an estimate can be generated by finding indices where

channel estimates are approximately equal. This needs to be done for each Tx/Rx antenna

pair, respectively. Assume that we have found an index LE,mn for an antenna pair where

ĥC,LC,mn[k] ≈ ĥC,LC,mn[k +LE,mn]. It is then known that the difference sampling phase process

between that pair, i.e., ∆φ̇mn[k] = φ̇Rx,m[k]− φ̇Tx,n[k], generates a full symbol shift within
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LE,mn samples. If the sampling phase processes are dominated by linearly-drifting processes,

e.g., φ̇Rx,m[k] =µϕ̇w,m ·k, the slope can be estimated12 by

∆µϕ̇w,mn = 1

LE,mn
, (3.65)

with ∆µϕ̇w,mn =µϕ̇w,m −µϕ̇w,n . When the phase processes have more complicated behavior,

it becomes difficult to achieve meaningful estimation results with this method. Two other

problems with this approach, which are left open, are finding a good similarity measure for

comparing ĥC,LC,mn[k] with ĥC,LC,mn[k +LE,mn], since the estimates are influenced by noise,

and the problem that we need to continuously monitor the estimates in order to find LE,mn .

It should also be noted that the sampling phase processes are typically changing very slowly,

such that estimates in the close vicinity of each other are very similar.

3.3.4 Estimation in the Oversampled Case

Continue with the description for the estimators based on the Q-oversampled received signal

ẏL̇R
[k]. Generally, all the estimators that have been derived for the symbol-spaced case can also

be used when the received signal is oversampled. The time-varying channel taps associated

with the mth receive antenna can thus be estimated with

ˆ̇hC,L̇C,m[k] = ẊH
Tr,M=1 · ẏL̇R,m[k], (3.66)

where the received signal and the estimated channel impulse responses are oversampled.

Compared to the symbol-spaced case, the upsampled training matrix is given by

ẊTr,M=1 =




ẋT
Tr[L̇Tr −1] · · · ẋT

Tr[L̇Tr − L̇C]
...

...

ẋT
Tr[L̇C] · · · ẋT

Tr[1]

ẋT
Tr[L̇C −1] · · · ẋT

Tr[0]




, (3.67)

where the upsampled training signal follows as

ẋT
Tr =
[

xT
Tr[0] 01×N (Q−1) xT

Tr[1] 01×N (Q−1) · · · xT
Tr[LTr] 01×N (Q−1)

]
. (3.68)

The full matrix ẊTr follows from a Kronecker product of the different rows of ẊTr,M=1, in the

same manner as in section 3.3.1.

Except for the increased sizes of the vectors and matrices, the same estimators as in the symbol-

spaced case can thus be applied for obtaining channel parameter values in the synchronized,

12When a matrix of the estimates for all antenna pairs is build, the same structure as in the previous section
emerges, i.e., there are M ·N estimates but only M +N processes that need to be compensated. A separation of
the processes, i.e., decomposing a rank-one matrix similar to the previous section, can again help for efficient
equalization.
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CFO only, and SFO only case. In the following, the SFO only case, and the case where both

timing impairments are occurring simultaneously will be investigated, as symbol-spaced SFO

estimation can only yield suboptimal performance.

3.3.5 Oversampled Model Containing Only SFOs

Consider an oversampled received signal, impaired by multiple SFOs. Using the assumption

that the sampling phase processes are approximately constant during the length L̇Tr of the

training sequences, i.e., φ̇Tx[k] ≈ φ̇Tx[k + l̇Tr] and φ̇Rx[k] ≈ φ̇Rx[k + l̇Tr] for l̇Tr = {1, . . . , L̇Tr −1},

the same estimators as in the symbol-spaced case can be used, e.g.,

ˆ̇hC,L̇C,m[k] = ẊH
Tr,M=1 · ẏL̇R,m[k]. (3.69)

These channel estimates, associated with every mth receive antenna, vary again due to the dif-

ference in the sampling phase processes. Compared to the symbol-spaced case, the sampling

criterion is now approximately fulfilled, which means that we have access to the full pulse

shape of the received signal.

An approximate model13 for the discrete channel taps of the mnth antenna pair in this case

is given by ḣC,mn[k, l̇C] = sinc
[
π

l̇C−L̇C/2+∆φ̇mn [k]
Q

]
? ḣC,mn[l̇C], where ∆φ̇mn[k] = φ̇Rx,m[k] −

φ̇Tx,n[k], and ḣC,L̇C,m[k] =
[

ḣC,m[k,0] ḣC,m[k,1] · · · ḣC,m[k, L̇C −1]
]T

with ḣC,m[k, l̇C] =
[

ḣC,m1[k, l̇C] ḣC,m2[k, l̇C] · · · ḣC,mN [k, l̇C]
]T

. From the estimate for the channel taps of

a Tx/Rx antenna pair ˆ̇hC,L̇C,mn[k] =
[

ḣC,mn[k,0] ḣC,mn[k,1] · · · ḣC,mn[k, L̇C −1]
]T

, we can

then estimate the corresponding difference in the sampling phase processes ∆φ̇mn[k] =
φ̇Rx,m[k]− φ̇Tx,n[k]. Given the assumptions about the training signals14 and white Gaussian

noise, an ML solution for estimating the sampling phase differences is given by

∆ ˆ̇φmn[k] = argmax
∆φ̇mn

[
ẏH

L̇R,m
[k]ẊTr,M=1,n

[
∆φ̇mn

] · ẊH
Tr,M=1,n

[
∆φ̇mn

] · ẏL̇R,m[k]
]

, (3.70)

where ẊTr,M=1,n[∆φ̇mn] are trial matrices with entries ẋTr,n[∆φ̇mn , l̇Tr] = sinc
[
π

l̇Tr−L̇C/2+∆φ̇mn

Q

]
?

ẋTr,n[l̇Tr], which are used for finding the maximum of this equation for each mnth antenna pair.

Since there is no prior knowledge about the values of∆φ̇mn , the whole space of possible values

has to be tested, with a finer grid of ∆φ̇mn values leading to more accurate estimates. Even

though the trial matrices ẊTr,M=1,n[∆φ̇mn] can be precomputed, and the maximization can

be carried out in parallel for the M ·N estimates given a desired grid spacing, this procedure

seems too complex for MIMO systems.

13As the oversampling factor increases, the model becomes more accurate since the influence of the sinc function
is reduced, and more samples of the actual pulse shape are obtained.

14For both CFOs and SFOs, the training signals are generally not completely uncorrelated due to the shift in
frequency and sampling. This effect will be assumed negligible.
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Simpler estimators can be obtained through some approximations. First, assume that the sinc

function model for the SFOs impact on the channel taps is valid. Then, consider the DFT of

these taps15, given by

F
{
ḣC,mn[k, l̇C]

}=F

{
sinc

[
π

l̇C − L̇C/2+∆φ̇mn[k]

Q

]
? ḣC,mn[l̇C]

}
(3.71)

=F

{
sinc

[
π

l̇C − L̇C/2

Q

]
?δ
[
l̇C +∆φ̇mn[k]

]
? ḣC,mn[l̇C]

}
(3.72)

≈F

{
sinc

[
π

l̇C − L̇C/2

Q

]}
·e

j ·2π l̇C
L̇C

·∆φ̇mn [k] ·F {ḣC,mn[l̇C]
}

, (3.73)

where the approximation in the last line uses the circular shift property of the DFT. This

approximation is exact, if the shift of the discrete channel taps due to the SFOs is circular, which

is generally not the case. However, assuming that there are only a few taps with significant

amplitude values, and that they are also somewhat localized to a certain sample region of the

impulse response16, the shift is approximately circular.

Assuming the validity of (3.73), it is seen that the only thing that changes in the DFT of the chan-

nel taps with k is a phase factor that depends on ∆φ̇mn[k]. Thus, one approach to estimating

the sampling phase difference is to compare the phase change in the DFT of two time sepa-

rated channel estimates, i.e., arg
(
F
{

ˆ̇hC,mn[k + L̇E, l̇C]
})

compared to arg
(
F
{

ˆ̇hC,mn[k, l̇C]
})

where L̇E is the number of samples between the two estimates, similar to the CFO approach in

section 3.3.2. This approach will not be explicitly treated further. Instead, we continue with an

approach that can obtain an estimate of the sampling phase difference from a single channel

estimate. Looking at (3.73), it is seen that the left and right hand term prevent the direct

estimation of ∆φ̇mn[k]. The first term is known and just depends on the oversampling factor

Q, and the length of the channel impulse response L̇C. The last term depends on the channel

characteristics, and is generally not known beforehand. Using some reasonable assumptions,

its impact can be made negligible for certain channel types. First, consider the channel to be

flat, i.e., ḣC,mn[l̇C] = e− jϕmnδ[l̇C] or ḣC,mn =
[

e− jϕmn 01×(L̇C−1)

]T
, where ϕmn is a phase shift

due to propagation. The DFT of such an impulse response is the just mentioned phase shift

due to propagation multiplied by additional phase shifts depending on the delay of the pulse,

due to the circular shift property of the DFT. Since the phase shift part due to the DFT is known

from the position of the pulse, the only remaining unknown quantity is ϕmn . This unknown

can be removed by taking the absolute value of the channel, i.e., |ḣC,mn[l̇C]| = δ[l̇C], before

applying the DFT. Thus, for flat channels taking the absolute value of the channel estimate

before applying the DFT, i.e., F
{∣∣∣ ˆ̇hC,mn[k, l̇C]

∣∣∣
}

, leads directly to a sampling phase estimate.

Going back to more complex channel impulse responses containing multiple taps, there is no

general solution to removing their influence on the phase characteristic of the corresponding

DFT. This is because phase shifts appear in the DFT, depending on the position of the different

taps and their significance is weighted by the amplitude of the corresponding tap.

15Standard finite-length DFT problems, such as spectral leakage, will be ignored here.
16How to strengthen this assumption will be discussed in the following, and was also used in, e.g., [62, 71].
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Figure 3.1: Noise free example of an oversampled impulse response estimate that can be used
for sampling phase estimation. Parameters are L̇C = 40, Q = 2, and ḣC,mn[l̇C] = δ[l̇C]: Left plot
shows the standard estimate for two different sampling phase offsets; Right plot shows the
magnitude squared of those estimates.

In the following, a solution for a type of channel impulse responses, which is often encoun-

tered in practice, will be described. Specifically, assume that there is a dominant tap in the

channel impulse response and that there are several taps of significantly lower magnitude,

e.g., 10 dB below the main tap [53]. The impact of the lower amplitude channel coefficients

can be reduced by applying a monotonic function, which under weights lower values com-

pared to higher values, to the channel estimate before computing the DFT, see also [62, 71].

Commonly used are power functions, and in particular squaring of the channel estimate, i.e.,

F

{∣∣∣ ˆ̇hC,mn[k, l̇C]
∣∣∣
2
}

. It should be noted that the monotonic function changes the shape of

the magnitude of the DFT output, but does not change the desired phase or time shift of the

relevant signal components. This can also be visualized in the time domain, see the example

in Figure 3.1. It is seen that the shape of the pulse is altered significantly, but the sample phase

offset w.r.t. sample phase zero is the same. Even though this is a flat channel example, it can

be seen here that lower amplitude coefficients are significantly attenuated by the squaring

operation, thereby reducing their impact on the phase characteristic of the corresponding DFT.

Another benefit of applying the monotonic function also becomes apparent. For channels

where the taps far from the main tap carry significantly lower power, applying the monotonic

function enhances the circular shift approximation because those taps become close to zero.

Finally, further complexity reduction, which can be achieved by using a smaller subset of the

L̇C available DFT values, will be considered. Looking at (3.73), it is seen that the sampling

phase offset can be extracted from any of the L̇C DFT values, given that the value has significant

power. It is known that the L̇C-length DFT of a Q-fold oversampled signal has L̇C/Q significant
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values17, which are split between the beginning and end of the DFT output sequence if the

signal is in baseband. Since the signal is not exactly cyclically shifted, its DFT experiences

an additional fixed phase shift after the middle of the sequence. Thus, the lowest
⌊

L̇C/(2Q)
⌋

DFT values are suggested to be used for the estimation, where the flooring operation is used

in order to have integer DFT values. The lowest-complexity estimator, given that the phase

impact of multi-path components is sufficiently attenuated by the squaring operation, is

obtained by calculating a single dth DFT value, where d =
{

2, . . . ,
⌊

L̇C
2Q

⌋}
, with

∆ ˆ̇φmn[k] = 1

2π
· L̇C

d −1
·
(

arg

(
F d

{∣∣∣ ˆ̇hC,mn[k, l̇C]
∣∣∣
2
})

−arg

(
F d

{∣∣∣∣sinc

[
π

l̇C − L̇C/2

Q

]∣∣∣∣
2})) (3.74)

= 1

2π
· L̇C

d −1
·
(

arg

(
L̇C−1∑

l̇C=0

∣∣∣ ˆ̇hC,mn[k, l̇C]
∣∣∣
2
·e

− j 2π· l̇C
L̇C

·(d−1)

)

−arg

(
L̇C−1∑

l̇C=0

∣∣∣∣sinc

[
π

l̇C − L̇C/2

Q

]∣∣∣∣
2

·e
− j 2π· l̇C

L̇C
·(d−1)

))
.

(3.75)

It should be visible that the lower limit of d is chosen as two, since the first DFT value (d = 1)

cannot give a useful estimate for the sampling phase difference. The second argument term

in (3.75) is a fixed constant for a given L̇C, d , Q, and, thus, does not increase complexity

substantially. It may also be simplified for certain parameter combinations and alignments

[62, 71].

Since the previous discussion was quite lengthy, the main points will now be briefly sum-

marized here, also using vector-matrix notation. Given the estimate for the channel taps

associated with the mth receive antenna ˆ̇hC,L̇C,m[k], obtained with (3.69), check if there are

significant multi-path components18. If that is the case, obtain a second channel estimate
ˆ̇hC,L̇C,m[k + L̇E], take the L̇C-length DFT of each mnth sub-component, and compare the

phases of the lower DFT values19. If no significant multi-path values are observed, generate

17The application of the monotonic function changes the amount of significant values. Power functions, for
example, increase the amount of significant values towards the middle of the DFT sequence. However, their
amplitude still drops towards the middle of the sequence, meaning that using the mentioned L̇C/Q values still
captures the most significant values. Furthermore, while the sampling criterion is always fulfilled with Q = 2 for
the normal channel estimate, it can be violated after applying the monotonic function. Thus, selecting the lower
DFT values also limits the influence of aliasing on the estimation.

18Equivalently, we can also check the flatness of the channel in the frequency domain.
19Compared to the solution in (3.76), one replaces the second argument part with the first one, and inserts

the second estimate ˆ̇HC,L̇C,m [k + L̇E] into the first argument part. Furthermore, some normalization w.r.t. the

separation L̇E has to be done, as this approach yields the sample shift over L̇E samples.
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the mn ordered matrix ˆ̇HC,L̇C,m[k] =
[

ˆ̇hC,L̇C,m1[k] · · · ˆ̇hC,L̇C,mN [k]
]

, and use

∆ ˆ̇φT
m[k] = L̇C

2π
·dT

D ·
(

arg



[

0D×1 ID 0D×(L̇C−D−1)

]
DL̇C︸ ︷︷ ︸

D̃L̇C,D

(
ˆ̇HC,L̇C,m[k]¯ ˆ̇H∗

C,L̇C,m
[k]
)



−arg
(
D̃L̇C,D

(
ṡL̇C,Q ¯ ṡ∗

L̇C,Q

))
·11×N

)
,

(3.76)

where DL̇C
is the DFT matrix of size L̇C, D is the number of DFT values that are used for

the estimation, e.g., D =
⌊

L̇C
2Q

⌋
−1 according to the previous suggestion, and D̃L̇C,D is a ma-

trix with D selected rows from the standard DFT matrix. Furthermore, the vector ṡL̇C,Q =
[

sinc
[
π

1−L̇C/2
Q

]
sinc

[
π

2−L̇C/2
Q

]
· · · sinc

[
π

L̇C−L̇C/2
Q

]]T
contains the reference pulse, which

is fixed for a given L̇C and Q, and which is used for comparison of the DFT phases. Additionally,

dD = 1
D

[
1
1

1
2 · · · 1

D

]T
is a vector that performs averaging of the D used DFT phase values,

and removes the phase rotation that is inherent to each DFT value. In general, the solution

in (3.76) averages D consecutive DFT values, starting from d = 2, for each of the N different

sampling phase difference estimates. In order to use a different set of DFT values, the vector

dD and the matrix before DL̇C
need to be adjusted accordingly. Note that for D = 1 and N = 1

(3.76) is equivalent to (3.75) with d = 2.

When the sampling phase difference estimation has been carried out for all receive antennas,

as described in the previous sections, M ·N estimates have been generated, similar to the CFO

case. However, only M +N sampling phase processes exist between transmitter and receiver.

As in the CFO case, a complete phase difference matrix∆ ˆ̇Φ[k] can be defined with

∆ ˆ̇Φ[k] =




∆ ˆ̇φT
1 [k]

∆ ˆ̇φT
2 [k]
...

∆ ˆ̇φT
M [k]




. (3.77)

This matrix includes the estimate of the sampling phase differences between all Tx and Rx at

time k. When more knowledge about the characteristics of the sampling phase processes is

available, e.g., the linear term µϕ̇w dominates, several of these estimates can be combined to

further improve estimation performance. In the following, it will be briefly presented how the

sampling phase difference matrix∆Φ̇[k] can be separated into the transmitter and receiver

contributions φ̇Tx[k] and φ̇Rx[k], as was also done for the carrier phase differences.

Exploiting the Structure of the Combined Phase Processes

Given an estimate of the combined sampling phase difference matrix, which can be defined

as ∆Φ̇[k] = φ̇Rx[k]
(−φ̇T

Tx[k]
)
, the estimates ˆ̇φTx[k] and ˆ̇φRx[k] should be obtained. Thus, as
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in the CFO case discussed at the end of section 3.3.2, a rank-one matrix decomposition, for

which a general solution is given in [83], needs to be found. A simpler solution to the problem,

analogous to the CFO approach, assumes one Tx or Rx as a reference, and is given for the mth

receiver as reference by

ˆ̇φTx[k] =−∆ ˆ̇ΦT[k]em (3.78)

ˆ̇φRx[k] = 1

N
∆ ˆ̇Φ[k]

(
− ˆ̇φ¯−1

Tx [k]
)

, (3.79)

where (·)¯−1 is the Hadamard (or entry-wise) inverse. For the nth Tx to be used as a reference,

it can be defined as

ˆ̇φRx[k] =∆ ˆ̇Φ[k]en (3.80)

ˆ̇φTx[k] =− 1

M
∆ ˆ̇ΦT[k]φ̂¯−1

Rx [k]. (3.81)

3.3.6 Oversampled Model Containing CFOs and SFOs

Consider the most general case of an oversampled received signal ẏL̇R
[k] of a MIMO system

experiencing both timing impairments, which are independent for each Tx and Rx, and a

frequency-selective channel. Furthermore, as in the previous sections, assume that the carrier

phase and sampling phase processes are approximately constant during the length of the

training sequences, i.e.,φTx[k] ≈φTx[k+l̇Tr] andφRx[k] ≈φRx[k+l̇Tr], and φ̇Tx[k] ≈ φ̇Tx[k+l̇Tr]

and φ̇Rx[k] ≈ φ̇Rx[k + l̇Tr], for l̇Tr = {1, . . . , L̇Tr −1}. Additionally, assume the frequency-selective

behavior of the wireless channel to be time invariant over at least L̇E samples. The channels

associated with the mth receive antenna, assuming L̇C significant taps, can be estimated with

ˆ̇hC,L̇C,m[k] = ẊH
Tr,M=1 · ẏL̇R,m[k], (3.82)

given ideal training sequences, see section 3.2.1. The channel estimates vary due to noise, as

well as the timing impairments. Under the used assumptions, a model for the variation of the

mnth channel over time can be given by

ḣC,mn[k, l̇C] = e j ·∆φmn [k] · sinc

[
π

l̇C − L̇C/2+∆φ̇mn[k]

Q

]
? ḣC,mn[l̇C], (3.83)

where ∆φmn[k] = φTx,n[k]−φRx,m[k] and ∆φ̇mn[k] = φ̇Rx,m[k]− φ̇Tx,n[k] are the carrier and

sampling phase difference processes of the mnth pair, respectively. Note that the shift of L̇C/2

is used to make the finite-length pulse symmetric, and that functions other than sinc(·) may

be more beneficial, depending on the boundary conditions. From (3.83), it is seen that the

carrier phase processes act as a phase shift on the channel coefficients. The sampling phase

differences also generate phase shifts in general multi-path channels. These two observations

lead to the following procedure for estimating the timing impairments in MIMO systems.
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Given the channel estimates ˆ̇hC,L̇C,m[k] and ˆ̇hC,L̇C,m[k+L̇E] for each receive antenna, we should

first estimate the sampling phase differences according to (3.76), when there is no significant

multi-path, or using

∆ ˆ̇φT
m[k] = L̇C

2π
· 1

L̇E
·dT

D ·
(

arg
(
D̃L̇C,D

(
ˆ̇HC,L̇C,m[k + L̇E]¯ ˆ̇H∗

C,L̇C,m
[k + L̇E]

))

−arg
(
D̃L̇C,D

(
ˆ̇HC,L̇C,m[k]¯ ˆ̇H∗

C,L̇C,m
[k]
)))

,

(3.84)

when there is20. The approach in (3.84) assumes that the sampling phase difference process

behaves linear between the two channel estimates separated by L̇E samples, i.e.,∆Φ̇[k + L̇E] =
∆Φ̇[k]+ L̇E ·∆Mϕ̇w where ∆Mϕ̇w has entries of ∆µϕ̇w,mn = µϕ̇w,m −µϕ̇w,n . Sampling phase

estimation should be done first, since taking the magnitude squared of the channel estimate,

as proposed in the previous section, removes the influence of complex exponential phase

shifts on the estimation process. Therefore, given that the carrier phase process is constant

during the length of the training sequence, i.e., the model in (3.83) is valid, estimation of the

sampling phase differences with (3.76) or (3.84) is not influenced by the CFOs.

With an estimate for the sampling phase differences, the initial channel estimates from (3.82)

can be interpolated based on (3.83) in order to reduce the impact of the sampling phase differ-

ences on further processing. Based on those improved channel estimates21, we can use (3.45)

to estimate the carrier phase variations. Further improvement of estimation performance can

be achieved by iterating between estimation of the parameters, and compensating them on

ẏL̇R
[k] before using (3.82). Finally, once estimates for the M ·N difference processes in the

matrices∆Φ̂[k] and∆ ˆ̇Φ[k] have been obtained, those matrices can be decomposed into their

M +N processes at the Tx and Rx side, as mentioned at the end of sections 3.3.2 and 3.3.5.

3.4 Adaptive Filtering Approach

In this section, a different approach to estimating and tracking the MIMO channel with timing

impairments, based on adaptive filter theory, will be taken. It was seen in this chapter that the

fundamental input/output problem is given by

ẏL̇R
[k] = HC̃[k]xTr,LT [k]+ ñL̇R

[k], (3.85)

which means that in order to detect the data symbols, the time-varying channel matrix HC̃[k],

which changes for every block of input symbols, needs to be tracked and estimated. It is helpful

to notice that two neighboring instances of the channel matrix, e.g., HC̃[k] and HC̃[k +1], are

not arbitrarily different, but in fact very similar and, for example in the backhaul case, only

20Note that this approach just yields the change in the sampling phase between the two time instants. In order
to get to zero sampling phase, it also needs to be compared to the phase of the DFT of the reference pulse, e.g., the
sinc used in (3.76).

21Whenever the complex exponential phase contribution due to the CFOs is dominant, which is often the case
in practice, we can also use the initial channel estimates of (3.82) directly.
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ĤC̃[k]

HC̃[k]

ñL̇R
[k]

xTr,LT [k] ẏL̇R
[k]

ėL̇R
[k]

Figure 3.2: Basic working principle of adaptive algorithms for channel estimation, i.e., adapting
the estimate ĤC̃[k] based on the observed error signal ėL̇R

[k], which contains the difference
between the training signal xH

Tr,LT
[k] transmitted through the real channel, and the training

signal transmitted through the channel estimate. This setup is also known as the system
identification configuration.

changing slowly due to the timing impairments. This means that once a good estimate of the

channel at time k is available, only small adaptions are required to get a good estimate at time

k +1.

The basic working principle of adaptive algorithms can be seen in Figure 3.2. A known training

signal xTr,LT [k]22 is sent both through the actual system and through an artificial system that

uses the current estimate of the channel. The difference between the two outputs is the error

signal ėL̇R
[k], which is used to update the estimate for the next time step, i.e., ĤC̃[k +1]. If the

actual system and the estimate are equal, the residual error signal is just the noise ñL̇R
[k]. The

problem addressed here is also known as system identification. Important considerations for

these algorithms are:

• The initial setting of the artificial system, i.e., ĤC̃[0]

• How to adapt the system based on the error signal ėL̇R
[k], e.g., which characteristics of

the error signal, such as correlations, are used and are models for the system changes

available

• The rate of adaptation, i.e., how fast can the algorithm follow changes in the system and

what is the residual error

• How robust is the algorithm w.r.t. unexpected changes in the system, e.g., a sudden

large change in the system

There are different trade-offs between these properties, see the standard works [76, 84], which

will also be outlined later on for the LoS MIMO systems with timing impairments.

22Note that LT specifies the number of taps that are used per antenna to model the transmission channel in the
adaptive filter. The required LT, which is necessary in order to properly model the channel, is generally not known,
but can be estimated for most channels.
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The MAP/ML estimators were derived earlier in this chapter based on the optimal perfor-

mance indicator for communications systems, i.e., the probability of symbol or estimation

error. Adaptive algorithms are often derived based on different cost functions (performance

indicators), meaning they are not necessarily optimal for all scenarios. The most popular cost

function used for deriving adaptive algorithms is the mean squared error (MSE)23 [76, 84], i.e.,

trying to minimize E[|ĤC̃[k]−HC̃[k]|2], which is a quadratic function that has a unique mini-

mum that varies in the case of timing impairments. In the following, the most basic adaptive

algorithm will be outlined, and it will be shown how it can be adopted for time-varying MIMO

systems. Before doing this, the second-order statistics of the MIMO system will be described,

as they are fundamental in the derivation of adaptive algorithms and help in selecting the

parameters for the algorithms.

3.4.1 Second-Order Statistics of the Signals in a MIMO System

It was already seen in section 3.2, that the noise has in general the following correlation matrix

Cñ[k] = E
[

ñL̇R
[k]ñH

L̇R
[k]
]

(3.86)

= HC̃,Rx[k] · Ṅ ·HH
C̃,Rx

[k], (3.87)

in other words it varies with time due to the SFOs influencing the sampling of the receive

filters. The autocorrelation matrix of the received signal is given as

CẏL̇R
[k] = E

[
ẏL̇R

[k]ẏH
L̇R

[k]
]

(3.88)

= E
[[

HC̃[k]xTr,LT [k]+ ñL̇R
[k]
][

HC̃[k]xTr,LT [k]+ ñL̇R
[k]
]H] (3.89)

= HC̃[k]E
[

xTr,LT [k]xH
Tr,LT

[k]
]

HH
C̃

[k]+E
[

ñL̇R
[k]ñH

L̇R
[k]
]

(3.90)

= HC̃[k] ·CxTr,LT
[k] ·HH

C̃
[k]+Cñ[k], (3.91)

where it was assumed that the training or data signals are uncorrelated to the unfiltered noise

processes, i.e., E[xTr,LT [k]ṅH
L̇C̃,Rx

[k]] = 0. It is seen that this correlation matrix also generally

varies with time24, due to Cñ[k] as well as the impact of the CFO and SFO on the channel

23Note that for stationary white noise processes with equal power, i.e., Cñ[k] is diagonal with equal entries and
constant over time, MSE and ML approach yield the same result, such that minimizing the MSE is also optimal in
the ML sense.

24Without SFOs, but with CFOs, with ideal transmit filters, and with equal transmit and noise powers, the
correlation matrix can become time invariant, i.e., CẏL̇R

[k] does not depend on k, when, additionally, the MIMO

wireless channel is optimal.
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matrix HC̃[k]. The crosscorrelation matrix between output and input signal is given as

CẏL̇R
xTr,LT

[k] = E
[

ẏL̇R
[k]xH

Tr,LT
[k]
]

(3.92)

= E
[[

HC̃[k]xTr,LT [k]+ ñL̇R
[k]
]

xH
Tr,LT

[k]
]

(3.93)

= HC̃[k]CxTr,LT
[k] = CH

xTr,LT ẏL̇R
[k], (3.94)

using the same property of uncorrelatedness between data/training and noise. The autocorre-

lation matrix of the training or data signals is given by

CxTr,LT
[k] = E

[
xTr,LT [k]xH

Tr,LT
[k]
]

(3.95)

= X = CxTr,LT
, (3.96)

which is, with the assumption of uncorrelated training signals across time and space, see

section 3.2.1, and, similarly, the assumption of uncorrelated data signals across time and

space, seen to be time invariant. In particular, X = ILT ⊗diag(σ2
xTr,1

,σ2
xTr,2

, . . . ,σ2
xTr,N

) contains

the average transmit power of the different transmitters, i.e., σ2
xTr,n

= E[|xTr,n[k]|2], which are

assumed to be constant over time, and are often also assumed to be equal between different

transmitters. When the data streams from the different transmit antennas are correlated as,

for example, with precoding, one has to use the corresponding correlation matrix of these

precoded signals. The analysis that will be carried out in the next few sections can be more

complicated in such a case, since the eigenvalue structure of the correlation matrix may be

more complicated. This will also be briefly discussed in the adaptive equalization case of

chapter 4.

