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Abstract

Plastics have long become indispensable materials in modern society. In light of the ever-
growing production volumes of plastics, recycling of end-of-life plastic products becomes
increasingly important every year. The recycling of plastics waste is attractive from both
the environmental and economic points of view. It reduces the amounts of waste buried
in landfills and the CO2 emission associated with the production of new plastic resins and
helps reduce the usage of strategic fossil resources such as crude oil. One of the main
difficulties associated with the recycling of plastics is the need for mono-fractional sorting
of plastics of different types and grades. If different types of plastics are mixed and used
together for recycling, the resulting product has low quality and cannot compete with
products made from brand new plastics. This is especially important in demanding appli-
cations where high-quality material properties are required. Thus sorting waste plastics is
key to the success of recycling.

The goal of this dissertation is the development and practical evaluation of a spectro-
scopic measurement and classification system for the automated sorting of shredded flakes
of different plastic types based on their fluorescence spectra. In contrast to the state-of-
the-art spectroscopic approaches which rely on the intrinsic properties of the plastics, this
work investigates the concept of “fluorescent labeling”. The idea is to incorporate small
amounts (at ppm concentration levels) of appropriate fluorescent tracers (or “markers”)
into the raw plastics during the manufacturing process thus generating unique fluorescence
spectra emitted by the plastics. These fluorescence spectra can then be measured using
a dedicated spectroscopic instrument and used for the plastics classification. Markers are
incorporated into the plastics according to a certain (e.g. binary) coding scheme in or-
der to increase the overall number of different plastics that can be labeled. Fluorescent
markers can be especially helpful in the case of dark and black plastics with their normally
flat, non-characteristic reflectance and/or fluorescence spectra by adding specific features
to these spectra. Additionally, the use of fluorescence markers does not only allow the
classification of plastics of different types (i.e. with different chemical structures), but also
plastics of the same type that are produced by different manufacturers or sold to different
customers. In fact, virtually any information can be encoded into plastics through fluores-
cence labeling. For example, fluorescent markers can help distinguish original plastic parts
from counterfeit ones.

The idea of fluorescent labeling was first proposed about 20 years ago but has not
yet been put into wide industrial practice. Some commercially available systems carry
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out macro-sorting of plastics, i.e. the sorting of large objects such as for example plastic
bottles. For complex assemblies consisting of many parts made of different plastic types,
a prior disassembling is thus necessary. In contrast, micro-sorting deals with small (in
the millimeter range) flakes of shredded plastics, does not require the labor-intensive prior
disassembling, and is, therefore, more flexible and attractive for the recycling of plastic
waste. This dissertation focuses on the micro-sorting approach.

Due to the chemical structure of the plastics and/or various additives such as brighten-
ing components or for UV-protection, many plastics exhibit the so-called autofluorescence.
The autofluorescence spectrally overlaps with the fluorescence of the incorporated markers
and may even completely mask it. A strong autofluorescence can make correct and reliable
classification of fluorescently labeled plastics problematic or even impossible in practice.
To combat the negative influence of the autofluorescence, a method called the time-gated
fluorescence spectroscopy (TGFS) is proposed in this work. This method dwells on the
fact that the fluorescence emission decays exponentially when the excitation light is turned
off and that the fluorescence decay time constants of inorganic markers are usually orders
of magnitude larger than those of the typical autofluorescence. Using a pulsed excita-
tion light in combination with time-gated acquisition of the fluorescence emission makes
it possible to (almost) completely avoid the presence of autofluorescence in the measured
spectra. The obvious downside of this method is a decreased signal intensity and thus
lower signal-to-noise ratio (S/N ratio) of the acquired fluorescence spectra in comparison
to spectra acquired without pulsing and time-gating. Low fluorescence intensities and S/N
ratios are disadvantageous for the classification performance and thus must be maximized.
In the context of TGFS, the intensity of the acquired fluorescence spectra mainly depends
on the fluorescence decay time constants of the markers and on the acquisition parameters
of the time-gating. The former are governed by chemical/physical laws and are difficult to
modify. The latter, however, can be easily varied in order to achieve the highest possible
S/N ratio and in turn the best classification. For this purpose, a mathematical model
for the fluorescence intensity of the TGFS spectra is proposed and investigated in this
dissertation. This model is then used to find the best suitable acquisition parameters for
TGFS.

In order to achieve the best possible classification performance, various approaches to
the classification of the fluorescence spectra emitted from the labeled plastics are investi-
gated including the relatively simple and thus numerically efficient naive Bayes’ methods
and spectral similarity measures, as well as more complex ones such as neural networks
(NN), support vector machines (SVM) and random forests (RF). The classification algo-
rithms are implemented in a simulation framework developed to allow the modeling of
marker fluorescence spectra corrupted with different disturbances important in practice,
such as the measurement noise, autofluorescence, etc. Classifiers are evaluated using com-
puter simulations with respect to these disturbances.

In order to quantify the classification performance of a TGFS system for fluorescently
labeled plastics in practice, a prototype system was built. The prototype was developed
with a particular focus on an industrial environment in a typical recycling facility and
designed to process shredded plastic flakes with sizes between approx. 3 mm and 10 mm
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on a 500 mm wide conveyor belt in 50 parallel channels. Six fluorescent markers were
used in binary combinations allowing to label up to 26 − 1 = 63 different plastics. The
prototype was thus capable to classify and sort flakes of up to 63 different fluorescently
labeled plastics simultaneously with a mass throughput of up to about 250 kilogram per
hour. Extensive experimental measurements with approximately 140 000 shredded flakes of
different fluorescently labeled plastics and ∼10 000 unlabeled plastic flakes were carried out
to evaluate the performance of the prototype. A very high classification performance was
achieved: an average sensitivity (i.e. true positive rate, TPR) of 99.76% and an average
precision (i.e. positive predictive value, PPV) of 99.88%. Additionally, measurements with
fluorescently labeled black plastic flakes were carried out yielding virtually the same high
performance: TPR of 99.76% and PPV of 99.60%. The results are not 100% perfect since
some misclassifications occurred due to the low S/N ratio of the spectra measured from
very small flakes (smaller than approx. 2 mm). The majority of the misclassifications are
due to the unequal intensities of individual markers in the marker combinations which led
to some “stronger” markers masking the presence of the “weaker” markers in the measured
fluorescence spectra. Nevertheless, out of 150 000 experimentally investigated flakes only
338 were misclassified, which only is 0.23%.

The investigations in this dissertation show that a highly reliable classification of flu-
orescently labeled plastics is possible in practice. This work proves that the principle of
fluorescent labeling is applicable not only for the macro-sorting of large plastic objects but
also for the more versatile micro-sorting of small shredded plastic flakes. Moreover, this
approach can be successfully implemented in an industrial environment. Clearly, certain
adaptation and optimization steps must be taken especially with respect to achieving a
higher mass throughput (several tons per hour) for an industry-scale operation. Using a
larger number of markers is also possible and would allow labeling and classifying more
plastics simultaneously. Overall, this dissertation demonstrates a promising way to make
the recycling of waste plastics flexible, economically attractive, and successful.
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Kurzfassung

In der modernen Gesellschaft sind Kunststoffe seit langem unverzichtbar. Angesichts der
stetig steigenden Produktionsmengen von Kunststoffen wird das Recycling von Kunststof-
fabfällen von Jahr zu Jahr immer wichtiger. Recycling ist sowohl aus ökologischer als auch
aus wirtschaftlicher Sicht attraktiv, da es nicht nur die Abfallmenge auf Mülldeponien
und den CO2-Ausstoß bei der Herstellung neuer Kunststoffe reduziert, sondern auch dazu
beiträgt, den Verbrauch begrenzter fossiler Ressourcen wie Rohöl zu reduzieren. Eine der
Hauptschwierigkeiten beim Recycling von Kunststoffen ist die Notwendigkeit einer sorten-
reinen Trennung von Kunststoffen verschiedener Typen. Wenn unterschiedliche Kunst-
stofftypen beim Recycling miteinander vermischt werden, weist das resultierende Produkt
eine geringere Qualität auf und kann deshalb nicht mit Produkten aus brandneuen Kun-
ststoffen konkurrieren. Dies ist besonders wichtig bei anspruchsvollen Anwendungen, bei
denen hochwertige, spezifische Materialeigenschaften erforderlich sind. Die Sortierung von
Kunststoffabfällen ist daher der Schlüssel zum Erfolg des Recyclings.

Ziel dieser Dissertation ist die Entwicklung und praktische Umsetzung eines spek-
troskopischen Mess- und Klassifizierungssystems zur automatisierten Sortierung von typ-
ischem Kunststoffmahlgut (“Flakes”) verschiedener Kunststofftypen anhand ihrer Fluo-
reszenzspektren. Im Gegensatz zu den bestehenden spektroskopischen Systemen, die intrin-
sische Eigenschaften der Kunststoffe nutzen, wird in dieser Arbeit das Konzept der “Flu-
oreszenzmarkierung” untersucht. Die Idee ist, kleine Mengen (in ppm-Konzentrationen)
geeigneter Fluoreszenzleuchtstoffe (oder “Marker”) in die Rohkunststoffe im Rahmen des
Herstellungsprozesses einzubringen, um so den Kunststoffen einzigartige Fluoreszenzspek-
tren zuzuweisen. Diese Fluoreszenzspektren können dann mit einem speziellen spektro-
skopischen Messsystem gemessen und für die Kunststoffklassifizierung verwendet werden.
Um die Gesamtzahl der verschiedenen Kunststoffe, die markiert werden können, zu erhöhen,
werden die Marker gemäß einem bestimmten (z.B. binären) Codierungsschema in die
Kunststoffe eingebracht. Außerdem sind Fluoreszenzmarker besonders bei dunklen und
schwarzen Kunststoffen mit ihren normalerweise flachen, nicht charakteristischen Reflexions-
und/oder Fluoreszenzspektren hilfreich, indem diesen Spektren spezifische Merkmale hinzu-
gefügt werden. Darüber hinaus ermöglicht die Verwendung von Fluoreszenzmarkern nicht
nur die Klassifizierung von Kunststoffen unterschiedlicher Typen (d.h. mit unterschiedlichen
chemischen Strukturen), sondern auch von Kunststoffen desselben Typs, die von unter-
schiedlichen Firmen hergestellt oder an unterschiedliche Kunden verkauft werden. Tatsäch-
lich können praktisch beliebige Informationen durch Fluoreszenzmarkierung in Kunststoffe
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kodiert werden. Beispielsweise können Fluoreszenzmarker dazu beitragen, originale Kun-
ststoffteile von gefälschten zu unterscheiden.

Die grundsätzliche Idee der Fluoreszenzmarkierung wurde erstmals vor etwa 20 Jahren
vorgeschlagen, aber noch nicht in die breite industrielle Praxis umgesetzt. Einige im Handel
erhältliche Systeme setzten die Makrosortierung von Kunststoffen um, d.h. die Sortierung
großer Objekte wie beispielsweise Plastikflaschen. Bei komplexen Baugruppen, die aus
vielen unterschiedlichen Kunststofftypen bestehen, ist daher die vorherige Demontage er-
forderlich. Im Gegensatz dazu arbeitet die Mikrosortierung mit Kunststoffmahlgut (einige
Millimeter große Kunststoff-Flakes), erfordert keine arbeitsintensive vorherige Demontage
und ist daher flexibler und attraktiver für das Recycling von Kunststoffabfällen. Diese
Dissertation konzentriert sich auf den Mikrosortierungsansatz.

Aufgrund der chemischen Struktur der Kunststoffe und/oder verschiedener Additive
wie z.B. UV-Schutz weisen viele Kunststoffe die sogenannte Autofluoreszenz auf. Die Aut-
ofluoreszenz überlappt spektral mit der Fluoreszenz der eingebauten Marker und kann
diese sogar vollständig maskieren. Eine starke Autofluoreszenz kann die korrekte und zu-
verlässige Klassifizierung der markierten Kunststoffe problematisch oder sogar unmöglich
machen. Um dem negativen Einfluss der Autofluoreszenz entgegenzuwirken, wird in dieser
Arbeit ein Verfahren vorgeschlagen, das als zeitaufgelöste Fluoreszenzspektroskopie (Time-
Gated Fluorescence Spectroscopy, TGFS) bezeichnet wird. Dieses Verfahren beruht auf
der Tatsache, dass die Fluoreszenzemission exponentiell abnimmt, nachdem das Anre-
gungslicht ausgeschaltet wird, und dass die Fluoreszenzabklingzeitkonstanten anorganis-
cher Fluoreszenzmarker üblicherweise um mehrere Zehnerpotenzen größer sind als die der
typischen Autofluoreszenz. Die Verwendung eines geeigneten gepulsten Anregungslichts in
Kombination mit einer zeitgesteuerten Erfassung der Fluoreszenzemission ermöglicht es,
den Einfluss der störenden Autofluoreszenz im gemessenen Spektrum (fast) vollständig zu
vermeiden. Der offensichtliche Nachteil dieses Verfahrens ist eine verringerte Signalinten-
sität und damit ein geringeres Signal-zu-Rausch-Verhältnis (S/N-Verhältnis) der erfassten
Fluoreszenzspektren im Vergleich zu Spektren, die mit nicht gepulstem Anregungslicht und
ohne TGFS erfasst wurden. Eine geringe Fluoreszenzintensität bzw. ein niedriges S/N-
Verhältnis sind für die Klassifizierungsleistung nachteilig und müssen daher maximiert
werden. Bei der TGFS-Messung hängt die Intensität der erfassten Fluoreszenzspektren
hauptsächlich von den Abklingzeitkonstanten der Marker-Fluoreszenz und von den Pa-
rametern der zeitgesteuerten Erfassung (time-gating) ab. Die Abklingzeitkonstanten un-
terliegen chemischen und physikalischen Gesetzen und sind schwer zu beeinflussen. Die
zeitgesteuerte Erfassung kann jedoch leicht variiert werden, um das höchstmögliche S/N-
Verhältnis und damit die beste Klassifizierungsleistung zu erreichen. Zu diesem Zweck
wird in der vorliegenden Dissertation ein mathematisches Modell der Fluoreszenzinten-
sität der TGFS-Spektren vorgeschlagen und dafür eingesetzt, die besten Parameter der
Zeitsteuerung des TGFS zu finden.

Um die bestmögliche Klassifizierungsergebnisse zu erzielen, werden verschiedene An-
sätze zur Klassifizierung der von den markierten Kunststoffen emittierten Fluoreszenzspek-
tren untersucht, darunter die relativ einfachen und damit numerisch effizienten naiven
Bayes-Methoden und spektralen Ähnlichkeitsmaße (similarity measures) sowie komplexere
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wie künstliche Neuronale Netze (NN), Support Vector Machines (SVM) und Random
Forests (RF). Die Klassifizierungsalgorithmen werden in einem dafür entwickelten Simula-
tions-Framework implementiert und im Hinblick auf Störfaktoren wie insbesondere Sensor-
bzw. Messrauschen und Autofluoreszenz miteinander verglichen.

Um die Klassifizierungsleistung des TGFS-Systems in der Praxis zu quantifizieren,
wurde ein Prototypsystem gebaut. Der Prototyp wurde im Hinblick auf eine industrielle
Umgebung einer typischen Recyclinganlage entwickelt, und für die Verarbeitung von Kunst-
stoff-Flakes mit Abmessungen zwischen ca. 3 mm und 10 mm auf einem 500 mm breiten
Förderband in 50 parallelen Vereinzelungskanälen ausgelegt. Sechs Fluoreszenzmarker wur-
den in binären Kombinationen verwendet, um bis zu 26 − 1 = 63 verschiedene Kunststoffe
zu markieren. Dieser Prototyp war somit in der Lage, Flakes von bis zu 63 verschieden
markierten Kunststoffen gleichzeitig mit einem Massendurchsatz von bis zu etwa 250 Kilo-
gramm pro Stunde zu klassifizieren bzw. zu sortieren. Um die Leistungsfähigkeit des Pro-
totyps zu bewerten, wurden umfangreiche experimentelle Messungen mit ungefähr 140 000
Flakes von verschiedenen fluoreszenzmarkierten Kunststoffen und ca. 10 000 unmarkierten
Kunststoff-Flakes durchgeführt. Dabei wurde eine sehr hohe Klassifizierungsleistung er-
reicht: eine durchschnittliche Sensitivität (d.h. Richtig-Positiv-Rate, True Positive Rate,
TPR) von 99.76% und eine durchschnittliche Genauigkeit (d.h. Positiver Vorhersagewert,
Positive Predictive Value, PPV) von 99.88%. Zusätzlich wurden Messungen mit fluo-
reszenzmarkierten schwarzen Kunststoff-Flakes durchgeführt, mit denen praktisch die gle-
iche hohe Klassifizierungsleistung erzielt wurde: TPR = 99.76% und PPV = 99.60%. Die
Ergebnisse sind nicht zu 100% perfekt, weil aufgrund des niedrigen S/N-Verhältnisses der
von sehr kleinen Flakes (kleiner als ca. 2 mm) gemessenen Spektren einige Fehlklassi-
fizierungen auftraten. Die Mehrzahl der Fehlklassifizierungen ist auf die ungleichen Inten-
sitäten einzelner Marker in den Markerkombinationen zurückzuführen, die dazu führten,
dass einige “stärkere” Marker die Emission der “schwächeren” Marker in den gemessenen
Fluoreszenzspektren maskierten. Von den 150 000 experimentell untersuchten Flakes wur-
den jedoch insgesamt nur 338 falsch klassifiziert, was einem Prozentsatz von nur 0.23%
entspricht.

Die durchgeführten Untersuchungen zeigen, dass eine äußerst zuverlässige Klassifi-
zierung von fluoreszenzmarkierten Kunststoffen in der Praxis möglich ist. Die vorliegende
Dissertation zeigt, dass das Prinzip der Fluoreszenzmarkierung nicht nur für die Makro-
sortierung großer Kunststoffobjekte anwendbar ist, sondern auch für die wesentlich vielseit-
igere Mikrosortierung von kleinen Kunststoff-Flakes (Kunststoffmahlgut). Darüber hin-
aus kann dieses Verfahren in einem industriellen Umfeld erfolgreich umgesetzt werden.
Dieses Verfahren stellt eine vielversprechende Möglichkeit dar, das Recycling von Kunst-
stoffabfällen flexibel, wirtschaftlich attraktiv und erfolgreich zu gestalten.
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Chapter 1

Introduction

The annual world production of plastics has been constantly growing in the recent few
decades: between 2005 and 2016 it climbed from around 230 million tons to over 335
million tons [1]. The reason for that is the incredible versatility of plastic materials and
the unique properties they possess. Nowadays, plastics are used virtually everywhere. For
packaging and in buildings, electrical and electronic equipment, automotive and aeronautics
industries are just a few examples of their application fields.

However, this incredible success of plastic materials has urged the need for recycling
of plastics waste to become more and more noticeable. In 2016, alone in Europe approx.
27.1 million tons of post-consumer plastics waste landed in the official waste streams, of
which only 31.1% were recycled and 41.6% went for energy recovery (incineration), while
27.3% ended up on landfills and scrap heaps [1]. Furthermore, the production of plastics
involves the discharge of great amounts of CO2 in the atmosphere and requires limited
fossil resources such as crude oil.

Today plastics recycling receives both broad public and state support in industrial
countries as current programs are being expanded and new ones initiated [1]. However,
despite the significant progress achieved in plastics recycling technologies in recent years,
the ultimate goal – recycling of 100% of all plastics waste – is yet to be achieved even in the
most developed countries. The key to the long-term success of plastics recycling and the
decrease of the plastics waste flow to the landfills is a large economic efficiency of recycling.
Currently, the majority of recycled plastics have a quality inferior to raw plastics, which
makes it impossible to use them in demanding applications like electronics or the automo-
tive industry. In most cases the reason for the quality degradation is that incompatible
waste plastics get mixed and are processed together. Separating such incompatible plastics
before recycling can significantly increase the quality of recycled plastics and thus improve
the overall economic efficiency.

The most advanced state of the art sorting systems use optical and spectral measure-
ment instruments for the identification of different plastic types. These, however, have
certain limitations to be discussed below. In order to overcome some of these limitations,
the idea to label plastics with fluorescent dyes (“markers”) during the manufacturing pro-
cess and use the unique spectral signatures of these markers for the identification of plastics
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was proposed by Bayer AG in 1992 [2]. However, this approach has not yet been imple-
mented in an industrial environment. The industrial application sets high requirements
not only on the robustness of the measurement equipment but also on the plastics mass
throughput, identification quality, measurement rate, etc. Along with the development of
suitable hardware and software, such implementation also involves the study, selection, and
assignment of appropriate fluorescent markers to the plastics. The goal of this dissertation
is the development of an industrially viable measurement and classification system for the
identification of fluorescently labeled plastics. The thesis is organized as follows:

the rest of Chapter 1 gives an overview of the state-of-the-art plastics waste sorting
systems and motivates further research in this area. Chapter 2 introduces the idea of fluo-
rescent labeling of plastics and lays out the fundamentals of the fluorescence phenomena.
Chapter 3 describes the basics of hyperspectral imaging with a focus on industrial appli-
cations. Chapter 4 elaborates on the classification of fluorescence spectra and compares
the performance of different classification approaches in specific scenarios based on com-
puter simulations. Chapter 5 introduces the time-gated fluorescence spectroscopy (TGFS)
measurement technique used to overcome one of the most significant problems with the
fluorescent labeling of plastics – the autofluorescence (AF) of the hosting plastics. Chap-
ter 6 describes the setup of the developed measurement and classification system prototype.
Finally, in Chapter 7 classification results achieved with the prototype are presented.

1.1 Recycling of plastics

As depicted in Fig. 1.1, plastics recycling techniques can be divided into 3 main groups
based on the type of product obtained from plastics waste [3].

First, one of the most popular recycling techniques is waste-to-energy recycling. Typ-
ically, plastics waste is used in combustion chambers in power plants instead of natural
gas or coal in order to reclaim the energy contained in them. The obvious downsides of
this approach include a low energy recovery rate, danger to the environment, and thus a
high demand on purification and filtering facilities [4]. In many cases, high costs associated
with the filtering and maintenance make the economic advantages of plastics combustion
negligible. Thus, waste-to-energy is only viable if strongly politically motivated.

The second group encompasses feedstock recycling, or chemical recycling with the goal
of reclamation of valuable complex chemical structures and elements from the end-of-life
plastic polymers. Pyrolysis is such a technique in widespread use. During pyrolysis, plastic
polymers are usually heated in isolated chambers without oxygen in presence of catalytic
agents. As a result, complex polymer molecules are chemically decomposed into simpler
monomer structures. These structures can later be used as feedstock in the production of
new complex polymers or as a fuel replacement. Since no combustion and no toxic emissions
are involved, pyrolysis is also environmentally friendly. On the downside, pyrolysis becomes
difficult and unstable in presence of additives in plastics leading to unpredictable results
and operating problems. This is usually the case with plastics waste of unknown origin.
Economically, pyrolysis is only feasible for specific polymers that yield high-value monomer
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Figure 1.1: State of the art plastics waste recycling approaches.

products, e.g. polymethyl methacrylate (PMMA) and polyamide 6 (PA6) [5]. Similar to
pyrolysis, recycling by hydrolysis uses the process of depolymerization of plastics into
monomers when they react with water in an acid, alkaline or neutral environment [5, 6].
The disadvantages of hydrolysis include high temperatures, pressure, and a long time
usually required for depolymerization. The main advantage of feedstock recycling is that
it allows the treatment of unwashed and mixed plastics without prior sorting.

The third group of recycling techniques is mechanical recycling, i.e. the reuse of plastics
in similar applications or reclamation of the plastic itself rather than of its composites.
This group of techniques is the most challenging one, since it usually requires a prior
sorting of the plastics waste, but is the most economically attractive [5]. If plastics waste
is not sorted into fractions before reprocessing, the resulting product has poor quality
and does not retain the properties of the original plastics due to the incompatibility of
various components of mixed plastics. These low quality plastics can be used in certain
undemanding products such as garden benches and tables, fences, playing facilities, etc.
In the long run, however, this market cannot absorb the ever-growing amounts of plastics
waste that is produced every year. Additionally, the quality of the plastics gets worse with
every recycling run, which makes such plastics even less useful.

In contrast, products manufactured from recycled mono-fractional plastics waste have a
quality far better than those made of mixed plastics waste. Moreover, such products retain
the initial properties of the original plastics products, which allows for the reuse in similar
(high demanding) applications and “closed circle” recycling. In order to obtain mono-
fractional plastics waste, the sorting of different plastic types is mandatory. Sorting must
be reliable and precise, as only 1% of incompatible polymers can significantly degrade the
quality of the recycled material [4]. An extreme example: only a few parts per million of
polyvinyl chloride (PVC) can ruin the entire whole of polyethylene terephthalate (PET) [7].
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1.2 Sorting of plastics

Two plastics sorting approaches exist: macro-sorting and micro-sorting. Macro-sorting
implies processing large plastic objects as is. Its advantages include large mass throughput
and relative implementation simplicity, for example sorting based on the object shape or
size. With macro-sorting, in addition to recycling, reverse distribution (deposit returns)
can be employed for certain consumer plastic products such as plastic bottles. The main
difficulty with macro-sorting in the industrial sectors is the variety of materials (plastic
types) used to build single components. For example, a dashboard of a car may be com-
posed of hundreds of pieces of different plastic types and/or colors. A large number of
plastics and the high costs of dismounting different plastic pieces of a car pose a significant
problem [3].

Micro-sorting is the approach that requires prior grinding of the plastics waste and deals
with small plastic flakes. Grinding as such solves the problem of dismounting mechanically
bound plastics of different types. In combination with washing and filtering extra small
and extra large plastic flakes, it helps clean-up and decontaminate plastics waste before
recycling. In addition, ground plastic flakes all have similar shape and size so that the
same sorting machinery can be used for plastics of very different origins.

A variety of plastics sorting and identification methods exist, ranging from manual
sorting to automated sensor-aided sorting. Manual sorting is still in widespread use in
situations where humans can identify plastics by shape, color, or trademark. Manual sort-
ing can be sometimes aided by using specific light conditions for different plastic types.
For example UV light can help operators better distinguish between PVC and PET bot-
tles [4]. Being relatively simple to implement, manual sorting is only economically viable
if the sorted objects are large in size and high mass throughput can be achieved [8]. Ad-
ditionally, it is ineffective and increasingly expensive as salaries increase in the majority
of countries. Moreover, manual sorting is error-prone and due to its poor quality, the re-
cycled material can only be used in cheap products rendering economical profit negligible.
Therefore, the development of automated sorting systems is absolutely necessary. Most of
the existing automated sorting technologies rely on certain distinctive chemical, optical,
electrical, and/or physical properties of different plastic types. Sections 1.2.1–1.2.6 give a
short overview of currently existing methods. Most of the sorting methods described below
can be used in both macro- and micro-sorting set-ups.

1.2.1 Densimetric sorting

Sorting techniques based on the density of polymers are widely used due to their relative
simplicity. For example, in sink-float separation methods, two polymers with different
density are put in a reservoir with a liquid of density smaller than that of the first polymer
and greater than that of the second polymer. While the first polymer sinks, the second
polymer floats on the surface of this liquid, and separation is achieved. This method
works very well for polymers that have very different densities but fails otherwise. For
example, water can separate light polyolefins (high-density polyethylene (HDPE), low-
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density polyethylene (LDPE), polypropylen (PP)) from heavier non-olefins (polystyrene
(PS), PET, PVC) [7]. The small difference in densities of LDPE and HDPE of only approx.
0.001 g/cm3 makes sink-float separation much more difficult and requires a different sink-
float medium [4]. In addition, the separation of only 2 plastic types can be simultaneously
achieved with this method. If more than 2 plastic types are present in the mixture, 2, 3,
or more stages of sink-float separations are needed [9]. Moreover, since it is gravity that
slowly separates the polymers, mass throughput is very low. The need to store and clean
large amounts of water or other liquids/solutions adds up to the downsides of the sink-float
method.

Froth-floatation [4] is an approach very similar to the sink-float method. The difference
is that the materials are treated with specific chemicals before put into water. The chem-
icals are chosen such that only one of the plastic types reacts with it. Then air is pumped
into the tank and air bubbles adhere only to this plastic type which then floats to the sur-
face, while other plastic types sink. In contrast to the sink-float method, froth-floatation
can separate PET from PVC very well. Other than that, it inherits the disadvantages of
sink-float sorting such as moderate mass throughput and large amounts of liquids.

Air sorting is another example of density-based techniques. It uses a vertical stream of
air to separate lighter plastic types from heavier ones [4].

In hydrocyclone sorting [4] a rotating conic tube with spiral blades and partially filled
with water is used. Centrifugal force invoked by rotation is usually more than 1000 times
stronger than gravity. As a result, water collects on the walls of the tube producing a
barrier for lightweight plastic particles. Thus lightweight particles stay in the center of the
tube before being directed to the exit of the tube by short spiral blades. Heavier particles
penetrate the water barrier, reach the walls of the tube, and are routed to another exit by
long spiral blades. Rotation speed can be adjusted to the specific densities of the plastics
to be separated.

1.2.2 Dissolution and melting

In order to separate five most common waste plastics, namely PVC, PS, LDPE, HDPE
and polyethylene (PE), xylene is used to individually dissolve each one of them [7]. The
idea is based on the fact that each of the five plastics dissolves in xylene at different tem-
peratures. At room temperature, for example, only PS dissolves leaving the remaining
plastics untouched. PS dissolved in xylene is then moved to a separate tank, where it is
heated above xylene’s boiling point. Then the pressure is quickly lowered making xylene
completely vaporize and leaving pure PS behind. The vaporized xylene is then recovered
and used to dissolve the remaining plastics at their individual temperatures. Clearly, using
the same xylene for all plastics is not optimal. Some portions of plastics may dissolve
at temperatures lower than the nominal dissolving temperature and be mixed with other
plastics thus reducing their purity. Furthermore, high temperatures involved in the pro-
cess may result in the thermal degradation of polymers and lead to high equipment and
maintenance costs.

Polymers can also be separated based on their different melting temperatures provided
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that this difference is large enough [4, 10]. For example, PVC with its melting temperature
of approx. 200 ◦C can be separated from PET (melting temperature approx. 260 ◦C). When
transported by a heated conveyor belt, PVC melts and sticks to its surface, while PET
remains in a solid state and falls off the conveyor belt at its end. Melted PVC flakes
are then mechanically removed from the conveyor belt. This method can also be used
in several stages with different heating temperatures in order to separate more than two
plastic types.

1.2.3 Electrostatic sorting

In electrostatic sorting, the separation is achieved by charging different polymer types neg-
atively and positively. Depending on the charge, shredded flakes of different plastic types
are either attracted or pushed away by a high-voltage field. This is an established technol-
ogy that allows an effective separation of mixes of PET/PVC, PS/acrylonitrile butadiene
styrene (ABS), PS/PP, ABS/PMMA and others and achieves mass throughputs of several
tons per hour [11, 12]. However, electrostatic sorting is highly dependent on the surface
condition of the plastics. Moisture, dirt, paint, or paper labels can significantly change the
electrostatic properties of the plastics and severely decrease the sorting quality [13]. For
obvious reasons, electrostatic methods usually require micro-sorting set-ups.

1.2.4 Optical identification methods

The techniques described above have several disadvantages. First, they cannot distinguish
different plastics colors. Yet, sorting plastics not only by type but also by color would
allow the production of recycled plastics with the desired appearance. Especially in the
consumer market, there is a high demand for certain optical properties of the plastics.
Second, additives incorporated into the plastics may change the plastics’ properties needed
for separation, such as e.g. density, which requires adaptation of the corresponding sort-
ing method. Finally, the need to implement multiple stages even with multiple sorting
principles in order to distinguish between more than 2 plastic types increases the complex-
ity of the entire system and makes it inflexible and expensive. Optical and spectroscopic
(discussed in Section 1.2.5) identification methods are able to tackle these problems.

Optical sorting can be performed using a color camera that acquires images in the
visible (VIS) wavelength range. The camera determines the color of light reflected from
the plastics. The color of the investigated plastics is compared with the color of reference
(known) plastics. In the case of a match, certain decision logic can be implemented and
sorting can be carried out. The way the sorting is physically carried out is irrelevant for
the system. For example, identified plastics can be blown away from the conveyor belt by a
stream of pressurized air and land in a separate container, while unidentified plastics fall off
at the end of the conveyor belt. A variety of optical sorting systems providing high sorting
quality and mass throughput are currently available on the market [14]. Optical sorting
can be combined with sorting techniques described in this section in order to achieve both
plastic type and color sorting.
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1.2.5 Spectroscopic identification methods

Spectroscopy allows the acquisition of light over a contiguous range of narrow spectral
bands. The idea of using spectroscopy for the identification of plastics relies on the fact
that different plastic types have different spectra due to the differences in their chemical
structures. Spectroscopy identification methods in VIS, near infrared (NIR) and mid-range
infrared (MIR) wavelength ranges are most commonly used. In the spectroscopic analysis,
objects are irradiated with a beam of light with a certain wavelength and bandwidth, the
reflected light is measured with a dedicated spectroscopic instrument and the resulting
reflectance spectrum is compared with the spectra of known polymers for identification
purposes [15]. With NIR spectroscopy it is possible to distinguish different types of poly-
olefin (PO), such as PP, PE, HDPE, LDPE, which are otherwise difficult to separate with
e.g. density-based methods [16]. An additional advantage of spectroscopic methods is that
they also can be used for online quality control of sorted plastics streams, independent
from the sorting method.

Nevertheless, spectroscopic identification has several significant drawbacks. First, re-
flectance spectra are sensitive to the surface state of the analyzed object: a dirty or covered
surface may result in reduced identification quality and sorting purity [17]. Second, due to
the small penetration depth of the (infrared) light, reflectance spectra of painted objects
represent the paint, rather than the polymer [4]. Finally and most importantly, “carbon
black”, the most popular colorant used to dye black plastics, absorbs most of the NIR ra-
diation resulting in low-intensity and nearly featureless spectra rendering the identification
of black plastics extremely difficult [18]. This problem is especially pronounced in indus-
trial applications where high measurement rates are required (short exposure times). The
use of other colorants that do not strongly absorb NIR radiation has been proposed as a
solution and is currently under development [19]. Absorption of MIR light by carbon black
is smaller, however, due to the lower energy of MIR the measurement time is significantly
longer than with NIR, and the computational load is significantly higher due to the more
complex MIR spectra. Additionally, MIR equipment is very expensive and currently not
suitable for industrial environments due to the lack of robustness [19].

Despite these difficulties, several commercial solutions are available on the market
(2018). For example, the STEINERT Group reports to be able to sort black PE, PP,
PVC and PS with their newest product UniSort BlackEye using a hyperspectral NIR
sensor and achieve an average throughput of 1 ton per hour with particle sizes between
10 mm and 30 mm [20]. Unfortunately, no further technical details are currently available.
It should be pointed out that the majority of commercially available systems can sort only
one (target) plastics type at a time. The given throughput values are valid for one pass of
the plastics through the system, which results in only one target plastic type sorted out. In
order to sort more than one target plastic type, more passes are necessary which decreases
the overall throughput by the number of passes.

Raman spectroscopy is another technique used for plastics identification. Typically, a
VIS or NIR laser is used to illuminate the objects to be analyzed and invoke characteristic
infrared emissions due to the Raman scattering effect. Raman spectroscopy is less sensitive
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than infrared (IR) spectroscopy to the object’s surface quality, but also has difficulties
with black plastics [17]. Even though carbon black does not absorb Raman emissions,
it does absorb the excitation laser light, which reduces Raman emissions. Nevertheless,
some products are available on the market. The POWERSORT 360 system provided by
UNISENSOR uses laser-induced Raman spectroscopy to identify ABS, PS, polycarbonate
acrylonitrile butadiene styrene (PC-ABS), PP and other polymers, including black ones,
with a throughput of several tons per hour for objects between 15 mm and 75 mm in size
and achieves a sorting purity of up to 98% according to the specifications [21].

X-ray spectroscopy is a well-established approach for detecting PVC objects. X-ray
sensors are sensitive to the chlorine molecules present in PVC, making this technique very
reliable when PVC needs to be recovered from a stream of other polymers [4]. Furthermore,
in contrast to IR light, the penetration depth of X-ray is very high, which makes X-ray
spectroscopy very useful for the identification of painted or dirty plastic objects. However,
identification of PE, PP, PET and other common polymers is not possible with X-ray [19].
Additionally, due to the involved health risks, additional precautions are required with
regard to the protection of human workers that operate the system.

1.2.6 Tracer-based identification systems

The resin identification code (RIC) system introduced by the Society of the Plastics In-
dustry (SPI) in 1988 was the first attempt to use tracers (or labels) for the identification
of plastics [18]. In this system, numbers from 1 to 6 are assigned to the 6 most commonly
used plastics: (1) PET, (2) HDPE, (3) PVC, (4) LDPE, (5) PP, (6) PS, and number 7
signifies all other plastics such as polycarbonate, nylon, etc. Figure 1.2 shows labels of
the 7 codes developed by SPI which are molded or imprinted on the products manufac-
tured from the corresponding plastics. Labels are placed in inconspicuous locations on the
manufactured products, such as the bottom of a bottle. Clearly, this method can only be
used for macro-sorting of (large) objects consisting of only one plastic type. In addition,
complex objects with parts made of different plastic types would first have to be manually
disassembled, which is not economically viable.

Somewhat similar to RIC, radio-frequency identification (RFID) tags can be used for
the tracking of relatively large plastic objects such as garbage containers or pallets [19].
These tags consist of integrated circuit chips that transmit a response at a certain radio
frequency upon receiving a tracking radio signal. RFID tags do not need a battery since
they can derive electrical power from the received signal radiation are approx. 1 mm in
size and weigh approx. 0.25 g. The sorting process using RFID can be easily automated.
However, the RFID approach cannot be used for micro-sorting and the recycling or re-use
of the tags is problematic.

The idea to incorporate magnetic tracers into plastic polymers was proposed recently [22].
Such tracers would change the magnetic susceptibility of the target plastic thus enabling its
separation from a waste stream. The main advantage of this approach is its independence
of additives and colorants that may be present in polymers. In addition, the application
of this approach in micro-sorting is straightforward. However, the incorporation of combi-
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Figure 1.2: Labels of the RIC system which are molded or imprinted on plastic products.

nations of more than one magnetic tracer seems to be impossible, which limits the number
of plastics that can be labeled to the number of available unique magnetic tracers. Ad-
ditionally, the large concentration of magnetic tracers (in the percent range) required for
efficient sorting may have a negative effect on the material properties of the plastics.

The idea to use fluorescent tracers (or markers) incorporated into virgin plastic resins
during the production for the identification of plastics was first proposed by the Bayer AG
in 1992 [18]. Such tracers would change the fluorescence spectra of the plastics in a pre-
defined way by adding distinctive features (fluorescence emission peaks) to them. Thus,
even plastics with similar or featureless reflectance spectra become distinguishable with
spectroscopy equipment. These fluorescent tracers can be excited with a light beam of
appropriate wavelength, their fluorescence emission can be measured with a dedicated
spectroscopic instrument and used as a kind of “optical fingerprints” for identification
purposes.

Several studies investigated the applicability of fluorescence tracers for the identification
of plastics; however, no full-scale industrial system is currently available on the market. An
attempt to put fluorescent tracers into industrial practice has been made recently [23, 24].
According to the report, plastic bottles labeled with fluorescent tracers were delivered on
a conveyor belt moving at 3.5 m/s, such that each bottle was available for measurement
during approx. 86 ms. With concentrations of tracers varying between 0.5 ppm and
5 ppm, a sorting purity of 95% was achieved. The authors have identified the problem of
“fluorescence quenching” due to color pigments. Especially black plastics pose a problem.

The concentration of the tracer in the polymer plays a key role in the identification:
while high concentrations may negatively influence the properties of the plastics, low con-
centrations may not provide a sufficiently high fluorescence emission for identification. The
use of rare earth oxides for plastics labeling and their influence on mechanical properties
of the plastics have been investigated [25]. It has been shown that concentrations less
than 250 ppm do not affect the impact strength and flexural modulus of plastics and are
sufficient for the identification [25].

Plastics labeling employing rare earth oxides in combination with X-ray spectroscopy
has been reported [26, 27]. This approach enables the identification of black plastics,
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however, requires measurement times in the order of minutes with tracers concentrations
as high as 1450 ppm.

In this dissertation, the approach of plastics labeling with fluorescent tracers is pur-
sued. The goal is to develop an industry-scale system capable to classify a variety of plastics
(types) simultaneously, which would also be economically viable. The micro-sorting ap-
proach is chosen since it is more flexible and can be applied to very different plastics
products independently of their shape. In Chapter 2 the basic principles of fluorescence
are shortly described and the measurement problem is formulated.



Chapter 2

Fluorescent labeling

This chapter explains the idea of the fluorescent labeling of plastics for recycling in detail
and is structured as follows. The basic principles of the fluorescence phenomenon are
described in Section 2.1. In Section 2.3, the concept of fluorescent labeling of plastics for
recycling is introduced. Section 2.4 reviews the properties of fluorescent markers relevant
for the application. Finally, in Section 2.5 the incorporation of markers into plastics and
problems associated with it are discussed.

2.1 Fluorescence basics

Fluorescence is a form of luminescence – the emission of light not resulting from heat.
Light is electromagnetic radiation (within a certain wavelength range, typically visible,
UV, and/or IR), which is electromagnetic waves (or their photons) propagating through
space, carrying electromagnetic radiant energy. Hence, luminescence is accompanied by a
loss of energy by the system that emits light and therefore continuous luminescence requires
a continuous supply of energy. Forms of luminescence are usually specified based on the
source of energy. For example, chemiluminescence derives the energy from a chemical
reaction, whereas electroluminescence is a result of an electric current flowing through a
luminescent substance.

Fluorescence belongs to a subgroup of luminescence called photoluminescence, which
uses the energy of absorbed light (photons). Its mechanism can be best explained using the
so-called Jablonski diagram, a simplified version of which is depicted in Fig. 2.1 [28]. When
a fluorescent substance is illuminated, photons incident on its surface get absorbed by flu-
orophores, i.e. molecules responsible for fluorescence emission. The absorbed additional
energy results in the transition of the fluorophore’s electrons from the ground singlet state
S0 to the high-energy excited singlet states S1 and S2. The system thus becomes unstable
and excited electrons tend to return to the stable ground singlet state S0. This process
of relaxation of the electrons back to the ground singlet state is accompanied by a loss of
energy and causes the emission of photons in form of fluorescence emission hνF . Addition-
ally, in each of the singlet states the fluorophore can be in a number of vibrational energy
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Figure 2.1: A simplified Jablonski diagram depicting movements of electrons in a fluo-
rophore from the ground state S0 to excited states S1, S2 and T1 and back. Excitation
of the electrons is caused by absorption of energy in form of light (hνA). Relaxation of
the electrons to S0 is due to the instability of the excited states and is accompanied by
emission of photons (hνF , hνP ).

levels denoted by v0, v1 and v2 in Fig. 2.1. Upon absorption of light, electrons usually
move to one of the higher vibrational levels v1, v2 of S1 or S2, but quickly relax to v0 of S1.
This process is called an internal conversion. It usually takes 10−12 s or less and occurs
prior to fluorescence, which takes approx. 10−8 s. The loss of energy caused by the internal
conversion results in lower energy of the emitted fluorescence light in comparison to the
absorbed light. Furthermore, during fluorescence, the excited electrons usually move to the
higher vibrational levels v1 and v2 of S0 and return to v0 via non-radiative transmission. As
a result, the majority of fluorophores emit fluorescence light at longer wavelengths (lower
energy) than those of the light they absorb. This effect is called the Stokes shift.

As can be seen in Fig. 2.1, some of the excited fluorophore molecules can undergo a spin
conversion to the first triplet state T1 (i.e. state with two unpaired electrons and a spin
quantum number of 1). Relaxation from the triplet state to the ground singlet state S0

is accompanied by photon emission hνP and called phosphorescence. Since the transition
from the triplet state is a forbidden process, phosphorescence lasts orders of magnitude
longer than fluorescence, up to several seconds. Especially molecules containing heavy
atoms such as bromine or iodine are often phosphorescent [28].

Fluorescent properties of a fluorophore are best characterized by its excitation and
emission spectra. Examples of such spectra belonging to organic fluorophore perylene are
shown in Fig. 2.2. The emission spectrum I(λ) depicts the spectral content of the emitted
fluorescence light – here the relative emission intensity (see below) at different wavelengths
λ. By measuring the fluorophore’s emission spectrum one can conclude about its chemical
components and identify the investigated fluorescent substance. In order to acquire the
emission spectrum of a particular fluorophore, the wavelength of the excitation light is kept
constant and the emitted fluorescence light is measured as a function of wavelength using
a spectroscopic instrument.
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Figure 2.2: Fluorescence absorption/excitation and emission spectra of perylene.

The excitation spectrum E(λ) reveals what emission intensity is achieved when the
fluorophore is excited with light of the same intensity at different wavelengths λ. In order
to acquire the excitation spectrum, the fluorescence emission intensity is measured only at
a particular wavelength (usually one of the fluorophore’s emission maxima, e.g. 475 nm
or 504 nm for perylene), whereas the wavelength of excitation light is being changed. If
the intensity of the excitation light is kept constant over all wavelengths, the resulting
excitation spectrum is said to be corrected. The corrected excitation spectrum is equal to
the absorption spectrum of the fluorophore [29], which essentially shows the probability
for the absorption of incident photons at particular wavelengths. The higher the proba-
bility, the more fluorophore molecules are excited and emit afterward resulting in a higher
fluorescence emission intensity. For example, as can be seen in Fig. 2.2, exciting perylene
at the wavelength of its absorption maximum at approx. 470 nm will yield the strongest
fluorescence emission. These spectra provide information about what wavelength of the
excitation light should be used in order to stimulate strong fluorescence emission from a
particular fluorophore.

The shapes of both excitation/absorption and emission spectra of different fluorophores
do widely vary and are governed by the chemical structure of the fluorophores. In Fig. 2.2
one can notice that absorption and emission spectra are very similar mirrored copies of
each other. This symmetric nature is the result of similar electrons transitions taking place
during excitation and relaxation of fluorophore molecules. The shape of the absorption
spectrum is mostly governed by the S0 → S1 transition, whereas the shape of the emission
spectrum is due to the backward transition S1 → S0. The different peaks in the absorption
spectrum correspond to the non-fluorescent internal conversion – fast relaxation from high
vibrational energy levels v1 and v2 to the lowest v0 of S1. Peaks in the emission spectrum
are due to a similar process in S0. Since the energy spacing between the vibrational levels
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of S0 and S1 is similar, peaks in the absorption and emission spectra are spaced similarly
on the wavelength axis. The Stokes shift can be clearly seen in Fig. 2.2, which is approx.
10 nm here.

