der Bundeswehr

Universitdt jQ Miinchen

Aggregation-based Decision Support
Framework for Resilience Analysis of a

Transportation Network

Zhonglin Wang

Vollstendiger Abdruck der von der Fakultd fir Informatik der Universita der
Bundeswehr MiUnchen zur Erlangung des akademischen Grades eines

Doktors der Naturwissenschaften (Dr. rer. nat.)
genehmigten Dissertation.

Gutachter:
1. Univ.-Prof. Dr. Stefan W. Pickl
2. Univ.-Prof. Dr. Oliver Rose

Die Dissertation wurde am 19.11.2020 bei der Universita der Bundeswehr Minchen
eingereicht und durch die Fakult& fUr Informatik am 13.04.2021 angenommen. Die

mundliche Prifung fand am 20.05.2021 statt.






Abstract

As one example of critical infrastructures, the German high-speed train network
(ICE) is a prime target for terrorism. To decrease the impact of attacks, key stations need
to be identified as the most likely targets. One approach for doing so is modeling the

network as a graph and then applying suitable graph measures to it.

The central concern of this thesis is the fact that there is a large number of old and
new measures, which all provide their unique perspective, but which eventually lead to

an information overload for the decision-makers.

The solution presented takes the "Technique for Order Preference by Similarity to
Ideal Solution" (TOPSIS) from Multi-criteria Decision Making field (MCDM) and
adapts it to produce a new aggregation framework of different graph measures. For the
vital step during this process, a novel, mathematical methodology is being presented,

replacing the traditional expert knowledge needed.

Furthermore, to verify the effectiveness of the aggregation measure compared to
other graph measures, a new network performance metric is being introduced and
validated. As an outlook, a special vector-based approach based on the obtained results

1s addressed.
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Zusammenfassung

Als  Beispiel  fiir  kritische = Infrastrukturen  ist das  deutsche
Hochgeschwindigkeitszugnetz (ICE) ein vorrangiges Ziel des Terrorismus. Um die
Auswirkungen von Angriffen zu verringern, miissen wichtige Stationen als die
wahrscheinlichsten Ziele identifiziert werden. Ein Ansatz hierfiir besteht darin, das

Netzwerk als Graph zu modellieren und dann geeignete Graph-Male darauf anzuwenden.

Das zentrale Anliegen dieser These ist die Tatsache, dass es eine grole Menge von
alten sowie neuen Mallen existiert, die alle ihre einzigartige Perspektive anbieten,
allerdings letztendlich zu einer Informationsiiberflutung fiir die Entscheidungstrager

fiithren.

Die vorgestellte Losung tibernimmt die Methode "Technique for Order Preference
by Similarity to Ideal Solution" (TOPSIS) aus dem "Multi-Criteria Decision Making"
(MCDM) Feld und passt diese TOPSIS, damit ein neuer Aggregationsrahmen
verschiedener Graph-MafBen erstellt wird. Fiir den entscheidenden Schritt wiahrend dieses
Prozesses wird eine neuartige mathematische Methodik vorgestellt, die das erforderliche

traditionelle nétige Expertenwissen ersetzt.

Dariiber hinaus, wird zur Uberpriifung der Wirksamkeit der Aggregationsmaf} im
Vergleich zu anderen Graph-Maf3en eine neue Netzwerkleistungsmetrik eingefiihrt und
validiert. Als Ausblick wird ein spezieller vektorbasierter Ansatz nach den gewonnenen

Resultaten angesprochen.
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1 Introduction

1.1 Motivation: Critical Infrastructure,
Terror Attacks and Vulnerability

As the USA PATRIOT Act pointed out, the critical infrastructures are those “systems and
assets, whether physical or virtual, so vital to a country that the incapacity or destruction
of such systems and assets will have a debilitating impact on security, national economic
security, national public health or safety, or any combination of those matters”
(Amoaning-Yankson 2013, Rinaldi 2004, Seager et al. 2017, Todorovic et al. 2017). The
critical infrastructures consist of a lot of sectors, including chemical and commercial
facilities as well as communications, critical manufacturing, dams, defense industrial
base, emergency services, energy, financial services, food and agriculture, government
facilities, healthcare and public health, information technology, nuclear reactors
including materials and waste, transportation systems as well as water (White House
2013). These critical infrastructures provide us with the essential functions and “services
that underpin our society and serve as the backbone” of a country (Dinh 2010). These
critical infrastructures are so essential and vital that once they are disturbed by adverse
events, such as natural disasters or unintended accidents (Dinh 2010), our lives will be
affected to a large extent. Especially terrorist attacks could mostly result in lots of
casualties and economic losses. According to the Global Terrorism Database (START
2021), in total, there are 201,183 terrorist acts happened worldwide from 1970 to 2020.
As one of the critical targets, more than 7,000 terrorist attacks were aiming at
transportation systems, whose percentage is shown in Figure 1.1. Moreover, due to
characteristics such as the accessibility, affordability, and availability of transportation
systems, once the elaborately planned terrorist attacks (Keeney and Winterfeldt 2010)
happen on the transportation systems, they would always lead to a large number of

casualties, economic losses and maybe even other unpredictable incidents.
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For example, the September 11 attacks, which happened in the United States on
September 11, 2001, resulted in 2,996 people killed, over 6,000 others injured, at least
USD 10 billion in property and infrastructure damage, and USD 3 trillion in total costs.
Sadly, in the following few years, the terrorist attacks aiming at transportation systems
were continuing, for instance the train bombings that happened in Madrid on March 11,
2004, which resulted in 192 people killed and around 2,000 people injured. And since
the Madrid train bombings occurred three days before Spain's general elections, this
therefore also had some political effects. Nevertheless, on July 7, 2005, another train
bombing happening in London resulted in 52 people killed and 784 people injured. On
July 11, 2006, during the Mumbai train bombings, 209 people were killed and more than
700 were injured. Even recently, on March 22, 2016, the train bombing happening in

Brussels caused the death of 14 people and more than 200 people were injured.

= Private Citizens & Property - I ¢ 60%

= Miltary I 15 50%
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= Government (General) |G 11 5%
Business 10.83%
Transportation 3.52%
w Unknown N .30%
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® Abortion Related ] 0.13%
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Figure 1.1: Percentages of terrorist incidents aiming at different kinds of targets

As we know, after the September 11 attacks, the security checks of air transport
systems around the world have become much stricter. Therefore, air transport systems

have become much harder to be attacked by terrorists.



Chapter 1  Introduction

However, comparing to air transport systems, other public transport systems, such
as bus transport systems, metro systems in a city or train transport systems in a country,
will still be easy to access because of less security checks, especially in European
countries like Germany, where all of the bus, metro, and intercity train transport systems
are open for everyone to access without any security checks. Therefore, they are easier
targets for terrorists (Keeney and Winterfeldt 2010). Therefore, it is vital for decision-
makers of governments to know which station (or city) has more potential to be attacked
by terrorists in a metro transport system (or intercity train transport system). Afterward,
they can decide to deploy more security resources in advance around these key stations
(or cities). When the terrorist attacks happen in these key spots, governments can respond
quickly, and social panic, economic loss as well as casualties would be reduced to a lower
level. Meanwhile, the system can be recovered to a normal operation level quickly.
Furthermore, if one potential terrorist attack is reported by some people in advance, the

governments can take quick and effective measures to prevent it from happening.

Shocked but also motivated by these terrorist attacks, researchers and governments
have been trying to find some solutions on how to prevent these kinds of horrible
incidents from happening and how to reduce their impacts. It is very necessary, important
and significant to detect especially the key parts or spots of critical infrastructures which
have more potential to be hit by deliberately and meticulously planned terrorist attacks,
because when the terrorist attacks happen at these vital parts, they are likely to cause a
massive panic of society, economic loss and even enormous casualties. Normally,

researchers try to resolve this kind of problem from two perspectives:

On the one hand, there is qualitative analysis; for example, risk analysis can solve
problems by answering questions such as: what kinds of weapons terrorists may use; how
many weapons they will use; how large the destructions of each kind of weapon can be,
and so on. However, this is actually not the focus of our research. On the other hand,
there is quantitative analysis, which is a solution-oriented approach, and it is also the
central aspect we consider in this thesis. To identify the essential spots of critical
infrastructures, we focus on first implementing some existing mathematical algorithms

and their diverse improved variants.
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Furthermore, we also develop new methods to identify the significant spots. Up to
this stage, we have applied multiple approaches to detect the critical spots in a system.
But because different approaches will lead to distinctive results, applying multiple
methods together will result in information overflow for decision-makers. Therefore, for
the sake of resolving the issue of information overflow, we adapt and improve an
aggregation technique from the Multi-criteria Decision Making (MCDM) field
(Muruganantham and Gandhi 2016) to aggregate many approaches into a new
comprehensive method in order to identify the key spots. After that, in order to verify
and validate the effectiveness of the aggregation approach (that is, whether it is a
promising, much more suitable and practical approach that can detect the critical spots
of critical infrastructures), we conduct the quantitative resilience analysis by developing

a new network performance metric.

1.2 Background

As one of the critical infrastructures, transportation systems are strictly related to us and
play a significant role in our life. Every day, hundreds of millions of people around the
world commute or travel by public transport systems. Especially because of the lower
price and much easier access than air transport systems, most common public transports
are the bus transport or metro system in a city, or the train transport system connecting

almost every city in nearly every country.

Moreover, all of these public transport systems have one specific network character,
which means that they can be abstracted into mathematical models. Therefore,

researchers can analyze these public transport systems from a mathematical point of view.

In the field of mathematics, especially when studying the characteristics of a
complex network, some approaches based on graph theory can be used. Over the last
several decades, the importance of assessment of nodes in complex networks has so far
drawn wide attention from researchers and practitioners from diverse fields. In a network,

to identify the critical nodes is one crucial research.
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However, due to the fact that it is a complex network with an essentially non-
homogenous topology, thus, the importance of nodes (which are distinctive from each
other) in the given network are determined. To unearth and detect the critical nodes in
various complex networks and then specifically analyze the properties of these critical
nodes has essential significance on how to take advantage of them effectively. For
instance, in a criminal relationship network, the importance ranking of every member
can help distinguish who is a primary criminal member, who are backbone criminal

members and who are just followers.

This can help to quickly locate the leader of criminal gangs. It has high practical
value to conduct the importance analysis of nodes for detecting the critical nodes on the
specific networks (Gaertler 2005), such as social networks, research cooperation
networks, power networks and especially transportation networks, under terrorist attacks.
Because once decision-makers have realized which parts are the most critical points, they
can deploy security resources in advance around these points to protect them from being
destroyed or at least reduce the impacts of such terrorist attacks to a certain relatively

low extent.

During my studies for Ph.D., I was involved in the German-French joint project
RE(H)STRAIN (REsilience of the Franco-German High-Speed TRAIn Network)
(Amokrane et al. 2017, RE(H)STRAIN 2021), led by my supervisor Prof. Pickl, and
collaborated with other significant research partners between Germany and France. This

project was funded for two years by BMBF and ANR (RE(H)STRAIN 2021).

In this project, the objective was to analyze the vulnerability of rail-bound DE-FR
high-speed train systems (ICE, TGV) as a part of critical infrastructure transport under
threats from terrorism as well as the derivation of measures for the improvement of their

resilience.

But, in this dissertation, our research object is mainly focusing on the German high-
speed train network (ICE network) (Deutsche Bahn 2018), shown in Figure 1.2 as critical
infrastructure. The German ICE network is obtained from Deutsch Bahn. The analysis at

hand is based on the data from Deutsche Bahn (2018):
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Figure 1.2: German ICE train network

The aim of this thesis is to establish a new kind of network modeling with a suitable

analysis measurement.
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1.2.1 Network Modeling and Network Technologies

As aforementioned in this chapter, in this thesis, the research object is the German high-
speed railway transportation system (ICE train network). As shown in Figure 1.2, the

ICE train network consists of 121 stations and 168 links between stations.

Due to the mesh characteristic of the ICE train network, based on graph theory, we
thus abstract it as an undirected weighted graph G(V,E) shown in Figure 1.3, where
V ={v,|i=123,..,n} represents the set of nodes (stations) and E ={e, |v,,v, eV}
denotes the set of edges (the links between each pair of stations) of the network. The

matrix A =[a, is the weighted adjacency matrix, where a, =w, 1if (v,,v,)cE,

ij dnxn

otherwise, a;,=0.

Here, N denotes the number of nodes in a graph and o, the distance length

between every pair of adjacent nodes with the unit of 100 km.

In order to compute the flow-weighted efficiency measure (we will introduce it in

Chapter 3) applied on the ICE network, another weighted adjacency matrix is considered:

We define B =[b.

i 1o - where b, =@, if there is at least one train passing on the

edge between the adjacent nodes v, and v otherwise, b,;=0- Here, @, represents

the train flow defined as the number of trains passing through the edge between the

adjacent nodes v; and v, ina day.

By applying the existing or the new proposed mathematical algorithms from the
field of graph theory to graph model G(V,E), we can deduce some structural

characteristics of the original network and then detect and pinpoint which part or parts

are critical ones that have a higher potential to be targets of terrorists based on Figure 1.3:
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Figure 1.3: Graph model G(V,E) of ICE train network

According to Figure 1.3, the following questions may now occur:

» Which single node (such as node 1) or which group of nodes (for instance

group nodes 1,2,4) can be regarded as the critical nodes?
» Which measures can be applied in Figure 1.3 to identify these critical nodes?

» How to validate if the implemented measures applied in Figure 1.3 are

suitable and effective to detect these critical nodes?
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1.2.2 Vulnerability Measures and
Multi-criteria Decision Making

In complex networks, to identify the crucial nodes using quantitative approaches has
drawn considerable attention from researchers. Currently, there are two kinds of analysis
methods. One approach is based on the idea "importance is equivalent to saliency" which
means that the critical nodes in a network can be detected without destroying the integrity
of the given network; commonly, these vital nodes can be identified by centrality
measures like degree, betweenness, eigenvector, closeness centralities, and so on
(Freeman 1978, Landherr et al. 2010). The other method is according to the idea
"importance equals the damage extent of network structure after deleting certain nodes
or set of nodes”, which means that after removing the given nodes from a network, the
given nodes can be seen as the key ones, if the change extent of network connectivity
indicators is highest. In general, the key nodes can be detected using vulnerability

measurcs.

Regardless of the method (or even its variant, which can also be used to identify the
key nodes), so far, lots of researchers have mainly focused on one or finite kinds of
characteristics related to the network structure and have analyzed the importance of
nodes from one single perspective or few limited perspectives only. For instance, degree
centrality emphasizes the number of its straightforwardly connected adjacent nodes, and
it can show the importance to a certain extent, but the nodes with the same degree
centralities are not of equal importance. Since one method analyzes the network from
different points of view and is applied to a specific problem in different fields, complex
networks in the real-world are various, and it is hardly only based on a single approach
to demonstrate if one node is essential or not, because it will lead to a rather large one-
sidedness when dealing with different network structures using only one method. It is
known that “in graph theory the importance of a node in a network is related to the overall
structure of the network™ (Lii et al. 2016, Qi et al. 2012, Rueda et al. 2017, Wang et al.
2018). Thus, if we can make use of multiple structure-based node importance indicators,
it could be useful and practical to comprehensively evaluate the significance of nodes

from different perspectives.
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In this thesis, we introduce a “Multiple-criteria Decision Making method based on
the Technique for Order Preference by Similarity to an Ideal Solution (TOPSIS)” (Hwang
and Yoon 1981), which can aggregate different measures (like network centrality
measures, network nodal efficiency measures and network nodal vulnerability measures)
into a new one, comprehensively analyzing the network for identifying the critical nodes
from diverse perspectives. Furthermore, we present the details of TOPSIS and how to

adapt them to this thesis in Chapter 3.

1.2.3 The Resilience of Complex Networks:
Resilience Phases and Suitable Metrics

In the RE(H)STRAIN project, resilience is understood to be the ability of high-speed
systems to maintain central functions and system states during and after the impact of
threats and to restore impaired functions quickly. Generally, “the definition of resilience
is the ability of a system to prepare and plan for, absorb, quickly recover from, and more

successfully adapt to adverse events” (Cutter and Ahearn 2013).

When analyzing the resilience of a network, researchers primarily carry out the
resilience analysis from two perspectives, namely qualitative and quantitative approaches.
In this thesis, we mainly focus on the quantitative resilience analysis. So far, one general
and easily understandable way is to represent resilience graphically by using

performance curves, considering the time consumption.

For instance, Nan and Sansavini (2017) split system resilience into “four different
phases, which are (1) original steady phase, (i1) disruptive phase, (iii) recovery phase, and

(iv) new stable phase”.

The detail of each stage is depicted in Figure 1.4; here, most of the researchers
mainly focus on the disruptive and recovery phases to quantify the network resilience,
because during these two phases the amount of time consumed can lead to different

resilience levels of a network.

10
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4 Disruptive event
Performance

Original stable phase Disruptive phase Recovery phase New stable phase

Restorative and

Absorplive capability Adaptive capabilities

f { Time

Figure 1.4: Resilience phases [adapted from Nan and Sansavini (2017)]

In this thesis, we suppose that the network performances in both the original steady
phase and the new stable phase are the same. Furthermore, due to the fact that we mainly
consider terrorist attacks as the disruptive events, the time consumed in the disruptive
and recovery phases is thus not a necessary factor. Because in reality, once terrorist

attacks happen, the whole network would probably almost immediately be shut down.

For instance, after the gun shooting that occurred in Munich in July 2016, all the
local transportation networks, including subways, buses and trams were immediately
shut down until midnight. Regarding the time consumed in the recovery phase, it depends
on the decision-makers to carefully consider the corresponding status of the terrorist
attacks in advance and then properly decide whether and when to let the network start to
recover gradually until the network recovery is back to a completely normal state. In such
a case, the distinctive phases in Figure 1.5 of network resilience are different from the

ones in Figure 1.4.

11
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4 Terrorist attacks
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Figure 1.5: Different phases of network resilience when only considering terrorist attacks

Moreover, in this thesis, the resilience analysis on the ICE network is mainly used

to compare the different implemented mathematical algorithms from the field of graph

theory and conclude which algorithm is the most suitable and effective one for

identifying the key stations (nodes) that have more potential to be attacked by terrorists.

Since one of the goals in our research is to reduce the information overflow for

decision-makers, and network resilience can verify the effectiveness of the proposed

comprehensive aggregation method; therefore, our research can help decision-makers

understand the structural properties of the ICE network and provide proper advice for

them to decide which spots or parts need more security resources in advance to protect

them from being attacked by terrorists.

12
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1.3 Scientific Approaches and Goals of Research

In the research activities, we first apply the existing network structure-based approaches
like graph centrality measures to identify the critical spots in a network. However, we
find that the results are not good enough in a certain sense; therefore, we have proposed

two new vulnerability measures based on the existing methods.

But the more numbers of measures are applied (which will lead to more different
results), the larger the information overflow for decision-makers, making it difficult to

decide which result is more suitable and efficient.

In our research, based on TOPSIS (Hwang and Yoon 1981), considering the
aggregation technique widely used in the field of Multi-criteria Decision Making, we
propose a new weight estimation approach for this aggregation technique to properly

aggregate multiple measures in the complex network field.

Nevertheless, another problem is that even though we have a more comprehensive
measure that has considered more aspects and advantages of other multiple measures, we
still cannot conclude that the comprehensive measure is the measure that we are looking

for.

Therefore, considering the network resilience analysis and combining the network
structure attributions, we propose a new network performance metric and use its
changing percentages to compare different measures, then draw a conclusion which one
is suitable and efficient to identify the critical nodes in a network. The details of our

aimed contributions mainly include the following four parts:

(1) In order to determine the most critical and vulnerable spots (or points) that have
more potential to be attacked by terrorists, first, we carry out network structure
analyses by applying existing graph theory measures like centrality measures
(Wang et al. 2011) or nodal efficiency measures (Nistor and Pickl 2017) on the
German ICE network. So far, there have been many quantitative graph theory

measures that can be used to analyze networks from different perspectives.

13
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(2) In our research we mainly focus on a few basic centrality measures, like “degree
centrality measure, closeness centrality measure , betweenness centrality measure
and eigenvector centrality measure” (Freeman 1978, Boudin 2013, Tsiotas and
Polyzos 2015, Maharani and Gozali 2014, Ruhnau 2000), which all have been
widely used in complex networks, such as social networks or communication
networks, for detecting the vital spots. The details of the aforementioned

measures are systematically introduced in Chapter 3.

(3) Researchers have proposed many global vulnerability measures to compare
different networks with diverse numbers of nodes and edges when analyzing the
network vulnerability characteristics. In our research, based on the idea of
existing global vulnerability measures and also inspired by betweenness
centrality and classic efficiency measures, we propose two new nodal
vulnerability measures to detect the key spots in a network and apply them in this
thesis: One is named nodal betweenness-efficiency vulnerability measure (Wang
et al. 2018); the other is called nodal residual closeness vulnerability measure;

both are methodically explained in Chapter 3.

(4) Since the different graph measures analyze the network's structure properties
from different points of view, this can lead to different results that further cause
the information overflow problem for decision-makers. Therefore, in this thesis,
we apply the Technique for Order Preference by Similarity to Ideal Solution
(TOPSIS) (Lai et al. 1994) to aggregate the aforementioned graph measures into
anew aggregation measure that considers multiple factors together. In the process
of applying TOPSIS, the most important step is how to estimate and allocate the
weights for different measures. Traditionally, in the field of Multi-criteria
Decision Making (Borcherding and Winterfeldt 1991), there are some extant,
well-known, and widely used estimating methods like AHP (Analytic Hierarchy
Process) (Yoon and Hwang 1995), Simple Multi-Attribute Rating Technique
(SMART) (Barron and Barrett 1996), Measuring Attractiveness by a Categorical-
Based Evaluation Technique (MACBETH) (Bana et al. 2010), the Step-wise
Weight Assessment Ratio Analysis (SWARA) method (KerSuliené et al. 2010,
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Rezaei 2015), etc. However, the problem is that all of them need the experts'
knowledge and experiences, but in graph theory, different researchers have
different analysis criteria, which thus will lead to different results and draw
distinct conclusions. Therefore, in order to eliminate these diversities and make
experiments or computations repeatable, in our research projects we have
introduced a new weight estimating method by conducting network global
vulnerability analysis to quantify the process of estimating weights. The results
show that the proposed aggregation measure is a promising one to identify the
key points in a network. We gradually present the aggregation measure and the

new weights estimation process in Chapter 3.

(5) In our research, when analyzing the network properties in our research activities,
we mainly use the measures coming from the graph theory field; thus we will also
combine some network structure characteristics to conduct the network resilience
analysis. For the sake of carrying out the network resilience analysis while taking
into account the network structure properties, we propose a new network
performance metric considering three factors, namely traveling time, the number
of people who can take advantage of the public transport systems and also the
train flow, which means the least number of trains passing a given line. We also
make use of the percentages of changes of the proposed network performance
metric to compare the aforementioned centrality, efficiency, nodal vulnerability
and the TOPSIS-based aggregation measures, coming to the conclusion which
one is the most suitable and efficient measure to identify the key spots in a
transportation network. The new network resilience performance metric is
thoroughly discussed in Chapter 4, in which, among the aforementioned eight
measures (betweenness centrality measure, closeness centrality measure, degree
centrality measure, eigenvector centrality measure, nodal efficiency measure,
nodal flow-weighted efficiency measure, nodal betweenness-efficiency
vulnerability measure and nodal residual closeness vulnerability measure), we
also compare and check which measures are the basic and necessary ones for the

TOPSIS-based aggregation measure through resilience analysis.
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1.4 Overview of the Thesis

The structure of this dissertation is organized as follows:

Chapter 1 is the introduction of this thesis. The fundamental issues concerning the
research question on how to detect the critical spots in a mesh infrastructure system like
train transport systems, while taking into account the terrorist attacks that are described

here. The approaches and goals of our research are also addressed in this chapter.

Chapter 2 is the state of the art, in which the basic terms that are used in this
dissertation are introduced, for example, what is graph and graph theory (West 2001) or
what is network and network theory (Gaertler 2005). Moreover, many contributions
regarding the network structure and vulnerability analysis using quantitative graph
algorithms (which are called graph measures in graph theory) and the network

quantitative resilience analysis (Hosseini et al. 2016) are presented.

For instance, in Chapter 2, we review the researches on centrality measures (Bavelas
1948, Tsiotas 2015), including degree centrality (Freeman 1978, Maharani and Gozali
2014), closeness centrality measure (Freeman 1978), betweenness centrality (Freeman
1978) and eigenvector centrality (Ruhnau 2000, Maharani and Gozali 2014), and their
applications on the transportation networks (Wang et al. 2011, Li and Cai 2004, Chi et al.
2003, Sienkiewicz and Hotyst 2005, Mohmand and Wang 2013, Sen et al. 2003, Li and
Cai 2007, Mohmand and Wang 2014, Derrible 2012, Mouronte and Benito 2012, Cheng
et al. 2013). Furthermore, we also review the global efficiency measure (Latora and
Marchiori 2003), nodal efficiency measure (Nistor and Pickl et al. 2017) and
vulnerablility measures (Barefoot et al. 1987, Gao and Buldyrev 2011, Mishkovski et al.
2011, Vardi and Zhang 2007).

In Chapter 3, in order to identify the critical spots in a mesh system, we conduct a
network structure analysis by applying the existing graph theory measures like centrality
measures (namely degree centrality, closeness centrality measure, betweenness centrality
and eigenvector centrality) and efficiency measures (namely global efficiency measure

and node efficiency measure).
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Based on the idea of vulnerability, in this chapter, we also propose two new nodal
vulnerability measures based on global vulnerability measures and apply them to the

German ICE network G(V,E) to detect the critical spots. One nodal vulnerability

measure is the nodal residual closeness vulnerability measure, which is based on the

graph global residual closeness defined by Dangalchev (2006).

Another nodal vulnerability measure is the betweenness-efficiency vulnerability
measure, which is based on the betweenness centrality measure (Freeman 1978) and
global efficiency measure (Latora and Marchiori 2003), as well as taking into account

the idea of the nodal residual closeness vulnerability measure.

For the sake of reducing the information overflow for decision-makers caused by
implementing many different methods on the research object, the aggregation method
called Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) (Hwang
and Yoon 1981) from the Multi-criteria Decision Making field is introduced, and the
TOPSIS-based aggregation approach is presented; here, we not only adapt this
aggregation technique to our research, but more importantly, we also improve it by

adding a new weighting approach to our study.

In Chapter 4, in order to compare different methods and conclude which measure is
more suitable and efficient to detect the critical spots in a network and verify the
effectiveness of the proposed new aggregation approach, we carry out a network
resilience analysis. In this dissertation, when analyzing the resilience of the German ICE
network, we mainly focus on quantitative methods. As it is well-known, when
researchers conduct quantitative network resilience analysis, the network resilience is
generally quantified using the changes of network performance metric, and thus, in
Chapter 4, we develop a new network performance metric by considering traveling time,
train flow and also the number of people who can use the system as usual, even under

some disruptions.

Here, when roughly estimating the number of people, we also take into account
network characters like the number of neighbors for each station (that is the degree of

the given station).
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In order to apply the idea of degree properly here, we also propose the concept of

adjacency node-set level, whose definition is also introduced in detail in Chapter 4.

Furthermore, in that chapter, we also distinguish which measures are the basic and

necessary ones for the TOPSIS-based aggregation measure through resilience analysis.

In Chapter 5, outlook and perspectives for future research works are presented. For
instance, we are further investigating more extant graph measures with different
information, such as mobility centrality (Tsiotas and Polyzos 2015), PageRank (Brin and
Page 1998) or Clustering coefficient (Wang et al. 2011). In the future, based on linear
algebra, we will also investigate a new algebraic aggregation measure and compare it

with the aforementioned TOPSIS-based aggregation measure.

Finally, this dissertation is concluded in Chapter 6 and a summary for this thesis is

presented in the end.
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2 Literature Review on Graph
Measures, Vulnerability Indices

and Network Resilience Analysis

In this thesis, the main application field of our research is the intercity train system, which
is the ICE train system. The data of the study at hand is obtained from Deutsche Bahn
(2018). Regarding the problem on how to identify the key station on the ICE train system
(here, each station on the ICE train system can also be called a city), in our research, we
mainly focus on the quantitative analysis based on the mathematical approaches from

graph theory, Multi-criteria Decision Making (MCDM) and network resilience fields.