Finally, the correlation matrices of the transmitted and received signals, when the transmit

power σ2
xTr,n

is equal for every transmitter n, and when the noise power σ2
ṅm

is equal for every

receiver m, is given by

CxTr,LT
[k] = CxTr,LT

=σ2
xTr,n

IN LT (3.97)

Cñ[k] =σ2
ṅm

·HC̃,Rx[k]HH
C̃,Rx

[k] (3.98)

CẏL̇R
xTr,LT

[k] =σ2
xTr,n

·HC̃[k] (3.99)

CẏL̇R
[k] =σ2

xTr,n
·HC̃[k]HH

C̃
[k]+σ2

ṅm
·HC̃,Rx[k]HH

C̃,Rx
[k]. (3.100)

3.4.2 LMS

The LMS algorithm is one of the simplest, yet through that simplicity most powerful, adaptive

algorithms, based on stochastic gradient descent. Its most basic form of adaptation can be

70



3.4. Adaptive Filtering Approach

written as

ĤC̃[k +1] = ĤC̃[k]−µ · (ĤC̃[k]xTr,LT [k]− ẏL̇R
[k]
)

xH
Tr,LT

[k] (3.101)

= ĤC̃[k]−µ · ėL̇R
[k]xH

Tr,LT
[k], (3.102)

where µ is a step size that controls convergence and tracking speed, as well as steady-state

noise performance. The algorithm works by adapting the channel estimate based on the

momentary correlation between training signal xTr,LT [k] and residual error signal ėL̇R
[k]. As

described in the previous sections, if the estimate and the actual channel are equal, the error

signal just consists of noise ñL̇R
[k], which is on average uncorrelated with the training signal

xTr,LT [k], leading to the second term of (3.102) being zero on average and, thus, no adaptation

of the estimate. If they are not equal, a correlation between the error signal and the training

signal exists on average, which can be used as a gradient estimate towards which to move

the estimate during the next step. The simplicity of the LMS algorithm comes from the fact

that it replaces the true (averaged) correlation, between the error and training signals, with its

momentary or instantaneous estimate, which makes computation of the gradient estimate

very simple, but induces steady-state noise25. Furthermore, through this approximation of the

gradient, it does not require knowledge about the exact statistics of the received signal [76, 84],

which has the added benefit that it can automatically track variations in the statistics, e.g.,

occurring due to timing impairments as was seen in the previous section, while receiving the

signal.

Some information about the statistics and time variation is still required in order to select µ

properly. In the case of a time-varying MIMO system the algorithm has to solve two tasks:

1. Convergence, i.e., based on no prior information about the channel, generate a good

channel estimate ĤC̃[k].

2. Tracking, i.e., based on a converged estimate ĤC̃[k], which is close to the true channel

HC̃[k], follow the relatively small system variations that occur over time, in other words,

track the differences between HC̃[k],HC̃[k +1],HC̃[k +2], . . .

In the following, those two properties will be investigated more closely for the standard LMS

algorithm. Other variants of the algorithm have been developed in the literature to improve

convergence performance [28, 85, 86], reduce complexity, and make it more robust to input

signal variations [76, 84].

25Even if the estimated and true channel are equal, the instantaneous estimate of the correlation between current
noise realization and training signal, i.e., ñL̇R

[k]xH
Tr,LT

[k], is not zero except for very high SNR cases. Only the

average, i.e., E[ñL̇R
[k]xH

Tr,LT
[k]], tends towards zero. This residual adaptation in the algorithm even for perfect

channel estimates, which occurs due to ñL̇R
[k]xH

Tr,LT
[k] not being zero for every realization, is the added steady-

state noise or excess error. It is also immediately seen that in order to reduce this noise, µ should be chosen as
small as possible.
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3.4.3 Convergence Behavior of LMS

This property26 is important, whenever there is a large change between the most recent and

following observed realization of the channel. Two examples where this occurs are at the

beginning of a transmission, where no previous estimate of the channel is available, i.e.,

the current realization needs to be learned from scratch, and when an event happens that

changes the wireless transmission channel significantly between two observations, e.g., fast

movement of transmitter or receiver, where the previous observation does not contain any

useful information about the current realization. Thus, without any prior information, the

initial value of the channel estimate for the LMS algorithm ĤC̃[0] is set to a zero matrix of

appropriate size in this case.

Convergence in the time-invariant case, i.e., without timing impairments, is well covered in

the literature and may be used if the channel is approximately time invariant over a certain

time frame, i.e., HC̃[k] ≈ HC̃[k + lI] for lI = {1, . . . ,LI −1} see appendix A.2. In this case, the

standard solution for selecting µ that ensures convergence in the mean [28, 76, 84] is

0 <µ< 2

λmax

(
CxTr,LT

[k]
) (3.103)

=⇒ 0 <µ< 2

maxnσ
2
xTr,n

, (3.104)

where λmax (·) is the largest eigenvalue of a matrix. The simplification in (3.104) can be made

assuming that the training and data signals are uncorrelated across time and space, leading to

a diagonal matrix, where all eigenvalues are equal to its diagonal values27. Furthermore, the

misadjustment M [76, 84, 87], i.e., the ratio between the excess MSE due to steady-state noise

26It is also known as transient behavior.
27In practice, we may not exactly know the transmit power that is actually transmitted from the antennas and

contained in the received signal. Note, however, that it can be estimated based on the received signal and the
training signal, see the statistics section above.
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and the MMSE of a filter derived from the normal equations, can be given as

M =
limk→∞ E

[∣∣ėL̇R
[k]
∣∣2
]
−E
[∣∣ñL̇R

[k]
∣∣2
]

E
[∣∣ñL̇R

[k]
∣∣2
] (3.105)

=µ

∑N LT
i=1

λi

(
CxTr,LT

[k]
)

1−µλi

(
CxTr,LT

[k]
)

2−µ∑N LT
i=1

λi

(
CxTr,LT

[k]
)

1−µλi

(
CxTr,LT

[k]
)

=µLT

∑N
n=1

σ2
xTr,n

1−µσ2
xTr,n

2−µLT
∑N

n=1

σ2
xTr,n

1−µσ2
xTr,n

(3.106)

≈µN LT

σ2
xTr,n

1−µσ2
xTr,n

2−µN LT
σ2

xTr,n

1−µσ2
xTr,n

(3.107)

=µN LT

σ2
xTr,n

2−µσ2
xTr,n

(N LT +2)
, (3.108)

where the approximation holds, if the transmit power is equal for all Tx. It is a dimensionless

quantity relative to one. In other words, the smaller the misadjustment is relative to unity,

the closer the LMS algorithm performs to optimality in the MSE sense [84]. It can, thus, be

substituted by 1−ε, and a further condition for µ from (3.108) can be derived. It is given by

M = 1−ε (3.109)

µN LTσ
2
xTr,n

= (1−ε)
(
2−µσ2

xTr,n
(N LT +2)

)
(3.110)

µ= 1−ε
σ2

xTr,n
· (N LT +1− ε

2 N LT −ε
) . (3.111)

A common goal is to have a misadjustment smaller than one [28], i.e., 0 ≤ ε< 1, which yields

the following solution for µ from above

M ≤ 1 (3.112)

µ1 ≤
1

σ2
xTr,n

· (N LT +1)
. (3.113)

Another practical solution is to have a misadjustment of less than ten percent, i.e., 0.9 ≤ ε< 1.

This gives

M ≤ 0.1 (3.114)

µ≤ 1

σ2
xTr,n

· (11
2 N LT +1

) . (3.115)

It is seen that achieving MSEs close to the MMSE, i.e., achieving negligible steady-state noise,

generally requires a smaller µ than is needed just for convergence in the mean. Furthermore,
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the higher the dimensions of the system28, i.e., the number of transmit antennas N and multi-

path components LT, the lower µ needs to be in order to reach the same error performance.

It should also be noted that M is trending towards zero as µ→ 0, as long as the system is

time invariant. Generally, M > 1 does not seem desirable. However, it will be seen later that

such solutions can also be appropriate, when little information about the system is available.

Finally, since the channel is not actually time invariant, but changes even during the con-

vergence phase due to CFO and SFO, it is of interest to determine the time it takes for the

algorithm to move to the steady-state performance for a given µ. This time constant can be

given approximately as

τi =
−1

ln
(
1−µλi

(
CxTr,LT

[k]
)) (3.116)

τn = −1

ln
(
1−µσ2

xTr,n

) , (3.117)

which is to be understood in number of samples. Further, (3.113) can be used with equality

and

τ= −1

ln
(
1− 1

N LT+1

) (3.118)

≈ N LT, (3.119)

can be derived, where the approximation holds if N LT À 1. It is important to note that there is

a trade-off between the misadjustment M and the convergence time τ. The lower the desired

M , the higher the convergence time. Likewise, the larger the system dimensions, the longer

the time the algorithm needs to converge to the same error performance. Nevertheless, due to

the assumptions about the correlations of the training and data signals, convergence is in this

case as fast as possible with the standard LMS algorithm for a selected µ.

3.4.4 Tracking Behavior of LMS

Tracking is important, when the statistics of the signals vary with time, as is the case for

MIMO systems with timing impairments. In particular, from section 3.4.1 it is seen that the

autocorrelation matrix of the received signal CẏL̇R
, as well as the crosscorrelation matrix of the

data and received signal CẏL̇R
xTr,LT

vary with time. The following analysis is based on the fact

that an estimate of the channel ĤC̃[k] is available, which is close to the true channel HC̃[k].

This can, for example, be achieved through the MAP/ML techniques derived in section 3.3, or

through sufficiently quick convergence of the algorithm as described in the previous section.

If a sufficiently accurate estimate of the channel is available at time k, the algorithm just needs

28Note, however, the absence of M in the equations, meaning that the updating and convergence for each
received stream is decoupled and carried out in parallel, as was the case in the MAP/ML approach.

74



3.4. Adaptive Filtering Approach

to be able to follow the variations over the next time steps. This can only be achieved if the

channel changes are slower than the learning rate of the adaptive filter.

Tracking of CFOs

It is instructive to look at the two different timing impairments separately at first. Consider the

model containing only CFOs, refer to section 2.5.2. The difference between two consecutive

channel realizations is given as

HC̃[k +1]−HC̃[k] =∆ΦC̃[k +1]¯HC̃ −∆ΦC̃[k]¯HC̃ (3.120)

= (∆ΦC̃[k +1]−∆ΦC̃[k]
)¯HC̃ (3.121)

=
(
e j ·(arg(∆ΦC̃[k+1])−arg(∆ΦC̃[k])) −1

)
¯HC̃[k] (3.122)

=⇒ HC̃[k +1] = e j ·(arg(∆ΦC̃[k+1])−arg(∆ΦC̃[k])) ¯HC̃[k], (3.123)

where it is seen that the changes in the channel matrices are phase shifts according to the

difference in the combined phase processes from Tx and Rx from time k, where the channel

is known, to time k +1. In order to derive some meaningful results, an assumption about

the progression of the phase processes has to be made at this point. In particular, the phase

processes are assumed to be sufficiently described by a linearly-increasing function29, i.e.,

φ[k] = µϕw ·k = 2π∆ f Tnom ·k with σ2
ϕw

= 0 and σ2
ϕn

= 0, refer to section 2.4. Then, similar to

[88] by assuming independent and identically distributed (i.i.d.) noise30, the misadjustment31

in the steady-state operation under a time-varying channel is given as

M =µ

∑N LT
i=1

λi

(
CxTr,LT

[k]
)

1−µλi

(
CxTr,LT

[k]
)

2−µ∑N LT
i=1

λi

(
CxTr,LT

[k]
)

1−µλi

(
CxTr,LT

[k]
)

+ 1

µ

1

2−µ∑N LT
i=1

λi

(
CxTr,LT

[k]
)

1−µλi

(
CxTr,LT

[k]
)

β

σ2
ṅm

(3.124)

≈µN LT

σ2
xTr,n

2−µσ2
xTr,n

(2+N LT)
+ 1

µ

1

2−µN LT
σ2

xTr,n

1−µσ2
xTr,n

β

σ2
ṅm

, (3.125)

where the first term is equal to the time-invariant case from above, and the second term

expresses the influence due to the time variation of the system. It is seen that w.r.t. misad-

justment, or MSE in general, there exists a trade-off between the two terms. The first term

29It will be seen shortly that the maximum phase shift from sample to sample between any transmit and receive
antenna is the crucial parameter for this derivation. This value is in general also influenced by σ2

ϕw
and σ2

ϕn
,

and the variation due to the Wiener process may be incorporated into that maximum phase shift, whenever it is
significant.

30It is also assumed that the noise correlation matrix is time invariant. In actuality, however, it is cyclically varying
due to the receiver sampling processes, see section 3.4.1.

31It has been noted [87] that for relatively fast time-varying systems, time averaged MSE or M may be inadequate
measures for performance. Since we mostly deal with relatively slow time variations, time averaged MSE or M can
be used as performance measures here.
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represents the error due to the momentary gradient estimate, which decreases with smaller

µ, while the second term expresses the error due to a lagging response of the algorithm to

changes in the system, which decreases with smaller 1/µ. For the approximation in (3.125),

the second term is expressed in the CFO case as

β=µσ2
xTr,n

∣∣1−e j ·∆φmax
∣∣2

∣∣∣1−e j ·∆φmax −µσ2
xTr,n

∣∣∣
2

(
2−µσ2

xTr,n

)
(3.126)

≈ ∆φ2
max

µσ2
xTr,n

(
2−µσ2

xTr,n

)
, (3.127)

where
∣∣∆φmax

∣∣ = max
∣∣arg
(
∆ΦC̃[k +1]

)−arg
(
∆ΦC̃[k]

)∣∣ = maxmn
∣∣2π∆ fmnTRx,m

∣∣ =
∣∣2µϕw

∣∣ is

the maximum phase shift that occurs between any transmitter and receiver from sample to

sample due to the CFOs, and the approximation can be made for ∆φmax ¿ 1 and ∆φmax ¿
µσ2

xTr,n
. Using (3.125) and (3.127), two approaches can be taken in order to find good values

for µ. The first proceeds, as in the previous section, by defining that the misadjustment should

be smaller than one, yielding the following equation

1 ≥M (3.128)

=⇒ 0 ≥ (2N LT +2) ·µ3 +
(
∆φ2

max

σ2
ṅm

− 2

σ2
xTr,n

)
·µ2

−∆φ2
max

3

σ2
xTr,n

σ2
ṅm

·µ+∆φ2
max

2

σ4
xTr,n

σ2
ṅm

,

(3.129)

where the full derivation can be found in appendix B. The second approach is to try to minimize

M w.r.t. µ, i.e.,

0 =∂M
∂µ

(3.130)

=⇒ 0 =
(

2N LT

σ2
xTr,n

+∆φ2
max

2+N LT

σ2
ṅm

)
·µ3 −∆φ2

max
6(2+N LT)

σ2
xTr,n

σ2
ṅm

·µ2

+∆φ2
max

6(3+N LT)

σ4
xTr,n

σ2
ṅm

·µ−∆φ2
max

8

σ6
xTr,n

σ2
ṅm

,

(3.131)

with the full derivation being available in appendix B.1. Thus, in both cases a cubic polynomial

needs to be solved for a positive real root. The solutions of these polynomials can be obtained,

but are for general parameters fairly complicated.

Considering very small values for µ, specifically µ¿ 2
σ2

xTr,n
N LT

see appendix B, more functional

solutions can be obtained. The two derivations simplify to

0 ≥ N LT ·µ3 − 2

σ2
xTr,n

·µ2 +∆φ2
max

2

σ4
xTr,n

σ2
ṅm

, (3.132)
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Figure 3.3: Comparison of the different solutions for selecting the step size µ of an LMS
algorithm for channel estimation for MIMO systems with multiple CFOs, i.e., setup 4 where
the maximum carrier frequency difference between any transmitter and receiver is

∣∣∆φmax

∣∣.
The parameter settings for this example are σ2

xTr,n
= 1, σ2

ṅm
= 0.01, with a system dimension of

N ·LT = 10.

and

0 = N LT ·µ3 −∆φ2
max

4

σ4
xTr,n

σ2
ṅm

, (3.133)

respectively. For the first approach using M ≤ 1, we still need to solve a cubic polynomial,

even when using this approximation. For the second approach, a simple equation to choose µ

optimally can directly be given, which is

µopt,CFO =
(

4 · ∆φ2
max

σ4
xTr,n

σ2
ṅm

·N LT

) 1
3

. (3.134)

Given that the difference in the carrier phase processes is very small, it can, furthermore, be

seen from (3.129) and also (3.132) that a solution yielding M ≤ 1 can be obtained by selecting

µ according to, e.g., (3.113), from the previous section.

In Figure 3.3, the different solutions for selecting µ in a MIMO system with multiple CFOs are

compared. It is seen that for the chosen parameters, equation (3.134) approximates the true

optimal value for µ, which is found by solving the cubic polynomial in (3.131), very closely if

the CFOs are not too high, i.e., roughly if
∣∣∆φmax

∣∣< 10−3 in this case. The two roots of (3.129)

77



3.4. Adaptive Filtering Approach

10−6 10−5 10−4 10−3 10−210−5

10−4

10−3

10−2

10−1

100

∣∣∆φmax

∣∣/ rad
sample

µ
o

p
t,

C
F

O

σ2
ṅm
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Figure 3.4: Optimal step size µ for channel estimation for MIMO systems with multiple CFOs,
i.e., setup 4 where the maximum carrier frequency difference between any transmitter and
receiver is

∣∣∆φmax

∣∣, under different parameter settings. The normal lines represent the positive
real root of (3.131), while the dashed lines show the approximation given in (3.134).

give a range for µ where M ≤ 1. Furthermore, the larger root of (3.129) is almost equal to

the solution for the time-invariant case, i.e., equation (3.113) with equality, and the actual

optimum value for µ also seems to converge to that value. This last observation holds for a

lot of practical parameter settings. Thus, when no information about the CFOs ∆φmax or the

noise powers σ2
ṅm

is available, we may select µ according to (3.113) with equality. A similar

observation was also made in [89]. An even better value for µ in such a scenario, particularly

for large system sizes N ·LT, can be obtained with

µ2 =
4

3
· 1

σ2
xTr,n

·N LT
, (3.135)

see appendix B.1, which is very similar, but always greater than the solution in (3.113). It

follows that this solution always has a misadjustment that is slightly larger than one, as will be

seen later on.

Figure 3.4 shows the optimal values for µ according to the solutions from (3.131) and (3.134)

(dashed) for different parameter settings. It is seen that the approximation for selecting µ in

(3.134) holds well for small CFOs, low SNRs, and medium system sizes. Again, in cases where

the approximation fails, we can get a value for µ in a simple manner according to (3.135). One

important observation is that as the SNR increases, for a fixed maximum CFO, the optimum

step size also increases. This is due to the fact that the higher the SNR is, the more impact the

tracking/lag error has, which is reduced when µ is increased. The optimal value for µ finds the

best balance between tracking error and noisiness of the gradient estimate.

From the optimal solution for µ in (3.134) and under the used approximations, we can derive
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Figure 3.5: Comparison of the misadjustment of an LMS algorithm for channel estimation
in MIMO systems with multiple CFOs, i.e., setup 4 where the maximum carrier frequency
difference between any transmitter and receiver is

∣∣∆φmax

∣∣, for different selections of the step
size µ. Parameter settings for the shown example are σ2

xTr,n
= 1, σ2

ṅm
= 0.01, with a system

dimension of N ·LT = 10.

the approximate misadjustment in this case, which is given by

Mopt,CFO ≈
(

27

16
·∆φ2

max ·
σ2

xTr,n

σ2
ṅm

·N 2L2
T

) 1
3

, (3.136)

see also appendix B.1. Likewise, for the simple selection of the step size given in (3.135), the

misadjustment can be approximated by

M ≈ 2 · N LT

N LT −4
+ 27

16
·∆φ2

max ·
σ2

xTr,n

σ2
ṅm

·N 2L2
T, (3.137)

refer also appendix B. Figure 3.5 shows the misadjustment for different µ selection rules, based

on the general M of (3.125) and the exact value32 for the β term, i.e., (3.126). As before, the

approximations for the misadjustment hold well for low CFO values. The selection solution

for µ from the time-invariant case, i.e., equation (3.113) with equality, achieves M = 1, while

selecting µ according to (3.135) yields slightly higher misadjustment. Generally, it can be said

that the misadjustment increases with the SNR, CFO, and system size, even when selecting

32Although it is not shown here, the difference between using (3.126) and (3.127) was checked for the parameter
range shown here. It is significant, when roughly

∣∣φ∆,max
∣∣> 10−3 and N ·LT > 100 occurs simultaneously.
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µ optimally. Especially, the increase with the SNR seems somewhat counter intuitive, but

it should be remembered that M is a relative quantity w.r.t. a solution from the normal

equations. Thus, the MSE of the LMS algorithm may still decrease with the SNR, as will be

seen in some of the results later on. Example 5 gives some practical, numerical values for a

mmWave LoS MIMO system that can be can be obtained with the results from this section.

Example 5. Consider a mmWave LoS MIMO system with M = N = 2 antennas on each side,

LT = 5 multi-path components, yielding N ·LT = 10, and a sampling period of Tnom = 1ns. It

was seen in section 2.4, that a typical CFO value for a 60 GHz oscillator is
∣∣∆φmax

∣∣= 10−3 in this

case. Assume the transmit power to be σ2
xTr,n

= 1, and the noise power to be σ2
ṅm

= 0.01, yielding

a SNR of 20 dB.

First, examine the case where we do not know the CFO level and noise power. Then, it is

suggested to select µ according to (3.113) or (3.135). With the former one, µ= 9.1 ·10−2, leading

to a convergence time from (3.117) of τ≈ 10, which is to be understood in number of iterations,

being equivalent to a time of 10 ns here. From (3.125), the misadjustment for this µ is calculated

as M ≈ 1. A step size selection according to (3.135) gives µ = 1.33 ·10−1, τ ≈ 7, or 7 ns, and

M ≈ 3.35. It is thus seen that the former has significantly better error performance, at a slight

increase in convergence time. A step size with less than ten percent misadjustment is given, for

the time-invariant case, from (3.115) by µ= 1.8 ·10−2, yielding τ≈ 55, or 55 ns, and M ≈ 0.441.

It is seen that this solution does not achieve M = 0.1, when CFOs are present.

Secondly, consider the case, where we have information about the CFO level and noise power.

We then select µ using (3.134). This yields µ= 3.4 ·10−2, τ≈ 29, or 29 ns, and M ≈ 0.317. This

choice for µ has the best error performance and only requires a moderate time to converge.

Tracking of SFOs

Consider the model containing only SFOs, refer to section 2.5.3. The difference between two

consecutive channel realizations is then given by

HC̃[k +1]−HC̃[k] = (HC̃ +∆Φ̇C̃[k +1]
)− (HC̃ +∆Φ̇C̃[k]

)
(3.138)

=∆Φ̇C̃[k +1]−∆Φ̇C̃[k] (3.139)

=⇒ HC̃[k +1] = HC̃[k]+ (∆Φ̇C̃[k +1]−∆Φ̇C̃[k]
)

. (3.140)

The actual entries of∆Φ̇C̃[k] cannot be directly determined in this case, as they are dependent

on the actual wireless channel, as well as the transmit and receive filters that are used in the

FEs, and vary according to the SFO processes. Two possible approaches can be used in order to

model∆Φ̇C̃[k]. The first one is deterministic, similar to the CFO case, by using a constant that

describes the change between two consecutive channel observations. The approach stems

from the idea that the SFOs generate, in time-invariant channels, cyclical variations, which

can be expressed in this manner. However, the values that need to be added depend on the

already mentioned properties of the system, and are, hence, problem specific. For this reason,

80



3.4. Adaptive Filtering Approach

this approach will not be further pursued here.

The other, more general, approach that has also been studied under several aspects in the

literature [76, 84, 88], assumes the variations as a random process following a Markov model,

specifically, an autoregressive model of order one. It can be described by

HC̃[k +1] =α ·HC̃[k]+∆Φ̇C̃, (3.141)

where 0 ≤α≤ 1 is a parameter that controls the rate of change, usually very close to one, and

∆Φ̇C̃ are stationary random variables with some distribution and correlation properties. In

order to derive values for the model parameters α and∆Φ̇C̃, it needs to be determined how

the complete channel matrix changes, as the sampling phases vary due to the SFO. This can

be done by checking how the correlation properties of the different channel tap entries vary

with the sampling phase processes, and matching them to the correlation properties of the

autoregressive process. Given that the increments ∆Φ̇C̃ of each matrix entry follow a white

noise series, one matrix entry of the model process has the following correlation function w.r.t.

the lag l from the current observation

E
[

hC̃,mn[k, lC̃]h∗
C̃,mn

[k − l , lC̃]
]
=

σ2
∆φ̇

1−α2 ·α|l |. (3.142)

It is seen that the correlation vanishes exponentially with the distance to the current channel

entry depending on α, and that the first term is equal to the variance of the process. For the

actual SFO behavior, the correlation also decreases first but would eventually increase again,

giving rise to the cyclical nature of the process. Thus, when the autoregressive model is used

to derive results, the estimation should always be able to track this first decrease in correlation,

such that it always stays in a state where the approximation is valid. Since the variance of

the channel entries should be fixed and similar to the amplitude of each channel tap entry,

regardless of the level of SFO in the system, we use σ2
∆φ̇

= (1−α2
) ·σ2

hC̃,mn [lC̃]. Qualitatively, the

higher the SFOs in the system are, the lower α should be.

This autoregressive model has been used in the literature to model to model the Doppler

spreading that is experienced in fading channels [4, 28, 88]. In this case, the correlation is

assumed to follow a Bessel function, such thatα= J0
(
2π · fD ·Tnom,Rx

)
, where J0(·) is the Bessel

function of the first kind and zeroth order, and fD is the maximum Doppler frequency. In the

SFO case, a similar argument w.r.t. spreading can be made. On the transmitter side, the signals

bandwidth is increased or compressed according to the sampling phase process, compared to

the nominal ideal process, by a factor of 1
1+φ̇Tx,n [k]

. Since the exact shape of the sampling phase

processes is not known for every system configuration, it will, as in the CFO case, be assumed

that it is sufficient to investigate the fastest sampling phase drift, based on a linear model,

i.e.,
∣∣φ̇max,Tx

∣∣ = maxn
∣∣φ̇Tx,n[k +1]− φ̇Tx,n[k]

∣∣ =
∣∣µϕ̇w

∣∣ assuming φ̇[k] = µϕ̇w ·k. As in the CFO

case this means σ2
ϕ̇w

= 0 and σ2
ϕ̇n

= 0, refer also to section 2.4. The spread w.r.t. the desired

signal bandwidth is then given by |φ̇max,Tx|
1−|φ̇max,Tx| , which yields a similar relation as in the Doppler
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spreading case, with

α= J0

(
2π ·

∣∣φ̇max,Tx
∣∣

1−
∣∣φ̇max,Tx

∣∣
1

Ts
·Tnom,Rx

)
(3.143)

= J0

(
2π ·

∣∣φ̇max,Tx
∣∣

1−
∣∣φ̇max,Tx

∣∣ ·
1

Q

)
. (3.144)

This seems to suggest that the receiver sampling phase process has no influence on the

correlation. However, the system is not sampling with the nominal rate, but with an impaired

time reference, refer to section 2.4. Then, using the same assumptions and notation about the

fastest sampling phase drift in the receiver, we can write

α= J0

(
2π ·

∣∣φ̇max,Tx
∣∣

1−
∣∣φ̇max,Tx

∣∣ ·
1

Q
· (1+

∣∣φ̇max,Rx
∣∣)
)

, (3.145)

where
∣∣φ̇max,Tx

∣∣< 1 and
∣∣φ̇max,Rx

∣∣< 1. Thus, as desired, the correlation decreases faster with

higher differences in the sampling phase processes. Finally, in order to fully describe the

autoregressive process, the correlation matrix of the increments∆Φ̇C̃ needs to be determined.

It was described previously that they follow a complex Gaussian distribution. The simplifying

assumption33 that the channel variations are uncorrelated between different receive antennas,

and, also, between the different transmit antennas, as well as the different channel taps, will

be used. Then, the correlation matrix of any row of the increments sufficiently describes the

process, and is given by

C∆φ̇C̃,m
= E
[
∆φ̇C̃,m∆φ̇

H
C̃,m

]
= (1−α2) ·diag

(
σ2

hC̃,m1[1], . . . ,σ2
hC̃,mN [LC̃]

)
, (3.146)

with∆Φ̇C̃ =
[
∆φ̇C̃,1 · · · ∆φ̇C̃,M

]T
, and using the variance normalization mentioned previ-

ously.

Given the two model parameters α and C∆φ̇C̃,m
, which are used to express the time-varying

behavior due to the SFOs, the goal is now to try and find good values for µ that can deal with

these timing impairments. As in the previous section, the misadjustment can first be written

as [84, 88]

M =µ

∑N LT
i=1

λi

(
CxTr,LT

[k]
)

1−µλi

(
CxTr,LT

[k]
)

2−µ∑N LT
i=1

λi

(
CxTr,LT

[k]
)

1−µλi

(
CxTr,LT

[k]
)

+ 1

µ

1

2−µ∑N LT
i=1

λi

(
CxTr,LT

[k]
)

1−µλi

(
CxTr,LT

[k]
)

β

σ2
ṅm

(3.147)

≈µN LT

σ2
xTr,n

2−µσ2
xTr,n

(2+N LT)
+ 1

µ

1

2−µN LT
σ2

xTr,n

1−µσ2
xTr,n

β

σ2
ṅm

, (3.148)

33For oversampled systems, there will at least be correlation on the channel tap level. However, this is a worst-case
assumption that yields usable results for any case.
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where the time-varying contribution is now given differently [88] with

β= Tr
(
C∆φ̇C̃,m

)

1+

(
1−α2

(
1−µσ2

xTr,n

)2)

(
α(1−µσ2

xTr,n
)−1
)2

(1−α)2

1−α2 −
2(α−1)(1−µσ2

xTr,n
)

α(1−µσ2
xTr,n

)−1


 (3.149)

≈ (1−α2)

1+

(
1−α2

(
1−µσ2

xTr,n

)2)

(
α(1−µσ2

xTr,n
)−1
)2

(1−α)2

1−α2 −
2(α−1)(1−µσ2

xTr,n
)

α(1−µσ2
xTr,n

)−1


 , (3.150)

where the second approximation holds for our definition of the correlation matrix C∆φ̇C̃,m
, and

assuming unit sum power of all channel taps. The general solution for this β is complex, but

can be computed for a given parameter set. In the following, some of the limiting cases for

α, which lead to easier solutions, will be investigated. Consider first the case of 1−α≈ 0, i.e.,

small SFO, which yields

β= Tr
(
C∆φ̇C̃,m

)
≈ 1−α2 (3.151)

M =µN LT

σ2
xTr,n

2−µσ2
xTr,n

(2+N LT)
+ 1

µ

1

2−µN LT
σ2

xTr,n

1−µσ2
xTr,n

Tr
(
C∆φ̇C̃,m

)

σ2
ṅm

. (3.152)

Using the same approaches as for the CFO case we get

1 ≥M (3.153)

=⇒ 0 ≥−2(1+N LT) ·µ2 +



Tr
(
C∆φ̇C̃,m

)

σ2
ṅm

+ 2

σ2
xTr,n


 ·µ−

Tr
(
C∆φ̇C̃,m

)

σ2
xTr,n

σ2
ṅm

(3.154)

0 =∂M
∂µ

(3.155)

=⇒ 0 =
(

2N LT −Tr
(
C∆φ̇C̃,m

) σ2
xTr,n

σ2
ṅm

(2+N LT)

)
·µ2 +Tr

(
C∆φ̇C̃,m

) 2(2+N LT)

σ2
ṅm

·µ

−2
Tr
(
C∆φ̇C̃,m

)

σ2
xTr,n

σ2
ṅm

.