An exception to the “mirror rule” can occur in complex chemical structures where
different molecules are responsible for absorption and emission. Within such structures,
the transfer of energy acquired during excitation from one (donor) molecule to another
(acceptor) can be due to internal processes such as ionization. In this case, the acceptor
molecule is responsible for the emission and therefore the shape of the emission spectrum
differs from that of the (mirrored) absorption spectrum. This behavior can be used for the
design of fluorophores in order to adjust the shape of the absorption and emission spectra
to specific needs.

2.2 Fluorescence emission intensity

For plastics sorting, the fluorescence emission intensity should be maximized. High inten-
sities make it easier to measure and identify fluorescence markers. In this dissertation,
the intensity I is defined as the radiant power received by a surface per unit area per
wavelength and its unit is W/m2/nm (or W/m3). Furthermore, the continuous function
I(λ) represents the (analog) emission spectrum of a certain light source over a range ∆λ
of wavelengths λ.

The emission intensity of a fluorophore depends on its so-called quantum yield Θ. Per
definition, the quantum yield is the ratio of the number of emitted photons and the number
of absorbed photons. It can also be expressed in terms of the emissive decay rate Γ and
the non-radiative decay rate knr as follows [30]:

Θ =
Γ

Γ + knr
< 1. (2.1)

The sum (Γ + knr) of the emissive and non-radiative decay rates determines the relax-
ation rate of the fluorophore. The emissive decay rate Γ corresponds to the fluorophore’s
relaxation accompanied by photon emission, and the non-radiative rate knr is due to the
non-emissive energy dissipation such as thermal processes. The non-radiative decay rate
knr includes all possible relaxation processes and strongly depends on the chemical struc-
ture of the fluorophore. Since the fluorophore relaxation is an exponential process [28], the
sum (Γ + knr) determines the exponential decay constant. The quantum yield Θ can also
be thought of as the efficiency of the fluorophore. It can never reach 1 (100%), since at
least some non-radiative energy losses are always present in fluorophores.

As explained in Section 2.1, the fluorescence emission intensity of a fluorophore also
depends on the wavelength and intensity of the excitation light. Consequently, when a
non-monochromatic light source such as a xenon lamp or an light-emitting diode (LED) is
used, the resulting fluorescence emission intensity I(λ) of a fluorophore is proportional to
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the following integral [31]:

I(λ) ∝
∫
Ie(λe)E(λe)dλe, (2.2)

where Ie(λe) is the intensity spectrum of the excitation light, E(λe) is the marker’s absorp-
tion/excitation spectrum, and integration is carried out over the “excitation” wavelengths
λe in the wavelength range ∆λe where both Ie(λe) and E(λe) are present.

Interestingly, the quantum yield Θ of the majority of fluorophores does not depend
on the spectral content (wavelength) of the excitation light [29]. Hence, the resulting
fluorescence emission intensity I(λ) of a particular fluorophore increases when the value of
the integral in Eqn. 2.2 is increased.

2.3 The concept of fluorescent labeling

In the context of recycling, fluorophores can be used as tracers (or markers) to uniquely
label different plastics and thus facilitate their identification and sorting prior to recycling.
The concept can be explained using Fig. 2.3.

Specifically designed fluorescent markers are incorporated into virgin plastic resins at
low concentrations during the manufacturing process (phase 1). Markers can be incor-
porated alone and in combinations (groups) according to a certain coding scheme. The
emission spectrum of a combination of different markers corresponds to the superposition
of the individual marker spectra. Using the presence and absence of markers as “bits” in
the coding scheme significantly increases the number of plastics that can be labeled. For
example, with binary coding, whereas the presence and absence of a marker correspond to
1 and 0, respectively, having only 4 markers M1-M4 allows the labeling of up to 24−1 = 15
different plastics (code “0000” is excluded). Each of the 15 binary 4-bit-combinations is as-
signed to a certain plastics, which enables their classification. Depending on the properties
of the fluorescent markers, other coding schemes might be used [32]. These fluorescently
labeled plastic resins are then used as feedstock for the production of various products.

During the life cycle of the labeled plastic products (phase 2), fluorescent markers must
resist environmental influences such as for example UV radiation from sunlight, high/low
temperatures, humidity, etc. In this dissertation, micro-sorting is favored, therefore, after
the product life cycle, plastics are collected and shredded into small flakes (phase 3). Before
plastic flakes can be fed into a classification system, they need to be washed and separated
from other materials such as paper, glass, or metal. Plastic flakes are then distributed on a
conveyor belt and fed to the classification system. The classification system measures the
fluorescence spectra of the plastic flakes and performs classification based on the known
emission spectra of the incorporated fluorescent markers and the coding scheme (phase 4).
Once a plastics flake has been classified, it can be sorted according to its type (phase 5)
and recycled.

It should be noted that in order for this approach to be economically successful, marker
concentrations must be kept low. Less marker material means lower costs of the labeled
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Figure 2.3: Concept of plastics labeling with fluorescent markers for end-of-life recycling
(5 phases, see text).

plastics. Additionally, high marker concentrations might change mechanical, optical, or
other relevant properties of the hosting plastics. The minimum marker concentrations
depend on the minimum signal-to-noise ratio (S/N ratio) of the acquired fluorescence
spectra and on the required classification performance (and therefore the quality of the
resulting recycled plastics). The S/N ratio depends on several factors:

• quantum efficiency of the markers,

• light absorption of the hosting plastics,

• excitation light (intensity and wavelength),

• sensitivity of the measurement device (sensors),

• desired measurement rate and thus mass throughput.

These factors must be taken into consideration and shall be discussed in detail in this
dissertation.

2.4 Fluorescent markers

Fluorescent markers are essential for the described concept. Several crucial requirements
with regard to the design and properties of the markers can be postulated:

• Markers must be non-toxic.

• Neither the appearance nor the mechanical or chemical properties of the hosting
plastics must be changed by the incorporation of fluorescent markers.
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• Fluorescence emission intensity of the markers after the life cycle of plastics must
be sufficiently large for identification purposes. This implies that environmental
influences such as solar radiation, high temperatures, rain (humidity), etc. must not
change the excitation and emission properties of the markers during the entire life
cycle of the plastics products. Specifically, markers must sustain photobleaching,
i.e. the destruction of fluorophore molecules via a photochemical reaction due to
long-term exposure to (sun)light of high intensity resulting in the decrease of the
fluorescence emission intensity.

In addition to the requirements above, the following recommendations with respect to
the spectral properties of the markers facilitate the design of an industrially viable system
and should thus be taken into consideration:

• Markers should absorb light in the wavelength range where high-power commercial
illumination sources are available.

• Markers with excitation spectra in the UV wavelength region are preferable since
then excitation by the sunlight is minimized and no fluorescence is visible to the
human eye.

• Marker absorption/excitation spectra are preferred to be broad in order to absorb as
much excitation light as possible (especially if a broadband excitation light source is
used).

• Marker absorption/excitation spectra should not spectrally overlap with the emission
spectra of other markers in order to avoid reabsorption effects.

• The excitation spectra of all markers should have a large spectral overlap, such that
excitation with the same light source is possible. This considerably simplifies the
design of the measurement system and reduces costs.

• Marker emission spectra should be in the visible wavelength range between approx.
450 nm and 900 nm where cost-effective and sensitive sensors and spectroscopic
instruments are available.

• Marker emission spectra should be narrowband in order to maximize the number of
markers that can fit in the target wavelength range of approx. 450 nm to 900 nm.
More plastics that can then be uniquely labeled.

• Different marker emission spectra should have a minimal spectral overlap, i.e. emis-
sion spectra must be “orthogonal” in a coding sense to maximize classification per-
formance.

• Since S/N ratio and thus fluorescence emission intensity is of the greatest importance
for the classification of labeled plastics, the quantum yield of the fluorescent markers
should be as high as possible.
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The recommendations above should be kept in mind when developing or selecting ap-
propriate fluorescent markers for the application at hand. However, both excitation and
emission spectra of fluorophores strongly depend on their chemical structures. Thus chem-
ical and physical limitations exist in terms of realizing optimal markers in practice.

2.4.1 Plastics labeling with organic markers

In this dissertation two groups of potentially applicable fluorescent markers were investi-
gated: organic and inorganic.

First, 11 plastics labeled with binary combinations of 4 organic markers were investi-
gated [33]. The spectroscopic measurement system was mounted on a conveyor belt that
delivered the plastic flakes. An average classification performance (see Chapter 4) of more
than 99% was achieved. The main advantage of organic markers is their broadband (ap-
prox. 150 nm wide) absorption/excitation spectra. This allows an efficient excitation of
all 4 markers simultaneously using the same illumination source. Marker concentrations
in the plastics as low as just a few ppm (parts per million) are sufficient for successful
classification.

However, organic markers have also revealed some unconquerable disadvantages ren-
dering their use for plastics labeling inappropriate. First, due to the mirror rule broadband
absorption/excitation spectra of organic markers result in equally broadband fluorescence
emission spectra. Only a small number of such spectra can be fit in the target wavelength
range approx. 450 nm – 900 nm without large spectral overlap. Since the applicable num-
ber of markers is small, the number of possible marker combinations (codes) and thus the
number of plastics that can be uniquely labeled is limited as well. In fact, 4 such markers
are arguably the maximum number that can be used simultaneously in a plastic, and thus
overall only 24 − 1 = 15 plastics can be labeled using binary coding.

Second, broadband emission spectra are often difficult to distinguish from the intrinsic
autofluorescence (AF) of the hosting plastics (see Section 2.5.4). Reliable classification
of the marker emission spectra in the presence of strong AF can be problematic [34].
Sophisticated methods are needed to overcome the problem [35]. The employment of time-
resolved spectroscopic methods as described in Chapter 5 that can suppress the influence
of AF in the measured spectra is not possible with organic markers since their fluorescence
decay time constants lie in the range of those of the plastics’ AF.

Third, the incorporation of organic markers even at relatively low concentrations often
results in a visible coloring of the hosting plastics. This effect is almost unnoticeable with
dark-colored and black plastics but is pronounced with light-colored and white plastics.

Finally, the most critical disadvantage of organic markers is their very low photosta-
bility when incorporated in plastics. All organic markers investigated in this dissertation
could resist high amounts of solar radiation when dissolved in chloroform or incorporated
in transparent PE. Surprisingly, however, after incorporation in non-transparent plastics,
the markers had a very low photostability. As an example, Fig. 2.4 shows the decrease
of fluorescence emission intensity of one of the organic markers incorporated in a white
polyoxymethylene (POM) plastic during exposure to the sunlight and a high-power UV
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Figure 2.4: Photobleaching of an organic marker incorporated in white POM plastic. The
broken line shows a significant decrease in the fluorescence intensity of the organic marker
after one-week exposure to sunlight and approx. 30 kWh/m2 of overall insolation. The
solid line depicts photobleaching of the same marker in POM exposed to a high-power blue
LED for approx. 2200 s.

LED. In the experiment, the fluorescence intensity of the fluorescently labeled plastics was
first measured “freshly” from the extruder. Afterward, it was placed in the sun and the
measurements were repeated every day over the course of one week. As can be seen in
Fig. 2.4 (broken line), the fluorescence emission intensity decreased to approx. 65% of its
initial value after just one week due to the photochemical destruction of the fluorescence
molecules. The experiment was repeated using a high-power UV LED. The sample was
illuminated for 2200 s with constant excitation intensity, during this time its fluorescence
emission intensity was measured constantly. Illumination with the high-power LED accel-
erated the photobleaching. The result is shown in Fig. 2.4 (solid line) and confirms the
finding from the previous experiment with sunlight. As can be seen, the marker’s fluores-
cence intensity decays exponentially. After approx. 36 minutes only approx. 35% of the
initial intensity is left. Similar findings were reported in [36].

2.4.2 Plastics labeling with inorganic markers

The disadvantages of organic fluorescent markers mentioned in Section 2.4.1 make them
inappropriate for plastics labeling. For this reason, the focus of this dissertation was placed
on inorganic markers. In contrast to organic markers, inorganic markers have narrowband
emission spectra and have demonstrated significant photostability when incorporated into
plastics, no coloring of plastics and a potential to solve the AF problem using the TGFS
measurement approach (see Chapter 5).

The photobleaching experiment with inorganic markers incorporated into plastics was
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carried out using an Atlas Suntest exposure chamber compatible with the ISO 4892-1
and -2 standards [37] for plastics exposure procedures. For the experiment, two inorganic
markers (markers M4 and M6 in Table 2.1, see below) were each individually incorporated
into white POM plastics samples. Fluorescence emission spectra of the samples were
measured before exposure and after 100 hours of exposure in the Suntest chamber, which
corresponds to the overall insolation of approx. 60 kWh/m2. Figure 2.5 compares the
(relative) fluorescence emission intensity before and after exposure for two inorganic and
one organic marker. For each sample, fluorescence emission intensity was measured at 4
different areas on the sample and averaged. As can be seen, the organic marker has lost
approx. 70% of its initial fluorescence intensity after a 100 h long exposure which confirms
the findings shown in Fig. 2.4. In contrast, no noticeable decrease of fluorescence emission
intensity of inorganic markers occurs.

However, despite this outstanding photostability, the incorporation of inorganic mark-
ers into plastics has proven not to be straightforward. Even when professional plastics
extruders are used, very often fluorescent markers get destroyed during the incorporation
process such that no marker fluorescence can be registered afterward. This turned out to be
a serious problem, that did not occur with organic markers. Overall, 14 different inorganic
markers were tested and numerous incorporation attempts were made. Experiments with
the adaptation of the incorporation process by encapsulating marker molecules in silicon
and/or paraffin oils and thus “protecting” them from destruction have not brought im-
provement. Clearly, more research in the chemical field is needed with this regard, which
is beyond the scope of this dissertation. Out of 14 investigated markers, only 6 could
be successfully incorporated into plastics. The 6 “working” markers are marked greed in
Table 2.1. These 6 markers were used in the prototype system (see Chapters 6 and 7).

Excitation and emission spectra of the 6 markers are shown in Fig. 2.6. The excitation
spectra a limited to the wavelength range (λelower = 350 nm; λeupper = 450 nm) in Fig. 2.6a
for demonstration purposes because exciting markers at wavelengths below 350 nm and
above 450 nm is impractical in terms of the design of the measurement system. For
wavelengths below 350 nm, it becomes increasingly difficult to find high-power excitation
light sources on the market. Exciting markers at wavelengths above 450 nm would lead to
spectral overlap of the excitation light with the marker emission (see Fig. 2.6b) and since
the excitation light is orders of magnitude stronger than the fluorescence emission, this
would lead to complete masking of the marker fluorescence.

As can be seen in Fig. 2.6b, all emission spectra are narrowband and characterized
mostly by a single peak. All 6 peaks are situated between approx. 500 nm and 750 nm
with a moderate spectral overlap.

As shown in Fig. 2.6a, all markers have their individual excitation maximum at different
wavelengths and there is no wavelength band in which all markers can be simultaneously
excited with the same excitation light source. Hence the integral in Eqn. 2.2 cannot be
maximized for all 6 markers simultaneously which is why an optimal excitation of all 6
markers simultaneously is not possible. Using only one excitation light source facilitates the
mechanical and electrical design of the measurement system a great deal (see Chapter 6).

In order to find the single wavelength at which all 6 markers can be best excited, the
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Table 2.1: Inorganic markers investigated in this dissertation. Markers that could be
successfully incorporated into plastics are marked green. CW and FWHM stand for central
wavelength and full width at half maximum of the main peak of the marker’s emission
spectrum.

Nr. Chemical formula Alias CW, nm FWHM, nm Excitation max, nm
1 LiBa2(La0.98Dy0.02)3(MoO4)8

2 LiBa2(La0.98Er0.02)3(MoO4)8

3 Li(La0.95Er0.05)Mo2O8 LiEr (M2) 551 5 365, 378, 407
4 Li(La0.95Dy0.05)Mo2O8 LiDy (M3) 571 7 353, 367, 388, 427
5 Li(La0.95Sm0.05)Mo2O8 LiSm (M5) 643 7 363, 377, 405, 421
6 GdAlO3

7 Gd(Al0.995Cr0.005)O3

8 Gd(Al0.99Cr0.01)O3

9 Al2O3:Cr3+ AlOCr (M6) 694 7 405
10 ZnAl2O4:Cr3+
11 LiEuMo2O8 LiEu (M4) 617 10 362, 382, 395, 416
12 (La0.97Pr0.03)2W3O12

13 (Ba0.98Eu0.02)(Mg0.8Mn0.2)Al10O17 BaM (M1) 516 25 350
14 Sr2SiO4:Eu2+
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Figure 2.5: Photobleaching of 1 organic and 2 inorganic markers separately incorporated in
white POM plastic. Fluorescence intensity of the organic marker decreases by about 70%
while no changes with the inorganic markers after 100 h in a Suntest exposure chamber [38]
(approx. 60 kWh/m2 of insolation).
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Figure 2.6: Excitation (a) and emission (b) spectra of the 6 selected inorganic markers
(M1-M6).

“minimum excitation spectrum” of this group can be used (Fig. 2.7 blue curve with circles).
For monochromatic excitation light, the minimum excitation spectrum of the group of 6
markers is given by:

Emin(λe) = min (Eh(λe)), for all λe ∈ (λelower ;λeupper) and h = 1..M, (2.3)
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where M is the number of markers in the group (here M = 6), and λelower and λeupper
denote the lower and upper limits of the wavelength range where the 6 markers can be
excited in terms of the design of the overall measurement system (here λelower = 350 nm
and λeupper = 450 nm, see Fig. 2.6a).

The minimum excitation spectrum shows the emission intensity provided by the weakest
marker in the group when excited with monochromatic light of a certain wavelength of λe.
For the given group of 6 markers, the minimum excitation spectrum reaches its maximum
at approx. 378 nm, which is thus the best wavelength for a monochromatic excitation light
to excite all markers in the group.

For a non-monochromatic light source such as an LED, the minimum excitation spec-
trum is the result of the convolution of the emission spectrum of this light source with the
minimum excitation spectrum for monochromatic light ELED

min (λe) = Emin(λe) ∗ ILEDe (λe).
In Fig. 2.7, the yellow curve with crosses depicts the convolution result of the minimum
excitation spectrum for monochromatic light with the modeled Gaussian bell-shaped emis-
sion spectrum of an LED with 15 nm full width at half maximum (FWHM). With this
LED, the maximum of the minimum excitation spectrum (and the best central wavelength
of the LED) shifts to approx. 368 nm, whereas approx. 25% of the maximum is still
achieved with an LED with a central wavelength between approx. 390 nm and 400 nm.
Assuming the same excitation light intensity Ie(λe) per nm for monochromatic and non-
monochromatic light sources, a much stronger fluorescence emission can be achieved with
the latter if the same excitation light source is used for all 6 markers. As can be seen
in Fig. 2.7, the maximum of the excitation spectrum ELED

min (λe) of an LED is approx. 3.7
times larger than the maximum of the excitation spectrum Emin(λe) of the monochromatic
light.

2.5 Incorporation of markers into plastics

Special attention should be paid to the incorporation process and thus the resulting labeled
plastics. The quality of the incorporation process directly influences the achievable plastics’
classification performance. In this section, the most significant aspects associated with the
incorporation will be discussed. Their influence in terms of the classification performance
will be quantified in detail in Chapter 4.

2.5.1 Change of the plastics’ color

The incorporation of markers into (thermoplastic) polymers involves melting and subse-
quent compounding of the plastics with fluorescent markers. Depending on the polymer,
temperatures of > 150 ℃ may be required [39]. During the processing at high tempera-
tures, plastic resins may burn and change color. White plastics are particularly susceptible
to high temperatures and may become yellow, brown, or even black. This change of color
is not homogeneous but appears at sparse spots on the plastic’s surface thus affecting the
appearance of the resulting product. In this dissertation, such behavior was observed when
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Figure 2.7: The“minimum excitation spectrum” for monochromatic light (blue curve with
circles) for the group of 6 markers represents the emission intensity achieved by the marker
with the weakest fluorescence emission in the group if excited with monochromatic light of
a particular wavelength. If a non-monochromatic light source such as an LED (red broken
curve) is used, the minimum excitation spectrum (yellow curve with crosses) is given by
the convolution of the red curve with the blue curve.

laboratory-scale plastic kneading devices were used for marker incorporation. With pro-
fessional industrial extruders, plastics are processed at lower temperatures and the change
of color is thus avoided. Professional extruders, however, require larger amounts of plastic
resins for one cycle of production and are thus more expensive to run.

2.5.2 Homogeneous marker distribution

Insufficient mixing of plastic resins and markers results in an inhomogeneous distribution
of markers within the plastics. That, in turn, results in different fluorescence emission
intensities at different spatial locations on the plastic sample.

What is more, when a combination of markers (i.e. more than one marker) is inhomoge-
neously incorporated into a plastic, the relation between individual marker concentrations
of that combination may vary within the plastic. In that case, one marker with larger
concentration and thus larger fluorescence emission intensity may mask the presence of
other markers with smaller concentrations and intensities and the resulting overall emis-
sion spectrum may be misclassified [40]. Special attention should thus be paid to the
spatial homogeneity of marker concentrations in the plastics.

The most homogeneous distribution of markers and thus low marker intensity fluctua-
tions can be achieved when professional plastics extruding machinery is used. Figure 2.8
shows (peak) fluorescence emission intensity values measured at different locations on a
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Figure 2.8: Fluorescence intensity of a POM sample (ca. 50 mm×50 mm) labeled with
marker M4 measured at different spatial positions. The standard deviation of the marker
fluorescence intensity does not exceed 5% (σ < 5%).

POM sample labeled with marker M4 using a professional extruder. The POM sample
(approx. 50 mm×50 mm) was placed on a non-fluorescent background, the measurement
was carried out using components of the prototype system (see Chapter 6). The spectral
camera’s integration time was adjusted in order to achieve high S/N ratio (> 25 dB) of the
acquired fluorescence emission spectra and reduce noise influence. In Fig. 2.8, fluorescence
emission intensities are normalized to 1. Mainly two intensity levels can be seen: values
around 0 correspond to the non-fluorescent background and values around 1 correspond
to the marker fluorescence. At the edges of the sample, intermediate values occur due to
the spatial resolution of the applied optics. Throughout the sample, however, the standard
deviation of the marker fluorescence intensity does not exceed 5% (σ < 5%), indicating
the high spatial homogeneity of the marker concentration within the plastic.

2.5.3 Marker concentration

Apart from the factors mentioned in Section 2.2, the intensity of fluorescent light emitted
from labeled plastics strongly depends on the marker concentration. In order to investigate
this dependency in practice, marker M1 was incorporated into white POM plastics at
6 different concentrations between 10 ppm and 160 ppm, and its fluorescence emission
intensity at each concentration was measured. In order to reduce the influence of the
spatial inhomogeneity of the marker concentrations (see Section 2.5.2), the measurement of
the fluorescence emission intensity for each concentration was repeated 5 times at different
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spatial locations on the samples and the results were averaged.

Figure 2.9 shows the relative fluorescence emission intensity as function of the marker
concentration in white POM. The marker fluorescence emission intensity is normalized on
the emission intensity at concentration 10 ppm. According to this experiment, the increase
of the marker concentration by a factor 160/10 = 16 results in an intensity increase by
approx. a factor 15.5. Hence, an almost linear 1:1 dependency can be expected in practice.
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Figure 2.9: Relative fluorescence intensity of POM samples labeled with marker M1 as
function of the marker concentration.

2.5.4 Autofluorescence of plastics

The biggest problem that occurs once markers have been successfully incorporated into
plastics is the interference of marker fluorescence with the plastics’ autofluorescence (AF).
AF is the intrinsic fluorescence of plastics due to their chemical structure and/or various
additives such as brightening agents, UV-protection, etc. [41] White or light-colored plas-
tics may exhibit particularly strong AF in the visible wavelength range. Strong AF in
comparison with the marker fluorescence can severely change the emitted (overall) spec-
trum making correct classification of marker combinations difficult or even impossible [34].
Figure 2.10a depicts the measured spectrum of marker M4 incorporated in white POM
plastic at a concentration of 50 ppm. The measured spectrum consists of the marker’s
fluorescence spectrum (narrow spike at approx. 617 nm) and the broadband AF spectrum.
AF with such intensity may easily be mistaken for a marker (in this case most probably for
marker M1) and produce a misclassification. If the marker concentration was further re-
duced for economic reasons, the presence of AF in the overall spectrum would become even
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Figure 2.10: (a) The emission spectrum of white POM plastics labeled with M4 at 50 ppm
concentration consists of the autofluorescence (AF) of the plastic and the marker fluores-
cence. (b) Typical AF spectra of different plastics.

more dominant and result in more misclassifications. This effect is especially noticeable at
low S/N ratios (i.e. here at high measurement and classification rates).

Similar to the well-known parameter S/N ratio (see Section 3.4.1), a measure called
signal-to-autofluorescence ratio (S/AF ratio) can be defined:

S/AF =
P s

PAF

, (2.4)

where P s and PAF denote the power of the marker fluorescence spectrum and the power of
the AF spectrum, respectively. Similarly to the S/N ratio, both P s and PAF are calculated
in the respective marker wavelength bands (see Eqn. 3.4 and 3.5). In order to avoid
confusion with the S/N ratio defined with a logarithm in dB (see Section 3.4.1), the signal-
to-autofluorescence ratio (S/AF ratio) is defined as a linear measure in this dissertation.
The S/AF ratio is used in Chapter 4 to quantify the amount of AF in the simulated
fluorescence spectra.

There are several ways to deal with the AF problem. One is to increase the marker
concentration in order to increase the marker fluorescence compared to the AF. This would,
however, inevitably increase the price of the labeled plastics. A change of the plastics’
mechanical and/or optical (coloring) properties might also occur.

Another way to decrease the influence of the AF is to “pre-bleach” the labeled plastics
before classification. AF is usually not photostable and decreases when the plastics are
exposed to UV light (similar to organic markers) [41]. This approach is thus applicable only
with inorganic markers. The downside of this approach is that after pre-photobleaching,
the AF tends to somewhat recover within several hours (fluorescence molecules do not
get completely destroyed) [41]. Thus, pre-bleaching of plastics should ideally take place
right before classification, and before AF has had the chance to partially recover. What is
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more, pre-bleaching only works in regions of the plastic flakes that were directly exposed
to UV-light.

Yet another way to tackle the AF problem is to apply an extended form of the linear
mixture analysis to the acquired spectra in order to partially “unmix” the AF from the
overall spectrum [35, 42].

In this dissertation, the most promising approach to suppress the negative influence of
the AF – time-gated fluorescence spectroscopy (TGFS) – is pursued. TGFS builds upon the
difference of the decay time constants of marker fluorescence and AF by using time-gated
excitation and acquisition. It is capable of (almost) completely suppressing the plastics
AF in the measured spectrum. Implementation of TGFS in an industrial environment is
a challenging task. Chapter 5 explains TGFS in detail and discusses its usability in an
industrially viable system.



Chapter 3

Hyperspectral imaging

In this chapter, the principles of hyperspectral imaging are briefly discussed. The hyper-
spectral data format is explained in Section 3.1. Different approaches to hyperspectral
image generation are presented in Section 3.2. The composition of the hyperspectral cam-
era used in this dissertation is described in Section 3.3.

3.1 Hyperspectral imaging basics

A two-dimensional (2D) gray value digital image is a rectangular array of X rows and Y
columns made of quantized intensities (or gray values), also called pixels. In this context,
a pixel is an entry in the digital image with a certain location and corresponding intensity
value. The third dimension λ is introduced when more than one gray value layer is needed.
For example, for color imaging on computer screens or TVs three image layers are used
and contain red, green, and blue information needed to create the illusion of a color image
to the human eye (RGB image), as shown in Fig. 3.1. The intensity values in each of
the layers are digitized and are expressed as integers. For example, in an 8-bit image,
28 = 256 digital intensity levels (gray values) from 0 to 255 can be contained, whereas
e.g. 0 usually represents black and 255 is white. In advanced imaging systems 12 bits
(212 = 4096 intensity levels), 14 bits (214 = 16384) or 16 bits (216 = 65536) are used.

The concept of the 3 layers RGB image can be extended to multivariate images. Mul-
tivariate images contain Λ > 1 2D X × Y layers, each of which corresponds to a certain
wavelength band ∆λi, i = [1, 2, ...,Λ]. In practice, the wavelength band ∆λi spans over
a range of analog wavelengths [λlower;λupper] depending on the optical resolution of the
dispersive elements and optics (see Section 3.2.2). When the number of layers (or wave-
length bands) Λ becomes large, starting from approx. 100, the resulting image is called
hyperspectral image, or hypercube. Figure 3.2 depicts the structure of a three-dimensional
(3D) hypercube. The coordinates x = [1, 2, ...,X] and y = [1, 2, ...,Y] in the X × Y × Λ
hypercube correspond to the real world coordinates x and y in the object plane (i.e. plane
where the imaged object is located; conveyor belt in this work, see Sections 3.3 and 6.1).
The X × Y × Λ hypercube can be represented as a X × Y grid of 1 × Λ vectors. Each
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Figure 3.1: Example of an RGB color image [43]. Three layers (red, green and blue, not to
scale) are combined on a computer screen to create the illusion of a color image. The red,
green and blue layers, or channels, roughly correspond to the colors seen by the human
eye.

vector of length Λ at the coordinate [x, y] is thus interpreted as a discretized spectrum s.
The spectrum s consists of digitized integer values si of light intensity I i within a certain
wavelength band ∆λi, for i = 1, 2, ...,Λ. The unit of si is “digital counts”, the conversion
from light intensity I i in W/m2/nm to digital counts is carried out by a detector. In this
work, it is denoted for simplicity that for any wavelength band ∆λi, the value si = ai · I i,
where ai is a proportionality constant with units m2·nm/W which depends on the detec-
tor’s quantum yield, photosensitive area and electronics. The light intensity value in digital
counts at a certain location [x, y] in the hypercube is denoted by si[x, y, λi], where λi is
the discrete wavelength that corresponds to the analog wavelength band ∆λi. In practice,
every optical instrument has a finite spatial resolution, therefore the spatial coordinates
[x,y] in the hypercube correspond to the range of real-world coordinates or in other words
to an acquisition spot of a finite size (∆x,∆y). Hence the digitized intensity value si is
the result of the integration of the analog intensity I i over the spatial acquisition spot and
the wavelength band:

si[x, y, λi] = ai ·
∫

∆x

∫
∆y

∫
∆λi

I i(x, y, λi) dx dy dλi. (3.1)

In remote sensing applications, the intensity of light reflected by the Earth’s surface is
usually measured. Every material has a unique and characteristic reflectance spectrum s
along the wavelength axis λ. These unique and characteristic spectra are often referred
to as “spectral signature” of this material. By comparing the spectral signature of an
unknown material with the spectral signatures of known materials one can identify the
chemical components present in this object and identify what material it is.

This concept holds true when fluorescence emission spectra are considered in the flu-
orescent labeling of plastics (see Chapter 2) where incorporated fluorescent markers are
used. Similarly to satellite remote sensing applications, measured fluorescence spectra of
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Figure 3.2: Hyperspectral image, or hypercube, consists of Λ 2D images each of size X×Y
within the wavelength band ∆λi. The 1D vectors s[λ] in the hypercube represent the
characteristic spectra of the material being investigated. “Spectrum” is the distribution of
light intensity I over wavelengths λ.

unknown labeled plastics are compared with the known marker spectra for identification
purposes.

3.2 Hyperspectral image acquisition

A measurement device for the acquisition of single spectra or hyperspectral images consists
of several essential parts: 1.) an excitation light source, 2.) a dispersive optical element
to select wavelength bands, and 3.) a detection system, which includes a light-sensitive
sensor as well as control and digitization hardware and software [43]. In this section,
first, a laboratory device for spectral characterization of materials – spectrofluorometer
– is described; next, approaches to spectral and spatial scanning for fast and efficient
acquisition of large objects or scenes are discussed.

3.2.1 Laboratory spectrofluorometer

The schematic diagram of a typical spectrofluorometer is shown in Fig. 3.3a [28]. In this in-
strument, a broadband excitation light source such as a xenon lamp is usually used. Xenon
lamps provide high intensity over a broad wavelength range starting upward from approx.
250 nm. A dual grating excitation monochromator is used to produce monochromatic ex-
citation light of a particular wavelength, which is then directed to the sample to stimulate
fluorescence. The emitted fluorescence light is forwarded to the emission monochromator,
which scans through wavelength bands. A sensitive photodetector such as a photomul-
tiplier tube (PMT) is positioned after the emission monochromator to capture incoming
fluorescence light. The sample presentation chamber may also contain optional optical
elements such as shutters to block excitation or emission light, filters, polarizers, and a
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beam splitter. The beam splitter is used to direct part of the excitation light onto a refer-
ence object with known and very stable fluorescence, which is captured by a second PMT.
Changes in intensity of the excitation lamp due to e.g. aging can thus be corrected for
using this reference measurement.

Acquisition of fluorescence excitation and emission spectra (see Section 2.1) is carried
out as follows: to measure the fluorescence emission spectrum of a sample, the excitation
monochromator is set to select the desired wavelength band ∆λi from the excitation light
and the emission monochromator scans through the desired wavelength bands. The de-
tector measures fluorescence emission intensity at different wavelength bands with fixed
excitation wavelength band thus building up the fluorescence emission spectrum. In the
excitation spectrum measurement, the emission monochromator is fixed at a certain wave-
length band (typically at one of the emission spectrum maxima) and the detector measures
fluorescence emission intensity at this wavelength band while the excitation monochroma-
tor scans through the desired excitation wavelength bands.

The spectral resolution of the acquired fluorescence spectra is determined by the slit
width of both excitation and emission monochromator as well as by the sensor pixel reso-
lution. Typical monochromators have slit width in the 10−5 m range, which provides nm
spectral resolution. Typical sensors are capable to sample incident light with a sub-nm
sampling rate.

Monochromators, however, are complicated and thus expensive devices. Additionally,
their mechanical (scanning) parts are wear-prone. For this reason, instead of the xenon
lamp and the monochromator, LEDs or laser diodes of certain wavelengths can be em-
ployed for excitation of the sample’s fluorescence. This, of course, reduces the flexibility of
selecting an arbitrary excitation wavelength band, which makes the acquisition of excita-
tion spectra using LED or laser diodes is problematic. Also, optical low-, high- or bandpass
filters in combination with broadband light sources (such as xenon lamps) can be used to
shape the desired excitation light. Optical filters with passbands of several nm can also
be used instead of the emission and/or excitation monochromator when a high spectral
resolution is not necessary.

The functionality of a spectrofluorometer can be extended to permit time-resolved
measurements (see Chapter 5). For example, a pulsed excitation light source (xenon lamp,
LED, laser diode, etc.) can be installed instead of the time-constant excitation light source
and a dedicated detector electronics is necessary to carry out time-correlated single photon
counting (TCSPC) [28].

3.2.2 Spectral scanning

Data acquisition in the spectral dimension λ of the hypercube requires the utilization of
techniques called spectral scanning. Ultimately, the goal is to split light into different
wavelengths and acquire those separately. Several approaches currently exist:

1. Filter wheels consist of several optical bandpass filters with different cut-on and cut-
off wavelengths. The wheel is rotated to switch from filter to filter and thus change
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Figure 3.3: (a) Schematic diagram of a typical laboratory spectrofluorometer [28]. (b)
Picture of the modular PTI Quantamaster 40 spectrofluorometer used for the investigation
of fluorescent markers.
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the wavelength band ∆λi acquired by the sensor. Filter wheels are typically used in
multispectral imaging.

2. Acusto-optical tunable filters (AOTF) employ the principle of selective transmission
of light wavelength bands ∆λi through a specialized material penetrated by acoustic
waves. The optical passband is determined by characteristics of the material and
the acoustic wave and can be varied over time. Similarly, liquid-crystal tunable
filters (LCTF) have variable light transmission depending on the applied voltage.
Both devices allow fast selection of wavelengths, but generally suffer from low optical
throughput, limited angular fields of view [44] and are expensive [45].

3. Interferometer collects the so-called interferogram by splitting the investigated light
into two beams, introducing a temporal delay in one of them and directing both
beams onto the sensor [46]. The temporal delay is varied over phase shift [0; 2π],
which changes the interference of the two beams, the interferogram is thus built
up. An inverse Fourier transform is usually used to extract the light spectrum from
the interferogram, this technique is thus often referred to as Fourier transform spec-
troscopy. This approach is rather sophisticated with a fragile device and thus not
suitable for industrial environments.

4. Prisms are optical components that refract incident light in different directions de-
pending on its wavelength [46]. With a detector placed at the back of a prism,
the intensity of the incident light at different wavelengths (i.e. the spectrum of the
incident light) can be acquired.

5. Reflection gratings are optical components with a periodic structure of equally spaced
grooves of a certain width that split incident light into beams of different wavelengths
by diffraction [46]. Thus angle-dependent dispersion of light is achieved.

6. Transmission gratings are similar to reflection gratings but have slits instead of
grooves [46]. Upon passing through the slits, the passing light is directed to dif-
ferent angles depending on the wavelength. The dispersion of light is also achieved
by diffraction.

In approaches 1, 2, and 3 the acquisition of spectral information is carried out over time,
i.e. wavelength bands are acquired one after another. This may be time-consuming and is
therefore not suitable if a fast measurement rate is required. In contrast, in approaches 4,
5, and 6 wavelength bands are acquired simultaneously allowing fast measurements.

3.2.3 Spatial scanning

The spectrofluorometer described in Section 3.2.1 is a precise measurement instrument
suited for laboratory investigations. It is best used in situations when the duration of the
characterization of a material is more or less irrelevant. The measurement can take up to
several minutes with commercial instruments of this type. In applications, however, where
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a large scenery or many objects need to be investigated quickly and at a high rate, differ-
ent measurement approaches are needed. Specifically, spatial scanning techniques can be
employed. Three main approaches to spatial scanning exist: 1.) snapshot, 2.) whiskbroom
scanning, and 3.) pushbroom scanning.

1. Snapshot means capturing the entire object or scene spatially at once using a 2D
sensor and acquiring spectral information with a set of optical bandpass filters. The
detector therefore acquires one X× Y layer of the hypercube at a time. In order to
build up the spectral dimension λ of the hyperspectral cube, the object or scene has
to be (spatially) captured multiple (Λ) times using filters with different passbands.
This approach traditionally was used in multispectral imaging. Its main advantage is
longer dwell time available for each pixel of the 2D sensor in comparison to whiskb-
room or pushbroom scanning, which results in brighter images and less measurement
noise. In the case of hyperspectral imaging, however, snapshot acquisition quickly
becomes impractical: when the number of wavelength bands is increased, acquisition
of the entire hypercube takes more and more time.

2. In whiskbroom scanning, the light from all object or scene points is sequentially
directed to a single detector by a mirror. The mirror is mechanically rotated to move
the acquisition point/spot back and forth along the spatial dimension y thus spatially
building up one 1 × Y line of the image pixel by pixel. The spectral information is
acquired by dispersed light coming from each pixel and projecting it on the single 1D
detector. Hence, the imaging system captures one 1×Λ spectral vector (spectrum) s
of the hypercube at a time, and the spatial dimension y of the hypercube arises from
moving the imaging spot. After one 1 × Y line of the hypercube is captured, either
the imaging system (e.g. a satellite in remote sensing applications) or the scene (e.g.
conveyor belt in industrial monitoring applications) is moved one line forward in the
scanning direction along the spatial dimension x and the acquisition of the next 1×Y
line of the hypercube begins. The third, x dimension of the hypercube thus arises
from the movement along the scanning track.

The main advantage of whiskbroom scanning is that all points/spots on the object
or scene are captured by the same sensor, which means that there is no variance from
spectrum to spectrum due to different sensors. The main disadvantage is that the
dwell time (time available for integrating the light) for each pixel is relatively short,
which reduces the signal-to-noise ratio (S/N ratio). Moreover, distortions resulting
from the forward direction of the scenery during the acquisition of one line (motion
blur) may occur. Finally, the mechanical moving parts make this type of scanner
expensive and prone to wear [47].

3. In pushbroom scanning, similarly to whiskbroom scanning, the camera spatially cap-
tures the scene line by line. But in contrast, the acquisition of all spots in a line is
carried out simultaneously: the 1D imaging line is dispersed into wavelength bands,
and the resulting 2D image s [y, λ] is captured by a dedicated 2D sensor. For each
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spot in the line, a corresponding spectrum is projected onto one dimension of the
2D sensor. The data read-out from the sensor at a time thus contains one Y × Λ
slice of the hypercube. As in whiskbroom scanning, the third, x dimension of the
hypercube arises from the scene movement. The complete spectral information of a
spatial line is acquired simultaneously with the spatial information, providing higher
measurement rates. Since the pushbroom scanner acquires all pixels in a line simulta-
neously, the dwell time for each pixel in this line is much longer in comparison to the
whiskbroom scanner, provided both have the same measurement rate. This results
in higher S/N ratios of the resulting images and spectra, which may be crucial in
low-light fluorescence applications. Additionally, the lack of mechanical parts makes
this type of scanners attractive for harsh environments.

The most critical drawback of pushbroom scanning in comparison to whiskbroom
scanning is that different pixels in 2D sensors always have slightly different photo-
sensitivity. Therefore, two equal spectra collected from two different locations on the
same (identical) material may look different in the final digital image when acquired
by two different pixel columns of the sensor. These distortions can be compensated
for, but since the sensitivity of the pixels may change with time, it is necessary to
carry out such compensation periodically.

For the application at hand, where small plastic flakes are delivered on a moving con-
veyor belt in an industrial environment (see Chapter 6), the pushbroom scanning approach
is naturally the most suitable due to significant S/N ratio advantages and high robustness.
As it will be shown in Chapter 4, noise is the main limiting factor for the reliable classifica-
tion of fluorescence spectra, whereas some minor spectral shape changes can be tolerated
by the classification algorithm, be it due to the poor quality of the fluorescent markers
incorporation process, or to the spatially inhomogeneous sensitivity of the sensor pixels.
Additionally, pushbroom scanning allows a reduction of illumination requirement: only
one line across the object needs to be illuminated. This reduces the electrical power con-
sumption and the heat load on the objects, as compared to the snapshot imaging and
whiskbroom scanning.

3.3 Hyperspectral camera

The concept of the plastics classification and sorting system (described in detail in Chap-
ter 6) inherits its composition from industrial monitoring systems and implies scanning a
stream of plastic (waste) flakes delivered on a conveyor belt. The most important part
of the measurement system is a linescan hyperspectral camera, that together with the
conveyor belt implements the pushbroom approach to spatial scanning (see Section 3.2.3).
This solution is advantageous because of its simplicity, robustness, relatively low price,
and yet good imaging quality due to the prism-grating-prism (PGP) imaging spectrograph
used in the spectral camera [48].
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The overall arrangement of image acquisition with the spectral camera is illustrated
in Fig. 3.4. In general, a pushbroom spectral camera consists of an objective lens, an
imaging spectrograph, and a 2D detector. The objective lens gathers light emitted by
or reflected off the object on the conveyor belt and directs it to the entrance slit of the
imaging spectrograph. The slit is positioned perpendicular to the conveyor belt’s movement
direction x such that its width and length determine the camera’s field of view in spatial
directions x and y, respectively. Due to its geometry, from the 2D scenery captured by the
objective lens, the slit selects only one narrow rectangular region of interest (ROI) across
the conveyor belt, which corresponds to the y dimension of the hypercube. The light from
the slit is collimated and dispersed by the PGP element producing the spectral dimension
of the hypercube λ (see also Fig. 3.5). Therefore every spot of the rectangular ROI on the
conveyor belt is represented by a 1D spectrum. The resulting 2D image s [y, λ] is projected
on the 2D monochrome detector.

In this arrangement, spatial information is assigned to the horizontal axis of the 2D
detector, parallel to the longer dimension of the entrance slit, and spectral information
is assigned to the vertical axis, perpendicular to the entrance slit. Thus, the imaging
spectrograph allows a 2D (monochrome) detector to sample the spectral dimension (λ) and
one spatial dimension (y) of the 3D hypercube at a time. The second spatial dimension (x)
results from the movement of the conveyor belt along the spatial direction x. Both spectral
and spatial resolution of the resulting images are determined by characteristics of the
objective lens and the spectrograph’s slit dimensions, especially its width. In addition, the
spectral resolution depends on the dispersion performance of the PGP element, especially
on the quality of the grating [49].

The most important advantage of the utilized PGP imaging spectrograph is its straight
optical path. The diagram in Fig. 3.5 depicts the light path through the PGP imaging spec-
trograph. In comparison to the usual dispersive elements that use arrangements of prisms
and/or reflection gratings, the compact PGP element enables lightweight, robust, and thus
industrially viable design of the spectral camera. Additionally, the optical throughput of
the PGP spectrograph is usually 4 times better than that of an equivalent spectrograph
that uses reflection gratings [49]. Overall, the PGP spectrograph provides very good optical
and dispersive performance in comparison to other dispersive elements [50].

3.4 Imaging sensor

The 2D sensor (or detector) plays an important role in the acquisition of spectral and
spatial information in the hyperspectral camera. In a simplified representation, the sensor
and its electronics are responsible for: (1) converting the energy of the incident photons into
electrical charges, (2) converting electrical charges into voltage signals, and (3) digitizing
the voltage signal. On the output there is a digital “light intensity” value s in “digital
counts” that corresponds to the physical light intensity I in W/m2/nm (see Section 3.1).

The quality of the resulting (hyperspectral) image highly depends on the sensitivity of
the sensor, which is determined by its quantum efficiency and photo-active area. The latter
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Figure 3.4: Pushbroom scanning implemented in the hyperspectral camera used in this
work. The camera acquires a single line (ROI) across the conveyor belt in y direction at a
time. The PGP spectrograph disperses the line in spectral components λ producing a 2D
Y×Λ image, which is captured by a 2D grayscale sensor. The second spatial dimension x
of the hypercube arises from the movement of the conveyor belt along the x direction.
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Figure 3.5: Optical arrangement of the PGP element. The main advantage of PGP is its
straight optical path.
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depends on the size of the pixels – bigger pixels of the same sensor type provide higher
sensitivity. Quantum efficiency is a ratio of the number of electrons generated inside a
pixel to the number of photons incident on that pixel. Two types of sensors are mainly
used in industrial applications: complementary metal-oxide-semiconductor (CMOS) based
and charge-coupled device (CCD) based sensors. Although both technologies rely on sim-
ilar semiconductor photosensitive elements to convert the energy of incident photons into
electrical charges, they are very different with regard to how these charges are transformed
into a digital signal, which produces significant differences in the quality of images they
produce. Also, different architectures of CCD and CMOS sensors result in different active
areas and fill factors (see also Fig. 3.6).