Since the ICE train system has network characteristics (meaning it has stations and
lines between pairs of stations), it can be abstracted into an ICE-network-based
mathematical model (as introduced in Chapter 1), analyzed by using mathematical

methods.

Based on graph theory, we can first apply the existing graph algorithms (called graph
measures in graph theory) (Biggs 1986, West 2001) to detect the critical spots in a graph
model (it is actually the aforementioned ICE-network-based mathematical model); based
on the existing graph algorithms, we also propose some new approaches, which are

presented in detail in Chapter 3.

As introduced in Chapter 1, when applying distinct methods to a graph model, it
will lead to different results, which thus causes the information overflow problem for
decision-makers. Therefore, to reduce the information overflow issues, we adapt the
MCDM method to our research for aggregating multiple methods into a new promising

approach by proposing and combining the methods from graph theory.
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The new aggregation approach not only considers the advantages of other different
methods, but it also compensates for the shortcomings of a single method and leads to a
more comprehensive result to tell which node in a network will be the critical one. The

proposed new aggregation method is introduced in Chapter 3.

Furthermore, in order to verify the effectiveness of the new aggregation method, we
conduct the quantitative resilience analysis by developing and introducing a new network
resilience performance metric. Before introducing the details of the applied algorithms,
in this chapter, we make a brief literature review on the basic terms of graph theory and
the related research history over decades, MCDM and some similar research work from
other researchers and experts as well as the reviews on the relevant work of quantitative
resilience analysis. So far, there has been a lot of literature (Freeman 1978, Landherr et
al. 2010, Hosseini et al. 2016) including many approaches related to network analysis
and network resilience analysis, which are reviewed in this chapter. However, to clarify
ambiguities at the beginning, we introduce some basic terms that are used in this

dissertation.

2.1 Basic Network and Graph Theory Concepts

Networks are all around us, including “technological networks (the internet, power grids,
telephone networks, transportation networks, et al.), social networks (social graphs,
affiliation networks, et al.), information networks (World Wide Web, citation graphs,
patent networks, et al.), biological networks (biochemical networks, neural networks,
food webs, et al.) and much more” (Aggarwal 2011, Gaertler 2005, Newman 2003,
Newman 2008). Once a network has been mapped into a mathematical graph model,
people can deduce some critical information by analyzing their structural characteristics
using some methods from graph theory, for instance, which part or parts of a network are
vital and how to reduce the vulnerability of the network in order to improve its robustness

and resilience. In Chapter 1, the German ICE network has been mapped into Graph
G(V, E), but before applying some approaches from graph theory to it, we must first

introduce some basic concepts regarding the network and graph theory in the following.
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In mathematics, graph theory (Biggs 1986, West 2001) is studying the properties of
graphs, which are “mathematical structures used to model pairwise relations between
elements” (Rossetti 2015). Specifically, a graph is “a structure amounting to a set of
elements” in which some pairs of elements are connected or interact. The elements
corresponding to mathematical abstraction are called nodes (also called vertices or
points), and each of the connected pairs of elements is called an edge (also called an arc
or line) (Rossetti 2015, West 2001). Typically, a graph can be depicted in a diagrammatic

form as a set of dots or circles for the nodes, joined by lines or curves for the edges.

Network theory (Aggarwal 2011, Gaertler 2005, Newman 2003, Newman 2008) is
studying the graphs as a representation of either symmetric relations or asymmetric
relations between discrete elements. In computer science and network science, the
network theory is a part of graph theory. A network is defined as a graph in which its
nodes and edges have attributes (e.g. names or specific weighted values). In summary,
the term network denotes the straightforward concept describing an object consisting of
elements and connections between elements. The term graph is an abstract object
composing of “a set of nodes and a set of edges that connect pairs of nodes” (Aggarwal

2011, Dinh 2010, Newman 2003, Rossetti 2015).

Most commonly, in graph theory, the term graph is defined as an ordered pair

G = (V,E), which consists of a set V of nodes with a set E of edges. Since in this

dissertation we take the ICE network as an example, for the sake of uniformity and
simplicity, we suppose there are no differences between graph and network, nodes and

stations, and edges and links throughout this dissertation.

2.2 Graph Measures -
Centrality, Efficiency and Vulnerability

The so-called centrality quantifies the intuitive feeling that some nodes or edges are more
important than others in a network (Tsiotas 2015). The idea of centrality was firstly
introduced by Bavelas in 1948 (Bavelas 1948) and applied to human communication

networks.
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Up to now, many researchers have studied this topic and have proposed lots of new
different “centrality measures, such as degree centrality, closeness centrality,
betweenness centrality and so forth” (Rueda 2017), for identifying the crucial nodes. In
the beginning, these centrality measures were mainly applied on social networks

(Freeman 1978, Wasserman and Faust 1994).

Afterward, researchers from different fields began to introduce and implement these
centrality measures to other kinds of networks, for instance information networks,
biological networks, technological networks, and so on (Gaertler 2005). Meanwhile, lots

of different centrality measures are proposed.

Distinct centrality measures, which have different meanings and analyze the
network from distinct perspectives, lead to different results. For example, degree
centrality (Freeman 1978, Maharani and Gozali 2014), as the most simple and
straightforward graph measure, can rather easily tell which nodes are the important ones
based on the number of neighbors of these given nodes. While, according to closeness
centrality measure (Freeman 1978), if one node has the shortest distance to the others
and thus can reach other nodes very quickly on the network, the given node will be in the
central position in the network. However, based on the prominent betweenness centrality
(Freeman 1978), one node can be regarded as the most central one if lies on the shortest
paths with largest frequencies between all pairs of other nodes. Another well-known
centrality measure is eigenvector centrality (Ruhnau 2000, Maharani and Gozali 2014),
according to which one node can be identified as the most important one if its directly

connected nodes also have many well-connected neighbor nodes (Landherr et al. 2010).

In recent decades and years, researchers have begun to conduct network analyses
for studying the structure properties and detecting the key nodes using the centrality
measures in the transportation networks, which include the airport networks (Wang et al.
2011, Li and Cai 2004, Chi et al. 2003), urban road networks (Sienkiewicz and Hotyst
2005, Mohmand and Wang 2013), railway networks (Sen et al. 2003, Li and Cai 2007,
Mohmand and Wang 2014), and city metro or subway networks (Derrible 2012,
Mouronte and Benito 2012, Cheng et al. 2013).
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Especially in order to adapt the centrality measure to the transportation networks
efficiently, some new centrality measures were proposed, for instance, Tsiotas and
Polyzos (2015) introduced a mobility centrality measure using “the anagogic method
considering the kinetic energy of a particle in physics and adjusting its mathematical
analog to the transportation network™ (Tsiotas and Polyzos 2015). Moreover, a new
DelayFlow centrality measure, which takes into account the travel time and commuter

flow volume, was proposed by Cheng et al. (2013).

In this dissertation, we apply the centrality measures in German high-speed train
networks for identifying these essential nodes to protect them from being attacked by
terrorists; or if acts of terrorism do happen on these key nodes, the impacts can be at least
reduced to a certain low extent by deploying some security resources in advance on these

essential nodes.

For instance, when a node has been identified as the critical one, decision-makers
can allot more police to protect it and install in advance some safety detection devices
for detecting for example a dangerous chemical material or destructive weapons, and so

on.

Efficiency means how well information can spread over the network. Therefore, the
nodal efficiency quantifies how fast the information can be propagated from a given node
to the rest of the network. Based on Smith (1988), in Latora and Marchiori (2003), the
global network efficiency is defined. Furthermore, on the basis of Latora and Marchiori
(2003), Nistor and Pickl et al. (2017) defined the nodal efficiency measure to detect the
critical nodes. Meanwhile, by considering the train flow information, the authors also
proposed a new flow-weighted nodal efficiency measure that can be used not only to

identify the critical nodes, but also to distinguish the vital edges.

When quantifying the vulnerability of a network under disruptions or attacks, there
are commonly two types of methods (Boesch et al. 2009): one is probabilistic and based
on models from reliability theory, the other method is graph invariants as deterministic
measures, such as centrality-based measures, graph diameter, etc. (Holme et al. 2002,
Albert and Nakarado 2004, Holmgren 2006, Johansson and Hassel 2013). In this

dissertation, we only consider graph invariants-based measures.

23



Chapter 2 Literature Review

In graph theory, the term vulnerability can be understood as what percentage of the
structural properties of network changes due to defunct or removed nodes (Barefoot et
al. 1987, Gao and Buldyrev 2011, Mishkovski et al. 2011, Vardi and Zhang 2007). Based
on the percentages of changes of network structure, one can tell which one or set of nodes

is much more important among different nodes.

However, the existing traditional vulnerability measures like graph connectivity
(Mamut and Vumar 2008), graph toughness (Bauer et al. 2013), graph scattering number
(Zhang and Wang 2013, Kirlangi¢ 2002), graph integrity (Mishkovski et al. 2011), graph
extreme tenacity (Cheng et al. 2014, Li et al. 2014) and graph domination number
(Alanko et al. 2011), generally detect the same changes or damage the of network
structure if the removed nodes are trivial ones, which therefore cannot distinguish

between these different trivial nodes.

Here, we generally explain the formulas of “connectivity, toughness, scattering
number, integrity, tenacity and domination number” (Aslan and Kirlangic 2011). For
Graph G, ScG, G-S signifies the remains of G after removing the subset S
of vertices and its corresponding edges, @(G—S) means the number of components in
G-S, 7(G-S) denotes the order (i.e., the number of vertices) of the largest
component in G—S, vertex subset X (X <V (G), V(G) is the vertex set of graph

G ) is the vertex set cut (whose removal will disconnect graph G ) of graph G ('Aslan
and Kirlangic 2011, West 2001), | X | means the number of vertices.

For example, in Figure 2.1, the left picture is graph G ; here, we suppose one node
subset S = {Vl,V4VV5} , then when deleting these three nodes and their corresponding

edges (marked in red and bold), the remaining graph G —S is shown on the right side

of Figure 2.1. Apparently, G—S has two components, one component contains nodes
{V3,Vy}, another component is the largest component including nodes {V,,Vg,V;,Vy};
then, we can say @w(G-S)=2 and 7(G-S)=4. Because removal of the subset
S= {Vl,V4lV5} can separate graph G, the subset S = {Vl,V4’V5} can also be regarded

as one of the vertex set cuts X ; in such a case, | X |=3.
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In Figure 2.1, | X |={2,3, 4, 5,6,7},

&—)

& e 0 e ®

Graph G Remaining graph G —S

Figure 2.1: Simple graph for explaining S, @(G—S) and 7(G -S)

The connectivity measure (Mamut and Vumar 2008) is a basic vulnerability measure
and can be easily applied to a large complex network. It mainly measures how easily a
network can be broken apart by counting the least numbers of nodes that need to be

removed. Its definition is denoted as follows:

<(G) = min{| X |: X =V (G), o(G — X) > 1} 2-1),

where x(G) denotes the connectivity of G; here, the reason of @(G—X)>1 is used

to make sure that subset X is the vertex set cut whose removal can separate graph G

into at least two components. The toughness measure (Bauer et al. 2013) is used as a
more refined graph vulnerability measure to evaluate how heavily a network can be
broken, based on the numbers of deleted nodes. The above-mentioned formula of
toughness measure denotes that the smaller the toughness measure value is, the more
vulnerable the network is, which means that more components will be generated by

removing fewer nodes.

Specially, if the connectivity between two graphs is the same, the toughness measure

can be applied to compare their vulnerabilities.
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The formula of vertex toughness measure is shown as follows:

t(G):min{%: X cV(G),0(G-X)>1} (2-2),

where t(G) denotes the toughness measure.

The scattering number (Zhang and Wang 2013, Kirlangi¢ 2002) shows “not only
how difficult it is to break down the network, but also how badly the network is damaged”

(Aslan and Kirlangic 2011). Its definition is given as follows:
S(G) =max{o(G - X)—| X |: X cV(G),w(G-X) >1} (2-3),
where s(G) denotes the scattering number measure.

The integrity measure (Mishkovski et al. 2011) is used to judge how easy it is to
keep both the number of destroyed nodes and the largest remaining component small.

The integrity measure is defined as follows:

1(G)=min{| X |+7(G—-X): X <V (G)} (2-4),
where [(G) denotes the integrity measure.

The tenacity measure (Cheng et al. 2014, Li et al. 2014) mainly studies the intactness
of a graph when some of its nodes are deleted. It means that the higher the tenacity value
of a network, the more stable or less vulnerable it is considered to be. Its formula is shown

as follows:

X G=X)

T(G)=mi oGX)

X cV(G),aG-X)>D (2-5),

where T(G) denotes the tenacity measure. Supposing a subset ScG is the

dominating set of graph G (such that every node not in S 1is adjacent to at least one
node in S ), then the domination number (Alanko et al. 2011) of a network is the

cardinality of a minimum dominating set. Its formula is defined as follows:

D(G) =min{| S [} (2-6),
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To quantify the vulnerability of a network, lots of researchers have proposed more
new sensitive vulnerability measures which can detect the small change under the
situation of even only removing one trivial node or edge; for instance, Boccaletti et al.

(2007) proposed a new multiscale evaluation measure of vulnerability.

Based on closeness centrality, Dangalchev (2006) developed a new residual

closeness vulnerability measure applied in complex networks.

Meanwhile, some researchers have also identified the important components or
nodes in a network by analyzing the vulnerability of the network. Rodriguez-Nunez and
Garcia-Palomares proposed vulnerability component importance measures for a public
transportation network considering the travel time. The authors in Sullivan et al. (2010)
and Jenelius and Petersen (2006) developed vulnerability component importance
measures for road networks based on the cost of travel time. Ouyang et al. (2014)
proposed and applied the flow-based vulnerability measure on train networks. In this
dissertation, we now propose two new nodal vulnerability measures based on existing
global graph vulnerability measure, centrality measure and efficiency measure. We

explain them and their advantages in detail in Chapter 3.

2.2.1 Structural Properties

When a network is non-deterministic or we know nothing about its structures, through
the structural analysis of network using some structural measures (such as degree
distribution measures, clustering coefficient measures and centrality measures), we can
derive some useful structural properties of the network and further infer what kinds of
characters and functions the network has. For example, we could identify critical nodes
through the network structural analysis, if transportation networks and the crucial stations
with specific properties, that are more likely to become the attacked targets, can be
detected, so the responding security measures can be deployed in advance to protect these
vital stations against terrorist attacks. Here, we will do some specific reviews on the
structural and vulnerability analysis of transportation networks. Starting with a paper

authored by Meyer-Nieberg et al. (2014), in which, for the sake of evaluating the
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vulnerabilities of public transportation systems, the authors propose a three-model-based
approach which combines multi-agent systems, dynamical systems and graph models,
where the multi-agent systems are mainly used to analyze the system behaviors in the
most detailed level. By using difference or differential equations, the dynamical systems

were used to describe the development of system behavior over time.

Moreover, based on the dynamical system model, the graph models could be
constructed. Afterward, the complexity of the network-based systems was analyzed by
using some quantitative network measures, such as distance-based graph measures,

eigenvalue-based graph measures and entropic graph measures.

Emmert-Streib (2011) not only introduced some well-known network classes, such
as simple networks, random networks, small-world networks, scale-free networks and
trees, but Emmert-Streib (2011) also presented some useful methods for network
structural analysis, for example degree distribution measures, clustering coefficient
measures, path-based measures, centrality measures and a method for identifying the

community structure of networks.

Ducruet and Lugo (2013) discussed the structures of transportation networks from
the perspective of both network-level and node-level measures. To understand
transportation networks better, the usefulness of these measures was also discussed.
Regarding the problem of how transportation networks had been defined and analyzed,
the authors did some reviews from four aspects concerning spatial structure, geometry,
morphology and topology of transportation networks. Furthermore, the dynamics in
transportation networks were explored by adopting the Agent-based Models (ABMs). In
order to apply the ABMs on transportation networks for dynamic analysis, two distinct

approaches including generative and degenerative processes were presented.

Derrible (2012) examined the network centrality of subway networks. The
assessment of centrality was conducted by adopting betweenness centrality. In order to
do research on the emergence of global trends with network size in the evolution of
centrality, betweenness centrality was applied to 28 metro systems with different sizes

around the world.
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It was found out that betweenness becomes more uniformly distributed with size.
Moreover, it was shown that the share of betweenness decreased with network size in a
power law. However, the share of nodes with the most central properties decreased more

slowly than those with the least central properties.

In the end, betweenness was demonstrated to be useful to locate stations for helping
relieve pressure from overcrowded stations by analyzing the betweenness of individual

stations in several systems.

It was found out that a Macroscopic Fundamental Diagram (MFD) could be
presented in the urban transportation networks when meeting certain conditions. In order
to analyze whether the MFD exists in heterogeneously congested transportation networks
or not, Ji and Geroliminis (2012) mainly conducted research on the clustering problem
of transportation networks. As one category of clustering algorithms, a partitional method
was used in Ji and Geroliminis (2012). To minimize the variance of link densities as well
as to preserve the spatial compactness of clusters, a new partitioning mechanism was
proposed. The presented method consisted of the normalized cut algorithm, the merging
algorithm and the boundary adjustment algorithm. In addition, density variance and
shape smoothness metrics were also introduced to examine the proposed partitioning

mechanism.

Mouronte and Benito (2012) studied the urban bus and subway networks of Madrid.
Many characteristics of these two networks, such as stops, routes and densities of these
two networks, were analyzed. The authors represented these two networks as a graph.
Moreover, some structural parameters, including average distances between nodes,
betweenness, robustness, sensitivity and communities of the graph were evaluated not
only in the entire city, but also in its different districts. Furthermore, the singularity of
one transport line in a district was also explored in Mouronte and Benito (2012).

Moreover, many useful results were achieved through the aforementioned analysis.

According to betweenness centrality measures of complex networks which are
based on the shortest paths, Puzis and Altshuler et al. (2013) proposed a new
“betweenness-driven traffic assignment model for the optimal deployment of traffic

monitoring units in transportation networks” (Puzis and Altshuler et al. 2013).

29



Chapter 2 Literature Review

For the sake of coping with the problem of traffic assignment given an arbitrary
travelling cost definition, the problem of how to augment the betweenness was discussed.
In order to evaluate the proposed model used for generating efficient deployment
schemes, a high-resolution Israeli transportation dataset was used for examination.
Meanwhile, the correlation was analyzed between “betweenness centrality and traffic

flow” (Puzis and Altshuler et al. 2013).

Finally, it was illustrated that “the group variant of the augmented betweenness
centrality used to optimize the locations of traffic monitoring units could decrease the

costs and enhance the effectiveness of traffic monitoring” (Puzis and Altshuler et al.

2013).

In order to improve the design of the transportation networks and to conceive the
plans dealing with the problems of failures of transportation networks, the centrality
measures identifying crucial nodes in a transportation network were explored by Cheng
and Lee et al. (2013). In this thesis, a new centrality measure named DelayFlow is

proposed.

Unlike common centrality measures, the new presented centrality measure does not
only take the topological structure of network into account, but also considers two
transportation factors, namely travel time delay and commuter flow volume. In the end,
the proposed measure is compared with some common “centrality measures like degree
centrality, closeness centrality and betweenness centrality” by using Singapore’s Mass

Rapid Transit network (Cheng and Lee et al. 2013).

Discovering the hub road sections is not only in favor of protecting urban
infrastructure from being attacked, it is also useful to solve the design problem of a traffic
network. Based on Girvan and Newman algorithm, Chen and Hu (2013) proposed a new
algorithm used to detect community structure and uncover hub road sections in an urban
traffic network. Also in Chen and Hu (2013), an improved modularity that determines

the proper number of community structures was presented.
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By studying the traffic network of Wuchang, it was validated that the characteristics
of community structure existed in the urban traffic network; meanwhile, the hub road
sections deduced by using the proposed algorithm were also demonstrated in accord with

the actual situation.

When analyzing “the interregional transportation network in Greece”, Tsiotas and
Polyzos (2015) proposed a new centrality measure called mobility centrality. It was
assessed that the presented measure could be applied efficiently during the operational
network analysis. Additionally, the Pearson’s Linear Bivariate Coefficient of Correlation
and the Linear Regression Backward Elimination method were used to test the ability of

the proposed measure.

Moreover, the presented centrality measure was compared with other four
traditional “‘existing centrality measures, namely betweenness, closeness, straightness

and degree centrality measures” (Tsiotas and Polyzos 2015).

Finally, it was shown that “the status of the Greek interregional commuting system
could be described properly by the presented measure through the empirical analysis”

(Tsiotas and Polyzos 2015).

In modern society, railways play a crucial role in establishing efficient complex
transportation networks. The structural properties of the Pakistan Railway Network
(PRN) were studied by Mohmand and Wang (2014). Especially the PRN was represented

as an unweighted graph.

Through the network analysis it was found that the PRN clearly manifested the small
world properties. Moreover, the betweenness and closeness centrality measures were also
applied to detect critical stations with high traffic and potential congestion (Mohmand

and Wang 2014).
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2.3 Network Resilience Analysis

Although most people find it easy to grasp an intuitive and qualitative meaning for the
concept of resilience, this notion proved to be one of the most difficult ones to be defined
qualitatively in a general and comprehensive way (Wang et al. 2017). Numerous
qualitative and quantitative definitions have been proposed in different fields, including
psychology, social sciences, ecology and engineering. Some studies tried to differentiate
between the meanings to be used in engineering and ecology (Holling 1996). Attempts
have also been made to review this field; for instance, Martin-Breen et al. (2011) and
Hosseini et al. (2016) have done relatively comprehensive reviews on the definitions of

resilience.

Specifically in ecological systems, Holling (1996) was the first ecologist who
introduced the concept of resilience. According to Holling (1996), resilience is defined
as “the magnitude of disturbance that can be absorbed before the system changes its
structure by changing the variables and processes that control behavior.” Based on this
definition, a system can be seen as resilient if its structure cannot be destroyed by the

maximum amount of disturbances such as adverse events or natural disasters.

Here, the maximum amount of disruptions (the system structure will start to be
destroyed if the disruptions exceed this maximum amount of disruptions) can be attained

by adjusting the variables and processes.

The system resilience is defined by Vugrin et al. (2011) as “Given the occurrence of
a particular disruptive event (or set of events), the resilience of a system to that event (or
events) is the ability to efficiently reduce both the magnitude and duration of the
deviation from targeted system performance levels”. Vugrin and Warren et al. (2011)
qualitatively define system resilience by using three key factors, namely the disruptive

event, the efficiency of system recovery and the system performance.

Organizational resilience is explicitly defined by Altintas and Royer (2009) as the
“capacity of an organization to maintain or return to a dynamic stable state which allows
it to continue its operations during and after a major incident or in the presence of

continuous stress.”
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This definition is similar to the one of ecological resilience proposed by Holling
(1996), which also only focuses on the capacity of a resilient organization to retain or
bounce back to a dynamic stable state so that it can always operate normally. Here, the
steady state or the stable performance of a system refers to a system which can work

without any interruptions or stops, or within a tiny range of variations of performance.

Furthermore, taking more factors and abilities of an organization into account, Gilly
and Kechidi (2014) describe organizational resilience as “a double capacity: that of
resisting a shock or limiting its effects but also that of anticipating and thus adapting to
this shock or to a rapid evolution in the economic context by creating new systems,
particularly organizational ones.” Two abilities of an organization in this definition are
emphasized, which are the ability of absorbing disruption and recovering from it by
resisting a shock or limiting its damage, and the ability of firstly anticipating and then
adapting to this shock or rapid evolution (Gilly and Kechidi 2014, Wang et al. 2017).
However, incarnated in the efficiency of recovery of the system resilience proposed by
Vugrin et al. (2011), the needed recovery time and the amount of resources during the
progress of recovery of an organization couldn't be explicitly considered in this

organizational resilience, which can be used to quantify the resilience of an organization.

More generally, based on Cutter and Ahearn (2013) and specially British Standards
(2014), the organizational resilience is defined as the “ability to anticipate, prepare for,
respond and adapt to events — both sudden shocks and gradual change to survive and
prosper.” Different from the definitions of ecological resilience that only require the
ability to absorb change and disturbance while maintaining the same state, the definition
of the organizational resilience focuses on more aspects and splits the process of
resilience into four parts (Seager et al. 2017, Wang et al. 2017): what potential events
could happen and what damage would be induced by these adverse events (anticipating);
how to prevent these events from happening or how to relieve the loss by preparing for
some security measures ahead (preparing); how to respond to these adverse events
including absorbing the disruptions and recovering from the damage caused by events
(responding); and the last one, which is how to adapt to these adverse events in the future

(adapting) (Seager et al. 2017, Wang et al. 2017).
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2.3.1 Transportation Engineering Field

Regarding the resilience and definitions of the transportation engineering field, many
pieces of research also have been pursued. For instance, the resilience of a transportation
system as defined by Murray-Tuite (2006) is “a characteristic that indicates system
performance under unusual conditions, recovery speed and the amount of outside
assistance required for the restoration to its original functional state.” Ten dimensions of
resilience were identified by Murray-Tuite (2006), which are redundancy, diversity,
efficiency, autonomous components, strength, collaboration, adaptability, mobility,

safety and the ability to recover quickly.

Murray-Tuite (2006), through simulation, studied the influence of System Optimum
and User Equilibrium traffic assignments on the last four dimensions of adaptability,
mobility, safety and recovery. The traveling time for all vehicles in the network can be
minimized based on System Optimum traffic assignment, while the traveling time for

individual vehicles can be reduced by User Equilibrium traffic assignment.

Results showed that User Equilibrium traffic assignment performs better than
System Optimum when considering adaptability and safety; however, System Optimum

traffic assignment outperforms User Equilibrium under mobility and recovery.

Moreover, many other researchers, such as Gunderson and Pritchard (2002),
Battelle (2007), Sudakov and Vu (2008), Mostashari et al. (2009), Heaslip et al. (2010),
VTPI (2010b), Serulle et al. (2011), Nagurney and Qiang (2009), Litman (2011), Cox et
al. (2011), Zhang et al. (2009), also define and evaluate the resilience of transportation

systems from different perspectives.

When assessing network resilience, one of the convenient ways is to quantify

resilience based on reliability and graph theory:

We consider a system or network and map it into an undirected graph G(V,E),
where V ={v,,v,,...,v.} denotes the set of nodes and E ={ee,,...,e, } represents

the set of edges connecting the adjacent nodes with each other.
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Before introducing the resilience of networks, the concept of passageway is defined

as: “if a path set includes the paths connecting nodes i and j without any common
edges with other paths between nodes i and J , then the set is an independent
passageway set of nodes i and J ”. The element of the independent passageway set is
called a passageway (Ip and Wang 2011). L, (i, j) denotes the k" passageway

betweennodes | and .

The operation reliability q, is represented as the normal operation reliability of
one edge | € E. Because one passageway consists of a series of edges, the reliability of
a passageway P, (i, j) is defined as:

RG.D= ]I a 2-7)
lel (i)
Based on equation (2-7), the reliability sum of all reliable passageways between the

pair of nodes 1 and J is denoted as:

ND
NPGi, j) =R J) (2-8),
k=1
where N is the number of independent passageways between nodes i and ] .

According to Ip and Wang (2011), the resilience of a node in one network can be defined
as “the weighted sum of the numbers of reliable passageways of all other nodes in the

network™; its formula is shown as follows:
n Np

r= Zn: sv,NP(i, )= > svi> ] «a (2-9),

j=L, j=i j=1, j=i k=1 leL, (i, j)

n

where i=1,2,...,.n. SV i =U; / (z u,—u J.) denotes the self-exhausted weight of a given
i=1

node, which means that the connected nodes of a given node could not contain the given

node itself when computing the resilience of the given node. Here, u, denotes the

weight of anode 1€V .
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For simplicity, we take graph G in Figure 2.2 as an example to compute the
resilience of one given node such as node V,; here, we suppose that the weight of all
nodes is u; =1, j=12,.,9, and the normal operation reliability of all edges is

g, =0.5. Then,
9 1 .
sv, =u, /Oy, —uj)=§, i=12,..,9
i=1

According to the definition of passageway, the passageways between nodes V, and
V. only have three paths, which are V, >V, , V,->V,->V,->V. and

V, =V, =V, > V.. Therefore,

N,=3
NP(V,,V,) = Y R.(4,5=0.5+05"+0.5" =0.75

k=1

Likewise, the numbers of passageways between nodes (V,,V,), (V,,V;) and
(V,,V;) are all only three paths, and NP(V,,V,)=NP(V,,V,)=NP(,,V,)=0.75 .
Moreover, the passageways between nodes V, and V, only have two paths, which are
V, >V, >V, and V, >V, >V,. Then,

N,=2

NP(V,.V,)= > PR.(41)=05"+05"=05

k=1

In the same way, the numbers of passageways between nodes (V,,V;), (V,,V;)
and (V,,V,) are all only two paths, and NP(V,,V,)=NP(V,,V;) =NP(,,V,)=05.
Thus, based on Formula (2-9), the resilience of node V, is:

9

r4=_z

j=1,j#4

1
sv,NP(4, j)=§*(0.75*4+0.5*4)=O.625.
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Figure 2.2: Simple graph G for computing the resilience I of one node in a network

Based on the resilience of a node shown in Formula (2-9), the global resilience of
a network G can be defined as “the weighted sum of the resilience of all nodes”

presented as Formula (2-10) (Ip etal.., 2011):
RG)=> o, (2-10),
i=1

n
where @, =u, /D u, represents the relative importance weight of anode i€V . Based
j=1

on graph theory and network resilience, as Ip and Wang (2011) pointed out, “if
H ={V,E,} is a subgraph with the same node set V of graph G(V,E), subgraph

H has a lower or equal resilience to graph G, thatis, if E, < E,then R(H)<R(G)”.