(3.156)

The solution to these quadratic equations is obtainable, but rather complex. Assuming, as in

the CFO case, that µ¿ 2
σ2

xn N LT
yields

M ≈µN LT

σ2
xTr,n

2
+ 1

µ

Tr
(
C∆φ̇C̃,m

)

2σ2
ṅm

, (3.157)
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which simplifies the two approaches to solving the simpler quadratic equations

0 ≥ N LT

σ2
xTr,n

2
·µ2 −µ+

Tr
(
C∆φ̇C̃,m

)

2σ2
ṅm

, (3.158)

and

0 = N LT

σ2
xTr,n

2
·µ2 −

Tr
(
C∆φ̇C̃,m

)

2σ2
ṅm

. (3.159)

The second approach then leads, similar to the CFO case, to a usable expression, given by

µopt,SFO =

√√√√√
Tr
(
C∆φ̇C̃,m

)

σ2
xTr,n

σ2
ṅm

·N LT
(3.160)

≈
√√√√ 1−α2

σ2
xTr,n

σ2
ṅm

·N LT
, (3.161)

which has also been obtained in the literature. From this equation, it is seen that as expected,

the lowerα, i.e., the higher the SFOs
∣∣φ̇max

∣∣, the higher µ needs to be. Note that this expression

only holds for small SFOs, i.e., α close to one or
∣∣φ̇max

∣∣ < 10−2, and small µ, as will be seen

next. It is of particular importance, to check if µopt,SFO ¿ 2
σ2

xTr,n
N LT

is true for the computed

µopt,SFO and the given parameters. From (3.157) and (3.161) we can, furthermore, calculate

the misadjustment for this optimal choice of µ, which is given by

Mopt,SFO ≈
(
(
1−α2) ·

σ2
xTr,n

σ2
ṅm

·N LT

) 1
2

. (3.162)

Figure 3.6 presents some example results for the correlation parameter α, as well as the se-

lection of µ for the relevant SFO range34, using the different solutions. The first plot shows

the α values that correspond to the maximum SFOs
∣∣φ̇max

∣∣=
∣∣φ̇max,Tx

∣∣=
∣∣φ̇max,Rx

∣∣ using equa-

tion (3.145), where it is seen that for practical SFO values, α is indeed very close to one. The

second figure has a similar shape as in the CFO case, where the selection of µ according to

(3.161) is proper for low SFOs, i.e.,
∣∣φ̇max,Rx

∣∣< 10−3. As in the CFO case it is seen that there is a

fixed value for µ that generates a misadjustment that is comparable to one and independent

of the SFO. It can be used when no information about the order of magnitude of
∣∣φ̇max,Tx

∣∣ and∣∣φ̇max,Rx
∣∣ is available, and is given by

µ= 1

σ2
xTr,n

N LT
, (3.163)

34Recall, for example, the µϕ̇w values given for a 60 GHz system with a sample duration of 1 ns in section 2.4,

which were between 10−6 and 10−3.
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µ

Pos. Real Root of (3.156)

Equation (3.161)

Largest Pos. Real Root of (3.155)

Smallest Pos. Real Root of (3.155)

(b) Q = 1, N ·LT = 10, σ2
xTr,n

= 1, σ2
ṅm

= 0.01

Figure 3.6: Selection of the step size µ for channel estimation for MIMO systems with multiple
SFOs under different parameter settings: Left plot shows the correlation parameter α w.r.t.
practical SFO values

∣∣φ̇max
∣∣=
∣∣φ̇max,Tx

∣∣=
∣∣φ̇max,Rx

∣∣ according to equation (3.145); Right plot
shows different selections of µ for the given parameters.

see appendix B.2.

Now, consider the case of α≈ 0, i.e., very high SFOs of
∣∣φ̇max,Rx

∣∣> 10−1 that generate channels,

which are basically uncorrelated from observation to observation. Similar to the CFO case,

this approach can also be used when no information about the order of magnitude of
∣∣φ̇max,Tx

∣∣
and

∣∣φ̇max,Rx
∣∣ is available. This assumption leads to

β=µTr
(
C∆φ̇C̃,m

)
σ2

xTr,n
≈µ(1−α2)σ2

xTr,n
(3.164)

M =µN LT

σ2
xTr,n

2−µσ2
xTr,n

(2+N LT)
+ 1

2−µN LT
σ2

xTr,n

1−µσ2
xTr,n

Tr
(
C∆φ̇C̃,m

)
σ2

xTr,n

σ2
ṅm

. (3.165)

The general solutions, if they are obtainable, lead again to fairly complicated quadratic equa-

tions, yielding little insight. Using µ¿ 2
σ2

xTr,n
N LT

with the approach of 1 ≥M , leads to the the

following solution

µ≤ 2

σ2
xTr,n

N LT
−

Tr
(
C∆φ̇C̃,m

)

σ2
ṅm

N LT
. (3.166)

It is seen that for low values of α, it becomes difficult to find good values for µ with the

autoregressive model, as the observations are almost uncorrelated. In the most extreme case

ofα= 0, the channel is completely uncorrelated from observation to observation, and thus the

best estimate for the current channel HC̃[k] would be the instantaneous correlation between

input and output, and neglecting the previous estimate ĤC̃[k −1]. In such a case, the LMS
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algorithm is no longer usable, as no tracking can be performed. However, such low α values

do not seem relevant for the practical range of SFO values, see Figure 3.6, which is why this

behavior is less critical. In Example 6, we give some numerical values for the selection of

the step size in a mmWave LoS MIMO system with sampling phase variations, which can be

obtained from the results in this section.

Example 6. Assume a mmWave LoS MIMO system with M = N = 2 antennas on each side,

LT = 5 multi-path components, yielding N ·LT = 10, a sampling period of Tnom = 1ns, and a

symbol period of Ts = 2ns, yielding Q = 2. It was seen in section 2.4, that a typical SFO value for

sampling rates in a 60 GHz transmission system is
∣∣∆φ̇max,Tx

∣∣ =
∣∣∆φ̇max,Rx

∣∣ =
∣∣∆φ̇max

∣∣ = 10−5.

The transmit power is assumed to be σ2
xn

= 1, and the noise power is assumed to be σ2
ṅm

= 0.01,

yielding a SNR of 20 dB. When no information about the SFO level and SNR is available, the

step size can be selected as mentioned in the first part of Example 5.

Consider the case, where we have information about the SFO level and noise power. We then

select the step size µ using (3.145) and (3.161). This gives µ≈ 7 ·10−5, τ≈ 1.43 ·104, or 14.3µs,

and, from (3.162), M ≈ 7 ·10−4. It is seen that both the suggested optimal step size µ and the

misadjustment is lower than in the CFO case. For practical cases, where the variation due to the

SFOs is often significantly smaller than the variation due to the CFOs, we can theorize that the

performance of the adaptive filter is limited by the CFOs. This claim will be further investigated

in the next section.

Dealing with Both Timing Impairments

The total misadjustment, taking into account both CFO and SFO, can generally be computed

[88], but takes on a rather complex form making it difficult to obtain solutions for µ. It is

possible to use the sum of (3.127) and (3.151) for a combined β describing both effects, but

also in such a case the expressions for µ are complicated. Thus, qualitative arguments for

selecting µ under different scenarios will be made in the following.

Firstly, consider the case where no information about the CFOs and SFOs, which exist in the

system, is available. The solution when only one of them exists, but no information about their

order of magnitude is accessible, were given in (3.135) and (3.163), respectively. Accordingly,

in this case it is suggested to use

µ2 =
4

3
· 1

σ2
xTr,n

·N LT
, (3.167)

which is the larger of the two solutions, i.e., assuming the worst case scenario. Correspondingly,

Figure 3.7 shows the misadjustment whenµ is selected according to this equation, as well as the

misadjustments for the cases of only CFOs or only SFOs, using their respective approximately

optimal solutions from (3.134) and (3.161), thus, employing knowledge about their order of

magnitude. It is seen that in cases where CFOs and SFOs are of a similar magnitude, the

misadjustment due to CFOs is generally higher. Secondly, in cases where
∣∣φmax

∣∣≥
∣∣φ̇max

∣∣, i.e.,
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Figure 3.7: Comparison of the misadjustment of an LMS algorithm for channel estimation
in MIMO systems with multiple CFOs, with a maximum value of

∣∣∆φmax

∣∣, or SFOs, with a
maximum value of

∣∣φ̇max
∣∣, for different selections of the step size µ. Parameter settings for the

shown example are σ2
xTr,n

= 1, σ2
ṅm

= 0.01, N ·LT = 10, Q = 1, and
∣∣φ̇max

∣∣=
∣∣φ̇max,Tx

∣∣=
∣∣φ̇max,Rx

∣∣.

the SFOs are of similar or smaller magnitude compared to the CFOs, it is suggested to select µ

according to the CFO case, given by

µopt,CFO =
(

4 · ∆φ2
max

σ4
xTr,n

σ2
ṅm

·N LT

) 1
3

. (3.168)

Thirdly, whenever the SFOs are significantly higher than the CFOs, i.e.,
∣∣φmax

∣∣¿
∣∣φ̇max

∣∣, it is

suggested to use the optimal solution of the SFO case, defined as

µopt,SFO =
√√√√ 1−α2

σ2
xTr,n

σ2
ṅm

·N LT
. (3.169)

Finally, whenever the approximations, that were used to derive these simplified optimal

solutions do not hold, we may solve the polynomial function of the respective case.

3.4.5 Oversampling in LMS

So far, it was not specifically discussed whether the system is oversampled or not. Looking at

the previous sections, it should be clear that it does not matter for the steady-state estimation
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and tracking of the time-varying channel, except in terms of complexity, if the reference signal

ẏL̇R
[k] and the channel to be estimated HC̃[k] are oversampled or not. It was seen that the

performance of the adaptive filter only depends on the correlation matrix of the input signal

CxTr,LT
[k], the timing impairments, the SNR, and the step size µ. In particular, it was seen that

the misadjustment of an adaptive filter, based on the LMS principle, depends in several ways

on the term

M ∝
N LT∑

i=1

λi

(
CxTr,LT

[k]
)

1−µλi

(
CxTr,LT

[k]
) ,

i.e., the eigenvalue spread of the input signals correlation matrix. Thus, it is interesting to

investigate what the difference in CxTr,LT
[k] is, when the input signal is symbol spaced or

oversampled.

First, consider the case where the input signal to the channel and filter is not assumed over-

sampled35. Given the assumptions about the training signal from section 3.2.1 and assuming

equal transmit power across all antennas, the correlation matrix is, as in section 3.4.1,

CxTr,LT
[k] = CxTr,LT

=σ2
xTr,n

IN LT . (3.170)

The correlation matrix is, thus, time invariant and diagonal with equal entries, which are, for a

diagonal matrix, also equal to the eigenvalues of that matrix. Thus, all of the results that were

computed in the previous sections for selecting µ, and the corresponding misadjustment for

MIMO systems with multiple timing impairments can be used.

Secondly, assume the case where the input signal to the channel and adaptive filter is already

pulse shaped, i.e., ẋL̇T
[k], see also section 2.5.6. The main benefit of using the oversampled

input signal is that the filter does not need to learn the transmit pulse shape, which is usually

known, and thus the filter length can potentially be reduced. The correlation matrix for this

case follows, using the same assumptions as above, as

CẋTr,L̇T
[k] = E

[
ẋTr,L̇T

[k]ẋH
Tr,L̇T

[k]
]

(3.171)

=
σ2

xTr,n

Q
HPHH

P , (3.172)

where HP is a block-Toeplitz matrix of the transmit pulse-shaping filters. It can be noted that

they are still uncorrelated among different transmit streams, and for most practical filters also

only have little correlation w.r.t. to symbol shifts, see Example 7.

Example 7. Consider a set of two uncorrelated (across time and space) symbol streams, i.e.

N = 2, that are each pulse shaped, except for the case of Q = 1, by a root-raised-cosine filter

with roll-off βT = 0.3, and with a length of 10 symbols, for different oversampling factors Q. An

35The actual signal that is generated in baseband and then transmitted may still be oversampled (or pulse
shaped), but from the adaptive filters perspective that filter is seen as part of the complete channel.
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observation interval of LT = 5 symbol periods is investigated, and σ2
xTr,n

= 1. Figure 3.8 shows

the normalized pulse shape for these cases, as well as the corresponding eigenvalues of the

correlation matrix in these cases. It is seen that regardless of the oversampling factor, there is

only a finite number of significant eigenvalues, all of them being similar in magnitude. A lot of

the insignificant eigenvalues are analytically zero, but will practically have some finite value.

Nevertheless, their contribution to the overall steady-state performance is still negligible.
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Figure 3.8: Normalized pulse shape for different oversampling factors (left), and the corre-
sponding eigenvalues of the correlation matrix (right), when using these pulse shapes on two
uncorrelated symbol sequences across time and space.

From the example it is seen that the eigenvalues of the correlation matrix depend in the over-

sampled case on the pulse shape, specifically on the roll-off factor βT, see also [90]. Looking

at the relationship between M and the eigenvalues of the correlation matrix λi

(
CxTr,LT

[k]
)

it

is seen that the largest eigenvalues have the highest contribution, and small ones, or ones

that are zero, can be neglected. In the symbol-spaced case, there were N · LT significant

eigenvalues, corresponding to the power of each transmit stream. In the oversampled case,

there are N ·LT · (1+βT) significant eigenvalues, corresponding to the transmit power of each

stream shaped by the pulse form. Thus, as βT → 0, the oversampled case becomes equal to

the symbol-spaced case, and the results from the previous sections can be used. For high

values of βT, more significant eigenvalues appear, but their magnitude is reduced. It can be

checked that the sum of eigenvalues from the beginning of this section, which determines

M , is approximately the same, irrespective of the roll-off βT. This means that even when

considering an oversampled input signal to the adaptive filter, all of the results that were

derived in the previous sections can be employed. Note, however, that the convergence

properties of the filter do depend on the complete eigenvalue structure. Typically, a large

eigenvalue spread means that the adaptive filter converges slower, as the convergence speed is

limited by the smallest eigenvalues [28, 76, 84]. To summarize, the convergence behavior of an

adaptive filter is influenced by the eigenvalue spread caused by an oversampled input, while

the steady-state error and tracking performance is not, at least for the channel estimation (or
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system identification) case.

One further comment about the eigenvalues of oversampled inputs to an adaptive filter

is important. The eigenvalues of a correlation matrix of several oversampled signals are

determined by their spectral shape, i.e., their pulse shape, and the correlation between those

several signals, as was seen in the example. This observation will become useful in the next

chapter, where a version of the LMS algorithm is used for adaptive equalization, and the input

signal is the oversampled received signal ẏL̇R
[k], see [90] for the SISO case. In this case, the

complete MIMO transmission channel has an influence on the eigenvalues [24, 28], see also

section 3.4.1.

3.5 Simulation Results

In what follows, some exemplary results for the estimators that have been derived in this

chapter will be given. The channel characteristics will be selected to fit mmWave LoS MIMO

systems in terms of multi-path, e.g., delay spread in the nanosecond range and significantly

reduced power of multi-path components see [12, 53, 91, 92, 93, 94], and timing impairments

w.r.t. a symbol duration of Ts = 1ns, see for example Table 2.1. In particular, the channel will

be assumed36 of length37 LC = L = 10 with a Rician factor KR of 10dB. The LoS MIMO tap, i.e.,

lC = 0, will be considered orthogonal, i.e., designed according to (2.20) and following (2.12),

while the other LC −1 taps will be drawn from a complex Gaussian distribution, yielding38

hmn[lC = 0] =

√√√√ 10
KR
10

1+10
KR
10

·e
− j 2π

rmn,0
λTx,n (3.173)

hmn[lC 6= 0] ∼C N

(
0,

1

1+10
KR
10

)
, (3.174)

while enforcing normalization of the channel power given by
∑

lC
|hmn[lC]|2 = 1. Depending

on the correlation properties of the training sequences across time and space, the channel

characteristics can have an influence on the estimation performance, as will be seen in the

results. When the training sequences are uncorrelated across space, which will usually be

the case here, the orthogonality of the MIMO channel has no influence on the estimation.

36As briefly mentioned in the beginning of the adaptive filter section 3.4, the channel length is typically not
known, but needs to be estimated. The efficiency of both estimation approaches can only be high if that estimate
is of reasonable quality. In this work, we assume that such an estimate is available. In general, this is a model order
selection problem [84, 95].

37With the mentioned symbol duration, this is comparable to a delay spread of 10 ns.
38In the simulations using these definitions, the wireless propagation channel is, thus, frequency flat and

time invariant, when KR →∞. In other words, for this case it is a pure LoS channel where the channel entries
are defined by the geometric arrangement through (2.12). For finite values of KR, the propagation channel is
frequency selective and time variant. For the simulations, the selectivity, i.e., influence of NLoS taps, is given by
KR, and the interval between changes in the NLoS taps, i.e., the time variation, was set to 10 ·LTr symbols for the
corresponding scenario. With the mentioned symbol duration and LTr values in the range of one hundred, this
could be compared to a coherence time of 1µs, or, similarly, a Doppler spread of approximately 420 kHz.

90



3.5. Simulation Results

However, if information about the spatial characteristics of the channel, e.g., the antenna

arrangements, is available, it may be exploited to improve estimation performance, as will

be seen in the second part of section 3.5.1. The focus will be on symmetric antenna setups,

i.e., M = N , as they yield the highest throughputs with the smallest array size in LoS MIMO

systems [13]. As training sequences, the practically relevant pseudo-noise sequences, and

Zadoff-Chu sequences [81], which approximately fulfill the criteria outlined in section 3.2.1,

will be considered.

3.5.1 Channel and CFO Estimation in the CFO Impaired Case

Consider the case of a MIMO system that is affected by M +N CFOs, i.e., oscillator setup 4, and

is symbol spaced as described in section 2.5.2. As primary training, a Zadoff-Chu sequence of

length LC that is separated in time among the N different transmit antennas is considered. In

order to obtain the ideal autocorrelation property of the sequence, it needs to be cyclically

repeated at least once, and LC −1 zero symbols after the repeated training sequences are

required for each antenna, to remove the interference between the different antennas due

to the multi-path. This yields to a total training sequence length of LTr = N · (LC ·2+LC −1).

Since the higher channel coefficients carry significantly lower power in mmWave systems,

their influence is limited and we may reduce the length to LTr = N · LC · 2+ LC − 1. Note

that the average training power normalization E
[|xTr,n[lTr]|2] = σ2

xTr,n
= 1, and the channel

normalization described above, lead to better estimation performance with an increase in M ,

N , and LTr, approximately proportional to the increase of that parameter. Since the CRBs are

very complicated for this system setup, a benchmark scenario with ideal impulse-like training

sequences across time and space of the same length and power is computed for comparison,

which is thus a lower bound39 on the achievable performance. Especially when the phase

processes take on a more complicated shape, this bound helps to judge performance. For

estimation of the channel (3.43) is employed, while for estimation of the CFO differences

(3.45) with LE = LTr is used. To reduce complexity further, the latter only uses the LoS taps, i.e.,

ĥC,mn[k,0], which carry most of the power, for the phase estimation.

First, assume purely linearly-drifting phase processes, i.e., σ2
ϕw

= 0 and σ2
ϕn

= 0, where the

mean variations and the initial oscillator phases are drawn from µϕw,m/n ∼U (−µϕw ,µϕw ) and

φw[0] ∼U (−π,π). Thus, the maximum average CFO difference that can occur in the system

is ±2µϕw . The estimation performance for M = N = 4 and LC = 10 for channels and CFOs,

using LTr = 89, is given in Figure 3.9. Both the pure LoS case, i.e., KR →∞, and the standard

case, i.e., KR = 10dB, are shown. The MSE results show a performance gap of around 3 dB

for both parameters in the LoS case, which is likely due to the required repetition of the

Zadoff-Chu sequence, where only one of them can be used for reliable estimation. Although

the MSE is generally low, some performance floors and performance gaps compared to the

39This approach essentially decouples the MIMO system into M ·N SISO systems with impulse-like training of
equivalent transmit power per transmit antenna. The results shown later on are then equivalent to the CRBs, for
example [3, 4], if available for the considered system.

91



3.5. Simulation Results

5 10 15 20 25

−40

−30

−20

10log10

(
σ2

xTr,n

σ2
nm

)
in dB

10
lo

g 10
E

( ∣ ∣ h
C
−

ĥ
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Figure 3.9: MSE of estimating the channels and CFOs with (3.43) and (3.45) for a symbol-
spaced LoS MIMO system affected by independent linearly-drifting carrier phase processes,
with LC = 10 taps, M = N = 4 antennas, and using Zadoff-Chu training of length LTr = LE = 89.
Channel estimation error for different Rician factors KR and normalized CFO values µϕw (left).
Phase difference estimation error for different KR and µϕw (right).

lower bound can be observed for the estimation of both parameters. For the estimation

of the channel taps, it is seen that CFO values of µϕw = 10−2 rad are high enough that the

approximation hT
C,LC,1[k] ≈ hT

C,LC,1[k+ lTr], orφTx[k] ≈φTx[k+ lTr] andφRx[k] ≈φRx[k+ lTr] for

lTr = {1, . . . ,LTr −1}, is not valid anymore and, thus, the correlation with the training sequence

is influenced by the CFOs. The error floor in the case of channel estimation for KR = 10dB is

due to the ISI between the training sequences of the different antennas, i.e., the reduction of

the training length from LTr = N ·(LC ·2+LC−1) to LTr = N ·LC ·2+LC−1. The gap in the phase

difference MSE between the two KR cases is explained by the fact that only the LoS tap is used

for the estimation, which carries different amounts of power for both cases, see the previous

section. For CFO estimation, it should also be noted that the condition LE ≤
⌈

π
4µϕw

⌉
is not quite

fulfilled for the highest CFO case, but since this is a conservative condition, the estimation

still yields usable results. Generally, the MSE of all plotted scenarios is low enough to not

significantly influence the performance of an equalizer. However, if more accurate estimations

are required, simple solutions are: increase of the training length LTr, while removing the ISI

between the antennas, and performing an iterative estimation, where carrier phase difference

estimates are obtained first, which are then removed from the signal before carrying out the

standard estimation procedures used here. For the pure LoS case, i.e., KR →∞, the results

can also be compared to the asCRBs mentioned in section 2.6.1. It is seen that the asCRBs are

higher than the lower bound used here, and slightly lower than the MSEs of the estimators in

the LoS case.
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Figure 3.10: MSE of estimating the channels and CFOs with (3.43) and (3.45) for a symbol-
spaced LoS MIMO system affected by independent practical carrier phase processes, i.e.,
σ2
ϕw

= σ2
ϕn

6= 0, with LC = 10 taps, Rician factor KR = 10dB, M = N = 4 antennas, and using
Zadoff-Chu training of length LTr = LE = 89. Channel estimation error for different normalized
CFO values µϕw (left). Phase difference estimation error for different µϕw (right).

Secondly, consider more complex phase processes using σ2
ϕw

=σ2
ϕn

= 10−3 rad2, with all other

parameters being the same as above. Figure 3.10 shows the MSE results for KR = 10dB, also

including the lower bounds and the results for the linearly-drifting phase process from above.

For channel estimation, a slight increase of the MSE is observed, which comes from the

reduction of the maximum correlation gain due to the influence of the more randomly varying

phases. The change in the estimation performance of the carrier phase differences is much

more pronounced. It is seen that especially the Wiener contribution to the phase process,

i.e., the phase variation due to close-in PN, significantly increases the error. The white noise

contribution, i.e., far-out PN, does also create an error floor but has less impact as it can be

averaged out to some extent. The same performance improvement suggestions as in the

previous case can be used. However, depending on the impact of the Wiener process during

the length of the training sequence, a performance limit may exist40.
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Figure 3.11: LoS MIMO channel estimation exploiting the structure of the channel: (a) Antenna
array setup generating the block-Toeplitz structure; (b) MSE for channel estimation without
CFOs exploiting the block-Toeplitz structure. A Rician factor of KR →∞, M = N = 4 antennas,
and different training lengths LTr were used for the results.

Exploiting the Structure of Pure LoS MIMO in Frequency-Flat Channels

Consider the case of LC = 1 and KR →∞ with ideal transmit and receive filters, i.e., hTx,n(t ) =
hRx,m(t ) = sinc

(
π t

Tnom,Rx

)
. It was seen in section 2.2 that the LoS MIMO channel depends highly

on the geometric setup of the antennas. If the setup of the antennas is known with a very high

precision, specifically their relative distances, the channel can be calculated and no estimation

is necessary. In practice, measuring (or manufacturing) those distances precisely is difficult

and, thus, some form of channel estimation is always helpful. Nevertheless, it is still possible

to exploit the knowledge about the geometric structure of the arrays. For all approximately

optimal, symmetric (M = N ), uniform array designs, the LoS channel matrix H[0] will have

approximately a block-Toeplitz structure, i.e.,

H[0] =




H1[0] H2[0] · · · HN1 [0]

H2[0] H1[0] · · · HN1−1[0]

H3[0] H2[0] · · · HN1−2[0]
...

...
. . .

...

HN1 [0] HN1−1[0] · · · H1[0]




, (3.175)

40Consider the case, where the linear drift and the white noise part of the phase noise are negligible. This means
that we only need to consider the Wiener contribution with variance σ2

ϕw
. The variance of a Wiener process at

time lTr is given by lTr ·σ2
ϕw

. We can see that the longer the training sequence, the more correlation gain is lost due
to the Wiener process. The exact impact depends on the total length of the training sequence and the variance of
the Wiener process.
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where N1 is the number of elements in the first array dimension and the sub-matrices of index

n1 have a Toeplitz structure with

Hn1 [0] =




hn11[0] hn12[0] · · · hn1N2 [0]

hn12[0] hn11[0] · · · hn1N2−1[0]

hn13[0] hn12[0] · · · hn1N2−2[0]
...

...
. . .

...

hn1N2 [0] hn1N2−1[0] · · · hn11[0]




, (3.176)

where N2 is the number of elements in the second array dimension. Note that there are N1

different sub-matrices with N2 different entries. An example of a two-dimensional Tx/Rx

antenna array setup with this structure is given in Figure 3.11a. It can, more generally, be said

that for uniformly-spaced antenna arrangements, including non-symmetric cases, there will

be a part of the channel matrix that has a block-Toeplitz structure and a part that depends on

the specific chosen arrangement and alignment of the arrays.

From this structure, we can see that the first column or row of the channel matrix determines

the complete matrix41. In other words, estimating the channel based on one received stream,

e.g., using (3.43) with m = 1, is sufficient and the other ones can, for example, be used for

averaging in order to improve the quality of the estimate. Figure 3.11b shows the estimation

performance for an optimal LoS MIMO setup, i.e., designed according to (2.20), without CFOs

and with M = N = 4, in terms of the MSE. The same normalizations as above are used, but

the training length is reduced to LTr = N . The CRB assuming this type of channel, see [96], as

well as the standard solution from above not exploiting the structure are given as references.

For the Toeplitz exploiting results, averaging was used over the appropriate entries [96], when

LTr > 1. It is seen that significant gains can be achieved by exploiting the structure of the

channel. For different numbers of antennas, including the case of a single CFO, and also a

discussion on the sensitivity of this approach w.r.t. to slightly imperfect channels, see [96]. In

general, there is a trade-off regarding the potential gain of this strategy. The higher the number

of antennas, the higher the gain of exploiting the structure. However, the higher the number of

antennas, the more susceptible the setup becomes with respect to misalignments and small

spacing offsets, as will be seen in the experimental results of chapter 5, which reduces the

Toeplitz structure of the matrix.

3.5.2 Channel, CFO, and SFO Estimation in the General Case

Consider the general case of an oversampled received MIMO signal that is affected by both

M + N CFOs and M + N SFOs. The same framework and lengths, in terms of number of

symbols, as in section 3.5.1 are used. The oversampling factor is set as Q = 2, and on the

transmit side a root-raised-cosine filter of 10 symbol durations with a roll-off βT = 0.25 is

41This only holds if oscillator setup 2 is used, while additionally assuming the same phase for the PLLs on the
Tx/Rx side, respectively. Likewise, if the phase effects due to the oscillators have been sufficiently compensated,
the structure is also observed.
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used for pulse shaping. Note that the absolute lengths are increased approximately by the

oversampling factor, i.e., L̇C/Tr/E ≈Q ·LC/Tr/E, as mentioned previously. In order to make a fair

comparison to the previous results, the parameters that define the carrier and sampling phase

processes have to be slightly adopted. In particular, it is assumed that when the oversampling

factor Q is increased, the phase variation per sample decreases42. Thus, the values that are

mentioned in this section for µϕw , µϕ̇w , σ2
ϕw

, and σ2
ϕ̇w

are to be understood per symbol. The

sampling phase processes are defined by φ̇w[0] ∼U (−0.5,0.5) and µϕ̇w,m/n ∼U (−µϕ̇w ,µϕ̇w ),

meaning that the maximum average sampling phase difference per symbol is ±2µϕ̇w . When

SFOs are present, the different antennas generate slightly different symbol rates, which means

that after some time full sample, and eventually symbol, shifts will occur, as was discussed

previously, see Figure 2.8 and appendix A.3. While the estimators that have been derived in this

chapter are applicable to this case, as long as the shift is smaller than the window length L̇C,

the Zadoff-Chu sequence of the different transmit antennas will eventually overlap, creating

interference in the correlation that is used for channel estimation. A simple remedy to this

problem is to use different Zadoff-Chu sequences, having low crosscorrelation with each other

[81], for different antennas. In order to use the same training signals as above, the results

shown here, hence, only consider estimation of the relative difference on aligned signals, i.e.,

where full sample shifts have been removed, which are in the range of −0.5 ≤∆φ̇mn[k] ≤ 0.5.

For channel estimation (3.82) is used, while (3.45) with L̇E = L̇Tr is used for the estimation of

the carrier phase difference processes. As in the previous section, the latter one only uses the

LoS taps in order to limit complexity. For estimation of the sampling phase differences, (3.76)

is used in the case of almost frequency-flat channels, while (3.84) is used in other cases. Note

that the second method only computes the relative variations of the phase processes over

time, while the fixed phases offsets are also needed to obtain the correct symbol timings. In

other words, this method yields the variations in the sampling over time, but not the initial

starting sampling phases, whereas (3.76) computes the offset w.r.t. to the ideal time instants.