CCD sensors use a structure of interconnected (charge-coupled) pixels (analogue “shift
registers”) to move electrical charges to a single output node (see Fig. 3.6a). At the
output node, electrical charges are converted into a voltage signal, amplitude digitized,
and read-out. The repeated shift of charges naturally creates a bandwidth bottleneck
and essentially limits the sensor’s frame rate. In contrast, CMOS sensors utilize “active”
pixels that in addition to photosensitive elements also incorporate electronic circuitry to
convert generated electrical charges into voltages (see Fig. 3.6c). These voltages from all
pixels are then digitized and transferred to corresponding output nodes in a highly parallel
fashion. The obvious advantage of this structure is the high frame rate, which can be
further increased if only a certain ROI and thus fewer pixels need to be read out.

However, the parallel structure of “active” pixels introduces certain compromises that
may not be suitable for a low-light application such as the measurement of fluorescence
emission spectra. First, additional circuitry built upon each pixel reduces the photosen-
sitive area and thus the pixel’s sensitivity, resulting in dimmer images and in view of the
S/N ratio in smaller dynamic range [51]. Second, uniformity, i.e. the consistency of the re-
sponse signal of different pixels under equal illumination conditions is inherently worse with
CMOS than with CCD where only a single amplifier and analog-to-digital converter (ADC)
are employed. The non-uniformity is especially noticeable at low light levels. Finally, the
“rolling shutter” typically used in CMOS sensors may introduce additional distortions in
the image due to movements in the acquired scene. Implementation of a global shutter
in CMOS sensors is possible, but requires additional electrical components built into each
pixel, which decreases the pixel sensitivity even further [52]. CCD sensors do not have
these drawbacks. Additionally, CCDs usually have better sensitivity in UV and IR light,
which makes them a better choice for hyperspectral image acquisition [53].

Interline CCDs possess another useful feature, which is particularly interesting for the
application at hand with regard to the autofluorescence (AF) problem described in Sec-
tion 2.5.4. In interline CCDs, each photosensitive pixel is accompanied by an additional
“storage” pixel, the so-called shift register, which is covered by an opaque shell to protect
them from incident radiation (see Fig. 3.6b). After each acquisition frame (image), electri-
cal charges generated in the photosensitive pixels are immediately transferred to the shift
registers, which forward them to the output using the charge-coupled mechanism. While
charges are being transferred by the shift registers, the photosensitive pixels can begin ac-
quisition of a new frame; because read-out and exposure can happen in parallel, the overall
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Image Sensor Architectures for Digital Cinematography 6 
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Designs in More Detail 

Full Frame CCDs 

CCD “full frame” sensors (not to be confused with the “full frame” 
of 35mm film) with photogate pixels are relatively simple 
architectures. They offer the highest fill factor, because each pixel 
can both capture charge and transfer it to the next pixel on the 
way to the output node (this is the “charge coupling” part from 
“charge coupled device”). High fill factor (up to 100%) tends to 
offset their slightly lower sensitivity to blue wavelengths and 
allows them to avoid the tradeoffs associated with microlenses. 

Full frame CCDs provide an efficient use of silicon, but like film, 
they require a mechanical shutter. This is a non-issue in digital 
cinematography if the camera is designed with the rotating mirror 
shutter required for an optical viewfinder. Without a shutter, 
however, images from a full frame CCD would be badly smeared 
while the sensor read out the image row by row.  

With the highest full well capacity, photogate full frame 
architecture provides a head start on high dynamic range. CCD 
designs and fabrication processes have been optimized over the 
years to minimize noise (such as dark current noise and amplifier 
noise) in order to preserve dynamic range. Minimizing amplifier 
noise, especially at high bandwidth operation, is very important 
since all pixels pass sequentially through the same amplifier (or 
small number of amplifiers). This sequential output is a limiter to 
frame rate—the amplifier can run only so fast before image 
quality begins to suffer. 

To some eyes, the antiblooming performance of full frame sensors 
(via vertical antiblooming structures that preserve fill factor) 
provides a softer, more film-like treatment of extremely bright 
highlights. This is an aspect of imager “personality” that is 
difficult to define or measure and is open to interpretation. 

Frame Transfer CCDs 

A variation of the full frame CCD architecture is the frame transfer 
design, which adds a light-shielded storage region of the same size 
as the imaging region. This sensor architecture performs a high-
speed transfer to move the image to the storage region and then 
reads out each pixel sequentially while it accumulates the next 
image’s charge. This design improves smear performance and 
allows the sensor to read out one image while it gathers the next; 
the tradeoff is the cost of twice as much silicon per device and 
more complex drive electronics which can increase power 
dissipation. 

Frame transfer CCDs have many of the same strengths and 
limitations as full frame CCDs: high fill factor, and charge 
capacity, slightly lower blue sensitivity, high dynamic range, and 
highly uniform output enabled (and limited ) by a small number 
of high-bandwidth output amplifiers. 

Origin uses a large frame-transfer CCD with large pixels. 
Combined with the high fill factor, the large pixel area and 
transparent thin poly gates allow the latest Origin sensor to offer 
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Designs in More Detail 
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noise, especially at high bandwidth operation, is very important 
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small number of amplifiers). This sequential output is a limiter to 
frame rate—the amplifier can run only so fast before image 
quality begins to suffer. 

To some eyes, the antiblooming performance of full frame sensors 
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provides a softer, more film-like treatment of extremely bright 
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difficult to define or measure and is open to interpretation. 
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(c)

Figure 3.6: Architecture of (a) full-frame CCD, (b) interline CCD and (c) CMOS sensors.
Blue (bright) squares represent photosensitive pixels, gray (dark) squares represent non-
photosensitive “storage” pixels. Arrows represent the path along which generated electrical
charges are transferred to the output amplifier in CCD sensors (a) and (b). In (c) CMOS
sensors, charges are converted into voltage directly on the ”active pixels” and voltages are
transferred to the output. (Source: Dalsa [54])

frame rate is increased. Most importantly, storage pixels enable the so-called “frame accu-
mulation” acquisition mode, where each frame consists of several subframes individually
acquired by the photosensitive pixels at subsequent time slots and accumulated in the stor-
age pixels. Charges generated during the acquisition of multiple subframes are stored and
accumulated in the storage pixels; accumulated charges are not transferred to the output
until a specified number of subframes has been accumulated. This “frame accumulation”
facilitates the TGFS measurement approach and the suppression of the autofluorescence
(AF) described in detail in Chapter 5.

CCDs also provide a method of operation that significantly increases their sensitivity
– pixel binning. In binning mode, adjacent pixels are organized in groups of 2n, electrical
charges generated by the pixels in each group are added and the sum is transferred to the
output node. As a result, the effective photosensitive area of binned pixels is doubled.
Additionally, since the summation of charges is carried out in the analog domain, the noise
associated with the conversion from charge to voltage, A-D-conversion, and read-out occurs
only once per pixel group. Provided the intensity of light incident on the binned pixels is
equal and the read-out noise generated in single pixels is uncorrelated, the S/N ratio can
be increased by (almost) a factor of 2n. Binning is also possible with CMOS sensors, but
there noise coming from the amplifiers is inevitably added to the signals of every single
pixel and therefore a binning of 2n yields an increase of the S/N ratio of

√
2n at most (since

read-out noise follows Gaussian statistics, see Section 3.4.1) [53].

Pixels in both horizontal and vertical directions can be binned. Binning in the vertical
direction (i.e. direction parallel to the shift registers’ transfer direction) also decreases the
number of transfer steps in the CCD shift registers, therefore less time is needed for the
transfer and the (overall) sensor frame rate can be increased. Since in the hyperspectral



3.4 Imaging sensor 41

camera used in this work the spectral dimension (λ) of the hypercube is projected on the
vertical axis of the CCD sensor, an increase of the frame rate can only be achieved by
binning in the spectral domain.

The trade-off for the increased sensitivity achieved through binning is a reduced spectral
and/or spatial sampling of the resulting image (hypercube). However, especially in low
light applications such as measuring subtle fluorescence emissions, an improved image S/N
ratio outweighs the loss of spectral sampling.

3.4.1 Sensor noise

The quality of the image (hypercube) produced by the sensor is negatively affected by the
noise of different types and origins. Understanding the origins of noise helps optimize the
design of the spectroscopic system and improve the quality of the resulting images.

For the classification of fluorescence spectra as in this dissertation, especially noise in
the spectral dimension of the hyperspectral cube is critical. Moreover, marker fluorescence
spectra are processed separately from the spatial content. For this reason, image quality
degradation due to (spatial) non-uniformity effects is not considered here.

There are four main sources of noise that need to be considered in the context of
designing a spectroscopic measurement system [55, 56, 57]:

• Photon noise (or shot noise) arises from the fundamental property of the quantum
nature of light, which is that the rate of photons emitted by a steady light source is
not constant and varies over time according to the Poisson distribution. Therefore,
the photon arrival rate at the CCD surface and the number of electrons generated in
the photosensitive pixels also vary with Poisson statistics. The resulting photon noise
is proportional to the square root of the number of incident photons that generate
electrons and, equivalently, to the square root of intensity of the generated signal
(voltage). The photon noise is multiplicative and has Poisson statistics.

• Dark current noise (or offset fixed pattern noise, FPN) comes from the variations
in dark currents of different pixels due to the inequalities of their structures. Dark
current noise depends on the temperature of the sensor pixels and can be virtually
eliminated in cooled sensors at temperatures below approx. −100 ◦C. In room tem-
perature sensors, dark current noise can be very distinctive especially in low-light
conditions. Dark current noise is additive, it is not dependent on illumination and
is relatively constant. It can be hence rather effectively suppressed by measuring
and subtracting a dark frame from each acquired frame (i.e. here the s [y, λ] layer
of the hypercube) [58]; the dark frame is to be acquired under the same conditions
(temperature, acquisition time, etc.) as the frame that needs to be corrected.

• Dark current shot noise is of the same nature as photon noise but results from the
fluctuations of the number of dark current electrons produced in the pixels. Dark
current shot noise also follows Poisson statistics and is proportional to the square
root of the number of dark current electrons.
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• Read-out noise is a combination of noise produced by the electronics for amplification
and conversion of electrical charges into voltage signals. This type of noise is additive
and has Gaussian statistics. Read-out noise ultimately limits the S/N ratio of the
sensor, but its influence can be reduced by averaging or filtering (e.g. in binning
mode and/or in “frame accumulation” mode).

Under the assumption that the dark current noise can be effectively suppressed, the
measured spectrum s̃ (in digital counts) that represents the analog spectrum of the emitted
fluorescence light (in W/m2/nm) is thus corrupted by three most prominent noise types
and is given by:

s̃ = s · np(s) + nd + nr, (3.2)

where s is the (digital) spectrum without noise, np, and nd and nr are photon, dark current
shot and read-out noise, respectively, whereas the standard deviation of the photon noise
is σnp =

√
s.

3.4.2 Signal-to-noise ratio (S/N ratio)

As a measure of the amount of noise present in the measured spectrum s̃, the signal-to-noise
ratio (S/N ratio) is used:

S/N = 10 · log10

(
P s

P n

)
, (3.3)

where P s denotes the power of the spectrum s and P n the power of the overall noise n.
For discrete s and n, P s and P n are given by:

P s =
1

Λs

Λs∑
i=1

s2
i , (3.4)

P n =
1

Λs

Λs∑
i=1

n2
i , (3.5)

where si is the digitized value that represents the light intensity I i within a certain wave-
length band ∆λi as defined in Section 3.1, ni is the overall noise component within the
same wavelength band ∆λi, and Λs denotes the number of (discrete) wavelengths where
the spectrum s of the marker or marker combination is present. Since the marker spectra
are situated in their individual wavelength ranges (see Fig. 2.6b) that do not cover the
entire wavelength range of the sensor, calculating P s and P n within the entire sensor’s
wavelength range would artificially decrease the S/N ratio of marker combinations with
few markers in comparison to those with many markers. To avoid this, both P s and P n are
calculated only for the wavelengths where the (known) markers of each particular marker
combination are present. Since in the laboratory measurements the class (i.e. the binary
code) of the measured noisy spectrum is typically known a priori, it is also known what
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markers are present in the spectrum and thus the wavelength bands ∆λi in Eqn. 3.4 and
3.5 can be easily specified. This also holds true for the simulations in Chapter 4 and
experiments in Chapter 7.

Minimization of noise is one of the primary concerns in sensor design. As already
mentioned, cooling is usually used to reduce the dark current noise and its dark current
photon noise component. To reduce read-out noise, specialized electronics designs, digital
filters, etc. are utilized [56, 59]. Photon noise, however, is a natural property of light itself
and cannot be reduced by sensor design. Therefore, photon noise is essentially the minimum
achievable noise level. When the intensity of the photon noise is significantly larger than
the intensity of the read-out noise, the system is said to be photon noise limited, which
represents the desired mode of operation. In low-light conditions as in the application in
this work, when signal intensity and therefore photon noise intensity is low, read-out noise
becomes dominant and the imaging system is said to be read-out noise limited.

The goal of this dissertation is to develop a system optimized in terms of minimal marker
concentrations, large mass throughput, and highest possible measurement rate, while at
the same time achieving good performance of classification of fluorescently labeled plastics.
This results in a system that works close to the read-out noise limit (see also Chapter 6)
and delivers spectra with relatively low S/N ratio. Several options to decrease the amount
of noise in the measured spectra and increase their S/N ratio are available.

A simple way to decrease the amount of noise in the measured spectra is the averaging
of several acquired spectra. For example, several spectra can be acquired from different
locations on a plastic flake if it is larger than the camera’s spatial sampling (spatial av-
eraging) or from the same location one after another (temporal averaging). If the noise
from different pixels is uncorrelated, averaging N spectra results in a decrease of both the
Gaussian distributed and Poisson distributed noise components and thus in an increase of
the S/N ratio by

√
N (i.e. 20 log10(

√
N) dB according to Eqn. 3.3).

The CCD pixel binning operation mode mentioned in Section 3.4 reduces only the read-
out noise. With CCD pixel binning the summation of electrons generated by “binned”
pixels is carried out in the analog domain and the read-noise is added after that only once.
Hence in a read-out noise limited system, where the photon noise and the dark current shot
noise are small (i.e. np � nr and nd � nr) and can be neglected, binning with a factor of
N increases the S/N ratio of the acquired spectrum by a factor of N (i.e. 20 log10N dB):

S/NN = 10 · log10

(
P sN

P nN

)
= 10 · log10

(∑Λs
i=1 s

2
Ni∑Λs

i=1 n
2
Ni

)
=

= 10 · log10

( ∑Λs
i=1(N · si)2∑Λs

i=1(N ·��npi +N ·��ndi + nri)2

)
≈

≈ 10 · log10

(
N2 ·

∑Λs
i=1 s

2
i∑Λs

i=1 n
2
ri

)
=
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= 20 · log10N + 10 · log10

(∑Λs
i=1 s

2
i∑Λs

i=1 n
2
ri

)
=

= 20 · log10N + 10 · log10

(
P s

P n

)
=

= 20 · log10N + S/N, (3.6)

where S/NN stands for the S/N ratio of the spectrum acquired with a binning factor of N ,
P sN and P nN denote the power of the spectrum and the power of the noise in the “binned”
spectrum, respectively, sNi and nNi are the spectrum and noise in the “binned” spectrum,
respectively, si, npi and ndi are the spectrum, photon noise and dark current shot noise
components in the individual (not “binned”) pixels, and nri is the read-out noise added
only once after the analog binning has been carried out.

Since despite binning the photon noise is added to each pixel, its component in the
resulting “binned” spectrum is increased in comparison to the read-out noise component.
Thus photon noise limited conditions can be potentially achieved even in low-light appli-
cations. If the photon noise np and dark current shot noise nd cannot be neglected, the
increase of the S/N ratio due to pixel binning is smaller than N , but is at least

√
N (similar

to the averaging).
It should be mentioned, that the above holds true when binned pixels contain identical

copies of the spectrum s, which is normally the case when binning is carried out in the
spatial domain (x and y axes of the 3D hypercube, see Section 3.1). When binning is
carried out in the spectral domain (λ axis of the 3D hypercube), each of the binned pixels
contains digitized fluorescence intensity at a certain wavelength band. Thus, binned pixels
contain non-identical, though correlated values, and binning N pixels results in the increase
of the S/N ratio smaller than N .

In the “frame accumulation” mode of the interline CCD sensors mentioned in Sec-
tion 3.4, the read-out noise is also added only once when a specified number N of sub-
frames are acquired. Hence, similarly to binning, the S/N ratio is increased by (almost) a
factor of N (i.e. 20 log10N dB) in a read-out noise limited system. In contrast to binning,
signals are accumulated over time, thus the acquired scene (i.e. fluorescence light) must
be temporally constant.



Chapter 4

Hyperspectral signal classification

The objective of hyperspectral signal classification in this dissertation is to automatically
categorize different plastic types based on the fluorescence spectra acquired from fluores-
cently labeled plastic flakes. In this work, a class denotes a particular plastic labeled with a
unique binary combination of fluorescent markers. “Better” classification leads to smaller
classification errors and provides a higher quality of the recycled plastics. Naturally, there
is no universal classification approach that suits every application. The selection of a clas-
sifier for a specific problem is often an iterative process. The goal of this chapter is to
find the best approach to the problem at hand. In Sections 4.1 - 4.7 an overview of rele-
vant classification techniques is given. Section 4.8 introduces different metrics to evaluate
classification performance. In Section 4.9 computer simulations are employed to investi-
gate the ability of different classifiers to deal with fluorescence spectra disturbances most
relevant here: sensor noise, relative intensity fluctuations (i.e. fluctuations of the rela-
tion between fluorescence intensities of individual markers in marker combinations), and
autofluorescence (AF).

4.1 Classification basics

Based on the availability of prior knowledge about investigated objects (here plastics and
their emitted fluorescence spectra), all classification techniques can be divided in two broad
groups: unsupervised and supervised classification. When absolutely no or very little prior
knowledge about the objects is available, unsupervised classification methods can auto-
matically group object features (here fluorescence spectra) in classes based on similarities
between them, i.e. identifying “natural” structures within the available data. Unsuper-
vised classification is usually followed by an expert a-posteriori analysis, when identified
“natural” classes are assigned to the known objects or materials (here plastic types).

When prior knowledge about the investigated objects is available (or has been acquired
during unsupervised classification), supervised classification can be carried out. In super-
vised classification, knowledge derived from examples (i.e. objects) of known identity (here
plastic type) is used to assign novel (unseen) unclassified examples to one of the existing
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classes. In the application at hand, plastic types and marker fluorescence emission spectra
are known and thus the corresponding classes can be easily defined. Therefore, the main
focus of this chapter lies in supervised classification methods.

Figure 4.1 shows the general structure of a supervised classification system. It consists
of 5 stages: (1) data acquisition; (2) data pre-processing and enhancement; (3) feature
extraction; (4) training; (5) classification. Stage (1) corresponds to the hyperspectral
data acquisition discussed in Chapter 3. Stage (2) is responsible for data preparation
which may include noise suppression, filtering, selection of relevant datasets, grouping
data based on a priori knowledge, etc. The preprocessing stage is not explicitly described
here. In the simulations in Section 4.9 (almost) no preprocessing is carried out in order to
compare classifiers in equal (worst case) conditions. The data preparation carried out in
the experiments in Chapter 7 is described there. Stage (3), feature extraction, aims at two
goals: first, to reduce the dimensionality of the data and thus facilitate the use of complex
classifiers; and second, to improve the interpretability and/or discriminability of the data
to aid classification. At stage (4), a training algorithm is used to derive knowledge about
existing classes from available (known) training data. Once this knowledge is derived, the
classification of novel (previously unseen) data can be carried out at stage (5).

4.2 Spectral similarity measures

Even when high-dimensional data as in hyperspectral imaging needs to be classified, it is
not always necessary to use traditional feature extraction approaches if numerically simple
classification algorithms are employed. Rather, it may be advantageous to directly classify
the acquired spectra.

The so-called spectral similarity measures utilize all Λ acquired discrete wavelength
bands (spectral samples) of the spectrum to estimate the similarity between the unknown
acquired spectra and the reference spectra of known classes. The acquired spectrum is then
assigned to the class with the most similar value of the applied similarity measure. With
regard to the structure of a supervised classification shown in Fig. 4.1, stage (4), training,
is represented by deriving the reference spectra of known classes from the training data,
and stage (5), classification, is carried out by assigning the unknown acquired spectra to
the known classes, which reference spectra they are most similar to (in terms of the applied
similarity measure).

Below is a short overview of the similarity measures used in this work.

4.2.1 Euclidean distance (ED)

Euclidean distance (ED) is a geometric measure that determines the spatial distance be-
tween two spectra in the Λ-dimensional space. Let s = [s1, s2, ..., sΛ]T be the acquired
fluorescence spectrum to be classified, and ri = [ri1, ri2, ..., riΛ]T be the known reference
spectrum of class ωi, where Λ is the number of (discrete) wavelength bands (i.e. spectral
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Figure 4.1: Flowchart of a typical classification system includes 5 stages.

samples). ED between these two spectra is then given by [60]:

EDi(s, ri) =

√√√√ Λ∑
λ=1

(sλ − riλ)2, (4.1)

where λ denotes the discrete wavelength band (spectral sample) and i indicates the mem-
bership of class ωi. Provided both s and ri are normalized (have the same peak intensity),
small EDi values mean high similarity between the unknown spectrum s and the reference
spectrum ri. When EDi values of all i = 1..C classes have been calculated, the unknown
spectrum s is assigned to the class with the smallest EDi.

ED is very sensitive to the magnitude (i.e. the digitized value of the fluorescence
intensity s [λ]) of compared spectra, hence, for proper classification all spectra need to be
normalized [61]. In this work, normalization of the magnitude is carried out for all spectra,
so that max(sj) = 1 for all j = 1, 2, ...,Λ.

4.2.2 Sum of absolute differences (SAD)

The sum of absolute differences (SAD) is a numerically more efficient variation of ED:

SAD(s, ri) =| s− ri |=
Λ∑
λ=1

| sλ − riλ | . (4.2)

Similarly to ED, SAD requires normalization of s and ri for correct classification.

4.2.3 Spectral cross correlation (SCC)

The cross correlation approach used in many signal and image processing applications
measures the linear dependence of two (vector) patterns. Here, the spectral cross correla-
tion (SCC) measures the degree of linear dependence (and hence similarity) between two
fluorescence spectra. For two spectra s and ri (i = 1, 2..C), SCC is defined by [62]:

SCCi(s, ri) =

∑Λ
λ=1[(sλ − s) · (riλ − ri)]√∑Λ

λ=1(sλ − s)2 ·
∑Λ

λ=1(riλ − ri)2

, (4.3)
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where s and ri are the mean values of the two spectra. SCC is equal to 1 when the spectra
are equal or scaled versions of each other and 0 when they are uncorrelated. The acquired
spectrum s is assigned to the class ωi with the highest SCCi value.

SCC is primarily sensitive to the shape differences of the compared spectra and insensi-
tive to magnitude differences, which may be advantageous if a proper scaling/normalization
of spectra is not possible due to e.g. noise.

4.2.4 Differential spectral cross correlation (DSCC)

The differential spectral cross correlation (DSCC) is the SCC (Eqn. 4.3) calculated using
first derivatives of the fluorescence spectra with respect to the wavelength λ:

DSCCi = SCCi(
ds

dλ
,
dri
dλ

). (4.4)

In Eqn. 4.4 the formula of the derivative for the continuous space is shown, in practice
it is replaced by the discrete derivative, e.g. ∆s/∆λ. DSCC values are interpreted similar
to SCC values (1 and 0 mean good bad similarity, respectively) and the acquired spectrum
is assigned to the class with the highest DSCCi value. DSCC can be useful for fluorescence
spectra with sharp peaks but is inherently prone to noise.

4.2.5 Spectral angle mapper (SAM)

The spectral angle mapper (SAM) is an extension of the two-dimensional space angle to
the Λ-dimensional spectral space. SAM estimates the similarity between two spectra s and
ri, i = 1, 2, .., C, by measuring the “angle” between them given by [60]:

SAMi(s, ri) = arccos(
sT · ri
‖s‖ · ‖ri‖

), (4.5)

where ‖s‖ and ‖ri‖ denote the euclidean norm of s and ri, respectively. Smaller angles
(i.e. smaller SAMi values) mean higher similarity between compared spectra.

Similar to SCC, SAM is primarily sensitive to shape differences of the compared spectra
and insensitive to magnitude differences [61]. In contrast to SCC, SAM does not centralize
the data in the mean and introduces a non-linearity due to the arccosine function.

4.3 Feature extraction

Feature extraction is the process of finding characteristic components – features f – that
describe information as unambiguously and compact as possible. Good features allow the
explicit definition of classes and avoid misinterpretation of one class for another. Further-
more, feature extraction usually reduces the dimensionality of the raw data thus keeping
computational costs of further processing (classification) low(-er). The vector f which
elements are features f is called the feature vector.
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The most straightforward type of features is the so-called expert features, which are
a set of logical rules derived from expert knowledge about the objects and applied for
classification. For example, in the application at hand, such expert features could be the
(known) positions of peaks in the fluorescent marker spectra. A classification algorithm
based on this idea of a single data point is, however, very susceptible to sensor noise [32].
A less straightforward way to define distinctive features is to apply an algebraic transfor-
mation to the data. Three such techniques of most interest for the problem here, principal
component analysis (PCA), linear discriminant analysis (LDA) and least-squares mixture
analysis (LSMA) are discussed below.

4.3.1 Principal component analysis (PCA)

Principal component analysis (PCA) is one of the main methods of data dimensionality
reduction with loss of information and is a common technique for feature extraction in high
dimensional data. The main idea is to convert the multivariate, possibly correlated data
into a smaller set of linearly uncorrelated values, which are called principal components.

Let S = [s1, s2, ..., sJ ] be the initial dataset consisting of J unknown fluorescence spec-
tra sj = [sj1, sj2, ..., sjΛ]T , where j = 1..J and Λ is the number of discrete wavelength bands
in the spectrum (i.e. spectral samples). PCA transformation is built up of eigenvectors
of the data covariance matrix, sorted in descending order according to the corresponding
eigenvalue. The following eigenvector decomposition of the covariance matrix is used in
order to find these eigenvectors [63]:

Σ = EDET , (4.6)

where Σ = cov(S) is the covariance matrix of S, E = [e1, e2, ..., eΛ] is the matrix composed
of the eigenvectors ej of Σ and D is the diagonal matrix composed of the eigenvalues e
corresponding to the eigenvectors ej. For large matrices finding eigenvalues and eigenvec-
tors is usually carried out using numerical algorithms [64] implemented in many software
packages.

The PCA is defined as a linear transformation:

s̃j = ETsj for j = 1, 2, ..., J. (4.7)

Vectors s̃j form the transformed matrix S̃ = [s̃1, s̃2, ..., s̃J ] of the PCA coefficients (i.e.
principal components) of the original data S. The number of principal components after
transformation is equal to the number of variables (here Λ, number of discrete wavelength
bands) in the initial dataset, but since principal components in transformed data are
arranged according to the variance in the eigenvectors/eigenvalues and thus according to

the amount of “information” they contain, reducing the dataset S̃ to only the first several
principal components usually results in a marginal loss of information.

For example, 63 binary combinations of 6 fluorescent markers are normally characterized
by their 63 fluorescence emission spectra each with Λ = 350 discrete wavelength bands
(spectral samples), resulting in a 350 × 63 matrix. However, with PCA each of the 63
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spectra can be reduced to e.g. a 6-dimensional vector by taking only the first 6 principal
components. Figure 4.2a depicts the Pareto chart of the variance of the first 6 principal
components of the dataset S. It can be seen, that these first 6 principal components
contain more than 99% of the variance in the data, which is essentially the information
carried by these data.

PCA can also improve the interpretability of the data, i.e. the degree to which a human
observer can understand the structure of the data. Figure 4.2b shows the 3D plot of the
first 3 principal components of the first 7 of 63 fluorescence spectra of the binary marker
combinations corrupted with 10 dB noise, grouped according to their class label. It is easy
to see that all 7 classes make up 7 well-separated regions in the 3-dimensional PCA feature
space. Similarly, 63 classes are grouped in separated regions in the 6-dimensional PCA
feature space (not shown here for obvious reasons).

4.3.2 Linear discriminant analysis (LDA)

Linear discriminant analysis (LDA) is very similar to PCA, but instead of searching for a
geometrical transformation that ranks components according to their variance (i.e. carried
information) and thus maximizes interpretability of the data, LDA maximizes discrim-
inability of multiple classes in the data, i.e. the capability of different classes in the data to
be distinguished from one another. As illustrated in Fig. 4.3, LDA searches for a projection
of data such that examples from the same class are located close to one another, and at
the same time far from examples from other classes.

Mathematically this criterion can be expressed in terms of within and between class
scatter matrices. Let Si = [si1, si2, ..., siJi ] be the dataset consisting of J i spectra belonging
to the class ωi, for i = 1, 2, ..., C. The within class and between class scatter matrices are
then defined as follows [65]:

SW =
C∑
i=1

Ji∑
j=1

(sij − µi)(sij − µi)T , SB =
C∑
i=1

(µi − µ)(µi − µ)T , (4.8)

where µi is the mean spectrum of class ωi and µ is the overall (global) mean spectrum:

µi =
1

J i

Ji∑
j=1

sij, µ =
1

C

C∑
i=1

µi. (4.9)

The objective of LDA is to maximize the following function:

L(W) =
WTSBW

WTSWW
, (4.10)

where W is the LDA transformation operator:

s̃ij = WTsij, (4.11)
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Figure 4.2: (a) Cumulative variance of the first 6 principal components of fluorescence
spectra of 63 binary marker combinations. The first 6 of 63 principal components contain
more than 99% of the overall variance and thus information. (b) The first 3 principal
components of fluorescence spectra of the first 7 of 63 binary marker combinations (classes).
Spectra were first corrupted with noise to achieve an average S/N ratio of 10 dB. 7 separated
regions correspond to the 7 binary marker combinations.

where s̃ij denotes the projection of vector sij onto the LDA feature space. By maximiz-
ing L(W), good separability of the classes is achieved: small within-class scatter means
that classes are compact, whereas large between-class scatter indicates at a large distance
between classes in the feature space.

The optimal matrix W consists of eigenvectors that correspond to the eigenvalues in
the following generalized eigenvector problem:

SBwi = qiSWwi, (4.12)

where qi is the i-th eigenvalue. Eigenvalues qi can be found as roots of the polynomial:

|SB − qi SW | = 0, (4.13)

and then eigenvectors wi can be found from:

(SB − qi SW )wi = 0. (4.14)

Similar to PCA, most often only the first several LDA features carry the majority of
information. Since by definition better class discriminability can be achieved with LDA
than with PCA, better classification results can be expected with the former. However,
when an accurate estimation of class statistics (its location, size, and shape in the multi-
dimensional feature space) is not possible due to e.g. a small training dataset, PCA may
still achieve better results [66].
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Figure 4.3: Comparison of PCA and LDA projections of 2-dimensional data. Yellow circles
and blue squares represent examples belonging to arbitrary classes 1 and 2, respectively.
Whereas PCA provides better data interpretability, LDA results in better discrimination
of classes.

4.3.3 Least squares mixture analysis (LSMA)

Least-squares mixture analysis (LSMA) is a widely used group of techniques to determine
and quantify materials in hyperspectral imagery, mostly in geoscience and remote sens-
ing [67]. LSMA is based on the linear mixture model (LMM), which assumes that any
(unknown) spectrum s can be represented as a linear mixture, or superposition, of sev-
eral target (marker) spectra mh. Suppose that M = [m1,m2, ...,mM ] is the matrix of
target marker fluorescence spectra, where mh = [mh1,mh2, ...,mhΛ]T is the Λ × 1 spec-
trum of fluorescent marker Mh and M is the overall number of fluorescent markers. Let
α = [α1, α2, ..., αM ]T be a M×1 column vector associated with the (unknown) spectrum s,
where αh denotes the abundance fraction of the marker fluorescence spectrum mh present
in the spectrum s. The spectrum s can thus be represented by the following linear mixture
model [68]:

s = Mα+ n, (4.15)

where n is the measurement noise. The goal of the mixture analysis is to estimate the
unknown abundance fractions αh of markers mh in Eqn. 4.15. The least-squares (LS)
error as the optimality criterion (“best fit”) yields the following approximation α̂LS of the
abundance vector α [68]:

α̂LS(s) = (MTM )−1MTs, (4.16)

where (MTM )−1MT is the Moore-Penrose pseudoinverse of marker spectra matrixM [69].
This is the most simple, unconstrained solution to Eqn. 4.15 for the case when all spectra
in M are known. Unconstrained LSMA is useful when the goal is to only determine the
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presence or absence of marker spectra mh in the unknown spectrum s. When the amount
of the markers in the unknown spectrum needs to be determined, two constraints can
be imposed: the sum-to-one constraint,

∑M
h=1 αh = 1, and the non-negativity constraint,

αh ≥ 0 for all h = 1, 2, ...,M .

Sum-to-one constrained least squares (SCLS) mixture analysis

Imposing the sum-to-one constraint on abundance fractions α results in the following
optimization problem:

min
α∈∆
{(s−Mα)T (s−Mα)} subject to ∆ = {α|

M∑
h=1

αh = 1}. (4.17)

The solution to this problem is given by [68]:

α̂SCLS = P α̂LS + (MTM )−11[1T (MTM )−11]−1, (4.18)

where α̂LS is given by Eqn. 4.16, 1 = [1, 1, ..., 1]T is an M × 1 unity column vector and P
is given by:

P = U − (MTM )−11[1T (MTM )−11]−11T , (4.19)

where U is the identity matrix.
According to [68] and [60], the SCLS method provides more accurate quantification of

materials present in the measured spectrum s.

Non-negatively constrained least squares (NCLS) mixture analysis

The non-negatively constrained least squares (NCLS) problem can be formally stated as
follows [70]:

min
α∈∆
{(s−Mα)T (s−Mα)} subject to ∆ = {α|αh ≥ 0, h ∈ [1,M ]}. (4.20)

Finding a closed-form algebraic solution to the set of inequalities in Eqn. 4.20 is not
always possible. In [70] an iterative algorithm that uses the following two equations was
proposed:

α̂NCLS = MTM−1MTs− (MTM)−1k = α̂LS − (MTM )−1k (4.21)

and
k = MT (s−Mα̂NCLS). (4.22)

where α̂LS is given by Eqn. 4.16. Equations 4.21 and 4.22 are iterated until the non-
negativity constraint is not satisfied.

Although NCLS cannot accurately quantify the amount of materials present in the
example (object), sometimes it may be advantageous over the unconstrained LSMA and
SCLS for materials detection [60, 68].



54 4. Hyperspectral signal classification

Fully constrained least squares (FCLS) mixture analysis

The fully constrained least squares (FCLS) mixture analysis satisfies both the sum-to-one
and non-negativity constraints in order to achieve good target detection and quantification
performance. In order to accommodate the sum-to-one constraint, the target spectra
matrix M and the measured spectrum s are modified as follows:

M̃ =

[
δM
1T

]
, s̃ =

[
δs
1

]
(4.23)

where δ is a constant, which controls the impact of the sum-to-one constraint [68]. Using

M̃ and s̃ from Eqn. 4.23 in Eqn. 4.21 and 4.22 imposes both sum-to-one and non-negativity
constraint on the LSMA problem.

4.4 Naive Bayes classification

The naive Bayes classifier is one of the most fundamental statistical approaches to classi-
fication. It encompasses a group of statistical classification methods based on the “naive”
Bayes’ assumption, that all elements in the feature vector f are independent. The main
principle is to assess the probability of a correct classification of an example (i.e. an un-
known object) given its feature vector by minimizing the cost of failure. The idea can be
best explained for a 1-dimensional classification problem.

Let f denote a feature value in a one-dimensional feature space. In general, any discrete
sample of the fluorescence spectrum s, any PCA or LDA components, or any abundance
fractions αj can be taken as the feature f . The decision to be made is whether f indicates
the membership in any of the classes ωi, for i = 1, 2, ..., C. The probability of class ωi given
the feature value f , also called the posterior probability, or in other words, the probability
that the feature value f belongs to the class ωi, is given by the Bayes’ formula [65]:

ρ(ωi|f) =
ρ(f |ωi) ρ(ωi)

ρ(f)
, (4.24)

where ρ(ωi) is the a-priori probability of class ωi, ρ(f |ωi) is the class-conditional probability
density function of f (i.e. the probability density function of f given that the class is ωi)
and ρ(f) is the so-called evidence, i.e. the probability of f belonging to any class at all.
The evidence ρ(f) is basically a normalization constant which scales all ρ(ωi|f) to sum to
one, denoted by:

ρ(f) =
C∑
i=1

ρ(f |ωi) ρ(ωi), (4.25)

where C is the number of existing classes. The ideal (optimal) naive Bayes classifier sup-
poses complete and absolute knowledge of probabilities in Eqn. 4.24. Thus, given ρ(ωi|f),
the intuitive decision rule is to select ωi if ρ(ωi|f) > ρ(ωj|f) for all j 6= i. Interestingly,
the evidence value ρ(f) is the same for all classes and thus does not influence the decision.
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However, this simple decision rule does not consider the penalty for picking the wrong
class, or more precisely, it assumes that the penalty for taking any action (choosing or not
choosing any class) is always the same. In practice, however, this is not always the case.
For this reason, the concept of the cost function and the risk was introduced [71].

Let z = [z1, z2, ..., zZ ] be the finite set of Z possible actions given the feature f , such
as choosing class ωi or not choosing any class at all. If ξ(zj|ωi) is the penalty or the cost
of performing action zj if f belongs to the class ωi, the risk of taking action zj is given by:

R(zj|f) =
C∑
i=1

ξ(zj|ωi) · ρ(ωi|f). (4.26)

The decision rule is formally defined as a function z(f) that chooses one of the actions
z for any given f . The overall risk associated with a given decision rule z(f) is denoted
by:

R =

∫
R(z(f)|f) ρ(f) df, (4.27)

where integration is performed over the entire feature space. The Bayes decision rule aims
to minimize the risk R and is thus stated as follows: to minimize the overall risk R, compute
the conditional risk R(zj|f) for all possible zj and select zj for which R(zj|f) is minimal.
The resulting minimal risk is called the Bayes risk. Provided that the posterior probabilities
ρ(ωi|f) are perfectly known, the Bayes decision rule gives the optimal classification result.

The Bayes decision rule is easily extended to a multidimensional case: instead of only
one feature value f , a K-dimensional feature vector f = [f 1, f 2, ..., fK ]T is used in the
above equations.

4.4.1 Maximum-a-posteriori (MAP) and maximum-likelihood
(MLC) classifiers

Despite its simplicity and strength, the Bayes decision rule can only serve as a theoretical
foundation and guideline for the development of real-life classifiers. This is because in
practice none of the probabilities ρ(ωi|f), ρ(ωi) or ρ(f |ωi) are usually known, which makes
the use of an optimal naive Bayes classifier impossible. An approximation can be made
by estimating these probabilities where the accuracy of such estimation highly depends on
the available training data.

Under certain assumptions, it is sometimes possible to simplify the Bayes decision
rule. Two of the most common variations of the Bayes decision rule are the maximum-a-
posteriori criterion (MAP) and the maximum likelihood criterion. MAP assumes a zero
(or symmetrical, i.e. when all actions have equal costs) cost function ξ and instead of
minimizing the overall risk R, it maximizes the posterior probability ρ(ωi|f) according to
Eqn. 4.24. Thus, MAP decides in favor of the most probable class given a feature vector
f .
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The maximum-likelihood classifier (MLC) further simplifies the Bayes decision rule by
assuming equal prior probabilities ρ(ωi) of all classes in addition to the zero cost function
thus maximizing only the likelihood ρ(f |ωi). The likelihood is usually approximated by a
normal distribution model [71]:

ρ(f |ωi) = (2π)−K/2 |Σi|−1/2 exp(−1

2
(f − f i)T Σ−1

i (f − f i)), (4.28)

where f i and Σi denote the mean feature vector and covariance matrix of class ωi. MLC
assigns the feature vector f to the class with the highest likelihood ρ(f |ωi).

Both MAP and MLC assign an example to a class independently of the absolute value
of the posterior probability or the likelihood. Hence, even examples that do not belong
to any of the known classes and thus have very low posterior probability or likelihood
are assigned to one of the classes ωi. In order to avoid this, a threshold on the posterior
probability or the likelihood value can be introduced: examples with values lower than the
threshold are not classified.

It should be noted that the calculation of the covariance matrix Σi and especially of
its inverse as needed in Eqn. 4.28 for each class is a computationally costly task. There-
fore, applying MLC directly to the fluorescence spectra, i.e. when f = s, might not be
reasonable in a real-time application.

4.4.2 Mahalanobis distance (MD) and Euclidean distance (ED)
classifiers

A further simplification of the Bayes decision rule presumes that all C classes have equal
covariance matrices: Σi = Σ for all i. A metric derived from this assumption and Eqn. 4.28
is called Mahalanobis distance [71]:

MDi =

√
(f − f i)T Σ−1 (f − f i). (4.29)

Geometrically the Mahalanobis distance classifier represents all classes as multidimen-
sional ellipsoids of equal size and shape defined by the same Σ. The Mahalanobis distance
classifier assigns the feature vector f to the class with the smallest MDi.

The Euclidean distance classifier further assumes Σ = U :

EDi =

√
(f − f i)T U−1 (f − f i), (4.30)

where U is the identity matrix. Therefore, geometrically ED represents all classes as points
in the multidimensional space. The Euclidean distance classifier assigns the feature vector
f to the closest class, i.e. to the class with the smallest EDi.
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4.5 Random forest (RF)

One of the most natural types of classifiers is the decision tree. A decision tree is a set of
“if-then-else” rules arranged as a flowchart, each node of which represents a test of a certain
attribute (feature f) of the input feature vector f and makes a classification decision based
on the output of this test. For each such node, decision tree training algorithms try to find
a feature and a threshold that achieves the best separation of the classes, whereas different
metrics for the separation quality can be used [72].

The main downside of decision trees is that they tend to overfit the training data and
do not generalize, i.e. perform poorly on novel data. To combat this downside, ensemble
techniques are usually employed: the initial training dataset is split into smaller subsets,
for each of which a separate decision tree is built; the ensemble of trees is then used to
classify unknown data, whereas the final classification decision is carried out either by
averaging the decisions of all trees or by the voting principle [72]. The random forest (RF)
classifier is an ensemble of decision trees, each of which is trained on a random subset of
the training dataset and, additionally, each node in the tree is trained on a random subset
of available features, i.e. on a random feature subspace [73, 74]. The latter, although being
counterintuitive, helps achieve better generalization [75].

Implementation of the random forest (RF) classifier used in this work is based on the
original algorithm proposed in [75] and its MATLAB implementation by [76].

4.6 Support vector machine (SVM)

The support vector machine (SVM) is a relatively simple, yet powerful classification ap-
proach that requires little tuning and is thus suitable for problems where little or no prior
knowledge about the nature of the data is available [77]. Initially, support vector ma-
chine (SVM) was defined only for linear binary classification, but extensions for multiclass
non-linear problems make it suitable for a variety of scenarios.

Suppose a dataset F = [f 1,f 2, ...,fJ ] containing j = 1, .., J K-dimensional feature
vectors f j = [f j1, f j2, ..., f jK ]T (“examples”) with respective class labels gj so that gj = 1
for class ω1 and gj = −1 for class ω2, for all j = 1, 2, .., J . Two classes defined by
these vectors are linearly separable if there exists a hyperplane that separates all feature
vectors belonging to class ω1 from vectors belonging to class ω2. Figure 4.4 illustrates the
2-dimensional case with circles and squares belonging to classes ω1 and ω2, respectively.

Mathematically, any hyperplane in the feature space is defined as a set of points f j
satisfying hT ·f j+h0 = 0, where h is the normal vector to the hyperplane and h0 is the offset
from the origin. In Fig. 4.4 two parallel hyperplanes hT ·f j +h0 = 1 and hT ·f j +h0 = −1
going through the closest to each other feature vectors from ω1 and ω2, respectively, define
the margin between two classes. Feature vectors through which the hyperplanes are drawn,
are called support vectors. The distance between two hyperplanes – the margin – is given
by 2/ ‖h‖, where ‖h‖ is the euclidean norm of the vector h. Intuitively, a hyperplane that
maximizes this distance achieves the best separation of the classes. Thus, the problem of
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Figure 4.4: 2-dimensional geometrical illustration of an optimal hyperplane (line in 2D) in
the feature space separating two classes represented by squares and circles.

finding the optimal hyperplane can be formally stated as follows:

minimize ‖h‖ , subject to: gj (hT · f j − h0) ≥ 1, for all j = 1, 2, .., J. (4.31)

The problem is usually arithmetically solved using quadratic programming algorithms [78].
When the given data is not linearly separable, the usual approach is to use a convenient

function Φ(f j) to transform the low-dimensional raw data to a high-dimensional space
where it becomes linearly separable and then apply SVM. However, for complex problems,
too many dimensions in the new feature space would slow down the training of an optimal
SVM. In order to bypass this problem, a technique called kernel trick is used [77]. The
trick is to replace all vector dot products in the new feature space by a kernel function:
Ψ(f j1,f j2) = Φ(f j1)·Φ(f j2). Thus the kernel function uses low-dimensional representation
of the feature vectors to calculate the result of their dot product in the high-dimensional
space. Usual kernel functions include polynomials, Gaussian radial basis function and
sigmoid function [77].

Multiclass SVM deal with the multiclass problem by splitting it into a set of binary
problems. This is usually done by employing either the one-versus-all or the one-versus-
one paradigm [79]. The former trains an individual SVM for each class so that feature
vectors belonging to this class are treated with a positive label and feature vectors from
all other classes have negative labels. In the end, the “winner takes all” principle selects
the class with the highest SVM output. In the one-versus-one paradigm SVMs are trained
to decide between pairs of classes. The decision made by each SVM is counted as a vote
for a particular class. The unknown feature vector is then assigned to the class with the
most votes.
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4.7 Neural networks

Due to their nonlinear structure and flexibility, neural networks (NN) are very well suited
for the situation, when the organization of the problem is not known and no assumptions
about it can be made. Given the training data F = [f 1,f 2, ...,fJ ] containing j = 1, .., J
K-dimensional training feature vectors f j = [f j1, f j2, ..., f jK ]T (“examples”) with respec-
tive class labels vectors (so-called “target” vectors) gj = [gj1, gj2, ..., gjC ]T so that gji = 1
if f j belongs to class ωi and gji = 0 otherwise, for all j = 1, 2, .., J and i = 1, 2, .., C,
neural networks (NNs) attempt to find the best “fit” for the data, i.e. derive the so-called
decision boundaries that best separate all C classes in the K-dimensional feature space,
and use this “fit” to classify the novel (i.e. unknown, previously unseen) data. Different
NN architectures were developed for many applications including pattern recognition, clus-
tering, function approximation, etc. [80]. Below is a brief overview of the most important
concepts of NNs.