According to Formula (2-9), once a graph is defined because its number of nodes

and the weight of each node are all determined, the parameter sy, is constant.

Therefore, the resilience of a node is monotonically increasing with values q, of

reliability of all nodes. When computing network resilience, the vital steps are the
estimations of the reliabilities of edges. That is, researchers need to calculate the
probabilities of regular operation of edges in the system, which is difficult and based on

the experience of experts.

As introduced in Chapter 1, one general and easily understandable way to assess
network resilience is to represent resilience graphically by using special performance

curves with time.
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Bruneau et al. (2003) firstly defined the seismic resilience in civil infrastructure as
“the ability of the system to reduce the chances of a shock, to absorb a shock if it occurs
(abrupt reduction of performance) and to recover quickly after a shock (re-establish

normal performance).”

To quantify the concept of resilience, Bruneau et al. (2003) proposed a well-known

seismic resilience triangle model illustrated in Figure 2.3.

In another domain, the deterministic metric for measuring the earthquake-caused

resilience loss of a community is mathematically defined using Formula (2-11).

b
R= [ [200-Q(t)]dt @-11),
where t, is the time at which the earthquake occurs, t denotes the time that the
community needs to restore to its pre-disruption level, Q(t) means the quality of the

infrastructure of a community, and its value range is Q(t) €[0,100] ; here, 100 means that

the system recovers to 100% normal operation status.

0|

100

Resilience
loss

o

time

Figure 2.3: Measure of seismic resilience (adapted from Bruneau et al. 2003)
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Furthermore, Bruneau et al. (2003) also specifically defined four properties of

resilience as follows:

M Robustness: the ability of systems to withstand a given level of disruption

without suffering degradation of function.

(i)  Redundancy: the extent to which systems exist that are capable of

satisfying functional requirements in the event of disruption.

(ili)  Resourcefulness: the capacity to identify problems, establish priorities and
mobilize resources when conditions exist that threaten to disrupt the system,;
resourcefulness can be further conceptualized as consisting of the ability to
apply material (i.e. monetary, physical, technological and informational)

and human resources to meet established priorities and achieve goals.

(iv)  Rapidity: the capacity to meet priorities and achieve goals in a timely

manner in order to contain losses and avoid future disruption.

2.3.2 A New Interpretation of Resilience Triangle

Due to the general concept of quality and the general applicability of resilience triangle
metric, the method proposed by Bruneau et al. (2003) can be implemented to many
systems. For instance, Adams et al. (2012) extended the resilience triangle metric to
freight transportation network for measuring resilience, while Sahebjamnia et al. (2015)

applied it to measure organizational resilience.
Especially based on the resilience triangle model, Zobel (2011) proposed a new
metric by “calculating the percentage of the total possible loss over some suitably long

time interval T . The defined metric is shown in Formula (2-12).

T -X-T .
R-—— /2y ETT (2-12),

where X €[0,1] denotes the percentage of function loss after a disruption and

T €[0,T7] signifies the time that the system needs to fully recover.
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The conceptual illustration of resilience is shown in Figure 2.4, from which, given a

).

disruptive event, the entire possible loss can be computed using a triangular area (

Comparing to the resilience metric proposed by Bruneau et al. (2003), this linear recovery

metric developed by Zobel (2011) is more straightforward.

Therefore, it has the advantage of smooth understanding and application, especially

meeting such circumstances without complex and accurate calculation.

Q(t) Time needed to recover
|

100
Area =XT/2

Percentage of
loss quality X ]

»n
>

l, T+t, T +t, time

Figure 2.4: A new interpretation of resilience triangle (adapted from Zobel, 2011)

Similar to Bruneau et al. (2003) and Zobel (2011), but more generally based on
Henry and Ramirez-Marquez (2012), as introduced in Chapter 1, Nan and Sansavini
(2017) only split the resilience of the system into four different phases illustrated in
Figure 1.4. Similar to dynamic resilience proposed by Francis and Bekera (2014), Nan
and Sansavini (2017) also introduced the capabilities of resilience including absorptive,
adaptive and restorative capabilities. Moreover, Nan and Sansavini (2017) quantified
these capabilities by using some quantitative measures in different phases. In the first

phase, which is the original steady phase (t <t,, t, 1is the time when the adverse events
happen), the original measurement of performance P, of the system is assumed as its

target value, where t, denotes the time when the system is still in the first phase.
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In the second phase (disruptive phase), the absorptive capability of the system
begins to react. During this phase, the Robustness ( R ), RAPIDITY ( RAPI, ) and Time

Averaged Performance Loss (TAPL,, ) are used to assess the absorptive capability of the
system. Nan and Sansavini (2017) quantify robustness as:

R=min{P(t)} t, <t<t, (2-13),
where t  denotes the time when the new steady phase is achieved. And rapidity can be

calculated as follows:

ZKDP P(tl) - P(t| _At)

i=1

RAPI, = < At (2-14),
DP

where t e[t,,t,) 1s the discrete time point, P(t) means the system performance value
atthe i-th detected ramp and K_, denotes the number of detected ramps during the
second phase.

According to Kamath (2010) and Nan and Sansavini (2017), a ramp is assumed to be

generated if the rate of change of the measured values within a time interval At is larger

than the predefined ramp threshold value (AX ). It can be expressed as:

P+ AA? PO S Ax,,., (2-15).

Further, during the disruptive phase, the Time Averaged Performance Loss can be
computed by:

j‘f[PO —P(t)]dt
TAPL,, ==
tr _td

(2_ 1 6)9
where t, denotes the time when the system is still in the first phase and t, is the time
when the system starts to be in the third phase, that is the recovery phase.

According to Formula (2-16), the Time Averaged Performance Loss not only takes
the amount of performance loss of the system into account, but it also considers the

duration of the disruptive events.
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In the third phase (recovery phase), the degraded system performance begins to
increase up to a new steady level. Also, the adaptability and restorability of a system in

this phase can be measured by the RAPIDITY ( RAPI, ) and Time Averaged Performance
Loss (TAPL,, ). Accordingly, RAPI,, and TAPL,, are expressed by Formula (2-17)

and Formula (2-18), respectively:

ke P(t)—P(t, — At
‘Zil (t)—P( )

RAPI, = At (2-17)
KRP
[ (R —P@)t
TAPL,, == t (2-18),

where t e[t ,t.), Kg denotes the number of detected ramps during the recovery

phase. For example, based on Figure 1.4, here we only consider the recovery phase. In
order to keep it simple, we suppose that there are only four different time intervals during
which the rate of change of the measured performance values is linear but different, as

shown in Figure 2.5. We also suppose the predefined ramp threshold value ax,, ~0;

therefore, according to Figure 2.5, we can say that there are four different detected ramps,

Le, K =4.
Performance
P
P(r)
F,

A, AL DAL AL

New stable phase
Recovery phase

Restorative and
Adaptive capabilities

. ! Time

Figure 2.5: Recovery phase of resilience for computing K.,
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In the last phase (the new steady state), a new steady level is achieved and retained,
which may be equal to the previous steady level, or a lower level, or even a higher level
than the previous steady level (Seager et al. 2017). During this phase, according to Nan
and Sansavini (2017), the recovery ability (RA) of a system can be assessed by:

AZ‘P(tns)_P(tr) (2_19)

I:)O - P(tr)

Based on Formula (2-13) - Formula (2-19), integrating the aforementioned

measures, Nan and Sansavini (2017) defined resilience metric (GR ) as follows:

GR = f(R,RAPI_,,RAPI_, TAPL,RA)

RAPI (2-20),

=Rx x(TAPL) "x RA

DP

where in order to contain effects of all performance loss during the second and third

phases, combining measures TAPL,, and TAPL, into one TAPL measure is

expressed as:

(R —P@®]dt

ns d

As described in Nan and Sansavini (2017), based on Formula (2-20), Robustness
(R), Recovery RAPIDITY (RAPI,, ) and Recovery Ability (RA) have a positive effect

TAPL =

(2-21)

on resilience. Conversely, the negative effect on the resilience of a system is contributed
by the Total Time Averaged Performance Loss ( TAPL ) and the Loss RAPIDITY
(RAPI, ). That is, the higher the robustness value, the faster the recovery speed and the

stronger the recovery ability. Also, the less the performance loss and the slower the loss

rapidity, the more resilient the system is (Wang et al. 2017).

Due to the fact that the proposed definition of resilience is not specifically domain-
based, it only needs to calculate the system performances in different time series; it can
thereby be applied in many domains and is suitable to varying modes if defining the

system performance properly. In such case, the selection and computation of P(t) are

crucial (Wang et al. 2017).
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In this thesis, we propose now a new resilience measure mainly based on the one
presented by Nan and Sansavini (2017); the details are described in Chapter 4.
Furthermore, it was also compared by the examination made in the project

RE(H)STRAIN (RE(H)STRAIN 2021).

2.4 RE(H)STRAIN -
A Testbed for Performance Management

Because of its location in the center of Europe, the Franco-German high-speed passenger
train network forms the backbone of the European high-speed systems. It partially
operates on the railroad network of neighboring countries in the EU and will develop
further by offering services in an increasing number of European cities and capitals. It
will also provide its track-network to additional high-speed train operators in other

European countries to meet the requirements for more European competition.

Therefore, it is important that France and Germany set high standards of security
against terrorist attacks to lead the way to maintain a secure European high-speed railway

network, including a secure infrastructure for the future.

The project RE(H)STRAIN aims at investigating “preventive security and its impact
on the resilience of the Franco-German high-speed rail network in case of terrorist attacks”
(Amokrane et al. 2017, Ip and Wang 2011, Nan and Sansavini 2017). A view on historical
terrorist impacts on high-speed trains provides lessons learned, behavioral patterns,
means of attack and tactics applied for selection of means, development of attack plans,
realization and execution of the attack. To reduce risks and to increase the resilience of
transportation networks, prevention, mitigation and recovery strategies for the Franco-
German high-speed passenger rail system have been developed and identified. Besides
their efficiency, the societal and legal aspects of security measures have also been

carefully considered.
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The objectives of the project RE(H)STRAIN were “to investigate how the resilience
of trains and related infrastructure of the German-French high-speed public passenger
transport network can be increased against terrorist attack” (Amokrane et al. 2017,

RE(H)STRAIN 2021).

In a scenario-driven holistic approach, the entire terrorist sphere of possible actions
was considered. Security measures and systems aiming at prevention and mitigation were
defined and evaluated against different terrorist scenarios derived from historic terrorist
attacks, such as the sarin attack on the Tokyo subway in 1995, the 2004 Madrid train
bombing, the 2005 London bombings, the 2008 Mumbai attacks and others.

Novel remote BCRE (biological, chemical, radiological, explosive) sensors and
detectors were considered, assessed and combined with a system improving the resilience

of the Franco-German high-speed passenger train system.

The project RE(H)STRAIN conducted research into innovative security solutions
to improve the protection of the critical infrastructure “high-speed rail traffic” in
Germany and France. Interdependencies between the two subsystems in France and
Germany were considered and analyzed concerning risks resulting from the complexity
of these interconnected systems. It is assumed that such risks can be exploited by
intelligent and rationally acting terrorists applying BCRE weapons against specific

vulnerabilities of the considered infrastructure.

Technological and organizational security measures were analyzed aiming at
holistic solutions to increase the security of the infrastructure and its passengers against
the highly sophisticated terrorist threat. The project analyzed and evaluated past incidents
in order to investigate strategies and tactics of intelligent terrorists, tackle related new
risks and threats, identify and research the capability of novel security measures (such as
remote sensor combinations) and combine them with efficient security systems
improving prevention, mitigation and resilience of the high-speed rail traffic without
violating cross-cutting societal aspects like acceptance or privacy protection with respect

to the security culture in Germany and France.
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In the project RE(H)STRAIN, in order to describe and analyze the Franco-German
high-speed passenger train system with respect to critical elements and requirements
elicitation from the end-users, the quantity structure and functional representation of the

Franco-German high-speed train system model were applied (Wang et al. 2018).

Based on the quantity structure (in this thesis, we only consider the German high-
speed train system, and its quantity structure is shown in Figure 1.3), the most important
elements of the high-speed system are identified through the algorithms from the graph
theory field. Moreover, the most critical elements of the functional network are found

through the interconnectedness interdependency analysis on the functional network.

To obtain a comprehensive understanding of the current, emerging and future nature
of threat for passenger rail-based systems, a threat analysis is conducted, based on
previous terrorist attacks (including details such as locations, casualties, infrastructure,

impacts and effects) and emerging threats both in the physical and cyber security domains.

In the project RE(H)STRAIN, many complex scenarios were developed, addressing
threats and risks for passengers and operators of high-speed trains (Zsifkovits and Pickl
2016a). Each scenario compiles and describes motivation and intention of potential
terrorists, their potential means of attack from the BCRE arsenal (biological, chemical,
radiological, explosive), the consequences (damage to infrastructure and railway traffic,
the number of fatalities, injuries to persons, etc.) as well as the available intervention

systems of the Franco-German systems.

Here, the intervention system describes the resilience capacity of the system and
consists of measures reducing vulnerability, such as emergency management,
preparedness and training of security staff as well as technological measures for

prevention and mitigation of consequences.

In order to analyze the consequences of service disruption caused by terrorist attacks,
risk assessment and impact analysis were implemented in the project RE(H)STRAIN
(Zsitkovits and Pickl 2016b). Through risk assessment, a risk matrix was put out, which
indicated where acceptable and inacceptable risks were located in the high-speed train

system.
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By conducting an impact analysis, a list of suitable security measures was achieved,
serving as a basis for prevention (also the impact of sufficient detection methods for

chemical detectors), mitigation and fast restoration strategies.

Meanwhile, in order to investigate the ability of the Franco-German high-speed train
system to continue functioning in case of disruptions, a resilience analysis was carried
out (Lotter et al. 2016). These special adaptive cycles in the system were studied in order

to understand the system’s vulnerability and its resilience capacity.

2.5 TOPSIS-based Aggregation Measure

In this chapter, we have introduced some basic terms which are used in the following
chapters, including graph, network, graph theory and network theory. So far, we have
introduced centrality, efficiency and also vulnerability measures, which can be used to

identify the key nodes of a network from diverse perspectives.

In order to analyze the network comprehensively, TOPSIS, which can aggregate
different measures, is also explained. Moreover, for the sake of adapting TOPSIS to
transportation networks properly, we also introduce a new weight estimation approach,

which is explained in detail in Chapter 3.

Finally, different quantitative resilience definitions are reviewed in this chapter;
however, in our research, we only consider terrorist attacks as the disruptive events, and
the resilience analysis here is mainly used to compare the aforementioned graph
measures to verify whether the TOPSIS-based aggregation measure is a more suitable
and effective measure than others to detect the key nodes. In this dissertation, we consider
measuring resilience using graphical triangle representation based on network
performance. In order to quantify network resilience properly, according to Nan et al.
(2017), Martin-Breen et al. (2011) and Hosseini et al. (2016), we also propose a new
network performance considering three factors, namely traveling time, the number of
people who can use the transportation network and the train flow, that is how many trains

pass through a given rail, which is presented in detail in Chapter 4.
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In the following chapter, we therefore introduce relevant aggregation measures

specifically for vulnerability indices.

The network resilience analysis from section 2.3 is based on the following

publication:

Wang, Z., Nistor, M. S., & Pickl, S. W. (2017). Analysis of the definitions of resilience. IFAC-
PapersOnLine, 50(1), 10649-10657.
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3.1 Design and Characteristics of
Network Structure and Vulnerability Measures

The understanding of network structures, functions, vulnerabilities and their relations can
help decision-makers to reasonably allocate resources in order to protect networks from
disturbances. As we know, there are many mechanisms, for instance cascading, spreading
and synchronizing (Motter and Lai 2002, Pastor-Satorras and Vespignani 2002, Zhao et
al. 2005, Zemanova et al. 2006), which are significantly affected by a small fraction of
essential nodes. Therefore, how to identify these essential nodes is theoretically

significant.

Furthermore, detecting important nodes has noteworthy practical value, which for
instance can be used to control disease spreading and help decision-makers deploy
security resources on a transportation network in advance to prevent terrorist attacks from
happening, or at least it could reduce the impacts of terrorist attacks to a certain extent.
In this chapter, we introduce and apply some graph measures to identify these essential
nodes; moreover, to deeply explore the properties of the network, based on the idea of
vulnerability and its dealing procedure, we have also developed two new nodal

vulnerability measures to detect these critical nodes.

In this chapter, the network measures, such as centrality, efficiency and vulnerability
measures, are presented as the central basis of the network analysis on the ICE network.
Among the centrality measures in literature (Goémez and Figueira 2013), only four
primary indices are considered in this thesis: degree centrality (Maharani and Gozali
2014), closeness centrality (Derrible 2012), eigenvector centrality (Maharani and Gozali

2014, Newman 2008) and betweenness centrality (Tsiotas and Polyzos 2015).
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Meanwhile, “the classical network nodal efficiency” (Latora and Marchiori 2003,
Nistor and Pickl et al. 2017) and “its improved version, i.e. flow-weighted network nodal
efficiency” (Nistor and Pickl et al. 2017), are also described. When conducting the
vulnerability analysis, we found that among the existing global vulnerability measures in
literature (Mamut and Vumar 2008, Zhang and Wang 2013, Li et al. 2014, Zhang et al.
1999), most of them, for instance vertex connectivity (Mamut and Vumar 2008), vertex
toughness (Bauer et al. 2013), vertex scattering (Kirlangi¢ 2002), vertex integrity
(Mamut and Vumar 2008), vertex tenacity (Cheng et al. 2014) and vertex domination
(Mishkovski et al. 2011, Alanko et al. 2011) can only detect trivial impacts due to the
removal of one node or a group of nodes, but network residual closeness (Dangalchev
2006) is exceptional, according to which the relatively significant effects are caused by

deleting one node or a small group of nodes.

Therefore, in this chapter, we propose two new nodal vulnerability measures: one
is inspired by the betweenness centrality measure and efficiency measure, the other one

1s based on the network residual closeness.

3.1.1 Network Centrality Measures

The indicators of various centrality measures can be used to detect the key nodes in a
graph. As reviewed in Chapter 2, many centrality measures have been developed and
studied (Freeman 1978, Ruhnau 2000, Wang et al. 2011, Gémez and Figueira 2013,
Tsiotas and Polyzos 2015). In this chapter, four of the most relevant existing centrality
measures are implemented. They are degree centrality measure, closeness centrality
measure, eigenvector centrality measure and betweenness centrality measure. In the

following, we introduce these centrality measures in detail:

3.1.11 Network Betweenness Centrality Measure (BetwCentr)

According to the betweenness centrality measure (Freeman 1978, Newman 2008, Boudin
2013), given one node in a graph, the more numbers of the shortest paths between all

other pairs of nodes passing through the given node, the more critical the given node is.
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In other words, a given node tends to be more crucial and has more potential to be
attacked by terrorists, if it lies on the shortest paths connecting more pairs of nodes in a
graph. Moreover, the nodal betweenness centrality also reflects the transitivity of a given

node in a network. The formula of betweenness centrality C,_(v,) (Boudin 2013) for a

node v, is defined as:

Ojj V)

2 n n
Co(vi) = mZiikz ik 3-1),

opt

where o, is the number of shortest paths between the nodes v, and v, and o (v,)
is the number of the shortest paths between the nodes v, and v, , which pass through

the given node v, .

3.1.1.2 Network Closeness Centrality Measure (CloCentr)

The closeness centrality (Freeman 1978, Boudin 2013, Tsiotas and Polyzos 2015) can be
used to measure how close one node is to all the other nodes along the shortest paths,
which means that a given node can be detected by this measure as the most critical one
in a graph if the sum length of all the shortest paths from the given node to the remaining
nodes of the graph is minimum, meaning the given node is closest to the remaining nodes
in the graph. This can also reflect the accessibility of a given node in a graph. This

measure is defined as “the reciprocal of the average distance from a given node v. to
1

all other nodes” (Boudin 2013). As shown in Boudin (2013), the defined formula of the

closeness centrality C_(v;) of one node v, isshown as:

C.(v)=—nt (3-2),

n —
ZL d(v;,v)
where d(v;,v;) is the distance length (due to which we will apply this measure on the

real German high speed network; therefore, we take 100 km as the unit of distance length)

of the shortest path between node v, and node v, .
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3.1.1.3 Network Degree Centrality Measure (DegCentr)

The degree centrality measure (Freeman 1978, Boudin 2013) is defined as the number of
edges that one node shares with the others. This is a simple indicator of whether one node
is very connected (hub node) in a network or not. According to Freeman (1978) and

Maharani and Gozali (2014), Formula C,(v,) of the degree centrality of one node v,

1s defined as:

c,v)= N (3-3)
n-1

where |N(v,)| is the number of adjacent nodes of the node v, ; here, the nodes in this

adjacent node set N(v,) are straightly connected to the node v, .

3114 Network Eigenvector Centrality Measure (EigenCentr)

The importance of a node in a network can be measured with the help of the eigenvector

centrality measure (Maharani and Gozali 2014, Ruhnau 2000, Boudin 2013).
However, the importance of a central node depends not only on the number of its
neighbors, but also on the importance of its neighbors. The eigenvector centrality C_(v,)

(Boudin 2013) for a node v, is defined as:

1
C.(v) :zzvje,\‘(vi)aji XCe(Vj) (3-4),
where N(v,) is the set of nodes connected to v,,and A isthe maximum eigenvalue

of the adjacency matrix.

Because these aforementioned four nodal network centrality measures are widely
applied in different fields and networks to detect the important nodes (Freeman 1978,
Boudin 2013, Chen et al. 2012, Chen and Hu 2013, Emmert-Streib 2011, Guimera et al.
2005), therefore, in this thesis, we take them as the basic measure to be applied on the
German high speed network to identify the critical stations with higher potential risk of
terrorist attacks. Meanwhile, based on these basic centrality measures, we also propose

new measures and compare their effectiveness.
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3.1.2 Network Efficiency Measures

Whether the information can be exchanged efficiently from one node to the rest of the
network can be characterized with the support of efficiency measures. Based on the
values of the efficiency measures, people can tell the differences among nodes and
determine which ones are more critical than others. In this section, two types of efficiency
measures are presented. These are the classical efficiency measures and their variation,
for example the flow-weighted efficiency measure, which in addition computes the flow

information between the nodes of a network.

3.1.2.1 Network Classic Efficiency Measure (Effi)

According to Nistor and Pickl et al. (2017) and Latora and Marchiori (2003), the classical
efficiency measure computes the distance length of the shortest paths from a given node

to all the others. Its formula for a node v, in the graph G, g, ., (v,) (Latora and
Marchiori 2003) is defined as:

1 1

EV(G)(Vi) = n_le¢i d(Vi :Vj) (3-5)’

where d(v;,v;) is defined as the distance length (unit of 100 km) of the shortest path

between node v, andnode v;, .

3.1.2.2 Network Flow-Weighted Efficiency Measure (FWE(ffi)

Based on the classical efficiency measure (Latora and Marchiori 2003), the flow-
weighted efficiency measure (Nistor and Pickl et al. 2017) considers not only the distance
length of the shortest paths, but also the train flow information between the nodes of a

network. The network flow-weighted efficiency measure E_ |, ,(v,) (Nistor and Pickl

etal. 2017) foranode v, is defined as:

L1 e W)
EF_V(G)(Vi) B n—lzjii d(Vi!Vj) (3-6)’
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where w(v,,v;), which represents the lowest train flow of all edges along the shortest

path between the nodes v, and v, , and is defined as (Nistor and Pickl et al. 2017):
Wi, v;)= (vm.iﬂej i G-,
where p, represents the set of edges on the shortest path from node v, to node v,

and @, denotes the train flow between the connected nodes v, and v, In this thesis,

the train flow of the ICE network on the Tuesday to Thursday schedule (May 24 — 26,
2016) is considered.

3.1.3 The New Nodal Graph Vulnerability Measures

The objective of the RE(H)STRAIN project was to analyze the vulnerability of the rail-
bound DE-FR high-speed train system (ICE, TGV) as part of the critical infrastructure
“transport” in view of threats from terrorism as well as the derivation of measures for the
improvement of their resilience; hence, the vulnerability of transportation networks is
one of the central research focuses. Therefore, in this thesis, based on the aforementioned
centrality measures and efficiency measures addressed in previous subsections of this
chapter, we propose two nodal graph vulnerability measures, which are introduced in this

subsection.

As it is well-known, “our daily lives are so dependent on the functioning of critical
infrastructures” that they have become a significant target of terrorist attacks (Rinaldi
2004). Thereby, well-planned assaults on the most vital and vulnerable hubs or spots can
damage a system very heavily. The protection of such infrastructures is a crucial
challenge and essential. As one of the critical infrastructures, public transport plays a
vital role in our society. One example of such a vulnerable public transport system is the
German high-speed train system (ICE) (Deutsche Bahn 2018), on which the study of this
thesis mainly focuses. In the future, many advanced security technologies can be applied
to keep the ICE network safe. However, economic boundaries demand a highly efficient
use of resources. Thus, before deploying security measures, decision-makers need to

deeply understand the vulnerabilities of the ICE network.
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The aim of the analysis in this subsection is to make full use of the quantitative
graph theory to analyze the vulnerabilities of the graph and to detect the centers (or hubs)
of the system. In this part, inspired by the idea of global residual closeness and the idea
of vulnerability in graph theory, we have not only proposed a nodal residual closeness
vulnerability measure, but based on the betweenness centrality measure and the
efficiency measure we have also proposed a new vulnerability measure that we call
betweenness-efficiency vulnerability measure. Both of them can be used to detect the
most vulnerable nodes, which therefore have more potential to harm the overall system
in case of disruption. The analysis of this subsection can help decision-makers understand
the structure, behavior and vulnerabilities of the network more clearly from the

quantitative graph theory's point of view.

3.1.3.1 Nodal Residual Closeness Vulnerability Measure
(ResiduCloVul)

In Dangalchev (2006), the graph global residual closeness is defined by Dangalchev

(20006) as:

. 1
GRC<G>=Q1Q][ZZWJ G-9)
1#]

where d; , (v;,v,) denotes the distance of the shortest path between node v, and v,
after node v, is removed from the original graph G . The author showed that global

residual closeness was more sensitive than other well-known global vulnerability
measures like vertex integrity, connectivity, toughness, binding number, and so on. Even
deleting only one node from the original graph that can't lead to the disconnection of the
remaining graph, the global residual closeness can still detect the apparent change

between the original graph and the remaining graph.

In graph theory, when analyzing whether one given node in a graph is vulnerable
(which means that once the given node is removed from the original graph, it will lead
to a large change of graph structure), if in a real network (which has been mapped into a
graph, for instance in this thesis the ICE network), it could lead to a huge loss, including

economic losses and casualties if attacked.
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Therefore, the given node will have more potential to be attacked by terrorists.
Inspired by the idea of vulnerability in graph theory, here, we have proposed a nodal

residual closeness vulnerability measure, which is defined as:

NRC(,) = IGRC(G)-GRC(G,)| (3.9),
GRC(G)

where G, denotes the remaining graph after node X is removed from the original

graph G, and similar to Formula (3-8), the global residual closeness of the remaining

graph is defined as:

. 1
GRC(G,) = kergvlnr_ll]izz 2% 0h) j (3-10),

i e
where accordingly, d, ,(v;,v,) denotes the distance of the shortest path between node

v, and v, ,afternode v, isremoved from the remaining graph G, .