Figure 3.12 contains the MSEs for the estimation of channels and CFOs in a LoS MIMO

system with KR = 10dB. It contains results for both purely linearly-drifting processes, i.e.,

σ2
ϕw

= σ2
ϕn

= σ2
ϕ̇w

= σ2
ϕ̇n

= 0, and more complex phase processes, i.e., σ2
ϕw

= σ2
ϕn

=6= 0 and

σ2
ϕ̇w

=σ2
ϕ̇n

6= 0. It is seen that the addition of the SFOs deteriorates the performance somewhat,

compared to the results in Figure 3.10. The channel estimation MSE is increased by a couple of

dBs, while the CFO MSE has almost the same behavior as in that previous case. It is also seen

that the more complex phase processes slightly increase the MSE. As in the pure CFO case, the

42This is equivalent to assuming that fixed continuous-time phase processes exist, which do not change when
the sample rate is changed. This also conforms with the conversion equations in appendix A.1, where a change in
Tnom accordingly scales these values.
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Figure 3.12: MSE of estimating the channels and CFOs, with (3.82) and (3.45), for a LoS MIMO
system affected by independent carrier and sampling phase processes, with L̇C = 20 taps,
M = N = 4 antennas, Rician factor KR = 10dB, using Zadoff-Chu training of length L̇Tr = 179,
and using an oversampling factor of Q = 2. Includes purely linearly-drifting, as well as more
complicated phase processes. Channel estimation error for different normalized CFO values
µϕw and SFO values µϕ̇w (left). Carrier phase difference estimation error for different µϕw and
µϕ̇w (right).

main performance degradation43 is due to the interference that is generated due to the timing

impairments during correlation with the training sequences, as well as the interference from

the training sequences of different antennas.

In Figure 3.13, MSE results for the estimation of the SFOs in the same system, but with both

KR →∞ and KR = 10dB, are shown. The observation window size for the sampling phase

difference estimation is L̇C = 20, and the DFT size is chosen as D =
⌊

L̇C
2Q

⌋
−1 = 4. For the case of

KR →∞, the results were obtained with (3.76). This approach does not generate useful results

for KR = 10dB, since the squaring does not sufficiently suppress the multi-path contribution.

Thus, for this scenario (3.84) is used. The results show that low MSEs can be achieved with both

approaches for the respective cases. As for the estimation of the channel and the CFOs, the

impact of the timing impairments on the correlation with the training sequence also increases

the MSE of the SFO estimation, when higher CFO and SFO values or more complex phase

43How such estimation errors affect the complete transmission chain depends on how the estimates are used in
the receiver. Such investigations may be found in the literature. A simple approach is to view the estimation errors
as an additional noise term, which is scaled by the input samples. As such, it degrades performance markedly
when it is in the vicinity of the SNR. For the results from Figure 3.12, this means that the channel estimation errors
limit performance for SNRs higher than approximately 14 dB. This value is obtained by assuming that the channel
estimation errors are insignificant, when the MSE is 6 dB above the SNR. Although this approach yields some
intuition on the impact of estimation errors, it may not show the true influence of these errors, especially for
MIMO systems.
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ṅm

)
in dB

10
lo

g 10
E

( ∣ ∣ ∣∆
Φ̇
−
∆

ˆ̇ Φ
∣ ∣ ∣2

) in
d

B

Lower Bound

σ2
ϕw/n

= 0rad2, σ2
ϕ̇w/n

= 0

σ2
ϕw/n

= 10−3 rad2, σ2
ϕ̇w/n

= 10−6

µϕw = 10−2 rad

µϕ̇w = 10−3

µϕw = 10−4 rad

µϕ̇w = 10−5

(b) KR = 10dB

Figure 3.13: MSE of estimating the SFOs, with (3.76) and (3.84), for a LoS MIMO system
affected by independent carrier and sampling phase processes, with L̇C = 20 taps, M = N = 4
antennas, different Rician factors KR, using Zadoff-Chu training of length L̇Tr = 179, and
using an oversampling factor of Q = 2. Includes purely linearly-drifting, as well as more
complicated phase processes. Sampling phase difference estimation error using (3.76) for
different normalized CFO values µϕw and SFO values µϕ̇w (left). Sampling phase difference
estimation error using (3.84) for different µϕw and µϕ̇w (right).

processes are considered. Generally, the method of (3.84), using two consecutive channel

estimates for SFO estimation, can achieve lower MSEs and is closer to the bound, as it only

estimates the difference in the sampling phase processes between two time instants, and also

does not impose a certain channel characteristic.

3.5.3 Adaptive Filter: Convergence and Tracking in the CFO Impaired Case

In this section, simulations investigating the estimation performance of the adaptive filter

will be provided. First, the focus is on a symbol-spaced, i.e., Q = 1, LoS MIMO system that is

influenced only by multiple CFOs and a frequency-selective channel, i.e., M = N = 4, KR =
10dB, and LC = 10 as in the previous sections. As training signal, a pseudo-noise sequence

of length LT = LC = 10 per iteration is used. Compared to the previous sections, the timing

impairments will not be specifically extracted44, but only the MSE of the complete time-

varying MIMO channel matrix will be computed. The adaptive filters are in the convergence

case initialized with a zero matrix.

Figure 3.14 contains the convergence behavior, specifically the ensemble averages over many

44Given estimates of the time-varying MIMO matrix over time, we could extract the timing parameters in the
same way as in the standard estimation approach above.
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Figure 3.14: Convergence MSE of channel estimation with an adaptive filter, with step sizes
µ1 and µ2 from (3.113) and (3.135), for a LoS MIMO system affected by independent carrier
phase processes, with LC = 10 taps, M = N = 4 antennas, a Rician factor of KR = 10dB, using
pseudo-noise training of length LT = LC = 10 per iteration, and using an oversampling factor
of Q = 1. Behavior without CFOs for two different SNRs (left). Behavior for a SNR of 20 dB with
different CFO levels µϕw and σ2

ϕw
=σ2

ϕn
= 0rad2 (right).

learning curves, for the system without and with CFOs for different SNRs, using

µ1 =
1

σ2
xTr,n

· (N LT +1)
, and µ2 =

4

3
· 1

σ2
xTr,n

·N LT
.

It is seen that the filters converge after roughly 400 iterations, compared to the approach from

above where similar MSEs were achieved within a training length of LTr = 89, and that the

steady-state error for both µ is low, when no CFOs are present. In this case, it is also seen

that the lower µ1 always has a better performance, and that an increase in SNR equivalently

improves the MSE. This shows that it is indeed the white noise that is added in the system,

which is limiting the performance, and not the steady-state variation due the instantaneous

gradient estimate, which was also the underlying assumption for deriving µ1 in (3.113). Lower

steady-state noise can be achieved by selecting µ even smaller than µ1, which will on the other

hand increase convergence time. In the CFO case, the behavior is different. While the slope of

convergence is the same, the steady-state error is significantly influenced by the CFOs. For

values of µϕw ≥ 10−3 rad, the error term due to the lag of the adaptive filter, while following

the variations due to the CFOs, is dominant. We can, furthermore, see slightly oscillatory

behavior in the steady-state MSE, which comes from the fact that the changes are faster than

the filters ability to track them. Specifically, this leads to time instances, where the cyclical

variation of the channel catches up with the adaptive filter, yielding lower MSE, before it sort

of overtakes the filter and the MSE increases again. In general, it is seen that the convergence
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Figure 3.15: MSE of channel tracking with an adaptive filter, with step sizes µ1, µ2, and µopt,CFO

from (3.113), (3.135), and (3.134), for a LoS MIMO system affected by independent carrier
phase processes, with LC = 10 taps, M = N = 4 antennas, a Rician factor of KR = 10dB, using
pseudo-noise training of length LT = LC = 10 per iteration, and using an oversampling factor
of Q = 1. MSE with purely linearly-drifting CFO processes for different µϕw (left). MSE with
more complex CFO processes for different µϕw (right).

behavior of the adaptive filter is, in this system, not significantly influenced by the CFOs, but

the steady-state MSE is, which will be further investigated next.

The tracking MSE performance of the adaptive filter is given in Figure 3.15, including the lower

bound that was also used in section 3.5.1. This bound is just meant to serve as a reference

to prior results, as the adaptive filter has infinite memory, whereas the bound was derived

for a finite length of LTr = 89. Thus, for time-invariant channels and corresponding low step

sizes, the performance can be better than the finite-sample reference lower bound. Aside from

the choices µ1 and µ2 already discussed, the optimal selection for the step size µ in the CFO

tracking case, derived in section 3.4.4 and given by

µopt,CFO =
(

4 · ∆φ2
max

σ4
xTr,n

σ2
ṅm

·N LT

) 1
3

,

is also used. Note that in order to utilize µopt,CFO, knowledge about the SNR, and knowledge

about the order of magnitude of the CFOs, i.e., ∆φmax = 2µϕw whereas the true values for

the simulations are drawn according to µϕw,m/n ∼U (−µϕw ,µϕw ), is assumed. Furthermore,

it is assumed that the filter is in a converged state, either through a single estimate as in

section 3.5.1 or through convergence with a suitable µ as above, and only the MSE during

tracking is investigated. The first observation from Figure 3.15 is that for purely linearly-drifting

carrier phase processes, using µopt,CFO can yield significant performance improvements for
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small CFOs. The lack of the curve withµopt,CFO for the higher CFO value is explained by the fact

that roughly when 10log10

(
σ2

xTr,n

σ2
nm

)
> 15dB andµϕw > 10−3 rad, the approximationµ¿ 2

σ2
xTr,n

N LT

that was used to derive µopt,CFO, see appendix B, does not hold anymore and the resulting

value for µopt,CFO leads to a divergence during tracking. Additionally, the crossing of the two

curves for the high CFO value indicates the point where the lag error of the adaptive filter

becomes dominant compared to the noise that is added by the system. The performance for

more complex carrier phase processes is markedly different. The MSEs are higher, due to the

more erratic phase processes. Importantly, the optimal solution from (3.134) does not give

the best performance, even for small µϕw . The white noise contribution of the phase process

seems to have a significant impact, as the lowest µ, i.e., µ1, achieves the best results. Generally,

the MSE of the adaptive filter during tracking increases with the CFO, as the trade-off between

gradient noise and lag error becomes worse.

3.5.4 Adaptive Filter: Tracking in the SFO Impaired Case

In this section, the tracking of the adaptive filter in the multiple SFO impaired case is investi-

gated. The same parameters as above are assumed, with the exception of an oversampling

factor of Q = 2 and a root-raised-cosine filter with βT = 0.25. As training, an upsampled, but

not pulse shaped, pseudo noise sequence of length L̇T = L̇C = 20 per iteration is used, see

section 3.3.4. As a reference, the lower bound from section 3.5.2 is included additionally.

The filter is assumed to be in a converged state, and the following choices for µ, derived in

section 3.4.4 and given by

µ1 =
1

σ2
xTr,n

· (N L̇T +1)
, µ2 =

4

3
· 1

σ2
xTr,n

·N L̇T
, and µopt,SFO =

√√√√ 1−α2

σ2
xTr,n

σ2
ṅm

·N L̇T
,

with

α= J0

(
2π ·

∣∣φ̇max,Tx
∣∣

1−
∣∣φ̇max,Tx

∣∣ ·
1

Q
· (1+

∣∣φ̇max,Rx
∣∣)
)

,

are used. As in the CFO case, µopt,SFO requires knowledge about the SNR and the level of the

SFOs. Perfect knowledge about the SNR, and knowledge about the magnitude of the SFOs, i.e.,∣∣φ̇max,Tx
∣∣=
∣∣φ̇max,Tx

∣∣=µϕ̇w , whereas the true values for the simulations are drawn according

to µϕ̇w,m/n ∼U (−µϕ̇w ,µϕ̇w ), is assumed.

Figure 3.16 contains the MSE results for the tracking of such LoS MIMO channels impaired by

multiple SFOs with an adaptive filter based on the LMS principle. Again, note that the step

sizes are very small, meaning that the LMS filter has a long memory, and can, therefore, be

better than the finite-length lower bound, which is just given as a reference to the correlation-

based results. It is seen that µopt,SFO has the best performance for all parameter settings

and yields a significant performance gain, for both the linearly-drifting and more complex

sampling phase processes, compared to the other solutions. Generally, all of the achieved
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Figure 3.16: MSE of channel tracking with an adaptive filter, with step sizes µ1, µ2, and µopt,SFO

from (3.113), (3.135), and (3.161), for a LoS MIMO system affected by independent sampling
phase processes, with L̇C = 20 taps, M = N = 4 antennas, a Rician factor of KR = 10dB, using
pseudo-noise training of length L̇T = L̇C = 20 per iteration, and using an oversampling factor
of Q = 2. MSE with purely linearly-drifting SFO processes for different µϕ̇w (left). MSE with
more complex SFO processes for different µϕ̇w (right).

MSEs are low, with the more complex phase processes increasing the MSE to some extent. The

worsening in performance with increasing SNR, which is observed for some cases of µopt,SFO,

is probably explained by the accuracy of modeling the SFO variations as a Markov process, and

the approximations that were used to derive µopt,SFO in section 3.4.4. The trade-off between

noisiness of the gradient, and lag error due to tracking of this µ seems to be tilted towards the

gradient. This means that for higher SNRs and SFO values, i.e., in regions where the SFO term

dominates the behavior of (3.147), the MSE would increase. It is also seen that the MSE for the

SFO case is lower than in the CFO case for the considered parameter range. This is in line with

the discussion at the end of section 3.4.4, where it was observed that when CFOs and SFOs are

of similar magnitude, the CFO contribution dominates the error performance. This will be

further investigated in the next section.

3.5.5 Adaptive Filter: Convergence and Tracking in the General Case

Finally, the channel estimation performance of an adaptive LMS filter in a frequency-selective

LoS MIMO system including both timing impairments is investigated. The same parameter

setting as in the previous sections are used, i.e., M = N = 4, LC = 20, KR = 10dB, Q = 2, root-

raised-cosine with βT = 0.25, and pseudo-noise training of length L̇T = L̇C = 20 per iteration.

Perfect knowledge about the SNR, and order of magnitude knowledge about the CFOs and

SFOs is assumed, when utilizing µopt,CFO and µopt,SFO, see also the sections above.
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Figure 3.17: Convergence MSE of channel estimation with an adaptive filter, with step sizes
µ· from (3.113), (3.135), (3.134) and (3.161), for a LoS MIMO system affected by independent
carrier and sampling phase processes, with LC = 20 taps, an SNR of 20 dB, M = N = 4 antennas,
a Rician factor of KR = 10dB, using pseudo-noise training of length LT = LC = 20 per iteration,
and using an oversampling factor of Q = 2. Behavior with purely linearly-drifting CFO and
SFO processes for different µϕw and µϕ̇w (left). Convergence behavior with more complex CFO
and SFO processes for different µϕw and µϕ̇w (right).

The convergence characteristics in terms of MSE are shown in Figure 3.17 for an SNR of 20 dB,

where the filters were initialized with a zero matrix. The CFO and SFO mean values are chosen

as µϕw = 10−4 rad and µϕ̇w = 10−5, respectively. It is seen that the filters converge in this case

for all selections of µ, except for µopt,SFO. This is because, as will also be seen from the next

results, the variation of the channel is dominated by the CFOs. The values of µopt,SFO are, thus,

generally too low to follow the variations due to the CFOs and ensure convergence. For linearly-

drifting phase processes, convergence and the lowest MSE is obtained with µopt,CFO. However,

for more complex phase processes, and for higher µϕw , this does not hold. In particular,

µ1 and µ2 ensure faster convergence and lower steady-state error for the more complex

phase processes, and also ensure convergence for higher CFO values, compared to µopt,CFO.

Generally, convergence requires a few hundred samples, is not significantly influenced by the

complex phase processes, and is very similar to the CFO only case of section 3.5.3.

The MSE during tracking is shown in Figure 3.18, where the filter is assumed in a converged

state when the tracking starts. As suspected in the previous section and at the end of sec-

tion 3.4.4, the error performance is dominated by the CFOs. This is seen by the fact that the

results for µopt,SFO are the worst in all cases, since the resulting µ is too low. Using µ1, µ2,

or µopt,CFO leads to reasonably good performance with the two former leading to the most

universal characteristics for the considered parameter range, including the more complex

carrier and sampling phase process cases. As in the CFO only case, the adaptive filter diverges

and does not track the channel properly with µopt,CFO for values of µϕw > 10−3 rad, since the
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Figure 3.18: MSE of channel tracking with an adaptive filter, with step sizes µ· from (3.113),
(3.135), (3.134) and (3.161), for a LoS MIMO system affected by independent carrier and
sampling phase processes, with L̇C = 20 taps, M = N = 4 antennas, a Rician factor of KR = 10dB,
using pseudo-noise training of length L̇T = L̇C = 20 per iteration, and using an oversampling
factor of Q = 2. MSE with purely linearly-drifting CFO and SFO processes for different µϕw and
µϕ̇w (left). MSE with more complex CFO and SFO processes for different µϕw and µϕ̇w (right).

approximations that were used to derive it do not hold anymore.

The main takeaway from these results is that µ1 and µ2 are good choices, when the MIMO

channel needs to be initially estimated, i.e., during convergence, and also when a channel with

more complex phase processes needs to be tracked. With linearly-drifting phase processes,

µopt,CFO may yield superior tracking performance, if the CFO values are not too high. A better

MSE performance using µopt,SFO is only obtained, when the SFOs have significantly higher

deviations45 than the CFOs.

3.6 Summary & Main Results

In this chapter, estimation of the channel parameters, based on training signals, for MIMO

systems including multiple CFOs and SFOs was investigated. First, based on a MAP/ML

approach, it was shown that matched filtering (or correlation) with each of the transmitted

training sequences is an ML estimator for the channel impulse responses at time k, when the

noise can be considered white, and when the training signals are uncorrelated across time and

45In practice, one often uses the same reference in a given transceiver to generate the carrier and the sampling
frequency. The variations due to CFOs are then usually larger, since the carrier frequency is typically higher than
the sampling frequency, meaning that the variations from the reference are magnified by the higher multiplication
factor.
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space. Extracting the timing impairments from these time-varying impulse response estimates

was proposed to be done under the presumption that they are slow compared to the length of

the training sequence. In particular, it was proposed to estimate them by using the difference

of two, or more, time-separated channel impulse response estimates. Computationally, the

proposed methods are fairly simple, as they only require a phase comparison, or a DFT and a

phase comparison. Iterations between the different estimators could, additionally, be used to

reduce the influence of one parameter on the others, and generate even better estimates. It was

furthermore seen that these approaches can only yield the phase difference processes between

transmitter and receiver. However, as will also be seen in the next chapter, it is beneficial to

separate the Tx and Rx contribution, using the fact that M ·N processes are estimated and only

M +N processes do exist. A simple way of doing this was proposed for CFO and SFO estimates,

respectively. The simulation results show that the proposed estimation approaches yield low

MSEs, especially for medium to low CFOs and SFOs. They also hint at the fact that more

suitable training sequences, aside from the Zadoff-Chu sequences that have been used here,

can lead to further performance improvement. Generally, the higher the timing impairments,

the worse the estimation of a one-shot estimator, as the correlation is influenced by them.

When more complex carrier and sampling phase processes are considered, the MSEs are

still low, but exhibit a performance floor at high SNR values. This is because the estimators

proposed here, and most of the ones available in the literature, are based on the assumption

of linearly-drifting phase processes, which does not hold in all system configurations.

To deal with more general time-varying characteristics, this chapter also investigated adaptive

filters as a means of estimating and tracking the MIMO channel with timing impairments. The

focus is on the LMS algorithm, which is of low complexity and which automatically tracks

changes in the channel with some lag. In general, the goal is to assure that the filter converges,

and tracks the variations with the lowest MSE possible. For LMS, this depends on the step

size or rate of adaptation µ, the timing impairments in the system, the correlation properties

of the training signal, and the length of the channel impulse response as well as number

of transmit antennas. Different choices for µ based on different optimization criteria, and

different available information were derived. For example, when only CFOs are present, the

optimal choice for the step size finds the best trade-off between lag error and steady-state

noise. It thus increases with the level of the CFOs, as the lag error becomes more dominant.

The general case containing both timing impairments is rather complex and only a qualitative

discussion was presented. It was seen that for the parameter range considered in this work,

the error due to the CFOs dominates, and, hence, its solutions may be used in a case were

both CFOs and SFOs are present. A general solution for the step size, which works good for

several cases but generates some excess steady-state noise, is given by

µ= 4

3
· 1

σ2
xTr,n

·N LT
.

Since the optimal solutions were derived based on several assumptions, it is important to check

whether the assumptions hold for a particular parameter setting. For example, the solutions
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making use of knowledge about the order of magnitude of the CFOs or SFOs, are based on the

assumption of linear phase progression, which does not always hold as mentioned previously.

In these cases, where the phase processes take on a more complex shape, µ typically needs to

be higher than what is predicted by these solutions. Simulation results show that convergence

is fast for uncorrelated training signals with the selected step sizes, typically requiring a

couple of hundred samples, which is equivalent to hundreds of nanoseconds in the mmWave

case. Furthermore, convergence speed is not influenced by the timing impairments for the

considered cases. Steady-state error, on the other hand, is influenced by them with higher

values, or more complex phase processes, leading to a higher MSE during tracking. The results

also reveal that the optimal solutions for the step size µ in the case of timing impairments

yield a significant MSE improvement, given that the phase processes are linearly-drifting and

relatively slow. Generally, the simulation results show that the µ mentioned above is a viable

option in all of the considered cases.

Comparing the two approaches, it can be said that low MSEs can be achieved with both

approaches with relatively low complexity and short training sequences of some hundred

symbols46. The correlation approach can obtain lower MSEs, while the adaptive filtering

approach is able to follow more general time-varying channel behavior in a more flexible way.

It can also be used in a modified form directly as an equalizer, without the need for a separate

estimation unit, as will be seen in the next chapter.

46For backhaul-like LoS channels, and linearly-drifting phase processes, one such training is sufficient for
estimating the parameters, meaning that the efficiency loss due to training is negligible. For time-varying channels
or more complicated phase processes, the training needs to be repeated. How often this is required, and how
much it costs in terms of efficiency, depends on the time-varying characteristics of the channels and the phase
processes. A treatment of this topic, w.r.t. the coherence time of a channel, can be found in [97].

106



4 Equalization and Synchronization in
MIMO Systems

This part is concerned with describing receiver structures that can compensate the channel

and timing impairments that have been described so far, using estimates from the techniques

that have been laid out in the previous chapter.

4.1 MAP and ML Data Estimation

It was seen in the previous chapter, specifically section 3.1, that given a good channel estimate

ĤC̃, the task of detecting the unknown transmitted symbol sequence xLT based on the received

sample sequence ẏL̇R
, can be formulated as follows

x̂LT = argmax
xLT

[
p
(
ẏL̇R

|xLT ,HC̃ = ĤC̃

)
p
(
xLT

)]
(4.1)

= argmax
xLT

[
1

det(πCñ)
exp
(
−(ẏL̇R

− ĤC̃xLT

)H
C−1

ñ

(
ẏL̇R

− ĤC̃xLT

))
p
(
xLT

)]
. (4.2)

Simplifying by taking the logarithm yields

x̂LT = argmax
xLT

[
log
(
p
(
ẏL̇R

|xLT ,HC̃ = ĤC̃

)
p
(
xLT

))]
(4.3)

= argmax
xLT

[
log

1

det(πCñ)
− (ẏL̇R

− ĤC̃xLT

)H
C−1

ñ

(
ẏL̇R

− ĤC̃xLT

)+ log p
(
xLT

)]
(4.4)

= argmin
xLT

[(
ẏL̇R

− ĤC̃xLT

)H
C−1

ñ

(
ẏL̇R

− ĤC̃xLT

)− log p
(
xLT

)]
, (4.5)

where the first term in (4.4) can be omitted because it does not depend on xLT
1, see (3.87).

In order to solve (4.5), we need to find the xLT that gives the minimum between the two

terms, which can be done for time-invariant and finite-memory systems by using the Viterbi

or BCJR algorithm [98, 99]. However, these approaches are already fairly complex for time-

invariant frequency-selective SISO systems and time-invariant frequency-flat MIMO systems,

1It would also be removed when taking the derivative w.r.t. xLT , which is done next.
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4.1. MAP and ML Data Estimation

respectively. This is due to the fact that they scale exponentially with the cardinality of

the transmit symbol alphabet and the dimensions of the system, which are in this case the

numbers of antennas and the length of the channel memory.

Another way of minimizing the log-likelihood function in (4.5) is to take the partial derivatives

w.r.t. the desired data symbols and set them equal to zero2, i.e.,

0 = ∂

∂xLT

log
(
p
(
ẏL̇R

|xLT ,HC̃ = ĤC̃

)
p
(
xLT

))
(4.6)

= ∂

∂xLT

((
ẏL̇R

− ĤC̃xLT

)H
C−1

ñ

(
ẏL̇R

− ĤC̃xLT

)− log p
(
xLT

))
(4.7)

= ∂

∂xLT

(
ẏH

L̇R
C−1

ñ ẏL̇R
− ẏH

L̇R
C−1

ñ ĤC̃xLT −xH
LT

ĤH
C̃

C−1
ñ ẏL̇R

+xH
LT

ĤH
C̃

C−1
ñ ĤC̃xLT − log p

(
xLT

))

(4.8)

=−ẏH
L̇R

C−1
ñ ĤC̃ +xH

LT
ĤH

C̃
C−1

ñ ĤC̃ − ∂

∂xLT

log p
(
xLT

)
. (4.9)

It is now assumed that the prior distribution of the data symbols p
(
xLT

)
is not known or that

they are independent and uniformly distributed (i.u.d.). Thus, the last term can be omitted

yielding

xH
LT

ĤH
C̃

C−1
ñ ĤC̃ = ẏH

L̇R
C−1

ñ ĤC̃ (4.10)

ĤH
C̃

C−1
ñ ĤC̃xLT = ĤH

C̃
C−1

ñ ẏL̇R
(4.11)

=⇒ x̂LT [k] =
(
ĤH

C̃
[k]C−1

ñ [k]ĤC̃[k]
)−1

ĤH
C̃

[k]C−1
ñ [k] · ẏL̇R

[k], (4.12)

noting in the final step that the channel estimates ĤC̃ and the noise correlation Cñ vary

in general with time k, and using the fact that (C−1
ñ )H = (CH

ñ )−1 = C−1
ñ since Cñ is always a

Hermitian matrix. It should be noted that for the general case considered so far, (4.12) can

only be solved when ML̇R ≥ N ·LT. From the previous chapter it is known that L̇R received

samples contain information about LT = (L̇R + L̇C)/Q −1 transmitted symbols. Thus, for most

cases ML̇R ≥ N ·LT is not fulfilled and we need to resort to the algorithms mentioned above,

i.e., Viterbi or BCJR, in order to achieve ML performance.

We continue with an equalization approach that presumes3 ML̇R ≥ N · LT, is not ML for

all cases, but is of low complexity. It can generally be said that the complete information

about the kth transmitted symbol x[k] is contained in L̇C received samples. Thus, those

samples are assumed to be sufficient for equalization, and the equalization equation for the

2To be certain that the obtained value is a minimum, the second derivative also needs to be checked. It should
be visible in (4.9) that at least the first two terms are equal to zero, if the derivative of that function w.r.t. xLT is
taken again.

3This can be fulfilled when M > N .
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kth transmitted symbols from all antennas may be written as

x̂[k] =
(
ĤH

C̃
[k]C−1

ñ [k]ĤC̃[k]
)−1

ĤH
C̃

[k]C−1
ñ [k] · ẏL̇C

[k], (4.13)

where ĤC̃[k] =
[

ˆ̇HT
C[k,0] ˆ̇HT

C[k,1] · · · ˆ̇HT
C[k, L̇C −1]

]T
, Cñ[k] = E

[
ñL̇C

[k]ñH
L̇C

[k]
]

, and which

is equivalent to (4.12) if LC = 1. Note that this equalization equation is not necessarily optimal

in the ML sense, rather it is similar to the LS solution for the channel, and its performance

depends strongly on the structure of the channel.

4.1.1 Separation of Timing Impairments

Based on (4.13), the goal is now to try to separate the different matrices contained in HC̃[k]

and Cñ[k], in order to simplify the equalization. Consider the general notation with

HC̃[k] = HRx[k] ·ΦRx[k] ·H[k] ·ΦTx[k] ·HTx[k] (4.14)

Cñ[k] = HRx[k] ·N ·HH
Rx[k], (4.15)

omitting the lengths and oversampling notation for clarity, compare to section 2.5.7. Recall

that the total length of the impulse response from the components is LC = LRx +L +LTx −2.

Suppose further that the transmit and receive filter influences are invertible with finite-length

filters, i.e., the inverses H−1
Tx [k] and H−1

Rx [k] exist4. Then, substituting the above into (4.13) gives

x̂[k] = (HH
Tx[k]ΦH

Tx[k]HH[k] ·N−1 ·H[k]ΦTx[k]HTx[k]
)−1

·HH
Tx[k]ΦH

Tx[k]HH[k]ΦH
Rx[k]N−1H−1

Rx [k] · ẏL̇C
[k]

(4.16)

≈ H−1
Tx [k] ·Φ−1

Tx [k] · (
HHH

)−1
HH

︸ ︷︷ ︸
Standard Zero-Forcing

MIMO Equalizer

·ΦH
Rx[k] ·H−1

Rx [k] · ẏL̇C
[k], (4.17)

using the fact that Φ·[k] is a diagonal matrix of complex exponentials with the properties

Φ−1
· [k] = ΦH

· [k] = Φ∗
· [k] and Φ·[k] ·ΦH

· [k] = I. The second approximation can be made if

the noise power is equal in all receivers and if the channel is time invariant, i.e., negligible

movement during transmission, and if the variation due to receiver SFOs, refer to section 2.5.3,

is sufficiently compensated by the first applied filter H−1
Rx [k].

From (4.17), a couple observations can be made. First, it is possible to separate the timing

impairments from the standard MIMO equalization, i.e., the middle part of (4.17), by compen-

sating the effects consecutively in the reverse order that they occur5. Furthermore, in order

4These filters inherently contain interpolation structures, see [4, 25], which are necessary to compensate the ISI
due to the SFOs.

5In practice, refer to section 2.4, the phase change due to CFOs and SFOs is often very small from sample to
sample, and can be assumed approximately constant over many samples. In such cases, it is possible to exchange
SFO and CFO compensation before/after the standard MIMO equalizer.
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ˆ̇h−1
Rx,M

[
k, ˆ̇φRx,M [k]

]ẏM [k]
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ˆ̇h−1
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[
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]ẏm[k]

e j φ̂Rx,m [k]

ˆ̇h−1
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[
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[
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[
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e− j φ̂Tx,1[k]
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Rx SFOs Rx CFOs Tx CFOs Tx SFOs

Figure 4.1: Basic equalization setup, compensating multiple timing impairments and a time-
invariant frequency-selective MIMO channel.

to compensate the SFOs properly, the complete equalizer needs to work on an oversampled

signal and down sampling to symbol rate is only possible after the final stage of the equalizer

has compensated the Tx SFOs. Finally, in terms of complexity, it can be seen that all timing

impairments can be compensated in parallel, refer to the equalizer diagram in Figure 4.1,

meaning that it is not required to update the full equalization matrix at every time step k, as

suggested in (4.13). Instead, it is sufficient to update the estimates and corresponding filters

that are associated with the timing impairments. The structure can be further simplified,

when joint processes are considered at the transmitter or receiver side, as will be seen in the

next sections.