4.7.1 Neuron model

In order to achieve high numerical performance, NNs employ a highly interconnected struc-
ture of simple computing cells referred to as neurons. The diagram in Fig. 4.5a depicts
the model of a neuron. Each neuron performs a relatively simple calculation: the elements
fk of the input feature vector f = [f 1, f 2, ..., fK ]T are multiplied by the weights wk of
corresponding synapses, i.e. connecting links, the result is summed with the bias b and
passed to the activation function ϕ, which calculates the output ĝ. Thus, the output of
the neuron is given by:

ĝ = ϕ(v) = ϕ(u+ b), with u =
K∑
k=1

wkfk, (4.32)

where v = u+ b.

Two types of activation functions are most often used for classification: the threshold
function and the sigmoid function [80]. The threshold function, also known as the Heaviside
function, is shown in Fig. 4.5b. A neuron with the threshold activation function is called
McCulloch-Pitts neuron [81] and it models the behavior of a single neuron in a biological
nervous system. The neuron employs the so-called all-or-none principle, which means that
just like the biological neuron, the artificial neuron can either be activated (1) or not (0).

The sigmoid function is one of the most common activation functions used in NN
architectures. The sigmoid function is an S-shaped, strictly increasing function and it
maps the interval (−∞,+∞) onto (0, 1). Two most popular examples of sigmoid functions
are the hyperbolic tangent function ϕ(v) = tanh(v) depicted in Fig. 4.5c and the logistic
sigmoid function denoted by:

ϕ(v) =
1

1 + exp(−av)
, (4.33)
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Figure 4.5: (a) The model of a neuron; (b) Heaviside and (c) sigmoid neuron activation
functions (Source: Haykin [80]).

where a is the slope parameter.

4.7.2 Pattern recognition neural networks

The way neurons are connected with each other within one NN is referred to as the network
topology or network architecture and along with the neurons’ activation functions it defines
the performance and functionality of the NN. The network architecture specifies the number
of neuron layers, the size of these layers, and the types of interconnections between them.
The more complicated the architecture of the NN is, the more sophisticated problems it
can solve. On the other hand, a large number of layers and neurons in those layers increases
the computational cost of training the network and may result in overfitting [82].

In practice, most of the pattern recognition and classification problems can be efficiently
solved using relatively simple multilayer NN with only feed-forward interconnections. The
single-layer perceptron is probably the simplest NN type used for classification and the
first algorithmically described NN [80]. It has only one processing layer (Fig. 4.6a) – the
output layer – consisting of McCulloch-Pitts neurons. It is a fully connected feed-forward
NN, i.e. all nodes (neurons) of the input layer are connected with all neurons of the output
layer. Although being simple, the single-layer perceptron is still a very powerful tool for
the classification of linearly separable data [81].

The extension of the single-layer perceptron is the multi-layer perceptron, which is also
a fully connected feed-forward neural network, but has at least one hidden layer of neurons
(see Fig. 4.6b). Additionally, in comparison to the single-layer perceptron, neurons of the
multi-layer perceptron use non-linear sigmoid activation functions. Having hidden layers
and non-linear activation functions permits the classification of not linearly separable data.
In fact, networks with only one hidden layer and non-linear activation functions are able
to build decision boundaries that surround convex regions in the feature space, whereas
three-layer networks (2 hidden layers) can create arbitrary decision boundaries [83].
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Figure 4.6: Architectures of (a) a single-layer and (b) a three-layer feed-forward neural
network (Source: Haykin [80]).

4.7.3 Neural networks training

Neural networks training is an iterative process of adjusting the weights wk and biases b of
all neurons according to a certain training criterion. Training of a multilayer feed-forward
network consists of two steps: (1) evaluation of the gradient of the training function (or
error function) ε (see Eqn. 4.34) in the weight space, which is usually accomplished using
the error back-propagation algorithm; and (2) modification (update) of the weights wk to
minimize the error function ε.

A variety of training functions ε can be used for neural network training. The least-
squares criterion is an example of a training function used for regression analysis problems,
where the output of the neural network is a continuous real number [81]. In classification
problems the output layer of the neural network consists of C (equal to the number of
classes in the problem) output neurons, whereas the “activated” output neuron has a
value of ĝi = 1 representing the classification decision in favor of class ωi, and all other
output neurons are not “activated” and have a value of 0. The output of a classification
neural network is therefore the vector ĝ = [ĝ1, ĝ2, ..., ĝC ]T . For classification problems, the
cross-entropy criterion is usually used, which is denoted by [81]:

ε = −
J∑
j=1

C∑
i=1

gji log(ĝi(f j)), (4.34)

where J is the overall number of training input feature vectors f j in the training dataset
F , C is the size of the target output vector gj and the corresponding NN output vector
ĝj (which is equal to the number of classes ωi), gji is the i-th element of the target output
vector gj corresponding to the training input feature vector f j and ĝi is the output of the
i-th neuron in the output layer of the NN.
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From a mathematical point of view, the goal of the neural network training is to mini-
mize the training function ε using the training dataset, such that the trained neural network
can be used to classify novel (i.e. previously unseen) data with small ε. The minimization
of ε is usually done by the computationally efficient gradient descend method and the error
back-propagation algorithm. A detailed explanation of both the error back-propagation
algorithm and the gradient descend method can be found in [81].

4.8 Classification performance metrics

In order to choose the best classification method for a particular problem, a measure for
the classification performance must be specified. The two most important characteristics
of a classifier are the correctness of classification and computational cost. Whereas the
latter can be easily measured, the definition of “correctness” can be ambiguous. Usually,
correctness is evaluated using the following 4 counts:

• true positives (TP): the number of correctly recognized class examples, i.e. when an
example that belongs to the class was correctly recognized as such.

• true negatives (TN): the number of correctly recognized examples that do not belong
to the class, i.e. when an example not belonging to the class was correctly recognized
as such. This case corresponds to correct rejection.

• false positives (FP): the number of examples incorrectly assigned to the class. This
case corresponds to the false alarm or type I error [84].

• false negatives (FN): the number of examples that actually belong to the class but
were not recognized as such. This case corresponds to a miss, or type II error [84].

In a multiclass problem, i.e. when more than one class needs to be recognized, the counts
above are specified for each class ωi individually: TPi, TNi, FPi and FNi. Depending on
the application, the counts can be more or less important. In the application at hand,
“positive” class examples correspond to the labeled plastic flakes that need to be sorted
(recycled), and “negative” class examples are represented by either unlabeled plastic flakes
or plastic flakes with an unknown fluorescence emission, e.g. labeled with counterfeit
fluorescent markers. In any case, as long as no “negative” class examples get into the
respective containers with “positive” class examples, the quality (purity) of the recycled
plastics is intact. This means in particular, that the number of correct rejections TN is
less important.

These 4 counts can be combined to calculate classification performance metrics. A
thorough overview of classification performance metrics can be found in [84]. For the
application at hand, two performance metrics are of most importance: the true positive
rate (TPR), also known as recall or sensitivity:

TPRi =
TPi

TPi + FNi

· 100%, (4.35)
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and the positive predictive value (PPV), also known as precision:

PPVi =
TPi

TPi + FPi

· 100%, (4.36)

where index i indicates class ωi.
Both of these metrics are important for the assessment of the classification performance.

TPRi indicates what percentage of all examples that belong to class ωi was actually as-
signed to this class. In plastics sorting that corresponds to the recovery rate of a particular
plastic type ωi. However, TPRi alone does not unveil the full picture. For example, in a
binary decision problem, a classifier that always returns positive decisions (i.e. classifies all
examples as belonging to the class) would have TPR=100%, even though all negative ex-
amples (not belonging to the class) would be incorrectly classified as positive, i.e. FP would
be high. In plastics sorting that would mean that many unlabeled plastic flakes would get
into the container(s) with labeled plastic flakes, decreasing the purity (and quality) of the
recycled product. In order to avoid this, one also needs to consider the PPVi values which
indicate what percentage of positively classified examples was actually positive.

For a more compact representation of classifier performance in multiclass decision prob-
lems, averaged versions of TPR and PPV are typically used. Two types of averaging exist:
micro-averaging and macro-averaging. The former is given by:

TPRµ =

∑C
i=1 TPi∑C

i=1 TPi +
∑C

i=1 FNi

· 100%, (4.37)

PPVµ =

∑C
i=1 TPi∑C

i=1 TPi +
∑C

i=1 FPi

· 100%, (4.38)

where i = 1, ..., C is the number of classes. If the class sizes in the dataset used for
testing the classifier are unbalanced, i.e. some classes have more examples than others,
large classes will have higher impact on the micro-averaged TPRµ and PPVµ values, which
might be unwanted. Micro-averaging can be useful when the class sizes in the dataset are
representative and important for classification, and a similar relation between classes is
expected to hold in practice. For all other cases, macro-averaging is preferable. Macro-
averaging treats all classes equally, independently of their sizes:

TPRM =

∑C
i=1 TPRi

C
, (4.39)

PPVM =

∑C
i=1 PPVi

C
, (4.40)

In order to evaluate the classification performance based on a single metric, TPR and
PPV can be combined as follows:

Fβ-scorei =
(β2 + 1)PPVi · TPRi

β2PPVi + TPRi

, (4.41)
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Fβ-scoreM =
(β2 + 1)PPVM · TPRM

β2PPVM + TPRM

, (4.42)

where Fβ-scorei and Fβ-scoreM represent the individual score of class ωi and the macro-
averaged score, respectively, and β is a weight factor. For β = 1, the F1-score becomes the
harmonic mean of TPR and PPV. An important property of the F1-score is that it has a
high value only if both TPR and PPV have high values.

In a multiclass problem as in this dissertation, it is implicit, that if a spectrum that
belongs to class ωi is falsely assigned to class ωj, for i 6= j, it generates a miss FNi for class
ωi and a false alarm FPj for class ωj. Therefore, if as in the simulations in Section 4.9
the macro-averaged metrics TPRM and PPVM are calculated for all existing classes i =
1, 2, ..., C, their values are always equal and therefore TPRM = PPVM = F1-scoreM . In
the simulations in Section 4.9 only the F1-scoreM is thus used as the main classification
performance metric.

In the experiments in Chapter 7, TPRM and PPVM are calculated only for a subset of
all existing classes, and therefore they are not necessarily equal. There, it is thus important
to look at all 3 metrics TPR, PPV and the F1-score (both macro-averaged and individual
per-class values) separately in order to understand the full picture.

4.9 Simulations

From the classification approaches described above, a classifier that provides the best
performance for given marker fluorescence spectra under specific measurement conditions
must be found. Furthermore, for the development of the measurement system prototype,
it is necessary to quantify the worst situation in which the classification of marker fluo-
rescence spectra can still be reliably carried out and what (spectral) disturbances of the
marker fluorescence spectra can occur without a significant decrease of the classification
performance. To answer these questions, computer simulations were carried out before
experimental measurements were made.

Figure 4.7 shows the block diagram of the developed simulation framework in MATLAB.
There are 2 modules: spectra modeling and spectra classification. In the spectra modeling
module, emission spectra of the 6 fluorescent markers were first combined according to the
binary coding scheme. The binary codes of the 26 − 1 = 63 marker combinations can be
found in Table A.1 in Appendix A. Fluorescence marker spectra acquired with the spectral
camera (see Section 6.1.2) with an optical spectral resolution of approx. 2.8 nm and spectral
sampling of approx. 1 nm were used. The spectra had Λ = 350 discrete wavelength bands
(spectral samples) from 450 nm to 800 nm. The individual marker spectra and the marker
combination spectra were saved in the reference library for classification purposes. Next,
spectra of the 63 marker combinations were corrupted by one or more of 3 disturbances:
(A) sensor noise, (B) relative intensity fluctuations, and (C) AF (will be referred to as
scenarios A, B, and C, respectively). In all investigations in this section, 1000 spectra
per disturbance factor and per class (i.e. marker combinations) were modeled resulting
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Figure 4.7: Block diagram of the simulation framework developed in MATLAB. The sim-
ulation framework consists of two separate modules for spectra modeling and spectra clas-
sification (see text).

in 63 000 spectra per one F1-scoreM value, in order to ensure a small margin of error (see
Section 7.1.1) in the resulting estimation of the classification performance and facilitate
the comparison of different classifiers. Before classification, the modeled spectra were
intensity-normalized, so that the maximum intensity sj of every spectrum is equal to 1.

The modeled spectra were passed to the classification module. In order to ensure
equal conditions for all classifiers, no pre-processing of the modeled spectra was carried
out. The classification performance was quantified with F1-scoreM . Due to their relatively
low computational complexity, the spectral similarity measures ED, SAM, SCC, DSCC
were applied directly to the spectra, the more complex classifiers MLC, RF, SVM and NN
were used in combination with the feature extraction algorithms PCA, LDA and LSMA.
With PCA and LDA only the first 6 of 350 features (i.e. features bearing approx. 99%
of the variance in the data, see Sections 4.3.1 and 4.3.2) were used. With the LSMA
feature extraction methods (i.e. the unconstrained LSMA and constrained SCLS, NCLS
and NCLS) all 6 marker abundance fractions were used as features.

For NN and RF the “size” of the classifier is very important. For NN the “size” here
stands for the number of neurons in the hidden layer (i.e. hidden neurons), and for the RF
classifier it is the number of trained decision trees. In both approaches larger size means
potentially better classification performance, but brings a risk of overfitting training data
and results in higher computational costs. For each problem the size of the classifier should
be found empirically, therefore NNs and RFs of different sizes were investigated.

Since both NN and RF were always randomly initialized before training, different iter-
ations of the training-test could result in slightly different results. In order to achieve more
meaningful results, 10 training-test iterations with different initializations of NN and RF
were carried out and their individual results were averaged.

In order to avoid overfitting, k-fold cross-validation was used with all classifiers [65].
In this approach, the modeled spectra are randomly split into two groups: the training
set and the test set. All spectra in the training set were accompanied with a class label
(i.e. target output vectors g) and were used to derive model parameters for each classifier
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and thus teach it to recognize spectra of the existing classes. The test set is then used
to evaluate the performance of the classifier under test using TPR, PPV and F1-score.
The entire process, i.e. random split, training, and test, is carried out k times. After k
repetitions, k values of TPR, PPV and F1-score are averaged.

Classification results achieved in 3 scenarios – A (sensor noise), B (relative intensity
fluctuations) and C (AF) – are presented below. All results shown were achieved with
10-fold cross-validation (k = 10).

4.9.1 Scenario A – sensor noise

Sensor noise is present in more or less any measurement system and can be very pronounced
in a low-light fluorescence application, especially when the TGFS measurement approach
is used (see Chapter 5). In the simulation framework, the CCD sensor noise was modeled
with three primary types of noise: photon noise, dark current shot noise, and read-out
noise (see Section 3.4.1). The model allowed the corruption of an arbitrary fluorescence
spectrum with a realistic, CCD-typical noise of proper power to achieve the required S/N
ratio.

The read-out noise and dark current shot noise are independent of the measured fluores-
cence intensity and are determined by the intrinsic parameters of the imaging sensor. The
read-out noise was modeled as a random Gaussian process with zero mean and specified
standard deviation using MATLAB’s randn(.) function. The generated read-out noise
was added to the marker combination spectrum. The seed of the (pseudo-)random process
was specified in the program in order to achieve reproducible noise realizations.

In order to model the dark current shot noise, a two-step procedure was used: first,
the dark current noise (offset fixed pattern noise, FPN, see Section 3.4.1) was modeled
as a random Gaussian process and corrupted with a Poisson-distributed shot noise using
MATLAB’s poissrnd(.) function; next, the Gaussian dark current noise (FPN) was
subtracted from the resulting noise in order to extract the dark current shot noise. The
result was then added to the marker combination spectrum.

Since the amount of read-out noise and dark current shot noise is constant for a par-
ticular imaging system and specific measurement parameters (measurement rate, etc.), a
change of the S/N ratio in the simulated spectrum is only possible by adjusting the amount
of photon noise. However, because photon noise is proportional to the square root of the
signal (spectrum) intensity at a particular wavelength (i.e. npi =

√
si for each element in

the vector n, see Section 3.4.1), generating a proper amount of photon noise requires the
scaling of the spectrum k · s. Assuming that both the power P s of the spectrum s, and
the power P n of the combined read-out and dark current shot noise (nr +nd) are known,
the S/N ratio is given by:

S/N = 10 · log10

(
k2 · P s

P n

)
, (4.43)

where the signal (amplitude) scaling factor k is squared (see also Eqn. 3.4 and 3.5). Solving
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Eqn. 4.43 with respect to the scaling factor k results in:

k =

√
10

S/N
10 · P n

P s

. (4.44)

The spectrum s was multiplied by the scaling factor k and photon noise was applied
to it using the MATLAB’s Poisson random generator poissrnd(.). Finally, the photon
noise-corrupted spectrum was summed with read-out noise and dark current shot noise
generated at the previous step.

Since all generated noise realizations are essentially (pseudo-)random values and the
number Λ of elements (i.e. spectral samples) of the noise vector and of the spectrum
is finite, the S/N ratio of the simulated spectrum cannot achieve any desired value with
infinite precision. However, the S/N ratio values of an ensemble of such spectra will have
a mean value converging the required S/N ratio.

Figure 4.8 compares the fluorescence spectra of marker M1 with and without noise at
4 different S/N ratios. At an S/N ratio of 20 dB, marker M1 is clearly distinguishable; it
is intuitive that such a spectrum can be easily classified. However, with increasing noise,
it becomes increasingly difficult to recognize the spectrum of marker M1 which leads to a
more complicated classification.

Figure 4.9 shows the noise components of the simulated spectra from Fig. 4.8. At high
S/N ratios (large fluorescence intensity), the photon noise is large (see Fig. 4.8a and 4.9a).
At low S/N ratios (small fluorescence intensity), the photon noise is small, and the read-out
noise and dark current shot noise are dominant (see Fig. 4.8d and 4.9d).

Size of the neural network and the random forest

The classification performance of NN and RF strongly depends on the “size” of the classi-
fier, i.e. the number of neurons in the hidden NN layer and the number of decision trees in
RF. Before NN and RF can be compared with other classifiers, it is necessary to find their
suitable sizes. Although a rule of thumb exists for determining the suitable size, a better
estimation can be achieved by employing computer simulations and investigating different
sizes. Additionally, in order to determine whether the S/N ratio of the modeled fluores-
cence spectra or the feature extraction algorithm influence the optimal size, classification
performance as a function of the classifier size was evaluated with different S/N ratios and
different feature extraction algorithms.

Figure 4.10 shows the classification performance (F1-scoreM macro-averaged over all
63 classes, see Section 4.8) of (a), (b) NN and (c), (d) RF of various sizes, achieved using
LDA and LSMA features extracted from the simulated spectra corrupted with noise with
S/N ratios of 0 dB, -5 dB and -10 dB. As explained in Section 4.8, the F1-scoreM is high
(100%) only if both TPRM and PPVM are high. With 63 existing classes, an F1-scoreM of
1/63 · 100% = 1.59% is achieved by “pure guessing”, which can be considered as the lower
bound for all investigated classifiers.

NNs with the hidden layer size between 1 and 30 neurons were investigated. As can
be seen in Fig. 4.10a and 4.10b (subplots on the left), when LDA features are used, NNs
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Figure 4.8: Comparison of the fluorescence spectrum of marker M1 corrupted with sensor
noise at different S/N ratios. In order to change the S/N ratio in simulations, the spectrum
s is multiplied by the scaling factor k to change the signal power and thus the amount of
photon noise. (a) S/N ratio is 20 dB. With decreasing S/N ratios the marker fluorescence
spectrum becomes more obscured in (b) with S/N ratio of 10 dB and (c) with S/N ratio of
5 dB, and is almost completely buried in noise in (d) when the S/N ratio is 0 dB.

even with a large number of neurons only achieve an F1-scoreM of approx. 87.17% when
the S/N ratio of the spectra is -5 dB and an F1-scoreM of approx. 53.57% when the S/N
ratio is -10 dB. This is not surprising since with S/N ratios this low the marker spectra
get completely buried in noise. When the S/N ratio of the spectra is 0 dB, NNs with
approx. 9 hidden neurons provide an F1-scoreM of approx. 98.88% with LDA features.
With LSMA features (Fig. 4.10b) extracted from spectra with an S/N ratio of 0 dB, NNs
only achieve an F1-scoreM of approx. 90.09% even with a large number of hidden neurons.
At the S/N ratios of -5 dB and -10 dB, NNs with LSMA features achieve an F1-scoreM of
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(d) S/N ratio 0 dB.

Figure 4.9: Comparison of the noise component in the spectrum of marker M1 (see Fig. 4.8)
at different S/N ratios: (a) 20 dB, (b) 10 dB, (c) 5 dB and (d) 0 dB. In (a) the strong photon
noise in the wavelength range between approx. 500 nm and 550 nm can be seen. The photon
noise is smaller in (b) and (c), whereas in (d) there is only read-out and dark current shot
noise.

approx. 55.35% and 20.53%, respectively.

However, the goal of this investigation was to find the optimal number of hidden neurons
in NN in given conditions. It is easy to see in Fig. 4.10a and 4.10b, NNs with 8 or 9
neurons in the hidden layer bring the F1-scoreM in saturation with both feature extraction
algorithms at all investigated S/N ratios. This number is only a bit larger than the number
of input nodes of the network, which here is 6 (equal to the number of elements in the
input feature vector f). Simulations with other features and other S/N ratios have shown
similar results. In scenario A, NNs with 9 neurons were thus used in this dissertation.
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Figure 4.10: F1-scoreM achieved with (a), (b) NNs with different numbers of hidden neurons
and (c), (d) RFs with different numbers of decision trees with LDA and LSMA features in
the situation where sensor noise is the only present disturbance.

Figures 4.10c and 4.10d show the classification performance achieved with RFs with 1
to 200 decision trees using the same simulated spectra with S/N ratios of 0 dB, -5 dB and
-10 dB, and LDA and LSMA feature extraction algorithms, respectively. As can be seen,
the results are very similar to those achieved with NNs shown in Fig. 4.10a and 4.10b.
The F1-scoreM saturation can be clearly seen for RF with more than approx. 100 decision
trees. Similar results were achieved with other features. RF with 100 trees was thus used
for further simulations in this dissertation.
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Classification results

In order to determine the performance of all investigated classifiers, a rather broad range
of S/N ratios was evaluated. The spectra were corrupted with the noise of overall 16 S/N
ratios between -50 dB and +40 dB. 1000 independent noise realizations were applied to
the spectra of the 63 marker combinations (classes) resulting in 63 000 noisy spectra per
S/N ratio to determine the F1-scoreM .

Figure 4.11 shows the F1-scoreM values achieved with different classifiers as function of
the S/N ratio. Classifier names and feature extraction methods are abbreviated as defined
in Sections 4.3-4.7. SVMlin and SVMrbf stand for the linear SVM and the SVM with a
(Gaussian) radial basis kernel function (see Section 4.6), respectively. The classification
performance values F1-scoreM for only S/N ratios -5 dB, 0 dB, 5 dB and 10 dB are shown
here. The values for other S/N ratios can be found in Appendix B in Table B.1. Both
in Fig. 4.11 and in Table B.1, classifiers are ranked in descending order of the achieved
F1-scoreM at an S/N ratio of 0 dB. Strictly speaking, feature extraction methods reduce
the noise in the input spectra and thus increase the S/N ratio. However, for simplicity
and a better comparison, the S/N ratio values in Fig. 4.11 and in Table B.1 correspond
to the S/N ratios of the “raw” simulated spectra (i.e. noise reduction due to the feature
extraction is not considered).

As can be seen, RF, NN, SVMlin, SVMrbf and MLC with LDA features comprise
a group with the highest F1-score over all S/N ratios as compared to other classifiers.
Moreover, the subtle difference in their F1-score values over all S/N ratios leads to the
conclusion that the feature extraction algorithm – LDA – was mostly responsible for the
high(er) classification performance, whereas the choice of the classifier was not crucial. For
the application at hand, F1-scoreM higher than 95% should be achieved in order to ensure
a high purity of the sorted plastics. The 95% F1-scoreM level is shown in Fig. 4.11 by the
dashed red line. Remarkably, even at an S/N ratio of 0 dB, i.e. when the power of the
noise is equal to the power of the marker fluorescence spectrum, all 5 classifiers from this
group provide an F1-scoreM > 95%.

Even though being much less complex in comparison to RF, NN, SVM and MLC, the
SCC algorithm that uses the “raw” spectra without prior feature extraction has provided
results only slightly worse. At an S/N ratio of 0 dB, the SCC achieved an F1-scoreM of
96.53%.

RF, NN, SVMlin, SVMrbf and MLC with PCA and LSMA features are the second
group of classifiers that achieved F1-scoreM around 90% at an S/N ratio of 0 dB. As with
LDA, the PCA and LSMA features were mostly responsible for the achieved F1-scoreM . As
expected, LDA which is designed to improve class separability, outperformed PCA which
is good for dimensionality reduction. The unconstrained LSMA performed very similar to
PCA.

SAM performed similarly to PCA and LSMA achieving an F1-scoreM = 90.6% at 0 dB
S/N ratio.

Contrary to the expectations, imposing constraints on LSMA did not improve the classi-
fication. All 5 classifiers RF, NN, SVMlin, SVMrbf and MLC achieved lower performance
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Figure 4.11: Classification performance (F1-scoreM) for the 34 investigated algorithms in
scenario A. Classifiers are ranked by their F1-scoreM values with S/N ratio of 0 dB. The
red dashed lines indicate the 95% level. The macro-averaged F1-scoreM is calculated using
TPRM and PPVM (see Eqn. 4.42).
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with NCLS than with LSMA: F1-scoreM range between 86.38% for RF and 85.44% for
SVMrbf. Even worse results were achieved with SCLS and FCLS: 83.81% and 68.05% at
an S/N ratio of 0 dB, respectively.

Nevertheless, already at S/N ratio 5 dB, which is a more realistic and practical value,
LSMA, PCA, NCLS, SCLS with RF, NN, SVMlin, SVMrbf and MLC, as well as SAM
achieve F1-scoreM > 97%, where LSMA, PCA and SAM achieve F1-scores > 99%. FCLS
with RF and SVMrbf achieve F1-scores > 95% at an S/N ratio of 10 dB, whereas FCLS
with NN, MLC and SVMlin achieve F1-scoreM > 95% at an S/N ratio of 15 dB.

The ED and DSCC classifiers showed by far the worst results. At an S/N ratio of 0 dB,
the former only achieved an F1-score of 25.72% and the latter 21.90%. Both classifiers
need S/N ratios of at least 15 dB in order to achieve F1-scoreM > 95%. The ED is a
simplified version of the MLC, which does not consider the classes’ covariance matrices
(see Section 4.4.2).

Since most of the investigated algorithms achieve an F1-scoreM of 100% already at an
S/N ratio between 5 dB and 10 dB, it is reasonable to select a computationally efficient
classifier. The selection of classifiers is thus reduced to the computationally efficient SCC
and SAM that showed good results in comparison to the other classifiers, but since SCC
performs significantly better than SAM at lower S/N ratios, it is the obvious choice when
sensor noise is the only present disturbance.

4.9.2 Scenario B – relative marker intensity fluctuations

The (peak) intensities of markers incorporated into plastics can fluctuate relative to one
another from plastic flake to plastic flake due to an imperfect marker incorporation process
(e.g. insufficient mixing of markers, fluctuations of marker concentrations, inhomogeneous
incorporation, etc.) and due to the unpredictable chemical interactions between the marker
molecules and hosting plastics (see Section 2.5). Such fluctuations may negatively influence
the classification performance. The aim of this section is to estimate the magnitude of this
effect using computer simulations.

The intensity fluctuations were modeled separately for each marker in the marker com-
bination as a uniform random process with upper and lower limits defined in percent of the
marker’s intensity. The uniform random process was chosen as a process with maximum
entropy [85] to model the worst-case scenario for the intensity fluctuations. The probability
density function of the uniform distribution is given by:

f(p) =


0, for x < (1− p/100)

1
2p/100

, for (1− p/100) ≤ x ≤ (1 + p/100)

0, for x > (1 + p/100)

, (4.45)

where p is the parameter defining the limits of the uniform distribution in percent of the
marker’s intensity, and x ⊂ R1 | x > 0. If the scaling factor k is a random variable with
the probability density function f(p), then the resulting spectrum m̃h of marker Mh is
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given by:

m̃h = mh · k. (4.46)

For example, if the (peak) intensities of all 6 markers in the marker combination are
equalized so that max(m1) = ... = max(m6) = 1, fluctuations of p = ±20% mean that each
marker’s peak intensity can fluctuate within the interval [80%; 120%] following the uniform
distribution. Therefore, the peak intensity of one marker can be 80%, yet that of another
marker in the same flake 120% at the same time. In order to investigate the worst-case
scenario, the peak intensities of all 6 markers are allowed to fluctuate simultaneously.

Figure 4.12 depicts an example of the modeled spectrum of class 7 (code “000111”)
with 20% relative intensity fluctuations (solid line) as well as the spectrum of class 7
without intensity fluctuations (broken line), i.e. the peak intensities of M4, M5 and M6
are equal. The peak intensity of marker M5 (peak at approx. 650 nm) is only 80% of the
peak intensity of marker M4 (left peak), and 120% for M6 (right peak). Naturally, the
probability of this particular situation is quite low, it is shown here as one of the extreme
cases for p = ±20%.

Size of the neural network and the random forest

In order to find the optimal number of neurons in NN and the number of trees in RF,
simulations with NN and RF of different sizes were carried out. Figure 4.13 depicts the
F1-scoreM achieved with NN and RF for rather large relative marker intensity fluctuations
of ±50%, ±60% and ±70%. As can be seen, similarly to scenario A, NN with 8 or 9
neurons in the hidden layer and RF with approx. 100 decision trees bring the F1-scoreM
in saturation, i.e. a further increase of the size of the classifier does not increase the F1-
scoreM . Similar behavior was observed with other features. For the further simulations in
this dissertation, NN with 9 hidden neurons and RF with 100 trees were used.

Classification results

To investigate the influence of marker intensity fluctuations on the classification perfor-
mance, spectra with uniformly distributed intensity fluctuations in the range of ±0% to
±100% were modeled: overall 11 p -levels in 10% steps. 1000 random realizations of in-
tensity fluctuations were produced for each intensity fluctuation p -level, and for each of
63 marker combinations (classes). For each realization and each marker in the class, the
scaling factor kh was randomly generated according to the probability density function de-
fined in Eqn. 4.45 and the marker spectrum was multiplied by the scaling factor kh. Next,
the scaled spectra of all markers were combined according to the binary coding scheme in
order to produce the spectrum of the specific class with unequal marker intensities. Thus,
overall 63 000 spectra were generated per intensity fluctuation p -level to determine the
F1-scoreM . All spectra were noise-free for this investigation of scenario B.

Figure 4.14 shows the results achieved with intensity fluctuations ±100%, ±90%, ±80%
and ±70%. Results for other intensity fluctuation levels can be found in Appendix B in
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Figure 4.12: The spectrum of class 7 (code“000111”, the combination of markers M4, M5,
and M6). The broken line corresponds to the situation when the marker peak intensities
are equal. The solid line depicts one possible realization of the spectrum with p = ±20%
relative marker intensity fluctuations such that the peak intensities of marker M5 and M6
are 80% and 120%, respectively, of the peak intensity of marker M4.

Table B.2. Both in the figure and in the table, the classifiers are ranked according to their
F1-scores with intensity fluctuations of ±100%.

Interestingly, the LDA features which showed good results in scenario A (sensor noise)
perform rather poorly in scenario B. On the contrary, the SCLS features, which demon-
strated a below-average performance in the presence of noise independently of the classifier,
show good results with intensity fluctuations.

The best performance was achieved by RF with LSMA features: F1-scoreM = 97.98%
with intensity fluctuations of ±100% and F1-scoreM = 100% with smaller intensity fluc-
tuations. Then the MLC follows, which achieved an F1-scoreM > 97% with PCA, LSMA
and SCLS features with intensity fluctuations of ±100%, but showed an F1-scoreM < 100%
with intensity fluctuations ±70% and ±80%. MLC with NCLS failed to achieve an F1-score
of 100% with intensity fluctuations even as low as ±20%.

NN with PCA, LSMA and SCLS had also shown a performance above average with
F1-scoreM > 96% even with intensity fluctuations as high as ±100%.

Both linear and radial-basis function SVM delivered an F1-scoreM ≤ 90% for intensity
fluctuations of ±100%.

In contrast to scenario A (see Table B.1), all spectral similarity measures perform poorly
in comparison to the classifiers RF, NN, SVM and MLC: As can be seen in Table B.1, SAM,
SCC and DSCC can tolerate intensity fluctuations of up to about ±40% without significant
loss of classification performance (F1-scoreM > 99%), but fail with intensity fluctuations
larger than ±50% and only provide an F1-scoreM of approx. 44% for ±100% intensity
fluctuations; the F1-scoreM of ED drops below 99% with intensity fluctuations of only
±30% and decreases gradually to 31.44% for intensity fluctuations of ±100%.
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Figure 4.13: F1-score achieved with (a), (b) NNs as a function of the number of hidden
neurons and (c),(d) RFs as a function of the number of decision trees with LDA and LSMA
features for intensity fluctuations of 50%, 60% and 70%.

Comparable results were achieved by RF, NN, SVM and MLC with FCLS features:
for intensity fluctuations larger than ±20%, the F1-scoreM drops below 99%. However,
with increased intensity fluctuations the further decrease of the F1-scoreM is not as steep
as with similarity measures: for intensity fluctuations of ±100%, SVMrbf, RF and MLC
achieve an F1-scoreM of approx. 70%, and NN and SVMlin achieve F1-scoreM > 50%.

The main reason for the high performance of the classification algorithms RF, NN,
SVM and MLC in comparison to the similarity measures ED, SCC, DSCC and SAM is
that they consider class variances (or scatter), which in this scenario are caused by intensity
fluctuations.

However, it needs to be pointed out that according to the findings in this work, in
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Figure 4.14: Classification results (F1-scoreM) for the 34 investigated algorithms in sce-
nario B. Classifiers are ranked by their F1-scoreM for intensity fluctuations of ±100%. The
red dashed lines indicate the 95% level.
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practice less than about ±10% intensity fluctuations are to be expected if professional
plastics extruders are used for the incorporation of the markers into plastics (see Chapter 2).
Therefore, the influence of relative marker intensity fluctuations in practice seems not
as critical as that from sensor noise or AF (see Section 4.9.3). Since almost all of the
investigated classifiers provide the highest possible performance (F1-scoreM = 100%) for
intensity fluctuations up to approx. ±30%, the choice of the classifier is not critical with
regard to intensity fluctuations that occur in practice.

4.9.3 Scenario C – autofluorescence of the hosting plastics

As explained in Chapter 2, autofluorescence (AF) is inherently present in many plastics. By
overlapping with the markers’ fluorescence spectra, AF can make plastics that are labeled
with different marker combinations indistinguishable from one another and thus degrades
the classification performance. In this section, the influence of AF on the classification
performance is quantified using computer simulations.

Figure 4.15 depicts the modeled spectrum of marker M4 overlapped with AF of a white
POM with S/AF ratios (see Eqn. 2.4) ranging from 0.001 to 10, and the spectrum of
marker M4 with no AF (S/AF ratio = ∞). An S/AF ratio of 10 means that the marker
fluorescence power is 10 times higher than the AF power (in the wavelength range where
the markers are present). With an S/AF ratio of about 10 the marker fluorescence is highly
distinguishable and the classification probably would not be (much) affected by AF. This
is clearly not the case for an S/AF ratio 0.01 or 0.001. Especially in the presence of sensor
noise, AF this high may obstruct marker fluorescence and result in misclassification. Yet,
a high AF can easily occur with many plastics. For example, the S/AF ratio achieved with
the POM “Delrin 500NC010 White” and incorporated marker M4 (50 ppm) is approx. 0.01.

Size of the neural network and the random forest

In order to find the best size of NN and RF, simulations with different S/AF ratios were
carried out. Figure 4.16 shows the F1-scoreM achieved using LDA and LSMA features
with NN and RF. Similarly to Fig. 4.10, the best classifier size in terms of the achieved
F1-scoreM versus classifier complexity is easily seen. For NN it is approx. 8 or 9 hidden
neurons and for RF it is approx. 100 trained trees. These values are similar to those
found in Sections 4.9.1 and 4.9.2. NN with 9 neurons in the hidden layer and RF with 100
decision trees were used in the simulations below.

Classification results

In the simulations in this section, fluorescence spectra of 63 combinations of 6 markers
were superposed with different AF measured from 10 different plastics. In order to pre-
vent classifiers from taking advantage of distinctive spectral shapes of different AF, all 63
combinations were “incorporated” into each of the 10 plastics thus resulting in 10 spectra
per marker combination (class). Having a dataset with only 10 spectra per class can be
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Figure 4.15: Fluorescence spectrum of marker M4 overlapped with AF of a white POM
polymer at different S/AF ratios. The rather narrow spike at approx. 614 nm corresponds
to the marker fluorescence and the broadband component between 450 nm and 700 nm is
the AF. Spectra were normalized by the peak intensity of marker M4. The wavelength range
between the dotted vertical lines was used to calculate the S/AF ratio (see Section 2.5.4).

very disadvantageous for classification algorithms that derive information about classes
from the data and need prior training. Algorithms such as e.g. NN might not be able
to successfully and efficiently train using only 10 spectra per class, especially if the class
members are very different from each other as was the case here due to the different shapes
of the AF spectra. To avoid these problems, all 10 spectra of each class were corrupted
with random realizations of sensor noise of 20 dB (see Section 3.4.1), which is the noise
level that can be expected in practice (see Section 7.2). 1000 random realizations of noise
were used for each of 63 × 10 = 630 combinations resulting in 630 000 spectra per S/AF
ratio level and per F1-scoreM value. Overall 23 S/AF ratio levels between 10−4 and 102

were investigated, which results in 630 × 23 × 1000 = 13 230 000 spectra to be processed
by each of the classifiers and feature extraction algorithms.

Classification results achieved with all investigated classifiers and feature extraction
algorithms are shown in Fig. 4.17. Only the F1-scoreM values for the S/AF ratios 0.01,
0.05, 0.1 and 0.2 are shown. The F1-scoreM for the other S/AF ratios can be found in
Appendix B in Table B.3. Both in the figure and in the table, classifiers are ranked
according to their F1-scores for the S/AF ratio of 0.05, i.e. S/AF ratio where the best
classifiers achieve an F1-scoreM > 95%.

Similarly to scenario A, classifiers can be grouped in the following way. The best results
were achieved with LDA features almost independently from the actual classifier: the
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Figure 4.16: F1-score achieved with (a), (b) NNs with different number of hidden neurons
and (c), (d) RFs with different number of decision trees with LDA and LSMA features and
the autofluorescence scenario C.

difference between the F1-scoreM achieved by MLC, SVMlin, NN, RF and SVMrbf is below
1%, the F1-scoreM values lie between 96.31% and 97.07%. An ideal F1-scoreM = 100% is
achieved for an S/AF ratio of 0.2 or even 0.4 (see Table B.3) with these 5 classifiers using
LDA features.

In contrast, the performance of the SCC, which achieves an F1-scoreM = 93.09% at
S/AF=0.05, rapidly grows to 100% already at S/AF=0.1.

SCC is followed by SAM and MLC, SVMlin, NN, RF and SVMrbf with PCA, LSMA
and NCLS features, all of which achieve an F1-scoreM between 89.44% and 85.91% at
S/AF=0.05. As with LDA, the further classification performance increase is rather slow
and F1-scoreM = 100% is reached at S/AF ratios of 0.6 to 1. In contrast to scenario A,
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Figure 4.17: Classification results (F1-scoreM) for the 34 investigated algorithms in sce-
nario C. Classifiers are sorted by their F1-scoreM for S/AF ratio of 0.05. The red dashed
lines indicate the 95% level.
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where NCLS performed noticeably worse than both PCA and LSMA, here it achieves
results comparable with the latter. Apparently, the NCLS model is slightly advantageous
over unconstrained LSMA when “wanted signals” (i.e. marker spectra) need to be unmixed
from the “unwanted background” (i.e. AF).

With SCLS, classifiers MLC, SVMlin, NN, RF and SVMrbf achieve on average approx.
5% smaller F1-scoreM than with PCA, LSMA and NCLS. The F1-scoreM values range
between 78.50% and 80.04% at S/AF=0.05 and increase to 99.99% at S/AF=1 for the
mentioned algorithms.

The last group encompasses FCLS features with the F1-scoreM between 54.72% and
62.60% at S/AF=0.05. Even at S/AF=1 none of the classifiers provides perfect classifica-
tion and only achieves F1-scoreM values between 91.04% (SVMlin) and 96.73% (RF). The
worst classification results were provided by DSCC and ED. At S/AF=0.05 they achieved
an F1-scoreM of 15.38% and 11.30%, respectively. For the DSCC the presence of even a
small amount of noise (S/N ratio is 20 dB here) appears to be critical. Since in practice
the presence of some amount of noise is inevitable, the use of DSCC is not advisable.

In contrast to scenario A where only sensor noise was present and all investigated
classifiers provided perfect classification performance (F1-scoreM = 100%) at an S/N ratio
of 20 dB, here in the presence of AF and 20 dB noise simultaneously the F1-scoreM of all
investigated classifiers starts rapidly decrease for S/AF ratios below approx. 0.2 - 0.1. Such
values of both S/N ratio and AF can be expected in practice. Avoiding the presence of
the plastics’ AF is thus important for classification performance.

4.9.4 Equalized marker fluorescence peak intensities

In sections 4.9.1 - 4.9.3, the marker fluorescence peak intensities were equal for all mark-
ers in all combinations. Random relative marker intensity fluctuations investigated in
Section 4.9.2 represented the situation when individual marker intensities randomly var-
ied from one realization of the marker combination spectrum to another. Thus relative
marker peak intensities within individual realizations of such spectra could have been un-
equal, but the mean peak intensities of all markers were equalized. In practice, equalizing
the (mean) marker fluorescence intensities requires recursive chemical fine-tuning of marker
concentrations. Due to unpredictable interactions of the marker molecules with the hosting
plastics, higher or lower marker concentrations might be necessary to achieve the desired
marker fluorescence intensity. This is a time-consuming and costly procedure. However,
it will be demonstrated in this section that despite the associated practical difficulties,
the equalization of the marker fluorescence peak intensities helps improve the classification
performance.

It was shown in Section 2.4.2 that an LED with 368 nm central wavelength and 15 nm
FWHM provides good excitation for the 6 markers used in terms of the maximization
of their fluorescence intensities. Using Eqn. 2.2 the relation between the intensities of
all 6 markers can be calculated for this particular excitation light source. When equal
marker concentrations are used, the marker peak intensities are unequal as can be seen in
Fig. 4.18a. A comparison with Fig. 4.18b, where markers with equal peak intensities (i.e.
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Figure 4.18: Normalized fluorescence spectrum of class 63 (code “111111”) with unequal
(left) and equalized (right) marker peak intensities achieved by accordingly adjusted con-
centrations for each marker.

accordingly adjusted marker concentrations) are shown, intuitively suggests that these are
better distinguishable and thus must be easier to classify.

Classification results

Figure 4.19 compares results achieved with equalized and unequal marker fluorescence
peak intensities in the 3 scenarios: A (sensor noise), B (relative intensity fluctuations) and
C (AF). For presentation purposes, only the results achieved using those 2 classifiers –
MLC with LDA features and SCC – which have shown the best performance in previous
simulations (see Sections 4.9.1, 4.9.2 and 4.9.3), are depicted here. In each scenario, 1000
realizations of spectra for each of 63 classes were generated resulting in overall 63 000
spectra per F1-scoreM value.

As expected, equalized marker fluorescence peak intensities result in a better classifi-
cation performance in all 3 scenarios. For example, at an S/N ratio of 0 dB, SCC with
equalized marker intensities achieves an F1-scoreM = 96.53%, while unequal marker inten-
sities result in an F1-scoreM = 59.32% (see Fig. 4.19a). Similarly, MLC with LDA features
achieves 99.40% and 80.08% at an S/N ratio of 0 dB with equalized and unequal marker
intensities, respectively (see Fig. 4.19b). For S/N ratios above approx. 15 dB both classi-
fiers achieve equal performance of F1-scoreM = 100% with equalized and unequal marker
intensities.

In the relative marker intensity fluctuations scenario B, the decrease of the classification
performance produced by unequal (mean) marker intensities in comparison to equalized
(mean) marker intensities is less drastic, but still noticeable. The F1-scoreM for SCC
drops from 99.8% to 97.75% with ±40% fluctuations (Fig. 4.19c). MLC being less prone
to intensity fluctuations, shows almost no performance decrease with ±40% fluctuations,
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Figure 4.19: Comparison of the classification performance achieved by MLC with LDA
features and SCC in situations with equalized and unequal relative marker fluorescence
intensities within marker combinations in (a, b) scenario A (sensor noise), (c, d) scenario
B (intensity fluctuations) and (e, f) scenario C (autofluorescence).
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but also performs worse with unequal marker intensities than with equalized ones when
fluctuations are ±80% and larger (Fig. 4.19d). Both classifiers have perfect performance
(F1-scoreM = 100%) with equalized and unequal marker intensities for intensity fluctua-
tions below ±30%.

In the AF scenario C, both SCC and MLC show a significant decrease of the F1-scoreM
with unequal marker intensities for S/AF ratio < 1 (Fig. 4.19e and 4.19f). Moreover,
SCC fails to reach the F1-scoreM = 100% even at an S/AF ratio as high as 10, if marker
intensities are unequal. At the same time, if marker intensities are equalized, SCC reaches
an F1-scoreM = 100% with an S/AF ratio as low as 0.1. Similar situation is with MLC:
it reaches an F1-scoreM = 100% at S/AF ratio > 6 with unequal and at S/AF ratio > 0.1
with equalized marker intensities.

For all 3 scenarios, the same trends were found with all other investigated classifiers.

4.9.5 Spectral sampling

In all previous simulations in this dissertation, the fluorescence spectra had a spectral
sampling of 1 nm. Thus, 300 samples cover the wavelength range between 450 nm and
750 nm. One way to increase the sensor’s (see Section 3.4) measurement rate and also
speed up the classification calculations is to reduce the number of samples.