3.1.3.2 Betweenness-Efficiency Vulnerability Measure
(BetwEffiVul)

Accordingly, based on betweenness centrality and efficiency measures, as well as taking

into account the idea of nodal residual closeness vulnerability measure, here we propose

a new vulnerability measure: the betweenness-efficiency vulnerability measure (Wang

and Zsifkovits 2018). This measure is defined as

BEV (1) [BEV (G)—*BEV G,)
BEV'(G)

(3-11),

where x={L2,...,n}, and BEV"(G), which denotes the original graph measure value

without removing any nodes, is defined as:

1 1
Z:_l{z:;k er;i,#k ( 2de (vivy) - 2dG(k)(Vi Vi) Jj

n(n-1)/2

BEV'(G) = (3-12),

where d (v;,v;) represents the distance length of the shortest path between node i

and ] in the original graph G . d @ (v, v;) denotes the distance length of the
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shortest path between node i and | in the original graph G ; meanwhile, this
shortest path will go through node K . In Formula (3-11), G, denotes the remaining
graph after node X is removed from the original graph. Therefore, BEV"(G), which

denotes the remaining graph measure value after removing the X" node from the

original graph, is defined as:

n-1 n-1 n-1 1 1
Zk:l i¢k2j¢i,j¢k 2de v 2chx(k)(vi V)

(n-1)(n-2)/2

BEV'(G,) = (3-13),

where d, (v,,v,) denotes the distance length of the shortest path between nodes i and

J in the remaining graph G _; d, @ (vi,v;) represents the distance length of the

shortest path between nodes 1 and J passing throughnode K in the residual graph

Vi)

G, - The reason to choose 2 in the definition of the proposed measure is that it

doesn't need to judge whethernode | andnode j are the same ones when computing
this measure in order to save calculating time and also to be convenient for matrix

calculations. Because when they are the same, the distance will be zero, that is nullity, if

it is the denominator.

Since this proposed measure is used to quantify the significance of the influence it
will have on a graph after removing one node from the graph, it is apparent that the
corresponding node needs to be removed when calculating the measure of value of a
given node. However, no matter how the order of the deleting nodes is changed, this

measure cannot be affected. Therefore, the measuring results of every node will not vary.

3.1.4 Implementations and Discussions

The results based on the aforementioned centrality, nodal efficiency and also the
proposed nodal vulnerability measures in this chapter are shown in the Appendix from
Table A-1 to Table A-8. As an example, we show one of the tables in the Appendix, such
as Table A-1, in the following:
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Table A-1: The results based on betweenness centrality measure

ID Betweenness ID Betweenness ID Betweenness ID Betweenness
1 0.284033613 32 0.034173669 63 0.092156863 94 0.033053221
2 0.196778711 33 0.038795518 64 0.102941176 95 0.016666667
3 0 34 0.131092437 65 0 96 0

4 0.165266106 35 0.087955182 66 0.158823529 97 0.016666667
5 0.049159664 36 0 67 0.033613445 98 0.016666667
6 0.033053221 37 0.037114846 68 0.034313725 99 0

7 0 38 0.02394958 69 0.041736695 100 0.094677871
8 0 39 0 70 0 101 0

9 0.04929972 40 0.042857143 71 0.131512605 102 0.144257703
10 0 41 0.104761905 72 0.033053221 103 0.280392157
11 0.016526611 42 0.008683473 73 0.016666667 104 0.17464986
12 0 43 0.010644258 74 0 105 0.091316527
13 0 44 0.030812325 75 0 106 0

14 0.034313725 45 0.000840336 76 0.078571429 107 0.064985994
15 0.024229692 46 0.029551821 77 0.064985994 108 0.139915966
16 0.033473389 47 0.02394958 78 0.049159664 109 0.125490196
17 0 48 0.013865546 79 0.033053221 110 0.110784314
18 0.118627451 49 0 80 0.026190476 111 0.095798319
19 0.016666667 50 0.066666667 81 0.027310924 112 0.080532213
20 0 51 0.043557423 82 0.181652661 113 0.064985994
21 0.10952381 52 0.114845938 83 0.007282913 114 0.049159664
22 0.201960784 53 0.114145658 84 0.006162465 115 0.033053221
23 0.090616246 54 0.041736695 85 0.090616246 116 0.016666667
24 0.149019608 55 0.032492997 86 0.037885154 117 0

25 0 56 0.033053221 87 0.047478992 118 0.049159664
26 0.114565826 57 0.016666667 88 0 119 0.033053221
27 0.163585434 58 0 89 0.113165266 120 0.016666667
28 0.116526611 59 0.088935574 90 0.025770308 121 0

29 0.050280112 60 0.082913165 91 0.116946779

30 0.041736695 61 0.078291317 92 0.049439776

31 0.03487395 62 0.081372549 93 0

According to Table A-1 to Table A-8, the top ten stations that are identified by these
different measures are presented in Table 3-1 and highlighted in Figure 3.1 to Figure 3.8.
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Figure 3.1: Top ten stations identified by betweenness centrality measure are highlighted in red

color

From Figure 3.2 we can see that these top ten stations detected by betweenness
centrality measure are mainly the important transferring stations; if removing them, the

network will be disconnected and separated into eleven parts, which means that the cost

and time of transport will significantly increase.
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Figure 3.2: Top ten stations identified by closeness centrality measure are highlighted in red

color

Difterent from Figure 3.1, according to Figure 3.2, except for station 82, the rest of

the top ten stations detected by closeness centrality measure focuses on one zone. If

deleting these top ten stations, the network will also be disconnected but only divided

into five parts, and four parts of them are just very small components (part one only

contains station 13; part two only has station 65; part three consists of stations 5, 6 ,7 and

8; stations 10, 11 and 12 belong to part four; and part five includes the remaining stations).

Therefore, compared to Figure 3.1, the cost and time of transport will increase less.
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Figure 3.3: Top ten stations identified by degree centrality measure are highlighted in red color

Similar to Figure 3.1, but different from Figure 3.2, in Figure 3.3, the top ten stations
detected by degree centrality measure are also at the important transferring stations.
When these critical stations are shut down, the network will be separated into fifteen
parts; therefore, the transit efficiency of the network will significantly decrease, and the
cost and time of transport will increase to a more apparent extent than it is the case in

Figure 3.1.
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Figure 3.4: Top ten stations identified by eigenvector centrality measure are highlighted in red

color

Apparently, according to Figure 3.4, the top ten stations identified by the
eigenvector centrality measure mainly focus on one zone and most of them are directly
connected to station 2. Therefore, based on the eigenvector centrality measure, station 2
is the most important one. Furthermore, when removing these top ten stations, the
network will be divided into seven parts, but six of which only contain stations 1 to 4.

Thus, in such a case, the influence will be lower than in Figure 3.1 and Figure 3.3.
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Figure 3.5: Top ten stations identified by nodal efficiency measure are highlighted in red color

According to Figure 3.5, the top ten stations are mainly located in three zones.
However, the important stations 1 and 2, which are marked as the top ten stations in
Figure 3.1 - Figure 3.4, are not highlighted as the top ten stations by nodal efficiency

measure, but the end station 106 is identified as one of the top ten stations. In a certain

sense this is abnormal.
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Figure 3.6: Top ten stations identified by flow-weighted efficiency measure are highlighted in

red color

Similar to Figure 3.5, the top ten stations highlighted in Figure 3.6 are distributed in
four zones. Based on the nodal efficiency measure, when considering the factor train flow,
the improved flow-weighted efficiency measure can also identify the stations 1 and 2 as
part of the top ten critical stations. However, the only problem is that station 106 with

only one neighbor station is still detected as one of the top ten stations.
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Figure 3.7: Top ten stations identified by nodal betweenness-efficiency vulnerability measure

are highlighted in red color

As introduced before, the proposed nodal betweenness-efficiency vulnerability is
based on the betweenness centrality measure and the efficiency measure; thus, the
proposed measure can be seen as an aggregation measure. Comparing Figure 3.7 with
Figure 3.1 and Figure 3.5, it is found that some of the top ten stations highlighted in
Figure 3.7 can be found in Figure 3.1 and some of the top ten stations marked in Figure
3.7 only appear in Figure 3.5; however, it is interesting that there are also four new
stations (stations 18, 34, 35 and 108) marked as part of the top ten critical stations in
Figure 3.7. In such a case, this aggregation measure can not only compensate the

disadvantages of a single measure, but it can also mine new information.
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Figure 3.8: Top ten stations identified by nodal residual closeness vulnerability measure are

highlighted in red color

Intuitively, according to Figure 3.1 - Figure 3.8, the different characteristics of
distinct graph measures can be found from diverse graph structure perspectives. For
instance, in Figure 3.1, resulting from betweenness centrality measure, most of these key
stations lie on the very important transferable points, which means most of the shortest
paths between other pairs of stations will pass them; thus, once they are attacked and shut

down, the transit efficiency of the network will decrease to a rather apparent extent.
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As shown in Figure 3.2, based on closeness centrality measure, although it can
detect the key stations, most of them are in the same zone, and with this figure one cannot
tell the differences among these key stations. The degree centrality is a very simple and
basic measure that only considers how many neighbors a given node has. It also has a

network transferring character like the betweenness centrality measure.

Therefore, most of the top ten stations detected by the degree centrality measure and
the betweenness centrality measure are the same. Comparing Figure 3.1 and Figure 3.3,
the degree centrality can be seen as a complement of betweenness centrality measures
due to the fact that the stations 18, 41 and 91 in this network are also identified as key
stations, which are located in very important cities in Germany, like Munich, Cologne
and Hamburg; the details regarding the stations' ID versus their corresponding station

names are listed in Appendix Table A-15.

Based on eigenvector centrality measure, one node can be detected as an important
point not only because of its own significance but also because of the importance of its
neighbors. Therefore, as highlighted in Figure 3.4, the top ten stations based on
eigenvector centrality measure are basic only in the same small region; in this case, it is

similar to closeness centrality measure.

Originated from closeness centrality, the nodal efficiency measure can also be
applied in a disconnected network in which two stations cannot reach each other, but
unlike the results based on closeness centrality, most of the top ten stations highlighted

in Figure 3.5 are scattered in three different zones.

Moreover, based on the nodal efficiency measure, the flow weighted efficiency
measure further considers the train flow between pairs of straightly connected stations.
In such a case, the results shown in Figure 3.6 are a little different and a few

improvements by comparing the results of the nodal efficiency measure can be achieved.

Furthermore, inspired by the betweenness and nodal efficiency measure, the
developed nodal betweenness-efficiency vulnerability measure combines advantages of

these two measures, and the top ten stations are shown in Figure 3.7.
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Comparing Figure 3.7 with Figure 3.1 and Figure 3.5, we can find that only node
103 is the shared node in the top ten stations identified by both the betweenness centrality
and nodal efficiency measure, and more stations could be found in the top ten stations
based on the betweenness centrality measure; meanwhile, four stations do not belong to
any top ten stations sets based on both betweenness centrality and nodal efficiency
measures. However, according to the distribution of the top ten stations in Figure 3.7, the
nodal betweenness-efficiency vulnerability measure is a promising measure for
identifying the key stations, because the detected top ten stations are all located in the
most important cities in Germany; the corresponding cities’ names of these stations are

shown in Table A-15.

Interestingly, originated from closeness centrality, but also taking into account nodal
efficiency and the idea of global residual vulnerability, the top ten stations highlighted in
Figure 3.8 detected by the proposed nodal residual closeness vulnerability are almost the

same, even the order of them presented in Table 3-1 are similar.

Now let us come back to Table 3-1. It is apparent that the orders of most key stations
identified by different measures are entirely distinctive. What can be noticed is that the
top one station 92 detected by the nodal flow-weighted efficiency measure only appears
in the top ten stations determined by the nodal classical efficiency measure in the top-

five ranks.

However, also based on Table 3-1, if taking into account the frequencies of each
station appearing in the top one lists (which means that we only consider the stations that
appear in the first ranking position in each list based on different measures), it is easy to
find that the stations 1, 2 and 103 have the same frequencies. Therefore, it is impossible

to distinguish which one is the most important station.

Nevertheless, if considering the frequencies of each station appearing in the top two
lists, here we count the frequencies of how many times the stations appear in the ranking
in the first and second ranking positions in each list based on different measures. Thereby,
we can find that station 4 has the highest frequencies and the second one is station 103;
in such a case, we can only conclude that the most crucial station is station 4, but we can

still not rank other stations.
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3.14.1 Ranking and Rank Order

When taking into account the frequencies of each station appearing in the lists within the
top three positions, stations 4 and 103 have the same frequencies. Likewise, it is the same
situation between stations 1 and 2. Thus, most key stations cannot be identified in such a

case.

Moreover, if considering the frequencies of each station appearing in the lists within
the top four, five or six positions, station 1 with the highest frequency can be regarded as
the most important station. When taking into account the frequencies of each station
appearing in the top seven lists, we can find that the stations 1, 2 and 4 have the same
frequencies, according to which we can't come to a conclusion which one is the most

important station.

Nevertheless, when further considering the rank order of each station in every list,
we can find that station 4 mostly appears in the top two positions, thus station 4 can be
regarded as the most important one. Comparing stations 1 and 2 based on their rank
orders in every list, they always have the same frequencies before the top three ranks, but
when reaching top four positions, station 1 has a higher frequency; in such a case, we can
say that station 1 is more important than station 2, so the top three stations could be

station 4, station 1 and station 2.

When thoroughly taking into account the frequencies of each station's appearing in
these lists within the top ten positions, only nine stations can be distinguished, which are
stations 1, 2, 4, 41, 103, 91, 26, 82 and 104, and the frequencies of most other stations
are mainly 2 or 1. Yet, among these nine stations, we still cannot tell the difference
between them, because station 1 and 2 for instance have the same frequencies; likewise,
the same frequencies can be found between stations 41 and 103, and even the three
stations 26, 82 and 104 also have the same frequencies. Nonetheless, as aforementioned,
taking into account the rank order of each station in every list, we can find that station 1
is more important that station 2. Comparing stations 41 and 103, we can see that station
103 mostly appears in the top two positions, while station 41 only appears after top two

positions, so it is easy to tell the difference between them.

69



Chapter 3  Aggregation of Measures

Furthermore, among stations 26, 82 and 104, we can notice that station 26 mainly
appears between the top ranks eight and nine, station 82 appears twice in the top five
ranks, while station 104 only appears in the top positions five, six and eight. Therefore,
combining the frequencies of each station's appearing in these lists with top ten positions
and the rank order of each station in every list, we can rank these top nine stations as

follows: 1, 2, 4, 103, 41, 91, 82, 104, 26.

Even though nine stations can be ranked based on the frequencies and their
corresponding rank order in every list, it is difficult to rank all of the stations based on
this idea, especially since it will be more difficult once the number of stations increases.
Since so far there hasn’t been any unified standard criterion to tell the difference of
various graph measures from each other and to compare them in order to find out which
one 1s more suitable and efficient to detect the most critical nodes in graph theory, when
applying different graph measures on a graph (or network), it can therefore certainly lead
to different results, which will cause the problem of information overload for decision-
makers, who, based on these results, still can't know which measure is the more efficient

one to identify the most suitable and practical essential nodes in a graph.

3.1.4.2 Graph Measures and Multi-criteria Decision Making

Since different graph measures analyze the graph from different perspectives, every
graph measure is a special one, which can lead to meaningful results based on its typical
analysis” perspective of view. Therefore, it will be helpful to resolve the information
overflow problem for decision-makers if there is one method that does not only consider
multitude measures and combines their advantages, but also yield more efficient and

meaningful results.

In the Multi-criteria Decision Making field, we found one approach called
Technique for Order Preference by Similarity to Ideal Solution (TOPSIS), which could
combine many criteria and also take the advantages of each criterion into account, giving

comprehensive decision-making advice for decision-makers.
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In the next subsection of this chapter, we introduce this kind of approach in detail,

while adapting this approach to graph measures and especially to our research problem.

We also present a new parameter evaluation approach based on global graph

vulnerability analysis.

Table 3-1: Top ten stations based on different measures

Centrality Nodal Efficiency Nodal Vulnerability
Rank
BetwCentr ~ CloCentr  DegCentr  EigenCentr Effi FWETFfi BetwEffiVul  ResiduCloVul

1 1 1 2 2 103 92 103 4
2 103 4 4 4 106 91 4 103
3 22 2 1 41 41 103 34 34
4 2 23 41 1 50 107 1 1
5 82 25 82 50 91 104 35 2
6 104 3 18 49 92 102 41 35
7 4 82 22 44 107 106 2 41
8 27 14 26 48 104 1 91 27
9 66 26 91 26 38 2 108 108
10 24 9 103 40 75 38 18 91

From Table 3-1 we can see that the top ten stations identified by different measures
are mainly distinctive; even though there are some common stations, their ranking orders
based on diverse measures are also different. Comparing the top ten stations detected by
Effi and FWEffi (because the latter one considers one more factor, which is train flow),
the improved nodal flow-weighted efficiency can also identify the critical stations 1 and

2, which can be detected by all other measures as the top ten stations.

Furthermore, comparing CloCentr with ResiduCloVul and also comparing
BetwCentr and Effi with BetwEffiVul, as introduced before, the latter one in every

comparative group combines the information of former one and aggregates new factors.
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Therefore, from Table 3-1, we can see that the aggregation measures (ResiduCloVul and
BetwEftiVul) can not only inherit the advantage of a single measure, but they can also
compensate the disadvantage of a single measure and give us some additional new
information. Thus, in this thesis, one of the research focuses is to look for a suitable
aggregation approach, which can combine much more information and lead to more
comprehensive results. The detailed information regarding the aggregation method is

introduced in the next subsection of this chapter.

3.2 New Aspect: Multi-criteria Decision Making
(MCDM) in RE(H)STRAIN as a
Comprehensive Approach

When evaluating and ranking alternatives across distinctive application fields, the Multi-
Criteria Decision Making (MCDM) approaches have drawn lots of attention from
researchers and experts. Among copious MCDM approaches that can be used to deal
with real-world decision-making problems, the Technique for Order Preference by
Similarity to Ideal Solution (TOPSIS) continues to work suitably across diverse
application fields. Hwang and Yoon (1981) initially developed TOPSIS to help find the
best alternative within a finite number of criteria. As a well-known MCDM approach,

the global interest of the TOPSIS method has exponentially grown since the 1980s.

3.2.1 TOPSIS as Possible Ranking Approach

The so-called TOPSIS method is a simple ranking approach in the application
(Roszkowska 2011). The TOPSIS method aims “to select the best alternative that
simultaneously has the shortest distance from the positive ideal solution and furthest
distance from the negative ideal solution” (Roszkowska 2015). Here the positive ideal
solution means maximum alternative value based on benefit criteria and minimum
alternative value based on cost criteria; however, the negative ideal solution represents
the minimum alternative value according to benefit criteria and maximum alternative

value according to cost criteria.
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TOPSIS offers a cardinal ranking of finite distinctive alternatives by making full
use of attribute information but without considering the attribute preferences to be
independent (Chen and Hwang 1992, Yoon and Hwang 1995). So far, TOPSIS has been
applied in a lot of different fields, such as supply chain management and logistics,
engineering and manufacturing systems, business and marketing management, human
resources management, energy management, and so on (Behzadian and Otaghsara 2012).
In order to apply the TOPSIS method in a specific area, the attribute values of different
criteria must be numeric, monotonically increasing or decreasing and have

commensurable units (Behzadian and Otaghsara 2012).

Mainly, there are seven steps when implementing TOPSIS in a specific application

area (Chen and Hwang 1992, Yoon and Hwang 1995):

(1) In the first step, an initial decision matrix needs to be created. The number of
columns is the number of criteria (or measures) we will apply, and the number of
rows denotes the number of alternatives (or nodes) we will rank and distinguish
which one is critical based on the criteria. The values of the distinct columns are

deduced according to different measures.

(2) In order to transform the values resulting from each measure into dimensionless
ones, the second step is to normalize the decision matrix using the same

normalized approach.

(3) Based on the normalized decision matrix from step 2, a new weighted normalized
decision matrix is needed to be built in the third step. How to estimate the weights

for different criteria is also presented in this chapter.

(4) In the fourth step, the positive and negative ideal solutions are determined

according to the weighted normalized decision matrix.

(5) In this stage, the Euclidean distances from positive and negative ideal solutions

of each alternative need to be calculated.

(6) Based on the Euclidean distances, in this step, the relative closeness for each

alternative with respect to the ideal solutions is computed.
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(7) In the final step, the set of alternatives according to the descending order of the
values of relative closeness can be achieved. Here the order can show the
importance of each alternative. In this dissertation, the top one alternative in a

rank order denotes the given alternative and is the most important one, and so on.

The details of each step are introduced in the following subsection of this chapter.
Among these 7 steps when implementing TOPSIS, the most important step is step 3,
during which the problem of how to evaluate different criteria and allocate them different
weights is far more critical. So far, commonly and widely used weighting methods are
the Analytic Hierarchy Process (AHP) (Yoon and Hwang 1995), Simple Multi-Attribute
Rating Technique (SMART) (Barron and Barrett 1996), Measuring Attractiveness by a
Categorical Based Evaluation Technique (MACBETH) (Bana et al. 2010), the Step-wise
Weight Assessment Ratio Analysis (SWARA) method (KerSuliene et al. 2010), and so
forth.

These weighting approaches need to compare different criteria and then allocate
their weights based on the experts' experiences. However, different experts will have
distinctive standards to determine the weights that further lead to different results, which
means the process is not repeatable if researchers don’t communicate their determining
criteria with each other. Taking into account the global vulnerability analysis, in our
research, we introduce a new objective weighting method to estimate the weights when
implementing TOPSIS in a specific transportation network to identify the important
stations. The detailed process of the new weighting method are also explained later in this

chapter.

So far, when carrying out network analysis for detecting the key nodes, most
researchers have applied some existing graph measures, like centrality measures or their
variants, to certain specific fields. Since there are hardly any graph measures which can
effectively be applied to most application fields, the approaches that can consider many

factors to identify the key nodes are even fewer.

As we know, most graph measures like degree centrality or betweenness centrality

only consider a single or a few very finite perspectives of network structure.
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However, in real-world networks, nodes might be important for multiple reasons,
for instance, one node is very important maybe because it is not only close to its many
other nodes, but it also has more neighbors than others and it lies on most of the shortest
paths between other pairs of nodes. Meanwhile, different measures detecting the

important nodes will lead to the distinctive ranking orders of nodes.

Therefore, this could result in information overflow for decision-makers, who
cannot decide which measure is more suitable and effective to identify the important
nodes; thus, they cannot know which nodes are so important that more security resources
are needed to be deployed in advance around those important nodes in order to prevent
them from being attacked by terrorists, or at least it will reduce the impacts caused by

terrorist attacks to a lower extent.

In order to resolve the information overflow issue for decision-makers, it is
necessary and essential to develop a comprehensive method that can not only consider
multiple advantage aspects from other different approaches, but can also aggregate them

into only a new one to identify the key spots in a network.

As introduced before, in the multiple decision-making field, as a well-known Multi-
criteria Decision Making method, TOPSIS can consider many criteria together, which
has been applied to many areas, such as supply chain management and logistics, design
and engineering, manufacturing systems, business and marketing management, health
and safety, environment management, human resources management, energy

management, chemical engineering, water resources management, and so on.

In recent years, researchers have started to apply TOPSIS to complex networks (Yu
et al. 2013), specifically the social network (Mesgari et al. 2015, Muruganantham and
Gandhi 2016), to identify the critical nodes by aggregating different graph measures.
Nevertheless, they estimate and allocate the weights for each criterion using the
traditional subjective weighting approaches like AHP, SMART, MACBETH, SWARA,
and so on, which need experts' knowledge and experiences to compare the criteria with

each other and then allocate different weights according to their importance.
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But in graph theory, since there is no unified standard to compare different graph
measures with each other (one standard method can determine which measure is more
efficient than other measures to detect the critical nodes, then allocate a higher weight to
that measure), the experts' knowledge and experiences are thus not that significant to be
used to evaluate the weights for criteria. Thereby, in our research, we have introduced a
new objective weight estimating method by considering the global vulnerability analysis
to allocate the weights for different graph measures. In comparison to Yoon and Hwang
(1995), Barron and Barrett (1996), Bana et al. (2010) and KerSuliené et al. (2010), the
exact weight determining approach and its procedure of calculation are explained in the

following subsection of this chapter.

3.3 TOPSIS as a Framework for MCDM

TOPSIS is a kind of ranking method based on the closeness between a limited number
of evaluation objects and the ideal solutions. It is used to evaluate the relative merits of
the existing objects. There are two ideal solutions, one is the positive ideal solution or

the optimal target; the other one is the negative ideal solution or the worst target.

The best object should have the closest distance to the positive ideal solution and
the furthest distance from the negative ideal solution (Rezaei 2015). Both optimal and
worst targets among multiple targets can be found based on the normalization matrix.
Then the closeness between each target and the ideal solution can be obtained by
calculating the distance between each evaluated target and the positive (negative) ideal
solution. Afterward, according to the value of the closeness, we can obtain a ranking
order serving as the basis for evaluating the pros and cons of the target. Here, the
closeness value is between 0 and 1. The closer the value is to 1, the closer the
corresponding evaluated target is to the optimal level; otherwise, if the value is closer to
0, the evaluated target is closer to the worst level. In summary, TOPSIS consists of the

following seven steps (Chen and Hwang 1992, Yoon and Hwang 1995):
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TOPSIS Procedure:

First Step: The decision matrix X is created with N rows and M columns;
here, N is the number of nodes and M is the number of graph measures. The matrix

1s shown as follows:

X=| i " (3-14),
X

nl o nm

where x; denotes the measure value of i" node according to the j" graph measure.

Second Step: Since the decision matrix is composed of values with different scales
resulting from distinct graph measures, in this step the decision matrix X needs to be
normalized and transformed into a dimensionless matrix I, which allows the
comparison of the various graph measures; its normalized decision matrix with a

notionally common scale is shown as follows:

rll rlm
r=|: . : (3-15),
rnl rnm
where the element K is: ¢
= Ln
max{xij}i:l

Third Step: In this step, based on the normalized evaluation matrix I, we create

the weighted normalized evaluation matrix, which is shown in the following formula:
by o by
t

nl 7T nm
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where

Here, ¢, is the weight for each graph measure, and we will explain how to

determine and allocate the weights for different measures after introducing the computing

steps of TOPSIS.

Fourth Step: After we have weighted the normalized-evaluation-matrix, in this step,
we can derive the positive ideal solution t* and the negative ideal solution t~, since
in our research, every graph measure (i.e. criterion) has the benefit attribute, which means
one given node (i.e. choice) is much more important if its corresponding graph measure
value is higher. In such a case, these positive and negative ideal solutions can be achieved

based on the following Formulas (3-17):

t :{m_ax(tij)|i =12,....n;j=1, 2,...,m} :{tj*|j :1,2,...,m}
' (3-17)
-

{miin(tij)|i =1,2,...,n; j =1,2,...,m} ={tj’|j =1,2,...,m}

However, when applying TOPSIS to different fields, (for instance, threat analysis),
if every criterion has the cost attribute (which means that one given choice is of higher
importance if its corresponding criterion value is smaller), one can obtain positive and

negative ideal solutions using the following Formulas (3-18):

" :{mjn(tij)|i =1,2,...n:j :1,2,...,m}={t;|j =12,..,m)
' (3-18)
t :{m?x(tij)|i =1,2,...,n; j =1,2,...,m} ={tj’|j =1,2,...,m}

Fifth Step: In this step, we calculate the Euclidean distances from each node to the
positive ideal solution and negative ideal solution. The Euclidean distances from each

node to positive ideal solution can be calculated according to Formula (3-19):
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s/ = >3t -t) i=L..n (3-19)

j=1
And the Euclidean distances from each node to negative ideal solution can be

computed using Formula (3-20):

m

S =>(t;-t)  i=L..n (3-20)

j=1

Sixth Step: Based on the Euclidean distances s* and s~ from each node to
every positive and negative ideal solution, in this step, we can calculate the relative
closeness Z, to the ideal solution. Its computing formula is defined as follows:
S”

Z = ! 3-21
'S +S] S

Seventh Step: In the last step, we rank the nodes based on the values of Z, and get

a new node order which considers and aggregates multiple perspectives from different

graph measures.