4.1.2 A More General Equalizer Structure

Before dealing with more specific instances of the equalizer, a more general equalization

structure will be introduced that can improve the equalization performance. In the previous

sections, suboptimal receivers that rely on L̇F received samples to estimate the transmitted

symbols x[k] were discussed. It is known from the literature that the estimate of the symbols at

time k can be improved by including knowledge about already processed symbols. Accordingly,
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an equalizer can be written more generally [75, 100, 101] as

x̂[k] = WF[k] · ẏL̇F
[k]−WB[k] · x̌LB [k −1] (4.18)

=
[

WF[k] WB[k]
]

︸ ︷︷ ︸
WC̃[k]

[
ẏL̇F

[k]

−x̌LB [k −1]

]
, (4.19)

where WF[k] and WB[k] are time-varying feedforward and feedback filters of length L̇F and

LB, respectively. The vector x̌LB [k −1] contains the LB previous symbol decisions based on the

previously estimated symbol vectors, where x̌[k] = dec(x̂[k]). These structures are known as

DFEs. Compared to (4.12), it is seen that the feedforward part should be equivalent to the first

N rows of that equalization matrix given that L̇F = L̇R. Selecting the lengths L̇F and LB in the

best way depends on the exact structure of the channel, and how reliable the decisions on the

transmitted symbols are. An example, where such an equalizer can achieve almost optimal

performance, is a strong LoS MIMO channel without timing impairments, by using LF = 1,

corresponding to the inverse of the LoS tap, and LB = LC −1, corresponding to subtraction of

the ISI due to previously transmitted symbols, see [102].

4.2 Equalizers for Different System Configurations

Equation (4.19) gives a general equalization equation for any time-varying MIMO system in

colored noise, given i.u.d. data symbols. Computing this equation for every set of samples

seems daunting, especially due to the fact that the equalization matrix WC̃[k] needs to be

updated for every time step k. However, it was seen in the previous sections that for LB = 0 and

equal noise variance in all receivers, the timing impairment compensation can be separated

from the standard MIMO equalization. In the following, simplified equalizers for different

MIMO configurations, experiencing the different timing impairments, will be presented. It

was previously mentioned that in the presence of timing impairments, symbol-spaced signal

processing can only achieve suboptimal results. Nevertheless, this type of signal model will be

used to begin with in order to have a reference to results from the literature.

4.2.1 Synchronized Symbol-Spaced Equalizer

Consider the case where the timing impairments are negligible, e.g., they have been adequately

compensated prior to equalization, and no oversampling is present (Q = 1), e.g., the signal has

been decimated to symbol rate prior to equalization. This case is well covered in the literature

[27, 28, 101, 102, 103, 104, 105]. Only the feedforward type (LB = 0) from equation (4.13) will

be mentioned, given as

x̂[k] = (ĤH
C C−1

ñ ĤC
)−1

ĤH
C C−1

ñ ·yLF [k] (4.20)

≈ Ĥ−1
Tx ·
(
ĤHĤ

)−1
ĤH · Ĥ−1

Rx ·yLF [k], (4.21)

111



4.2. Equalizers for Different System Configurations

which is time invariant, and where the middle part of the second equation could be replaced

by any MIMO equalizer as before. The filter contained in Ĥ−1
Tx and Ĥ−1

Rx can be applied to each

stream in parallel, see section 4.1.1, and the latter one is also commonly known as a whitening

filter.

4.2.2 Symbol-Spaced Equalizer Containing Only CFOs

Assume the case where only CFOs exist and no oversampling is used. The general case with

multiple CFOs has been considered to some extent in the literature [67, 68, 106]. From (4.17),

we get in the general case

x̂[k] ≈ Ĥ−1
Tx · Φ̂−1

Tx [k] · (ĤHĤ
)−1

ĤH · Φ̂H
Rx[k] · Ĥ−1

Rx ·yLF [k], (4.22)

where, as above, the central part can be replaced by any MIMO equalizer. For the DFE of (4.19),

we can accordingly write

x̂[k] ≈ Ĥ−1
Tx · Φ̂−1

Tx [k] · (WF · Φ̂H
Rx[k] · Ĥ−1

Rx ·yLF [k]−WB · Φ̂Tx[k] · ĤTx · x̌LB [k −1]
)

, (4.23)

where the feedforward and feedback filters WF and WB are time invariant.

So far, the most general case where independent oscillators are used for the generation of

the carrier frequencies at Tx and Rx, i.e., oscillator setup 4, has been considered. In the

following, equalizers for other oscillator configurations that can occur in a MIMO system, see

section 2.4.1, will be presented. The focus will be on the feedforward type, the extension to

DFE follows from the above.

Independent on Tx and Shared on Rx

Let us start with the case where the carrier phase process is the same for all receiving front ends,

i.e., setup 3. Equation (4.22) simplifies to

x̂[k] ≈ Ĥ−1
Tx · Φ̂−1

Tx [k] · (ĤHĤ
)−1

ĤH ·e j φ̂Rx[k] · Ĥ−1
Rx ·yLF [k] (4.24)

= Ĥ−1
Tx ·∆Φ̂−1[k] · (ĤHĤ

)−1
ĤH · Ĥ−1

Rx ·yLF [k] (4.25)

≈∆Φ̂−1[k] · Ĥ−1
Tx ·
(
ĤHĤ

)−1
ĤH · Ĥ−1

Rx ·yLF [k], (4.26)

with∆Φ̂−1[k] = Φ̂−1
Tx [k]e j φ̂Rx[k] = diag(e j (φ̂Rx[k]−φ̂Tx,1[k]),e j (φ̂Rx[k]−φ̂Tx,2[k]), . . . ,e j (φ̂Rx[k]−φ̂Tx,N [k])) be-

ing a diagonal matrix that contains the compensation for the difference between the multiple

transmit, and the one receive carrier phase processes. The approximations in the preceding

equations can be made, given that the phase processes are approximately constant over the
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length of the combined impulse response LC
6.

Equation (4.26) shows that for a shared oscillator setup on the receiver side, we can employ

under the given assumptions a standard time-invariant MIMO equalizer and compensate the

effect due to the CFOs in parallel for each recovered transmitted stream after that equalizer. A

straightforward way of doing this is to use decision-directed (DD) phase tracking in form of a

digital PLL per recovered stream7, which was seen to perform optimally for this type of setup

in [55].

Shared on Tx and Independent on Rx

Consider the case where all transmitting front ends share the same carrier phase process, i.e.,

setup 3. It follows from (4.22) that

x̂[k] ≈ Ĥ−1
Tx ·e− j φ̂Tx[k] · (ĤHĤ

)−1
ĤH · Φ̂H

Rx[k] · Ĥ−1
Rx ·yLF [k] (4.27)

= Ĥ−1
Tx ·
(
ĤHĤ

)−1
ĤH ·∆Φ̂H[k] · Ĥ−1

Rx ·yLF [k] (4.28)

≈ Ĥ−1
Tx ·
(
ĤHĤ

)−1
ĤH · Ĥ−1

Rx ·∆Φ̂H[k] ·yLF [k], (4.29)

with∆Φ̂H[k] = e− j φ̂Tx[k]Φ̂H
Rx[k] = ILF ⊗diag(e j (φ̂Rx,1[k]−φ̂Tx[k]), . . . ,e j (φ̂Rx,M [k]−φ̂Tx[k])) being a diago-

nal matrix containing the difference between one transmit, and multiple receive carrier phase

processes. The same reasoning for the approximations as in the previous section applies.

From (4.29), it is seen that in order to compensate the CFOs in systems with a shared oscillator

on the transmitter side, synchronization prior to MIMO equalization is required. Due to the

fact that the CFOs appear in this setup in parallel for each of the received streams we can, aside

from the techniques mentioned in chapter 3, also use blind techniques [3, 4, 5, 28] per received

stream in order to estimate the phase processes. One example is to use the well-known squarer

and digital PLL, e.g, described in [107], on each receive stream separately.

Shared on Tx and Shared on Rx

Finally, let us look at the case where one carrier phase process is shared among all Txs, and

where also one carrier phase process is shared among all Rxs, i.e., setup 2. The equalization

6It should be visible that the phase process matrices Φ̂−1· [k] should be of larger dimensions than M or N due to
the frequency selectivity of the system. However, given the small changes of the phase processes from sample to
sample in practice, see section 2.4, the approximation is viable. Another way of looking at this physically is that the
CFOs should be low enough such that their shifting of the spectrum does not change the impulse response of the
filters significantly.

7It should be noted that standard SISO synchronization techniques, also the ones mentioned in the upcoming
sections, do seldom account for in-band interference that may be present in the received signal. In general,
the received MIMO signal contains several superimposed signals, i.e., in-band interference, prior to MIMO
equalization, and residual in-band interference, depending on the channel and equalizer, after MIMO equalization.
Nevertheless, this in-band interference can be approximately viewed as a higher modulation order signal, and
noise, respectively, meaning that most techniques are still usable to some extent.
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simplifies to

x̂[k] ≈ Ĥ−1
Tx ·e− j φ̂Tx[k] · (ĤHĤ

)−1
ĤH ·e j φ̂Rx[k] · Ĥ−1

Rx ·yLF [k] (4.30)

= e j∆φ̂[k] · Ĥ−1
Tx ·
(
ĤHĤ

)−1
ĤH · Ĥ−1

Rx ·yLF [k] (4.31)

= Ĥ−1
Tx ·
(
ĤHĤ

)−1
ĤH · Ĥ−1

Rx ·e j∆φ̂[k] ·yLF [k], (4.32)

where e j∆φ̂[k] = e j(φ̂Rx[k]−φ̂Tx[k]), and using the same approximations as in the previous two

sections. Thus, it is seen that in the shared oscillator setup only a single phase process needs

to be compensated before or after standard MIMO equalization. Both techniques mentioned

in the previous two sections can be used in order to achieve this goal.

4.2.3 Symbol-Spaced Equalizer Containing Only SFOs

Assume the case where only SFOs exist and no oversampling is used. The general case with

multiple SFOs has not been explicitly investigated in the literature8. From (4.17) we get in the

general case

x̂[k] ≈ Ĥ−1
Tx [k] · (ĤHĤ

)−1
ĤH · Ĥ−1

Rx [k] ·yLF [k] (4.33)

= Ĥ−1
Tx

[
− ˆ̇φTx[k]

]
· (ĤHĤ

)−1
ĤH · Ĥ−1

Rx

[
ˆ̇φRx[k]

]
·yLF [k], (4.34)

where, as mentioned previously, the central part can be replaced by any MIMO equalizer. The

vectors ˆ̇φTx[k] and ˆ̇φRx[k] contain the estimated sampling phase processes of the N Tx and M

Rx, refer also to section 2.5.3. The notation Ĥ−1
Tx

[
− ˆ̇φTx[k]

]
and Ĥ−1

Rx

[
ˆ̇φRx[k]

]
, which will also

be used in the next sections, needs some further explanation. These two filters are still of finite

length, i.e., discrete, but they vary with time according to the sampling phase estimates ˆ̇φTx[k]

and ˆ̇φRx[k]. Hence, they correspond to the discrete-time versions of the filters, interpolated to

the mentioned sampling phases. For the DFE of (4.19) we get

x̂[k] ≈ Ĥ−1
Tx

[
− ˆ̇φTx[k]

]
·
(
WF · Ĥ−1

Rx

[
ˆ̇φRx[k]

]
·yLF [k]−WB · ĤTx

[
− ˆ̇φTx[k]

]
· x̌LB [k −1]

)
, (4.35)

where the feedforward and feedback filters WF and WB are, as in the CFO case, time invariant.

We will continue with the different oscillator setups for sampling frequency generation, similar

to the CFO section. Finally, as mentioned before, it is important to note that the effect of the

SFOs can only be reduced, and not be fully compensated, in a symbol-spaced framework, as

irrecoverable aliasing is generated in general in such a case.

8We could treat it as part of a general time-varying channel as in [75] and as will be done later on in this chapter.
Furthermore, [74] treats a variant of the problem.
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Independent on Tx and Shared on Rx

Consider the case, where the sampling frequencies of all receiving front ends is derived from

the same phase process, i.e., setup 3. From (4.34), it follows that

x̂[k] ≈ Ĥ−1
Tx

[
− ˆ̇φTx[k]

]
· (ĤHĤ

)−1
ĤH · Ĥ−1

Rx

[
ˆ̇φRx[k]

]
·yLF [k] (4.36)

= Ĥ−1
Tx

[
− ˆ̇φTx[k]

]
· (ĤHĤ

)−1
ĤH ·

(
Ĥ−1

Rx ? sinc
[
π ·
(
l −LRx/2+ ˆ̇φRx[k]

)])
·yLF [k] (4.37)

≈
(
Ĥ−1

Tx

[
− ˆ̇φTx[k]

]
? sinc

[
π ·
(
l −LRx/2+ ˆ̇φRx[k]

)])
· (ĤHĤ

)−1
ĤH · Ĥ−1

Rx ·yLF [k] (4.38)

= Ĥ−1
Tx

[
∆ ˆ̇φ[k]

]
· (ĤHĤ

)−1
ĤH · Ĥ−1

Rx ·yLF [k], (4.39)

with some abuse of notation, assuming that the channel is approximately constant over the

sampling frequency change of the receivers, confer also section 2.5.3, and with the combined

phase process∆ ˆ̇φ[k] =
[

ˆ̇φRx[k]− ˆ̇φTx,1[k] ˆ̇φRx[k]− ˆ̇φTx,2[k] · · · ˆ̇φRx[k]− ˆ̇φTx,N [k]
]T

.

From (4.39), it is seen that the time-varying ISI due to the SFOs can, in such a setup under

the given assumptions, be compensated by parallel time-varying filters after standard MIMO

equalization. Thus, it is feasible to use standard interpolation filters [4, 25] in parallel, to

compensate the combined SFO effect for each recovered transmitted stream. Additionally,

given an oversampled signal, we can, aside from the methods mentioned in chapter 3, use

standard SFO estimation techniques for SISO systems from the literature [3, 4, 5, 28, 71].

Shared on Tx and Independent on Rx

Assume setup 3, where all transmitters experience the same sampling phase process. Equa-

tion (4.34) yields

x̂[k] ≈ Ĥ−1
Tx

[
− ˆ̇φTx[k]

]
· (ĤHĤ

)−1
ĤH · Ĥ−1

Rx

[
ˆ̇φRx[k]

]
·yLF [k] (4.40)

=
(
Ĥ−1

Tx ? sinc
[
π ·
(
l −LTx/2− ˆ̇φTx[k]

)])
· (ĤHĤ

)−1
ĤH · Ĥ−1

Rx

[
ˆ̇φRx[k]

]
·yLF [k] (4.41)

≈ Ĥ−1
Tx ·
(
ĤHĤ

)−1
ĤH ·

(
Ĥ−1

Rx

[
ˆ̇φRx[k]

]
? sinc

[
π ·
(
l −LTx/2− ˆ̇φTx[k]

)])
·yLF [k] (4.42)

= Ĥ−1
Tx ·
(
ĤHĤ

)−1
ĤH · Ĥ−1

Rx

[
∆ ˆ̇φ[k]

]
·yLF [k], (4.43)

with∆ ˆ̇φ[k] =
[

ˆ̇φRx,1[k]− ˆ̇φTx[k] ˆ̇φRx,2[k]− ˆ̇φTx[k] · · · ˆ̇φRx,M [k]− ˆ̇φTx[k]
]T

.

Compared to the case above, (4.43) shows that the SFOs can be compensated by parallel time-

varying filters prior to standard MIMO equalization in this oscillator setup. Furthermore, in the

oversampled case, we can use well-known blind SFO estimation techniques [3, 4, 5, 28, 107],

e.g., squaring of the signal, in parallel for each received stream.
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Shared on Tx and Shared on Rx

Finally, consider setup 2, where all transmitters experience the same sampling phase process,

and all receivers experience the same sampling phase process, respectively. From (4.34)

x̂[k] ≈ Ĥ−1
Tx

[
− ˆ̇φTx[k]

]
· (ĤHĤ

)−1
ĤH · Ĥ−1

Rx

[
ˆ̇φRx[k]

]
·yLF [k] (4.44)

= Ĥ−1
Tx ·
(
ĤHĤ

)−1
ĤH · Ĥ−1

Rx

[
∆ ˆ̇φ[k]

]
·yLF [k] (4.45)

= Ĥ−1
Tx

[
∆ ˆ̇φ[k]

]
· (ĤHĤ

)−1
ĤH · Ĥ−1

Rx ·yLF [k], (4.46)

where the combined phase process is∆ ˆ̇φ[k] = ˆ̇φRx[k]− ˆ̇φTx[k], and using the same assumptions

as above. Thus, all of the techniques mentioned above are feasible.

4.2.4 Oversampled Equalizer Containing CFOs and SFOs

Consider the case where both timing impairments, i.e., CFO and SFO, are present, and where

the received signal is oversampled Q times. Only the cases, where the oscillator setup is the

same for carrier and sampling frequency generation, because they are synonymous with

independent transmitters or receivers, e.g., multiple users in a spatial division access scheme

where sharing of a reference is cumbersome, will be presented here. Likewise, if a reference is

already shared for carrier or sampling frequency generation, it may also be used for generation

of the other one, confer the last part of section 2.4. Nevertheless, equalizers for mixed setups

can be obtained in a similar way as the results from the previous and following sections.

Equalization for the general case with multiple CFOs and SFOs has not been explicitly treated

in the literature9. From (4.17), we have

x̂[k] ≈ Ĥ−1
Tx

[
− ˆ̇φTx[k]

]
· Φ̂−1

Tx [k] · (ĤHĤ
)−1

ĤH · Φ̂H
Rx[k] · Ĥ−1

Rx

[
ˆ̇φRx[k]

]
· ẏL̇C

[k], (4.47)

again omitting the oversampled notation on the matrices. In comparison to the symbol-

spaced case, the central part can be replaced by any fractionally-spaced MIMO equalizer. For

the more general DFE of (4.19), we can write accordingly

x̂[k] ≈ Ĥ−1
Tx

[
− ˆ̇φTx[k]

]
· Φ̂−1

Tx [k] ·
(
WF · Φ̂H

Rx[k] · Ĥ−1
Rx

[
ˆ̇φRx[k]

]
· ẏL̇F

[k]

−WB · Φ̂Tx[k] · ĤTx

[
− ˆ̇φTx[k]

]
· x̌LB [k −1]

)
,

(4.48)

where the feedforward and feedback filters WF and WB are time invariant, as in the symbol-

spaced cases, but in contrast to these cases the filters now need to be fractionally spaced.

From these equalization equations, it is seen that the complete equalization structure needs

to be fractionally spaced in order to properly compensate the SFOs. In particular, the Tx SFOs

create signals with slightly different bandwidths, meaning that whenever the received signal is

9With the exception of [74, 75], which treat a specific version of the problem.
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downsampled to symbol rate prior to separation with the MIMO equalizer, it is very likely that

some of the superimposed signals generate irreversible aliasing. In the following, different

oscillator setups, based on (4.47), will be looked at, and the cases where part of the equalizer

can be symbol spaced will be discussed.

Independent on Tx and Shared on Rx

Consider setup 3, where a phase process is shared for the generation of the carrier and

sampling frequencies, respectively, on the receiver side. From (4.47) we get

x̂[k] ≈ Ĥ−1
Tx

[
− ˆ̇φTx[k]

]
· Φ̂−1

Tx [k] · (ĤHĤ
)−1

ĤH ·e j φ̂Rx[k] · Ĥ−1
Rx

[
ˆ̇φRx[k]

]
· ẏL̇C

[k] (4.49)

≈ Ĥ−1
Tx

[
∆ ˆ̇φ[k]

]
·∆Φ̂−1[k] · (ĤHĤ

)−1
ĤH · Ĥ−1

Rx · ẏL̇C
[k] (4.50)

≈∆Φ̂−1[k] · Ĥ−1
Tx

[
∆ ˆ̇φ[k]

]
· (ĤHĤ

)−1
ĤH · Ĥ−1

Rx · ẏL̇C
[k], (4.51)

with∆Φ̂−1[k] and∆ ˆ̇φ[k] being defined as in the previous sections investigating this oscillator

setup, and using the same assumptions as in those sections. It is seen that any fractionally-

spaced time-invariant MIMO equalizer should be used first in order to recover the different

transmitted streams. After separating them, the timing impairments can be compensated in

parallel for each stream, similar to independent SISO systems, with the techniques mentioned

previously. Downsampling to symbol rate is possible prior to CFO compensation.

Shared on Tx and Independent on Rx

Assume the case, where a phase process is shared for the generation of the carrier and sampling

frequencies, respectively, on the transmitter side, i.e., setup 3. Starting from (4.47) yields

x̂[k] ≈ Ĥ−1
Tx

[
− ˆ̇φTx[k]

]
·e− j φ̂Tx[k] · (ĤHĤ

)−1
ĤH · Φ̂H

Rx[k] · Ĥ−1
Rx

[
ˆ̇φRx[k]

]
· ẏL̇C

[k] (4.52)

≈ Ĥ−1
Tx ·
(
ĤHĤ

)−1
ĤH ·∆Φ̂H[k] · Ĥ−1

Rx

[
∆ ˆ̇φ[k]

]
· ẏL̇C

[k], (4.53)

where∆Φ̂H[k] and∆ ˆ̇φ[k] are defined as in the previous sections investigating this oscillator

setup, and employing the same assumptions as in those sections. For this setup, the timing

impairments can thus be compensated prior to MIMO equalization in parallel for each of the

received streams. Since the SFOs are compensated by this first set of parallel filters, the signal

can be downsampled to symbol rate and the rest of the equalization can be carried out on a

symbol-spaced level without loss of performance10.

10This assumes perfect knowledge about the sampling phase processes. When the sampling phase processes are
estimated, there will be estimation errors leading to irreversible aliasing if the rest of the processing is carried out
on a symbol-spaced level.
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Shared on Tx and shared on Rx

Finally, consider the case where a phase process is shared for the generation of the carrier

and sampling frequencies on the transmitter and receiver side, respectively, i.e., setup 2.

Equation (4.47) yields

x̂[k] ≈ Ĥ−1
Tx

[
− ˆ̇φTx[k]

]
·e− j φ̂Tx[k] · (ĤHĤ

)−1
ĤH ·e j φ̂Rx[k] · Ĥ−1

Rx

[
ˆ̇φRx[k]

]
· ẏL̇C

[k] (4.54)

≈ Ĥ−1
Tx

[
∆ ˆ̇φ[k]

]
·e j∆φ̂[k] · (ĤHĤ

)−1
ĤH · Ĥ−1

Rx · ẏL̇C
[k] (4.55)

≈ Ĥ−1
Tx ·
(
ĤHĤ

)−1
ĤH ·e j∆φ̂[k] · Ĥ−1

Rx

[
∆ ˆ̇φ[k]

]
· ẏL̇C

[k], (4.56)

with ∆φ̂[k] and ∆ ˆ̇φ[k] being defined as in the previous sections investigating this oscillator

setup, and using the same assumptions as in those sections. The signal can be downsampled

to symbol rate after the SFO has been compensated, e.g., before CFO compensation and

MIMO equalization.

4.3 Adaptive Equalization

So far, it was shown in this chapter that the timing impairment compensation can be separated

from standard MIMO equalization, and that simplifications can be made depending on the

oscillator setup. Another approach is to use adaptive filters in order to adjust the full time-

varying MIMO equalizer, irrespective of the actual system configuration11. It was seen in the

previous chapter in section 3.4 that adaptive filters are able to track general time-varying

MIMO channels, which required knowledge about the transmitted symbols. In the current

chapter, it was described that the equalizer generally needs to be time varying, i.e., needs to

change for every set of received samples that correspond to a transmitted symbol, in order

to remove the effects due to the timing impairments. It is possible to use an adaptive filter

to replace the previous equalizer, which was fed by one-shot estimates of the parameters,

and adopt it based on an error signal that is available in the receiver12. One of the simplest

instances of this approach can be seen in Figure 4.2, where a hard decision13 on the equalized

symbols is used in order to derive the error signal [28], i.e., it is a decision-directed (DD)

approach.

The equalization filter can take any of the forms that have been discussed so far in this chapter.

The general equations for adaptive equalization using a feedforward and a feedback part

based on the LMS algorithm can be written as follows. The estimates of the symbols are given

11Adaptive filters could also be modified to compensate the effects separately depending on the oscillator setup.
This concept will not be pursued further in this work.

12Only the symbol updated versions of the adaptive algorithm will be presented, as they should yield the best
tracking performance.

13Decoding could be included to increase the reliability of the decisions, but introduces additional delay.
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HC̃[k] WC̃[k] Decision

ñL̇F
[k]

xLT [k] ẏL̇F
[k] x̂[k] x̌[k]

e[k]

Adaptive Equalizer

Figure 4.2: Basic working principle of adaptive equalization, i.e., adapting the equalizer WC̃[k]
based on the observed error signal e[k], which contains the difference between the estimated
signal x̂[k] from the equalizer output, and the decided values x̌[k] of those estimated symbols.

from (4.19) as

x̂[k] = WC̃[k]

[
ẏL̇F

[k]

−x̌LB [k −1]

]

︸ ︷︷ ︸
ẏC̃,L̇F,B

[k]

. (4.57)

The update of the equalization matrix WC̃[k] is given as

WC̃[k +1] = WC̃[k]−µ ·e[k]ẏH
C̃,L̇F,B

[k], (4.58)

where, as in the estimation part of section 3.4, selecting the step size µ and the initialization of

the equalization filter WC̃[0] is important in order to ensure convergence and good tracking

performance. Especially initialization is important in order for the DD approach to work. The

error signal is defined by

e[k] = x̂[k]− x̌[k], (4.59)

with x̌[k] being the decision based on the estimate x̂[k]. The equations (4.57), (4.58), and

(4.59) are the only things that need to be implemented for a DD time-varying adaptive MIMO

equalizer, dealing with all channel impairments, based on the LMS algorithm.

4.3.1 Significant Statistics for Equalization Based on LMS

From the previous chapter exploring the channel estimation case, it is known that the conver-

gence behavior and tracking performance of adaptive filters depends on the statistics of the

filters input signal, in this case ẏC̃,L̇F,B
[k]. The correlation matrix of this signal is defined by

CẏC̃,L̇F,B
[k] = E

[
ẏC̃,L̇F,B

[k]ẏH
C̃,L̇F,B

[k]
]

(4.60)

=
[

CẏL̇F
[k] CẏL̇F

x̌LB
[k]

Cx̌LB ẏL̇F
[k] Cx̌LB

[k]

]
. (4.61)
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Section 3.4.1 of the previous chapter showed that

CẏL̇F
[k] = E

[
ẏL̇F

[k]ẏH
L̇F

[k]
]

(4.62)

= HC̃[k] ·CxLT
[k] ·HH

C̃
[k]+Cñ[k] (4.63)

≈σ2
xn

·HC̃[k]HH
C̃

[k]+σ2
ṅm

·HC̃,Rx[k]HH
C̃,Rx

[k], (4.64)

Furthermore, assuming properly working equalization, see also [101], we can state

Cx̌LB
[k] = E

[
−x̌LB [k −1]

(−x̌LB [k −1]
)H]= CxLB

[k] = CxLB
(4.65)

= E
[

xLB [k]xH
LB

[k]
]

(4.66)

≈σ2
xn

IN LB , (4.67)

meaning that the equalized output symbols are uncorrelated across time and space. Finally,

using the same assumption, the cross terms are defined by

CẏL̇F
x̌LB

[k] = E
[

ẏL̇F
[k]
(−x̌LB [k −1]

)H]=−E
[

ẏL̇F
[k]xH

LB
[k −1]

]
(4.68)

=−E
[[

HC̃[k]xLF+LC−1[k]+ ñL̇F
[k]
]

xH
LB

[k −1]
]

(4.69)

=−HC̃[k]




0N×N LB

CxLB
[k]

0N (LF+LC−LB−2)×N LB


= CH

x̌LB ẏL̇F
[k] (4.70)

≈−σ2
xn

HC̃[k]




0N×N LB

IN LB

0N (LF+LC−LB−2)×N LB


 . (4.71)

In order to determine suitable values for the step size µ, the significant eigenvalues of the

composite correlation matrix CẏC̃,L̇F,B
[k], and the time variations in the statistics, need to

be investigated. In the following, the convergence and tracking characteristics of adaptive

equalizers based on the LMS principle will be considered, and it is discussed how to select µ.

4.3.2 Convergence Behavior of LMS-Based Equalization

There are two approaches to deal with convergence for the equalization case. First, it can be

assumed that a good channel estimate ˆ̇HC[k] is available during initialization of the equalizer,

e.g., by employing the techniques of chapter 3. From this estimate, the equalizer coefficients

for the feedforward and feedback filters can be computed see, e.g., [100, 101, 102]. Assuming

that there are no significant variations in the channel, or, if that is the case that the filter is

reinitialized with a new channel estimate, we only need to worry about the tracking behavior,

which will be described in the next section.

The other approach assumes that no initial channel knowledge is available, i.e., WC̃[0] =
0N×(ML̇F+N LB), such that the equalizer needs to be trained from scratch. In this case, train-
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ing signals, as discussed in the estimation chapter, are required in order for the equalizer to

converge to the proper solution. It is also assumed that the channel is approximately time in-

variant, see appendix A.2, during the convergence process. First, consider the simpler case

of just using a feedforward equalizer, i.e., LB = 0, for which the correlation matrix reduces to

CẏL̇F
[k]. In this case, the significant eigenvalues of the correlation matrix of a Q-fold oversam-

pled MIMO signal need to be determined. It was discussed in section 3.4.5 that the eigenvalues

of such a correlation matrix depend on the spectra of the received signals, as well as their cor-

relations, see also [24] for the equalization case. Corresponding to section 3.4.5, and assuming

linear channels, there will be approximately M · L̇F
Q · (1+βT) significant eigenvalues14, where

βT is the roll-off of the transmit pulse-shaping filter. If the MIMO channels are uncorrelated

(or orthogonal) and flat, as in perfectly designed pure LoS MIMO systems, the eigenvalues

are approximately equivalent, and the results of section 3.4.3 with the correlation matrix from

(4.64) are directly applicable. In particular, the solutions

µ= 1

σ2
ẏm

·
(
M L̇F

Q +1
) or µ= 4

3
· 1

σ2
ẏm

·M L̇F
Q

,

ensure convergence with low steady-state noise for small βT
15, with σ2

ẏm
= Nσ2

xn
+σ2

ṅm
being

the average received power at the mth antenna. Going back to an equalizer containing both

feedforward and feedback filters, the number of significant eigenvalues is approximately the

same, i.e., M · L̇F
Q ·(1+βT). However, N ·LB of the eigenvalues increase in value to approximately

(N +1)σ2
xn
+ N−1

N σ2
ṅm

, compared to Nσ2
xn
+σ2

ṅm
in the previous case. It is possible to reevaluate

(3.106) using these eigenvalues, depending on LB. Two solutions for µ, which have slightly

slower convergence speed, but should ensure convergence and low steady-state noise in

almost all scenarios, will be given. They are

µ= 1

2σ2
ẏm

·
(
M L̇F

Q +1
) or µ= 4

3
· 1

2σ2
ẏm

·M L̇F
Q

,

meaning that µ is half as large as in the previous case. Note that the preceding discussion

only holds when M · L̇F > N ·LB. When N ·LB ≥ M · L̇F as, for example, used for the equalizer

proposed in [102], the term M L̇F
Q in the last two equations should be replaced with N LB +1.