There are several ways of changing the sampling of the fluorescence spectra. The soft-
ware methods include downsampling, decimation, spectral averaging, etc. Downsampling
simply takes every N -th spectral sample and discards the others. It can be useful to reduce
the processing time of the classification algorithms and has the advantage of being com-
putationally fast. However, one has to be careful with respect to aliasing [86]. Decimation
introduces an additional step – low-pass filtering of the spectra – prior to downsampling.
The low-pass filtering is employed to increase the S/N ratio of the spectra, which may
compensate for the loss of spectral resolution with respect to classification performance.
Averaging adjacent spectral samples before downsampling serves the same purpose, but de-
pending on the particular implementation may be computationally faster than the low-pass
filtering.

The hardware method called pixel binning is available in CCD cameras and allows the
integration of the electrical charges of groups of 2n adjacent pixels thus imitating a larger
pixel (see Section 3.4). For example, binning with a factor of 2 would sum the charges of a
pair of pixels. In addition to reducing spectral sampling by a factor of 2, with CCD binning
the read-out time is reduced and the measurement rate is increased. Another important
advantage of binning over the software methods is that since the integration of charges
is carried out physically, the amplitude of the acquired signal is increased, whereas the
read-out noise stays the same; thus the S/N ratio of the measured spectrum is increased.
However, the binning capabilities of CCD sensors are limited, and usually binning factors
larger than 8 are not used. If a further reduction of the number of spectral samples is
necessary, software methods can be used.

In order to understand how much the sampling can be reduced, the Fourier transforms
(FFTs) of the marker fluorescence spectra can be consulted [86]. Figure 4.20 depicts the
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(normalized) magnitudes of the Fourier transforms of the fluorescence spectra of markers
M1-M6. In the figure, the x-axis has “pseudo-frequency” units of nm−1, so that for example
0.1 nm−1 corresponds to a sampling of 10 nm. According to the Nyquist criterion, in order
to avoid aliasing, the sampling frequency must be at least twice as high as the maximum
frequency present in the signal. As can be seen in Fig. 4.20, most of the Fourier transform
of marker M1 is situated below 0.05 nm−1. Thus the sampling “frequency” must be at
least 0.1 nm−1, which corresponds to a sampling of 10 nm. The Fourier transforms of the
other 5 markers are broader, but mostly lie below approx. 0.15 nm−1. Therefore sampling
“frequency” must be at least 0.3 nm−1 and the sampling approx. 3.33 nm. Hence, in order
to be able to acquire spectra of all 6 markers and their combinations, spectral sampling of
at least 3.33 nm should be used.

The Nyquist criterion provides the hard limit about the minimum necessary sampling
for signals that are indefinitely long and sampled with ideal sampling impulses. To de-
termine the influence of the spectral sampling on the classification performance in the
application at hand, simulations were carried out. In the simulations, downsampling and
binning were investigated. The former represents the “worst” case with respect to the
S/N ratio and thus classification performance, but is computationally faster than the other
software methods. The latter is the realistic case, that theoretically provides the best S/N
ratio improvement (up to the factor of N , see Section 3.4.2) and is thus advantageous
for classification. The other software methods such as decimation and spectral averaging
provide an S/N ratio improvement better than the simple downsampling, but worse than
binning and therefore represent the “middle” case and are not further discussed here.

In the simulations, downsampling was implemented by simply keeping every N -th sam-
ple in the spectrum. In order to properly model binning, the following procedure was
used. For a binning factor of 2n, 2n spectra of the same marker combination were first
scaled to achieve the necessary photon noise level for a particular S/N ratio as described in
Section 4.9.1. Next, individual photon noise and dark current shot noise realizations were
applied to each of the scaled spectra:

s̃i = s+ np(si) + ndi, (4.47)

where s is the scaled version of the original marker combination spectrum, np(si) and ndi
are individual realizations of photon noise and dark current shot noise, respectively, and
i = 1, ..., 2n. The noisy spectra s̃i were then summed and corrupted by additive Gaussian
read-out noise:

s̃ =
2n∑
i=1

s̃i + nr (4.48)

In the CCD sensor employed in the prototype system in this work, binning factors 2,
4, and 8 can be used (see Section 6.1). Therefore, these factors were investigated in the
simulations below.

If spectra with an original sampling of 1 nm that were used in all previous simulations
are downsampled or binned by a factor of 8, a sampling with 8 nm results. Figure 4.21
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Figure 4.20: Normalized magnitudes of the Fourier transforms of the fluorescence spectra
of markers M1-M6.

compares spectra of markers M1 and M6 with a sampling of 1 nm and 8 nm (achieved
with both downsampling and binning). In the figure, all spectra are normalized to the
maximum of the spectra with a sampling of 1 nm. As can be seen, marker M1 is very well
distinguishable even with the sampling of 8 nm with both downsampling and binning (8 nm
is better than the Nyquist sampling of 10 nm for this marker, see Fig. 4.20). The situation
is different with marker M6, for which the Nyquist sampling is approx. 3.33 nm. If the
spectrum is downsampled to 8 nm and the samples are not optimally chosen, the peak of
the marker M6 may be (almost) absent in the spectrum (as shown in Fig. 4.21b) or the
spectral shape of the marker may look different and not as expected by the classification
algorithms. In contrast, although intensity-reduced, the peak of marker M6 is still present
in the spectrum and the original spectral shape is better preserved with the sampling of
8 nm when binning is used.

Classification results

Figure 4.22 shows results achieved by MLC with LDA features and SCC for the scenarios
A (sensor noise), B (relative marker intensity fluctuations) and C (autofluorescence), for
different sampling when downsampling was used. It is easy to see that compared to the
reference sampling of 1 nm, the larger sampling increments provide worse classification
performances in all 3 scenarios.

For the scenario A (see Fig. 4.22a and 4.22b), decreasing the sampling from 1 nm to
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Figure 4.21: Spectra of (a) marker M1 and (b) marker M6 with the original sampling of
1 nm compared to the spectra with 8 nm sampling when downsampling and binning are
used. The fluorescence intensities of all spectra are normalized to the maximum of the
spectra with 1 nm sampling.

2 nm results in the decrease of the F1-scoreM of SCC from 100% to 97.19% and of MLC
from 100% to 98.53% at S/N ratio = 5 dB. At lower S/N ratios the decrease of the F1-
scoreM is even more noticeable. For example at S/N ratio = 0 dB, the F1-scoreM of SCC
decreases from 96.53% to 68.84% and of MLC from 99.40% to 80.95%. The further increase
of the sampling increments results in even worse classification performance. SCC achieves
F1-scoreM of 83.91% with sampling 4 nm and 48.80% with sampling 8 nm at an S/N ratio
of 5 dB, and F1-scoreM of 45.44% with sampling 4 nm and 20.50% with sampling 8 nm
at an S/N ratio of 0 dB. The F1-scoreM of MLC decreases to 86.76% (4 nm) and 49.66%
(8 nm) at an S/N ratio of 5 dB, and to 50.10% (4 nm) and 22.3% (8 nm) at S/N ratio of
0 dB. It should be noted, that at S/N ratio of 20 dB, which is the realistic value achieved in
the experiments (see Chapter 7), both SCC and MLC achieve a perfect F1-scoreM = 100%
even with the 8 nm sampling.

For the scenario B, the change of sampling is less dramatic in terms of the classifi-
cation performance (see Fig. 4.22c and 4.22d). With intensity fluctuations of ±40%, the
F1-scoreM of SCC decreases from 100% with the sampling of 1 nm to 98.53%, 97.10%
and 92.02% with the samplings of 2 nm, 4 nm and 8 nm, respectively. With intensity
fluctuations of ±60% the decrease of the F1-scoreM of SCC is even smaller: from 81.77%
with the sampling of 1 nm to 80.61%, 79.45%, and 75.45% with the samplings of 2 nm,
4 nm, and 8 nm, respectively. With larger intensity fluctuations of ±80% and ±100%,
the already low classification performance of SCC with 1 nm (F1-scoreM of 58.38% and
44.45%, respectively) does not significantly decrease with the samplings of 2 nm, 4 nm,
and 8 nm.

The change of sampling from 1 nm to 2 nm and 4 nm with intensity fluctuations of
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Figure 4.22: Comparison of classification performance achieved by the MLC with LDA
features and SCC with different spectral sampling rates when downsampling was used in
(a, b) scenario A (sensor noise), (c, d) scenario B (intensity fluctuations) and (e, f) sce-
nario C (autofluorescence).
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±40% results in a marginal decrease of the F1-scoreM of MLC from 100% to 99.92% and
99.85%, respectively. The use of 8 nm sampling, however, degrades the F1-scoreM of MLC
to 96.67% with the same intensity fluctuations. With intensity fluctuations of ±60% the
F1-scoreM of MLC changes from 99.89% with the sampling of 1 nm to 99.52%, 98.79% and
89.94% with the samplings of 2 nm, 4 nm and 8 nm, respectively. With larger intensity
fluctuations the change of the sampling results in a steeper decrease of the F1-scoreM of
MLC: with ±80% it goes from 99.29% with 1 nm through 96.91% and 91.47% with 2 nm
and 4 nm, respectively, down to 77.46% with 8 nm. With ±100% MLC achieves F1-scoreM
of 85.12%, 78.62%, 72.62% and 60.74% with samplings of 1 nm, 2 nm, 4 nm and 8 nm,
respectively.

For the scenario C (see Fig. 4.22e and 4.22f), the change of the sampling at an S/AF
ratio of 1 brings the decrease of the F1-scoreM of SCC from 100% with 1 nm to 99.62%
with 2 nm, 96.71% with 4 nm and 75.28% with 8 nm, and that of MLC from 100% with
1 nm to 99.82%, 97.40% and 75.95% with 2 nm, 4 nm and 8 nm, respectively. An even
more significant decrease can be seen at S/AF ratio = 0.1: the F1-scoreM of SCC decreases
from 100% with the sampling of 1 nm to 85.45%, 67.31% and 36.57% with the samplings
of 2 nm, 4 nm and 8 nm, respectively; the F1-scoreM of MLC decreases from 99.46% with
1 nm to 90.28% with 2 nm, 69.31% with 4 nm and 36.02% with 8 nm.

Obviously, the simple downsampling has negative influences on the classification per-
formance. In contrast, the influence of binning on the classification performance is far
less severe. Figure 4.23 shows classification results achieved by SCC and MLC with LDA
features for the scenarios A, B and C, for different samplings when binning was used. As
mentioned before (see also Section 3.4), pixel binning in CCD sensors reduces the read-out
noise component in the resulting spectra, thus effectively increasing the actual S/N ratio
and (partly) compensating the loss of spectral resolution. This is especially important in
scenario A, but since noise is inevitably present in any measurement system, this quality
of binning becomes vital.

For presentation purposes, the S/N ratios given in the Fig. 4.23a and 4.23b correspond
to the S/N ratios of the spectra before binning (i.e. with the sampling of 1 nm). For
example, the S/N ratio of 0 dB for spectra with a sampling of 2 nm, 4 nm, and 8 nm
corresponds to the S/N ratio of the original spectra with no binning (i.e. 1 nm sampling).
The actual S/N ratio of spectra with binning is in fact higher (see below).

In scenario A, the blue and the red curves in Fig. 4.23a, which correspond to the S/N
ratios before binning of 10 dB and 5 dB, respectively, show that SCC achieves an F1-scoreM
of 100% even with the sampling of 8 nm. This is due to the fact that the actual S/N ratio
of the spectra is increased from 10 dB and 5 dB to 19 dB and 13.5 dB, respectively, when
binning with the factor of 8 was applied. This corresponds to the S/N ratio increase in a
photon noise-limited measurement system (see Section 3.4.2). With the S/N ratio before
binning of 0 dB (yellow curve in Fig. 4.23a), the F1-scoreM decreases from 96.53% with
the sampling of 1 nm to 90.45%, 88.75% and 86.43% with the samplings of 2 nm, 4 nm
and 8 nm. The decrease of more than 10% (absolute value) with the sampling of 8 nm
in comparison to 1 nm is noticeable here but is far smaller than that with the simple
downsampling (see Fig. 4.22a). The actual S/N ratio is approx. 11 dB with the sampling
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of 8 nm here. MLC shows a similar behavior with respect to binning in scenario A (see
Fig. 4.23b).

Due to the fact that binning physically summarizes charges from adjacent pixels, narrow
spectral peaks of markers are still present in the resulting spectrum even if the sampling
of 8 nm formally violates the Nyquist criterion (see Fig. 4.21). Additionally, the physi-
cal summation of charges introduces the low-pass filtering effect in the spectral domain,
which reduces the relative intensity fluctuations of markers in marker combinations thus
compensating the loss of spectral resolution in scenario B (see Fig. 4.23c and 4.23d). The
most noticeable decrease of the F1-scoreM in scenario B is with MLC with the intensity
fluctuations of ±100%: from 85% with 1 nm to 82.48% with 8 nm. However, even with
the sampling of 8 nm, MLC achieves F1-scoreM = 99.99% with intensity fluctuations of
±40% and F1-scoreM = 99.5% with intensity fluctuations of ±60%. The SCC classifica-
tion algorithms shows only a small decrease of F1-scoreM of only about 1% with intensity
fluctuations up to ±100% with all samplings.

In scenario C (see Fig. 4.23e and 4.23f), both SCC and MLC provide an excellent
classification performance with S/AF ratio = 1 with the samplings of up to 8 nm with
binning. With S/AF ratio = 0.1, the F1-scoreM of SCC and MLC decreases from 99.67%
with 1 nm to 94.32% with 8 nm and from 99.46% with 1 nm to 94.73% with 8 nm,
respectively. With S/AF ratio = 0.05, the F1-scoreM of SCC and MLC decreases from
93.09% with 1 nm to 84.91% with 8 nm and from 97.07% with 1 nm to 86.18% with 8 nm,
respectively.

Overall, as simulations have shown, binning up to the factor of 8 (sampling of 8 nm) can
be used with the 6 investigated markers without a severe loss of classification performance.
A small F1-scoreM tends to decrease more in comparison to a large F1-scoreM if sampling
increments are increased. In contrast, downsampling should be used only if absolutely
necessary and high S/N ratio, S/AF ratio, and low relative marker intensity fluctuations
can be ensured. The spectral sampling is very important for the classification performance
in practice and should be paid attention to.
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Figure 4.23: Comparison of classification performance achieved by the MLC with LDA
features and SCC with different spectral sampling rates when binning was used in (a, b)
scenario A (sensor noise), (c, d) scenario B (intensity fluctuations) and (e, f) scenario C
(autofluorescence).



Chapter 5

Time-gated fluorescence spectroscopy

As already discussed in Chapters 2 and 4, intrinsic autofluorescence (AF) of plastics can
pose a significant problem to the classification of fluorescently labeled plastics. When
AF spectrally overlaps with the emission spectra of fluorescent markers and the signal-to-
autofluorescence ratio (S/AF ratio) is low, a reliable classification of the measured spectra
is very difficult [34]. Time-gated fluorescence spectroscopy (TGFS) is a measurement ap-
proach that suppresses AF in the measured spectra. It makes use of the fact, that upon
excitation with a short light impulse, the fluorescence of appropriate markers lasts orders
of magnitude longer than the AF. Therefore, it is possible to time-gate the acquisition
by accumulating the fluorescence emissions only between excitation light impulses during
suitable time periods when AF has significantly decayed but marker fluorescence is still
present with large intensity. The idea of TGFS arises from the concept of time-resolved flu-
orescence measurements. In this chapter, the basic principle of two classical time-resolved
fluorescence measurements – the time-domain and frequency-domain – as well as the flu-
orescence decay are discussed, before the principle of TGFS is introduced in detail. Fur-
thermore, possible hardware options for the implementation of TGFS, its advantages and
disadvantages as well as the optimization of TGFS measurements are discussed.

5.1 Time-resolved fluorescence measurements

Time-resolved fluorescence measurements are widely used, especially in studies of biological
macromolecules and for cellular imaging [28]. In the traditional steady-state measurement
approach, fluorescence emission spectra are acquired in conditions where excitation light
and thus fluorescence emission are constantly present. If an investigated sample contains
a mixture of fluorophores, it is not always possible to resolve emissions of the individual
fluorophores using steady-state measurements. In contrast, time-resolved measurements
may reveal distinctive fluorescence decay characteristics of individual fluorophores and
help resolve the mixture. Before discussing the two dominant methods for time-resolved
fluorescence measurements, it is important to briefly review the basics of fluorescence decay.



94 5. Time-gated fluorescence spectroscopy

5.1.1 Fluorescence decay

Upon exposure to a sharp impulse of light, the initial population ν0 of fluorophores in
an investigated sample turns into the excited state. As discussed in Chapter 2, these
excited-state fluorophores decay with a rate Γ + knr:

dν(t)

dt
= (Γ + knr) ν(t), (5.1)

where ν(t) is the number of excited fluorophores at time t after excitation, Γ is the emissive
decay rate and knr is the non-radiative decay rate [28]. Since fluorescence emission is a
random process, all excited fluorophores have equal probabilities of emitting photons in
a given period of time. This results in an exponential decay of the excited population of
fluorophores (see Fig. 5.1):

ν(t) = ν0 exp(−t/τd), (5.2)

where the decay time constant τd = (Γ + knr)
−1 is the inverse of the total decay rate.

However, not the number of excited fluorophores is observed, but rather the also time-
dependent intensity of the emitted fluorescence light. Fluorescence emission intensity I at
a certain wavelength band ∆λ and a certain moment of time t is proportional to the number
of photons emitted by the sample at this wavelength band, which in turn is proportional
to the number of excited fluorophores ν at this moment of time t. Hence, Eqn. 5.2 can be
rewritten in terms of fluorescence emission intensity I:

I(t) = I0 exp(−t/τd), (5.3)

where I0 is the intensity at time 0 after the excitation light impulse.
Following the exponential decay law, a large number of the fluorophores emit photons

quickly after the excitation, and some emit with a longer delay. The time distribution of
emitted photons forms the fluorescence intensity decay curve, and according to Eqn. 5.3,
the fluorescence decay time constant τd indicates the moment when 1/e (approx. 37%) of
all fluorophores are still in the excited state (have not emitted photons yet). The goal of
time-resolved measurements is to determine τd.

5.1.2 Time-domain fluorescence measurements

In time-domain fluorescence measurements (also called pulse fluorometry [28]), the sample
is excited with a light impulse to invoke time-dependent fluorescence decay, which is then
measured. The duration of the impulse is made as short as possible, much shorter than
the fluorescence decay time constant of the investigated sample. After the light impulse,
the fluorescence intensity decay curve I(t) is measured and the decay time constant τd is
derived from log(I(t)).

The most straightforward way to acquire the fluorescence decay curve would be to
time-sample the fluorescence emission using an extremely fast detector. However, typi-
cal (organic) fluorophores have decay time constants of several hundreds of picoseconds
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Figure 5.1: Timing diagram of the fluorescence decay process. The initial population of
fluorophores ν0 is excited with a short impulse of light (dashed line). The number of
excited fluorophores ν then decays (solid line), the rate of the decay is determined by the
time constant τd. The goal of time-resolved fluorescence measurements is to determine the
fluorescence decay time constant τd.

to tens of nanoseconds [28]. Measuring such fast decay processes would require ultrafast
(and very expensive) detectors and electronics. For this reason, a somewhat more sophisti-
cated method called the time-correlated single photon counting (TCSPC) is in widespread
use [87]. Most of the TCSPC instruments use a high repetition rate laser as excitation
light source and a photomultiplier tube (PMT) detect the fluorescence photons. For eco-
nomic reasons, lasers are often replaced with fast laser diodes or even LEDs. A laser-light
pulse train is used to repetitively excite the fluorophores and invoke their time-dependent
exponential decay. Instead of acquiring the entire fluorescence decay process, the PMT
registers only the first incident photon. The time delay ∆t between the end of the exci-
tation impulse and the detection of the first incident photon is measured a large number
of times and stored in a histogram. The resulting histogram represents an estimate of the
probability density function of photon emission at a particular time delay after excitation.
The shape of the histogram is equal to the fluorescence decay curve and can be used to
derive the decay time constant τd.

Because of imperfections in the detector’s electronics (e.g. dead time, jitter, etc.), the
measurement conditions are usually adjusted in such a way that only 1 photon per approx.
50 to 100 excitation pulses arrives at and is detected by the PMT. If more than 1 photon
per excitation pulse would arrive at the PMT, only the first one would be detected and
all following photons would be missed. This would result in a histogram of time delays ∆t
shifted to shorter times and would distort the derived fluorescence decay time constant τd.

A specific measurement set-up is necessary to measure the time delay ∆t (see Fig. 5.2).
The measurement begins with the excitation impulse which is detected by the constant
function discriminator (CFD) and the exact time of the pulse start is registered. The start
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Figure 5.2: Block diagram of TCSPC measurements. (Source: J.R.Lakowicz [28]).

signal is passed from the CFD to the time-to-amplitude converter (TAC) which begins
generating a linear voltage ramp. After the time delay ∆t, the arrival of the first photon is
registered by the second CFD in the emission channel. Upon registering the first photon,
the second CFD sends the stop signal to the TAC to end generating the voltage ramp.
Thus, the TAC has generated a voltage proportional to the time delay ∆t. This voltage is
then amplified by the programmable gain amplifier (PGA) and converted to a numerical
value by the analog-to-digital converter (ADC). A window discriminator (WD) is used
to restrict the generated voltage to a certain range in order to avoid false readings. The
resulting digital value (delay time ∆t) is stored. The histogram of ∆t values is acquired
by repeating the described process many times. The histogram is then used to derive the
fluorescence decay time constant τd as described above [28].

5.1.3 Frequency-domain fluorescence measurements

Another way to determine the fluorescence decay time constant is frequency-domain flu-
orescence measurements, also called phase-modulated measurements, which are based on
the fact that harmonically amplitude-modulated excitation light invokes a phase-shifted,
amplitude-modulated fluorescence emission (see Fig. 5.3). The time lag (and phase angle
φω) between the excitation light and the fluorescence emission as well as the modulation
mω (see Eqn. 5.5) of the fluorescence emission depend on the sample’s fluorescence decay
time constant τd and the light modulation angular frequency ω.

The fluorescence emission modulation index mω = (B/A)/(b/a) can be derived from
the known amplitude b and mean value a of the modulated excitation light (intensity), and
the measured amplitude B and mean value A of the modulated emission light (intensity).
The phase angle φω and the modulation m are then used to calculate the fluorescence decay
time constant τd of the investigated sample as follows [28]:

tanφω = ωτdφ ⇒ τdφ = ω−1 tanφω, (5.4)
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Figure 5.3: Frequency-domain measurements: sinusoidally modulated excitation light
(solid line) invokes sinusoidally modulated, phase-shifted fluorescence emission (dashed
line) of the sample. For representation purposes, the mean intensity a of the excita-
tion light is equal to the mean intensity A of the emission light in the figure. (Source:
J.R.Lakowicz [28]).

mω =
1√

1 + ω2τd2
m

⇒ τdm =
1

ω

√
1

m2
ω

− 1. (5.5)

Equations 5.4 and 5.5 calculate the so-called apparent phase (τdφ) and apparent mod-
ulation (τdm) decay time constants of the sample. In case of a single-exponential decay
function as in Eqn. 5.3, i.e. when only one type of fluorophores is present in the sam-
ple, phase and modulation decay time constants τdφ and τdm are equal and can be inter-
preted as the fluorophore’s actual decay time constant τd, as in time-domain measurements
(see Section 5.1.2). However, investigated samples display multi-exponential or even non-
exponential decay in many cases. Multi-exponential models are very powerful and can fit
almost any fluorescence decay using the sum of several (i) exponentials:

I(t) =
∑
i

I0i exp(−t/τdi). (5.6)

However, in Eqn. 5.6 the values of I0i and τdi do not always have a physical meaning.
The correct interpretation of these values highly depends on prior knowledge about the
fluorophores present in the investigated sample and possible interactions between them.
For multi-exponential decay, apparent phase and modulation decay time constants τdφ and
τdm measured at a single modulation angular frequency ω do not provide characteristics of
the decay, but represent a weighted average of the decay times displayed by the sample.
In order to find the actual fluorescence decay time constants τdi in Eqn. 5.6, apparent
decay time constants τdφ and τdm need to be measured over a wide range of modulation
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frequencies. The collected data τdφ(ω) and τdm(ω) is called the frequency response of the
sample. Typical frequency response curves of a sample containing a 50%:50% mixture
of two fluorophores with decay time constants τd1 = 2.5 ns and τd2 = 10 ns are shown
in Fig. 5.4 with modulation frequency f = 2π/ω on the x-axis and phase angle φω and
modulation mω on the y-axis. As it can be seen, with the increase of the excitation light
modulation frequency the phase angle φω increases from 0◦ to 90◦ (also see Eqn. 5.4). The
modulation mω also depends on the excitation light modulation frequency: it decreases
from 1 to 0 with increased modulation frequency (see Eqn. 5.5). The shape of the frequency
response curve is determined by the decay time constants of all fluorophores present in the
sample. One can find the underlying decay time constants τdi by fitting the frequency
response curve with the multi-exponential model in Eqn. 5.6 [28, 88].

5.2 Principle of time-gated fluorescence spectroscopy

(TGFS)

Although the time-domain and frequency-domain measurements can help determine fluo-
rescence decay time constants and give an insight or estimation of what fluorophores are
present in the investigated sample, such measurements take much time and can barely be
implemented in a fast industrial application. When fluorescence emissions of different fluo-
rophores do not spectrally overlap with one another or the overlap is small, characterization
of the sample is easier and faster carried out based on the fluorescence spectra rather than
on the decay time constants. However, for the application at hand, the principles behind
time-resolved measurements (Sections 5.1.2 and 5.1.3) can help separate autofluorescence
(AF) of plastics from fluorescence of incorporated markers. When the fluorescence decay
time constant of the AF is much (ideally orders of magnitude) shorter than that of the
marker fluorescence, it is possible to resolve the AF and marker fluorescence in time using
pulsed excitation and gated acquisition of the fluorescence emissions.

The main principle of time-gated fluorescence spectroscopy (TGFS) can be explained
using the timing diagram in Fig. 5.5. When a plastic sample with incorporated fluorescent
marker(s) is excited with a short light impulse (“1”), both AF and marker fluorescence are
stimulated (see first row in Fig. 5.5). Once the excitation light is turned off (“0”), the AF of
the plastics rapidly decays, usually within tens of nanoseconds (row 2 in Fig. 5.5), whereas
the fluorescence afterglow of rare-earth-based markers can last up to several milliseconds
(row 3). If the acquisition of the fluorescence emission only takes place at times between the
light impulses (row 4), with appropriate pulsing frequency and duty cycle of the pulse train
(see Section 5.4 for details), it is possible to achieve that virtually only marker fluorescence
is present in the acquired spectrum. Accumulating fluorescence emissions over several such
acquisition periods (or “subframes”), (row 5) helps achieve better S/N ratio of the acquired
spectrum.



5.2 Principle of time-gated fluorescence spectroscopy (TGFS) 99

20 50 100 200 500 1000 2000 5000
0

25

50

75

100

P
ha

se
 a

ng
le

 (
de

gr
ee

s)
or

 m
od

ul
at

io
n 

(%
)

Frequency (MHz)

Mixture 50%:50%

τd1 = 2.5 ns
τd2 = 10 ns

2 exp fit
1 exp fit

Measurement points

Modulation

Phase shift
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rophores with decay time constants τd1 = 2.5 ns and τd2 = 10 ns. A good least-squares fit
is possible with two exponentials (source: Lakowicz [28]).

Figure 5.5: Timing diagram of TGFS with 4 acquisition periods (“subframes”).
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5.3 Implementation of TGFS

Implementation of TGFS in addition to the pulsed excitation requires a gated fluorescence
emission acquisition system. Considering the large throughput and high sorting rates
mandatory for an industrial plastics sorting system, this acquisition system needs to be
very fast and robust. A rather low mass throughput of approx. 250 kg/h is specified for
the prototype system developed in this work. In order to achieve it with plastic flake
sizes in the range of 2-10 mm (typical for industrial plastic mills in widespread use),
approx. 1500 plastic flakes per second need to be processed. With 50 parallel streams
of plastic flakes on the conveyor belt, only approx. 10 ms are left for the measurement and
classification of every single flake (see Chapter 6). When the measurement time is strictly
limited, optimization of TGFS may require the acquisition of a large number of very short
subframes (see next section). This reduces the number of options for the implementation
of a TGFS system in practice.

Two approaches to gated acquisition exist: (1) to gate the emitted fluorescence light
such that only light emitted within certain time frames arrives at the sensor, and (2) to
gate the sensor itself. For option (1), mechanical choppers or filter wheels can be used.
However, their mechanical parts are prone to wear and may be difficult to synchronize with
the pulsed excitation light. The same applies to mechanical shutters. Another option could
be acusto-optical tunable filters (AOTF) or liquid-crystal tunable filters (LCTF), which
are also used for light modulation in frequency-domain measurements [45]. Yet, their prices
rise dramatically with the increase of their aperture size, which would be necessary to gate
excitation light that illuminates the entire acquisition scene (conveyor belt in this work).
Furthermore, the tuning time usually lies in the milliseconds range for LCTF and in the
hundreds of microseconds range for AOTF, which may be too long to implement optimized
TGFS (see below).

Implementation of the option (2) requires a fast and, since in TGFS the acquisition takes
place during fluorescence decay when emission intensity is low, very sensitive gated sensor.
Recently, intensified CCD (ICCD) cameras have become more affordable and efficient.
An ICCD camera essentially consist of a 2D CCD sensor and an image intensifier. The
image intensifier is a very sensitive electro-optical device that captures incident photons,
generates an electrical signal (electrons) proportional to the number of photons, amplifies
this signal by a factor of several thousand, and converts it to a high-intensity digital image
using a phosphor screen. The output of the image intensifier is coupled with the input
of a CCD sensor such that the intensified image is directed onto the sensor. For the
application at hand, ICCD cameras can greatly increase the S/N ratio of the measured
marker fluorescence spectra and might be a good solution in general for a low-light TGFS
measurement system. However, mostly due to the phosphor screen, at present (2018) the
lifetime of ICCD cameras is limited to approx. 10 000 h (a little more than a year) [89],
which does not seem long enough for an industrial application running 24/7. Replacing
the ICCD camera after its lifetime would require disassembling and recalibration of the
entire measurement system, which would heavily increase the costs of plastics recycling.

CMOS sensors are especially appreciated because of their fast frame rates which can
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be even further increased when a smaller ROI is selected and the number of pixels used is
reduced [54]. With some CMOS sensors, sparse selection of pixels is possible such that only
certain regions in the spectral domain (wavelength bands corresponding to the fluorescent
marker spectra) or spatial domain (direction across the conveyor belt) can be read out
(see Chapter 3). Frame and measurement rates up to tens or even hundreds of kHz are
not unusual in practice. Since in TGFS the fluorescence emission acquisition only takes
place in the time periods when the excitation light is switched off, with an excitation light
pulse duty cycle of 50% and 10 kHz measurement and excitation light pulse rate, up to 50
(sub)frames can be acquired during the duration of 10 ms available for the measurement.
Signals from these 50 (sub)frames can be then averaged in order to increase the S/N ratio
of the final frame. The main drawback of the CMOS-based implementation is that each
subframe, no matter how short, must be read-out from the sensor immediately after its
acquisition. This means that the electronic noise associated with the read-out is added to
each subframe and thus if N subframes are averaged, the S/N ratio is increased by a factor
of
√
N at most (see Section 3.4).

Some CCD sensors provide the so-called “frame accumulation” triggering mode (see
Section 3.4), which allows controlling the acquisition with an external trigger signal. The
timing diagram of the “frame accumulation” is shown in Fig. 5.6. Upon receiving the first
external trigger signal Trg.1, the camera clears its photosensitive pixel registers, starts
exposure of the first subframe (Exp.1), completes the integration, transfers the information
to the storage pixel registers, and waits for the next trigger signal Trg.2. With Trg.2, the
next subframe is exposed and transferred to the sensor’s storage pixel register. In other
words, in “frame accumulation” mode the full frame is built up of several subframes, each of
which is acquired at a certain time period specified by the trigger signal. The trigger signal
can often be configured in a flexible way, allowing “accumulation windows” (subframes) of
arbitrary length with arbitrary duty cycle. Once the specified number N of subframes is
acquired, the full frame is read out. Thus, the accumulation of the subframes is done in
the analog domain on the CCD chip. The read-out of the full frame is carried out at the
very end of the (subframe) acquisition process and the electronic noise associated with it is
added only once, which increases the overall S/N ratio by a factor of up to N in low-light
applications (see Section 3.4).

The bottleneck of the “frame accumulation” mode is the time necessary for the read-
out. In the normal acquisition mode, each frame is read out right after it is acquired.
Therefore with interline CCD sensors, while frame k is being read out, acquisition of the
frame k+1 can start. This is possible because once acquired, frame k is quickly transferred
to the storage registers such that the photosensitive pixels can immediately be used for the
acquisition of the subsequent frame k + 1. In “frame accumulation” mode, however, the
storage registers of the sensor are being accessed throughout the acquisition, since each
new subframe is added to the previous ones. After all N subframes contributing to the full
frame k are acquired, frame k needs to be read out from the storage registers before the
acquisition of the next N subframes contributing to the full frame k + 1 can take place.
Thus, if the sensor’s electronics needs TR milliseconds to read-out one full frame, for the
acquisition of all subframes only (Tm − TR) milliseconds are left, where Tm is the time
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Figure 5.6: Timing diagram of the sensor’s frame accumulation mode. 4 subframes accu-
mulated, 1 frame output.

available for one measurement (Tm = 1/measurement rate). Even with fast CCD sensors,
the read-out time TR is usually in the milliseconds range and can thus significantly reduce
the actual time available for the fluorescence emission acquisition.

This is the major disadvantage of the “frame accumulation” mode which limits the S/N
ratio of the acquired marker fluorescence spectra if the time available for one measurement
is limited. However, if compared to the other options described above in this section,
the frame accumulation is more suitable for an industrial application for several reasons.
First, the duration and number of subframes as well as the duty cycle of acquisition can be
widely varied allowing a flexible optimization of the acquisition (see Section 5.4). Second,
as already mentioned, read-out of the full frame takes place only once per one full frame
providing analog summation of subframes on the CCD chip, which is advantageous in
terms of S/N ratio (see Section 3.4). And finally, a CCD-based spectral camera is very
robust, relatively inexpensive, has a long lifetime, and is thus suitable for an industrial
environment. These are the reasons a CCD-based spectral camera with frame accumulation
was selected for the measurement system prototype developed in this work (see Chapter 6).

5.4 Parameter optimization of TGFS

The main drawback of the TGFS in comparison to steady-state measurements is the low
amplitude of the acquired spectrum. Given the duty cycle 50% as shown in Fig. 5.5, the
exposure time for TGFS is decreased by a factor of 2 compared to the steady-state mea-
surement. This reduces the amplitude of the resulting spectrum also by 50% in principle.
The amplitude is reduced even more due to the exponential decay of the fluorescence.
Figure 5.7a compares fluorescence spectra emitted from marker M4 incorporated into the
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Figure 5.7: (a) Comparison of measured steady-state and TGFS spectra of marker M4
incorporated in a white POM plastic. (b) Histograms of the S/N ratios of 2000 steady-state
(right) and 2000 TGFS (left) spectra.

white POM plastic ”Delrin”, measured using the traditional steady-state setup and TGFS.
Both spectra in the figure were software-averaged over 50 acquisitions to reduce noise for
further investigations. The part of the spectrum between 450 nm and 600 nm is the AF
of the plastic and the spike at 615 nm is the fluorescence of marker M4. As can be seen,
although the spectrum acquired with TGFS has no AF, its peak intensity value is approx.
8 times smaller than that of the steady-state spectrum. Furthermore, the S/N ratios of the
TGFS spectra is smaller in comparison to the steady-state spectra. Figure 5.7b depicts
S/N ratio histograms of approx. 2000 spectra acquired using the steady-state setup (right)
and 2000 spectra acquired using TGFS (left). All spectra were acquired from several spots
on the POM plastic sample labeled with the marker M4. The S/N ratio is defined within
the wavelength band corresponding to the markers present in the sample (M4 in this case),
as described in Section 3.4.1. As can be seen in Fig. 5.7b, the mean value of the S/N ratio
for steady-state measurements is approx. 23 dB, whereas that of the TGFS measurements
is only approx. 9 dB. The significantly decreased S/N ratio also decreases the achievable
classification performance (see Chapter 4). Thus, the S/N ratio needs to be maximized
using the best TGFS timing parameters. For this task, a model for the TGFS spectra is
required as shown in the next section.

5.4.1 Model for TGFS spectra

Figure 5.8 demonstrates the timing diagram of the fluorescence rise and decay processes.
In the figure and in the text below, the fluorescence rise process is assumed to start simul-
taneously with the excitation light impulse at the moment of time t = 0. The moment of
time when the excitation light impulse is switched off is therefore t = tp − 0 = tp, where
tp is the duration of the impulse. For simplicity, in the text throughout this section, tp
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0 T

0

 

Figure 5.8: Rise Ir(t) and decay Id(t) of the fluorescence intensity according to Eqn. 5.7
and 5.8. Integration in Eqn. 5.10 is carried out between time instants t0 and te. Here, the
case with t0 = tp and te = T is shown.

denotes both the excitation impulse duration and the moment of time when the impulse
is switched off.

As already discussed in Section 5.1.1, the decaying intensity of a fluorescent emission
after switching off the excitation light can be modeled as exponential decay. Assuming an
excitation impulse duration tp, Eqn. 5.3 can be rewritten:

Id(t) = Id0 · exp(
t− tp
τd

), (5.7)

where t is the time, Id0 the fluorescence intensity at time instant t = tp − 0 = tp, and τd
the fluorescence decay time constant.

According to [88], the rise of the fluorescence intensity after the excitation light was
switched on at time instant t = 0 can also be modeled as an exponential function:

Ir(t) = Ir0 · (1− exp(− t

τr
)), (5.8)

where τr is the fluorescence rise time constant and Ir0 is the maximal fluorescence intensity
that can be achieved (equal to the steady-state intensity).

As can be seen from Eqn. 5.8, the fluorescence emission intensity after excitation with
a light impulse of duration tp depends on the fluorescence rise time constant. Therefore,
rare-earth elements based fluorescent markers which may have large decay and rise time
constants may need excitation light pulses of longer duration in order to get “fluorescently
charged”. The value of Ir(tp) represents the initial fluorescence intensity Id0 of the decay
process in Eqn. 5.7. Thus, the marker fluorescence intensity decay after an excitation pulse
of duration tp can be expressed by:

Id(t) = Ir0 · (1− exp(− tp
τr

)) · exp(−t− tp
τd

). (5.9)

As explained in Section 5.2, in TGFS the acquisition of photons takes place only when
the excitation light is switched off, i.e. at times between the light pulses when the AF
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has sufficiently decayed but marker fluorescence is still present with large intensity. The
associated digitized intensity value s generated by the CCD sensor (see Section 3.1) is thus
proportional to the fluorescence emission intensity integrated on the sensor’s photosensitive
surface during the time period (te − t0) between excitation light pulses:

s = a ·
∫ te

t0

Id(t)dt = a · Ir0 · (1− exp(− tp
τr

)) ·
∫ te

t0

exp(−t− tp
τd

)dt, (5.10)

where a is the proportionality constant defined in Section 3.1 and the integration limits
t0 and te correspond to the time instants when photon integration starts and stops, re-
spectively. If the integration starts right after the excitation light has been switched off
and stops right before the next excitation light impulse is switched on, then t0 = tp and
te = T , where T is the period of the excitation pulse. However, in this case, since the AF
does not instantly decay to zero, it will still contribute to the resulting value of s, although
in a highly reduced way. In principle, time instants t0 and te can be adjusted in order
to suppress the AF in the resulting spectrum most efficiently. However, it should be kept
in mind, that choosing t0 > tp also reduces s and hence the S/N ratio of the measured
spectrum due to the exponential decay of the fluorescence light.

After integration with t0 = tp and te = T Eqn. 5.10 becomes:

s = a · Ir0 · τd · (1− exp(− tp
τr

)) · (1− exp(
tp(D − 1)

Dτd
), (5.11)

where D = tp/T is the duty cycle of the excitation light pulse. Equation 5.11 represents the
digitized intensity value generated by the sensor during one decay process and represents
one subframe of the sensor’s “frame accumulation” acquisition mode. In this mode, electri-
cal charges generated by multiple (N) pulses (subframes) are coherently summed up in the
sensor’s storage pixel registers, resulting in a larger (full frame) digitized intensity value
sN = N · s and thus higher S/N ratio (provided the measurement noise is uncorrelated, see
Section 3.4.1).

The resulting full frame value sN depends on several parameters: fluorescence rise and
decay time constants τr and τd, excitation light pulse duration tp and duty cycle D, and the
number N of accumulated subframes. The time constants τr and τd are intrinsic properties
of the fluorescent markers and can be varied only within certain restricted chemical and
physical limits. However, excitation light pulsing parameters tp and D can be widely and
easily varied in order to maximize sN and thus the S/N ratio of the acquired spectrum.
The possible number N of subframes depends on tp and D, and is limited by the total time
available for the measurement Tm: N = Tm · fp = Tm · D/tp, where fp is the (switching)
frequency of the excitation light pulse. With short light impulses and a high switching
frequency, a large number N of subframes can be captured and accumulated during Tm.
However, since fluorescence molecules (markers) need time to get “charged” (see Eqn. 5.8),
it is not optimal to (simply) apply a large number of short light impulses. Instead, it
is necessary to find the best compromise between excitation light pulse duration tp, duty
cycle D and number N of accumulated subframes for particular values of τr and τd. Before
this optimization is explained in Section 5.4.2, one aspect should be pointed out:
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In Eqn. 5.7-5.11 single-exponential fluorescence rise and decay processes are assumed.
As was mentioned in Section 5.1.3, this is not always the case, and a multi-exponential
model then needs to be employed. Equation 5.11 can easily be extended to the multi-
exponential case. However, as measurements with a TCSPC spectrofluorometer have
proven (not shown here), the rare-earth elements-based markers used in this work exhibit
single-exponential decay and Eqn. 5.11 is appropriate.

5.4.2 Optimization of the TGFS timing parameters

The model for the TGFS digitized intensity value sN derived in Section 5.4.1 was validated
using 6 markers M1-M6 (see Chapter 2). In this section, the model is first validated using
the marker M6 in pure form (powder), not incorporated into plastics, which represents
”best case” conditions when no other chemical (fluorescent) agents other than the marker
are present. Next, the model is compared to the measurements with all 6 markers M1-M6
(individually) incorporated into plastics, which corresponds to a realistic case.

Figure 5.9 compares the modeled and measured sN as function of excitation light im-
pulse duration tp with duty cycle D = 10% for marker M4. In the figure, sN represents
the digitized value of the fluorescence emission intensity at the marker’s peak wavelength
615 nm (see Fig. 5.9). The number N of subframes is varied depending on the switch-
ing frequency fp = D/tp when Tm = 11.9 ms is constant (as explained in Section 6.2,
Tm = 11.9 ms is the available measurement time with the prototype). In the model
(Eqn. 5.11), the decay and rise time constants τr = τd ≈ 400 µs were used, that had
been measured for M4 (and the other markers) using a laboratory TCSPC device (see
Chapter 3). sN(tp) was measured utilizing the spectral camera of the developed prototype
system (see Chapter 6) and a single high-power UV-LED. The dashed curve with circles
(measured data) in Fig. 5.9 was acquired from the pure marker M4 in powder form, i.e. no
possibly fluorescently active additives of the plastics could interfere. As can be seen, the
modeled sN (dashed curve) matches the measurement very well.

The next experiment was carried out with all 6 markers M1-M6 individually incorpo-
rated into the white POM polymer “Delrin”. The comparison of modeled and measured
sN(tp) curves with constant duty cycle D = 10% is depicted in Fig. 5.10. In the figure, sN
represents the digitized value of the fluorescence emission intensity at the corresponding
markers’ peak wavelengths (see Table 2.1). As expected, when markers are incorporated
in plastics, i.e. when not only the marker but other – unknown – (fluorescent) chemical
components and additives may be also present in the sample, some deviations from the
model (Eqn. 5.11) emerge. However, as can be seen, these deviations are not dramatic.
As a result, optimal TGFS timing parameters derived using the model might differ a bit
from those derived from measurements, but this would not significantly influence the op-
timization of the resulting (full frame) digitized intensity value sN . For example, as can
be seen in Fig. 5.10a for marker M1, the maximum of the modeled sN is achieved with
tp ≈ 500 µs, while the maximum derived from the measured curve is tp ≈ 400 µs. How-
ever, with pulse duration tp = 500 µs the measured sN is approx. 99.37% of the maximum
achieved with tp = 400 µs, which is a difference of not even 1%. The same is true for the
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Figure 5.9: Comparison of the digitized fluorescence intensity value sN for marker M4
(τr = τd ≈ 400 µs): measured and modeled according to Eqn. 5.11 as a function of pulse
width tp. Here sN represents the (normalized) digitized value of fluorescence emission
intensity at the marker’s emission peak wavelength 615 nm.

other 5 markers (Fig. 5.10b - 5.10f).
Not only can the model be used to vary the impulse duration tp, but also the duty cycle

D in order to find the parameter set (tp, D) that maximizes sN . Moreover, the optimal
parameter set (tp, D) can also be found algebraically. For the rare-earth based markers
used in this work the individual rise and decay time constants are very similar, i.e. τr≈ τd
per marker. Therefore, τr and τd will be replaced with τ in the following in order to simplify
algebraic derivations. By combining Eqn. 5.11, sN = N · s and N = Tm ·D/tp one gets:

sN = a · Tm ·D/tp · Ir0 · τ · (1− exp(−tp
τ

)) · (1− exp(
tp(D − 1)

Dτ
). (5.12)

As can be seen, sN is a function of two variables tp and D. Maximization of sN requires
finding its critical points and the second partial derivative test [90]. It is demonstrated in
Appendix C, sN in Eqn. 5.12 has only one maximum given by:{

tp = 1.2564 · τ,
D = 0.5.