3.3.1 Illustration of Determining Weight in
Third Step of TOPSIS Procedure

Now we will introduce how to determine and allocate the weight for each graph measure.
Since, in graph theory, so far there hasn’t been any unified standard criterion to compare
different graph measures to tell which one is more suitable and efficient to identify the
key nodes, the experiences of experts might be meaningful in some application fields,

but not always possible.

However, when researchers analyze the vulnerability of a graph from a graph theory
point of view, the general approach is first to conduct some attack scenarios, for instance,
the nodal level graph centrality-based attack scenarios and the nodal level graph
vulnerability-based attack scenarios, which can be carried out by removing some

numbers of nodes or edges from a graph.
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Then, regarding the remaining graph, its certain global graph vulnerability
evaluation model value needs to be calculated, which can be used to compare which node
or group of nodes are more vulnerable than other nodes or other groups of nodes under
these kinds of attack scenarios. Based on this idea, we have proposed two new nodal
graph vulnerability measures. Accordingly, in order to allocate the weights for different
graph measures when implementing TOPSIS, in our research we also take into account
this idea of introducing a new weights determination approach into the computing
process of TOPSIS. In total, regarding the procedure of how to determine and allocate

the weights for different graph measures, there are six steps, presented as follows:

Step one:

Supposing M, denotes the i" graph measure and having completed the

calculations of each graph measure for every node in a given graph, in this step we rank
the nodes based on the graph measure values of nodes. Therefore, different graph
measures will lead to different rank orders. For instance, we take a simple graph as an
example shown in Figure 3.9, in which the numbers near every edge denote the distance
between two adjacent straightly connected nodes; here, supposing we have two graph

measures M; and M,, the rank order 1 will be V5, V3, V4,V6, V2, V7, V1, according
to graph measure M,, whereas the rank order 2 will be V4, V6, V3, V5, V2, VI, V7,

based on graph measure M, .

Figure 3.9: A simple graph example
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Step two:

In this step, we delete the same numbers of nodes, but maybe different nodes from
the graph based on the different rank orders. For example, if we only delete the top one
node, then node V5 will be removed from the graph based on rank order 1; however,
node V4 will be removed from the graph according to rank order 2. Likewise, if deleting
the top two nodes, then the two nodes V5 and V3 will be removed simultaneously, based
on rank order 1, while nodes V4 and V6 will be removed at the same time, according to

rank order 2.

Step three:

In this step, first we need to compute the global graph vulnerability evaluation

model of the original graph without deleting any nodes | then after deleting the

original ?
same number of top nodes, based on graph measure M,, we also need to calculate the
global graph vulnerability evaluation model | M, Sy, of the remaining graph. Here, s

denotes the node set which contains top N, nodes that will be removed from the
original graph. For instance, if deleting top two nodes (N, = 2) from the given original

graph SNd = {V 5V 3} , based on rank order 1, its remaining graph is like Figure 3.10, and

SO Oon.

Figure 3.10: The residual graph of the given simple graph after removing nodes V5 and V3
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In graph theory, there are three kinds of commonly and widely used global graph
vulnerability evaluation models when conducting the global vulnerability analysis, which
include the giant connected component, origin-destination connected ratio and global
graph efficiency. The so-called giant connected component means that after removing
some numbers of nodes from the graph, if the remaining graph is split into different small
connected parts, then the part with the largest number of nodes is the giant connected
component. In this case, the removed nodes will cause larger influences on the given

graph if its giant connected component is smaller.

While the origin-destination connected ratio (ODCR) shows the percentage of pairs

of nodes that are still connected in the remaining graph, its formula is defined as follows:

ODCR 2y, 3-22
T (-N,)(n-N, 1) (-22).

where Ey, denotes the number of edges in the remaining graph, according to the sense

of the origin-destination connected ratio, and the bigger the values of the origin-

destination connected ratio, the less influence the removed nodes will have.

Moreover, another evaluation model called Global Graph Efficiency (GGE) is a
measure which can be used to quantify how fast the information can be propagated within

the graph. Its computing formula is shown as follows:

GGE = ZZ (3-23),

j#i d(VuV )

where n =n-N, is the number of nodes in the remaining graph and d(v,,v,) 1s the
distance of the shortest path between node v; and node v, in the remaining graph.

Based on this evaluation model, the removed nodes will result in a larger influence on
the graph if its evaluation model value of the remaining graph is bigger. However, when
deleting the same number of nodes from maybe different nodes, the remaining graphs
are still connected. For instance, taking the simple graph in Figure 3.9 as an example,
according to the aforementioned rank orders 1 and 2 derived from its corresponding

graph measure M, and M, after deleting the top one node, namely node V5 and node

V4, the two remaining graphs are still connected.
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Furthermore, after deleting the top two nodes, namely nodes {V5, V3} and nodes
{V4, V6}, two other remaining graphs are still connected. In these cases, based on the
giant connected component and the origin-destination connected ratio, we cannot tell the
differences between node V5 and node V4, and cannot distinguish the importance
between the group nodes {V5, V3} and group nodes {V4, V6}. Yet, due to the fact that
the simple graph is a distance weighted graph and most of the distances between two
straightly connected adjacent nodes are different, the value of global graph efficiency
will be different, which can be used to tell the difference between different nodes and
also groups of nodes. Meanwhile, since in our research, we have mapped the research
object ICE network into a distance weighted graph, in this dissertation, we take the global
graph efficiency as the global graph vulnerability evaluation model, whichis | =GGE.

Step four:

In this step, we use the following Formula (3-24) to compute the damage to the

structure of the original graph after removing top N, nodes of the ranked order based

on graph measure M;.

DMi—SNd = Ioriginal - IMi—SNd (3-24)

According to the definition of damage degree, the removed nodes will lead to larger

damage to the structure of the original graph if its value is bigger.

Step five:

For this step, based on graph measure M., we need to calculate the cumulative
damage to the structure of the original graph after deleting the node sets from S, to
S, » using the following formula:

SDMi—SfSNd - Z DMi_SNd (3-25)’

Ny

where N, €[1,n*26%)].
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The reason for taking 26 percent of nodes in the graph is that in this dissertation,
regarding the research object ICE network and after having removed these nodes, the
remaining graphs are almost unconnected, which means the structure of the original

graph has almost or already been destroyed.

Step six:

In the final step, we use the following formula to determine the weights of graph
measures when applying TOPSIS in ICE network in order to detect the key nodes which

have more potential to be attacked by terrorists.

SD

M;-S,~Sy,

I P 3-26
J Z SDMi—SFSNd ( )

3.4 Implementation of the
New TOPSIS-based Aggregation Measure

Before implementing the TOPSIS-based aggregation measure, here we first implement

the method on how to allocate the weights for the third step of TOPSIS.

Step one:

In this step, { M;,M,,M,;,M,,M;,M,,M,,M; } denote {BetwCentr, CloCentr,

DegCentr, EigenCentr, Effi, FWEffi, BetwEffiVul, ResiduCloVul} measures
respectively. Based on the results shown from Table A-1 to Table A-8 in the Appendix,
according to { M, M,,..., Mg }, since we take N, €[1,n*26%]=[1,31] in the fifth step

of the procedure of the weights determination approach, in this step, we therefore only

consider the top 31 nodes, and the results are shown in Appendix Table A-9.
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Step two:

In this step, we delete some numbers of nodes from the top one node to the top third
nodes from the graph step by step. For instance, if we delete the top five nodes, then
based on Appendix Table A-9, different groups of nodes, like {1, 103, 22, 2, 82}, {1, 4,
2,23,25},{2,4,1,41, 82}, {2,4, 41, 1,50}, {103, 106, 41, 50,91}, {92, 91, 103, 107,
104}, {103, 4, 34, 1, 35} and {4, 103, 34, 1, 2}, according to { M;,M,,..., M, }
respectively, will be removed from the graph, just like groups of nodes based on certain

other top numbers of nodes.

Step three:

Since we take |M__SNd =GGE shown in Formula (3-23) as the global graph

vulnerability evaluation model, firstly, in this step, we can compute | —0.3905928 .

original

Then, based on different M, IMrSNd is calculated, the results are shown in Appendix

Table A-10.

Step four:

According to the results of | and IMi_SNd shown in Appendix Table A-10

original
and Formula (3-24), we can obtain the damage to the structure of the original graph after

removing top N, nodes of the ranked order based on graph measure M,, and the

results are shown in Appendix Table A-11.

Step five:

In this step, based on Formula (3-25) and the values of DMi—SNd , we can calculate

the cumulative damage spD to the structure of the original graph after deleting

M;—8;~S5,

the nodes sets from S, to s, . The results are shown in Table 3-2.
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Table 3-2: The values of sSD

M; =S, ~S3;

D sD, D sD D, D sD D,
M1=8;=S3p T"Mp—51 =83y "T"M3-5) =Sy TTMy-§;=S3; T"Mg—5;=S3; “T"Mg-5§ 53 M7-8=S3; "~ Mg=5=S3;

7.6125265 4.4568082 7.7034144 4.6344502  6.7014747  6.1768206 8.44332  8.4979834
Step six:
According to the values of cumulative damage sp,, ., In
i Y1 31

Table 3-2, based on Formula (3-26), we can obtain the weights of graph measures

when implementing TOPSIS as shown in Table 3-3.

Table 3-3: The weight values { &, &,,..., &, } of measures { M, M,, ..., Mg } when

implementing TOPSIS

& &, &, &, Es Es & &g

0.1403831 0.0821883  0.1420592 0.0854642 0.1235823 0.1139072  0.1557038 0.1567119

The procedure of implementing the TOPSIS-based aggregation measure is

described as follows:

First step:

As described before, { M;,M,,M,;,M,,M;,M,,M,,M; } denote BetwCentr,

CloCentr, DegCentr, EigenCentr, Efti, FWEffi, BetwEffiVul, ResiduCloVul measures

respectively. Supposing that v, which is a 121x1 vector, denotes the values of

M; ?

measure M, its value is corresponding to Table A-1 to Table A-8 in the Appendix. Thus,

the evaluation matrix X withsize 121x8 canbe expressedas X =(v,, ,V,, ,...V,, ) -
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Second step:

Based on the first step, in this step we can attain the normalized evaluation matrix

with the same scale column with the following formula:

Vi, Vi, Vv,

max(V,,) max(v,,) " max(v,,)

r=(

Third step:

According to Table 3-3, we have the weights for each measure; thereby, we can

obtain the weighted normalized evaluation matrix shown as the following formula here:
T=(*)=(el, 60, &%)

= (0.140383109xT',,0.082188298xT,,...,0.156711879xT,)

Fourth step:

In our research, each graph measure has the benefit attribute, which means one given
node is much more important if its corresponding measure value is higher. Therefore,
based on Formula (3-17), we can compute the positive and negative ideal solution like

in the following formulas:

+ _ et +
t _{max(Tl),max(I'z),...,max(l’8)}_{t1 ""'tm}
t :{mln(l'l),mln(Tz),...,mln(T8)}={t1 ""’tm}
{0.140383109 0.082188298 0.142059179 0.085464205
0.123582342 0.113907161 0.155703828 0.156711879}

- {0.000000000 0.040484861 0.015784353 8.2313E-17
0.022937713 0.000000000 0.000889826 0.00503244}
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Fifth step:

Based on Formula (3-19) and Formula (3-20), we can calculate the separation
distance from each node to every positive and negative ideal solution. Their results are

shown in Table A-12 and Table A-13 in the Appendix.
Sixth step:

Based on the values of separation distances s and s, shown in Table A-12 and

Table A-13 in the Appendix, and according to Formula (3-21), we can obtain results of
the relative closeness Z. to the ideal solutions shown in Appendix Table A-14.
Seventh step:

Based on the values of Z, in Appendix Table A-14, we rank the nodes and get a

new node order, which takes into account and aggregates all the multiple advantage
perspectives of different graph measures. Here, we list the top ten nodes and compare

them to other top ten nodes based on other graph measures in Table 3-4.

Table 3-4: Top ten stations identified by different measures

Centrality Nodal Efficiency Nodal Vulnerability
Rank AggregTOPSIS
BetwCentr  CloCentr ~ DegCentr  EigenCentr Effi FWEffi BetwEffivul  ResiduCloVul
1 1 1 2 2 103 92 103 4 103
2 103 4 4 4 106 91 4 103 1
3 22 2 1 41 41 103 34 34 4
4 2 23 41 1 50 107 1 1 2
5 82 25 82 50 91 104 35 2 34
6 104 3 18 49 92 102 41 35 91
7 4 82 22 44 107 106 2 41 41
8 27 14 26 48 104 1 91 27 22
9 66 26 91 26 38 2 108 108 104
10 24 9 103 40 75 38 18 91 18
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According to Table 3-4, the top ten stations identified by the TOPSIS-based
approach are stations 103, 1, 4, 2, 34, 91, 41, 22, 104 and 18, highlighted in red color in
the graph shown in Figure 3.11. In this figure, we can see that most of them are in critical
positions, and once they are removed from the network, the network will be disconnected,

or the network efficiency will be reduced a lot.

Furthermore, based on Table 3-4, all of these top ten stations detected by the
TOPSIS-based aggregation measure appearing from column 2 to column 9 (identified by
BetwCentr, CloCentr, DegCentr, EigenCentr, Effi, FWEffi, BetwEffiVul, and
ResiduCloVul measures respectively), most of them, except stations 34, 22 and 18,
appear in the top nine nodes (which are stations 1, 2, 4, 103, 41, 91, 82, 104 and 26),
based on the frequencies of each station's appearing in the lists within top ten positions
shown in Table 3-4 from column 2 to column 9, and also in the rank order in each top ten

station list.

Because this aggregation measure considers and aggregates the advantages of
different graph measures and also compensates their disadvantages to each other, we can
say the aggregation measure is promising and maybe more efficient for detecting the
critical nodes in a graph. Considering Figure 3.11 again, we can find that most of them
are very important. For instance, if removing stations 4, 18, 22, 41, 91, 103 from the
network, the remaining network will be disconnected, which apparently will affect

people's lives.

Although after deleting stations 1, 4, 34, 104, the remaining network is still
connected; this will however largely increase the costs for transport, time and the
economy. Thus, from an intuitive point of view, the TOPSIS-based approach can be a

promising, suitable and effective measure.
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Figure 3.11: Top ten stations identified by TOPSIS-based measure are highlighted in red color

When comparing Figure 3.11 with Figure 3.1 and Figure 3.8, it is found that Figure
3.11 is similar to Figure 3.3 (based on DegCentr) and Figure 3.7 (based on BetwEffiVul),
and there are only two different highlighted top ten stations. But from Table 3-4, we can

see that their ranking orders are different.

According to Figure 3.11, station 82 connects lines going into four different
directions; from an intuitive point of view, it should be one of the top ten critical stations.
Although station 82 is not highlighted as one of the top ten critical stations, it doesn’t
mean that this station is not important according to the TOPSIS-based aggregation

measure.
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Based on Appendix Table A-14, the rank order of station 82 is 12, which means that
station 82 is still very critical based on the TOPSIS-based aggregation measure; therefore,
the results, which are deduced from the TOPSIS-based aggregation measure combining

information of eight different measures, are comprehensive and suitable.

3.5 Summary

In this chapter, we first introduce four centrality measures like degree centrality
(Maharani and Gozali 2014), closeness centrality (Derrible 2012), eigenvector centrality
(Maharani and Gozali 2014, Newman 2008) and betweenness centrality (Tsiotas and
Polyzos 2015). Then, the classical network nodal efficiency (Latora and Marchiori 2003)
and its improved version, i.e. the flow-weighted network nodal efficiency (Nistor and
Pickl et al. 2017) are also introduced. Based on the network residual closeness, we
propose a new nodal residual closeness vulnerability measure. Inspired by the
betweenness centrality and efficiency measures, we also propose a new betweenness-
efficiency vulnerability measure. Afterward, the aforementioned measures are applied to
the ICE network. However, different measures lead to distinctive results, which can cause
information overflow and confusion for decision-makers, who cannot judge which

measures are the most effective ones to identify the key stations in the ICE network.

In order to decrease the information overflow for decision-makers, we introduce
TOPSIS from Multi-criteria Decision Making field to aggregate different measures into
a new comprehensive measure. And the results, from an intuitive point of view, show
that the new TOPSIS-based approach is a promising, suitable and effective measure.
However, as stated before, since so far, there has not been a unified standard criterion to
tell the difference between various graph measures and to compare them to find out which
one is more suitable and efficient to detect a group of most critical nodes in graph theory,
now we are introducing an aggregation measure which to a certain extent resolves the
problem of information overload for decision-makers (who, based on different results,
couldn't make a reasonable judgment which measure is the more efficient one to identify

more suitable and practical vital nodes in a graph before).
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Therefore, to compare different approaches and to tell which one is more suitable
and efficient to detect the key nodes in a network, and in order to validate the
effectiveness of the new proposed aggregation approach in the meantime, in the next
Chapter 4 we conduct a quantitative network resilience analysis, which can analyze the
network from different perspectives and views considering some real information, for
instance, how many people could be injured or killed in terrorist attacks, how much
economic loss it might cause, how many people's lives would be affected by and after

the attacks, and so on.

As it is known, when researchers carry out quantitative network resilience analysis,
the network resilience is usually quantified by the changes in network performance
metrics. And due to the fact that the safety of people is of highest importance, in the next
chapter, we therefore propose and present a new resilience measure by introducing a new
network performance metric which mainly considers the factor of how many people can
generally take advantage of the system, even under some disturbances. Meanwhile, we
also take into account the traveling time and train flow. Furthermore, in another critical
aspect, we also propose a concept of an adjacency node-set level when appropriately
adapting the idea of degree centrality from graph theory. The details are presented in the
following Chapter 4, where we introduce and characterize a new quantitative resilience

measure.

In Chapter 3, the contents from section 3.1, section 3.2 and section 3.3 are based on

the following publications (in order of appearance):

Wang, Z., Zsifkovits, M., & Pickl, S. W. (2018). Analyzing vulnerabilities of the German high-
speed train network using quantitative graph theory. International Journal of Safety and Security
Engineering, 8(1), 59-64.

Zsifkovits, M., Wang, Z., Nistor, M. S., & Pickl, S. W. (2016). Complex System Analysis using
Graph Theory - Identifying Criticality in Transportation Networks. Security Research

Conference.

Wang, Z., Nistor, M. S., & Pickl, S. W. (2020). Introducing a TOPSIS based quantitative resilience

measure for railway systems. The international conference on railway technology. (submitted)
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Resilience Measure

As described in Chapter 3, it is found that the proposed TOPSIS-based aggregation
measure can reduce information overflow for decision-makers, and the results also show
that it is a promising approach to identify the critical nodes of networks. The TOPSIS-
based aggregation measure considers many advantage factors of different measures, and
the various advantage factors can compensate for the disadvantages of various measures.
Thereby, the TOPSIS-based aggregation measure can be regarded as a much more
comprehensive method than other centrality, efficiency and nodal vulnerability measures,

which only consider one or two aspects.

However, in graph theory, because there is no unified standard to compare distinct
measures and tell the difference from each other, the effectiveness of the developed
TOPSIS-based aggregation measure can therefore not be verified, and it certainly cannot
conclude which one is more suitable and effective to detect the critical nodes for network.
Therefore, in this chapter, we conduct the network resilience analysis mainly in order to
compare different measures from distinct perspectives. In order to achieve this aim we
also develop a new network performance metric based on network structure properties
from the graph theory field and combine them with other information like the precise

number of people and trains in the German high-speed train network (ICE network).

Regarding resilience analysis, several studies proposed different definitions of
resilience during the past two decades (Ip and Wang 2011, Wang et al. 2017). While most
people find it easy to grasp an intuitive and qualitative meaning for the concept of
resilience, this notion proved to be one of the most difficult ones to define qualitative
terms in a general and comprehensive way (Wang et al. 2017). Numerous qualitative and
quantitative definitions have been proposed in different fields, for example in psychology

and social sciences as well as in ecology and engineering.
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Some studies, for example in Holling (1996), tried to differentiate between the
meanings to be used in engineering and ecology. Attempts have also been made to review
the field; for instance, Martin-Breen and Anderies (2011), as well as Hosseini and Barker

(2016) have made a relatively comprehensive review of resilience and its applications.

In Chapter 2, we have also reviewed in detail some resilience definitions and found
that the approach representing resilience graphically using performance curves is
promising and adaptable in our research. As described in Chapter 1, the graphical
network performance curve method has four phases containing (i) original steady phase,
(i1) disruptive phase, (iii) recovery phase, and (iv) new steady phase. Here, we only focus
on the disruptive phase by considering the time consumed, because in our research, we
merely take terrorist attacks into account, and, assuming once these terrorist events have

happened, the network will be shut down immediately.

4.1 Network Performance Metric

In our research, due to the fact that the German high-speed train network is not a local
transportation network, if one station is attacked by terrorists, it only affects a few

neighboring stations in the network. Let’s take the graph in Figure 4.1 as an example:

Figure 4.1: A simple example of transportation network

As described in Chapter 1, when assessing the resilience, we present it graphically.
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In this thesis, we only focus on disruptive events caused by terrorists, thus the different
phases of network resilience are presented in Figure 1.5. In such a case, we suppose that

one station marked black is attacked at the time t, , and every stage of network resilience

is shown in Figure 4.2. Furthermore, as stated in Chapter 1, the time consumption of
disruptive and recovery phases is not necessary under terrorist attacks, therefore, here we
suppose that the disruptive and recovery phases will immediately happen almost without
time consumption as shown in Figure 4.2; the duration time of disruptive and recovery

phases then can be written as At; =t —t, >0 and At, =t -t  —0 and At,=At,.

According to Figure 4.2, after the given station is attacked, its neighboring stations
are affected quickly. The stations marked in red, which are straightly connected to the
given station, will be profoundly affected. Compared to the stations marked in red, there
are fewer impacts on the stations with yellow marks, which are straightly connected to
the neighbors of the given station marked in black. And other stations marked in green
are much less affected. As for how long the network will be affected, it depends on how
long the decision-makers need to take some measures to resolve such a dangerous
situation of terrorist attacks, then issuing the order that the network can be recovered to

its normal status.

Terrorist attacks
Performance

£

New stable phase

O Q ./ Original stable phase Disruptive phase Recovery phase
< | v A

e
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v Restorative and Adaptiv
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capabilities
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Figure 4.2: Different phases of network resilience and their different network status when

considering terrorist attacks
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41.1 The New Robustness-based
Resilience Measure of the Network

In this thesis, based on the resilience assessment approach presented by Nan and based
on Formula (2-13), and combined with Figure 4.2, we can derive the robustness of the
network as follows:

Robustness = mtin{P(t)} =P,

Supposing the duration time of disruptive and recovery phases is equal and
At,=At, — 0, according to Formula (2-15), we can say that the number of ramps in both
disruptive and recovery phases is one , namely, K, = K., =1.In such a case, based on
Formula (2-14) and Formula (2-17), the RAPIDITY of Disruptive Phase (RAPI . ) and

the RAPIDITY of Recovery Phase (RAPI . ) can be calculated as follows:

ker P(t;) — P(t, — At
‘Z (t) —P(t — At)

RAPI . = At _ P(td+Atd)_P(td) _ R-FR
P Kop At, At,
‘ZKRP P(t) - P(t —At)‘
RAPI _ i=1 A | ns) P(t ) _ PO - Pd
"P Koo B At At

Thus, RAPI,, =RAPI,,, according to Formula (2-19), and combining Figure 1.4

and Figure 1.5 or Figure 4.2, the recovery ability of a network can be computed as follows:

_‘P(tns _

‘P(tns P-P
PO - P(tr) ‘

P P(tr) " P-P,
Based on Formula (2-21), the Time Averaged Performance Loss during the

disruptive phase and the recovery phase can be obtained as follows:

tﬂS tﬂS
J TR —-POJdt (R P, dt
TAPL =2t S *—P-P,;
t, —t t,—t,

ns d ns
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here, we suppose the duration time of disruptive and recovery phases is equal and

At =t —t,=At =t_—t — 0, therefore, P(t)=P,.

Hence, under the circumstance of terrorist attacks, according to Formula (2-20), the

resilience of a network can be measured by the following formula:

Resilience = Robustness x %x (TAPL)’1 % RA

DP

1

1 4-1
o (D)

=P, -1-

— I:)d
P—P,

Based on Formula (4-1), we can find that network resilience is only related to the
network performances before and after disruptive events if only considering terrorist

attacks. Because P, > P,, for the sake of avoiding the situation of Py =P, and limiting

the value of resilience within the range [0,1], we redefine and quantify network
resilience using the network performance drop percentage without considering the time
factor shown in the following formula:

AP _R P,

Resilience(G,) =
G,) P P

(4_2)9

where G, means the remaining network after station K or a group of stations
{k=k;|i=12,.., ], j<n} are deleted from the original network G . Resilience(G,)

denotes the resilience of the remaining network G, .

According to such resilience definition, if the value of Formula (4-2) is higher,
the resilience of a network is lower. That means, we need to make more efforts to
help the network recover to its normal level, or to protect the network from attacks.
For instance, we should deploy in advance more security resources, including

security detection devices, more police, and so on.

In order to quantify the resilience, first, we need to define a proper network
performance. In this dissertation, when considering the three factors train flow, traveling

time and the number of people, we define a new network performance as follows:
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FTP(G,) = i > ] (4-3),

n(n-1) ..;5%,) T
where I is the number of stations of the network G . FTP(G,) is the network
performance of the remaining network G,, f, is the train flow on the edge with the
lowest train flow along the shortest path between stations i and J . r,; denotes the
total traveling time along the shortest path between stations i and ] . Q, denotes the

number of people who can still normally use the network when station K is attacked

by terrorists, and its formula is defined as:
Q=2.0-Q . (4-4),
i=1

where Q:_a represents the number of people that will be affected when station K is

attacked, and its definition formula is shown as follows:

Qua=Qt 2, PQ+ 2, piQ++ 2 p/Q (4-5),

jeA jeA jeAc
where, p<1, L>1, thus, ,Oj'Q: means that station j is further away from the

attacked station K , and a smaller number of people in the city where station j belongs

to would be affected. Here,

*

2Q

Since we are going to publish our research results in the future and we do not want

Pj

any malicious persons to take advantage of it to harm other innocent people, we don't use
the somewhat accurate statistic data to calculate Q: _a here. Therefore, instead of

statistic data, in this dissertation we use the population of every city to estimate it. In

Formula (4-5), Q; denotes the population of the city to which station K belongs to.

L represents the maximum depth level of adjacent stations sets of a given station in a

network, and Al denotes the i, depth level of adjacent stations sets of station K.
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In order to make the different depth levels of adjacent stations sets understandable,
we take the simple graph shown in Figure 4.3 as an example, in which, supposing that

node V, marked in yellow is attacked, then Al —{v,,v,,v,} highlighted in red is the
first depth level adjacency node-set of node V,, and its second depth level adjacency
node-set is A? ={V,,V,,V,,V,} marked in light blue. Moreover, its third depth level
adjacency node-set is A? ={v,} marked in green; likewise, if the attacked node is

different, it's the same way to look for the different depth level adjacency node-sets.

Figure 4.3: A simple graph with different depth level adjacency node-sets

According to Formula (4-3), the network performance of the original network G

without any disruptive events can be obtained by calculating the following Formula
(4-6):
Q fij
FTP(G) = > 2 (4-6),

n(n _1) i#jeV (G) Tij

where the number of people Q who can still normally make use of the network is

defined as follows:
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Q=>Q (4-7)

Combining Formula (4-2), Formula (4-3) and Formula (4-6), the definition of

resilience can be rewritten as follows:

Resilience(G, ) = AP _R-F _FTP(G)-FTP(G,) (4-8)
P, P, FTP(G)

4.2 Implementation of the New Resilience Measure
and Application to RE(H)STRAIN-related
Aspects

So far, in this dissertation we have applied nine measures: betweenness centrality
measure (BetwCentr), closeness centrality measure (CloCentr), degree centrality
measure (DegCentr), eigenvector centrality measure (EigenCentr), nodal efficiency
measure (Effi), nodal flow-weighted efficiency measure (FWEffi), nodal betweenness-
efficiency vulnerability measure (BetwEftiVul), nodal residual closeness vulnerability
measure (ResiduCloVul) and the TOPSIS-based aggregation measure (AggregTOPSIS),
to identify the key nodes in a graph. In order to compare and evaluate them and then tell
the differences which one is more suitable and efficient to identify the key nodes, in this
chapter, we propose a new network performance to define the resilience. However, before
conducting the resilience analysis, we first need to design different attack scenarios based
on these distinguished measures. In the RE(H)STRAIN project, when considering the
terrorist attacks, many aspects need to be taken into account, including the motivation
and intention of potential terrorists, the possible means of attack from the BCRE
(biological, chemical, radiological, explosive) arsenal, the damage to infrastructure and
railway traffic, the number of fatalities and injured persons, economic loss, etc. But, in
this dissertation, the so-called attack means that when we attack one node in a graph, we
will remove the given node and its corresponding edges from the original graph.
Therefore, the procedure to conduct resilience analysis is like the process of how to
determine and allocate the weights for each measure during the calculation of TOPSIS.