When the MIMO channels are frequency selective and not orthogonal, µ generally needs

to be smaller than these suggested values [24], which also increases the convergence time.

Since the eigenvalues depend in such cases on the exact channel characteristics, see (4.64),

no further recommendations for selecting µ will be given. It should be noted that different

methods have been proposed in the literature in order to reduce the impact of correlated

14Note that the probability of a large eigenvalue spread is much higher for the equalization case, and they may
influence the convergence speed of the adaptive equalizer significantly. This property will not be discussed here,
where the focus is on the steady-state error performance. Furthermore, depending on the filter shape on the
receiver side, there may exist more significant values for very low SNR environments. Such scenarios will also not
be discussed here.

15For more conservative choices, we may substitute M L̇F
Q in the equations with M L̇F

Q ·⌈1+βT
⌉

or M L̇F
Q ·2.
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inputs on convergence, see for example the affine projection algorithm mentioned in [76].

Furthermore, for practical implementations one has to consider the impact of finite-resolution

computations and other robustness-reducing factors, as briefly mentioned in section 3.4.2.

4.3.3 Tracking Behavior of LMS-Based Equalization

Assuming the equalizer coefficients have converged, i.e., the MIMO system is properly equal-

ized such that most of the symbol decisions are correct, it needs to be investigated how the

adaptive filter generates the changes in the equalizer coefficients, which are necessary due

to the timing impairments. As discussed in the previous chapter, and also visible from (4.64)

and (4.71), the correlation matrices CẏL̇R
and CẏL̇R

xLT
generally vary with time because of the

CFOs and SFOs. For the equalization case, it first needs to be checked whether the timing

impairments do change the eigenvalues of the correlation matrix CẏC̃,L̇F,B
[k] significantly.

For CFOs, it was seen in section 2.5.2 that their impact is row- and column-wise multiplication

with a complex phase shift that increases on average over time. Thus, they act as diagonal

matrices with unit-magnitude complex entries, which cannot change the correlation prop-

erties, in particular the eigenvalues, of the MIMO channel. This can also be seen from the

feedforward equalizer in Figure 4.1, which shows that the algorithm needs to adopt the phases

of the rows and columns of the equalizer according to the CFO processes, but where the

inherent phase and amplitude structure, which determines the correlation across space and

time, is constant16. For SFOs, the situation is slightly different, since sampling differences do

influence the eigenvalues to some extent. In general, the correlation in the spatial domain, i.e.,

how correlated the M ·N MIMO channels are, is only negligibly influenced by changes in the

sampling phases. The temporal correlation on the other hand, is influenced by the sampling

phase variations. However, assuming reasonably flat transmit and receive filters, this change

in eigenvalues is small17 for oversampled systems. Thus, it was qualitatively established that

the timing impairments do not change the eigenvalue or correlation structure of the MIMO

channel significantly in most cases. However, they do create small variations, which need to

be tracked during equalization.

As in the estimation case, discussed in section 3.4.4, the CFO and SFO influences will be treated

separately. It was discussed that CFOs correspond to small multiplicative phase variations,

while SFOs can be modeled as small additive variations. The tracking error that is generated

from each of them depends on the eigenvalues of the correlation matrix CẏC̃,L̇F,B
[k], the level

of offset, and the step size µ, in the same manner as in (3.124), (3.126), and (3.149). Since

the significant eigenvalues depend again on the exact channel characteristics, the flat and

16Another way of phrasing this is that the CFOs do not change the spatial correlation and the power spectra of the
received signals, which are similar to the eigenvalues of the correlation matrix, see Example 7. As mentioned before,
this only holds for small CFOs, where the channel does not change significantly due to the shift in frequency.

17This can again be visualized in the frequency domain, where the spectra change according to variations of the
sampling phases, but most of the spectral characteristics (or significant eigenvalues) are constant. As for the CFO
case, this only holds for small sampling phase differences, where the change in bandwidth due to the sampling
does not significantly change the channel.
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orthogonal MIMO channel case will be discussed first. Then, the optimal choice for µ in the

CFO impaired case, similar to the previous chapter, is given by

µopt,CFO ≈

4 · ∆φ2

max

σ4
ẏm
σ2

ṅm
·M L̇F

Q




1
3

, (4.72)

where ∆φmax is the highest normalized carrier frequency difference between all antennas.

Likewise, the solution under SFO impairments is

µopt,SFO ≈
√√√√ 1−α2

σ2
ẏm
σ2

ṅm
·M L̇F

Q

, (4.73)

with α being a value very close to one that describes the amount of sampling phase difference,

see the second part of section 3.4.4 and in particular (3.145). Note that these two are just an

estimate of the true optimum, even in the frequency-flat and orthogonal MIMO channel case.

This is because the roll-off βT and the feedback filter generate unequal eigenvalues, for which

finding the true optimum is more complicated, see section 3.4.4. When both impairments

are present simultaneously, the solution becomes very complicated, see also the estimation

chapter. In such a case, it is suggested to use the higher of the two µopt solutions, in order to

be conservative such that the filter can always follow the faster of the two variations. When no

information about the level of the timing impairments and of the noise is available, we can use

the solutions from the previous section, assuming that CFOs and SFOs are reasonably small.

If the MIMO channel is not flat and orthogonal, µ also generally needs to be lower than these

suggested values in this case. The reason is that the error due to steady-state noise, i.e., the

first term of the misadjustment in (3.125), increases with the change in eigenvalues, while

the second term is not affected by it for small µ. Thus, the error due to steady-state noise

increases, while the error due to tracking lag stays the same. A smaller value for the step size

should, hence, be closer to the real optimum.

4.4 Simulation Results

This section will give some example results for adaptive equalization of LoS MIMO channels

with multiple timing impairments, under the same assumptions that were used in section 3.5.

In particular, M = N = 4 Rx/Tx antennas, and a channel with a Rician factor of KR = 10dB

and length LC = 10, are considered. The non-line-of-sight (NLoS) taps are drawn from a

complex random Gaussian distribution18. The equalization performance, specifically the

separation of the spatial streams, is influenced by the orthogonality of the LoS MIMO channel.

Hence, MIMO channels, which are not perfectly orthogonal, will also be considered to cover a

broader range of scenarios. The reason to focus only on adaptive equalization in this section

18See section 3.5 for a more complete description of the simulation setup.
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is that it offers a relatively low-complexity way to deal with all channel impairments in a

simple configuration. Furthermore, MIMO equalization without timing impairments has been

extensively treated in the literature, e.g., [102, 103, 105], and adding the timing impairment

compensation to such an equalization can be done separately before and/or after it, see

section 4.2. The performance of such a structure then just depends on the quality of the

estimates of the channel and timing impairments [67]. As references, the same equalizers will

be used with perfect channel knowledge, i.e., no channel estimation error, without timing

impairments, and assuming no decision errors in the case of DFE. Modulation with 16-QAM

symbols will be used exclusively for the simulations.

The focus will be on the two specific equalization structures that were mentioned previously

in this chapter. The first one uses only a feedforward filter of length LF, i.e., LB = 0. The other

one is a decision feedback structure that has been shown to work well in LoS MIMO scenarios

[102]. It has the settings LF = 1 and LB = LC−1. The equalizers will be used directly, also during

the convergence phase, meaning that a certain number of training symbols are required

before unknown data can be transmitted. The convergence behavior of these structures will

be investigated first in the next section. In order to select the step sizes µ for the adaptive

equalizers, it was seen in the previous sections that knowledge about the received power,

SNR, and sometimes the timing impairments is required. It is assumed that the former two

quantities are known perfectly, while only the order of magnitude of the latter is available. It is

assumed that σ2
ẏm

≈ N ·σ2
ẋn

.

4.4.1 Adaptive Equalization in the CFO Impaired Case

First, consider the case where the LoS MIMO system is only impaired by CFOs and, thus, a

symbol-spaced equalizer is sufficient, i.e., Q = 1. The convergence behavior of the adaptive

equalizers will be investigated first. For it, the transmitted symbols are assumed to be known

at the receiver, and suitable step sizes for the ideal LoS MIMO case can be given for the two

equalizers as

µFF = 4

3
· 1

σ2
ẏm

·MLF
, and µDFE = 4

3
· 1

2σ2
ẏm

· (N LB +1)
,

see the discussion in section 4.3.2. Figure 4.3 contains the MSE of the convergence process,

averaged over 200 realizations, of the adaptive equalizers for some example parameters. LoS

MIMO taps with different condition numbers19 κ (H[k, l = 0]) were used to cover a broader

range of practical cases. The first plot shows the convergence properties for a pure, i.e.,

frequency flat with LC = 1, LoS MIMO channel in order to gauge the impact of the orthogonality

of the channel. Both equalization structures are equivalent in this case, using LF = 1 and LB = 0,

and µFF was chosen as the basic step size for all scenarios. It is seen that this selection for

µ yields in the ideal channel case, i.e., κ (H[l = 0]) = 1, fast convergence and steady-state

19The definition of condition number and some measured values can be found in section 5.2 of the next chapter.
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Figure 4.3: Convergence MSE of adaptive channel equalization for a LoS MIMO system af-
fected by independent purely linearly-drifting carrier phase processes, i.e., σ2

ϕw
= σ2

ϕn
= 0,

with M = N = 4 antennas, assuming perfect knowledge about the transmitted symbols, and
using an oversampling factor of Q = 1. Step sizes µ chosen according to the discussion in
section 4.3.2. Behavior for a pure (frequency-flat) LoS MIMO channel for two different SNRs
and two differently-conditioned channels (left). Behavior in a frequency-selective channel for
a SNR of 20 dB with different equalization structures (right).

noise similar to the SNR. For channels with higher condition numbers, convergence is slower

and the steady-state noise is increased, due to the non-orthogonal nature of the channel. As

conjectured in section 4.3.2,µneeds to be smaller in such cases to achieve similar performance.

In particular, for this scenario using µFF/5 showed comparable error behavior.

For the frequency-selective case, i.e., LC = 10 with KR = 10dB, convergence is generally slower

due to the increased length of the required equalization filters, as well as the additional

correlation that occurs due to the ISI over time. The length of the adaptive feedforward

equalizer is chosen as LF = 3 ·LC, and µFF/µDFE, as described above, are used for the respective

equalizer. Since the FF equalizer did not converge for this solution20, µFF/2 was actually used

for the results shown in Figure 4.3. The results show that the DFE significantly outperforms

the FF structure, both in terms of convergence speed, mainly due to the shorter total length,

and in terms of steady-state error in such LoS channels. Note, however, that it is much more

susceptible to symbol decision errors, which can become critical during data transmission. It

is also important to mention that for shorter channels, i.e., lower LC, the adaptive feedforward

equalizer can achieve similar steady-state error performance as the feedback equalizer, but

20Recall that µFF is a viable solution if the input signals are uncorrelated across time and space, as discussed
in section 4.3.2. Even if the LoS channel is orthogonal, the signals are at least correlated over time due to the
frequency-selective channel. On the other hand, as also discussed in section 4.3.2, µDFE is a more conservative
estimate. In fact, for the parameters used here using 2 ·µDFE yields faster convergence with approximately the
same steady-state noise.
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Figure 4.4: SER of adaptive DFE for a LoS MIMO system affected by independent purely
linearly-drifting carrier phase processes, i.e.,σ2

ϕw
=σ2

ϕn
= 0, with M = N = 4 antennas, using an

oversampling factor of Q = 1, and µDFE. SER for a pure (frequency-flat) LoS MIMO channel for
different SNRs and two differently-conditioned channels (left). Equalization performance in a
frequency-selective channel for different CFO levels µϕw and the two differently-conditioned
channels (right). The dashed lines correspond to the SER of the equalizer in the same channel,
but with perfect channel knowledge and without timing impairments.

always requires a longer filter and more convergence time compared to the DFE. Furthermore,

as in the estimation case, the level of the CFOs does not impact the convergence properties

significantly.

Figure 4.4 shows the symbol error rate (SER), i.e., the probability of a symbol error after

adaptive equalization and hard decision, for the DFE in a frequency-flat and frequency-

selective channel, with differently-conditioned channels, and CFO levels µϕw . The focus is

only on DFE, as the convergence results already showed that the MSEs achieved by the FF

equalizer are not sufficient, even for high SNRs, to support a 16-QAM transmission in the

frequency-selective case21. The step size is chosen as the µDFE described above. The most

important feature of all results is the cliff-like behavior of the curves. This is explained by the

fact that there is a certain threshold SNR for which the symbol decisions during the tracking

phase are mostly correct, and where the adaptation of the equalizer relying on these decisions,

thus, starts to work properly. In these regions, the performance gap compared to a system

without timing impairments and having perfect channel knowledge is between 0.5 dB and

4 dB. Generally, higher CFOs lead to a larger gap, since the MSE of adaptive filters increase

with the CFO, as was seen in chapter 3.

21Even without timing impairments, the feedforward equalizer never delivered SERs below 10−1 for the consid-
ered cases.
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4.5 Summary & Main Results

In this chapter, the general derivation of MAP/ML data estimation was carried out, which yields

a highly complex detection scheme that scales exponentially with the size of the modulation

alphabet and the number of antennas. A simpler way to estimate the data is obtained by

linearly filtering the received samples. Due to the memory, i.e., frequency selectivity, which is

present in most practical channels, this approach is not ML. In the general case, it was seen

that the equalizer needs to be updated at every time step and needs to be fractionally spaced,

in order to compensate the SFOs properly. Based on a linear feedforward equalizer, it was

shown that the timing impairment compensation can be separated from MIMO equalization,

even in the case of multiple independent phase processes at the transmitters and receivers.

It can be implemented with parallel time-varying filters and multiplications with complex

exponentials before and after equalization on each of the streams. A more general equalization

structure, allowing for feedback, e.g., to cancel interference across time from different streams,

was then introduced. It uses symbol decisions from previous time steps, and a channel

estimate, in order to remove their interference on the current symbols. For both equalization

structures, the influence of different system configurations was investigated, showing that

certain oscillator setups greatly simplify the equalization and synchronization process. In

some cases, standard SISO solutions, which are readily available in the literature, can be

applied directly and in parallel. For example, when the oscillator is shared on the receiver side,

time-invariant MIMO equalization should be performed first, and the timing impairments

can be compensated in parallel by, e.g., using DD PLLs for each stream.

Adaptive equalization, based on the symbol decisions of the estimated symbols, was intro-

duced as an alternative, in order to directly update the equalizer and deal with the timing

impairments, without the need for separate timing impairment estimation. It is closely related

to the adaptive filtering that was used for channel estimation and tracking in the previous

chapter. However, in contrast to it, its performance was shown to depend much more on the

channel characteristics, while also depending on the equalization structure. Some guidelines

on how to select the step size for adaptive equalization, during convergence and tracking

in different scenarios, were also proposed. Generally, µ needs to increase with the timing

impairments, while it needs to decrease with the increasing spatial and temporal correlation,

which may be experienced due to the channel. Simulation results show the applicability

of adaptive equalization in the CFO impaired case. It is seen that convergence is fast in a

frequency-flat case, and takes significantly longer in the frequency-selective case. Likewise,

a non orthogonal LoS MIMO tap increases convergence time. For the considered example

scenarios it is, furthermore, seen that the feedforward equalizer does not sufficiently com-

pensate the channel effects in frequency-selective scenarios to support 16-QAM transmission.

SER results for the adaptive decision feedback equalizer show good performance for medium

to low CFOs. The performance gap compared to a system without timing impairments and

perfect channel knowledge is between 0.5 dB and 4 dB, depending on the scenario. Thus, DD

adaptive equalization seems a viable low-complexity approach to compensate the interference
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due to the channel, as well as the timing impairments, in one single structure.
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5 Experimental Evaluation at 60 GHz

In this chapter, practical implementations of mmWave LoS MIMO systems, and practical tests

of some of the methods and ideas that have been presented in the previous chapters, will be

presented. The focus is on implementing an energy efficient LoS MIMO wireless backhaul link

that is able to provide a transmission rate of several Gbit/s [8].

5.1 Hardware Description and Setup

The experimental system setup1 consists of two subsystems at transmitter and receiver, respec-

tively. The first one is the baseband signal generation/recording unit. The second one is the

front end, including the antenna. A sketch of the system layout can be seen in Figure 5.1. Since

the main focus of this chapter is a proof of concept of the developed ideas, rather than a real

time implementation, all baseband processing is carried out offline. Thus, subsystem one con-

sists of arbitrary waveform generators (AWGs) at the transmitters and real-time oscilloscopes

(RTOs) at the receivers. An AWG can create an arbitrary waveform or signal within its specified

parameter range, i.e., certain fixed nominal sampling rates 1/Tnom,Tx
2, analog bandwidth, and

amplitude resolution. The RTO samples the output of the front end on the receiver side and

saves it to memory, according to certain fixed nominal sampling rates 1/Tnom,Rx, analog band-

width, and amplitude resolution. Another important parameter for MIMO systems are the

number of inputs and outputs of each instrument, if the full system should be characterized at

the same time. If multiple instruments have to be combined in order to have sufficient inputs

or outputs, we have to take care of synchronization or will experience the effects mentioned in

chapter 2. Finally, the memory of the instrument defines, in combination with the sampling

rate, the maximum length of the generated signal or recording length of one acquisition. A

1The hardware and setup was provided and assembled as part of a cooperation between the Chair for Wire-
less Broadband Communication Systems at HU Berlin, the System Design Department at IHP Frankfurt (Oder),
and the Chair of Communication Systems at UniBw Munich, within the DFG funded project "maximumMIMO",
part of the SPP 1655 "Wireless Ultra High Data Rate Communication for Mobile Internet Access".

2Note that even though one sets a nominal value, these measurement instruments also sample according to
some phase process characterized by their LO. Thus, the same effects that were described in earlier chapters can
also be observed here, if the sampling devices are not synchronized, e.g., by using a shared reference.

129



5.2. Investigation of LoS MIMO Spatial Multiplexing

H(t ,τmn )

Tx N
x̄N (t )xN [k]

Tx 1
x̄1(t )x1[k]

AWGs

Rx M
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Figure 5.1: Basic system configuration used for the measurements, consisting of baseband
signal generation and recording, using AWGs and RTOs, and Tx/Rx front ends with antennas.

summary of the different instruments that were used can be found in Table 5.13.

Table 5.1: Overview of measurement instruments with their characteristic parameters, which
were used for baseband signal generation and recording in the different system setups.

Parameter AWG 1 AWG 2 RTO 1 RTO 2

max. 1/Tnom,Tx/Rx 12GSa/s 65GSa/s 20GSa/s 40GSa/s
max. Bandwidth 5GHz 25GHz 4GHz 4GHz

Resolution in ENOB 7.8 4.8 7.0 6.8
Memory 2GSa 8GSa 20MSa 128MSa

Out-/Inputs 2 8 4 4

Different types of transceiver front ends were available for the overall implementation of

the system, all operating in the 60 GHz range with at least 1 GHz of bandwidth. Table 5.2

summarizes the most important properties of the front ends (FEs). Critical parameters for a

mmWave MIMO backhaul system are the antenna gain, in order to focus the transmitted power

towards the intended receiver, the amount of phase noise, so that the signal is not strongly

impaired by it, and the possibility of supplying an external reference clock, for synchronizing

the different transceivers. If synchronization is not possible, or intentionally not used, it was

seen in the previous chapters that the system can still be synchronized based on the collected

output samples.

5.2 Investigation of LoS MIMO Spatial Multiplexing

In this section, the spatial-multiplexing capabilities of LoS MIMO, which have been described

in section 2.2, will be explored at 60 GHz. It was seen that the geometric arrangement of

the antennas determines the spatial degrees of freedom. In order to measure this, multiple

FE 1, see Table 5.2, were used in a one-dimensional MIMO configuration, with M = N = 2

and M = N = 3, and installed on an adjustable mount using different antenna spacings

dTx,1 = dRx,1 = d , which are equidistant between antennas and equal on the Tx and Rx side, see

Figure 5.2 for an example receiver setup. Furthermore, different link distances R were used.

3The values noted here are at the maximum sampling rate. The sampling rate can also be chosen lower, which
improves, e.g., the resolution and the maximum acquisition time.
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Table 5.2: Comparison of the different front ends with their characteristic parameters, which
were used in the different system setups.

Parameter FE 1 FE 2 FE 3

Frequency Range 57 GHz–64 GHz 57 GHz–64 GHz 57 GHz–64 GHz
RF Bandwidth 1.8 GHz 1.25 GHz 1.8 GHz

Tx Power, 1 dB Compr. 11 dBm 11.5 dBm 15 dBm
Tx/Rx Antenna Gain 7.5 dBi 23 dBi 23 dBi

Rx Noise Figure 7 dB 8 dB 8 dB
Phase Noise @1 MHz -86 dBc/Hz -104 dBc/Hz -93 dBc/Hz
External Ref. Clock yes no yes
Number Available 3 Tx, 3 Rx 2 Tx, 2 Rx 4 Tx, 4 Rx

Adjustable
MountRx 1 Rx 2

RTO 1

d = dRx,1

Figure 5.2: Receiver of an M = N = 2 LoS MIMO setup, showing two front end 1 modules, and
oscilloscope 1 for recording the received baseband signals.

The estimation of the MIMO channel was performed using the correlation technique, with

uncorrelated training sequences between different transmitters, as described in chapter 3, see

also [108] for further details. Since FE 1 does not provide a lot of antenna gain, long training

sequences were used for the larger distances, i.e., larger than 20 m, to yield enough correlation

gain overcoming the path loss.

For this section, the focus is on the estimate of the LoS MIMO channel coefficients, i.e.,

ĤC[k, lC = 0] = ĤC[k,0] =
[

ĥC,1[k,0] ĥC,2[k,0] · · · ĥC,M [k,0]
]T

, and all other coefficients

that may be present are neglected. To check the multiplexing capabilities of the matrix, the

condition number is used, which is defined by

κ
(
ĤC[k,0]

)= σmax
(
ĤC[k,0]

)

σmin
(
ĤC[k,0]

) , (5.1)

where σmax(·) and σmin(·) are the largest and smallest singular values of a matrix, respectively.

The condition number is one when the matrix is orthogonal, i.e., there are min(M , N ) spatial

degrees of freedom, which corresponds to the best-case channel. It is infinity when the
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Figure 5.3: Condition number of the LoS MIMO channel tap at different link distances: (a)
Changes when moving transmitter 2 by ∆d , increasing antenna spacing dTx,1; (b) CDF of all
distances, grouped into setups with best-case dB, worst-case dW, and fixed at 0.5 m d0.5m,
antenna spacings.

columns of the matrix are fully dependent, i.e., there is one spatial degree of freedom and

no spatial multiplexing is possible, which is the worst-case channel in terms of multiplexing.

We are here mainly interested in the phase relations of ĤC[k,0] and their dependence on the

geometric arrangement of the antennas, see section 2.2. However, the general estimate also

includes the magnitude values of the channel coefficients, which can be different and thereby

influence the condition number. To remove that dependence the following normalized matrix

is also used in the results

(
ĤC,norm[k,0]

)
mn = ĥC,mn[k,0]∣∣ĥC,mn[k,0]

∣∣ . (5.2)

A final note about the time dependence is in order. Although the channel estimate changes

over time, even for a fixed setup and stable channel, due to the timing impairments, the impact

of that effect on the condition number is rather small. To gain higher estimation accuracy,

multiple condition number estimates of a certain setup were averaged w.r.t. time, using at

least 400 realizations per spacing.

First, the assumed spherical wave propagation, and the corresponding geometric dependence

of the LoS MIMO tap, were tested. For the results in Figure 5.3a, a fixed M = N = 2 setup with

a link distance of R = 1.993m and an initial antenna spacing of dTx,1 = dRx,1 = 0.180m was

used. Then, the spacing on the transmitter side was increased by ∆d w.r.t. its initial position,

i.e., d new
Tx,1 = dTx,1 +∆d 6= dRx,1, and the change in the condition number of the estimated LoS

channel was observed. It can be seen that it follows the theory, when considering spherical
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Figure 5.4: Measured condition number of the LoS MIMO channel tap at fixed distances, for
different antenna spacings d , and for different numbers of antennas.

propagation of the waves, i.e., the channel to be given by (2.12). For Figure 5.3b, the cumu-

lative distribution function (CDF) for the condition number of the LoS tap over a number of

measured distances was computed. The system was deliberately set up, for each distance,

with three different antenna spacing types. The first one is denoted by dB, where, for example,

equation (2.20) was used to derive the optimal4 antenna spacing that yields the best-case

channel for every distance. The term dW denotes spacings, which theoretically yield κ→∞, in

other words the worst-case channel for each distance. Finally, d0.5m is a fixed spacing of 0.5 m

at Tx and Rx that was used irrespective of the change of link distance R. The curves show that

if the optimal spacings can be fulfilled, very low condition numbers (κ< 2) can be achieved,

yielding good spatial-multiplexing gain. On the other hand, with the worst-case spacings, the

condition number is one order of magnitude higher, while the fixed 0.5 m setup yields a κ

between the two extremes.

Figure 5.4 gives two example measurements for an M = N = 2 and M = N = 3 setup at a fixed

distance, where the antenna spacing types described above were used. The figures show that

there are multiple optimal spacings, and that the measurements coincide with the theoretical

prediction. There is greater variation in the M = N = 3 case, because the system becomes

more sensitive to small errors in the setup, e.g., small antenna spacing differences and other

misalignments, with an increasing number of antennas.

4As noted in section 2.2, there are multiple optimal spacings for each link distance.
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Tx

Tx

Figure 5.5: Three example measurement scenarios. Left: outdoor M = N = 2 scenario, FE 1, link
distance between 10 m and 60 m. Center: indoor short-range backhaul M = N = 2 scenario,
FE 1, distance of 15 m. Right: anechoic chamber M = N = 3 scenario, FE 2, distance of 5 m.

5.3 Statistical Properties of LoS MIMO for Backhaul-Like Scenarios

In the previous section, the spatial-multiplexing properties, in particular the required spherical

wave propagation, of LoS MIMO in backhaul-like scenarios were established. In order to

design a complete wireless communication system, other channel properties, like relative

importance and amount of multi-path components, are also of interest. The following results

were obtained using FEs 1 and 2, see Table 5.2, with M = N = 2 and M = N = 3 antennas, in

15 different setups, and with at least 40 snapshots per setup. Some example setups can be

found in Figure 5.5. It includes spacings generating differently-conditioned channels, and link

distances between 5 m and 60 m. All results are normalized w.r.t. the average LoS tap power of

the corresponding setup, see [53] for further details.

Figure 5.6 contains the magnitude and phase distributions of the LoS and NLoS taps computed

from the channel estimates of the different setups. It is seen that the NLoS taps are significantly

reduced in power, with the average relative value w.r.t. the LoS taps being -11.2 dB, and that

their phases are approximately uniformly distributed. The variations in the magnitude of the

LoS components are due to the shape of the antenna patterns. For example, using FE 2 with

its highly directive antennas, only the bore-sight channel entries have approximately the same

gain. This effect is further enhanced by the fact that the systems were set up by hand, as was

also observed in [109].

In Figure 5.7, the superposition of 75 consecutive channel impulse response estimates of

an example recording of an M = N = 2 LoS MIMO setup with FE 2 in an anechoic chamber

with a link distance of 5 m, and with a symbol duration of Ts = 0.8ns, is shown. For the plot,

an estimate is formed roughly every 0.8µs, yielding a complete snapshot length of 60µs (or

7.5 ·104 symbols). Aside from some small variations, the channel appears stable in terms of

magnitude over this time frame, especially concerning the most significant taps. Since the
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Figure 5.6: Measured magnitude and phase distributions of LoS and NLoS taps of 15 different
measurement setups, each with 40 recordings, with differently-conditioned LoS MIMO taps,
M = N = 2 and M = N = 3, FE 1 & FE 2, and frequency offsets removed. The power variation
due to different distances has been removed by normalizing the power w.r.t. the average LoS
power for each distance.
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Figure 5.7: Superposition of 75 consecutive channel impulse response estimates of an example
recording of an M = N = 2 LoS MIMO setup with FE 2 in an anechoic chamber. The sampling
interval on the receiver side is Tnom,Rx = 0.2ns, the symbol duration is Ts = 0.8ns, and the link
distance is 5 m. The power has been normalized w.r.t. the average LoS tap power across all
antennas.

environment for this measurement was an anechoic chamber, almost no reflections ought

to come from the environment. However, multiple taps, especially close to the LoS taps, are

visible. It is conjectured that they come from the imperfections in the front ends, as was

also mentioned in [7, 9, 109]. In fact, by inspecting the plots in the columns of Figure 5.7, it
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Figure 5.8: Example measurement of the channel phases for three different MIMO oscillator
setups for carrier frequency generation in an anechoic chamber, using FE 1, M = N = 2, and a
sampling interval of Tnom,Rx = 0.1ns. Setups include three of the four possible configurations
mentioned in section 2.4.1.

seems that most of the selectivity is coming from the transmitter side, as the column entries

have similar significant components at similar positions. Measurements with FE 1 showed

similar but less severe behavior. The influence can either be treated as part of the channel

and equalized in the same manner, or could be reduced by some additional calibration

scheme. Finally, the mean phase variation per sample, due to the CFOs, is computed as

Ê[∆φ̂] ≈ 4 ·10−5 rad, see [53] for details.

5.4 Investigation of Carrier Frequency Oscillator Setups

This section will show the behavior of the different oscillator setups, discussed in section 2.4.1,

for carrier frequency generation. As in the previous two sections, the channel impulse response

is estimated with a correlation-based estimator, before the phases of the LoS taps are extracted.

The first setup uses FE 1, see Table 5.2, in an anechoic chamber, with a well-conditioned LoS

MIMO channel, and a sampling interval of Tnom,Rx = 0.1ns. The total length of the recording

shown in the plots is thus 0.2 ms. More information can be found in [53].