(5.13)

Thus, for τr ≈ τd ≈ τ , the optimal duty cycle is always D=0.5 (50%), whereas the
optimal impulse duration tp depends on the fluorescence decay/rise time constant τ of
the markers. The optimal tp values for all 6 markers derived using Eqn. 5.13 are listed
in Table 5.1. As can be seen, even though the duty cycle D = 0.5 is optimal for all
markers, different markers have different optimal impulse duration tp that depends on
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(a) Marker M1, τd ≈ τr = 4000 µs
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(b) Marker M2, τd ≈ τr = 25 µs
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(c) Marker M3, τd ≈ τr = 180 µs
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(d) Marker M4, τd ≈ τr = 400 µs
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(e) Marker M5, τd ≈ τr = 450 µs
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(f) Marker M6, τd ≈ τr = 2500 µs

Figure 5.10: Digitized fluorescence intensity value sN at the markers’ individual emission
peak wavelengths as function of the excitation impulse duration tp with constant duty cycle
D = 10%. Comparison for all 6 markers M1-M6 incorporated into a white POM polymer:
measured using the prototype system and modeled according to Eqn. 5.11.

their individual time constants τ . Hence, in order to maximize sN for all 6 markers at the
same time it would be necessary to have 6 different TGFS acquisition units each tuned
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Table 5.1: Optimal excitation impulse duration tp for the 6 investigated fluorescent markers
M1-M6 according to Eqn. 5.13 provided that τd ≈ τr for all markers.

Marker M1 M2 M3 M4 M5 M6

τd, τr in µs 4000 25 180 400 450 2500
Optimal tp in µs 5030 31 230 500 570 3140

for a single marker. Clearly, the development and employment of fluorescent markers with
similar time constants facilitate the system design from a practical point of view.

However, using the best parameters (tp,D) for each marker may not be necessary.
Figure 5.11 shows sN in the neighborhood of the optimal parameter set (tp,D) for each
of the 6 markers M1-M6 is calculated using Eqn. 5.12. One can notice the relatively
large plateau around the points optimal for every marker and that the function is convex.
Therefore, taking parameter sets in the neighborhood of the optimal point will not result
in a large decrease of sN .

The selection of the best parameter set (tp,D) to use in the measurement system should
also be guided by the following considerations. First, since sN of all markers (with differ-
ent time constants τ) cannot simultaneously be maximized, (tp,D) should be selected to
maximize sN of the most expensive marker(s). The emission of the less expensive markers
can then be increased by increasing their concentrations in the plastics. Second, one can
select the parameter set that maximizes sN of the marker with the weakest fluorescence
emission intensity. Third, when LEDs are used as excitation light sources. They usually
can be overdriven in pulsed mode, i.e. supplied with a forward current several times higher
than allowed in continuous mode, thus emitting more light and in turn increasing the in-
tensity of the emitted marker fluorescence and the value of sN . The main prerequisites
for the overdrive are short pulses tp and small duty cycles D. A significant overdrive of
the LED using the markers’ optimal pulsing parameters (e.g. marker M1: tp = 4000 µs
and D = 50%) is thus not possible. However, for pulse durations and duty cycles smaller
than the optimal values, the typical decrease of sN (see Fig. 5.11) might be more than
counterbalanced by an overdriven LED, depending on the overdrive factor.

In general, the shorter the pulses and the smaller the duty cycle, the higher the LED
overdrive factor can be. At high overdrive factors, however, nonlinearities and saturations
effects may occur. Theoretically, the forward current through an LED is limited by the
maximum power dissipation this LED can withstand. For larger pulse durations (and thus
larger average power dissipation) an overdriven LED will fail due to thermal damage in the
die itself, typically at internal junction temperatures exceeding the allowed maximum [91].
At smaller pulse durations high current densities additionally heat the bonding wires which
in turn raise their electrical resistance limiting the maximal sustainable current. Reducing
the pulse duration even further while increasing the forward current leads to a melting of
the bonding wires and LED failure. Another significant risk of pulsing is too short rise
times of the forward current, which may damage the LED electronics.

Different commercially available LEDs have different overdrive capabilities. Thus, when
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Table 5.2: Comparison of the TGFS intensity values sN modeled with: (1) optimal (tp,D)
according to Eqn. 5.13 and no LED overdrive, and (2) tp = 10 µs and D = 10% and
forward current overdrive factor 10 (which causes an 8-fold increase of the excitation light
intensity).

Marker M1 M2 M3 M4 M5 M6

Maximum sN in % 100 100 100 100 100 100
sN (10µs, 10%), in % of sN 33 45 43 38 38 34
Overdrive 8×sN , in % of sN 264 360 344 304 304 272

selecting the LEDs, attention must be paid to the allowed overdrive factors, pulse durations,
and duty cycles. For a specific LED, the two-dimensional function η(tp, D), where η is
the multiplicative overdrive factor, is to be multiplied with the two-dimensional function
sN(tp,D) in order to get the achievable “overdriven” digitized intensity value for different
values of tp and D. Such a function η(tp, D) is, however, barely practical, since it would
require either an accurate physical/mathematical model of the particular LED, or extensive
(and expensive) empirical tests with different tp and D in order to figure out the damage
thresholds of the LEDs. Such detailed information is usually not provided by the LED
manufacturers. For the UV-LED used in this work (see Chapter 6), overdrive factors for a
few specific values of tp and D were provided by the manufacturer on request. A high (full
frame) digitized intensity value sN can be achieved using tp = 10 µs and D = 10% and a
forward current overdrive factor 10. A current overdrive factor η(10 µs, 10%) = 10 results
in an excitation light intensity increased by approx. factor 8 (see Fig. 6.6).

For example, for marker M1 (which has the largest time constants τd ≈ τr ≈ 4000 µs),
sN achieved with tp = 10 µs and D = 10% without LED overdrive is approx. 33% of the
maximum value possible with the best parameters tp = 5030 µs and D = 50% (according to
Fig. 5.11). With the maximum LED current overdrive factor 10, the (full frame) digitized
intensity value sN becomes 8 × 33% = 264% of the one that can be achieved with tp =
5030 µs and D = 50% without overdrive. For the other markers M2-M6, sN exhibits
similar behavior (see Table 5.2): with tp = 10 µs and D = 10% and the LED current
overdrive factor 10, sN is higher than with the best parameters (tp,D) but no overdrive.
For this reason, tp = 10 µs and D = 10% with a current overdrive factor 10 was selected
for the measurements carried out with the system prototype (Chapter 7).
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(a) Marker M1, τd ≈ τr = 4000µs
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(b) Marker M2, τd ≈ τr = 25µs
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(c) Marker M3, τd ≈ τr = 180µs
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(d) Marker M4, τd ≈ τr = 400µs
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(e) Marker M5, τd ≈ τr = 450µs
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(f) Marker M6, τd ≈ τr = 2500µs

Figure 5.11: The digitized fluorescence intensity value sN modeled according to Eqn. 5.12
as function of tp and D for all 6 investigated fluorescence markers M1-M6. sN of each
marker is normalized to its individual maximum. The contour lines represent steps with
10% (95%, 85%, ... 5%).
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Chapter 6

Measurement and classification
system concept and prototype

In this chapter, the concept of the developed measurement and classification system pro-
totype is outlined. The goal is to set up a system capable of classifying up to 63 different
fluorescently labeled plastics and evaluate it in practice. The composition of the prototype
encompasses hardware and software components. The former is outlined in Sections 6.1
and 6.2, whereas Section 6.3 presents the latter. Experimental measurements and results
are presented in Chapter 7.

6.1 Hardware setup

The concept of the whole sorting approach consists of 3 functional parts: (1) plastic flakes
feeding system with a singulation unit and a conveyor belt; (2) measurement and classi-
fication system; (3) plastic flakes sorting machinery. The design of the whole system is
depicted in Fig. 6.1 and the actual prototype is shown in Fig. 6.2. The feeding system (1)
and the sorting machinery (3) were developed by an external partner and are only briefly
described here.

The purpose of the feeding system is to supply plastic flakes to the measurement and
classification system. Investigation of flakes produced by typical industrial plastic waste
mills has shown that their sizes vary between approx. 3 mm and 10 mm and follow almost
a Gaussian size distribution around the mean value of approx. 5 mm. Some outliers were
also present. Flakes smaller than approx. 3 mm and bigger than 10 mm are increasingly
difficult to handle during the sorting phase. Additionally, small flakes contribute less to
the overall mass throughput. Therefore, flakes are first separated into 3 groups: group 1
contains flakes with diameter 3 mm – 6 mm (small), group 2 contains flakes with diameter
6 mm – 8 mm (middle) and group 3 contains flakes with diameter 8 mm – 10 mm (big).
The separation is achieved by passing all flakes through a system of mechanical filters,
which sorts out flakes larger than 10 mm and smaller than 3 mm and groups the remaining
flakes.
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Figure 6.1: Design of the plastics classification and sorting system.

The plastic flakes are then passed through the singulation unit, whose purpose is to
singulate and distribute flakes in parallel streams on the conveyor belt. The singulation
unit consists of a shaker plate with overall 50 grooves for 50 channels (streams) of flakes.
Processing plastic flakes in 50 parallel streams essentially increases the overall number of
flakes processed by the system per unit time and thus helps increase the systems throughput
a great deal (see Section 6.2). In order to improve the singulation performance, the width of
the grooves in the shaker plate was adjusted to match the size of the flakes it should contain.
Therefore, there are six 8 mm grooves for small flakes, twenty-two 9 mm grooves for middle
flakes, and twenty-two 11 mm grooves for big flakes. The overall width of the singulation
unit is 500 mm and equals the width of the conveyor belt. The small grooves are located
in the middle of the plate and hence in the middle of the conveyor belt. Thus, when the
smallest plastic flakes are delivered to the measurement system, they are positioned in the
central region of the optical field of view (FOV) where the spatial resolution of both cameras
is the highest. In order to prevent damage to the optical components of the measurement
system due to the vibrations, the singulation unit is mechanically decoupled from the
conveyor belt. Figure 6.3 depicts the system of mechanical filters and the singulation unit.

50 parallel streams of singulated plastic flakes are delivered on the conveyor belt to the
measurement and classification system. A closed dark chamber shelters the measurement
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Figure 6.2: Prototype system. The singulation unit produces 50 parallel streams of sin-
gulated plastic flakes on the conveyor belt. The measurement and classification system
consists of the morphological acquisition unit and the spectral classification unit. After
passing the measurement and classification system, flakes are extracted from the conveyor
belt by suction nozzles of the sorting unit according to their type (class).

system from surrounding (stray) light (see Fig. 6.2 where the chamber is opened for demon-
stration purposes). The inside of the chamber is painted black for maximum absorption of
reflected excitation light.

The system consists of two main elements: the spectral acquisition unit for the mea-
surement and classification of fluorescent spectra emitted from the plastic flakes and the
morphological acquisition unit for the assessment of the geometrical properties of the plas-
tic flakes such as size and position on the conveyor belt. The need for an auxiliary system
for morphological data acquisition is dictated by the relatively low spatial resolution of the
spectral acquisition unit, especially in the x-axis along the conveyor belt (see Section 6.2).

6.1.1 Morphological acquisition unit

Morphological data acquisition is carried out by a linescan color camera with 4096 pixels
10µm×10µm across the conveyor belt (y-axis) and up to 9 kHz frame rate. The camera
is mounted at 462 mm working distance over the conveyor belt in order to capture all 50
channels across the 500 mm wide conveyor belt using a 35 mm lens. With this configuration,
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(a) (b)

Figure 6.3: Singulation unit of the prototype system. (a) The system of filters to group
plastic flakes by size can be seen in the background; containers with already grouped flakes
and the shaker plate are in the foreground. (b) A close-up of the shaker plate with 50
grooves to separate plastic flakes in 50 parallel streams (channels) on the conveyor belt.
Plastic flakes are all yellow for demonstration purposes.

the optical resolution of the linescan camera is approx. 120 µm in both spatial directions,
which allows capturing morphological information of the plastic flakes with great precision.
The linescan camera provides a 2D image of the conveyor belt by scanning it line by line
and combining those lines. The camera is triggered by the signal from the rotary encoder of
the conveyor belt. The rotary encoder delivers a trigger signal every 100 µm of movement
in x-direction, which allows the precise definition of the flakes x-position on the conveyor
belt. Synchronization of the line acquisition with the movement of the conveyor belt helps
achieve equidistant sampling in the x-direction and thus equal pixel size in the 2D image
in the x-direction. Due to synchronization with the rotary encoder, the frame rate of the
camera depends on the conveyor belt velocity.

A white LED line light focused on a line approx. 13 mm wide (FWHM) is used as a
light source in the morphological data acquisition unit. In order to reduce shadows from
the plastic flakes, which are highly disadvantageous for image processing and can affect the
derived morphological information of the flakes, a mirror system guiding the light beam
coaxially to the camera’s field of view was set up. The schematics of the mirror system can
be seen in Fig. 6.4. A half-transparent mirror is located at a 45 degree angle to the LED
line light and to the conveyor belt, so that the illumination light reflected by the mirror falls
normally to the conveyor belt illuminating the flakes from the top. The camera captures
the reflected light through the half-transparent mirror and the optical window. Polarization
filters are mounted in front of the LED line light and on the lens of the linescan camera.
The polarization filter on the linescan camera can be rotated in order to tune polarization
and increase the image contrast. With this setup shadows and direct light reflections from
the conveyor belt can be reduced. The downside of the mirror system is that due to the
half-transparent mirror, maximum 1/4 of the initial LED emission intensity reaches the
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camera (provided 100% reflectance coefficient of the flakes). This disadvantage is, however,
by far outweighed by the elimination of shadows, which can otherwise easily be mistaken
as flakes.

Half-transparent 

mirror

Optical window

Linescan camera

Lens

Polarization filterLED line light

Polarization filter

Plastic flake

Figure 6.4: Mirror setup to direct the LED illumination coaxially to the camera’s field of
view. The setup consists of a half-transparent mirror mounted at 45 degree to the optical
axis of the LED lamp and the conveyor belt and an optical window.

6.1.2 Spectroscopic acquisition unit

The spectroscopic acquisition unit consists of a custom-built spectral camera (Fig. 6.5) and
a high-power pulsed UV-LED line light. The spectral camera was built for the application
at hand and has the necessary TGFS frame accumulation mode (see Section 5.3). The
principle of spectral cameras was discussed in Chapter 3. The applied camera uses a
wide-angle lens with a 12 mm focal length to capture the fluorescence emissions across the
conveyor belt line by line of the parallel plastic flakes streams. On the front end of the
lens, an optical high-pass filter with cut-off wavelength 450 nm is mounted. The high-pass
filter is used to suppress the UV excitation light, which is orders of magnitude stronger
than the fluorescence emissions and might otherwise saturate the camera or disturb the
marker fluorescence spectra. The high-pass filter is not absolutely necessary when TGFS
measurements are carried out with excitation light that is always off during the image
acquisition. However, some remnants of the excitation light (afterglow) might still be
present during image acquisition due to the exponential decay of the LED emission in
practice and/or imperfect timing of the TGFS process.

The lens of the camera focuses fluorescent emission light from the scan line across the
conveyor belt on the entrance slit of the PGP imaging spectrograph. The spectrograph
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Figure 6.5: Custom-built spectral camera with removed protecting shell for demonstration
purposes.

disperses the light of the visual and near-infrared (VNIR) wavelengths between 400 nm
and 1000 nm and projects it onto the imaging sensor. The applied spectrograph achieves
a spectral resolution of approx. 2.8 nm with an entrance slit width 30 µm, which is a
good compromise when acquiring marker spectra with spectral bandwidth between approx.
10 nm and 20 nm (see Section 2.4.2).

The heart of the spectral camera is a grayscale CCD imaging sensor with 1600 (hor-
izontal) × 1200 (vertical) pixels of 7.4µm×7.4µm size. The horizontal dimension of the
sensor represents the imaged spatial line across the conveyor belt and the vertical dimen-
sion contains the spectral information of each pixel in that line. Thus, the camera allows
simultaneous acquisition of 1200 spectral samples between 400 nm and 1000 nm across the
500 mm wide conveyor belt providing the spectral sampling of 0.5 nm. The camera sup-
ports vertical (i.e. spectral) and horizontal (i.e. spatial across the conveyor belt) binning
up to factor 8 (see Section 3.4). For TGFS measurements the camera’s frame rate and read-
out time are the most critical parameters. Short read out time TR allows to accumulate
a larger number N of subframes and results in a larger sensor signal sN (see Chapter 5).
As explained in Chapter 3, the frame rate of the CCD camera depends on the number
of vertical lines (pixels) to read out. In the full frame mode, i.e. when all 1200 vertical
pixels are used, the applied camera can only achieve a frame rate of 44 Hz. With vertical
binning 8, the number of vertical lines is reduced to 150 and the corresponding frame rate
is increased to approx. 170 Hz. A further increase of the frame rate can be achieved by
selecting a vertical region of interest (ROI). The spectrograph’s active wavelength band is
400 nm – 1000 nm; yet, in the application at hand, emission spectra of all 6 fluorescent
markers are located in the wavelength band 450 nm – 750 nm (see Fig. 2.6b). Discarding
wavelength bands below 450 nm and above 750 nm further reduces the number of relevant
vertical pixels that need to be read out to 75 and increases the frame rate to approx. 225 Hz
with corresponding TR ≈ 4.4 ms. With these parameters, the spectral camera can acquire
up to 360 000 spectra per second. The spectral sampling becomes approx. 4 nm, which is
worse than the spectrograph’s spectral resolution, but is sufficient for a reliable classifica-
tion according to the simulation results shown in Section 4.9.5 and is a good compromise
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with respect to the S/N ratio, (low) marker concentrations and (high) measurement rates.
Similarly to the morphological unit, the spectral camera is synchronized with the rotary
encoder signal.

As fluorescence excitation light source a UV-LED line light with 395 nm central wave-
length and approx. 10 nm FWHM is employed. The availability of high-power UV-LED
line lights on the market is rather poor: the LED emission in the UV wavelength band
is usually weak due to physical limitations. Although not optimal, sufficient excitation
of all 6 markers simultaneously is possible with the selected LED with 395 nm central
wavelength (see Section. 2.4.2). The selected LED line light produces an irradiance of
approx. 650 W/m2 with continuous forward current 0.6 A, i.e. with no overdrive. With
forward current overdrive factor 10 (6 A) in pulsed operation mode, the irradiance of ap-
prox. 5200 W/m2 is produced, which is an increase of factor 8. Figure 6.6 shows the
measured irradiance produced by the LED line light as a function of the forward current
in pulsed mode.

The UV LED line light is positioned vertically at a small angle to the spectral camera’s
viewing axis and is focused on a 4-mm wide line. In contrast to the morphological acqui-
sition unit, where the loss of the intensity of the reflected light due to the double passing
through the half-transparent mirror is justified by the reduction of unwanted shadows,
utilizing a similar mirror system in the spectroscopic unit would reduce the intensity of
already very weak fluorescence emissions too much. Additionally, shadows from the flakes
on the conveyor belt (background) do not pose a significant problem for the acquisition
of the fluorescence emission. The line light is pulsed by the dedicated controller, which
is hardware-triggered by a custom-built electric circuit in order to synchronize the excita-
tion light pulses with the acquisition times of the spectral camera and facilitate the TGFS
measurement approach (see Section 5.3).

Once the measurement system had been mounted on the conveyor belt, necessary cal-
ibration procedures were carried out. First, both morphological and spectral acquisition
units were spatially calibrated in order to accurately map the pixels of both cameras onto
the real-world coordinates (x, y). Only with appropriate spatial calibration it is possible
to determine the y-position (across the conveyor belt) of plastic flakes on the conveyor
belt. Second, flat field correction was performed with both units. Flat field correction of
the camera image is necessary to avoid distortions due to lens vignetting, sensor photo-
response non-uniformity (PRNU), sensor dark current and fixed pattern noise (FPN) and
the light source non-uniformity [56]. The applied linescan camera is supplied with built-in
programmed routines for the flat field correction, which is carried out on-chip before the
read-out. The spectral camera does not have built-in routines for flat field correction,
therefore, the read out image had to be corrected in the software.

Additionally, the spectral camera was spectrally calibrated in order to account for
the non-uniform spectral response of the camera pixels and spectrograph. Radiometric
calibration was carried out using a calibrated broadband light source. The spectrum of
its emission was measured with the spectral camera and the result was compared with the
known spectral content of the light source. The radiometric correction was also carried out
in the software.
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Figure 6.6: Irradiance of light emitted by the LED line light used in the prototype with
different values of forward current in pulsed operation mode with tp = 10 µs and D = 10%.

Data streams from both linescan and spectral cameras were transferred via the Camera
Link interface to the framegrabbers and processed by the developed software (described
below). The software provides the location and class of all plastic flakes and passes these
results onto the sorting unit via TCP.

6.1.3 Sorting unit

Based on the information received from the measurement and classification system, the
sorting machinery selectively extracts plastic flakes from the conveyor belt according to
their plastic types and stores them in separate containers. The sorting unit is set-up as
a sequence of arrays with suction nozzles and a transport screw. Each array contains
50 suction nozzles of 3 different sizes according to the 3 size groups of plastic flakes (see
Fig. 6.7). The air pressure in the nozzles is optimized to the size of the flakes the nozzle
needs to extract. The transport screw is used to move extracted plastic flakes to the
associated container. Each array can be programmed to sort out any of the plastic types
known to the measurement system. However, each array can be programmed to sort out
only a single plastic type at a time. Therefore, for 63 plastic types, 63 arrays are required.
At the time of the experimental measurements (described in Chapter 7) only one array was
available and therefore only one plastic type could be sorted out with one run-through.
Unlabeled plastic flakes are not extracted by the sorting unit and fall off the conveyor belt
at its end into a separate container.

6.2 System throughput

The overall mass of plastic flakes that can be processed per unit time, i.e. the mass
throughput, depends on various parameters. Due to the low-light conditions of the TGFS
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Figure 6.7: Sorting unit array with 50 suction nozzles to extract flakes of a particular plastic
type from the conveyor belt. Suction nozzles are separated into groups of 3 different sizes
to fit the flake sizes produced by usual industrial plastic mills. The transport screw moves
the extracted flakes to the associated container.

fluorescence measurements, especially the measurement rate and thus the time available for
the acquisition of the flakes’ spectra is critical. Longer acquisition times result in higher S/N
ratio of the measured signals, but in lower conveyor belt velocity and thus throughput. For
a required mass throughput and for given system parameters, the maximal measurement
rate and conveyor belt velocity can be estimated using simple considerations for a fixed
focal length lens.

Figure 6.8b depicts the optical path of an ideal fixed focal length lens. The lens projects
the object plane (rectangular area of the conveyor belt across its moving direction, see
Fig. 3.4) on the image plane (sensor pixel array). Using the focal length F of the lens, all
relevant parameters such as the working distance, image size, angular FOV, magnification,
etc. can be calculated. F is the distance between the optical center of the lens and the focal
point. Larger F results in a larger optical magnification and a smaller opening angle, small
F represents wide angle lenses. The formulae used below are valid for a single convex lens.
Since most real-life optical systems use a combination of several lenses in order to achieve
high image quality, only approximate results can be achieved using the simple formulae for
a single lens [46]. These simple formulae, however, allow calculating the working distance
correct to several millimeters, which is sufficient here.

From the conveyor belt width and the focal length of the lens, the working distance d
necessary to cover the entire width of the conveyor belt is calculated as follows [46]:

d = F · (b/b′ + 1), (6.1)

where b is the object size (width of the conveyor belt) and b′ is the image size (width of the
imaging sensor), see Fig. 6.8a and 6.8b. With b = 500 mm, b′ = 1600 · 7.4 µm= 11.84 mm
and F = 12 mm, the necessary working distance is thus d ≈ 520 mm.
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Having the necessary working distance d and the spectrograph slit width l′ (see Sec-
tion 3.3), one can find the resulting width l of the spectrograph’s imaging line (i.e. the
width of the spectrograph’s rectangular ROI) on the conveyor belt by replacing b′ with the
slit width l′ and rearranging Eqn. 6.1:

l = l′ · (d/F − 1). (6.2)

With l′ = 30 µm, the width of the spectrograph’s imaging line hence is l ≈ 1.27 mm.
Having the width of the imaging line l and (statistical) knowledge about the plastic

flakes’ sizes and masses (also see Section 7.1), the conveyor belt velocity and spectral
camera’s frame rate required for a particular mass throughput can be derived. In this work,
relatively moderate mass throughput of 250 kg per hour was specified for the prototype.
With the above-mentioned separation of flakes into 3 groups, the average weight of one flake
in each group is 60 mg for the small flakes, 70 mg for the middle flakes, and 90 mg for the
big flakes. To achieve the 250 kg/h overall throughput, it is, therefore, necessary to process
approx. 1150/1050/750 – small/middle/big flakes per second, respectively. Although the
size distribution is almost Gaussian, the following calculation will be carried out based
upon small flakes since they represent the “worst case”. To cover one small flake of size
4.5 mm with an imaging line width of 1.27 mm, 4.5/1.27 ≈ 3.54 lines should be acquired.
However, in order to avoid acquiring fluorescence from two adjacent flakes, a minimal
space ∆l between flakes of one imaging line width should be kept. This means that to
appropriately capture one such flake, 3.54 + 1 = 4.54 acquired lines are necessary. It is
easy to derive the required conveyor belt velocity:

vc = 4.54 · l · n, (6.3)

where n is the number of flakes to be processed per second. With n = 1150 and l =
1.27 mm: vc = 6630.67 mm/s. Since plastic flakes are processed with the prototype system
in 50 parallel channels, vc/50 ≈ 132 mm/s is required.

Knowing the conveyor belt velocity vc and the width l of the imaging line of the spectral
camera, one can calculate the required frame rate simply by: vc/l = 132/1.27 ≈ 104 Hz.
The corresponding acquisition time is then given by Tm = 1/104 ≈ 9.6 ms. Therefore,
with the given read-out time TR ≈ 4.4 ms (see Section 6.1), there are Tm − TR = 5.2 ms
left for the required TGFS subframe accumulation. As described in Chapter 5, optimal
TGFS parameters for all 6 utilized fluorescent markers are pulse width tp = 10 µs, duty
cycle D = 10% and hence the duration of one subframe is tp/D · 100 = 100 µs. With this
setup, the accumulation of N = 52 subframes for TGFS measurements is thus possible.

6.3 Software setup

The software for data acquisition, storage, and processing was developed in National In-
struments LabVIEW© with the Vision Acquisition [92], Vision Development [93, 94] and
Multicore Analysis and Sparse Matrix toolkits [95, 96]. The software concept encompasses
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Figure 6.8: (a) Geometric parameters for spectral acquisition. The shaded rectangular area
corresponds to the imaging line (ROI) of the spectral camera. (b) Optical paths of a convex
lens. The object plane represents the conveyor belt and the image plane corresponds to
the sensor pixel array.

a highly parallel structure of overall 7 separate low-level modules for hardware control, data
acquisition, and processing (classification), plus 1 high-level module for user interaction.
Communication between the modules is realized via the LabVIEW queue mechanism [97].
All modules are synchronized using the signal from the rotary encoder installed on the con-
veyor belt; the spectral acquisition module and the UV line light are additionally triggered
by an external hardware clock to facilitate TGFS. Figure 6.9 illustrates the block diagram
of the developed software modules.

Modules (1) and (2) are responsible for the morphological and spectral image acquisi-
tion, respectively. Calibration (see Section 6.1) and adjustment of camera-related param-
eters are also carried out in these modules. Additionally, modules include subroutines to
control the illumination hardware. It should be noted that even with reduced spectral sam-
pling due to binning 8, the spectral camera produces large amounts of data. One spectral
image contains 1600× 75 single-precision floating-point values and is thus approx. 469 kB
large. Considering the necessary frame rate of 104 Hz, the spectral camera produces almost
48 MB/s. In order to avoid information loss due to inappropriate timing or OS events, the
data from both cameras are first passed to the buffers of the data storage modules (3) and
(4). There, it is extracted from the buffers and saved in binary format on the hard drive
as a backup. These data can later be read by the acquisition modules and emulate the
online mode for debugging.

Module (5) performs morphological image processing and analysis using the linescan
camera data. The module detects plastic flakes on the conveyor belt and determines
their sizes and positions. Particular care is taken with respect to the inhomogeneities of
the conveyor belt, specifically scratches (can be seen in Fig. 6.3b and 6.7). Due to the
movement of the conveyor belt, most of the scratches are oriented along the conveyor belt
and can be identified using edge detection approaches. Derived morphological information
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Figure 6.9: Block diagram of the software concept developed in LabVIEW. The software
controls the entire hardware of the prototype, carries out data acquisition (modules (1)
and (2)), storage (modules (3) and (4)), image processing (5), spectral classification (6),
and functional and morphological information merging (7) in a parallel fashion. Classi-
fication results and morphological information are forwarded to the sorting unit via the
TCP and stored on the hard drive for later analysis. The user interface module enables
a live display of images from both morphological and spectral acquisition units as well as
online monitoring of the classification. Adjustment of hardware parameters, calibration
procedures, and control of the acquisition is also performed in the user interface module
(8). Communication between modules is realized via the LabVIEW queue mechanism.

is passed to module (7), where it is stored in a dedicated database.

Module (6) carries out the classification of the acquired fluorescence spectra. The goal
of this module is to assign each and every plastic flake delivered on the conveyor belt to one
of the 63 known classes. The module implements several classification algorithms that were
described in Chapter 4 including SCC, ED and MLC and feature extraction methods like
PCA, LDA and unconstrained LSMA. In an online application, the numerical complexity
of the algorithm plays a critical role. Since there are only Tm ≈ 9.6 ms available for
processing of 1600 spectra (i.e. 1600 pixels in the spatial domain across the conveyor belt),
only 9.6 ms/1600 = 0.006 ms is left for the classification of each spectrum. If spectra
are processed one by one (i.e. not in parallel), the classification algorithm should run
very fast at a rate of larger than 1/0.006 ms≈ 166 kHz. Employing complex algorithms
such as NN or SVM might thus be not affordable from the timing perspective. Utilizing
the LabVIEW’s Multicore Analysis and Sparse Matrix Toolkit together with numerically
efficient algorithms helps accelerate the classification process.

The derived functional information (i.e. classes of the plastic flakes) is then sent to
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the database in the module (7), where it is merged with the morphological information.
The result is forwarded to the sorting unit via TCP. According to the class and position of
the flake on the conveyor belt, the control software of the sorting unit activates the right
suction nozzles at the required corresponding time instants.

For debugging purposes and offline classification with different algorithms as well as
performance evaluations, the database is stored on the hard drive. The statistical eval-
uation of the acquired data and classification performance evaluation are carried out in
MATLAB©.

The user interface module (8) provides the user with a means to interact with the
hardware (configuration, calibration, control, etc.) and monitor the classification in real-
time.
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Chapter 7

Experiments and simulations

This chapter presents the results of test measurements and classification performance in-
vestigations for the developed system prototype and is organized as follows: in Section 7.1
the most important aspects of the measurement campaign are discussed; classification re-
sults achieved with the measured spectra of 14 fluorescently labeled plastics are presented
in Section 7.2. In Section 7.3 simulations are employed to model spectra of additional 49
plastics and extend the classification performance investigations to the scenario with 63
plastics (i.e. 63 marker combinations, see Table A.1 in appendix A); Section 7.4 presents
a special practical case when markers are split into two groups and investigates the idea
of how to use one marker as a parity bit to increase the classification performance.

7.1 Experimental setup

For the experiments, 14 marker combinations were incorporated in 10 different plastics
(also see Section 7.3). Table 7.1 shows the assignment of marker combinations to the
plastics. The plastics are mostly POM and are of particular interest in the manufacturing
of high-quality plastic parts. In order to experimentally investigate the possibility to
encode additional information other than the plastics type using fluorescent markers (e.g.
customer ID, production charge, etc.), four plastics (Delrin 500NC010 white, Hostaform
C13031 white, Hostaform C13021 white, and Lexan LS2J-111 transparent) were used twice
in this experiment and labeled with two different codes. In order to decrease re-absorption
of the marker fluorescence by the hosting plastics and associated shape changes of the
fluorescence spectra [40], markers were carefully assigned based on the color of the plastics.
In order to ensure the production of plastics with representative mechanical and chemical
properties, professional industry-scale extruders were used. Marker concentrations were
adjusted in an attempt to equalize the fluorescence peak intensities of different markers
within each marker combination and achieve comparable fluorescence intensities with all
plastics (see Section 4.9.4). Concentrations between 500 ppm and 2000 ppm were used
with markers M1, M4, and M6, whereas concentrations up to 4000 ppm were necessary
with markers M2, M3, and M5 due to their lower fluorescence emission.
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Table 7.1: Assignment of combinations of markers M1-M6 to the 14 plastics.

Decimal
code/
Class

Markers/Binary code Plastic

M1 M2 M3 M4 M5 M6 Name Type Color

1 0 0 0 0 0 1 Delrin 500NC010 POM white

3 0 0 0 0 1 1 Duracon SW-01PS POM white

4 0 0 0 1 0 0 Hostaform C13021 POM white

5 0 0 0 1 0 1 Delrin 500NC010 POM brown

9 0 0 1 0 0 1 Tornoform T300MW4 POM white

10 0 0 1 0 1 0 Hostaform C13031 POM white

17 0 1 0 0 0 1 Lexan LS2J-111 PC transparent

18 0 1 0 0 1 0 Hostaform C13021 POM white

24 0 1 1 0 0 0 Hostaform C9021M POM white

27 0 1 1 0 1 1 Delrin 500NC010 POM white

32 1 0 0 0 0 0 Hostaform C13031 POM green

33 1 0 0 0 0 1 Hostaform C13031 POM white

36 1 0 0 1 0 0 Delrin 500NC010 POM yellow

37 1 0 0 1 0 1 Lexan LS2J-111 PC transparent

Overall, approx. 5 kg of each of the 14 plastic types were produced, resulting in approx.
70 kg of fluorescently labeled plastics. To produce representative plastic flakes, extruded
labeled plastics were first molded in solid objects and then ground using an industrial
plastics mill. Figure 7.1 shows flakes of Delrin 500NC010 in brown labeled with the code
“000101” (class 5) and of Hostaform C13010 in white labeled with the code “001010” (class
10). The size of the flakes typically varies between approx. 3 mm and 9 mm, as can be
seen in the histograms in Fig. 7.2. A small number of outliers – dust or large plastic
chunks – was discarded. In Fig. 7.3 plastics flakes can be seen on the conveyor belt in the
measurement system (described in Chapter 6).

When carrying out a classification performance test, it is important to be able to verify
decisions made by the system in order to accurately estimate the number of false decisions
and thus the values of TPR and PPV (see Section 4.8). One necessary condition is that
the plastic type of each and every measured flake is known a priori, otherwise, it becomes
impossible to determine whether flakes assigned to a class by the system actually belonged
to this class or not. Yet, this condition is difficult to achieve in practice: plastics of
different types can have a virtually identical appearance and it is thus impossible for the
experimenter to distinguish between them using e.g. a simple optical inspection procedure.
Since for an extensive statistical evaluation thousands of flakes need to be investigated (see
below), it is impossible to manually inspect and count every single flake. When a realistic
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(a) (b)

Figure 7.1: Typical plastic flakes produced by an industrial mill. (a) “Delrin 500NC010
Brown” labeled with the code “000101” (class 5). (b) “Hostaform C13031 White” labeled
with the code “001010” (class 10).

mixture of flakes of all plastic types is delivered on a conveyor belt, the verification of the
classification decision made by the system is thus not possible in practice.

This problem was solved here by measuring plastic types separately one after another
instead of a mixture of different plastics. In this case, it is exactly known which type
of plastic flakes are on the conveyor belt. However, two particular situations are not
considered by this approach. First, in the case of the mixture of different plastics, the
acquisition of the spectra of two or more adjacent flakes that belong to different plastics
may occur due to the finite optical resolution of the spectral acquisition system. The
measured fluorescence spectrum would contain a mixture of spectra of two or more different
plastic types depending on how many plastic types were in the field of view (FOV). Such
to the system unknown spectrum cannot be classified correctly, which leads to decreased
TPR and PPV values. This effect can be decreased with a minimum distance ∆l between
adjacent flakes on the conveyor belt (see Section 6.1). In practice, however, it does not
work 100% perfect.

Second, apart from the limitations due to the optical resolution, a similar effect may
occur with two or more not properly singulated flakes of different plastic types. In this case,
the measurement system will “see” one object consisting of different parts, each of which
with its own fluorescence spectrum. The classification of such objects can be problematic.

Both described situations may occur if a mixture of different plastics is delivered on
the conveyor belt since the singulation machinery does not work 100% perfect in practice.
Clearly, neither of the situations is possible when only flakes of one plastic type are used.
However, provided that flakes are correctly singulated, measuring one plastic type at a
time is virtually identical to measuring their mixture.
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(a) (b)

Figure 7.2: Histograms of the sizes of measured plastic flakes: (a) X (axis along the
conveyor belt, see Fig. 6.1) and (b) Y (axis across the conveyor belt).

Figure 7.3: Flakes of Delrin 500NC010 in yellow labeled with the marker combination
“100100” (class 36) being processed by the system prototype. The flakes enter from the
right side where morphological data are acquired with the linescan camera under white
LED illumination and leave the system on the left side where fluorescence spectra are
acquired under UV LED illumination.

Proper singulation is mandatory for the sorting machinery as well: if two or more flakes
of different plastic types are located too close to one another on the conveyor belt, even if
the measurement system succeeds to correctly identify the “connected group” as separate
flakes, an accurate physical sorting is impossible. In such a situation the sorting unit
either would have to skip such group of flakes (which would decrease the plastics recovery
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rate TPR), or attempt to sort such flakes (which inevitably would result in extracting
several adjacent flakes of different plastics types from the conveyor belt and moving them
to the same container, thus decreasing the plastics’ purity PPV). Since correct singulation
is crucial not only during the test phase but also under real-life sorting conditions, the
classification of groups of flakes of mixed plastic types is irrelevant. Hence, measurement
of plastics separately one after another, as carried out here, yields results very similar to
those expected in industrial practice.

7.1.1 Statistical considerations

Assessing classification performance requires a blind and fair experiment. The most im-
portant part of such an experiment concerns data that should be unbiased, representative,
and sufficient. The following conditions should be fulfilled:

1. Plastic flakes used in the experiment should be representative of the entire flakes’
population (sample quality).

2. For 6 fluorescent markers, all 26 − 1 = 63 possible marker combinations should be
present in the experiment (sample quality) if all 63 marker combinations are expected
to be present in practice.

3. The number of flakes of each plastic type should be equal or similar (sample size).

4. The number of flakes of each plastic type in the experiment should be sufficient
(sample size).

The first condition implies that the performance assessment of the system prototype
should be carried out using flakes very similar to those that are expected to be seen in
practice. In other words, the portion of flakes used in the experiment (the sample) should
be drawn randomly from the entire population of flakes.

The second condition is tightly linked to the first one and requires that flakes of all
plastics expected to be seen in practice should be present in the experiment (representative
data).

The third condition is necessary in order to avoid a bias towards any of the plastics. As
Eqns. 4.36 and 4.35 suggest, this condition is not strictly necessary if the macro-averaged
versions of TPR and PPV are used. However, having an equal number of flakes of each
type simplifies the interpretation of the confusion matrices (see also appendix F) and helps
achieve similar or at least comparable confidence intervals for all plastics (see below).

Condition number 4 must hold in order to achieve a statistically significant estimation
of the classification performance. A common way to estimate statistical significance is to
use confidence levels and confidence intervals. Having only a sample of limited size (limited
number of flakes), one can only find an estimate θ̂ of the parameter of interest θ (such as
the classification performance metrics TPR and PPV) of the entire population. Confidence
levels tell how probable it is that the true value of parameter θ lies within the estimated
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confidence interval [ θ̂−c; θ̂+c ]. The value c is called the margin of error and is calculated
using the estimate σ̂2 of the population variance σ2 [98]:

c =
Z · σ̂√
n
, (7.1)

where Z is the fractile of the normal standard distribution corresponding to the desired
confidence level, and n is the sample size (number of flakes in the experiment).

In case when the parameter θ is a real number, such as for example the average flake
size, σ̂2 is usually approximated by the square of the empirical standard deviation s2 of
the sample data. However, the goal of the experiments described in this chapter is to
estimate the classification performance metrics TPR and PPV, which both are in essence
proportions of correctly classified flakes (TP) to either all flakes (TP+FN) in case of TPR,
or to all detected flakes (including false alarms, TP+FP) in case of PPV. Furthermore,
each member of the sample, i.e. each flake, can be considered as a dichotomous variable:
the flake is classified either correctly (1) or incorrectly (0).1 In this case, σ̂ is approximated
by [98]:

σ̂ =

√
θ̂ · (1− θ̂). (7.2)

Combining Eqns. 7.1 and 7.2 results in:

c = Z ·

√
θ̂ · (1− θ̂)

n
. (7.3)

Equation 7.3 gives the margin of error for a qualitative estimation of the population
proportion [99]. If the margin of error is given, one can rewrite Eqn. 7.3 and find the
sample size n (number of flakes) necessary to achieve this margin of error with the desired
confidence level:

n =
Z2 · θ̂ · (1− θ̂)

c2
. (7.4)

According to Eqn. 7.4, the sample size n depends on the expected population parameter
estimate θ̂ (i.e. expected TPR or PPV), the desired confidence level (Z-value) and the
desired margin of error c. Generally, θ̂ (TPR or PPV) is unknown prior to the experiment.
However, for a worst-case estimation, θ̂ = 0.5 (50%) can be taken, since then θ̂ · (1 − θ̂)
reaches its maximum thus maximizing n. Z depends on the desired confidence level and is
taken from a table for the standard normal distribution [98]. Depending on the application,
most commonly used confidence levels are 90%, 95% and 99%, with corresponding Z-values
1.64, 1.96 and 2.58. In the experiments described in this chapter, 95% confidence level with
the maximum margin of error c = 0.01 (1%) is specified. This means, that in the worst-case
scenario (θ̂ = 0.5), the 95% confidence interval is 50%±1%. Substituting θ̂ = 0.5, c = 0.01
and Z = 1.96 in Eqn. 7.4 gives n = 9604, which is thus the necessary minimum sample

1Incorrect classification includes overlooked or missed flakes as well as those falsely classified.
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size (number of flakes) for the experiment. Clearly, as Eqn. 7.3 suggests, for other values
of θ̂ the same sample size n will result in a smaller margin of error for the same confidence
level. More realistic values required in practice should be larger than TPR = 95% and
PPV = 95% and result in a margin of error c = 0.0044 (0.44%) with sample size n = 9604.
For an almost perfect classification performance with TPR = 99% and PPV = 99%, the
margin of error becomes c = 0.0020 (0.20%).

In the experiments the rounded value n=10 000 was used. With TPR > 95% and
PPV > 95% the actual margin of error thus is c ≈ 0.43%. With TPR = 99% and
PPV = 99% the actual margin of error is c ≈ 0.20%.

7.2 Experimental results

This section presents the results of the experiment carried out in this work. Section 7.2.1
shows the results of the measurement of spectra of the 14 labeled and 1 unlabeled plas-
tics. Section 7.2.2 presents the classification performance investigation achieved with the
measured spectra. Section 7.2.3 discusses the classification performance in black plastics.

7.2.1 Measurement results

Overall, more than 150 000 (10 000× 14 fluorescently labeled and 10 000 unlabeled) flakes
were investigated. In order to increase the measurement rate of the spectral camera and
the S/N ratio of the measured spectra, spectral binning by a factor of 8 was used and only
wavelengths between 450 nm and 750 nm were acquired. Thus, each measured discrete
spectrum had Λ = 75 wavelength samples. Due to the binning and thus increased mea-
surement rate of approx. 104 Hz and shorter camera’s read-out time of TR ≈ 4.4 ms (see
Section 6.2), N = 52 subframes could be acquired during each TGFS measurement with
the pulsing parameter set to tp = 10 µs and D = 10%.

In the following, plastics labeled with marker combinations will be referred to as
“classes”, numbered according to the decimal code of the marker combinations given in
Table 7.1. Figures 7.4 and 7.5 depict the average fluorescence emission spectra of the 14
investigated classes acquired with the measurement system prototype, the spectra are nor-
malized for better presentation. Even though an effort was made to equalize the relative
fluorescence emission peak intensities of the markers by adjusting their individual concen-
trations in the different plastics, in many cases the relative marker peak intensities still
differ from one another. Especially marker M6 has at least 5 times higher peak intensity
in comparison to the other markers in classes 3, 9, 17, 27, 33, and 37.

Mean values and standard deviations of the S/N ratio (see Eqn. 3.3) of the acquired
spectra of the investigated flakes are shown in Table 7.2. As can be seen, the average S/N
ratio of all classes is higher than 10 dB which is the minimum value derived in Chapter 4
required for highly reliable classification. However, as the standard deviations between 3
and 4 dB indicate, the S/N ratio of a small number of flakes actually drops below the 10 dB
margin. Thus, the classification of those flakes can be problematic. The global average
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Figure 7.4: Normalized measured emission spectra of fluorescently labeled plastics (classes
1 to 18, see Table 7.1). The shown spectra are averaged over all 10 000 flakes within each
class.
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Figure 7.5: Normalized measured emission spectra of fluorescently labeled plastics (classes
24 to 37, see Table 7.1). The shown spectra are averaged over all 10 000 flakes within each
class.
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Table 7.2: Mean values (S/N mean) and standard deviations (S/N SD) of the S/N ratio
in dB of the acquired spectra of the investigated flakes.

Class 1 3 4 5 9 10 17 18 24 27 32 33 36 37
S/N mean 26.3 22.0 22.6 25.9 19.6 19.9 22.6 18.7 21.3 24.4 16.7 24.4 17.6 23.5
S/N SD 4.1 3.9 4.0 3.8 3.6 3.3 3.5 3.7 3.7 3.7 2.9 3.6 3.2 3.7

of the S/N ratio over all 14 classes is approx. 21.8 dB. Distributions of the S/N ratio of
each class can be found in Fig. D.1 in Appendix D and provide a detailed insight into the
situation.

The measurements also identified a practical problem: it turned out, despite using
professional extruders, the relation between the peak intensities of the markers is not
constant within each class and varies from flake to flake. Figure 7.6 shows the situation for
class 27 (code “011011”). Histograms in Fig. 7.6a-7.6c show fluctuations of the intensities
of markers M2, M3, and M5 relative to the intensity of marker M6 in the spectra of all
10 000 investigated flakes of class 27. In order to reduce the influence of noise, the intensity
values in the histograms were averaged over two neighboring samples (discrete wavelengths)
around the peak intensity wavelength. As can be seen, intensity fluctuations of roughly
5% occurred (SD value). This results in spectra that look different while they actually
belong to the same class. The “minimum spectrum” and the “maximum spectrum” (in
terms of the peak intensities of the individual markers) of class 27 are shown in Fig. 7.6d.
In the minimum spectrum, the spikes corresponding to the markers M2, M3, and M5
are 20 to 30 times smaller than the spike of marker M6. Especially in the presence of
noise, it is very problematic to distinguish such spectrum from the one belonging to class
1 (code “000001”) with marker M6 only (compare with Fig. 7.4a). This problem can only
occur with classes that contain two or more markers and is probably due to the marker
incorporation process. Figure D.2 in Appendix D shows histograms of relative marker
intensity fluctuations within other measured plastics. Intensity fluctuations of about 5-
10% occurred in the other plastics.