In summary, there are four steps to follow:
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Firstly, based on each measure, we rank the nodes of a graph to prepare each attack

scenario.

Secondly, we delete the same top number of key nodes from the graph based on the
order derived from the first step. For instance, if we remove the top one node, then
according to Table 3-1, node 1 should be removed based on the betweenness centrality
measure, while according to the nodal betweenness-efficiency vulnerability measure,
node 103 needs to be removed. Likewise, if removing the top two nodes, then nodes 1
and 103 should be removed based on the former measure, and nodes 103 and 4 need to

be removed according to the latter measure, and so on.

Thirdly, in this step, we should also stepwise calculate the resilience of a network
based on Formula (4-3) ~ Formula (4-8). For example, when deleting the top one node
from the graph, we compute the first group of network resilience values based on
different measures. If removing the top two nodes, then we need to calculate the second
group of network resilience values also based on these measures, and so on. That means,

when deleting top i nodes, we should calculate and get the i, group of network

t

resilience values.

Fourthly, based on the network resilience values within i, group, i.e., after we

have removed top 1 nodes from the network, we can compare and conclude which
measure is more suitable and efficient to identify the key nodes. The specific numerical
results are shown in Figure 4.4. According to this figure, we can find that with the largest
frequencies, the attacks based on aggregation measure can almost always lead to lower
resilience. For example, in the square zone of Figure 4.4, its zoom-in picture is shown in
Figure 4.5, based on which we can see there are only six cases that the TOPSIS-based
aggregation measure cannot lead to lower resilience from the numbers of removed
stations 10 to 30; in such a case, the TOPSIS-based aggregation measure can be seen as

a promising and suitable measure.

However, in practice, for terrorists it is impossible to attack many stations
simultaneously. Therefore, the most likely situation is that they might attack the most

essential stations.
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Thus, if one measure can lead to lower resilience when deleting a small number of

nodes from the network, we can say this measure is more suitable and effective to identify

the critical stations in transportation network.
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Figure 4.4: Results of resilience analysis under different targeted attacks

When only focusing on the small number of nodes deleted from networks, the

results are shown in Figure 4.6, based on which, although the aggregation measure can

almost always lead to lower resilience, it can’t always lead to lower resilience when

deleting a small number of nodes. For instance, when deleting the top 3 nodes, the attacks

based on flow-weighted efficiency can lead to lower resilience, whereas if deleting the

top 4 or 5 nodes, the attacks based on betweenness centrality can lead to lower resilience.
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Figure 4.5: Zoom-in of the square zone in Figure 4.4
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Figure 4.6: Results of resilience analysis under different targeted attacks
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Furthermore, according to Figure 4.4, we find that with larger frequencies, the
attacks based on closeness and eigenvector centrality measures can almost always lead
to larger resilience, which means that these two measures will contribute less to the
TOPSIS-based aggregation measure, and the attacks based on other measures result in
different resilience, but the differences are not too many, not like the aforementioned

closeness and eigenvector measures with larger deviation.

Therefore, among these eight measures BetwCentr, CloCentr, DegCentr, EigenCentr,
Effi, FWEffi, BetwEffiVul and ResiduCloVul, we further consider what situation will
happen if only aggregating seven of them and whether the new simplified TOPSIS-based
aggregation measure can lead to lower resilience with higher frequencies when deleting

even just a small number of nodes.

4.3 Comparison

Here, when aggregating different measures but without considering a certain single
measure, the results compared to the TOPSIS-based aggregation measure considering all
eight measures (in the following we call it “original aggregation measure”) display

distinguished situations, which are shown in Figure 4.7 to Figure 4.14.

According to Figure 4.4, when the top thirty stations based on the TOPSIS-based
aggregation measure are removed (i.e. attacked), network resilience decreases to over
95%; therefore, in the following comparison figures, we only plot resilience under the

range of the number of removed stations from 0 to 40.
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Figure 4.7: Comparison between AggregTOPSIS containing all eight measures and

AggregTOPSIS without containing BetwCentr

According to Figure 4.7, we find that with larger frequencies, the attacks based on
AggregTOPSIS without containing BetwCentr can lead to lower resilience, which means

that BetwCentr contributes negative influence to the TOPSIS-based aggregation measure.
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Figure 4.8: Comparison between AggregTOPSIS containing all eight measures and
AggregTOPSIS without containing CloCentr
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In Figure 4.8, it is found that the attacks based on AggregTOPSIS without
containing CloCentr can only lead to a very slight fluctuation of resilience, meaning that
Clocentr has almost no effect on AggregTOPSIS. Therefore, in such a case, we can say

that Clocentr make slight (or almost not any) contribution to AggregTOPSIS.
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Figure 4.9: Comparison between AggregTOPSIS containing all eight measures and
AggregTOPSIS without containing DegCentr

From Figure 4.9 we can see that, if AggregTOPSIS doesn’t include DegCentr, the
attacks based on AggregTOPSIS will, with larger frequencies, lead to higher resilience
and result in lower resilience in only six cases. Therefore, in such case, we can say that

DegCentr will positively affect the AggregTOPSIS.
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Figure 4.10: Comparison between AggregTOPSIS containing all eight measures and
AggregTOPSIS without containing EigenCentr

Based on Figure 4.10, we can find that the attacks based on AggregTOPSIS without
containing EigenCentr, can cause a small (but larger than it is the case in Figure 4.8)
fluctuation of resilience in a few situations. Thus, we can say that EigenCentr will only

affect AggregTOPSIS to a certain small extent.
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Figure 4.11: Comparison between AggregTOPSIS containing all eight measures and
AggregTOPSIS without containing Effi
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In Figure 4.11, we find that with larger frequencies, the attacks based on
AggregTOPSIS without containing Effi can result in higher resilience, and especially in
the case when only the top one station is attacked, the resilience becomes apparently
much higher. Therefore, we can say that Effi has a very positive influence on

AggregTOPSIS.
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Figure 4.12: Comparison between AggregTOPSIS containing all eight measures and
AggregTOPSIS without containing FWE(ffi

In Figure 4.12, the picture shows that with larger frequencies, the attacks based on
AggregTOPSIS without containing FWEffi can lead to higher resilience. Especially
when the top ten stations are attacked, there are four cases that the resilience of the
network becomes apparently higher. That is, the network will easily and quickly recover
to a normal level under the attacks based on AggregTOPSIS without containing FWEffi.
Therefore, in such case, we can say that FWEffi has a very positive effect on

AggregTOPSIS.
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Figure 4.13: Comparison between AggregTOPSIS containing all eight measures and
AggregTOPSIS without containing BetwEffiVul

In Figure 4.13 we can see that with only four cases, the attacks according to
AggregTOPSIS without containing BetwEffiVul can cause a little higher resilience.
Specially, when the top three and top five stations (identified by AggregTOPSIS without
containing BetwEffiVul) are attacked, the resilience of the remaining network apparently
decreases. Thus, in such a case, we can say that BetwEffiVul mainly contributes

negatively to AggregTOPSIS.
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Figure 4.14: Comparison between AggregTOPSIS containing all eight measures and
AggregTOPSIS without containing ResiduCloVul
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From Figure 4.14, it can be found that with larger frequencies, the attacks according
to AggregTOPSIS without containing ResiduCloVul can result in lower resilience.
Especially, when the top five stations (identified by AggregTOPSIS without containing
ResiduCloVul) are attacked, the resilience of the remaining network apparently decreases.
Thus, in such a case, we can say that ResiduCloVul mainly affects AggregTOPSIS in a

negative way.

According to Figure 4.8 and Figure 4.10, we can find that the changes of resilience
caused by the aggregation measures without considering closeness or eigenvector
centrality measure (compared to the original aggregation measure) are very slight, which
is conforming to the situation shown in Figure 4.4, that they don't contribute too much to
the aggregation measure; therefore, the aggregation measure is not affected too much,

even without considering closeness or eigenvector.

Based on Figure 4.9, Figure 4.11 and Figure 4.12, the resilience caused by the
attacks according to the TOPSIS-based aggregation measures (without considering
degree, node efficiency or flow-weighted efficiency) will mainly increase. However, as
we can find from Figure 4.7, the resilience caused by the attacks according to the
TOPSIS-based aggregation measure without considering betweenness becomes a little

lower when removing the top nineteen to twenty-three nodes.

From Figure 4.13 we can see that the resilience caused by the attacks according to
the TOPSIS-based aggregation measures without considering nodal betweenness-
efficiency vulnerability decreases, when deleting the top three or five nodes from the
network, but increases when removing nodes thirteen to sixteen. Moreover, based on
Figure 4.14, it can be found that the resilience caused by the attacks according to the
TOPSIS-based aggregation measures without considering the nodal residual closeness

measure becomes somewhat lower when deleting the top five nodes.

Therefore, in this case, we can conclude that the degree centrality measure, node
efficiency measure and also the flow-weighted efficiency measure can usually make a

positive contribution to the original TOPSIS-based aggregation measure.
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The closeness centrality measure and the eigenvector centrality measure make a
slight contribution to the original TOPSIS-based aggregation measure; but the
betweenness centrality measure will make a negative contribution to the nodes ranking
nineteenth to twenty-third based on the original TOPSIS-based aggregation measure, and
the nodal betweenness-efficiency vulnerability measure will make a negative
contribution to the third and fifth nodes based on the original TOPSIS-based aggregation

measure.

Nevertheless, it makes a positive contribution to the nodes ranking thirteenth to
sixteenth based on the original TOPSIS-based aggregation measure; the nodal residual
closeness measure will mainly make a slight contribution to the original TOPSIS-based
aggregation measure, but a negative contribution to the fifth node based on the original

TOPSIS-based aggregation measure.

Furthermore, we can say that the degree centrality measure, nodal efficiency
measure and the flow-weighted efficiency measure are the basic measures to the
TOPSIS-based aggregation measure, but we still cannot conclude whether the closeness
and eigenvector centrality measures are not the basic measures to the TOPSIS-based

aggregation measure.

However, we can conclude that betweenness centrality measure, nodal
betweenness-efficiency vulnerability measure and nodal residual closeness measure are
not the basic and necessary measures to the TOPSIS-based aggregation measure since

sometimes they make negative contributions to the TOPSIS-based aggregation measure.

In order to verify these conclusions, in the following we will aggregate measures
without considering two certain measures compared to the original TOPSIS-based
aggregation measure and also the TOPSIS-based aggregation measure without

considering one certain measure, and the results are shown in Figure 4.15 to Figure 4.41.
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Figure 4.15: Comparison between AggregTOPSIS containing all eight measures and
AggregTOPSIS without containing BetwCentr and CloCentr

Comparing Figure 4.7 and Figure 4.8 with Figure 4.15, we can find that Figure 4.15
is almost the same as Figure 4.7. In such a case, when aggregating measures based on
TOPSIS, whether CloCentr is considered or not, it doesn’t affect AggregTOPSIS. As
stated before in this chapter, BetwCentr is not the basic measure; thus, to a certain extent,

here we can say that CloCentr cannot be seen as the basic measure either.
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Figure 4.16: Comparison between AggregTOPSIS containing all eight measures and
AggregTOPSIS without containing BetwCentr and DegCentr
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Comparing Figure 4.16 (AggregTOPSIS without containing BetwCentr and
DegCentr) with Figure 4.7 (AggregTOPSIS without containing BetwCentr), it is found
the resilience increases under an increased number of cases; but when comparing Figure
4.16 with Figure 4.9 (AggregTOPSIS without containing DegCentr), we can find that the
resilience decreases under an increased number of situations. Therefore, it is further

demonstrated that DegCentr is a basic measure but BetwCentr is not.
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Figure 4.17: Comparison between AggregTOPSIS containing all eight measures and
AggregTOPSIS without containing BetwCentr and EigenCentr

Comparing Figure 4.17 (AggregTOPSIS without containing BetwCentr and
EigenCentr) with Figure 4.7 (AggregTOPSIS without containing BetwCentr), we can see
that the resilience decreases with an increased number of cases; however, when
comparing Figure 4.17 with Figure 4.10 (AggregTOPSIS without containing
EigenCentr), we can find that the resilience increases under a raised number of situations.
Therefore, it is further demonstrated that BetwCentr is not a basic measure, but

EigenCentr might be seen as a basic one.
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Figure 4.18: Comparison between AggregTOPSIS containing all eight measures and
AggregTOPSIS without containing BetwCentr and Effi

From Figure 4.18 and Figure 4.7, comparing AggregTOPSIS without containing
BetwCentr, it can be found that with larger frequencies, the attacks based on
AggregTOPSIS without containing BetwCentr and Effi can lead to higher resilience; it
is especially obvious that the resilience is much higher when the top one station is

attacked based on the latter one.

Moreover, comparing AggregTOPSIS without containing Effi in Figure 4.11 with
AggregTOPSIS without containing BetwCentr and Effi in Figure 4.18, we can see that
with larger frequencies, the resilience based on the attacking strategies according to the
latter one decreases. Therefore, in these two cases, it is validated that BetwCentr has a
negative influence on AggregTOPSIS, and Effi positively affects AggregTOPSIS; as
stated before in this chapter, here, Effi is validated as a basic measure while BetwCentr

1S not.
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Figure 4.19: Comparison between AggregTOPSIS containing all eight measures and
AggregTOPSIS without containing BetwCentr and FWEffi

According to Figure 4.19 and Figure 4.7, comparing AggregTOPSIS without
containing BetwCentr, we can find that with larger frequencies, the attacks based on
AggregTOPSIS without containing BetwCentr and FWEffi can lead to higher resilience;
apparently, the resilience is much higher when the small top numbers (such as one, two,
six, seven and eight) of the stations are attacked based on the latter one. Moreover,
comparing AggregTOPSIS without containing FWEffi in Figure 4.12 with
AggregTOPSIS without containing BetwCentr and FWEffi in Figure 4.19, we can see
that with larger frequencies, the resilience based on the attacks according to the latter one

decreases.

Therefore, in these two cases, it is verified that BetwCentr has a negative influence
on AggregTOPSIS, and FWEffi positively affects AggregTOPSIS, which means that

FWEffi is a basic measure but BetwCentr cannot be seen as the basic one.
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Figure 4.20: Comparison between AggregTOPSIS containing all eight measures and
AggregTOPSIS without containing BetwCentr and BetwEffiVul

According to Figure 4.7, Figure 4.13 and Figure 4.20, we can find that with larger
frequencies, the attacks based on AggregTOPSIS without containing BetwCentr and
BetwEffiVul can result in lower resilience compared to AggregTOPSIS without
containing BetwCentr in Figure 4.7 and AggregTOPSIS without containing BetwEffiVul
in Figure 4.13. Thus, both of BetwCentr and BetwEffiVul contribute negatively to
AggregTOPSIS; that is, neither of them can be regarded as the basic measures.
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Figure 4.21: Comparison between AggregTOPSIS containing all eight measures and
AggregTOPSIS without containing BetwCentr and ResiduCloVul

116



Chapter 4 A New Qualitative Resilience Measure

Based on Figure 4.7, Figure 4.14 and Figure 4.21, similar to the situation in Figure
4.21, also with larger frequencies, the attacks based on AggregTOPSIS without
containing BetwCentr and ResiduCloVul can lead to lower resilience compared with
AggregTOPSIS without containing BetwCentr in Figure 4.7 and AggregTOPSIS without
containing ResiduCloVul in Figure 4.14. Therefore, both BetwCentr and ResiduCloVul
negatively affect AggregTOPSIS, which means that neither of these two can be seen as

the basic measures.
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Figure 4.22: Comparison between AggregTOPSIS containing all eight measures and
AggregTOPSIS without containing CloCentr and DegCentr

As stated before in Figure 4.8, CloCentr nearly doesn’t affect AggregTOPSIS. From
Figure 4.9 and Figure 4.22, it can be found that both of them are almost the same, there
are only a few small differences between them. That means, based on AggregTOPSIS
without containing CloCentr and DegCentr in Figure 4.22, when top eleven, twelve and
thirteen stations are attacked, the resilience is a little higher compared to the case based
on AggregTOPSIS without containing DegCentr in Figure 4.9. In such a case, we can
say that CloCentr makes a positive contribution to AggregTOPSIS, but only a little;

therefore, it cannot be concluded that CloCentr is a basic measure.
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Figure 4.23: Comparison between AggregTOPSIS containing all eight measures and
AggregTOPSIS without containing CloCentr and EigenCentr

Like the case in Figure 4.22, according to Figure 4.10 and Figure 4.23, we can see
that both of them are almost the same, and even the differences between them are very

slight.

However, comparing Figure 4.8 with Figure 4.23, it is found that with larger
frequencies, the attacks based on AggregTOPSIS without containing CloCentr and
EigenCentr can lead to higher resilience compared to AggregTOPSIS without containing
CloCentr; thus, we can say that EigenCentr makes a positive contribution to

AggregTOPSIS. Therefore, in such a case, EigenCentr might be seen as a basic measure.
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Figure 4.24: Comparison between AggregTOPSIS containing all eight measures and
AggregTOPSIS without containing CloCentr and Effi

Also similar to the situation in Figure 4.22, we can see that Figure 4.24 is almost
the same as Figure 4.11 but different from Figure 4.8. Therefore, these three figures can
validate that Effi is the basic measure; but because CloCentr doesn’t make apparent
positive or negative contributions to AggregTOPSIS, it cannot be concluded whether

CloCentr is a basic measure or not.
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Figure 4.25: Comparison between AggregTOPSIS containing all eight measures and
AggregTOPSIS without containing CloCentr and FWEffi
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The same case applies in Figure 4.24, where Figure 4.25 is almost like Figure 4.12

but different from Figure 4.8; thus, based on those, it is demonstrated that FWEffi is the

basic measure; however, it is still unknown whether CloCentr is a basic measure or not.
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Figure 4.26: Comparison between AggregTOPSIS containing all eight measures and
AggregTOPSIS without containing CloCentr and BetwEffiVul

From Figure 4.26 and Figure 4.8, we can find that with larger frequencies, the

attacks based on AggregTOPSIS without containing CloCentr and BetwEffiVul can lead

to lower resilience compared to AggregTOPSIS without containing CloCentr. What is

especially obvious is that the resilience is much lower when the top three and five stations

(identified by the AggregTOPSIS without containing CloCentr and BetwEffiVul) are

attacked; thus, in this case, it 1s validated that BetwEffiVul has a negative influence on

AggregTOPSIS and cannot be seen as a basic measure.

When comparing Figure 4.26 with Figure 4.13, it is found that they are similar but

still have some differences, i.e., in contrast to AggregTOPSIS without containing

BetwEftiVul, although not apparent, but still with larger frequencies, the attacks based

on AggregTOPSIS without containing CloCentr and BetwEffiVul can lead to a little

lower resilience.
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Therefore, in such a situation, we can say that CloCentr makes a few negative

contributions to AggregTOPSIS and cannot be regarded as a basic measure.
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Figure 4.27: Comparison between AggregTOPSIS containing all eight measures and
AggregTOPSIS without containing CloCentr and ResiduCloVul

According to Figure 4.27 and Figure 4.8, we can find that there are only seven cases

in which the attacks based on AggregTOPSIS without containing CloCentr and

ResiduCloVul result in higher resilience compared to AggregTOPSIS without containing

CloCentr; however, with larger frequencies, the resilience caused by the attacks based on

AggregTOPSIS without containing CloCentr and ResiduCloVul is lower; thus, in this

case, we can say that ResiduCloVul can mainly affect AggregTOPSIS in a negative way,

which means that it cannot be seen as a basic measure.

Here, when comparing Figure 4.27 with Figure 4.14, it is found that they are similar

and there is only one obvious situation in which the resilience is a little higher compared

to AggregTOPSIS without containing ResiduCloVul, namely when the top thirteen

stations are attacked based on AggregTOPSIS without containing CloCentr and
ResiduCloVul.
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Therefore, in such a case, we can say that CloCentr makes a little but slightly
positive contribution to AggregTOPSIS, which means that CloCentr might be a basic

measure, but so far, we cannot be sure.
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Figure 4.28: Comparison between AggregTOPSIS containing all eight measures and
AggregTOPSIS without containing DegCentr and EigenCentr

From Figure 4.28 and Figure 4.9, we can see that with larger frequencies, the
resilience caused by the attacks based on AggregTOPSIS without containing DegCentr
and EigenCentr is higher compared to AggregTOPSIS without containing DegCentr.

Moreover, according to Figure 4.28 and Figure 4.10, we can find that with larger
frequencies, the attacks based on AggregTOPSIS without containing DegCentr and
EigenCentr can lead to higher resilience compared to AggregTOPSIS without containing
EigenCentr.

Therefore, in these two situations, we can conclude that both DegCentr and
EigenCentr make positive contributions to AggregTOPSIS and can be seen as the basic

measurcs.
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Figure 4.29: Comparison between AggregTOPSIS containing all eight measures and
AggregTOPSIS without containing DegCentr and Effi

According to Figure 4.29 and Figure 4.9, we can see that with larger frequencies,
the resilience caused by the attacks based on AggregTOPSIS without containing
DegCentr and Efti is higher compared to AggregTOPSIS without containing DegCentr.

Furthermore, from Figure 4.29 and Figure 4.11, it can be found that with larger
frequencies, the attacks based on AggregTOPSIS without containing DegCentr and Effi
can lead to higher resilience compared to AggregTOPSIS without containing Effi.
Therefore, these two cases demonstrate that both DegCentr and Effi make positive

contributions to AggregTOPSIS and can be seen as the basic measures.
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Figure 4.30: Comparison between AggregTOPSIS containing all eight measures and
AggregTOPSIS without containing DegCentr and FWEffi

Similar to the case in Figure 4.29, from Figure 4.30 and Figure 4.9 we can find that

with larger frequencies, the resilience caused by the attacks based on AggregTOPSIS
without containing DegCentr and FWEffi is higher compared to AggregTOPSIS without

containing DegCentr.

And based on Figure 4.30 and Figure 4.12, we can see that with larger frequencies,

the attacks based on AggregTOPSIS without containing DegCentr and FWE(fi can result
in higher resilience compared to AggregTOPSIS without containing FWEffi. Thus, based
on these two cases, we can conclude that both DegCentr and FWEffi positively affect

AggregTOPSIS and can be seen as the basic measures.
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Figure 4.31: Comparison between AggregTOPSIS containing all eight measures and
AggregTOPSIS without containing DegCentr and BetwEffiVul

From Figure 4.31 and Figure 4.9 we can find that with larger frequencies, the

resilience caused by the attacks based on AggregTOPSIS without containing DegCentr
and BetwEffiVul is apparently lower compared to AggregTOPSIS without containing
DegCentr.

However, from Figure 4.31 and Figure 4.13 we can see that with larger frequencies,

the attacks based on AggregTOPSIS without containing DegCentr and BetwEffiVul can
lead to higher resilience compared to AggregTOPSIS without containing BetwEffiVul.
Thus, based on these two cases, we can conclude that DegCentr positively affects
AggregTOPSIS and can be seen as the basic measure, but BetwEffiVul has a negative

influence on AggregTOPSIS and cannot be regarded as the basic measure.
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Figure 4.32: Comparison between AggregTOPSIS containing all eight measures and
AggregTOPSIS without containing DegCentr and ResiduCloVul

According to Figure 4.32 and Figure 4.9, it can be found that with larger frequencies,
the resilience caused by the attacks based on AggregTOPSIS without containing
DegCentr and ResiduCloVul is lower compared to AggregTOPSIS without containing
DegCentr, especially, when top four and five stations (detected on the basis of

AggregTOPSIS without containing DegCentr and ResiduCloVul) are attacked.

However, from Figure 4.32 and Figure 4.14, we can see that with larger frequencies,
the attacks based on AggregTOPSIS without containing DegCentr and ResiduCloVul can
apparently lead to higher resilience compared to AggregTOPSIS without containing
ResiduCloVul. Therefore, we can say that DegCentr affects AggregTOPSIS in a positive
way and can be seen as the basic measure, but ResiduCloVul makes negative

contributions to AggregTOPSIS and cannot be regarded as the basic measure.
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Figure 4.33: Comparison between AggregTOPSIS containing all eight measures and
AggregTOPSIS without containing EigenCentr and Effi

Based on Figure 4.33 and Figure 4.10, it can be found that with larger frequencies,
the resilience caused by the attacks based on AggregTOPSIS without containing
EigenCentr and Effi is higher compared to AggregTOPSIS without containing
EigenCentr. From Figure 4.33 and Figure 4.11, we can find that even if the top one station
is attacked, the resilience based on AggregTOPSIS without containing EigenCentr and
Effi is lower, but with larger frequencies, the attacks based on AggregTOPSIS without
containing FigenCentr and Effi can result in higher resilience compared to

AggregTOPSIS without containing Effi.

Therefore, we can say that Effi can positively affect AggregTOPSIS and can be seen
as the basic measure; EigenCentr can also make a slightly positive contribution to

AggregTOPSIS and can be regarded as the basic measure.
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Figure 4.34: Comparison between AggregTOPSIS containing all eight measures and
AggregTOPSIS without containing EigenCentr and FWEffi

From Figure 4.34 and Figure 4.10, it can be found that with larger frequencies, the

resilience caused by the attacks based on AggregTOPSIS without containing EigenCentr
and FWE(ti is higher compared to AggregTOPSIS without containing EigenCentr.

From Figure 4.34 and Figure 4.12, we can see that even with larger frequencies, the

attacks based on AggregTOPSIS without containing EigenCentr and FWE(fi can result
in a slightly higher resilience compared to AggregTOPSIS without containing FWE(ffi,
but we can also find that when the top one, top seven and top eight stations are attacked,
it is obvious that the resilience based on AggregTOPSIS without containing EigenCentr
and FWEffi is lower. Therefore, we can say that FWEffi can positively affect
AggregTOPSIS and can be seen as the basic measure; but here we cannot conclude

whether EigenCentr can also be regarded as the basic measure or not.
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Figure 4.35: Comparison between AggregTOPSIS containing all eight measures and
AggregTOPSIS without containing EigenCentr and BetwEffiVul

From Figure 4.35 and Figure 4.10 we can find that with larger frequencies, the

attacks based on AggregTOPSIS without containing EigenCentr and BetwEffiVul can

lead to lower resilience compared to AggregTOPSIS without containing EigenCentr.

According to Figure 4.35 and Figure 4.13, we can see that even with larger

frequencies, the attacks based on AggregTOPSIS without containing EigenCentr and
BetwEffiVul can also result in lower resilience compared to AggregTOPSIS without

containing BetwEftiVul.

Therefore, here we can say that both EigenCentr and BetwEftiVul negatively affect

AggregTOPSIS and cannot be regarded as the basic measure.
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Figure 4.36: Comparison between AggregTOPSIS containing all eight measures and
AggregTOPSIS without containing EigenCentr and ResiduCloVul

From Figure 4.36 and Figure 4.10 we can find that with larger frequencies, the

attacks based on AggregTOPSIS without containing EigenCentr and ResiduCloVul can

lead to lower resilience compared to AggregTOPSIS without containing EigenCentr.

From Figure 4.36 and Figure 4.13 we can see that some of the attacks based on

AggregTOPSIS without containing EigenCentr and ResiduCloVul can also result in
lower resilience compared to AggregTOPSIS without containing ResiduCloVul, but the
resilience is higher under some other attacks based on AggregTOPSIS without containing

EigenCentr and ResiduCloVul.

Therefore, we can conclude that ResiduCloVul negatively affects AggregTOPSIS

and cannot be regarded as the basic measure, but regarding EigenCentr we do not know

if it can be seen as the basic measure.
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Figure 4.37: Comparison between AggregTOPSIS containing all eight measures and
AggregTOPSIS without containing Effi and FWEffi

Comparing Figure 4.37 with Figure 4.11, we can find that with larger frequencies,
the attacks based on AggregTOPSIS without containing Effi and FWEfti can apparently
lead to higher resilience compared to AggregTOPSIS without containing Effi.