Figure 5.8 shows the extracted phases over time, normalized to π, for three different oscillator

setups with M = N = 2. There is a fixed initial phase difference in all cases between the sub-

channels, caused by the phase differences of the PLLs of the different FEs5, as well as the

phase shift due to the spherical wave propagation. It is seen that the carrier phase processes

5Note that although a reference clock is shared, each front end has an independent PLL, which generates the
carrier frequency from the reference, and whose phase states are not equivalent.
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(c) Oscillator Setup 3, Tx Synchronized
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Figure 5.9: Example measurement of the channel phases for three different MIMO oscillator
setups for carrier frequency generation in a backhaul setup, using FE 3, M = N = 4, and a
sampling interval of Tnom,Rx = 0.2ns. The bottom figures contain the cases where either all
transmitters or all receivers share a reference oscillator.

are not simply linear increasing functions, but have a more complex shape, see also [52] and

section 2.4. In particular for oscillator setup 2, we can observe that this behavior is caused by

the reference oscillators and not by measurement noise, as all phase processes have a similar

shape. For setup 1, no slope aside from the noisy variations is observed over the complete

time frame, showing that there is no mean CFO, as expected for a shared reference between all

Tx and Rx front ends. Setup 2 shows the same mean slope, corresponding to the difference

of the two reference LOs, which were used at the transmitter and receiver, respectively. The
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results for setup 4 show four different slopes, corresponding to the difference between the

two independent carrier phase processes at the Tx and the two independent carrier phase

processes at the Rx. Furthermore, the phase slope is significantly higher compared to the

other two cases, as the internal LOs have orders of magnitude higher inaccuracies compared

to the external ones. The highest CFO is also experienced in this case, with the average of

the maximum being Ê[|∆φ̂max|] ≈ 5 ·10−4 rad per sample, which is the carrier phase difference

between the second Tx and first Rx.

In Figure 5.9, additional example measurements of the time-varying channel phases for

different oscillator setups, with M = N = 4 and FE 3, are shown. The LoS MIMO system was

set up in a backhaul-like scenario, which will be explained in more detail in section 5.5.2. The

sampling interval was chosen as Tnom,Rx = 0.2ns, yielding a total recording time of 0.4 ms.

For oscillator setup 2 and 4, the same observations as above can be made. However, it can

be seen that configuration 2 has a more erratic characteristic, also including some phase

jumps. Similar behavior was also noticed in [53] for another setup. With the semi shared

setups, there are groups of four phase processes that move together, depending on the side

where the reference is shared. For example, when all Tx share the same reference for carrier

frequency generation, all phase processes associated with one particular Rx antenna move

together. The average phase variation per sample is computed as Ê[|∆φ̂|] ≈ 2.4 ·10−4 rad, using

all phase processes from oscillator setups 3 and 4. Generally, we can observe that the phase

progressions are not simple linearly-increasing functions, but have a more complex shape.

This means that DD tracking may be a more suitable solution for CFO estimation compared to

one-shot estimation, especially when considering a relatively large number of consecutive

symbols. The limits for tracking with an adaptive equalizer in a practical LoS MIMO channel

can be inferred from Figure 3.4 and Figure 3.7. Tracking seems feasible in such a case up to

average phase variations of E[|∆φ|] ≈ 3 ·10−3 rad per sample.

5.5 Investigation of Adaptive Equalization Performance

In this section, the adaptive equalization performance for different LoS MIMO system setups

at 60 GHz will be tested.

5.5.1 Setup with Two Antennas

First, consider an M = N = 2 antenna setup with FE 2, see Table 5.2, in an anechoic chamber,

as seen in the rightmost photo of Figure 5.5, with a link distance of 5.5 m. Since FE 2 does not

allow for external synchronization, oscillator setup 4 was used for carrier frequency generation.

On the Tx side, QPSK symbols with a symbol duration of Ts = 0.8ns, and shaped by a root-

raised-cosine filter with βT = 0.3 and a finite-length of 10 symbols, generated by AWG 1, were

transmitted. The receiver side used RTO 1 with Tnom,Rx = 0.1ns, leading an oversampling

factor of Q = 8. Since the sample generation and recording happened in one instrument on the

Tx and Rx side each, which was calibrated before the measurements, only a single SFO existed
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(b) Receiver 2

Figure 5.10: Example of the estimated power spectral densities of the received signals for
an M = N = 2 LoS MIMO setup in an anechoic chamber. QPSK with a symbol duration of
Ts = 0.8ns and root-raised-cosine pulse shaping was transmitted. The average SNR estimate
from these power spectral densities is 18.5 dB.

between their reference oscillators. The antenna separation was set to one of the optimal

solutions. More information about the setup can also be found in [106].

Figure 5.10 shows the estimated power spectral densities of both receive antennas, containing

the mixture of both transmitted streams according to the MIMO channel, for the given setup.

The SNR at the receiver, defined using the estimated received in-band signal power and the

estimated out-of-band noise power with 10log10

(
1

M

∑
m

σ̂2
ym

σ̂2
ṅm

)
, is calculated as roughly 18.5 dB,

which serves as a bound6 on achievable equalization performance. It can furthermore be seen

that the signals cover a bandwidth of 1.25 GHz. The condition number of the LoS MIMO tap

is estimated, using the aforementioned correlation techniques, as Ê[κ(ĤC[k,0])] ≈ 1.2. The

maximum average CFO per symbol, also estimated using correlation, is given by Ê[∆φ̂max] ≈
1.5 ·10−5 rad, and is the difference between the oscillators of Tx 2 and Rx 2. For the equalization

results shown next, the sampling frequency difference is estimated, through a correlation

technique that is a special case to what is described in section 3.3.5, and compensated7 prior

to the further processing. Thus, the single SFO will be considered compensated, and the input

signal to the adaptive equalizer is symbol spaced, such that the correct input indices have

already been identified. Another processing step that is carried out prior to equalization is

matched filtering with the root-raised-cosine filter. The equalizer is thus fed by the symbol-

spaced preprocessed signal yP[k], where matched filtering has been performed, and the SFO

has been sufficiently compensated.

6Note that the amount of transmit power contained in each received stream is only approximately σ2
xn

= 1
N σ2

ym
,

given equal antenna gain in all directions. However, for the best case MIMO channel, the signals from the M
receive antennas combine coherently, such that the power at the MIMO equalizer output is σ2

x̂n
= M ·σ2

xn
. For

M = N , this approximately means σ2
x̂n

=σ2
ym

.
7See [106] for details.
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Figure 5.11: Constellation diagrams of 104 consecutive symbols of two streams, including the
effects of multiple CFOs, before and after adaptive equalization, in an M = N = 2 LoS MIMO
setup with a transmission rate of approximately 5 Gbit/s. A symbol-spaced feedforward LMS
equalizer with LF = 10, and its widely-linear version with LF,L = 10 and LF,WL = 3, were used.
The step size is chosen as µFF/5, and the estimated MSEs are -15.7 dB for the standard version,
and -16.9 dB for the widely-linear version, respectively.

The constellation diagrams of 104 consecutive symbols per stream from this system setup

before and after adaptive equalization, with a feedforward filter of length ten, i.e., LF = 10

and LB = 0, can be seen in Figure 5.11. The reason for using a feedforward equalizer is that it

shows very good performance for this well-conditioned MIMO setup. The adaptive equalizers

LoS taps are initialized with the pseudoinverse of the LoS tap ĤC[0,0], based on an estimate

obtained through correlation at the start of transmission, while the other taps are initialized

with zeros. After initialization, the equalizer works solely based on the symbol decisions. The

step size is chosen as µFF/5 for the reasons described in the previous chapter, but especially

due to the low CFOs. It can be seen that the streams can be well separated and that no

significant residual CFOs are visible. The average MSE of the two streams is computed for

the standard equalizer as 10log10 Ê
(|x− x̂|2) = −15.7dB. It is thus shown that the adaptive

feedforward equalizer can equalize a practical LoS MIMO channel, including multiple CFOs,

yielding a gap compared to the estimated received SNR of less than 3 dB. The transmission

rate of the system is approximately 5 Gbit/s, and could be doubled by using 16-QAM, which

should be feasible according to the computed MSE. The equalization performance can be
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further improved by optimizing the equalizer parameters, e.g., lower step size µ [106] since

the CFOs are low, and by using a widely-linear (WL) equalization structure, as is shown in the

rightmost constellation of Figure 5.11 and will be explained in the next section.

Widely-Linear Extension of the Adaptive Equalizer

During evaluation of the measurements, it was noticed that the received signals are also

impaired by I/Q imbalance [56, 110], i.e., some part of the in-phase component of the signal

leaks into the quadrature-phase and vice versa, leading to additional interference that should

be compensated for. Several approaches can be found in the literature in order to compensate

the effect [110, 111, 112], also including MIMO systems [113], where multiple different imbal-

ances may be present. A very attractive approach is to employ the framework of WL signal

processing [110, 114]. The basic premise is that the complete statistical information about a

complex signal also requires knowledge about the interaction between real and imaginary part

[76, 110, 114]. A simple way of doing this is to use the signal, as well as its conjugate complex

for processing.

The equalization equation that was previously used, see section 4.3, can be adopted to include

a WL part. Only the feedforward version will be presented here, the extension to a feedback

version is straightforward. The estimates for the symbols are obtained through

x̂[k] = WC̃[k]

[
ẏL̇F,L

[k]

ẏ∗
L̇F,WL

[k]

]

︸ ︷︷ ︸
ẏC̃,L̇F,WL

[k]

, (5.3)

where the equalizer now has length L̇F = L̇F,L + L̇F,WL, with L̇F,L being the length of the standard

equalizer, and L̇F,WL being the length of the WL section. The equalizer is updated with

WC̃[k +1] = WC̃[k]−µ ·e[k]ẏH
C̃,L̇F,WL

[k]. (5.4)

Compared to the standard solution, this means that the equalizer size is increased for the

widely-linear version, which increases convergence time and requires lower µ. How to select

LF,WL depends on the type of I/Q imbalance, i.e., is it frequency selective or not. In most cases,

small values for LF,WL should give the most significant gains.

For the WL results shown in Figure 5.11, LF,L = 10 and LF,WL = 3 is used, with µFF/5 being

adopted accordingly. Visually, no significant improvement seems to occur compared to the

standard adaptive equalizer. However, computing the average MSE yields 10log10 Ê
(|x− x̂|2)≈

−16.9dB, leading to an improvement of 1.2 dB, and reducing the gap compared to the esti-

mated received SNR further.
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TxRx

(a) Channel

(b) Transmitter (c) Receiver

Figure 5.12: Backhaul LoS MIMO setup with M = N = 4 antennas, using FE 3. The distance
between transmitter and receiver is 21.1 m.

5.5.2 Setup with Four Antennas

Consider the M = N = 4 antenna setup with FE 3, see Table 5.2, which is shown in Figure 5.12.

The setup has a backhaul-like channel and transmits over a distance of 21.1 m. On the Tx

side, AWG 2 was used to generate QPSK symbols with a duration of Ts ≈ 0.57ns, and which

are shaped by a root-raised-cosine filter with βT = 0.3 and a finite-length of 20 symbols. In

order to have enough sampling inputs on the receiver side, RTOs 1 and 2 were used jointly

to sample the received signals. They were set to sample with an interval of Tnom,Rx = 0.2ns,

yielding an oversampling factor of Q̄ = 2.84. Different oscillator setups for sampling and carrier

frequency generation can be achieved with this setup, due to the available reference input for

the carriers of FE 3, and the flexibility of the measurement equipment. Synchronized sampling

between the two RTOs was ensured by sharing a reference clock, and aligning the triggers to
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Figure 5.13: Example of the estimated power spectral densities of the received signals for an
M = N = 4 LoS MIMO setup in a backhaul-like scenario. QPSK with a symbol duration of
Ts = 0.57ns, and root-raised-cosine pulse shaping was transmitted. The estimated SNR from
this setup is 24.3 dB.

within ±0.08ns. Figure 5.13 shows the received estimated power spectral densities of the four

receivers. The signals roughly cover a bandwidth of 1.76 GHz. The estimated average SNR is

24.3 dB and the LoS MIMO channel has an estimated condition number of Ê[κ(ĤC[k,0])] ≈ 2.2.

For the equalization, consider a case similar to the one with two antennas. In particular,

assume the RTOs on the receiver side to be synchronized, such that only a single SFO exists,

and that it has been sufficiently estimated and compensated. More broadly, the signals are pre-

processed, prior to adaptive equalization, in the same manner as in the two-antenna case. For

carrier frequency generation, oscillator setup 4, i.e., independent oscillators as in the previous

section, was used. Then, a symbol-spaced adaptive equalizer may be sufficient for compensat-

ing the effects due to the MIMO channel and CFOs. Consider the same feedforward equalizer

as above with LF = 10, and using µFF/2 as the step size. The adaptive equalizer is initialized

directly with a training phase of 5 ·103 symbols8, after which decision directed adaptation

begins. The equalization results are shown in Figure 5.14. It is seen that the streams can be well

separated, yielding an average MSE for the four streams of 10log10 Ê
(|x− x̂|2)=−12.3dB. The

addition of a WL section to the equalizer does not lead to significant performance improve-

ments, leading to the conclusion that these front ends experience less I/Q imbalance. Overall,

there is still a significant performance gap compared to the estimated received SNR. The gap

may be closed by considering fractionally-spaced equalization, which can deal better with

residual SFO, or by using a DFE. Nevertheless, the used adaptive equalizer works error free

with four parallel streams, dealing with multiple CFOs, and achieves a combined transmission

rate of 14.1 Gbit/s.

8Although this seems like a lot compared to the 104 data symbols that are shown in the figures, the equalizer
keeps working properly in DD mode over much more symbols.
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Figure 5.14: Constellation diagrams of 104 consecutive symbols of four streams, including the
effects of multiple CFOs, before and after adaptive equalization, in an M = N = 4 LoS MIMO
setup with a transmission rate of approximately 14.1 Gbit/s. A symbol-spaced feedforward
adaptive LMS equalizer with LF = 10 was used. The step size is chosen as µFF/2, and the
estimated MSE at the equalizer output is -12.3 dB.

5.6 Summary & Main Results

In this chapter, different topics regarding LoS MIMO with multiple timing impairments were

investigated experimentally in the 60 GHz band. It was first shown that we can indeed observe

the spherical wave propagation in practice, which leads to the possibility of spatial multiplex-

ing in LoS conditions, as described in chapter 2. It was seen that when the optimal-spacing

criterion can be fulfilled, low condition numbers are observed leading to highly orthogonal

MIMO channels. This holds true for different system setups, in different conditions, and

with different numbers of antennas, as long as a LoS component is present. In general, low

condition numbers of κ< 3 are achievable, when care is taken during system set up. Some of

the statistical variations occurring in these different LoS MIMO systems were investigated next.

A main result is that on average the observed NLoS taps are approximately 11.2 dB reduced

in power compared to the LoS taps at mmWave frequencies. Qualitative investigations of

the measurements seem to agree with the literature [12, 92, 93, 94] in that the delay spread

for LoS links in this frequency range is a few to some tens of nanoseconds. Furthermore, it

was seen that the LoS taps experience some variations for each setup w.r.t. their mean value.
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This is most likely due to the manual set up of the systems, where it is difficult for longer

distances to properly align the antennas, which generates power variations due to the antenna

patterns. It was also briefly discussed that frequency selectivity due to the front ends may play

an important role for some of the wideband systems, as also mentioned in the literature.

Next, MIMO channel phase variations caused by CFOs in different oscillator setups were

examined. As predicted in the previous chapters, when a reference oscillator is shared between

the Tx and Rx front ends, respectively, a single carrier phase difference process is observed.

When a reference is shared on only one side, groups of the carrier phase difference processes

move together. With totally independent oscillators on both sides, we can observe M · N

carrier phase difference processes, which are generated from all possible combinations of the

M +N offsets with respect to the nominal frequency, as described in section 3.3.2. Typical

measured CFO values, meaning average phase increments per symbols, are in the range of

Ê[|∆φ̂|] ≈ 10−5 rad to 10−3 rad, which is similar to the predicted values of chapter 2 for the

given frequency range and bandwidth. Even though these average values are helpful for

system design, it was also seen that the phase processes can have a more complex shape than

simple linearly-increasing functions for many of the setups. Thus, the phase process model

proposed in chapter 2, which on top of the linear drift also has a Wiener and a white noise

component, and which was used for simulating the estimation performance in chapter 3, may

give a more accurate prediction of practical performance than the commonly used purely

linearly-drifting model. More generally, all of the observed MIMO channel variations indicate

that decision-directed tracking can be a good option for these systems, potentially requiring

less overhead compared to one-shot estimators, which may need more frequent estimations

due to the variations from, e.g., the carrier phase processes.

The final part of this chapter was the application of adaptive equalizers, introduced in chap-

ter 4, to two practical LoS MIMO setups. The first one consists of two transmit and receive

antennas, an independent oscillator setup, and is able to provide a transmission rate of approx-

imately 5 Gbit/s over a bandwidth of 1.25 GHz. The adaptive equalizer can recover both MIMO

streams error free, while simultaneously dealing with the multiple CFOs. The performance

gap compared to the receive SNR is less than 3 dB. Adding widely-linear processing to the

equalizer, in order to deal with I/Q imbalance, was seen to provide a significant performance

improvement. The second LoS MIMO setup uses four transmit and receive antennas, an

independent oscillator setup, and provides a rate of 14.1 Gbit/s over a bandwidth of 1.76 GHz.

In this case, the adaptive equalizer is also able to recover all four streams error free, but the gap

compared to the receive SNR is significantly larger, leaving room for further improvement of

the equalizer. In general, these practical equalization results show that adaptive equalization

is a suitable approach for LoS MIMO systems with multiple timing impairments.
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6 Epilogue

6.1 Summary and Conclusion

Synchronization is one of the key signal processing tasks in order to enable wireless commu-

nications. In most systems, we have to deal with a difference in carrier and a difference in

sampling frequency, due to inherent hardware variations, while also being affected by the

propagation through the channel. For MIMO systems, the number of these impairments

affecting the transmission increases with the number of transmitters and receivers. Due to

their number and their interdependence, low-complexity approaches are typically required in

order to compensate them.

Depending on the ease of sharing reference frequencies between different Tx and Rx front ends,

a wide variety of possible, or required, oscillator setups may be used for carrier and sampling

frequency generation. Depending on the setup, a different number of frequency offsets exists

in the system. The goal of this thesis has been to provide a unified approach to deal with

these two timing impairments, namely CFOs and SFOs, in MIMO systems in the most general

configuration, where multiple independent oscillators may exist in the system. The focus

has been mostly on LoS MIMO links at mmWave frequencies in backhaul-like scenarios, i.e.,

stationary transmitters and receivers with one dominant transmission path and relatively

large bandwidth in the GHz range. Nevertheless, many of the results can also be used for

other MIMO scenarios. It was seen that the multiple timing impairments do not make spatial

multiplexing, or MIMO transmission more broadly, infeasible. They require, however, that

some of the processing steps are carried out in a certain order. It was discussed that multiple

SFOs can only be properly compensated in the most general case, if a full fractionally-spaced

equalizer is used, due to irreversible aliasing that would otherwise occur. When only multiple

CFOs are present in the system, symbol-spaced processing is sufficient, given that the CFOs

are relatively slow. Several low-complexity estimators have been proposed, most of them

based on correlation, in order to estimate the MIMO channel and the timing impairments.

Equalization and synchronization based on these estimates was shown to be possible with

relatively low complexity, since the timing impairments can be compensated in parallel even
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in the case of independent oscillators. However, in order to do that it is necessary to separate

the Tx and Rx contributions from the estimated phase difference processes, which was shown

to be possible. Furthermore, if an oscillator, or a reference, is shared on either side of the link,

synchronization becomes significantly simpler, and several of the well-known techniques

from the literature, such as digital PLLs, can be used.

The MIMO system with timing impairments was also shown to be equivalent to a large

time-varying filter, through which the transmitted signals propagate. In order to estimate,

track, and compensate this time-varying channel, adaptive filtering was proposed as an

alternative strategy. The benefit of this approach is that we can use the decisions during data

transmission to update and track the channel, which is superior when the carrier or sampling

phase processes have a more complex shape than simple fixed linear phase increments over

time, which are very often assumed in the literature. Suitable parameter selection for the

adaptive filters was shown to depend on which of the two timing impairments dominates, and

also requires that they are relatively slow compared to the symbol rate, which holds true for

mmWave systems. In the equalization case, the performance characteristics of the adaptive

equalization filter was shown to additionally depend on the MIMO channel. For a properly

designed LoS MIMO system at mmWave frequencies, the channel is highly orthogonal and

exhibits low frequency selectivity, yielding conditions where adaptive equalization filters can

work very well.

Simulations and experimental results at 60 GHz verify the proposed processing approaches,

and the characteristics of LoS MIMO at mmWave frequencies. In most cases, they are close

to a performance lower bound, or close to the performance of a system without timing

impairments. A data rate of 14.1 Gbit/s was achieved with a practical four-antenna LoS MIMO

system, using an RF bandwidth of 1.76 GHz, four times spatial multiplexing, and adaptive

equalization to deal with the CFOs. The spectral efficiency of the system follows as 8 bit/s/Hz.

It was thus shown theoretically and experimentally that multiple timing impairments are not a

hindrance for MIMO systems, neither in terms of performance loss nor in terms of complexity,

as long as suitable processing is used. The proposed estimation and equalization approaches,

as well as adaptive filtering, have been demonstrated to be two such processing options.

6.2 Future Work and Open Topics

There is a range of topics emerging from this work that requires further investigation. The

largest topic, with several open problems demanding further examination, is systems ex-

periencing multiple SFOs. In the literature, such systems have been scarcely treated, but

they may come to prominence with rising interest in multi-user MIMO systems. This work

has introduced their basic system descriptions, and proposed the most basic compensation

schemes. However, several fundamental questions such as CRBs, or simplified compensation

schemes to enable symbol-spaced equalization, which can lower computational complexity,

remain open. Blind estimation approaches, which do not need training signals, have also been
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popular to estimate timing impairments in SISO systems. It is not fully clear if and how they

can be extended to the general MIMO case with multiple independent oscillators. Consider

a typical squaring loop for timing impairment estimation [3, 4]. When it is used in MIMO

systems, multiple maxima will be observed in the spectrum, due to the superposition of several

transmitted signals of slightly different frequencies, which requires an additional matching of

the CFO to the corresponding transmitter. Furthermore, since a nonlinear function is often

applied to the signals with such an approach, several mixing products between the different

frequencies will occur, making it even harder to identify the correct values. MIMO precoding

with multiple timing impairments is another problem worth investigating. For example, in

order to create parallel streams on the receiver side, without the need for additional MIMO

equalization, the transmitter phase process differences need to be known. Typically, these

differences can only be measured on the receiver side, and some delay occurs when feeding

that information back to the transmitter. If the phase processes behave linear this is not a

problem, but with more complex phase variations, as observed in this work, this becomes an

issue. Most of this work was based on single-carrier transmission. There is a huge interest

in MIMO systems using multi-carrier waveforms. How the multiple timing impairments are

expressed in such a case is also not immediately clear.

For adaptive filtering, it is of importance to investigate the time of convergence, or initialization

of the filter before DD tracking can begin, further. This is especially critical when these

approaches are extended to more dynamic channel situations. In this work, we treated CFOs

and SFOs separately for the LMS approach. It may be worthwhile, albeit complex, to consider

both timing impairments simultaneously. This will give a better intuition for selecting the

parameters, and the corresponding error performance of the adaptive filters, compared to the

qualitative approach that has been taken in this work in cases, when both timing impairments

are present. RLS or Kalman filters, although of significantly higher complexity, may also turn

out suitable for such a system, as has been partly shown in the literature for the CFO case. A

proper complexity comparison between the one-shot estimation and equalization approach,

and the adaptive filtering approach is also of interest, with some results being available in

[106]. Another open problem w.r.t. SFOs in adaptive filters should be mentioned. For a long

enough transmission duration, the SFOs will eventually create sample shifts or removals. This

means that the taps of the adaptive filter will wander, and eventually require a delay longer

than the filter length. One simple solution to this problem is to track the most significant taps,

and add parallel delays before the adaptive filters, when they reach certain thresholds.

From a practical standpoint, it is interesting to search for processing strategies that are of

even lower complexity, compared to the proposed approaches of this work. For LoS MIMO

at mmWave frequencies this work, and the literature [9, 109], has shown that some ISI may

occur due to the hardware. If that is the case, we may use a simpler MIMO equalizer in

conjunction with parallel, possibly adaptive, filters, as partly mentioned in this work and

used in [106]. It was also discussed in this thesis that some automated antenna alignment

strategy could potentially improve the link performance of LoS MIMO. Measurements with

a multiple SFO setup are also of great interest, in order to verify the proposed approaches
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and identify potential problems. Especially fractionally-spaced adaptive equalization in a

practical scenario with such a MIMO setup is of practical importance, and no results from the

literature are currently available. A deeper investigation of the hardware impairments, e.g., I/Q

imbalance or phase process characteristics, of mmWave MIMO systems can, additionally, help

to improve the system design, if typical values and their properties become known. Finally,

the carrier and sampling frequency is often derived from the same reference frequency for a

given transceiver in practice. This means that the same long-term variations could potentially

be seen in the carrier and sampling phase processes. This property has not been considered

so far.
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A Additional Comments on Oscillators
and Their Impact

This appendix presents some further discussions on the impact of oscillators on communi-

cations systems, with a focus on LoS MIMO. It is discussed, how data sheet parameters of

oscillators, e.g., phase noise values, can be converted to values that can be used for the phase

process model discussed in section 2.4.

In general, oscillators have a short-term, i.e., in the seconds range or faster, and a long-term,

i.e., hours or longer, behavior. We focus here, and in the work, on the short-term characteristics

of oscillators, which are often characterized for system components by their phase noise values.

Long-term behavior is more commonly described by an Allan variance [46]. Both attributes

can, of course, describe the complete behavior. This is the case when PN values below 1 Hz, or

Allan variances below 1 s, are available. One can also convert between the two measures [46].

The short-term behavior is of critical importance here, as it immensely influences high-speed

data transmission with symbol durations in the nanoseconds range. Furthermore, some of

the long-term characteristics essentially correspond to shifts of the mean frequency, which

are inherently compensated by the presented algorithms, given that they still lie within the

estimation range. A general description of phase errors in oscillators, and the relation to phase

noise and jitter can be found in [51].

A.1 Conversion of Oscillator Parameters to Model Values

The conversion from phase noise and jitter data to the model parameters, which was used

in section 2.4 and throughout the work, will be described next. Recall that the model has

three contributions, namely a mean drift, a Wiener noise part, and a white noise part. Note

that in the following, we compute the values on the sample level, as this was also done in the

main text. In general, it is of course more interesting to determine the impact of the model

parameters in the signal bandwidth. This can be done by substituting the sample rate with the

symbol rate in the following equations.
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A.1.1 Carrier Phase Offset Process

The mean variation, or linear drift, of an oscillator is assumed to be described by its accuracy

in ppm. Given this, the corresponding model parameter can be calculated with

µϕw = 2π ·∆ f ·Tnom (A.1)

= 2π ·Accuracy[ppm] · fnom ·Tnom, (A.2)

where Tnom is the nominal sampling interval at the receiver, ∆ f is the frequency offset w.r.t.

the nominal carrier frequency fnom, and µϕw has the unit1 of rad
sampleinterval . For the Wiener part,

one can fit a slope to the drop-off region of the phase noise spectrum with

σ2
ϕw

= (2π ·∆ f PN

)p ·10
PN(∆ f PN)[dBc/Hz]

10 ·T p−1
nom (A.3)

= (2π ·∆ f PN

)2 ·10
PN(∆ f PN)[dBc/Hz]

10 ·Tnom, (A.4)

where p describes the slope, in the second line p = 2, i.e., 20 dB per decade drop, and PN(∆ f PN)

is the phase noise power in dBc/Hz at offset frequency ∆ f PN. The parameter σ2
ϕw

has the

unit rad2

(sampleinterval)2 . In the literature, the Wiener part is also sometimes related to the 3 dB

bandwidth of the PN spectrum [56]. Finally, the white noise contribution in the model from

the data sheet PN values follows using

σ2
ϕn

= 10
far-out PN[dBc/Hz]

10

Tnom
(A.5)

= 10
PN(∆ f PN→∞)[dBc/Hz]

10

Tnom
, (A.6)

which also has the unit rad2

(sampleinterval)2 . It is seen that the last contribution is the only one that

increases with an increase in the sampling rate. It has been conjectured in the literature that

this term can be performance limiting for wideband systems [50]. A more detailed discussion

about the conversion between measured PN values and model parameters can be found in

[49, 54].

A.1.2 Sampling Phase Offset Process

For the sampling phase process, the accuracy is also assumed to correspond to the mean

variation, i.e.,

µϕ̇w = ∆T

Tnom
(A.7)

= Accuracy[ppm] · Tnom

Tnom
, (A.8)

1In the main text we use rad
sample and also just rad to shorten notation. The same applies to the squared quantities.
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where ∆T is the sampling time interval change, and Tnom is the nominal receiver sampling

interval. The unit2 of µϕ̇w is samples
sampleinterval . The Wiener part is computed from the RMS jitter

value with

σ2
ϕ̇w

=
(

RMS Jitter[s]

Tnom

)2
, (A.9)

and has the unit samples2

(sampleinterval)2 . The white noise contribution is given from the aperture jitter

with

σ2
ϕ̇n

=
(

Aperture Jitter[s]

Tnom

)2
. (A.10)

The model parameter σ2
ϕ̇n

has also the unit samples2

(sampleinterval)2 .

A.2 Approximate Time Invariance

It was mentioned several times in the work that the channel is sometimes assumed to be

approximately time invariant3 over a frame of LI samples, i.e., HC[k] ≈ HC[k + lI] for lI =
{1, . . . ,LI−1}. In this section, this statement will be quantified to some extent for the appropriate

parameter range of the two timing impairments in mmWave LoS MIMO systems. It is sufficient

to focus on each single entry hC,·[k] of the complete channel matrix HC[k] individually. We

can say that the channel is approximately time invariant if the variation within the LI samples

is below a certain threshold, i.e., E[|hC,·[k]−hC,·[k + l I ]|2]/E[|hC,·[k]|2] < a. The parameter a

controls how much variation is allowed. For example, in [4] it is proposed that CFO values of

ten percent w.r.t. the symbol rate can be tolerated, when matched filtering should be carried

out before CFO correction4. When making numerical evaluations, we thus also choose5

a = 0.1.

The exact variation of hC,·[k] over time depends on the shape of the timing impairments, as

well as the channel characteristic. For convenience, we only consider the linear drift parts here,

and separate the two timing impairments. For the CFO case we can, without loss of generality,

for the linear drift case state that hC,·[k] = 1 and hC,·[k + lI] = 1 ·exp
(

j ·µϕw · lI
)
. In the linear

2In the main text we use samples
sample and also no unit to shorten notation. The same applies to the squared

quantities.
3This concept is similar to the coherence time of a channel [4, 27, 28], which is usually given for fading channels

excluding the timing impairments.
4This essentially means that the time variation due to the CFO is insignificant w.r.t. the length of the matched

filter.
5This was also the threshold that was used to distinguish between frequency-flat and frequency-selective

channels.
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drift case, the maximum difference is reached when lI = LI −1. We can then compute

a >
E
[∣∣hC,·[k]−hC,·[k + l I ]

∣∣2
]

E
[∣∣hC,·[k]

∣∣2
] (A.11)

a >
∣∣1−exp

(
j ·µϕw · (LI −1)

)∣∣2 (A.12)

1− a

2
< cos

(
µϕw · (LI −1)

)
(A.13)

=⇒ LI <
cos−1

(
1− a

2

)
∣∣µϕw

∣∣ +1 (A.14)

LI <
cos−1 (0.95)∣∣µϕw

∣∣ +1, (A.15)

where for the last line a = 0.1 as described above. We can now compute the number of samples

LI, over which the channel is approximately time invariant given the previously computed

standard CFO values of Table 2.1. For the highest CFO value this yields LI ≈ 4, and for the

lowest one it yields LI ≈ 794. We can see that for high CFO values, the channel changes

relatively quickly.