7.2.2 Classification results with 14 measured classes

Classification of the measured fluorescently labeled plastic flakes was here carried out using
the SCC algorithm (see Section 4.2.3) and the classification decision was made based on the
maximum SCCi value, where i = 1, 2, ..., C is the class label. Since with 6 markers C = 63
classes exist, the classifier had to decide from 63 classes, i.e. each measured spectrum
was compared with 63 reference spectra (see the binary coding scheme in Table A.1 in
Appendix A). In order to improve the purity of the resulting material and sort out unlabeled
plastics or those labeled with “wrong” (e.g. counterfeit) fluorescent markers, a threshold
T was set for the SCCi value. Flakes with SCCi values less then T were assigned to class
64 “unlabeled”. The value T was chosen according to the following considerations.

As mentioned in Section 4.8, two classification performance metrics are used in this
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Figure 7.6: Histograms of the peak intensities of markers (a) M2, (b) M3, and (c) M5
relative to the peak intensity of marker M6 in the spectrum of class 27 (code “011011”).
(d) Maximum and minimum spectra of class 27 in terms of the (peak) intensities of the
individual markers.

study: TPR and PPV. In terms of plastics recycling, the former can be thought of as the
recovery rate, i.e. percentage of the total amount of plastics correctly classified and sorted
by the system; the latter represents the purity of the resulting recycled plastic material.
Although different situations may require different priorities, it is reasonable to assume that
purity of the resulting material is of utmost priority in plastics recycling, while recovery
rate is secondary [4]. Under this assumption the choice of the threshold value T becomes
straightforward: choose T to maximize PPV while keeping TPR at acceptable levels.

Figure 7.7 shows the mean TPRM and PPVM (macro-averaged) values derived from
the 140 000 measured spectra of the 14 fluorescently labeled plastics flakes as function of
the threshold T. As can be seen, T values between approx. 0.75 and 0.9 lead to large PPV
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Figure 7.7: Classification performance (TPRM and PPVM macro-averaged over 14 classes)
as function of the threshold value T.

values. In this range of T, TPRM only changes by approx. 0.1%, which is less than the
margin of error (approx. 0.20%, see Section 7.1.1). This behavior can be better understood
using the histogram of the SCCi values of the measured spectra of all 150 000 investigated
flakes shown in Fig. 7.8. Most of the values lie between approx. 0.9 and 1, and apparently
correspond to the labeled flakes (14 relevant classes). A small number of SCCi values
are distributed around SCCi = 0.7, and mostly correspond to the unlabeled flakes (i.e.
class 64). Hence choosing the threshold T between approx. 0.75 and 0.9 leads to large
PPV. Since according to Fig. 7.7, TPR decreases above T ≈ 0.9, T = 0.85 is used in the
following.

Classification results of the 14 fluorescently labeled plus one unlabeled plastics are
summarized in Fig. 7.9. The vertical bars depict individual TPRi and PPVi values of each
class ωi. TPRi and PPVi values of all classes except class 64 lie between 99% and 100%,
which proves a really high performance, but still not all flakes were correctly classified.
A deeper insight into the reasons for particular misclassifications can give the so-called
confusion matrix, which not only shows what percentage of flakes belonging to a specific
class were misclassified, but also what particular class those flakes were incorrectly assigned
to. The confusion matrix of the results shown in Fig. 7.9 can be found in Tables F.1-F.2
in Appendix F.

Some particular cases of misclassification require a closer look. According to Fig. 7.9,
class 17 (binary code “010001”) had the lowest purity PPV17 = 99.26%. As can be seen in
Tables F.1-F.2, 12 flakes that belong to class 1 (code “000001”), 33 flakes of class 3 (code
“000011”), 27 flakes of class 9 (code “001001”) and 2 flakes of class 33 (code “100001”)
were incorrectly assigned to class 17. The reason for that can be seen in Fig. 7.4 and
7.5 where the fluorescence emission spectra of these classes are shown. All 5 classes have
marker M6 in common (see Table 7.1), whereas class 17 additionally has marker M2, class
3 – marker M5, class 9 – marker M3, and class 33 – marker M1. However, those additional
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Figure 7.8: SCC values of the measured spectra of 150 000 flakes of 14 labeled and 1
unlabeled classes.
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Figure 7.9: Classification performance per class (individual TPRi and PPVi) achieved with
measured data (see text). Macro-averaged values are TPRM = 99.76%, PPVM = 99.88%
and F1-scoreM = 99.82%.
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markers have lower fluorescence emission intensities in comparison to marker M6. As
already pointed out, the equalization of the (peak) intensities of different markers helps
achieve better classification performance but is an empirical and iterative process. In this
experiment, the peak intensity of marker M6 turned out to be about 5 to 7 times larger
than the peak intensities of markers M1, M2, M3, and M5 in classes 3, 9, 17, and 33. This
does not pose a problem for classification as long as the S/N ratio of the acquired spectra
is sufficiently high. For some flakes, however, the marker fluorescence might be extra low,
e.g. if the marker concentration of the flake is at its lower limit and/or the flake size is
small and/or it is located on the conveyor belt such that a large portion of the excitation
light is reflected of its surface. In such situations, the fluorescence of one or more markers
might be partially or even fully buried in noise. Markers with larger fluorescence intensities
(here M6) will be influenced less than markers with smaller intensities (M1, M2, M3, M5).
In other words, in the multidimensional feature space spanned by the flakes’ fluorescence
spectra, the (spectral) feature vector points into the direction of marker M6 with only small
variations due to the other less “strong” markers. Measurement noise might have the same
effect and would provoke classification errors. Relative marker intensity fluctuations might
aggravate the situation even further (see Fig. D.2).

The same explanations hold true for the 23 flakes actually belonging to class 3 (code
“000011”) and 17 flakes of class 17 (code“010001”) that were falsely assigned to class 1
(code “000001”) decreasing its purity to PPV1 = 99.60%; and 14 flakes that belong to class
17 were assigned to class 3 resulting in PPV3 = 99.98%. The intensities of both markers
M2 and M5 are low compared with marker M6 in these classes.

Similarly, as Fig. 7.4e and 7.5b show, the difference between the emission spectra of
classes 9 (code “001001”) and 27 (code “011011) is rather subtle: intensities of markers M2
and M5 in class 27 are very low in comparison to the dominant marker M6. Insufficient
class separation in the multidimensional (spectral) feature space and low S/N ratio were the
reasons that 21 flakes belonging to class 9 were falsely classified as class 27 (see Tables F.1-
F.2).

Similarly, spectra of classes 33 (code “100001”) and 37 (code “100101”) only differ in
the small spike of marker M4 present in the latter (see Fig. 7.5d and 7.5f), which in 12
cases was insufficient to distinguish between them: 6 flakes that belong to class 33 were
falsely classified as class 37 and 6 flakes that belong to class 37 were assigned to class 33.

An additional reason for the misclassification of some spectra of class 17 may be due
to the fact that code 17 was incorporated into the transparent plastic (see Table 7.1). Due
to lower absorption of the UV excitation light by the transparent plastic, fewer fluorescent
marker molecules get excited and the resulting fluorescence emission is weaker compared
to opaque plastics (leading to a small S/N ratio).

Class 32 (binary code “100000”) has the lowest TPR32 = 99.02%. As can be seen in
Tables F.1-F.2, SCCi values for 98 flakes were below the threshold T and were assigned to
class 64. As it turned out, those flakes were smaller than 2 mm in size and thus had an
S/N ratio lower than 10 dB. For the same reason 7 flakes from class 10 (code “001010”), 45
flakes from class 18 (code “010010”), and 8 flakes from class 36 (code “100100”) were falsely
classified as class 64, thus decreasing their individual TPRi values to 99.90%, 99.54% and
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99.85%, respectively.
As expected, due to the thresholded correlation coefficient, class 64 “unlabeled” has

the lowest PPV64 = 98.43%, which means that 1.57% of all flakes assigned to this class
actually belonged to other classes. On the other hand, TPR64 = 100% indicates that
each and every of the 10 000 actually unlabeled plastic flakes was correctly classified and
therefore not a single unlabeled flake would “cross-contaminate” the labeled plastics.

TPRM and PPVM macro-averaged over 14 classes are 99.76% and 99.88%, respectively.
Overall, out of 150 000 investigated plastic flakes only 338 were classified incorrectly, which
is below 0.3%. What is important, the individual purity (PPVi) of all 14 relevant classes
(i.e. fluorescently labeled plastics) is well above 99%, which is sufficient for a good recycling
quality.

These investigations provide valuable insight into the behavior of the measurement
and classification system in practice. With regard to classification performance, two main
problems with the acquired fluorescence spectra were identified. First, unequal relative
peak intensities of the markers can degrade class separability therefore making classifica-
tion more difficult. Adjusting marker concentrations for each marker-plastic combination
(each class) can help reduce or overcome this problem. However, such adjustment is an
iterative process requiring several repetitions of plastics labeling production per class (also
see Section 2.5). This process might be costly though necessary if the highest possible
classification performance needs to be achieved in practice. Another option could be to
sacrifice one marker to be employed as a parity bit (see Section 7.4).

The second problem is associated with extra low S/N ratio, which can be the case if
flakes are small (here approx. 2 mm) and/or the marker concentration is at its lower limit.

Overall, the experiments have proven that the TGFS measurement approach can suc-
cessfully eliminate the influence of the AF and that a highly reliable classification of fluo-
rescently labeled plastics is possible in practice.

7.2.3 Classification of black plastics

The classification performance of the developed measurement system had so far been inves-
tigated using uncolored or light-colored plastics labeled with fluorescent markers. However,
dark colored or even black plastics are of high interest in certain industry fields such as
the automotive industry. The main problem with fluorescence-based inspection of black
plastics is that they highly absorb the excitation light and emit almost no fluorescence in
the visible and NIR wavelength range. Moreover, black plastics absorb photons emitted by
the markers such that only a small portion of the stimulated fluorescence emission leaves
the surface of the plastics to be captured by the spectral sensor. As a result, the S/N
ratios of the measured spectra are very low causing many misclassified or missed flakes. In
order to investigate the performance of the developed system prototype with black plastics,
marker M6 was incorporated into the commercial black plastic “Delrin 500NC010 Black”
using industrial extruders as before. Labeling only with marker M6 corresponds to class 1
(code “000001”) in the 6-bit binary coding scheme used here. Due to the high absorbance
of the black dye, marker concentrations approx. 5 times higher than with light-colored
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plastics were necessary in order to achieve fluorescence emission intensities comparable to
those in light-colored plastics.

Since “Delrin 500NC010 Black” was labeled with the same marker M6 as “Delrin
500NC010 White” (see Table 7.1), and both plastics have flat reflectance spectra that
do not change the spectral shape of the markers, their fluorescence emission spectra are
very similar (see Fig. 7.10a). Therefore, the measured spectra of the black plastic were
defined to be class 1 and classified along with the spectra of the 13 plastics of classes 3–37
(see Table 7.1).

Overall, approx. 10 000 flakes of the black plastic were processed. Despite the higher
marker concentration, the average S/N ratio of the measured spectra was only approx.
8.6 dB, where spectra of 66 flakes had S/N ratios below 0 dB (see histogram in Fig. 7.10b).
Nevertheless, successful classification was possible: only 24 flakes out of the 10 000 were
incorrectly assigned to class 17 and the rest correctly to class 1, which corresponds to
TPR = 99.76% and PPV = 99.60%, which is basically equal to that achieved with
“Delrin 500NC010 White” in the experiment in Section 7.2.2.

Overall, the successful classification of a black plastic was possible with the developed
system prototype. Naturally, a higher marker concentration was necessary with black
plastics in order to achieve a classification performance comparable with white plastics.
The same results could be achieved for the same marker concentration and decreased
measurement rate (lower conveyor belt velocity, longer measurement time, larger number
N of accumulated subframes in the TGFS measurements), or increased intensity of the
excitation light (see also Section 7.3.4).

7.3 Simulation results

The developed system is able to simultaneously identify up to 63 different plastics labeled
with 63 binary combinations (classes) of 6 fluorescent markers. Therefore, in order to thor-
oughly evaluate the system performance, all 63 plastics should be present in the experiment.
However, the production of such a large number of fluorescently labeled plastics in amounts
and quality needed for a statistically significant experiment is problematic. Professional in-
dustrial plastics extruders that provide representative samples for the experiment can only
operate with large amounts of raw material and are expensive to run. Producing plastics
in small amounts using laboratory-scale equipment could reduce the costs, but would not
guarantee a representative marker incorporation process with sufficient quality. For these
reasons, in order to investigate the situation when all 63 plastics are present, simulations
with regard to the additional 63 − 14 = 49 plastics were performed. To achieve the most
realistic practical conditions, the simulation parameters were derived from the experimen-
tal data of the 14 plastics. In particular, the same number of spectra per class with the
same S/N ratios were used in the simulations. Additionally, relative marker intensities
were modeled for each class exactly as they were in the experimental data (see Fig. 7.4
and 7.5). Simulations were set up such that the spectra of all markers were resampled in
order to match the spectral sampling of the measured spectra (approx. 4 nm).
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Figure 7.10: (a) Comparison of normalized fluorescence emission spectra of “Delrin
500NC010 White” and “Delrin 500NC010 Black” both labeled with marker M6. The
marker concentration for the black plastics had to be 5 times higher compared to the white
one. (b) S/N ratio of 10 000 measured spectra of “Delrin 500NC010 Black” labeled with
marker M6.

7.3.1 Model validation

To validate the employed simulation model with experimental data, spectra of experimen-
tally investigated 14 marker combinations were simulated as follows. First, all 14 marker
combinations were “incorporated” into the plastics as in the experiment by multiplying
their fluorescence spectra with the plastics’ absorption spectra [40]. Next, the relative
marker intensities were adjusted to match those measured in the experiment. In order to
achieve the same confidence intervals (see Section 7.1.1) as in the experiment, the same
sample size (10 000 flakes per class) was used in the simulations. Finally, the spectra
were corrupted with noise most realistic for the prototype (see Section 6.1.2) in order to
achieve the same S/N ratios as in the experiments. Examples of the resulting simulated
spectra for classes 9 and 27 compared to the measured spectra of the same classes are
shown in Fig. 7.11. As can be seen, apart from individual noise realizations, measured
and simulated spectra of both classes are in good agreement. Comparison of measured
and simulated spectra of all 14 classes can be found in Fig. E.1-E.3 in Appendix E. The
measured and simulated spectra of the other classes are too in good agreement.

Figure 7.12a shows classification results achieved with the 14 simulated marker com-
binations. As can be seen, the results are in good agreement with those achieved in the
experiments (see Fig. 7.9). Figure 7.12b depicts the ∆TPRi, ∆PPVi and ∆F1-scorei values
– the difference between results in the experiments and in the simulation. The individual
TPRi and PPVi values of all classes except class 64 “unlabeled” do not differ by more
than ±0.2% (absolute value), which is equal to the margin of error (see Section 7.1.1). In
fact, the difference in the PPVi values of all classes except #17 and #64 is below ±0.1%.
The biggest difference in the TPRi and PPVi values is with classes 17 and 18: in the



144 7. Experiments and simulations

450 500 550 600 650 700 750

Wavelength in nm

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

N
or
m
al
iz
ed

fl
u
or
es
ce
n
ce

in
te
n
si
ty

class 9 (001001)

Measured

Simulated

M3

M6

(a)

400 450 500 550 600 650 700 750 800

Wavelength in nm

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

N
or
m
al
iz
ed

fl
u
or
es
ce
n
ce

in
te
n
si
ty

class 27 (011011)

Measured

Simulated

M3

M6

M5

M2

(b)

Figure 7.11: Comparison of measured and simulated spectra of (a) class 9 and (b) class
27. Apart from individual noise realizations, measured and simulated spectra are in good
agreement.

simulations TPR17 is 0.17% smaller, PPV17 is 0.12% larger, and TPR18 is 0.18% smaller
than in the experiment. The difference in the F1-scorei values of all classes except #64 is
below 0.1%, and with the exception of classes 10, 18 and 33 it is below 0.05%.

One noticeable difference is that in the simulations the purity of class 64 PPV64 =
97.46% is lower by approx. 1% than in the measurements, which indicates that in the
simulations more labeled flakes were sorted out as unlabeled. This can also be seen from
the slightly lower TPRi values of the 14 labeled plastics in Fig. 7.12 in comparison to
Fig. 7.9.

The macro-averaged classification performance of the 14 classes in the simulations
(TPRM = 99.62%, PPVM = 99.92% and F1-scoreM = 99.79%) almost does not differ from
that in the experiment (TPRM = 99.76%, PPVM = 99.88% and F1-scoreM = 99.82%, see
Fig. 7.9). Naturally, there are differences in the TPR and PPV values between simulations
and the experiment, because in practice the incorporation of markers into plastics comes
with some unpredictable influences. However, with the exception of class 64 “unlabeled”
these differences are below the margin of error 0.2% and can thus be tolerated. Overall,
the simulation models the reality very well and can thus be trusted.

7.3.2 Assignment of different codes to the same plastics type

In Section 7.3.1 the marker combinations were “incorporated” into plastics exactly as in
the experiment in Section 7.2 (see Table 7.1). In the experiment, the assignment of mark-
ers and marker combinations to the plastics was carried out in such a way that absorption
of marker fluorescence by the plastics due to their colors was (almost) avoided. However,
such an assignment requires the measurement of the plastics’ absorption/reflectance spec-
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Figure 7.12: (a) Classification performance per class (individual TPRi and PPVi) achieved
with simulated spectra of 14 classes. TPRM = 99.6%, PPVM = 99.9% and F1-scoreM =
99.79%. (b) The difference between classification performance achieved in the simulations
and in the experiment in Section 7.2.2.

tra, which might not always be possible. Additionally, as already mentioned, the fluorescent
labeling of plastics can be used not only for recycling purposes, but also to encode any
desired information, for example, customer IDs, production charge numbers, or for coun-
terfeit protection. It is thus important to know how the assignment of different marker
combinations (classes) to the same plastic type influences the classification performance.

In this section, computer simulations are employed to investigate the different assign-
ments of marker combinations (classes) to plastics: all 14 marker combinations were sub-
sequently “incorporated” into the same plastic. This was repeated for the 10 plastics used
in the experiment (see Table 7.1). The “incorporation” process was the same as that de-
scribed in Section 7.3.1 and included (1) adjustment of the markers’ individual fluorescence
emission intensities due to the different marker concentrations, (2) multiplication of marker
spectra with the absorption spectra of the corresponding plastics, and (3) corrupting spec-
tra with a realistic noise of the same power as in the experiment to achieve the same S/N
ratio of the 14 classes (see Table 7.2). For each class, 10 000 random noise realizations were
generated.

The simulated spectra were again classified using the SCC algorithm with the threshold
value T = 0.85. The classification results achieved with each of the 14 classes for all 10
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plastics are summarized in Tables 7.3 (TPRi values) and 7.4 (PPVi values). The last
column in both tables contains TPRM and PPVM values macro-averaged over the 14
(fluorescently labeled) classes. As can be seen, for most of the (white) plastics, there is
not much difference in the classification performance when all 14 classes are incorporated
into the same plastic type. In fact, the difference in the macro-averaged values is smaller
than the margin of error 0.2% (see Section 7.1.1), thus no definite “best assignment” can
be selected here. That is due to the fact that white and light-colored plastics usually
have almost flat absorption/reflectance spectra, and almost no wavelength-dependent re-
absorption of marker fluorescence emission by such plastics occurs and hence the spectral
shape of the markers is not (significantly) changed.

In contrast, with colored plastics, some marker assignments can be very unfavorable for
the classification. As can be seen in Tables 7.3 and 7.4, for example in Hostaform C13031
green a particularly bad recovery rate TPRi was achieved with classes 4 (code “000100”),
18 (code “010010”), 27 (code “011011”), 36 (code “100100”) and 37 (code “100101”),
and a very low plastics purity PPVi was attained with classes 27, 32 (code “100000”),
33 (code “100001”) and 37. This can be explained using the reflectance spectrum of
Hostaform C13031 green shown in Fig. 7.13. The reflectance spectrum shows the amount
of light that gets reflected by the plastic as a function of the wavelength. Provided the
plastic does not transmit light, the inverse of the reflectance spectrum shows what amount
of light gets absorbed by the plastic as a function of the wavelength. For example, the
reflectance coefficient of approx. 38% at 535 nm means that 38% of monochromatic light of
wavelength 535 nm gets reflected by “Hostaform C13031 green”, and 62% is absorbed (since
“Hostaform C13031 green” is a non-transparent plastic its light transmittance coefficient
is virtually zero). As the reflectance spectrum of “Hostaform C13031 green” shows, in
the wavelength range between approx. 600 nm and 700 nm only approx. 15% of light
gets reflected (i.e. 85% is absorbed), and in the wavelength range between 500 nm and
550 nm the reflectance coefficient is well above 30%. This means that the fluorescence
emissions of markers M1 and M2 are less absorbed by this plastic than the emissions of
markers M3, M4, M5, and M6 (see marker fluorescence emission spectra in Fig. 2.6b). As
a result, Hostaform C13031 green, class 4 (code “000100”) was in some cases misclassified
as class 20 (code “010100”), class 27 (code “011011”) was sometimes falsely classified as
class 25 (code “011001”), class 36 (code “100100”) was misclassified as class 32 (code
“100000”), and class 37 (code “100101”) was misclassified as class 33 (code “100001”),
which reduced the individual TPRi and PPVi values of these classes. In fact, the value of
PPV37 in “Hostaform C13031 green” could not be calculated, since not a single spectrum
was classified as class 37 such that TP37 = 0 and FP37 = 0, and thus also TPR37 = 0.

Similar problems were identified with “Delrin 500NC010 brown”. As can be seen in
Fig. 7.13, “Delrin 500NC010 brown” reflects less light at wavelengths 450–570 nm (re-
flectance coefficient approx. 15%), where emission spectra of markers M1, M2, and M3
are located, than at wavelength 570–750 nm (reflectance of approx. 29%), where emis-
sion spectra of markers M4, M5 and M6 are situated. Therefore, for example the already
“weak” intensity of marker M2 gets decreased compared to the already “strong” marker
M6 (see Section 7.2.2) in “Delrin 500NC010” brown and the overall spectrum of class
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Table 7.3: TPRi values achieved with the SCC classification algorithm when the 14 classes
are incorporated into the same plastics type, for each of the 10 plastics types used in the
experiment. Per class and plastic, 10 000 random noise realizations were generated with
the same S/N ratios as in the experiment (see Table 7.2). Values smaller than 98% are
marked red.

Plastic Class Macro-
averagedName Color 1 3 4 5 9 10 17 18 24 27 32 33 36 37 64

Delrin 500NC010 white 99.93 98.93 99.52 99.65 98.65 99.78 99.08 99.36 99.90 99.89 99.01 99.81 99.72 99.46 100 99.48

Duracon SW-01PS white 99.92 98.94 99.43 99.65 98.70 99.77 99.11 99.39 99.89 99.84 99.00 99.84 99.70 99.85 100 99.50

Hostaform C13021 white 99.93 98.85 99.47 99.73 98.65 99.79 99.14 99.37 99.90 99.87 99.02 99.90 99.69 99.85 100 99.51

Delrin 500NC010 brown 99.92 99.12 99.72 99.90 97.71 99.78 81.34 98.59 99.80 99.15 99.18 99.36 83.49 1.88 100 89.92

Tornoform T300MW4 white 99.93 98.96 99.54 99.70 98.55 99.75 98.70 99.34 99.90 99.85 99.02 99.84 99.71 99.60 100 99.46

Hostaform C13031 white 99.94 99.22 99.52 99.60 98.77 99.82 99.14 99.37 99.89 99.86 99.04 99.92 99.70 99.90 100 99.55

Lexan LS2J-111 transparent 99.93 99.19 99.51 99.60 98.74 99.77 99.25 99.35 99.89 99.86 99.01 99.90 99.69 99.92 100 99.54

Hostaform C9021M white 99.93 98.93 99.47 99.73 98.66 99.78 99.09 99.36 99.90 99.89 99.02 99.90 99.69 99.85 100 99.51

Hostaform C13031 green 99.91 98.73 87.90 99.92 99.78 99.71 99.94 32.54 99.90 0.32 98.95 100 21.30 0 100 74.21

Delrin 500NC010 yellow 99.94 98.96 99.46 99.71 98.64 99.78 99.15 99.37 99.90 99.83 99.07 99.57 99.75 93.39 100 99.04

Table 7.4: PPVi values achieved with the SCC classification algorithm when the 14 classes
are incorporated into the same plastics type, for each of the 10 plastics types used in the
experiment. Per class and plastic, 10 000 random noise realizations were generated with
the same S/N ratios as in the experiment (see Table 7.2). Values smaller than 98% are
marked red.

Plastic Class Macro-
averagedName Color 1 3 4 5 9 10 17 18 24 27 32 33 36 37 64

Delrin 500NC010 white 99.57 99.89 100 100 99.99 100 99.90 100 100 99.65 100 99.48 100 99.95 97.48 99.89

Duracon SW-01PS white 99.67 99.92 100 100 99.99 100 99.86 100 100 99.61 100 99.86 100 99.95 97.48 99.92

Hostaform C13021 white 99.70 99.91 100 100 99.99 100 99.86 100 100 99.58 100 99.86 100 99.97 97.48 99.92

Delrin 500NC010 brown 86.41 97.84 100 100 99.47 100 99.85 100 100 99.36 100 50.48 100 99.47 96.53 95.21

Tornoform T300MW4 white 99.54 99.84 100 100 99.99 100 99.89 100 100 99.57 100 99.63 100 99.96 97.39 99.89

Hostaform C13031 white 99.76 99.92 100 100 100 100 99.94 100 100 99.67 100 99.90 100 99.98 97.57 99.94

Lexan LS2J-111 transparent 99.78 99.93 100 100 100 100 99.93 100 100 99.64 100 99.92 100 99.96 97.47 99.94

Hostaform C9021M white 99.58 99.89 100 100 99.99 100 99.89 100 100 99.65 100 99.85 100 99.97 97.47 99.92

Hostaform C13031 green 99.89 100 100 100 100 100 99.87 100 100 84.21 78.46 50 100 – 45.33 93.26

Delrin 500NC010 yellow 99.68 99.90 100 100 100 100 99.89 100 100 99.60 100 93.79 100 99.98 97.57 99.49

17 (code “010001”) becomes very similar to that of class 1 (code “000001”) resulting in
misclassifications and low TPR17 = 81.34% and PPV1 = 86.41%.

Nevertheless, as the experimental measurements in Section 7.2 confirmed, the problems
with absorption of the marker emissions by colored plastics can be avoided if a careful
assignment of markers to such plastics is carried out. For example, not assigning markers
M3, M4, M5, and M6 to green plastics would help avoid many misclassifications of classes
4, 18, 27, 32, 33, 36, and 37, and not assigning markers M1, M2, and M3 to brown plastics
would help avoid the decrease of classification performance with classes 1, 17, 36, 37,
and 33. Therefore, paying attention to the plastics’ color in the assignment of marker
combinations is a necessary step for the fluorescent labeling of plastics.
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Figure 7.13: Measured reflectance spectra of 3 colored plastics: yellow, green and brown.

7.3.3 Classification results with 14 measured and 49 simulated
classes

In order to model spectra of the additional 63−14 = 49 classes in the most realistic way, the
relative intensities of the markers within the classes were adjusted to match those achieved
in the measurements (see Fig. 7.4 and 7.5). Per class 10 000 random noise realizations
were generated in order to achieve the same confidence intervals as in the experiment in
Section 7.2. The S/N ratio of the spectra of the additional 49 classes was 21.8 dB, which
is the mean S/N ratio of the spectra of the 14 measured classes (see Table 7.2). The
additional 49 classes were “incorporated” into the white “Delrin NC500NC010” using the
procedure from Section 7.3.1.

Figure 7.14 shows the TPRi and PPVi values for all 64 classes (14 measured labeled
plastics, 49 simulated labeled plastics and 1 measured unlabeled plastic). Despite the
increased number of classes and hence the more complicated classification, the TPRi and
PPVi values do not decrease below 99%. Moreover, the TPRi and PPVi values of the 14
measured plastics did not decrease in comparison to the case with only these 14 plastics
present. The corresponding confusion matrix can be found in Appendix F in Tables F.3-
F.4. In addition to the findings in Section 7.2, several cases of misclassification are worth
noticing.

According to Tables F.3-F.4, 12 flakes that belong to class 23 (code “010111”) were
assigned to class 7 (code “000111”), whereas 10 flakes from class 7 were assigned to class
23. The only difference between classes 7 and 23 is marker M2. In fact, as can be seen
in Tables F.3-F.4, classes that differ only in the presence or absence of marker M2 and
additionally contain marker M6 can be mistaken for one another. The classes most affected
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Figure 7.14: Classification performance per class (individual TPRi and PPVi) achieved
with measured spectra of 14 labeled plastics and one unlabeled plastic, and simulated
spectra of 49 labeled plastics. Macro-averaged values are TPRM = 99.76%, PPVM =
99.87% and F1-scoreM = 99.89%.

by this problem are the following pairs: 1 and 17, 7 and 23, 13 and 29, 15 and 31, 33 and
49, 35 and 51, 39 and 55, 41 and 57, 43 and 59, 45 and 61, 47 and 63. As the confusion
matrix shows, overall 325 misclassifications occurred with these classes. Remarkably, pairs
of classes which differ in marker M2, but do not contain marker M6, produce almost
no errors. For example, classes 4 (code “000100”) and 20 (code “010100”) were mutually
misclassified only 3 times. The explanation for this behavior is the large difference between
the intensities of markers M6 and M2. The intensity of marker M6 is at least 5 times higher
than the intensities of the other markers (see Fig. 7.4 and 7.5). In contrast, M2 is the
weakest marker and has the lowest fluorescence intensity of all 6 markers. Therefore, the
presence of the strong marker M6 suppresses the small feature introduced to the overall
spectrum by marker M2. As a result, the spectra of classes with marker M2 and M6
become very similar to those without marker M2.

As expected, with the increased number of classes, the overall number of classification
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errors also increases and some more misclassifications are produced. Nevertheless, very
large macro-averaged values TPRM = 99.76% and PPVM = 99.87% were still achieved,
which is comparable to the values achieved with the 14 measured plastics only (TPRM =
99.76% and PPVM = 99.88%, see Section 7.2.2).

7.3.4 Influence of the measurement noise

The S/N ratio of the fluorescence spectra acquired from the plastic flakes is a critical
parameter with respect to the classification performance. In the concrete situation in the
experiment in Section 7.2.2, the average S/N ratio measured overall 140 000 spectra of the
14 labeled plastics was 21.8 dB. The goal of the simulations in Sections 7.3.1-7.3.3 was
to model the practical situation, therefore the same S/N ratio as in the experiment was
used. In order to predict the classification performance for other S/N ratios when the
system is operated with different parameters (e.g. a larger or smaller measurement rate
that would be necessary for a different throughput and thus speed of the conveyor belt,
see also Section 6.2), additional computer simulations were carried out.

The spectra of the 63 classes were corrupted with the noise of different power such that
different S/N ratios were achieved. Relative marker intensities in the simulated spectra
were adjusted in order to match those in the experiment. The spectra were processed using
the SCC classification algorithm with the threshold value T= 0.85 as in Section 7.2.2.

The macro-averaged TPRM and PPVM as function of the S/N ratio are shown in
Fig. 7.15a. For S/N ratios below approx. -1 dB, a fraction of more than 99% of all SCC
values lie below the threshold T= 0.85, so that these plastics are assigned to class 64
“unlabeled”. Since class 64 is not included in the calculation of TPRM and PPVM for
obvious reasons, the number of TPi and FPi values for S/N ratios below approx. -1 dB
is insufficient to calculate PPVM (see Eqn. 4.36, 4.35, 4.39 and 4.40). Thus there are no
PPVM values shown in the figure at S/N ratio below -1 dB, and consequently TPRM is
virtually zero in this region. Needless to say that this region is of no interest here since
values of TPRM and PPVM below approx. 95% are irrelevant in practice.

It should be noted here, that the results shown in Fig. 7.15a are worse than those
achieved in the simulations with unequal relative marker intensities in Section 4.9.4. This
is due to the fact that here the relative marker intensities were adjusted to match the ex-
perimental results and thus the difference between the relative intensities of markers in the
marker combinations is larger here than in the situation investigated in Section 4.9.4 (es-
pecially because of the “strong” marker M6, compare e.g. Fig. 7.4 and 7.5 with Fig. 4.18a).

According to the experimental results in Section 7.2.2, the values of both metrics for
an S/N ratio of 21.8 dB is almost 100%. As can be seen in Fig. 7.15a, according to the
simulations, perfect plastics purity (PPVM = 100%) can still be achieved at S/N ratios
as low as approx. +5 dB, while for a perfect plastics recovery rate (TPRM = 100%),
+8 dB or more are required. This opens up room for some optimization of the system and
measurement parameters.

Figure 7.15b depicts the S/N ratio of the measured signals as a function of the fluores-
cence intensity [100]. Two particular S/N ratios are marked on the curve: 21.8 dB, i.e. the
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Figure 7.15: (a) Simulated classification performance of the prototype system with 63
classes individually “incorporated” into “Delrin 500NC010 white”. (b) S/N ratio of the
measured spectral camera signals as function of the (fluorescence) light intensity in the
camera’s unit “digital counts”. The two circles indicate the S/N ratio in the experiment
as in Section 7.2.2 and the one to achieve perfect plastics purity, respectively.

average S/N ratio of the spectra measured in the experiment, and 8 dB, i.e. the minimum
S/N ratio necessary to achieve both perfect plastics purity and recovery rate according to
Fig. 7.15a. For the decrease of the S/N ratio from 21.8 dB to 8 dB, the emitted fluorescence
intensity can be decreased by a factor of approx. 8.

In order to take advantage of this, several options can be considered. Due to the linear
relation between the exposure time of the spectral camera and the camera’s output signal,
the exposure time could be decreased by a factor of 8. This, in turn, would increase the
camera’s measurement rate, the conveyor belt velocity, and, as result, the system’s overall
mass throughput by a factor of 8.

Another option would be to decrease the marker concentrations by a factor of 8, which
might be attractive from an economic point of view as it would decrease the costs of
the labeled plastics. Yet another possibility is to decrease the excitation light intensity
by a factor of 8. This might be an appealing option in order to lower electrical power
consumption and heat dissipation.

7.4 Classification of small groups of plastics

In certain cases, it might not be necessary to employ all classes (here 63). If the origin of
a particular plastics waste stream can be determined and it is known that there can be
only a limited number of classes (plastic types), then the classification system has fewer
options (classes) to choose from and hence classification errors decrease. For example,
this may be the case when certain markers are assigned (sold) to a specific customer (e.g.
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plastics production company) and plastics waste from this customer needs to be recycled.
In this situation, it is known what markers or marker combinations can be present in the
plastics and it is easier and more robust using the measurement system to consider only
those markers during classification. Dividing markers into specific groups may also be
useful when markers have different peak wavelength regions in their excitation spectra.
Then excitation light sources with different peak wavelength regions for different groups
of markers can be used and will increase the resulting emissions and S/N ratios and thus
the classification performance.

In this section, a specific scenario is investigated where the 6 available fluorescent
markers are split into two groups of 3 markers each. The first group consists of the “strong”
markers M1, M4, and M6, which have high fluorescence intensities (see Chapter 2). The
second group contains the other 3 “weak” markers M2, M3, and M5, which have lower
fluorescence intensities. Splitting the markers into “strong” and “weak” groups has a
practical meaning since as mentioned previously when “strong” and “weak” markers are
combined together, the classification decision may be biased towards the “strong” markers
and class separability gets worse. With 3 markers there are only 23− 1 = 7 binary marker
combinations possible, which means 7 classes of fluorescently labeled plastics plus 1 class
for “unlabeled” plastics exist in each of the two groups.

For the investigations in this section, the spectra measured in the experiment in Sec-
tion 7.2 were used. The measured spectra, however, were split into two groups as ex-
plained above and processed separately by the SCC classification algorithm using threshold
T = 0.85. The mean S/N ratio of group 1 was 22.43 dB and that of group 2 was 21.21 dB.

Table 7.5 shows the confusion matrix with classification results of group 1 with the
“strong” markers M1, M4, and M6. Since in the previous experiments with 63 possible
classes (see Section 7.2.2) most misclassifications occurred with spectra containing the
“weak” markers M2, M3, and M5, it is not surprising that here very few misclassifications
occurred in group 1 which does not contain these markers. Macro-averaged classification
performance achieved with 7 classes of group 1 is TPRM = 99.96% and PPVM = 99.98%.

The confusion matrix of group 2 with the “weak” markers M2, M3, and M5 can be found
in Table 7.6 and requires a closer look. Due to the lower emission intensity of the “weak”
markers and as a result of lower S/N ratios, more misclassifications occurred than in group
1. Class 4 (code “100”) that contains only marker M2 has the lowest PPV4=99.13%: 34
flakes from class 1, 22 flakes from class 2, 22 flakes from class 5, 2 flakes from class 6 and 5
flakes from class 7 were incorrectly assigned to class 4. Similarly, PPV6=99.53% because
32 flakes that belong to class 2 and 15 flakes from class 8 (“unlabeled”) were assigned
to class 6. Also PPV7=99.84% is due to 14 unlabeled flakes (class 8) falsely assigned to
class 7. The macro-averaged classification performance in group 2 is TPRM = 99.42% and
PPV M = 99.78% and is slightly worse than in group 1.

If the classification performance with group 2 is to be improved, an additional fluores-
cent marker could be used as a parity bit in the coding scheme. This marker is added to
the classes with either an even or odd number of actually present markers and should have
an emission intensity sufficient for highly reliable detection. Marker M6, which here has
the highest emission intensity of all 6 markers, was used as parity and added to plastics
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Table 7.5: Confusion matrix of group 1 with markers M1, M4 and M6. TPRM = 99.96%,
PPVM = 99.98% and F1-scoreM = 99.97%, macro-averaged over classes 1 – 7, class 8
“unlabeled” not considered.

Predicted class (output)
1 2 3 4 5 6 7 8 TPRi

T
ru

e
cl

as
s

(t
ar

ge
t)

1 9999 0 0 0 0 0 0 1 99.99
2 5 9995 0 0 0 0 0 0 99.95
3 0 0 10000 0 0 0 0 0 100
4 0 0 0 9990 0 0 0 10 99.90
5 0 0 0 0 9995 0 5 0 99.95
6 0 4 0 0 0 9994 0 2 99.94
7 0 0 0 0 3 0 9997 0 99.97
8 0 0 0 0 0 0 0 10000 100

PPVi 99.95 99.96 100 100 99.97 100 99.95 99.87

Table 7.6: Confusion matrix of group 2 with markers M2, M3 and M5. TPRM = 99.42%,
PPVM = 99.78% and F1-scoreM = 99.59%, macro-averaged over classes 1 – 7, class 8
“unlabeled” not considered.

Predicted class (output)
1 2 3 4 5 6 7 8 TPRi

T
ru

e
cl

as
s

(t
ar

ge
t)

1 9955 0 0 34 2 0 1 8 99.55
2 0 9931 0 22 0 32 0 14 99.32
3 0 0 9999 0 0 0 1 0 99.99
4 0 0 0 9740 0 0 0 260 97.40
5 0 0 0 22 9823 0 0 2 99.76
6 0 0 0 2 0 9992 0 0 99.98
7 0 0 3 5 0 0 9991 1 99.91
8 0 0 0 0 0 15 14 9971 99.71

PPVi 100 100 99.97 99.13 99.98 99.53 99.84 97.22

of classes 1, 2, 4, and 7 from group 2 according to the coding scheme shown in Table 7.7.
The decision procedure then has two steps:

1. Classification is carried out based on the 3 main markers M2, M3, M5. Since the
presence of a strong peak of marker M6 may obstruct the other markers, only the
part of the spectrum (wavelength range) with the 3 main markers is considered at
this step.

2. Detection of the parity marker M6 (parity check):
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Table 7.7: Binary coding scheme of group 2 with additional parity bit (M6).

Decimal
code

Marker/Binary code Parity bit

M2 M3 M5 M6

1 0 0 1 1

2 0 1 0 1

3 0 1 1 0

4 1 0 0 1

5 1 0 1 0

6 1 1 0 0

7 1 1 1 1

8 0 0 0 0

– If the parity marker M6 is present and the classification result at step 1 was class
1, 2, 4, or 7, then no further action is required. Otherwise, the flake is assigned to
class 8 “unlabeled”.

– If the parity marker M6 is absent and the classification result at step 1 was class
3, 5, 6, or 8, then no further action is required. Otherwise, the flake is assigned to
class 8 “unlabeled”.

With this, “parity” approach, flakes that were assigned to a wrong class in step 1 and
with wrong parity are identified and sorted out (class 8). This helps increase the purity
PPVi of the sorted plastics. The confusion matrix with classification results of group 2
with parity coding is shown in Table 7.8. In comparison to Table 7.6, 22 flakes that belong
to class 5 and were incorrectly assigned to class 4 are now assigned to class 8. Similarly,
32 flakes that belong to class 2 and that were falsely assigned to class 6, as well as 14
unlabeled flakes (class 8) that were assigned to class 7 are now all classified as class 8.
The purities of classes 4, 6 and 7 have thus risen to PPV4 = 99.38%, PPV6 = 99.86% and
PPV7=99.99% and the macro-averaged purity to PPVM = 99.89%. The macro-averaged
recovery rate remained the same: TPRM = 99.42%.

This example shows that the general drawback of having “strong” markers in combina-
tion with “weak” markers can sometimes be turned into an advantage and helps improve
the overall classification performance, in particular the purity of the sorted plastics.
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Table 7.8: Confusion matrix of group 2 with markers M2, M3, M5 and parity marker M6.
TPRM = 99.42%, PPVM = 99.89% and F1-scoreM = 99.58%, macro-averaged over classes
1 – 7, class 8 “unlabeled” not considered.

Predicted class (output)
1 2 3 4 5 6 7 8 TPRi

T
ru

e
cl

as
s

(t
ar

ge
t)

1 9955 0 0 34 0 0 1 10 99.55
2 0 9931 0 22 0 0 0 46 99.32
3 0 0 9999 0 0 0 0 1 99.99
4 0 0 0 9740 0 0 0 260 97.40
5 0 0 0 0 9823 0 0 24 99.76
6 0 0 0 0 0 9992 0 2 99.98
7 0 0 0 5 0 0 9991 5 99.90
8 0 0 0 0 0 14 0 9986 99.86

PPVi 100 100 100 99.38 100 99.86 99.99 96.63
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Summary

Plastics are used virtually everywhere, from the consumer sector and packaging industry
to high-tech fields such as medicine and aerospace. The variety and versatility of the prop-
erties that different plastics possess make them one of the most important materials. It is
literally impossible to imagine modern society without plastics. It is, therefore, no surprise
that the production volumes of plastics increase every year. However, the production of
plastics is associated with huge energy consumption, the use of limited strategic resources
such as crude oil, and the discharge of CO2 into the atmosphere. With the growing pro-
duction volumes, the amount of waste plastics disposed of in landfills or the world’s oceans
also grows. In fact, microplastics have been discovered in fish and thus in the food chain.
Since plastics are not bio-degradable they might pollute the environment for decades or
even centuries. Incineration of waste plastics is associated with more CO2 emissions and
is not always even economically attractive. In light of this, the recycling of waste plastics
becomes increasingly important.

One of the main difficulties of recycling in practice is the need to separate plastics
of different types from one another. Mixing different plastic types results in a recycled
product of low quality which cannot compete with the products made from brand new
plastics. Clearly, such recycled plastics cannot be used in demanding applications where
certain mechanical, thermal, or optical material properties are required. Moreover, some
types of plastics cannot be mixed and recycled together due to their incompatible chemical
structures. Therefore, waste plastics must be sorted by their type and grade prior to
recycling.

However, the mono-fractional sorting of plastics is not an easy task. Despite automa-
tion, manual sorting is still in widespread use, especially in developing countries. How-
ever, manual sorting is error-prone, labor-intensive, and increasingly expensive (due to the
growing wages). Many automated sorting systems using e.g. densimetric or electrostatic
plastics properties can only carry out binary sorting, i.e. sorting out only one type of
plastics. To sort several types of plastics, multiple runs with all associated downsides are
necessary. Vision-based automated systems usually can only sort waste plastic products
by their color and/or shape. Spectroscopic identification systems developed in the past
few decades rely on the intrinsic (optical) properties of the plastics: usually, IR reflectance
or fluorescence spectra of the plastics are measured and used for classification and sorting.
Unfortunately, especially black and dark plastics most often have flat, featureless spectra,
which thus cannot be used for the IR and/or optical classification. Additionally, black
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plastics being very popular in certain industries such as the automotive and electronics
sectors, absorb large fractions of the incident light, which makes the acquisitions of their
reflectance or fluorescence spectra in an industrial environment very problematic.

The focus of this dissertation lies in the identification/classification approach based
on the labeling of plastics with fluorescent tracers in order to reduce the aforementioned
problems. The idea is to incorporate small amounts of appropriately designed fluorescent
tracers (also referred to as “markers”) into the plastics during the manufacturing process
thus generating unique and distinctive fluorescence emission spectra. The incorporated
markers emit fluorescence light of specific spectral shape upon excitation with light of a
lower wavelength (due to the Stoke’s shift). The known fluorescence spectra of the markers
can then be compared with the measured spectra emitted by the labeled plastics and
this information can be used for classification purposes. This principle approach was first
proposed more than 20 years ago but has not yet been put into wide industrial practice due
to different technical difficulties. Some commercially available industrial implementations
mostly carry out macro-sorting of plastics, i.e. sorting of large pieces of plastics. For
macro-sorting, each such large piece is required to be made from a single type of plastic
in order to be classified and sorted. Hence plastic assemblies such as for example car
dashboards that contain different types of plastics must be first dismantled. In contrast,
micro-sorting deals with small (typically in the millimeter range) flakes of shredded plastics
and is far more flexible since it does not require such dismantling. In this dissertation, an
implementation of the fluorescent plastics labeling for classification and micro-sorting of
plastics in an industrial environment was developed and evaluated.