The situation is the same when comparing Figure 4.37 (AggregTOPSIS without
containing Effi and FWE(ffi) with Figure 4.12 (AggregTOPSIS without containing
FWE(ti). Therefore, in these two cases it is demonstrated that both Effi and FWEftfi

contribute positively to AggregTOPSIS and can be seen as the basic measures.
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Figure 4.38: Comparison between AggregTOPSIS containing all eight measures and
AggregTOPSIS without containing Effi and BetwEftiVul

From Figure 4.38 and Figure 4.11, we can see that with slightly larger frequencies,

the attacks based on AggregTOPSIS without containing Efti and BetwEffiVul can result
in higher resilience compared to AggregTOPSIS without containing Effi, but with some
frequencies, the resilience caused by the attacks (based on AggregTOPSIS without
containing Effi and BetwEffiVul ) is lower; therefore, in such a case, we cannot say if

BetwEffiVul can make a positive contribution and can be seen as the basic measure or

When comparing Figure 4.38 with Figure 4.13 with apparently larger frequencies,

the attacks based on AggregTOPSIS without containing Effi and BetwEffiVul can lead
to higher resilience compared to AggregTOPSIS without containing BetwEffiVul, which
validates that Effi can positively affect AggregTOPSIS and can be the basic measure.
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Figure 4.39: Comparison between AggregTOPSIS containing all eight measures and
AggregTOPSIS without containing Effi and ResiduCloVul

From Figure 4.39 and Figure 4.11, we can see that with slightly larger frequencies,
the attacks (especially when the top five and top six stations are attacked) based on
AggregTOPSIS without containing Effi and ResiduCloVul can result in higher resilience
compared to AggregTOPSIS without containing Effi; but with some frequencies, the
resilience caused by the attacks (based on AggregTOPSIS without containing Effi and
ResiduCloVul) is lower; therefore, in such a case, we can say that ResiduCloVul can
make a slightly positive contribution. However, it cannot demonstrate that ResiduCloVul

can be seen as the basic measure.

When comparing Figure 4.39 with Figure 4.14 with apparently larger frequencies,
the attacks based on AggregTOPSIS without containing Effi and ResiduCloVul can lead
to higher resilience compared to AggregTOPSIS without containing ResiduCloVul,
which thus validates that Effi can positively affect AggregTOPSIS and can be the basic

measure.
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Figure 4.40: Comparison between AggregTOPSIS containing all eight measures and
AggregTOPSIS without containing FWE(fi and BetwEffiVul

From Figure 4.40 and Figure 4.12 we can see that with sightly larger frequencies,

the attacks (especially when top three stations are attacked) based on AggregTOPSIS
without containing FWEfti and BetwEftiVul can result in lower resilience compared to
AggregTOPSIS without containing FWEffi; but with some frequencies, the resilience
caused by the attacks (based on AggregTOPSIS without containing FWEffi and
BetwEffiVul) is lower; therefore, in this case, we can say that ResiduCloVul can make a

slightly negative contribution; thus it cannot be seen as the basic measure.

When comparing Figure 4.40 with Figure 4.13 with apparently larger frequencies,

the attacks based on AggregTOPSIS without containing FWEffi and BetwEffiVul can
lead to higher resilience compared to AggregTOPSIS without containing BetwEffiVul,
which thus validates that FWEffi can positively affect AggregTOPSIS and can be the

basic measure.
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Figure 4.41: Comparison between AggregTOPSIS containing all eight measures and
AggregTOPSIS without containing FWEffi and ResiduCloVul

According to Figure 4.41 and Figure 4.12, we can see that with slightly larger

frequencies, the attacks (especially when top three stations are attacked) based on
AggregTOPSIS without containing FWEffi and ResiduCloVul can result in higher
resilience compared to AggregTOPSIS without containing FWE(fi; therefore, in such a
case, we can say that ResiduCloVul can positively affect AggregTOPSIS; thus, here it

might be seen as the basic measure.

When comparing Figure 4.41 with Figure 4.14, the attacks based on AggregTOPSIS

without containing FWEffi and ResiduCloVul can, with apparently larger frequencies,
lead to higher resilience compared to AggregTOPSIS without containing ResiduCloVul,
which thus demonstrates that FWEffi can make positive contributions to AggregTOPSIS

and can be the basic measure.
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4.3.1 Detailed Explanation

From Figure 4.15 to Figure 4.41 and comparing with Figure 4.7 ~ Figure 4.14, it
can be found that to a certain extent the resilience caused by the attacks according to the
TOPSIS-based aggregation measures without considering two certain measures is the
overlap of resilience caused by the attacks according to two TOPSIS-based aggregation

measures without considering the certain single measure.

According to Figure 4.29, Figure 4.30, and Figure 4.37, we can see the resilience
(that is caused by the attacks according to the TOPSIS-based aggregation measures
without considering degree centrality measure and nodal efficiency measure, or without
considering degree centrality measure and nodal flow-weighed efficiency measure, or
without considering nodal efficiency measure and nodal flow-weighed efficiency
measure) increases even more compared to the original TOPSIS-based aggregation
measure containing all eight measures and also compared to the TOPSIS-based
aggregation measure without considering single degree centrality measure, nodal
efficiency measure or nodal flow-weighted efficiency measure shown in Figure 4.9,

Figure 4.11 and Figure 4.12.

In Figure 4.23, compared to the original TOPSIS-based aggregation measure
containing all eight measures, the resilience caused by the attacks according to the
TOPSIS-based aggregation measures without considering closeness centrality measure
and eigenvector centrality measure still changes very slightly, like in the situations shown
in Figure 4.8 and Figure 4.10, which are the TOPSIS-based aggregation measures
without individually considering single closeness centrality measure or eigenvector

centrality measure.

In Figure 4.20, the resilience caused by the attacks according to the TOPSIS-based
aggregation measures (without considering betweenness centrality measure and nodal
betweenness-efficiency vulnerability measure) not only decreases when deleting the top
three or five nodes from the network like in Figure 4.13, but it also becomes lower when

removing the range of around twenty nodes like in Figure 4.7.
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According to Figure 4.21, it can be found that the resilience caused by the attacks
according to the TOPSIS-based aggregation measures (without considering betweenness
centrality measure and nodal residual closeness vulnerability measure) even decreases

when deleting the top four or five nodes.

However, in Figure 4.14, there is only one situation where the top five nodes are
deleted and the situation when removing the range of around top twenty nodes is similar

to the situation in Figure 4.7.

So far, it has been verified that betweenness centrality measure, nodal betweenness-
efficiency vulnerability measure and nodal residual closeness measure are not the basic
and necessary measures to the TOPSIS-based aggregation measure. Meanwhile, it has
also been demonstrated that the degree centrality measure, nodal efficiency measure and
the flow-weighted efficiency measure are the basic measures to the TOPSIS-based

aggregation measure.

When comparing EigenCentr with BetwCentr in Figure 4.17, CloCentr in Figure
4.23, Degcentr in Figure 4.28 and Effi in Figure 4.33, the results show that the
eigenvector centrality measure can be seen as the basic measure; when comparing
EigenCentr with FWEffi in Figure 4.34 and ResiduCloVul in Figure 4.36, the results only
show that EigenCentr can affect the TOPSIS-based aggregation measure to a certain
extent and cannot make sure whether it can be regarded as the basic measure; furthermore,
only when comparing EigenCentr with BetwEftiVul in Figure 4.35, the results show that

EigenCentr cannot be seen as the basic measure.

Therefore, based on these cases, we can conclude that the eigenvector centrality
can also be a basic measure. However, so far, we still cannot be sure if the closeness

centrality measure is the basic measure to the TOPSIS-based aggregation measure or not.

137



Chapter 4 A New Qualitative Resilience Measure

1.0

e

Resilience
0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.2

0.1

—6— Attacks based on highest AggregTOPSIS without containing BetwCentr, BetwEffivul and ResiduCloVul
—— Attacks based on highest AggregTOPSIS containing eight measures
T

0 5 10 15 20 25 30 35 40

0.0

Number of removed stations

Figure 4.42: Comparison between AggregTOPSIS containing all eight measures and
AggregTOPSIS without containing BetwCentr, BetwEffiVul and ResiduCloVul

When aggregating measures without considering the non-basic and unnecessary
measures, as shown in Figure 4.42, we can find that the resilience caused by the attacks
according to the TOPSIS-based aggregation measures (without considering betweenness
centrality measure, nodal betweenness-efficiency vulnerability measure and the nodal
residual closeness vulnerability measure) increases only a bit when deleting the top nodes

from eleven to seventeen.

But it becomes lower when deleting the top ten nodes and top nodes from over
eighteen; namely, comparing with AggregTOPSIS containing all eight measures, the
attacks based on AggregTOPSIS without containing BetwCentr, BetwEffiVul and
ResiduCloVul can result in larger destruction of network structure; this also means that
the ranking order according to AggregTOPSIS without containing BetwCentr,
BetwEffiVul and ResiduCloVul is a lot more reasonable, because it still leads to larger
destruction of network structure even when removing a small number of nodes from the

network.
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Then decision-makers can decide, allot and deploy in advance the necessary
resources to protect those key stations based on their importance according to this ranking
order; and this is also our goal because the aim of our research is to focus on how to
optimize the TOPSIS-based aggregation measure to result in a meaningful ranking order,

which can help decision-makers to make timely, suitable and reasonable decisions in

advance.
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Figure 4.43: Comparison between AggregTOPSIS without containing BetwCentr, BetwEffiVul
and ResiduCloVul and AggregTOPSIS without containing BetwCentr, CloCentr, BetwEffiVul
and ResiduCloVul

In order to verify whether the closeness centrality measure is the basic measure to
the TOPSIS-based aggregation measure or not, compared to the TOPSIS-based
aggregation measure without considering betweenness centrality measure, nodal
betweenness-efficiency vulnerability measure and the nodal residual closeness
vulnerability measure, here we take one situation into account, meaning we do not

aggregate the closeness centrality measure either.

139



Chapter 4 A New Qualitative Resilience Measure

The results are shown in Figure 4.43, according to which we can see that the
closeness centrality measure just makes a very slight contribution to the TOPSIS-based
aggregation measure without considering betweenness centrality measure, nodal
betweenness-efficiency vulnerability measure and nodal residual closeness vulnerability

measure.

Therefore, in such a case, we could conclude that the closeness centrality measure

is not the basic and necessary measure for the TOPSIS-based aggregation measure.

When we compare the TOPSIS-based aggregation measure containing the basic
measures DegCentr, EigenCentr, Effi and FWEffi to other individual measures, the
results are shown in Figure 4.44, where we can find that the attacks based on the highest
AggregTOPSIS containing the basic measures almost always lead to lower resilience,
specifically to lower resilience when removing the top ten nodes, only leading to a
slightly larger resilience in four situations, i.e. when deleting the top eleven, twelve,

thirteen and seventeen nodes.

In summary, we can conclude that the new TOPSIS-based aggregation measure
containing the basic measures DegCentr, EigenCentr, Effi, and FWEffi is a more suitable

and effective one to identify the critical nodes of the transportation network.

Furthermore, the top ten nodes based on the new TOPSIS-based aggregation
measure containing the four basic measures are nodes 103, 91, 1, 2, 41, 92, 4, 18, 26 and
107, which correspond to the stations Berlin Hbf, Hamburg Hbf, Frankfurt (Main) Hbf,
Frankfurt (M) Flughafen Fernbf, Ko6ln Hbf, Hamburg Dammtor, Mannheim Hbf,
Miinchen Hbf, Fulda and Berlin Gesundbrunnen, based on which we can see that all of
these top ten nodes are critical cities, so that it will lead to more substantial impacts once

they are attacked by terrorists.

140



Chapter 4 A New Qualitative Resilience Measure

o |
o
o]
@
M~
&
w
e
[}
2
@ n
@
©
< |
o
a
° —6— Attacks based on highest BetwCentr
—*— Aftacks based on highest CloCentr
o | § —&— Atftacks based on highest DegCentr
o —&— Attacks based on highest EigenCentr
Attacks based on highest Effi
- Attacks based on highest FWEffi
o [f Attacks based on highest BetwEffiVul
—+— Aftacks based on highest ResiduCloVul
° —=— Attacks based on highest Aggreg TOPSIS containing DegCentr, EigenCentr, Effi and FWEffi measures
o T T T T T
0 10 20 30 40 50 60 70

Number of removed stations

Figure 4.44: Comparisons of different measures

From Figure 4.44, we can find that the attacks based on each single measure (which
only considers one or two factors and information) cannot always lead to lower resilience
of the remaining network; especially the attacks based on highest CloCentr and the
attacks based on highest EigenCentr always lead to higher resilience compared to other
measures. However, when aggregating different measures, more information can be
combined into the new aggregation measure, which can not only make full use of the
advantages of every measure, but it can also compensate their disadvantages; as the
results in Figure 4.44 show, there are only four cases where the attacks based on the new
aggregation measure can result in higher resilience, but in the remaining situations, it can
always lead to lower resilience, especially in the cases when a small number of top
stations are attacked, which is practical and reasonable for terrorists, because it can still
cause larger negative social influence, casualties and economic loss when they attack just

a few critical stations.
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4.4 Summary

In this chapter, when carrying out network resilience analysis, based on the resilience
assessment approach presented by Nan and Sansavini (2017), we make some adaptations
and propose a new quantitative resilience measure, which is based on a new proposed

network performance metric.

Moreover, we make use of the new quantitative resilience measure in order to
compare different graph measures and distinguish which one is more suitable and
efficient to identify the principal stations in the network, thus further assist decision-

makers to make appropriate and reasonable judgments.

Then they can take measures by deploying some specific security devices or
allotting police in advance to protect these key spots which have more potential to be
attacked by terrorists. Even though these kinds of attacks are almost inevitable, this will

also decrease the economic loss and casualties to a large extent.

Furthermore, in this chapter, through resilience analysis, we find that among these
eight graph measures, which are betweenness centrality measure (BetwCentr), closeness
centrality measure (CloCentr), degree centrality measure (DegCentr), eigenvector
centrality measure (EigenCentr), nodal efficiency measure (Effi), nodal flow-weighted
efficiency measure (FWEffi), nodal betweenness-efficiency vulnerability measure
(BetwEffiVul) and nodal residual closeness vulnerability measure (ResiduCloVul), not

all of them make positive contributions to the TOPSIS-based aggregation measure.

Although BetwCentr, BetwEffiVul and ResiduCloVul are to a certain extent suitable
and effective measures to identify the key nodes compared with CloCentr, DegCentr,
EigenCentr, Effi, FWEffi and even sometimes compared with the TOPSIS-based
aggregation measure containing these eight measures; however, the new TOPSIS-based
aggregation measure without considering BetwCentr, BetwEftiVul and ResiduCloVul is
a much more suitable and effective one to detect the key stations in transportation

networks.
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Finally, we find that the basic and necessary measures are only four, namely:

e  Degree centrality measure (DegCentr): This measure can indicate if one given
node in a network is a critical one based on the number of its directly connected
neighbors (Freeman 1978, Boudin 2013). In this thesis, we identify the critical
stations based on this measure by finding out how many train lines one given

station has that can straightly reach the closest neighboring stations.

e Eigenvector centrality measure (EigenCentr): According to this measure, one
given node of a network can be seen as critical if it has a higher number of

critical neighbors (Maharani and Gozali 2014, Ruhnau 2000, Boudin 2013).

e Nodal efficiency measure (Effi): Based on this measure, if one given node in
the network can efficiently and quickly reach the rest of the network, it can be

regarded as the critical one (Latora and Marchiori 2003).

e Nodal flow-weighted efficiency measure (FWEffi): Based on the classical
efficiency measure (Latora and Marchiori 2003), the flow-weighted efficiency
measure is proposed by Nistor and Pickl et al. (2017) and specifically applied
in transportation networks. It combines the new train flow information between

the stations in a transportation network.

In this chapter, we present a new quantitative resilience measure, based on which
we compare different measures, concluding that the new TOPSIS-based aggregation
measure is suitable and effective to identify the critical stations in transportation

networks.

Moreover, we also find that among the measures implemented in this thesis, not all
of them are necessary and basic measures for the TOPSIS-based aggregation measure;
meanwhile, we can conclude that there are only four key measures that are basic and

necessary for the TOPSIS-based aggregation measure as aforementioned in this chapter.

143



Chapter 4 A New Qualitative Resilience Measure

However, the results in Figure 4.44 show that the attacks based on the new TOPSIS-
based aggregation measure only containing the basic measures not always lead to lower

resilience compared to other measures.

Therefore, in the next chapter, where we focus on outlook and perspectives, we

examine a possible approach to compensate this disadvantage.

The implementation of the new resilience measure and application to

RE(H)STRAIN-related aspects from section 4.2 is based on the following publication:

Wang, Z., Nistor, M. S., & Pickl, S. W. (2020). Introducing a TOPSIS based quantitative resilience

measure for railway systems. The international conference on railway technology. (submitted)
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This dissertation contributes to the topic of structure-based network analysis, network
vulnerability analysis and the network resilience analysis for decision support applied on
public transport networks, specifically the German high-speed train network (ICE), under

terrorist attacks.

To identify the critical spots in a network, we conduct the network structure analysis.
Here, we mainly implement the existing graph measures including betweenness
centrality measure (Freeman 1978, Newman 2008, Boudin 2013), closeness centrality
measure (Freeman 1978, Boudin 2013, Tsiotas and Polyzos 2015), degree centrality
measure (Freeman 1978, Boudin 2013), eigenvector centrality measure (Maharani and
Gozali 2014, Ruhnau 2000, Boudin 2013), nodal efficiency measure (Nistor and Pickl et
al. 2017, Latora and Marchiori 2003) and nodal flow-weighted efficiency measure
(Nistor and Pickl et al. 2017) in the ICE network.

Inspired by the idea of global residual closeness vulnerability measure (Dangalchev
2006), based on betweenness centrality and nodal efficiency measures, we propose two
new nodal vulnerability measures, which are nodal betweenness-efficiency vulnerability
measure (Wang et al. 2018) and nodal residual closeness vulnerability measure. We apply
these two new nodal vulnerability measures to the German high-speed train network, and
the results in Chapter 3 show that the proposed new nodal vulnerability measures are

promising to a certain extent.

However, because implementations of multiple measures will lead to different
results (which can naturally cause the information overflow problem for decision-makers,
who cannot be sure which measure is the most effective one to detect the suitable and
meaningful vital nodes), for the sake of resolving the information overflow problem we
therefore introduce and adapt the aggregation technique TOPSIS (Lai et al. 1994) from

Multi-criteria Decision Making fields.
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Furthermore, we develop a TOPSIS-based aggregation measure by proposing a new

weighting estimation method in our research instead of the experts' experiences.

The TOPSIS-based aggregation measure can not only reduce the information
overflow for decision-makers, but it can also combine a multitude of aspects considered
by other different measures which only provide their unique perspectives. Thus,
comparing to other measures which only consider their limited unique perspectives, this
TOPSIS-based aggregation measure (that theoretically can take into account as many
factors as possible) is a much more comprehensive approach to detect the critical nodes

of a network.

And the results in Chapter 4 also show that the new TOPSIS-based aggregation
measure for identifying the key nodes is promising and meaningful to a certain extent,

compared to the other eight measures.

However, because in graph theory, so far there hasn’t been any unified criterion to
compare different measures to tell which measure is the more suitable and useful one to
detect the key nodes, therefore another issue has come up, namely that we still can't
confirm whether the TOPSIS-based aggregation measure can identify the key nodes

much more efficiently compared with the aforementioned other eight measures.

So, to further validate the effectiveness of the proposed TOPSIS-based aggregation
measure, by taking into account the traveling time, train flow and also the number of
people who can use the system as usual, even under some disruptive events like terrorist
attacks, we develop a new network performance metric, which is used to carry out the

quantitative network resilience analysis to compare different measures with each other.

In our research, when roughly estimating the number of people who can normally
use the public transport network, we also take into account the network structure
character, namely network degree centrality, according to which we propose the idea of
an adjacency node-set level. And based on the adjacency node-set level, we also create a
new calculating model to roughly estimate the number of people instead of the real

statistic data.
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The results show that on a large scale, we can say the TOPSIS-based aggregation
measure is a promising and much more effective measure to identify the key nodes for

the public transport network.

Furthermore, based on resilience analysis, degree centrality measure, eigenvector
centrality measure, nodal efficiency measure, and nodal flow-weighted efficiency
measure, they are distinguished as the basic and necessary measures (which can make
positive contributions to the TOPSIS-based aggregation measure). In contrast,
betweenness centrality measure, closeness centrality measure, nodal betweenness-
efficiency vulnerability measure and nodal residual closeness vulnerability measure

make negative contributions to the TOPSIS-based aggregation measure.

As Figure 4.46 shows, it is found that the attacks based on the new TOPSIS-based
aggregation measure, which only aggregates the aforementioned basic measures, can in
large frequencies lead to lower resilience in the remaining network; significantly, the
resilience of the remaining network is always lower than those remaining networks

caused by the other eight measures when removing the top ten nodes.

According to results of resilience analysis, we can conclude that the TOPSIS-based
aggregation measure only aggregating the four identified basic measures is a much more

useful measure to identify the critical nodes for the public transport network.

As Figure 4.46 shows, when removing the top eleven to thirteen nodes, the new
TOPSIS-based aggregation measure only aggregating basic measures (including degree
centrality measure, eigenvector centrality measure, nodal efficiency measure and nodal
flow-weighted efficiency measure) leads to higher resilience than nodal residual
closeness vulnerability measure, and it leads to higher resilience than the nodal
betweenness-efficiency vulnerability measure when deleting the top seventeen nodes.
Therefore, as a scientific outlook, the focus of future research is how to make the new
TOPSIS-based aggregation measure always lead to lower resilience of the remaining

network. Specifically, we mainly try to carry out research from two aspects:

First, we will further investigate more extant measures with different information

and check whether they can be regarded as the basic measures or not.
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If these new measures, for instance mobility centrality (Tsiotas and Polyzos, 2015),
PageRank (Brin and Page, 1998) or Clustering coefficient (Wang et al., 2011) can be used
as the basic measures. We aggregate them with current existing basic measures to make
the new TOPSIS-based aggregation measure always lead to lower resilience when

deleting any top number of nodes.

Second, we will aggregate different measures into a new one from a linear algebra
point of view and compare it with the TOPSIS-based aggregation method to check which

one is more effective to identify the key station in the public transportation network.

The general framework of the vector-based method for the future is introduced as

follows:

5.1 A Possible Vector-based Approach

Linear algebra is used to study “the linear sets of equations and their transformation
properties” (Mirsky 2012, Strang 1993, Weisstein 2020). Many research problems like
“rotations in space, least-squares fitting, solution of coupled differential equations,
determination of a circle passing through three given points”, as well as “many other
problems in mathematics, physics, and engineering” can be analyzed using linear algebra

(Mirsky 2012, Strang 1993, Weisstein, 2020).

In particular, a linear algebra L over a field F has “the structure of a ring with
all the usual axioms for an inner addition and an inner multiplication together with
distributive laws, therefore giving it more structure than a ring” (Mirsky 2012, Strang
1993, Weisstein 2020). A linear algebra also admits “an outer operation of multiplication
by scalars (that are elements of the underlying field F )” (Weisstein 2020). For example,
“the set of all linear transformations from a vector space V to itself over a field F
forms a linear algebra over F ”; and “the set of all real square matrices over the field

R of the real numbers” (Mirsky 2012, Strang 1993, Weisstein 2020).
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In the field of linear algebra, the very useful tools are the matrix and determinant.

One pivotal problem of linear algebra is to solve the matrix equation:

Ax=b (5-1,

where X can be theoretically solved using a matrix inverse:

x=A"D (5-2)

In our research, we will aggregate different graph measures into a new one using
linear algebra; here, b isthe new aggregation measure; X denotes the weight vector
of graph measures; the matrix A is formed by values derived from different graph
measures (M,, i=12,3,..,m, m is the number of graph measures), where each
column consists of the values computed by each graph measure, and the row number is
N (that is the number of nodes of the network). Since normally one complex network
has a large number of nodes, the number of applied graph measures is still limited;
therefore, basically, m<n, for instance, in this thesis, m=8<n=121. So, in our
future research what we focus on is how to find the suitable weight vector X in the
weight vector space, so that the linear algebra-based aggregation measure b can lead

to lower resilience of the remaining network to the utmost extent.

5.2 A New Algebraic Aggregation Measure
The new linear algebra-based aggregation measure can be expressed as:

b=M X +MX+,.,+M_x, (5-3)

Specifically, each element of the new linear algebra-based aggregation measure can

be calculated by:
bj :Mj1X1+Mj2X2+"'+Mijm (5-4)

It can be denoted using this matrix:
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bl Mll MlZ Mlm Xl
bz _ M:21 M:22 ’ Mzzm X:2 (5_5)
bn M nl M n2 M nm Xm
where,
bl Mll MlZ Mlm Xl
b. M M M X
b= 2 , A:[Ml M2 Mm]_ :21 :22 am , X= :2
bn M nl M n2 M nm Xm

Here, M__ denotes the n™ element of the values computed by m"™ graph

mn
measure. Based on (5-5), we can derive different linear algebra-based aggregation
measures according to the different weight vector X. Since in the vector space, the
number of the vector is unlimited, thus, in theory, the number of new linear algebra-based
aggregation measures is also unlimited. What we will research is to find the suitable
weight vector X using certain algorithms in the vector space so that the derived linear
algebra-based aggregation measure can lead to lower resilience of the remaining network

to the utmost extent when conducting network resilience analysis.

For future research, we will compare the linear algebra-based aggregation measure
with the TOPSIS-based aggregation measure through resilience analysis (introduced in
Chapter 4), then conclude which kind of aggregation measure is more reasonable and
effective to identify the critical stations in transportation network. In Formula (5-5), the
matrix A is known, thus, once a group of weights X is determined, a new linear
algebra-based aggregation measure is generated; afterward, the next step is comparing
the resilience caused by the attacks based on these two kinds of aggregation measures.
Therefore, the problem that we need to solve now is how to obtain a suitable weight
vector X. In order to achieve this goal to select a suitable weight vector, the Genetic

Algorithms (Carr 2014, Mallawaarachchi 2017, Mitchell 1998) might be possible.
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Inspired by “Charles Darwin’s theory of natural evolution, one genetic algorithm is
a search heuristic and a kind of optimization algorithm” (Mallawaarachchi 2017). Due to
the fact that the genetic algorithms are designed to simulate a biological process, a lot of
relevant terminology is thus borrowed from biology (Carr 2014). Actually, the procedure
of natural selection is reflected by the genetic algorithm, “where the fittest individuals
are selected to produce the offspring of the next generation” (Carr 2014,
Mallawaarachchi 2017). The process of “natural selection starts with the selection of the

fittest individuals from a population” (Mallawaarachchi 2017).

These fittest individuals produce “offspring, which inherit the characteristics from
parents and that will be added to the next generation” (Mallawaarachchi 2017). If the
parents are fit, so will be their children, maybe even more so than their parents; therefore,

the offspring has a better chance to survive (Carr 2014, Mallawaarachchi 2017).

This process “keeps on repeating and a generation with the fittest individuals will
be found at the end”. In a genetic algorithm, there are five steps to follow (Carr 2014,

Mallawaarachchi 2017, Mitchell 1998):

e Initial population of chromosomes: In this phase, we will randomly generate
a set of individuals (i.e., weight vector X in our research).

e A fitness function for optimization: The fitness function is one of the most
significant parts of a genetic algorithm; it will give each individual a fitness
score, which determines how fit an individual is and whether the individual
has a chance to be selected for reproduction (Carr 2014, Mallawaarachchi
2019). In our future research, we will take the new resilience measure as the
fitness function.

e Selection of which chromosomes will reproduce. In this step, the fittest
individuals will be selected and their genes will be passed on to the next
generation.

e Crossover to produce the next generation of chromosomes: The phase of
crossover is the most pivotal step of a genetic algorithm, during which a
crossover point will be randomly chosen from within the genes of each pair

of mated parents (Carr 2014, Mallawaarachchi 2019).

151



Chapter 5 Outlook and Perspectives

e Random mutation of chromosomes in the new generation: In a certain
generated new offspring, a mutation with a low random probability might
happen on some of their genes. The aim of mutation is to maintain diversity
of the population and to prevent premature convergence (Carr 2014,

Mallawaarachchi 2019).

When the selection, crossover and mutation are completed, the new population will
be tested, based on the fitness function. And the genetic algorithm will be terminated
once the population has converged; that is, the offspring, which is significantly different

from the previous generation, won’t be produced (Mallawaarachchi 2019).