For the SFO case, the situation is more complicated as the change of hC,·[k] depends on the

complete channel characteristic. We will make the simplifying assumption that the change is

in the order of a if the sample shift is in the order of a. We can then state, with the assumption

of only linear sampling phase offset drifts, where the maximum difference occurs at lI = LI −1,

that

a >
∣∣µϕ̇w

∣∣ · (LI −1) (A.16)

=⇒ LI <
a∣∣µϕ̇w

∣∣ +1 (A.17)

LI <
0.1∣∣µϕ̇w

∣∣ +1. (A.18)

For the highest and lowest SFO value from Table 2.1, this gives LI ≈ 500 and LI ≈ 105, respec-

tively. As mentioned for the adaptive filter channel tracking in section 3.4.4, it is also seen here

that the main variation for typical mmWave components is due to the CFOs.

A.3 The Sample Drop and Add Phenomenon

In the work, we talked about the fact that the existence of SFOs will eventually lead to the

sample add or drop phenomenon when continuous transmission is considered, see section 2.4

and Figure 2.8. We try to briefly explain, where this effect is coming from, and point to solutions

for the problem.

Consider a prototype continuous-time waveform of alternating plus and minus one symbols,
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Figure A.1: Example prototype continuous-time waveform, which is sampled at the symbol
rate, and at a slightly impaired symbol rate. In (a), the waveform is sampled with an actual rate
that is slightly lower than the symbol rate, which leads to missing the symbol in period five. In
(b), the actual sample rate is slightly higher than the nominal symbol rate, and the symbol in
period seven is sampled twice.

which carry the information, and which are shaped by a rectangular pulse, as given in Fig-

ure A.1. If they are sampled at a fixed nominal rate, which is equivalent to the symbol rate

1/Ts , one collects exactly one information symbol per symbol period6, and gets the sequence

of alternating plus and minus ones, see the ideal samples in Figure A.1. Then, assume that

the actual sampling rate is smaller, i.e., the sample period is higher, than the nominal value.

In this case, we sample the continuous-time waveform always a little bit later compared to

the ideal case. Eventually, because the sample period is slightly larger than the symbol period,

we will miss an information symbol, see the fifth symbol interval in Figure A.1a. Instead

of the alternating sequence in the ideally sample case, we thus see a sequence, where two

6Although this example describes the symbol-spaced case, the problem occurs in the same way when over-
sampling is used. Imagine two samples per symbol. At some point only one sample per symbol period, or three
samples per period will be generated, respectively. The benefit of oversampling is that we will always have at least
one sample per symbol, whereas in the symbol-spaced case we can not recover the sample drop.
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consecutive negative ones are seen in the sequence, and a positive one is missed.

In Figure A.1b, the actual sampling rate is slightly higher than the nominal one, i.e., the

sampling period is lower. Hence, the continuous-time waveform is always sampled somewhat

earlier compared to the ideal-sampling case. At some point, two samples will be generated

within a symbol period, see interval seven in Figure A.1b. We see a sequence, where two

consecutive positive ones are seen, instead of the alternating sequence. From the previous

section, we can estimate when either of the two events is expected to occur. In the previous

section, we said that ten percent sample shift is allowable, whereas now we are interested in

the case when a full sample shift happens. With the values from before, we can compute that

for high SFOs, such an event is expected approximately within each 5 ·103 samples, while for

low SFOs it is expected approximately within 106 samples. This means that if we have blocks,

which contain more than these numbers of samples, either of the two events is probably

included in that block.

In a MIMO system, sample drops and adds occur at different points in time for different

front end combinations. General remedies to this problem are the use of oversampling, the

use of buffers, and mechanisms to detect when such an event has occurred. A more in-depth

discussion for the SISO case can be found in [4], and references therein.
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B Extended Derivations for LMS Adap-
tive Filter

This appendix includes more detailed derivations for the selection of the LMS step size µ,

and the corresponding misadjustment M , in the case when CFOs or SFOs are present, see

section 3.4.4.

B.1 Tracking of CFOs

From section 3.4.4, with the given approximations for the phase term and equal transmit

power for all Tx, the misadjustment is given by

M ≈µ ·N LT

σ2
xTr,n

2−µσ2
xTr,n

(2+N LT)
+ 1

µ2 ·
2−µσ2

xTr,n

2−µN LT
σ2

xTr,n

1−µσ2
xTr,n

∆φ2
max

σ2
xTr,n

σ2
ṅm

. (B.1)

Requesting a misadjustment smaller than one leads to

1 ≥M (B.2)

0 ≥µN LT

σ2
xTr,n

2−µσ2
xTr,n

(2+N LT)
+ 1

µ2

2−µσ2
xTr,n

2−µN LT
σ2

xTr,n

1−µσ2
xTr,n

∆φ2
max

σ2
xTr,n

σ2
ṅm

−1 (B.3)

0 ≥ 2(1+N LT)σ2
xTr,n

σ2
ṅm

·µ3 +
(
∆φ2

maxσ
2
xTr,n

−2σ2
ṅm

)
·µ2 −3∆φ2

max ·µ+∆φ2
max

2

σ2
xTr,n

,

(B.4)

where some approximations about the signs of different terms were used, and which is used

with equality to get to the results. Typically, two roots will exist here, where for low CFO values

one will be equal to the CFO free case.
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Trying to minimize the misadjusment from above gives

0 =∂M
∂µ

(B.5)

0 ≈
(
2N LTσ

2
ṅm

+∆φ2
max (2+N LT)σ2

xTr,n

)
·µ3 −∆φ2

max6(2+N LT) ·µ2

+∆φ2
max

6(3+N LT)

σ2
xn

·µ−∆φ2
max

8

σ4
xTr,n

,
(B.6)

which is almost exact, except when the parameters create a pole in the derivative, which

happens when 2 =µσ2
xTr,n

(2+N LT). Furthermore, it can be shown that this equation has only

one real solution.

Assuming small values of µ, particularly assuming 2 À µσ2
xTr,n

N LT, which implies that 2 À
µσ2

xTr,n
, and for N LT ≥ 2, i.e., any MIMO or frequency-selective case, that 1 À µσ2

xTr,n
, the

misadjustment simplifies to

M ≈µ ·N LT

σ2
xTr,n

2
+ 1

µ2 · 2

2

∆φ2
max

σ2
xTr,n

σ2
ṅm

. (B.7)

Requesting again a misadjustment smaller than one leads to

1 ≥M (B.8)

0 ≥µN LT

σ2
xTr,n

2
+ 1

µ2

∆φ2
max

σ2
xTr,n

σ2
ṅm

−1 (B.9)

0 ≥ N LTσ
2
xTr,n

·µ3 −2 ·µ2 +∆φ2
max

2

σ2
xTr,n

σ2
ṅm

. (B.10)

With equality, it is still necessary to solve a cubic polynomial, but a simpler one.

Minimizing the simplified misadjustment equation leads to

0 =∂M
∂µ

(B.11)

0 =N LT

σ2
xTr,n

2
+ 1

µ3 (−2)
∆φ2

max

σ2
xTr,n

σ2
ṅm

(B.12)

=N LT

σ2
xTr,n

2
·µ3 −∆φ2

max
2

σ2
xTr,n

σ2
ṅm

, (B.13)

from which an optimal solution for µ can be obtained. It is given by

µopt,CFO =
(

4∆φ2
max

N LTσ
4
xTr,n

σ2
ṅm

) 1
3

. (B.14)
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It was seen in section 3.4.4 that this solution does not hold for certain parameter settings, even

for not so high CFO values when, for example, the system size is large. Assume now that the

CFO term dominates the misadjustment, and start with the initial equation

M ≈ 1

µ2 ·
2−µσ2

xTr,n

2−µN LT
σ2

xTr,n

1−µσ2
xTr,n

∆φ2
max

σ2
xTr,n

σ2
ṅm

(B.15)

≈ 1

µ2 · 2

2−µN LTσ
2
xTr,n

∆φ2
max

σ2
xTr,n

σ2
ṅm

, (B.16)

where it is still assumed that 1 Àµσ2
xTr,n

. We will only proceed with the derivative approach, in

order to get a sort of upper bound on µ that may always be usable. The derivative leads to

0 =∂M
∂µ

(B.17)

0 = 1

µ3 (−2)
2

2−µN LTσ
2
xTr,n

∆φ2
max

σ2
xTr,n

σ2
ṅm

+ 1

µ2

∆φ2
max

σ2
xTr,n

σ2
ṅm

2
(
2−µN LTσ

2
xTr,n

)2 (−1)
(
−N LTσ

2
xTr,n

) (B.18)

=−4+µ
2N LTσ

2
xTr,n

2−µN LTσ
2
xTr,n

(B.19)

=−8+4µN LTσ
2
xTr,n

+µ2N LTσ
2
xTr,n

(B.20)

=⇒ µ=4

3

1

σ2
xTr,n

N LT
. (B.21)

The misadjustment for the optimal choice of µ, employing the same approximations that were

used to derive it, can be written as

Mopt,CFO ≈
(

4∆φ2
max

N LTσ
4
xTr,n

σ2
ṅm

) 1
3

·N LT

σ2
xTr,n

2
+
(

4∆φ2
max

N LTσ
4
xTr,n

σ2
ṅm

)− 2
3

· ∆φ
2
max

σ2
xn
σ2

ṅm

(B.22)

=
(

4

8

∆φ2
maxN 2L2

Tσ
2
xTr,n

σ2
ṅm

) 1
3

+
(

1

16

N 2L2
Tσ

2
xTr,n

∆φ2
max

σ2
ṅm

) 1
3

(B.23)

=
(

1

2

∆φ2
maxN 2L2

Tσ
2
xTr,n

σ2
ṅm

) 1
3

+ 1

2

(
1

2

N 2L2
Tσ

2
xTr,n

∆φ2
max

σ2
ṅm

) 1
3

(B.24)

= 3

2

(
1

2

∆φ2
maxN 2L2

Tσ
2
xTr,n

σ2
ṅm

) 1
3

. (B.25)

For the fixed choice ofµ, which is independent of CFO and SNR from above, the misadjustment
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can be approximated, using 1 Àµσ2
xTr,n

, as

M ≈4

3

1

σ2
xTr,n

N LT
·N LT

σ2
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B.2 Tracking of SFOs

Assuming that the variation due to the SFO dominates the misadjustment, it can be computed

that

β= Tr
(
C∆φ̇C̃,m

)
≈ 1−α2 (B.28)
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≈ 1
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, (B.30)

where 1 Àµσ2
xTr,n

was assumed. Minimizing the misadjustment leads to

0 =∂M
∂µ

(B.31)

0 =−Tr
(
C∆φ̇C̃,m

)
σ2

xTr,n
N LT ·µ+Tr

(
C∆φ̇C̃,m

)
(B.32)

=⇒ µ= 1

σ2
xTr,n

N LT
. (B.33)
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Nomenclature

Basic Constants and Variables

amn,l Path attenuation of the l th path between transmit antenna n and receive antenna m

βT Roll-off of the discrete-time pulse-shaping filter

c Speed of light ≈ 3 ·108 m
s

d , dTx,1, dTx,2, dRx,1, dRx,2 Antenna spacing, antenna spacing on the transmit side in the 1st

array direction, antenna spacing on the transmit side in the 2nd array direction, antenna

spacing on the receive side in the 1st array direction, antenna spacing on the receive

side in the 2nd array direction

fnom Nominal (ideal) carrier frequency of the transmission system

fTx,n , fRx,m Actual carrier frequency of the nth transmitter, actual carrier frequency of the

mth receiver

KR Rician K -factor

λ Wavelength of the nominal carrier frequency, i.e., λ= c
fnom

λTx,n Wavelength of the actual carrier frequency of the nth transmitter

M Number of receive antennas or front ends

N Number of transmit antennas or front ends

Q Integer oversampling factor

Q̄ Fractional oversampling factor

R Transmission link range

Ts Symbol duration, equivalent to the inverse of the symbol rate

τmn,l Path delay of the l th path between transmit antenna n and receive antenna m

Tnom, Tnom,Tx, Tnom,Rx Nominal (or ideal) sampling time interval, nominal sampling interval

at the transmitter, nominal sampling interval at the receiver
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Nomenclature

TTx,n , TRx,m Actual sampling interval of the nth transmitter, actual sampling interval of the

mth receiver

Operators, Functions, and Distributions

C N (a,b) Complex Gaussian distribution with mean a and variance b, with uncorrelated

real and imaginary part

? Discrete-time convolution

E[x] Expected value of random variable x

F {x[l ]} Discrete Fourier transform of discrete-time signal x[l ]

Im{x} Imaginary part of complex variable x

J0(x) Bessel function of the first kind and zeroth order evaluated at x

N (a,b) Gaussian distribution with mean a and variance b

Re{x} Real part of complex variable x

sinc(x) Sinc function of variable x, i.e., sin(x)
x

U (a,b) Uniform distribution between a and b

Basic Vectors and Matrices, Operators and Functions

0m×n All-zeros vector or matrix of size m ×n

1m×n All-ones vector or matrix of size m ×n

blkdiag(X1,X2, . . . ,Xn) Block diagonal matrix of a sequence of matrices X1,X2, . . . ,Xn

x∗, x∗, X∗ Complex conjugate (entry-wise) of variable x, vector x, or matrix X

det(X) Determinant of matrix X

diag(x) Diagonal matrix of vector x

en nth basis vector

¯ Hadamard (or entry-wise) product of two vectors, or matrices, of equal size

xH, XH Conjugate transpose, or Hermitian transpose, of vector x, or matrix X

In Identity matrix of size n ×n

κ (X) Condition number of matrix X

⊗ Kronecker product of two vectors, or matrices
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λi (X), λmax (X) i th eigenvalue of matrix X, maximum eigenvalue of matrix X

Tr(X) Trace of matrix X

xT, XT Transpose of vector x, or matrix X

vec(X) Vectorization, i.e., column stacking, of matrix X

Continuous-Time Signals, Filters, and Processes

hBP,mn(t ), hmn(t ) Continuous-time band-pass version of the wireless channel impulse re-

sponse between transmit antenna n and receive antenna m, continuous-time baseband

version of the wireless channel impulse response between transmit antenna n and

receive antenna m

hTx,n(t ), hRx,m(t ) Continuous-time baseband linear impulse response characteristic of the

nth transmitter front end, continuous-time baseband linear impulse response charac-

teristic of the mth receiver front end

nm(t ) Continuous-time band-pass/baseband noise process observed at the mth receiver

rm(t ) Continuous-time band-pass version of the received signal of antenna m

sn(t ) Continuous-time band-pass version of the transmitted signal of antenna n

x̄n(t ) Continuous-time baseband version of the transmitted signal of antenna n

ȳm(t ) Continuous-time baseband version of the received signal of antenna m

Discrete-Time Signals, Filters, and Processes

hmn[l ] Discrete-time baseband version of the wireless channel impulse response between

transmit antenna n and receive antenna m

hC,mn[lC], hC,mn[k, lC], ḣC,mn[l̇C], ḣC,mn[k, l̇C] Discrete-time baseband version of the com-

posite, including linear transmit and receive filter characteristics, channel impulse

response between transmit antenna n and receive antenna m, discrete-time baseband

version of the composite channel impulse response between transmit antenna n and

receive antenna m including the timing impairments, fractionally-spaced version of the

former, fractionally-spaced version of the latter

hC̃,mn[k, lC̃] Extended discrete-time baseband version of the composite, including linear

transmit and receive filter characteristics, channel impulse response between transmit

antenna n and receive antenna m, including the timing impairments

hP,n[lP], hP,m[lP] Discrete-time finite-length pulse-shaping filter of the nth transmitter, discrete-

time finite-length pulse-shaping filter of the mth receiver
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hTx,n[k], hRx,m[k], hTx,n[lTx], hRx,m[lRx] Discrete-time baseband linear impulse response char-

acteristic of the nth transmitter front end, discrete-time baseband linear impulse re-

sponse characteristic of the mth receiver front end, discrete-time finite-length base-

band linear impulse response characteristic of the nth transmitter front end, discrete-

time finite-length baseband linear impulse response characteristic of the mth receiver

front end

µϕw , σ2
ϕw

, σ2
ϕn

Mean linear drift of the carrier phase process, variance of the Wiener process

contained in the carrier phase process, variance of the white noise process contained in

the carrier phase process

µϕ̇w , σ2
ϕ̇w

, σ2
ϕ̇n

Mean linear drift of the sampling phase process, variance of the Wiener process

contained in the sampling phase process, variance of the white noise process contained

in the sampling phase process

nm[k], ṅm[k] Symbol-spaced discrete-time baseband noise process sample observed at the

mth receiver, fractionally-spaced discrete-time baseband noise process sample ob-

served at the mth receiver

ñm[k] Colored discrete-time baseband noise process sample observed at the mth receiver,

including the effect of the linear impulse response characteristic of that receiver

φTx,n[k], φRx,m[k] Sample of the discrete-time carrier phase offset process of the nth transmit-

ter with respect to its nominal carrier frequency fnom, sample of the discrete-time carrier

phase offset process of the mth receiver with respect to its nominal carrier frequency

fnom

∆φmn[k] Discrete-time baseband sample of the carrier phase difference process between

transmitter n and receiver m, i.e., φTx,n[k]−φRx,n[k]

φ̇Tx,n[k], φ̇Rx,m[k] Sample of the discrete-time sampling phase offset process of the nth trans-

mitter with respect to its nominal sampling interval Tnom,Tx, sample of the discrete-time

sampling phase offset process of the mth receiver with respect to its nominal sampling

interval Tnom,Rx

∆φ̇mn[k] Discrete-time baseband sample of the sampling phase difference process between

transmitter n and receiver m, i.e., φ̇Tx,n[k]− φ̇Rx,n[k]

σ2
nm

, σ2
ṅm

Variance of the symbol-spaced noise process of the mth receiver, variance of the

fractionally-spaced noise process of the mth receiver

σ2
xn

Variance (or average transmit power per symbol) of the signal of antenna n

σ2
xTr,n

Variance (or average transmit power per symbol) of the training signal of antenna n

σ2
ẏm

Variance (or average received power per sample) of the received signal of antenna m
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Nomenclature

xn[k], ẋn[k] Discrete-time baseband symbol of the transmitted signal of antenna n, discrete-

time baseband sample of the transmitted signal of antenna n

xTr,n[lTr], ẋTr,n[l̇Tr] Discrete-time baseband symbol of the transmitted finite-length training

signal of antenna n, discrete-time baseband sample of the transmitted finite-length

training signal of antenna n

ym[k], ẏm[k] Symbol-spaced discrete-time baseband sample of the received signal of an-

tenna m, fractionally-spaced discrete-time baseband sample of the received signal of

antenna m

Discrete-Time Vector and Matrix Signals, Filters, and Processes

ėL̇R
[k], e[k] Vector containing the current and previous L̇R −1 error signal values from all

antennas used for adaptive filtering, vector containing the current error signal value

from all antennas used for adaptive equalization

hm[l ], hL,m Vector containing the l th tap of the wireless channel impulse responses from all

transmit antennas to receive antenna m, vector containing all L taps of the wireless

channel impulse responses from all transmit antennas to receive antenna m

H, H[k], HLRx , HLRx [k], ḢL̇Rx
, ḢL̇Rx

[k] Matrix containing all L taps of the time-invariant wireless

channel impulse responses from all transmit antennas to all receive antenna, matrix

containing all L taps of the time-varying wireless channel impulse responses from

all transmit antennas to all receive antenna, extended matrix containing all symbol-

spaced time-invariant wireless channel impulse responses, extended symbol-spaced

time-varying matrix containing all wireless channel impulse responses, extended matrix

containing the complete fractionally-spaced time-invariant wireless channel impulse

response, extended matrix containing all fractionally-spaced time-varying wireless

channel impulse responses

hC, hC[k], ḣC, ḣC[k] Vector containing all taps of the composite, including linear transmit and

receive filter characteristics, symbol-spaced time-invariant channel impulse responses

between all transmit and all receive antennas, vector containing all taps of the composite

symbol-spaced time-varying channel impulse responses between all transmit and all

receive antennas, vector containing all taps of the composite fractionally-spaced time-

invariant channel impulse responses between all transmit and all receive antennas,

vector containing all taps of the composite fractionally-spaced time-varying channel

impulse responses between all transmit and all receive antennas

HC, ḢC[k] Matrix containing all taps of the composite, including linear transmit and receive

filter characteristics, symbol-spaced time-invariant channel impulse responses be-

tween all transmit and all receive antennas, matrix containing all taps of the composite

fractionally-spaced time-varying channel impulse responses between all transmit and

all receive antennas
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HC[k, lC] Matrix containing the lCth tap of the composite, including linear transmit and

receive filter characteristics, time-invariant channel impulse responses between all

transmit and all receive antennas, in the thesis lC = 0 is often used to define the LoS tap

HC̃, HC̃[k] Extended matrix containing all taps of the composite, including linear transmit

and receive filter characteristics, time-invariant channel impulse responses between all

transmit and all receive antennas, extended matrix containing all taps of the composite

time-varying channel impulse responses between all transmit and all receive antennas

HP Matrix containing pulse-shaping filters

HRx, HRx[k], ḢRx, ḢRx[k] Matrix containing all taps of the time-invariant symbol-spaced lin-

ear receive filter characteristics from all receivers, matrix containing all taps of the

time-varying symbol-spaced linear receive filter characteristics from all receivers, matrix

containing all taps of the time-invariant fractionally-spaced linear receive filter charac-

teristics from all receivers, matrix containing all taps of the time-varying fractionally-

spaced linear receive filter characteristics from all receivers

HC̃,Rx[k] Extended matrix containing all taps of the time-varying linear receive filter charac-

teristics from all receivers

HTx,LD , HTx,LD [k], ḢTx,L̇D
, ḢTx,L̇D

[k] Extended matrix containing all taps of the time-invariant

symbol-spaced linear transmit filter characteristics from all transmitters, extended ma-

trix containing all taps of the time-varying symbol-spaced linear transmit filter charac-

teristics from all transmitters, extended matrix containing all taps of the time-invariant

fractionally-spaced linear transmit filter characteristics from all transmitters, extended

matrix containing all taps of the time-varying fractionally-spaced linear transmit filter

characteristics from all transmitters

n[k], nLRx [k], ṅL̇Rx
[k] Vector containing the current symbol-spaced noise sample from all

receive antennas, vector containing the current and LRx −1 previous symbol-spaced

noise samples from all receive antennas, vector containing the current and L̇Rx −Q

previous fractionally-spaced noise samples from all receive antennas

ñ[k], ñL̇R
[k] Vector containing the current colored noise sample from all receive antennas,

vector containing the current and L̇R −Q previous fractionally-spaced colored noise

samples from all receive antennas

φTx[k],φRx[k] Vector containing the current carrier phase offset process sample from all

transmit antennas, vector containing the current carrier phase offset process sample

from all receive antennas

ΦTx[k],ΦRx[k],ΦTx,L[k],ΦTx,LD [k],ΦRx,LRx [k] Diagonal matrix containing the current carrier

phase offset process sample from all transmitters, diagonal matrix containing the cur-

rent carrier phase offset process sample from all receivers, diagonal matrix containing

the current and L−1 previous carrier phase offset process samples from all transmitters,
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diagonal matrix containing the current and LD −1 previous carrier phase offset pro-

cess samples from all transmitters, diagonal matrix containing the current and LRx −1

previous carrier phase offset process samples from all receivers

∆Φ[k],∆Φ̇[k] Matrix containing the carrier phase offset process difference samples between

all transmit and all receive antennas, matrix containing the sampling phase offset

process difference samples between all transmit and all receive antennas

WC̃[k] Matrix containing the time-varying equalizer coefficients for the complete system

WF, WB, WF[k], WB[k] Matrix containing the time-invariant symbol-spaced feedforward equal-

izer coefficients of the complete system, matrix containing the time-invariant symbol-

spaced feedback equalizer coefficients of the complete system, matrix containing the

time-varying fractionally-spaced feedforward equalizer coefficients of the complete

system, matrix containing the time-varying fractionally-spaced feedback equalizer coef-

ficients of the complete system

x[k], xL[k], xLC [k], xLP [k], xLT [k], ẋL̇C
[k] Vector containing the current transmitted symbol of

all transmit antennas, vector containing the current and L − 1 previous transmitted

symbols of all transmit antennas, vector containing the current and LC −1 previous

transmitted symbols of all transmit antennas, vector containing the current and LP −1

previous transmitted symbols of all transmit antennas, vector containing the current

and LT −1 previous transmitted symbols of all transmit antennas, vector containing the

current and L̇C −Q previous transmitted samples of all transmit antennas

xTr[lTr], xTr, ẋTr Vector containing the lTrth transmitted training symbol of all transmit anten-

nas, vector containing all transmitted training symbols of all transmit antennas, vector

containing all transmitted training samples of all transmit antennas

XTr, ẊTr Toeplitz matrix containing all transmitted training symbols of all transmit antennas,

Toeplitz matrix containing all transmitted training samples of all transmit antennas

xTr,LT [k], ẋTr,L̇T
[k] Vector containing the current and LT − 1 previous transmitted training

symbols of all transmit antennas, vector containing the current and LT −1 previous

transmitted training samples of all transmit antennas

y[k], yLR [k], yLF [k] Vector containing the current received symbol of all receive antennas,

vector containing the current and LR −1 previous received symbols of all receive anten-

nas, vector containing the current and LF −1 previous received symbols of all receive

antennas

ẏ[k], ẏL̇R
[k], ẏL̇C

[k], ẏL̇F
[k], ẏC̃,L̇F,B

[k] Vector containing the current received sample of all re-

ceive antennas, vector containing the current and L̇R −Q previous received samples

of all receive antennas, vector containing the current and L̇C −Q previous received

samples of all receive antennas, vector containing the current and L̇F −Q previous re-

ceived samples of all receive antennas, vector containing the samples and symbols for

decision-feedback equalization
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Lengths of Discrete-Time Finite-Length Signals and Filters

L, L̇ Length of the wireless channel impulse response in symbols, length of the wireless

channel impulse response in samples

LC, L̇C Length of the composite, including linear transmit and receive filter characteristics,

channel impulse response in symbols, length of the composite channel impulse re-

sponse in samples

L̇C̃,Rx Length of the extended receive filter channel impulse response in samples

LD, L̇D Length of the combined channel impulse response of wireless channel and receive

filter characteristic in symbols, length of the combined channel impulse response of

wireless channel and receive filter characteristic in samples

LE, LE,mn , L̇E Number of symbols between two channel estimates, number of symbols after

which the channel estimate between transmit antenna n and receive antenna m has

been shifted by one symbol, number of samples between two channel estimates

LF, L̇F, LB Length of the feedforward part of the equalizer in symbols per antenna, length of

the feedforward part of the equalizer in samples per antenna, length of the feedback

part of the equalizer in symbols per antenna

LI Number of samples over which the channel is approximately time invariant

LP Length of the pulse-shaping filter

LT, L̇R Length of a block of transmit symbols per antenna, length of a block of receive samples

per antenna

LTx,n , LRx,m , L̇Tx,n , L̇Rx,m Length of the impulse response characteristic of the nth transmitter

front end in symbols, length of the impulse response characteristic of the mth receiver

front end in symbols, length of the impulse response characteristic of the nth transmitter

front end in samples, length of the impulse response characteristic of the mth receiver

front end in samples

LTx, LRx, L̇Tx, L̇Rx Maximum length of the impulse response characteristic among all trans-

mitter front ends in symbols, maximum length of the impulse response characteristic

among all receiver front ends in symbols, maximum length of the impulse response

characteristic among all transmitter front ends in samples, maximum length of the

impulse response characteristic among all receiver front ends in samples

LTr Length of the training signal in symbols

Adaptive Filter Quantities

Cñ[k] Time-varying correlation matrix of the colored noise processes, between all antennas,

of length L̇R per antenna
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C∆φ̇C̃,m
Correlation matrix of the sampling phase variation model of the mth antenna

CxTr,LT
[k] Time-varying correlation matrix of the training signals, between all antennas, of

length LT per antenna

CẏL̇R
[k] Time-varying correlation matrix of the received samples, between all antennas, of

length L̇R per antenna

CẏL̇R
xTr,LT

[k] Time-varying crosscorrelation matrix of the received samples, between all trans-

mit antennas and receive antennas, of length L̇R per antenna with the transmitted

training symbols of length LT per antenna

M , Mopt,CFO, Mopt,SFO Misadjustment of the adaptive filter, misadjustment of the adaptive

filter with optimal step size for the CFO-only case, misadjustment of the adaptive filter

with optimal step size for the SFO-only case

µ, µ1, µ2, µopt,CFO, µopt,SFO Step size of the adaptive filter, step size option one when no infor-

mation is available, step size option two when no information is available, optimal step

size in the CFO-only case, optimal step size in the SFO-only case

∆φmax Maximum carrier phase variation per sample

∆φ̇max,∆φ̇max,Tx,∆φ̇max,Rx Maximum sampling phase variation per sample, maximum sam-

pling phase variation per sample on the transmitter side, maximum sampling phase

variation per sample on the receiver side

τ Convergence time of the adaptive filter

168



Abbreviations

ADC analog-to-digital converter

AWG arbitrary waveform generator

CDF cumulative distribution function

CFO carrier frequency offset

CRB Cramér-Rao bound

DA data-aided

DAC digital-to-analog converter

DD decision-directed

DFE decision-feedback equalizer

DFT discrete Fourier transform

ENOB effective number of bits

FE front end

i.i.d. independent and identically distributed

i.u.d. independent and uniformly distributed

ISI intersymbol interference

LMS least-mean-squares

LO local oscillator

LoS line-of-sight

LS least-squares

MAP maximum-a-posteriori

MIMO multiple-input and multiple-output

ML maximum-likelihood

MMSE minimum-mean-square-error

mmWave millimeter-wave

MSE mean squared error

NDA non-data-aided

NLoS non-line-of-sight

PDF probability density function

PLL phase-locked loop

PMF probability mass function

PN phase noise

ppm parts-per-million

RMS root-mean-square

RTO real-time oscilloscope

Rx receiver

SDoF spatial degrees of freedom

SER symbol error rate

SFO sampling frequency offset

SISO single-input and single-output

SNR signal-to-noise ratio

Tx transmitter

TxRx-ST transmitter-receiver space-time

w.r.t. with respect to

WL widely-linear
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