Two types of fluorescent marker substances were investigated: organic and inorganic.
Organic markers, however, demonstrated a very poor photostability: their ability to emit
fluorescence degraded very fast after a relatively short exposure to sunlight. This rendered
them unsuitable for the application at hand, in which labeled plastics must be able to
withstand large portions of sunlight during their life circle. In contrast, inorganic markers
showed a very high photostability and did not degrade even after high dose exposure to
sunlight. As result, the main focus of this dissertation was placed on inorganic markers.
With 14 inorganic (rare-earth elements-based) fluorescent markers investigated, however,
their incorporation into the plastics (i.e. labeling) turned out to be a difficult task despite
the use of professional plastics extruders. Often markers did not emit fluorescence after
their incorporation. The reason for that remains unknown but might have been the de-
struction of the marker molecules. Attempts to encapsulate and protect marker molecules
were not satisfying in all cases. Clearly, more research focused on the chemical structure of
the markers and on the extrusion process is needed. Out of the 14 investigated inorganic
fluorescent markers, the 6 “stable” ones (i.e. those that “survived” the incorporation into
plastics) were chosen for detailed investigation in this dissertation. The 6 markers were
used in binary combinations (or 6-bit “codes”): the presence of a marker denoted a “1”
and its absence – a “0”. Thus with the binary coding up to 26 − 1 = 63 different plastics
could be labeled (the code with all zeros was excluded for obvious reasons).

The six markers had narrowband (FWHM between approx. 5 nm and 25 nm) fluores-
cence emission spectra all located in the visible (VIS) wavelength range between approx.
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450 nm and 750 nm. This means that up to ten such markers could theoretically fit in
the VIS wavelength range, which would then increase the overall number of the plastics
that could be labeled to 210 − 1 = 1023. The VIS wavelength range was chosen due to
the high sensitivity of the commercially available imaging sensors and optics in this range.
Additionally, the quantum efficiency of the fluorescence markers is higher in the VIS range
in comparison to e.g. IR. The fluorescence excitation peaks of the employed markers were
located in the UV-A range between approx. 315 nm and 400 nm, which allowed the excita-
tion of all markers with commercially available UV LEDs. Moreover, an efficient excitation
of all 6 markers simultaneously could be achieved with a single LED light (here 395 nm),
which significantly facilitates the system design.

One of the most critical problems associated with classification based on fluorescent
labeling is the autofluorescence (AF) of the plastics. Often plastics, especially bright and/or
colored ones, exhibit fluorescence emission in the visible wavelength range even without
incorporated markers. Autofluorescence (AF) is usually caused by chemical additives such
as brightening components, UV-protections, coloring dyes, etc. Autofluorescence (AF)
spectrally overlaps with the fluorescence spectra of the incorporated markers and thus
changes the overall emitted spectrum with the possibility to even completely mask the
marker fluorescence. The identification of markers in the measured fluorescence spectra
and the classification of the labeled plastics becomes error-prone thus degrading the quality
of the recycled plastic products.

To combat the autofluorescence (AF) problem, time-gated fluorescence spectroscopy
(TGFS) was proposed and implemented in this dissertation. The method is inspired by
time-resolved fluorescence measurements and uses the fact that fluorescence emissions de-
cay exponentially after the excitation light has been turned off. The fluorescence decay time
constants of the inorganic markers used in this work are orders of magnitude larger than
those of the autofluorescence (AF). Therefore, when the excitation light has been turned
off, the autofluorescence (AF) decays much faster (within nanoseconds) compared to the
marker fluorescence which is present for up to several microseconds. TGFS uses pulsed
excitation light and acquires fluorescence emissions only in the time periods (“gates”) when
the excitation light is turned off. Thus (almost) no autofluorescence (AF) is present in the
acquired spectra. The largest drawback of TGFS is that the intensity and thus the S/N
ratios of the acquired (digital) fluorescence spectra are smaller in comparison to the spectra
acquired using the steady-state approach (i.e. uninterrupted excitation light and acquisi-
tion). The intensity of the TGFS spectra strongly depends on the decay time constants of
the markers and the time-gating/acquisition parameters. Whereas the former are governed
by physical/chemical laws and are difficult to modify, the latter can be easily varied. For
this reason, a mathematical model for the intensity of the acquired TGFS spectra was
developed in this dissertation and used to optimize the TGFS acquisition parameters.

The essential goal was to achieve the highest possible classification performance for the
fluorescently labeled plastics. For this purpose, various classification and feature extraction
algorithms were investigated and compared in terms of their classification performance.
Based on the prior experience, the choice of the classification algorithms was limited to
the relatively simple, but numerically efficient spectral similarity measures and naive Bayes
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methods, and the more complex neural networks (NN), the support vector machines (SVM)
and the random forests (RF). For the feature extraction, traditional approaches such as the
principal component analysis (PCA) and the linear discriminant analysis (LDA), as well
as the least-squares mixture analysis (LSMA) and its modifications were investigated. All
algorithms were implemented in MATLAB and integrated into the developed simulation
framework. The simulation framework was used to model marker fluorescence emission
spectra with different spectral disturbances (measurement noise, relative marker intensity
fluctuations, autofluorescence) and evaluate the classification performance of all approaches
with respect to these factors. The simulations showed that for all disturbances except
the autofluorescence (AF), the spectral cross correlation (SCC) algorithm achieves high
classification performance. It requires reasonable computational power and therefore can be
implemented in the real-time industrial application at hand. Since in this dissertation the
autofluorescence (AF) is suppressed using the TGFS approach, SCC is the best choice and
was employed for the classification of marker fluorescence spectra. In the simulations, the
SCC algorithm could achieve an excellent classification performance (i.e. sensitivity or the
true positive rate TPR = 100%; precision or the positive predictive value PPV = 100%) for
S/N ratios as low as +8 dB. Similarly, SCC could achieve TPR = 100% and PPV = 100%
with random fluctuations of the relative marker intensities of up to ±40% (i.e. the intensity
of one marker could be 80% higher than the intensity of another marker in a marker
combination/class).

To determine the performance in practice, a prototype of the TGFS measurement and
classification system was developed. The prototype was designed to process small flakes of
shredded plastics with sizes between approx. 3 mm and 10 mm delivered on a 500 mm wide
conveyor belt in 50 parallel channels. The prototype was able to classify up to 63 plastic
types (i.e. fluorescent marker combinations or classes) simultaneously achieving a mass
throughput of approx. 250 kg/h. The measurement and classification system consisted
of two parts: the spectroscopic acquisition unit and the morphological acquisition unit.
The former served the purpose of measuring and classifying the fluorescence spectra of the
labeled plastics and consisted of a custom-built CCD-based hyperspectral camera, a pulsed
high-power UV-LED line light for the fluorescence excitation, optical filters to separate the
excitation light from the fluorescence emission, a focusing lens, and hardware to trigger
the TGFS measurements. The system provided a spectral optical resolution of approx.
2.8 nm with a spectral sampling of approx. 0.5 nm. The spatial sampling was approx.
0.31 mm and 1.27 mm in the directions across and along the conveyor belt, respectively.
The measurement rate was approx. 104 Hz in the TGFS mode. Due to the low-light
conditions and the relatively low measurement rate which could result in motion blur,
as well as the low spatial sampling, the spectroscopic acquisition unit could not be used
for the acquisition of morphological information such as the flakes’ sizes and positions on
the conveyor belt. For this purpose, the morphological acquisition unit was employed. It
consisted of a fast CMOS color camera and a white LED line light to illuminate plastics
flakes on the conveyor belt. Due to the camera’s high spatial sampling (approx. 120 µm
both across and along the conveyor belt) and acquisition rate (up to several 103 Hz) as
well as the much brighter white illumination, the resulting color images were much better



161

suited for the derivation of the flakes’ morphological parameters than the images acquired
by the spectroscopic acquisition unit. The results from both acquisition units were then
merged by the software and passed to the sorting unit which physically separated plastic
flakes by their type.

To evaluate the performance of the developed prototype, experimental measurements
with approx. 140 000 shredded flakes of fluorescently labeled plastics (14 marker combi-
nations, or classes, 10 000 flakes per class) and 10 000 unlabeled plastic flakes were carried
out. From the 10 employed plastics, 6 were labeled using one marker combination (or
class) per plastic, and 4 were labeled with two different marker combinations each. Hence
there were flakes of the same plastic type and color but labeled with 2 different marker
combinations (respectively 2 classes). This was done to practically evaluate the concept of
using fluorescence markers to encode not only the plastic type, but also information about
the production charge, customer name, etc. An excellent classification performance was
achieved using the SCC-based classifier with TPR = 99.76% and PPV = 99.88% (averaged
over all 14 labeled plastics). From the relatively small number (338) of misclassified flakes
some were due to the low S/N ratio of very small flakes (smaller than approx. 2 mm). The
main reason for the other misclassifications was the very high intensity of one of the markers
in comparison to the other markers within the spectra of one class. The fluorescence of this
“strong” marker made the influence of the other “weaker” markers less important in the
overall spectrum. As a result, the classification algorithm “missed” the “weaker” markers
and the classification performance degraded. As shown by simulations, the equalization
of marker intensities by adjusting the individual marker concentrations would help avoid
these misclassifications. Such equalization, however, requires multiple iterations of marker
incorporation at different concentrations and is costly and time-consuming. No such equal-
ization could be performed for the plastics used in the experiments. Additionally, a second
fluorescence excitation light with a different central wavelength could help better excite
the fluorescence of the “weak” markers and increase their intensity in comparison to the
“strong” markers, thus leveling the marker intensities.

One of the main advantages of the fluorescent labeling approach over traditional spec-
troscopy methods is the ability to also classify dark and/or black plastics. This was proven
in this dissertation by processing approx. 10 000 fluorescently labeled black plastic flakes
using the prototype system. Due to the very high light absorption of the black dye, marker
concentrations approx. 5 times higher than those for the bright plastics were necessary.
Nevertheless, despite the high absorption of the black dye, the marker fluorescence could
be measured and correctly classified in the vast majority of cases: the system achieved
TPR = 99.76% and PPV = 99.60% with the black plastic flakes.

The prototype system was developed to classify up to 63 labeled plastics (classes) simul-
taneously. However, the production of such a large number of fluorescently labeled plastics
in amounts and quality necessary for a statistically significant experiment is very problem-
atic due to both time and financial constraints. For this reason, in order to investigate the
situation when all 63 plastics are present, simulations with the additional 63 − 14 = 49
classes were carried out. The spectra of the 49 classes were “incorporated” into a white
plastic using the simulation model. Prior to that, the simulation model was validated with



162 Summary

the same 14 classes that were used in the experiment, and the simulated spectra were in
perfect agreement with the measured ones; the simulation results achieved with the sim-
ulated and measured spectra perfectly matched. The parameters of the simulation model
were appropriately adjusted in order to achieve spectra similar to the measured ones with
respect to the S/N ratio and the relative marker intensities within marker combinations.
Despite the increased number (63) of classes, the (average) classification performance de-
graded only marginally in comparison to the situation with 14 classes: TPR = 99.76%
and PPV = 99.87% were achieved. These values can serve as an extrapolation and can be
expected in practice when all 63 classes are present.

As mentioned earlier, good classification performance is not the only requirement for
the economic success of plastics recycling. High mass throughput is also an important cri-
terion. The developed prototype was designed for a relatively moderate mass throughput
of approx. 250 kilograms per hour. However, an increase of the mass throughput could be
easily achieved by using a wider conveyor belt. For example, with a 1000 mm wide con-
veyor belt (and thus 100 parallel channels), the system would be able to achieve 500 kg/h.
Additional excitation lamps (with the same LEDs) would also increase the marker fluo-
rescence emission intensity. Due to the practically linear relation between the fluorescence
emission intensity and the spectral camera’s output signal, this would allow decreasing the
camera’s exposure time by the same factor while maintaining the same S/N ratio of the
acquired spectra. This, in turn, would allow increasing the measurement rate leading to a
higher velocity of the conveyor belt and a larger mass throughput.

What is more, a larger mass throughput could also be achieved with an optimization
of the S/N ratio ratio. The average S/N ratio of the acquired spectra in the experiments
was 21.8 dB, which is substantially higher than the minimum S/N ratio necessary to
achieve a perfect classification using the SCC algorithm (approx. 8 dB according to the
simulations). When reducing the S/N ratio from 21.8 dB to 8 dB, the marker fluorescence
emission intensity can be decreased by a factor of ∼8. The camera’s exposure time could
be thus decreased by a factor of 8, allowing a higher velocity of the conveyor belt and
leading to an increase of the system’s mass throughput.

Another option that a decrease of the S/N ratio to 8 dB offers would be to decrease
the marker concentrations by a factor of 8 thus making the labeling of plastics more
economically attractive. Yet another option could be to decrease the LED illumination
power by a factor of 8, which would decrease the electrical power consumption and heat
dissipation.

In this dissertation, an implementation of the fluorescent labeling of plastics for re-
cycling was developed and evaluated in practice. It was shown that a highly reliable
classification of fluorescently labeled plastics is possible in an industrial environment. In
contrast to the systems currently available on the market which carry out macro-sorting
of fluorescently labeled plastics, i.e. sorting of large objects such as bottles, the system in
this work was developed with the focus on micro-sorting of small shredded plastic flakes
of only a few millimeters in diameter. The micro-sorting approach is much more versatile
and flexible with respect to the mechanical separation of different plastic types present
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in complex end-of-life plastic products. What is more, this dissertation has demonstrated
how the novel measurement approach – the time-gated fluorescence spectroscopy (TGFS)
– can be implemented in an industrial inline system to suppress the negative influence of
the plastics’ autofluorescence (AF) on the classification performance of the labeled plastics.
Naturally, for an industry-scale operation, certain optimization and adaptation steps might
be necessary especially with respect to achieving higher mass throughput (several tons per
hour). Additionally, employing a larger number of plastics is also possible which would
allow labeling and classifying a larger number of plastics. Overall, the investigations in this
dissertation have shown that fluorescent labeling can make micro-sorting and recycling of
waste plastics efficient and economically attractive.



164 Summary



Appendix A

Binary fluorescence labeling

With 6 markers used as “bits” in the binary coding scheme, 26 − 1 = 63 marker combina-
tions, or binary codes, are possible (code “000000” is not used).

Table A.1 shows the coding scheme for the binary labeling with 6 fluorescent markers.
The first column in the table contains the class or the decimal code of the corresponding
binary codes. The absence and presence of fluorescent markers in the codes are represented
by 0 and 1, respectively.

Table A.1: Binary fluorescence labeling coding table with 6 markers. Absence and presence
of markers are represented with 0 and 1, respectively.

Decimal Markers/Binary Code

Code/Class M1 M2 M3 M4 M5 M6

1 0 0 0 0 0 1

2 0 0 0 0 1 0

3 0 0 0 0 1 1

4 0 0 0 1 0 0

5 0 0 0 1 0 1

6 0 0 0 1 1 0

7 0 0 0 1 1 1

8 0 0 1 0 0 0

9 0 0 1 0 0 1

10 0 0 1 0 1 0

11 0 0 1 0 1 1

12 0 0 1 1 0 0

13 0 0 1 1 0 1

14 0 0 1 1 1 0

15 0 0 1 1 1 1

16 0 1 0 0 0 0

17 0 1 0 0 0 1

18 0 1 0 0 1 0

19 0 1 0 0 1 1

20 0 1 0 1 0 0

21 0 1 0 1 0 1

Decimal Markers/Binary Code

Code/Class M1 M2 M3 M4 M5 M6

22 0 1 0 1 1 0

23 0 1 0 1 1 1

24 0 1 1 0 0 0

25 0 1 1 0 0 1

26 0 1 1 0 1 0

27 0 1 1 0 1 1

28 0 1 1 1 0 0

29 0 1 1 1 0 1

30 0 1 1 1 1 0

31 0 1 1 1 1 1

32 1 0 0 0 0 0

33 1 0 0 0 0 1

34 1 0 0 0 1 0

35 1 0 0 0 1 1

36 1 0 0 1 0 0

37 1 0 0 1 0 1

38 1 0 0 1 1 0

39 1 0 0 1 1 1

40 1 0 1 0 0 0

41 1 0 1 0 0 1

42 1 0 1 0 1 0

Decimal Markers/Binary Code

Code/Class M1 M2 M3 M4 M5 M6

43 1 0 1 0 1 1

44 1 0 1 1 0 0

45 1 0 1 1 0 1

46 1 0 1 1 1 0

47 1 0 1 1 1 1

48 1 1 0 0 0 0

49 1 1 0 0 0 1

50 1 1 0 0 1 0

51 1 1 0 0 1 1

52 1 1 0 1 0 0

53 1 1 0 1 0 1

54 1 1 0 1 1 0

55 1 1 0 1 1 1

56 1 1 1 0 0 0

57 1 1 1 0 0 1

58 1 1 1 0 1 0

59 1 1 1 0 1 1

60 1 1 1 1 0 0

61 1 1 1 1 0 1

62 1 1 1 1 1 0

63 1 1 1 1 1 1
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Appendix B

Simulation results

Tables B.1, B.2 and B.3 show F1-score values achieved by the 34 investigated classification
algorithms in scenarios A (sensor noise), B (relative marker intensity fluctuations) and C
(autofluorescence), respectively.

For a quick overview, cells in the tables are colored red if the corresponding F1-scoreM
is below 50%, yellow for the F1-score between 50% and 90%, and green if the F1-scoreM is
above 90%.
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Table B.1: F1-scoreM values achieved by different classifiers in scenario A (sensor noise)
with S/N ratios between -50 dB and 40 dB. Classifiers are sorted by their F1-scoreM with
S/N ratio = 0 dB.

№ Classifier Feature
S/N ratio in dB

-50 -40 -30 -25 -20 -15 -10 -5 0 5 10 15 20 25 30 40

1 MLC LDA 1.73 1.96 3.12 4.88 10.09 24.20 54.12 87.63 99.40 100 100 100 100 100 100 100

2 SVMlin LDA 1.58 1.58 2.69 4.53 9.76 23.21 54.08 87.99 99.11 100 100 100 100 100 100 100

3 SVMrbf LDA 1.58 1.58 1.58 1.58 4.96 18.67 51.18 87.31 99.04 99.99 100 100 100 100 100 100

4 NN LDA 1.58 1.69 2.81 4.66 9.20 22.57 53.46 86.91 98.91 99.97 100 100 100 100 100 100

5 RF LDA 1.58 1.58 1.58 1.58 4.24 18.91 51.38 86.90 98.52 100 100 100 100 100 100 100

6 SCC – 1.64 1.77 2.20 2.77 4.21 14.56 27.29 59.70 96.53 100 100 100 100 100 100 100

7 RF LSMA 1.58 1.58 1.58 1.58 1.58 2.31 16.62 54.74 90.90 99.78 100 100 100 100 100 100

8 SVMlin LSMA 1.58 1.58 1.96 2.56 4.13 8.56 22.18 56.08 90.75 99.84 100 100 100 100 100 100

9 SAM – 1.66 1.78 2.22 2.79 4.24 8.60 21.41 53.88 90.60 99.87 100 100 100 100 100 100

10 SVMlin PCA 1.58 1.58 1.77 2.61 4.16 8.48 21.53 55.94 90.58 99.78 100 100 100 100 100 100

11 SVMrbf LSMA 1.58 1.58 1.58 1.58 1.58 4.40 17.79 53.04 90.26 99.82 100 100 100 100 100 100

12 MLC LSMA 1.65 1.77 2.21 2.83 4.24 8.18 20.53 53.60 90.23 99.86 100 100 100 100 100 100

13 MLC PCA 1.65 1.77 2.21 2.83 4.24 8.18 20.53 53.60 90.23 99.86 100 100 100 100 100 100

14 SVMrbf PCA 1.58 1.58 1.58 1.58 1.58 4.10 16.96 52.56 90.23 99.84 100 100 100 100 100 100

15 NN PCA 1.61 1.63 1.82 2.62 4.36 8.20 20.51 55.19 90.10 99.69 100 100 100 100 100 100

16 NN LSMA 1.59 1.61 1.86 2.52 4.33 8.14 20.45 55.12 90.08 99.66 100 100 100 100 100 100

17 RF PCA 1.58 1.58 1.58 1.58 1.58 2.59 17.70 54.00 90.07 99.63 100 100 100 100 100 100

18 RF NCLS 1.58 1.58 1.58 1.58 1.58 1.58 10.14 44.90 86.87 98.85 99.96 100 100 100 100 100

19 MLC NCLS 1.58 1.60 1.64 1.66 1.78 4.01 13.62 45.94 86.75 98.59 99.73 99.98 100 100 100 100

20 SVMlin NCLS 1.58 1.58 1.58 1.58 2.03 4.70 14.78 46.93 86.43 98.87 99.89 100 100 100 100 100

21 NN NCLS 1.58 1.60 1.58 1.58 1.79 4.46 14.23 47.18 86.38 98.27 99.82 99.99 100 100 100 100

22 SVMrbf NCLS 1.58 1.58 1.58 1.58 1.58 2.99 12.08 43.11 85.44 98.47 99.62 99.86 100 100 100 100

23 SVMlin SCLS 1.58 1.58 1.75 2.36 4.01 7.96 18.77 45.67 85.28 99.49 100 100 100 100 100 100

24 NN SCLS 1.60 1.62 1.83 2.48 3.95 7.49 17.65 45.05 84.71 99.19 100 100 100 100 100 100

25 RF SCLS 1.58 1.58 1.58 1.58 1.58 3.53 13.42 43.61 83.90 99.53 100 100 100 100 100 100

26 SVMrbf SCLS 1.58 1.58 1.58 1.58 1.58 4.21 14.79 42.86 83.81 99.52 100 100 100 100 100 100

27 MLC SCLS 1.63 1.79 2.22 2.91 4.19 7.62 17.10 38.05 73.72 97.51 99.99 100 100 100 100 100

28 RF FCLS 1.58 1.58 1.58 1.58 1.58 3.45 12.84 39.43 71.96 87.64 96.26 99.26 100 100 100 100

29 SVMrbf FCLS 1.58 1.58 1.58 1.58 1.58 4.08 14.09 39.08 70.75 86.67 95.76 99.28 100 100 100 100

30 NN FCLS 1.61 1.62 1.70 2.24 3.72 7.20 16.28 40.53 68.71 83.49 92.91 98.13 100 100 100 100

31 MLC FCLS 1.62 1.70 2.01 2.67 3.73 6.97 16.30 40.28 68.71 83.81 93.37 98.50 100 100 100 100

32 SVMlin FCLS 1.58 1.58 1.73 2.28 3.88 7.21 17.18 41.74 68.05 81.33 90.30 96.55 100 100 100 100

33 ED – 1.63 1.67 1.81 2.04 2.52 3.34 4.90 7.69 25.72 68.34 87.81 99.21 100 100 100 100

34 DSCC – 1.62 1.64 1.75 1.90 2.18 2.78 4.34 8.57 21.90 53.70 88.60 99.50 100 100 100 100
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Table B.2: F1-scoreM values in % achieved by different classifiers in scenario B with relative
marker intensity fluctuations between ±0% and ±100%. Classifiers are sorted by their F1-
scoreM with intensity fluctuations of ±100%. No noise was applied in scenario B.

№ Classifier Feature
Relative intensity fluctuations in %

0 10 20 30 40 50 60 70 80 90 100

1 RF LSMA 100 100 100 100 100 100 100 100 100 100 97.98

2 MLC PCA 100 100 100 100 100 100 100 100 99.83 99.73 97.89

3 MLC LSMA 100 100 100 100 100 100 100 99.91 99.80 99.75 97.80

4 MLC SCLS 100 100 100 100 100 100 100 99.84 99.73 99.63 97.29

5 RF NCLS 100 100 100 100 100 100 100 100 100 100 97.04

6 NN PCA 100 100 100 100 100 100 100 100 100 100 96.81

7 NN LSMA 100 100 100 100 100 100 100 100 100 100 96.76

8 MLC NCLS 100 100 99.93 99.72 99.47 99.26 98.91 98.73 98.35 98.27 96.33

9 NN NCLS 100 100 100 100 100 100 100 100 100 100 96.18

10 SVMrbf PCA 100 100 100 100 100 100 100 99.85 99.44 97.34 90.11

11 SVMlin NCLS 100 100 100 100 100 100 100 100 100 99.05 90.02

12 SVMlin LSMA 100 100 100 100 100 100 100 100 100 98.71 89.76

13 SVMlin PCA 100 100 100 100 100 100 100 100 100 98.12 89.23

14 RF PCA 100 100 100 100 100 100 100 99.70 98.45 95.87 88.79

15 NN SCLS 100 100 100 100 100 99.77 99.48 99.12 98.23 95.77 88.21

16 SVMrbf SCLS 100 100 100 100 100 99.87 99.69 99.40 98.45 95.48 87.76

17 RF SCLS 100 100 100 100 100 99.91 99.69 99.17 97.44 94.22 87.38

18 SVMrbf NCLS 100 100 100 99.86 99.56 99.27 99.05 98.58 97.56 93.75 87.27

19 NN LDA 100 100 100 100 100 100 100 100 99.88 97.51 86.72

20 SVMlin SCLS 100 100 100 100 100 99.92 99.70 99.49 99.07 96.23 86.57

21 MLC LDA 100 100 100 100 100 100 99.89 99.63 99.29 96.58 85.12

22 SVMrbf LSMA 100 100 100 100 99.90 99.75 99.54 99.07 98.03 93.83 84.81

23 SVMrbf LDA 100 100 100 100 100 100 99.89 99.69 98.29 93.31 82.42

24 SVMlin LDA 100 100 100 100 100 100 100 100 98.95 93.08 82.06

25 RF LDA 100 100 100 100 100 99.81 99.21 97.36 93.93 88.84 77.32

26 SVMrbf FCLS 100 99.65 98.07 96.02 93.16 90.16 87.18 84.76 82.15 78.39 71.09

27 RF FCLS 100 99.65 98.04 95.54 92.70 89.73 86.63 84.13 81.25 77.39 70.05

28 MLC FCLS 100 99.45 97.76 94.09 91.22 88.53 85.74 82.70 78.75 74.49 69.42

29 NN FCLS 100 99.42 94.66 88.15 81.31 78.27 71.12 68.85 64.97 60.59 51.85

30 SVMlin FCLS 100 98.45 93.93 87.70 80.54 74.66 69.35 64.25 62.02 57.35 51.82

31 SAM – 100 100 100 100 99.80 93.93 81.84 68.96 58.57 50.55 44.65

32 SCC – 100 100 100 100 99.80 93.92 81.77 68.81 58.38 50.35 44.45

33 DSCC – 100 100 100 100 99.73 93.81 80.75 67.60 57.39 49.88 44.03

34 ED – 100 100 99.81 97.40 83.72 66.35 53.63 45.20 39.26 34.62 31.44
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Table B.3: F1-scoreM values in % achieved by different classifiers in scenario C at different
S/AF ratios. Classifiers are sorted according to their F1-scoreM at S/AF ratio = 0.05.
Realistic noise of 20 dB was applied in scenario C.

№ Classifier Feature
S/AF ratio

0.0001 0.001 0.005 0.01 0.05 0.1 0.2 0.4 0.6 0.8 1 2 4 6 8 10

1 MLC LDA 3.96 15.27 48.21 69.72 97.07 99.46 100 100 100 100 100 100 100 100 100 100

2 SVMlin LDA 3.76 15.94 48.55 70.11 96.80 99.36 100 100 100 100 100 100 100 100 100 100

3 NN LDA 3.91 15.11 47.87 69.84 96.62 99.27 99.88 100 100 100 100 100 100 100 100 100

4 RF LDA 2.05 11.48 45.69 68.00 96.51 99.07 99.83 100 100 100 100 100 100 100 100 100

5 SVMrbf LDA 1.94 11.45 45.07 66.96 96.31 99.27 99.91 100 100 100 100 100 100 100 100 100

6 SCC – 3.50 9.52 34.37 51.95 93.09 100 100 100 100 100 100 100 100 100 100 100

7 SAM – 3.53 9.60 30.65 48.35 89.44 96.80 99.31 99.85 100 100 100 100 100 100 100 100

8 SVMlin PCA 2.62 8.50 28.59 46.36 88.74 96.18 99.17 99.79 99.93 100 100 100 100 100 100 100

9 SVMlin LSMA 2.61 8.25 28.94 46.18 88.11 96.06 99.09 99.81 100 100 100 100 100 100 100 100

10 SVMlin NCLS 2.69 8.42 28.73 46.65 88.05 96.40 99.06 99.80 100 100 100 100 100 100 100 100

11 NN PCA 2.62 7.93 27.75 45.73 87.88 96.07 98.84 99.62 99.80 99.89 100 100 100 100 100 100

12 NN LSMA 2.70 7.87 27.74 45.69 87.86 96.09 98.84 99.62 99.82 99.87 100 100 100 100 100 100

13 MLC NCLS 2.82 8.17 28.36 45.54 87.82 95.95 99.18 99.85 100 100 100 100 100 100 100 100

14 MLC LSMA 2.82 8.17 28.37 45.55 87.78 95.96 99.18 99.84 100 100 100 100 100 100 100 100

15 MLC PCA 2.82 8.17 28.37 45.55 87.78 95.96 99.18 99.84 100 100 100 100 100 100 100 100

16 NN NCLS 2.72 7.94 27.73 45.76 87.73 96.06 98.84 99.61 99.81 99.89 100 100 100 100 100 100

17 SVMrbf NCLS 1.59 4.99 24.08 41.34 87.26 95.77 98.99 99.75 99.89 100 100 100 100 100 100 100

18 SVMrbf LSMA 1.59 4.96 23.84 41.81 87.10 96.08 99.00 99.81 100 100 100 100 100 100 100 100

19 SVMrbf PCA 1.59 4.93 23.78 41.53 86.71 95.92 99.05 99.80 99.92 100 100 100 100 100 100 100

20 RF LSMA 1.59 4.33 23.53 41.43 86.52 94.94 98.40 99.59 99.82 100 100 100 100 100 100 100

21 RF NCLS 1.59 4.53 24.29 41.39 86.48 95.11 98.46 99.58 99.78 99.88 99.92 100 100 100 100 100

22 RF PCA 1.59 4.43 23.54 41.58 85.91 94.90 98.41 99.48 99.76 99.87 99.90 100 100 100 100 100

23 SVMlin SCLS 2.32 7.26 22.90 36.44 80.04 92.64 98.09 99.54 99.81 100 100 100 100 100 100 100

24 NN SCLS 2.47 6.79 21.62 35.62 80.00 92.70 97.79 99.27 99.65 99.81 99.88 100 100 100 100 100

25 SVMrbf SCLS 1.59 4.56 18.78 32.14 78.52 91.78 98.00 99.49 99.78 99.91 100 100 100 100 100 100

26 RF SCLS 1.59 4.01 18.06 32.35 78.50 91.76 97.47 99.34 99.73 99.89 100 100 100 100 100 100

27 RF FCLS 1.59 3.04 13.50 24.67 62.60 83.44 91.83 95.36 96.03 96.54 96.73 97.04 96.54 96.74 96.47 96.52

28 SVMrbf FCLS 1.59 3.83 13.15 22.79 58.58 79.27 88.07 92.64 94.52 95.11 95.41 96.66 96.58 96.57 96.83 96.42

29 NN FCLS 2.06 5.29 14.90 24.39 58.32 77.90 87.36 88.72 90.57 91.31 91.49 93.82 93.17 93.65 93.88 94.01

30 MLC FCLS 1.96 4.96 13.19 22.94 56.29 75.19 84.56 88.62 91.04 91.54 91.46 92.89 93.07 91.76 91.78 92.43

31 SVMlin FCLS 2.29 5.46 15.16 24.25 54.72 71.94 80.91 86.93 89.37 90.31 91.04 91.85 90.92 90.77 91.13 91.23

32 MLC SCLS 3.13 7.57 20.00 29.41 53.57 64.90 77.37 86.92 91.32 93.52 94.78 97.54 98.94 99.37 99.57 99.69

33 DSCC – 2.30 2.88 4.23 6.03 15.38 24.51 36.72 50.99 57.91 62.38 65.80 72.86 77.36 78.39 79.24 79.78

34 ED – 1.63 1.60 1.60 1.60 11.30 29.79 47.84 63.80 70.17 74.55 78.73 90.19 97.09 98.49 98.88 98.99



Appendix C

Optimal TGFS parameters

The sensor signal sN is a function of two variables tp and D. In order to find the parameter
set (tp,D) that maximizes sN , first, critical points of the function sN(tp, D) should be found
by solving the equation system of two partial derivatives of Eqn. 5.12 [90]:


∂sN
∂tp

=
Tm

(
((τ−tp)D+tp) exp

(
tp(D−1)

Dτ

)
−(Dτ+tp) exp(− tp

Dτ )+D((tp+τ) exp(− tpτ )−τ)
)

τ ·tp2 = 0,

∂sN
∂D

=
Tm

(
(Dτ+tp) exp

(
tp(D−1)

Dτ

)
−Dτ

)
(exp(− tpτ )−1)

D·τ ·tp = 0.

(C.1)

This system has only one real solution given by (Maple 2016©):{
tp = ln

(
− 2 · LW (−1,−0.5 · exp(−0.5))

)
· τ,

D = − ln(−(2·LW(−1,−0.5·exp(−0.5))))
1+2·LW(−1,−0.5 exp(−0.5))

,
(C.2)

where LW stands for LambertW and is the inverse function of f(W ) = W exp(W ) [101].
Calculating its value and simplifying Eqn. C.2 leads to:{

tp = 1.2564 · τ,
D = 0.5.

(C.3)

In order to find out whether the critical point in Eqn. C.3 is a maximum, the second
partial derivative test should be performed. The second partial derivatives of Eqn. 5.12
are given by:

∂2sN
∂tp2

= − Tm
Dτ2tp3

·
(

((tp
2 − 2tpτ + 2τ2)D2 − 2tp(tp − τ)D + tp

2) · exp(tp
D − 1

Dτ
)−

−(2D2τ2 + 2Dtpτ + tp
2) · exp(− tp

Dτ
) +D2((tp

2 + 2tpτ + 2τ2) · exp(− tp
τ

)− 2τ2)

)
(C.4)
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∂2sN
∂tp∂D

=
Tm

D2τ2tp2
·
(

(tp
2 − τ(tp − τ)D2 − tp(tp − τ)D) · exp(tp

D − 1

Dτ
)−

−(D2τ2 +Dtpτ + tp
2) · exp(− tp

Dτ
) + ((tp + τ) exp(− tp

τ
)− τ) ·D2τ

) (C.5)

∂2sN
∂D2

=
Tm
D3τ2

· tp(−1 + exp(− tp
τ

)) · exp(tp
D − 1

Dτ
) (C.6)

For a particular value of τ , the critical point given by Eqn. C.2 is a (local) maximum
when both following conditions hold [90]:

∂2sN
∂tp2

· ∂
2sN
∂D2

−
(
∂2sN
∂tp∂D

)2

> 0 (C.7)

and

∂2sN
∂tp2

< 0. (C.8)

It is easy to see that for all 6 fluorescent markers used in this work conditions in
Eqn. C.7 and C.8 hold and hence the critical point given by Eqn. C.3 is at least a local
maximum of sN . Furthermore, since the value of sN for the border values of (tp,D) for
each particular marker are smaller than the found maximum (see Fig. 5.11), the maximum
given by Eqn. C.3 is also the global maximum.

Therefore, Eqn. C.3 provides the optimal parameter set (tp,D) for TGFS.



Appendix D

S/N ratio and intensity fluctuations
of the acquired marker spectra

Figure D.1 shows histograms of S/N ratio of the acquired spectra of the 14 fluorescently
labeled plastics (classes). As can be seen, S/N ratio of all acquired spectra is higher than
0 dB. In fact, the majority of the spectra have S/N ratio higher than 10 dB.

Fluctuations of fluorescence intensity of the weaker marker relative to the the strongest
marker in combinations with more than one marker are shown in Fig. D.2. In the figure,
intensity of the weaker marker is shown in percent of the strongest marker. Despite the
use of professional plastics extruders for incorporation of the markers, noticeable relative
intensity fluctuations of about 5-10% occurred in the experiment.
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Figure D.1: Histograms of the S/N ratio of the acquired fluorescence spectra of the 14
labeled plastics.
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Figure D.1: Histograms of the S/N ratio of the acquired fluorescence spectra of the 14
labeled plastics.
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Figure D.2: Histograms of intensity fluctuation of the weaker marker relative to the stronger
marker in combinations with more than one marker.
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Appendix E

Comparison of measured and
simulated fluorescence spectra

Figures E.1-E.3 show the comparison of measured and simulated fluorescence spectra of
the 14 plastics investigated in the experiment. As can be seen, the simulated spectra are
in good agreement with the measured spectra.
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Figure E.1: Comparison of measured and simulated fluorescence spectra of classes 1 and
3.
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Figure E.2: Comparison of measured and simulated fluorescence spectra of classes 4, 5, 9,
10, 17 and 18.
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Figure E.3: Comparison of measured and simulated fluorescence spectra of classes 24, 27,
32, 33, 36 and 37.
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Appendix F

Classification results

Results of classification of 14 measured fluorescently labeled plastics and 1 unlabeled plastic
are summarized in the confusion matrix in Tables F.1-F.2. Rows in the confusion matrix
represent true (or target) classes (plastic types), whereas columns stand for predicted (or
output) classes. The main diagonal of the matrix contains records of correctly classified
flakes of each class (TPi), elements off the main diagonal represent the number of incorrect
classifications. Cells with correctly classified flakes (the main diagonal) are marked green,
cells with incorrectly classified flakes are marked red for better representation.

Tables F.3-F.3 show the confusion matrix derived from results of classification of ac-
quired spectra of 14 labeled plastics and 1 unlabeled plastic and simulated spectra of
additional 49 labeled plastics. The green and red colored cells contain records of correctly
and incorrectly classified flakes, respectively.
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Table F.1: Confusion matrix of classification of spectra of the 15 measured plastics (14
labeled and 1 unlabeled). Part 1: Predicted classes 1 to 32. Cells with correctly classified
flakes (the main diagonal) are marked green, cells with incorrectly classified flakes are
marked red.

Predicted class (output)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

T
ru

e
cl

as
s

(t
ar

ge
t)

1 9987 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

3 23 0 9942 0 0 0 0 0 0 0 0 0 0 0 0 0 33 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

4 0 0 0 9993 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0

5 0 0 0 0 9998 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0

6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

9 0 0 0 0 0 0 0 0 9952 0 0 0 0 0 0 0 27 0 0 0 0 0 0 0 0 0 21 0 0 0 0 0

10 0 0 0 0 0 0 0 0 0 9990 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0

11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

17 17 0 14 0 0 0 0 0 0 0 0 0 0 0 0 0 9969 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 9954 0 0 0 0 0 0 0 0 0 0 0 0 0 0

19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

21 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

22 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

23 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

24 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 10000 0 0 0 0 0 0 0 0

25 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

26 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

27 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 10000 0 0 0 0 0

28 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

29 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

30 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

31 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

32 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 9902

33 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

34 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

35 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

36 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

37 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

38 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

39 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

40 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

41 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

42 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

43 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

44 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

45 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

46 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

47 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

48 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

49 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

50 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

51 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

52 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

53 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

54 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

55 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

56 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

57 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

58 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

59 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

60 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

61 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

62 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

63 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

64 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

PPVi 99.60 - 99.86 100 100 - - - 100 100 - - - - - - 99.26 100 - - - - - 100 - - 99.76 - - - - 100

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
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Table F.2: Confusion matrix of classification of spectra of the 15 measured plastics (14
labeled and 1 unlabeled). Part 2: predicted classes 33 to 64. Cells with correctly classified
flakes (the main diagonal) are marked green, cells with incorrectly classified flakes are
marked red.

Predicted class (output)

33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 TPRi

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 99.87 1

T
ru

e
cl

as
s

(t
ar

ge
t)

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 - 2

0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 99.42 3

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 99.90 4

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 99.90 5

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 - 6

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 - 7

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 - 8

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 99.52 9

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 7 99.90 10

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 - 11

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 - 12

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 - 13

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 - 14

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 - 15

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 - 16

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 99.69 17

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 45 99.54 18

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 - 19

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 - 20

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 - 21

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 - 22

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 - 23

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 100 24

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 - 25

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 - 26

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 100 27

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 - 28

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 - 29

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 - 30

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 - 31

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 98 99.02 32

9991 0 0 0 6 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 99.91 33

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 - 34

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 - 35

0 0 0 9985 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 8 99.85 36

6 0 0 0 9994 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 99.94 37

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 - 38

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 - 39

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 - 40

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 - 41

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 - 42

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 - 43

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 - 44

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 - 45

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 - 46

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 - 47

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 - 48

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 - 49

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 - 50

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 - 51

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 - 52

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 - 53

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 - 54

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 - 55

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 - 56

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 - 57

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 - 58

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 - 59

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 - 60

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 - 61

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 - 62

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 - 63

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 10000 100 64

PPVi 99.94 - - 100 99.94 - - - - - - - - - - - - - - - - - - - - - - - - - - 98.43

33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64



184 F. Classification results

Table F.3: Confusion matrix of classification of spectra of the 15 measured (14 labeled and
1 unlabeled) and 49 simulated labeled plastics. Part 1: predicted classes 1 to 32. Cells
with correctly classified flakes (the main diagonal) are marked green, cells with incorrectly
classified flakes are marked red.

Predicted class (output)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

T
ru

e
cl

as
s

(t
ar

ge
t)

1 9987 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

2 0 10000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

3 23 0 9942 0 0 0 0 0 0 0 0 0 0 0 0 0 33 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

4 0 0 0 9998 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0

5 0 0 0 0 9998 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0

6 0 0 0 0 0 9999 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

7 0 0 0 0 0 0 9990 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 10 0 0 0 0 0 0 0 0 0

8 0 0 0 0 0 0 0 10000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

9 0 0 0 0 0 0 0 0 9952 0 0 0 0 0 0 0 27 0 0 0 0 0 0 0 0 0 21 0 0 0 0 0

10 0 0 0 0 0 0 0 0 0 9990 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0

11 0 0 0 0 0 0 0 0 0 0 10000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

12 0 0 0 0 0 0 0 0 0 0 0 9999 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

13 0 0 0 0 0 0 0 0 0 0 0 0 9989 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 11 0 0 0

14 0 0 0 0 0 0 0 0 0 0 0 0 0 10000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 9996 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0

16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 10000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

17 17 0 14 0 0 0 0 0 0 0 0 0 0 0 0 0 9969 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 9954 0 0 0 0 0 0 0 0 0 0 0 0 0 0

19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 10000 0 0 0 0 0 0 0 0 0 0 0 0 0

20 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 9999 0 0 0 0 0 0 0 0 0 0 0 0

21 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 9999 0 0 0 0 0 0 0 0 0 0 0

22 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 10000 0 0 0 0 0 0 0 0 0 0

23 0 0 0 0 0 0 12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 9988 0 0 0 0 0 0 0 0 0

24 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 10000 0 0 0 0 0 0 0 0

25 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 10000 0 0 0 0 0 0 0

26 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 10000 0 0 0 0 0 0

27 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 10000 0 0 0 0 0

28 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 10000 0 0 0 0

29 0 0 0 0 0 0 0 0 0 0 0 0 19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 9980 0 0 0

30 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 10000 0 0

31 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 9995 0

32 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 9902

33 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

34 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

35 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

36 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

37 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

38 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

39 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

40 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

41 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0

42 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

43 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

44 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

45 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

46 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

47 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

48 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

49 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

50 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

51 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

52 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

53 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

54 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

55 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

56 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

57 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

58 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

59 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

60 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

61 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

62 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

63 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

64 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

PPVi 99.60 100 99.86 100 100 100 99.87 100 100 100 100 100 99.80 100 100 100 99.26 100 100 100 100 100 99.90 100 100 100 99.74 100 99.89 100 100 100

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
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Table F.4: Confusion matrix of classification of spectra of the 15 measured (14 labeled and
1 unlabeled) and 49 simulated labeled plastics. Part 2: predicted classes 33 to 64. Cells
with correctly classified flakes (the main diagonal) are marked green, cells with incorrectly
classified flakes are marked red.

Predicted class (output)

33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 TPRi

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 99.87 1

T
ru

e
cl

as
s

(t
ar

ge
t)

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 100 2

0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 99.42 3

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 99.90 4

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 99.90 5

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 99.90 6

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 99.90 7

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 100 8

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 99.52 9

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 7 99.90 10

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 100 11

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 99.90 12

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 99.89 13

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 100 14

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 99.90 15

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 100 16

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 99.69 17

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 45 99.54 18

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 100 19

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 99.90 20

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 99.90 21

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 100 22

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 99.88 23

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 100 24

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 100 25

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 100 26

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 100 27

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 100 28

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 99.80 29

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 100 30

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 99.90 31

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 98 99.02 32

9991 0 0 0 6 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 99.91 33

0 10000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 100 34

0 0 9966 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 34 0 0 0 0 0 0 0 0 0 0 0 0 0 99.66 35

0 0 0 9985 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 8 99.85 36

6 0 0 0 9994 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 99.94 37

0 0 0 0 0 10000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 100 38

0 0 0 0 0 0 9990 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 9 0 0 0 0 0 0 0 0 0 99.90 39

0 0 0 0 0 0 0 10000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 100 40

0 0 0 0 0 0 0 0 9955 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 40 0 0 0 0 0 0 2 99.55 41

0 0 0 0 0 0 0 0 0 10000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 100 42

0 0 0 0 0 0 0 0 0 0 9984 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 16 0 0 0 0 0 99.84 43

0 0 0 0 0 0 0 0 0 0 0 10000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 100 44

0 0 0 0 0 0 0 0 0 0 0 0 9973 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 26 0 0 0 99.73 45

0 0 0 0 0 0 0 0 0 0 0 0 0 10000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 100 46

0 0 0 0 0 0 0 0 0 0 0 0 0 0 9992 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 8 0 99.92 47

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 10000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 100 48

16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 9984 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 99.84 49

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 10000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 100 50

0 0 15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 9985 0 0 0 0 0 0 0 0 0 0 0 0 0 99.85 51

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 10000 0 0 0 0 0 0 0 0 0 0 0 0 100 52

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 9999 0 0 0 0 0 0 0 0 0 0 0 99.90 53

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 10000 0 0 0 0 0 0 0 0 0 0 100 54

0 0 0 0 0 0 14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 9986 0 0 0 0 0 0 0 0 0 99.86 55

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 10000 0 0 0 0 0 0 0 0 100 56

0 0 0 0 0 0 0 0 19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 9980 0 0 0 0 0 0 0 99.80 57

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 10000 0 0 0 0 0 0 100 58

0 0 0 0 0 0 0 0 0 0 11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 9989 0 0 0 0 0 99.89 59

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 10000 0 0 0 0 100 60

0 0 0 0 0 0 0 0 0 0 0 0 18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 9982 0 0 0 99.82 61

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 10000 0 0 100 62

0 0 0 0 0 0 0 0 0 0 0 0 0 0 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 9990 0 99.90 63

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 10000 100 64

PPVi 99.78 100 99.84 100 99.94 100 99.86 100 99.80 100 99.88 100 99.82 100 99.90 100 100 100 99.65 100 100 100 99.91 100 99.60 100 99.83 100 99.73 100 99.92 98.42

33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64
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