According to the genetic algorithm, a set of suitable weight vectors X might be
provided for the linear algebra-based aggregation measure. However, in this thesis, we

won’t further introduce the details.
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In this thesis, we first introduce the fundamental issues concerning the research question
on how to identify the critical stations in a transportation network considering terrorist

attacks.

Before presenting the measures we will implement in the German ICE network, we
first introduce some basic terms that are used in this thesis, for example, what is graph
and graph theory, what is network and network theory. Moreover, in the beginning of
this thesis, we review many contributions regarding centrality measures (including
degree centrality, closeness centrality measure, betweenness centrality and eigenvector
centrality), and their applications on the transportation networks. Furthermore, we also
review the global efficiency measure, nodal efficiency measure, vulnerablility measures

and the network quantitative resilience analysis.

In order to identify the critical stations in transportation networks (specifically, the
German High-speed Train Network (ICE) in this thesis), we implement the existing graph
theory measures like centrality measures (including degree centrality, closeness
centrality measure, betweenness centrality and eigenvector centrality) and efficiency
measures (including global efficiency measure and node efficiency measure) on the ICE
network. Based on the graph global residual closeness, we propose a new nodal
vulnerability measure, namely the nodal residual closeness vulnerability measure.
Furthermore, based on the betweenness centrality measure and global efficiency measure,
as well as the idea of nodal residual closeness vulnerability measure, we also propose
another new nodal vulnerability measure, i.e. the betweenness-efficiency vulnerability
measure. We also apply these two proposed new nodal vulnerability measures on the
German ICE network and compare them with other aforementioned measures; the results

show that the proposed new nodal vulnerability measures are suitable and effective.
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However, different implemented graph measures will lead to different ranking
orders of the critical stations identified by these measures; this will result in the
information overflow for decision-makers, who cannot distinguish which ranking order
of critical stations is reasonable, effective and suitable, then take some preventive

measures to protect them based on the ranking order of these important stations.

Therefore, in order to reduce the information overflow for decision-makers, we
introduce the aggregation method called Technique for Order Preference by Similarity to
Ideal Solution (TOPSIS) from the Multi-criteria Decision Making field, based on which
we present the TOPSIS-based aggregation approach; here, we not only adapt this
aggregation technique to our research, but more importantly, we also improve it by
adding a new weighting approach (based on the global vulnerability analysis) to this
thesis; the new weighting method is used instead of the traditional weight estimation
methods like Analytic Hierarchy Process (AHP), Simple Multi-Attribute Rating
Technique (SMART), Measuring Attractiveness by a Categorical-Based Evaluation
Technique (MACBETH) , the Step-wise Weight Assessment Ratio Analysis (SWARA)
method, and so forth.

In order to compare different methods and conclude which measure is more suitable
and efficient to identify the critical stations in transportation network and validate the
effectiveness of the proposed new TOPSIS-based aggregation measure, we develop a

new quantitative resilience measure and conduct network resilience analysis in this thesis.

The new quantitative resilience measure combines traveling time, train flow and
also the number of people who can use the system as usual, even under some disruptions.
Here, when roughly estimating the number of people, we also consider the network

characteristics like the degree of one given station.

In order to apply the idea of network degree properly, we also propose the concept

of an adjacency node-set level, whose definition is introduced in detail in Chapter 4.
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According to the results, we conclude that there are only four basic and necessary
measures (which are degree centrality measure (DegCentr), eigenvector centrality
measure (EigenCentr), nodal efficiency measure (Effi) and nodal flow-weighted
efficiency measure (FWEfti)) for the TOPSIS-based aggregation measure through
resilience analysis based on the new quantitative resilience measure; meanwhile, we also
find that the TOPSIS-based aggregation measure only containing the four basic measures

can effectively identify the critical stations.

In this thesis, we also present the outlook and perspectives for future research works.
In the future, based on linear algebra, we will investigate a new algebraic aggregation

measure and compare it with the aforementioned TOPSIS-based aggregation measure.
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Table A-1: The results based on betweenness centrality measure

ID Betweenness ID Betweenness ID Betweenness ID Betweenness
1 0.284033613 32 0.034173669 63 0.092156863 94 0.033053221
2 0.196778711 33 0.038795518 64 0.102941176 95 0.016666667
3 0 34 0.131092437 65 0 96 0

4 0.165266106 35 0.087955182 66 0.158823529 97 0.016666667
5 0.049159664 36 0 67 0.033613445 98 0.016666667
6 0.033053221 37 0.037114846 68 0.034313725 99 0

7 0 38 0.02394958 69 0.041736695 100 0.094677871
8 0 39 0 70 0 101 0

9 0.04929972 40 0.042857143 71 0.131512605 102 0.144257703
10 0 41 0.104761905 72 0.033053221 103 0.280392157
11 0.016526611 42 0.008683473 73 0.016666667 104 0.17464986
12 0 43 0.010644258 74 0 105 0.091316527
13 0 44 0.030812325 75 0 106 0

14 0.034313725 45 0.000840336 76 0.078571429 107 0.064985994
15 0.024229692 46 0.029551821 77 0.064985994 108 0.139915966
16 0.033473389 47 0.02394958 78 0.049159664 109 0.125490196
17 0 48 0.013865546 79 0.033053221 110 0.110784314
18 0.118627451 49 0 80 0.026190476 111 0.095798319
19 0.016666667 50 0.066666667 81 0.027310924 112 0.080532213
20 0 51 0.043557423 82 0.181652661 113 0.064985994
21 0.10952381 52 0.114845938 83 0.007282913 114 0.049159664
22 0.201960784 53 0.114145658 84 0.006162465 115 0.033053221
23 0.090616246 54 0.041736695 85 0.090616246 116 0.016666667
24 0.149019608 55 0.032492997 86 0.037885154 117 0

25 0 56 0.033053221 87 0.047478992 118 0.049159664
26 0.114565826 57 0.016666667 88 0 119 0.033053221
27 0.163585434 58 0 89 0.113165266 120 0.016666667
28 0.116526611 59 0.088935574 90 0.025770308 121 0

29 0.050280112 60 0.082913165 91 0.116946779

30 0.041736695 61 0.078291317 92 0.049439776

31 0.03487395 62 0.081372549 93 0
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Table A-2: The results based on closeness centrality measure

ID Closeness ID Closeness ID Closeness ID Closeness
1 0.222222222 32 0.129032258 63 0.13559322 94 0.142517815
2 0.203045685 33 0.13363029 64 0.148514851 95 0.125130344
3 0.187793427 34 0.143369176 65 0.160213618 96 0.111317254
4 0.204081633 35 0.14354067 66 0.171184023 97 0.12539185
5 0.171184023 36 0.135746606 67 0.146878825 98 0.081688223
6 0.147058824 37 0.146341463 68 0.153452685 99 0.075566751
7 0.128479657 38 0.14084507 69 0.165975104 100 0.146520147
8 0.128479657 39 0.123583934 70 0.131868132 101 0.111524164
9 0.174418605 40 0.152866242 71 0.153649168 102 0.144578313
10 0.149068323 41 0.1517067 72 0.133928571 103 0.149812734
11 0.149068323 42 0.129589633 73 0.11846002 104 0.148883375
12 0.130151844 43 0.144230769 74 0.106007067 105 0.141676505
13 0.172661871 44 0.169252468 75 0.133037694 106 0.130434783
14 0.180451128 45 0.144927536 76 0.165745856 107 0.133037694
15 0.155642023 46 0.147783251 77 0.106761566 108 0.133779264
16 0.140186916 47 0.140515222 78 0.097008892 109 0.12

17 0.119521912 48 0.125523013 79 0.088757396 110 0.108597285
18 0.11846002 49 0.132743363 80 0.156453716 111 0.099009901
19 0.10619469 50 0.160213618 81 0.144578313 112 0.090840273
20 0.096076861 51 0.148331273 82 0.184615385 113 0.083798883
21 0.126849894 52 0.156046814 83 0.145985401 114 0.077669903
22 0.141342756 53 0.151133501 84 0.130718954 115 0.072289157
23 0.193861066 54 0.128893663 85 0.142687277 116 0.067529544
24 0.172166428 55 0.127523911 86 0.13559322 117 0.063291139
25 0.192926045 56 0.124481328 87 0.156862745 118 0.118226601
26 0.179910045 57 0.111008326 88 0.135746606 119 0.10619469
27 0.167832168 58 0.1 89 0.159786951 120 0.096230954
28 0.161725067 59 0.132596685 90 0.161507402 121 0.087847731
29 0.150753769 60 0.12145749 91 0.165061898

30 0.136830103 61 0.116959064 92 0.142857143

31 0.128205128 62 0.124223602 93 0.125130344
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Table A-3: The results based on degree centrality measure

1D Degree ID Degree ID Degree ID Degree

1 0.066666667 32 0.016666667 63 0.016666667 94 0.016666667
2 0.075 33 0.016666667 64 0.025 95 0.016666667
3 0.016666667 34 0.041666667 65 0.016666667 96 0.008333333
4 0.075 35 0.041666667 66 0.041666667 97 0.016666667
5 0.016666667 36 0.016666667 67 0.016666667 98 0.016666667
6 0.033333333 37 0.033333333 68 0.016666667 99 0.008333333
7 0.016666667 38 0.033333333 69 0.016666667 100 0.016666667
8 0.016666667 39 0.008333333 70 0.008333333 101 0.008333333
9 0.033333333 40 0.041666667 71 0.033333333 102 0.025

10 0.016666667 41 0.066666667 72 0.016666667 103 0.041666667
11 0.016666667 42 0.016666667 73 0.016666667 104 0.025

12 0.016666667 43 0.016666667 74 0.008333333 105 0.016666667
13 0.016666667 44 0.033333333 75 0.016666667 106 0.008333333
14 0.033333333 45 0.016666667 76 0.016666667 107 0.025

15 0.016666667 46 0.025 77 0.016666667 108 0.025

16 0.041666667 47 0.025 78 0.016666667 109 0.016666667
17 0.016666667 48 0.025 79 0.016666667 110 0.016666667
18 0.05 49 0.033333333 80 0.016666667 111 0.016666667
19 0.016666667 50 0.041666667 81 0.016666667 112 0.016666667
20 0.008333333 51 0.016666667 82 0.058333333 113 0.016666667
21 0.016666667 52 0.025 83 0.016666667 114 0.016666667
22 0.05 53 0.025 84 0.016666667 115 0.016666667
23 0.025 54 0.016666667 85 0.033333333 116 0.016666667
24 0.041666667 55 0.016666667 86 0.016666667 117 0.008333333
25 0.016666667 56 0.016666667 87 0.033333333 118 0.016666667
26 0.05 57 0.016666667 88 0.008333333 119 0.016666667
27 0.033333333 58 0.008333333 89 0.025 120 0.016666667
28 0.025 59 0.016666667 90 0.025 121 0.008333333
29 0.016666667 60 0.016666667 91 0.041666667

30 0.016666667 61 0.016666667 92 0.025

31 0.016666667 62 0.016666667 93 0.008333333
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Table A-4: The results based on eigenvector centrality measure

1D Eigenvector ID Eigenvector ID Eigenvector ID Eigenvector
1 0.318157655 32 0.000880549 63 0.005456865 94 0.000831262
2 0.44534468 33 0.00281764 64 0.024629782 95 0.000183007
3 0.138525964 34 0.01251072 65 0.130379253 96 3.85E-05

4 0.340208367 35 0.022959051 66 0.085911453 97 0.000191916
5 0.09319374 36 0.015758375 67 0.020735938 98 6.79E-05

6 0.102709266 37 0.051935057 68 0.012639294 99 1.43E-05

7 0.027369765 38 0.054821745 69 0.039334259 100 0.00587981
8 0.027369765 39 0.011534974 70 0.066977548 101 4.04E-05

9 0.107775509 40 0.153290201 71 0.025688524 102 0.00177926
10 0.024879863 41 0.318321136 72 0.005667629 103 0.00166557
11 0.024879863 42 0.078956868 73 0.001247759 104 0.004843039
12 0.010469881 43 0.056933564 74 0.000262539 105 0.002256181
13 0.097305627 44 0.191628683 75 0.043788572 106 0.000350451
14 0.122251644 45 0.068258281 76 0.019095538 107 0.000471566
15 0.035730302 46 0.132779329 77 0.006331125 108 0.000471566
16 0.047562129 47 0.117451293 78 0.001396975 109 0.000104052
17 0.016044677 48 0.185394739 79 0.000308213 110 2.30E-05
18 0.028692674 49 0.240031329 80 0.00194871 111 5.07E-06
19 0.006316848 50 0.259668828 81 0.006238602 112 1.12E-06
20 0.00132912 51 0.083206129 82 0.010639024 113 2.47E-07
21 0.015437093 52 0.077128834 83 0.002623844 114 5.44E-08
22 0.04467449 53 0.023691731 84 0.001831201 115 1.20E-08
23 0.124849121 54 0.005220553 85 0.00607922 116 2.64E-09
24 0.100904217 55 0.001852431 86 0.003911486 117 5.56E-10
25 0.08817428 56 0.009856481 87 0.003583412 118 0.000104052
26 0.174302842 57 0.002169958 88 0.000753981 119 2.30E-05
27 0.114776651 58 0.000456578 89 0.003022941 120 5.05E-06
28 0.02770121 59 0.009869817 90 0.003785281 121 1.06E-06
29 0.025332039 60 0.002233336 91 0.003767696

30 0.005617775 61 0.000744457 92 0.00087173

31 0.001367304 62 0.001304812 93 0.00018342
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Table A-5: The results based on nodal efficiency measure

ID Ef’;: 25;:(:)/ D Ef";: gide?llcy ID Ef’f\iI gideﬂcy ID Ef’; (c)if;lcy
1 0.550910552 32 0.412674384 63 0.312916896 94 0.262095193
2 0.548035509 33 0.439974163 64 0.340860688 95 0.231495986
3 0.436780381 34 0.476933148 65 0.298263797 96 0.208389606
4 0.4500774 35 0.531129609 66 0.350581726 97 0.25321087
5 0.385209401 36 0.526443122 67 0.344097099 98 0.357937124
6 0.342240772 37 0.532531152 68 0.334505875 99 0.27291817
7 0.307701164 38 0.61310813 69 0.345195934 100 0.32290037
8 0.270314433 39 0.557990423 70 0.317956059 101 0.229434079
9 0.344333421 40 0.580019524 71 0.331923556 102 0.498747746
10 0.297143103 41 0.829973494 72 0.267602788 103 1.007819958
11 0.264793425 42 0.435434518 73 0.326449425 104 0.66632525
12 0.222545919 43 0.362146644 74 0.321491912 105 0.310823527
13 0.407722334 44 0.521427572 75 0.59147338 106 0.850841497
14 0.288904099 45 0.498726806 76 0.277475412 107 0.768579411
15 0.256840396 46 0.42571089 77 0.301747847 108 0.365278835
16 0.28536991 47 0.414187613 78 0.313328921 109 0.341408694
17 0.448046219 48 0.441961277 79 0.36561432 110 0.317816841
18 0.585021067 49 0.508236251 80 0.322085769 111 0.305013377
19 0.539497879 50 0.827538527 81 0.299770488 112 0.312150223
20 0.23800596 51 0.506204901 82 0.340735711 113 0.329099472
21 0.270946784 52 0.491386291 83 0.353603312 114 0.308335308
22 0.329211001 53 0.488702033 84 0.411370288 115 0.27021973
23 0.452413137 54 0.352856094 85 0.436827523 116 0.278238131
24 0.311459895 55 0.299218341 86 0.422268248 117 0.26012499
25 0.379454447 56 0.235860158 87 0.289662748 118 0.267112696
26 0.374180036 57 0.211457664 88 0.251822708 119 0.248152582
27 0.359226494 58 0.18705816 89 0.32754573 120 0.254394978
28 0.333236794 59 0.323833203 90 0.402105778 121 0.24793685
29 0.353099139 60 0.297695071 91 0.811661689

30 0.3879089 61 0.278439999 92 0.809928402

31 0.398457448 62 0.279613747 93 0.386491181
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Table A-6: The results based on flow-weighted efficiency measure

Flow-weighted

Flow-weighted

Flow-weighted

Flow-weighted

ID Efficiency D Efficiency ID Efficiency ID Efficiency
1 8.205000206 32 0.343294931 63 0 94 1.156188658
2 8.039463467 33 0.359733499 64 0 95 0.796831733
3 0.883422297 34 2.78623847 65 1.279354325 96 0.704385824
4 3.205859332 35 3.60125483 66 1.69262199 97 0.901388699
5 0.318865808 36 5.717509506 67 1.780470608 98 0

6 0.330665674 37 4.898113834 68 1.999672838 99 0

7 0.250088725 38 7.988746103 69 1.866925439 100 1.651692543
8 0.266090247 39 2.784404762 70 1.546630636 101 0.780289003
9 2.44311757 40 6.054302769 71 1.65985768 102 9.531676248
10 1.348511726 41 4.29486839 72 1.021917056 103 21.96744527
11 1.415467871 42 2.020750781 73 1.64520394 104 10.74468001
12 1.103738827 43 1.077411827 74 1.509419602 105 1.743948922
13 0.60977047 44 3.103645881 75 5.834645407 106 9.056525093
14 1.858967733 45 2.490685987 76 0.942897419 107 15.56829746
15 1.503851012 46 3.06642025 77 0 108 0.018853695
16 1.434075384 47 3.021786647 78 0 109 0

17 4.420575221 48 3.497835799 79 0 110 0.043243699
18 4.313112898 49 1.165667057 80 2.439643324 111 0.049880729
19 0.445518046 50 2.280393616 81 2.078405518 112 0.029753072
20 0.156248127 51 2.587130991 82 3.256669745 113 0

21 1.71569364 52 2.403324049 83 0.520734544 114 0.025025025
22 1.896376316 53 2.465378983 84 0.608971826 115 0.025025025
23 4.149721057 54 0.586547864 85 2.344921582 116 0

24 2.163949444 55 0.378134268 86 0.439934418 117 0

25 3.098846897 56 0.694486691 87 1.015498975 118 0

26 3.233535917 57 0.650542365 88 0 119 0

27 3.433849975 58 0.564227306 89 2.598892931 120 0

28 3.475020566 59 0.387161339 90 5.013649786 121 0

29 0.307944811 60 0.163953987 91 25.59644998

30 0.343418391 61 0 92 25.74422839

31 0.353773908 62 0 93 6.885654553
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Table A-7: The results based on nodal residual closeness vulnerability measure

ID Nodal Resi-Clos ID Nodal Resi-Clos ID Nodal Resi-Clos 1D Nodal Resi-Clos
1 0.116802636 32 0.053094093 63 0.034841445 94 0.024125101
2 0.097166754 33 0.064226229 64 0.044570791 95 0.015041205
3 0.022007886 34 0.11897974 65 0.018327207 96 0.007201962
4 0.125085868 35 0.083402993 66 0.054007709 97 0.018222287
5 0.017057971 36 0.02764324 67 0.031096778 98 0.019099908
6 0.036776424 37 0.046371928 68 0.028350068 99 0.009606448
7 0.010115823 38 0.052811749 69 0.031001754 100 0.035941211
8 0.007401441 39 0.025939743 70 0.018030987 101 0.008756478
9 0.046341191 40 0.053010397 71 0.053535161 102 0.059461521
10 0.010902051 41 0.079164035 72 0.0257122 103 0.125085868
1 0.00878342 42 0.032506201 73 0.016449508 104 0.065506538
12 0.004016844 43 0.021871421 74 0.008716603 105 0.035795183
13 0.018463512 44 0.038808836 75 0.027020106 106 0.021418112
14 0.022196858 45 0.022953531 76 0.017039282 107 0.047061051
15 0.022572772 46 0.0312189 77 0.038345032 108 0.067872595
16 0.032566607 47 0.029871911 78 0.032387427 109 0.059374814
17 0.014717226 48 0.027002852 79 0.026508914 110 0.05187906
18 0.061201443 49 0.026544907 80 0.021605956 111 0.045716532
19 0.02403736 50 0.039133711 81 0.018539989 112 0.040351525
20 0.010293666 51 0.028268328 82 0.054681985 113 0.035851651
21 0.016796944 52 0.044595233 83 0.021842903 114 0.030097202
22 0.058882618 53 0.047002628 84 0.028204447 115 0.023339825
23 0.024005495 54 0.036514958 85 0.054308651 116 0.016367994
24 0.047192688 55 0.023665915 86 0.0238349 117 0.008479641
25 0.020554997 56 0.019153761 87 0.032366296 118 0.029682339
26 0.057707071 57 0.011653168 88 0.011888761 119 0.020957839
27 0.072234486 58 0.005360628 89 0.042755478 120 0.013115669
28 0.04039307 59 0.037317908 90 0.023795911 121 0.006963922
29 0.035714952 60 0.031120681 91 0.067484104

30 0.038881307 61 0.027074653 92 0.043990252

31 0.044662277 62 0.028010879 93 0.014920479
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Table A-8: The results based on nodal betweenness-efficiency vulnerability measure

ID Nodal Betw-Effi 1D Nodal Betw-Effi ID Nodal Betw-Effi ID Nodal Betw-Effi
1 0.08595542 32 0.034677186 63 0.022838612 94 0.01440232
2 0.055255448 33 0.043213308 64 0.031585042 95 0.006461428
3 0.014874932 34 0.086379072 65 0.007390291 96 0.000578614
4 0.100842476 35 0.059023728 66 0.042705354 97 0.009188233
5 0.011224896 36 0.015292647 67 0.019623714 98 0.010543089
6 0.028245356 37 0.029239987 68 0.017305635 99 0.00175859
7 0.005803142 38 0.036277437 69 0.020004882 100 0.023823709
8 0.003587513 39 0.01416518 70 0.008332573 101 0.000751578
9 0.036438188 40 0.029199305 71 0.040287034 102 0.042393536
10 0.006463778 41 0.056847956 72 0.016114279 103 0.101247186
11 0.004788911 42 0.019818426 73 0.007904101 104 0.048974514
12 0.000821193 43 0.013264054 74 0.000855037 105 0.023388102
13 0.012283745 44 0.027748627 75 0.015064735 106 0.011239923
14 0.015699403 45 0.015415901 76 0.008307349 107 0.033867883
15 0.011608685 46 0.021602551 77 0.027998998 108 0.05149712
16 0.016246737 47 0.018775154 78 0.022638079 109 0.044343384
17 0.006315025 48 0.015652171 79 0.017328681 110 0.038086547
18 0.049221626 49 0.015075244 80 0.011454732 111 0.032951046
19 0.01494115 50 0.016701302 81 0.009133867 112 0.028543831
20 0.002364677 51 0.016103332 82 0.037265647 113 0.024821608
21 0.007751256 52 0.028368688 83 0.011046038 114 0.019888482
22 0.044675654 53 0.030208189 84 0.015866107 115 0.013996112
23 0.015727752 54 0.022794444 85 0.035991878 116 0.007809053
24 0.024933421 55 0.012468095 86 0.012466721 117 0.000627853
25 0.012666049 56 0.010484567 87 0.019832253 118 0.019179385
26 0.03214522 57 0.003713218 88 0.003258784 119 0.011639383
27 0.040447768 58 0.002102431 89 0.028143075 120 0.004806084
28 0.023686348 59 0.025073264 90 0.013439184 121 0.000754915
29 0.022505306 60 0.019499005 91 0.052164282

30 0.024368294 61 0.015843328 92 0.031783881

31 0.02844606 62 0.016683753 93 0.005994699

180



Appendix: Tables

Table A-9: Top thirty-one stations based on different measures

Centrality Nodal Efficiency Nodal Vulnerability
Rank BetwCentr CloCentr DegCentr EigenCentr Effi FWEffi BetwEffiVul  ResiduCloVul
(M) (M) (M3) (My) (Mg) (M) (M7) (Mg)
1 1 1 2 2 103 92 103 4
2 103 4 4 4 106 91 4 103
3 22 2 1 41 41 103 34 34
4 2 23 41 1 50 107 1 1
5 82 25 82 50 91 104 35 2
6 104 3 18 49 92 102 41 35
7 4 82 22 44 107 106 2 41
8 27 14 26 48 104 1 91 27
9 66 26 16 26 38 2 108 108
10 24 9 24 40 75 38 18 91
11 102 13 34 3 18 93 104 104
12 108 24 35 46 40 40 22 33
13 71 5 40 65 39 75 109 18
14 34 66 50 23 1 36 33 102
15 109 44 66 14 2 90 66 109
16 18 27 91 47 19 37 102 22
17 91 69 103 27 37 17 27 26
18 28 76 6 9 35 18 71 82
19 52 91 9 6 36 41 110 85
20 26 28 14 24 44 23 82 66
21 53 90 27 13 49 35 9 71
22 89 50 37 5 51 48 38 32
23 110 65 38 25 102 28 85 40
24 21 89 44 66 45 27 32 38
25 41 87 49 51 52 82 107 110
26 64 80 71 42 53 26 111 24
27 111 52 85 52 34 4 26 107
28 100 15 87 45 23 44 92 53
29 63 71 23 70 4 25 64 37
30 105 68 28 43 17 46 53 9
31 23 40 46 38 48 47 37 111
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Table A-10: The values of IMi_SNd

IMl—SNd IMZ—SNd |M3—5Nd IMA—SNd |M5-5Nd IMG—SNd |M7—sNd IMH—SNd
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0.365664  0.365664  0.372984  0.372984  0.320151  0.365315  0.320151  0.355981
0.296889  0.354686 0.33396 0.33396 0.320151  0.351683  0.287703  0.287703
0.28072 0.350464  0.323854  0.309561  0.295542 0.28617 0.267821  0.267821
0.269681  0.335602  0.299608  0.299608  0.278132  0.282984  0.242584  0.242584
0.26026 0.33008 0.28797 0.272466  0.246632  0.280267  0.229048 0.23075
0.257938 0.30649 0.259114  0.271838  0.245026  0.277891  0.209389  0.195283
0.229833  0.303711  0.243409  0.269088 0.24184 0.277891  0.178612  0.178612
0.185295  0.300553  0.214945 0.26861 0.239208  0.255378  0.152806  0.144269
0.173912  0.297501  0.213021  0.251007  0.225771 0.2453 0.148612  0.140075
0.169234  0.295024  0.212634  0.244552  0.220402 0.22938 0.124897 0.12163
0.164886  0.291123  0.184614  0.244552  0.192287 0.22938 0.123082  0.120082
0.160692  0.287616  0.158596  0.243512  0.188699  0.216025 0.111731  0.118898
0.156736  0.283984  0.148431  0.243512  0.188699  0.216025  0.110626  0.098241
0.130918  0.273453 0.14451 0.241275  0.167765  0.209558  0.108033 0.09761
0.129813  0.261616  0.135389  0.230733  0.154102  0.207028  0.092239  0.096505
0.115304  0.247542  0.107211  0.230733  0.153856  0.202341  0.091134  0.087505
0.09573 0.244249  0.065068  0.225971  0.149309 0.1956 0.078181  0.080419
0.095352  0.217873  0.063721  0.225246  0.138394  0.172136  0.074225  0.075906
0.089573  0.209158 0.06208 0.223899  0.138394  0.152781  0.072975  0.073277
0.088161  0.208717  0.061708  0.219347  0.122286  0.149759  0.068462  0.068179
0.085161 0.2046 0.059001  0.219347 0.12183 0.141834  0.065861  0.064223
0.084488  0.200665  0.055578  0.219347  0.118626  0.139085  0.057436  0.063373
0.083238  0.200665  0.052417  0.219347  0.116993  0.133287  0.054807  0.053209
0.083238 0.17109 0.049494  0.207518  0.116468  0.123701  0.053958  0.047491
0.065043  0.166935  0.049038 0.203192  0.113684  0.111899  0.053603  0.046241
0.064324  0.166935  0.044303 0.20296 0.111038  0.107878  0.052612  0.045005
0.063333  0.166703  0.041674  0.198808  0.106203  0.079522  0.050104  0.044651
0.063004  0.166703  0.040692  0.198808  0.103499  0.075328  0.048498  0.043099
0.062476  0.165566  0.040692  0.198808 0.09203 0.074143  0.047779  0.042232
0.062476  0.140075  0.040272  0.198808  0.090133  0.071503  0.045821  0.040264
0.062476  0.136526  0.038973  0.184528  0.089754  0.070485  0.042266  0.039273
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Table A-11: The values of DMi_SNd

DMl—SNd DMQ—sNd DM3—SNd DM4—SNd DM5—SNd DMS—SNd DM7—SNd DMg—SNd

© oo ~ (2] a B w N =

D v »mv m;m ;m ;v ;m;mwm

iy
o

9]

iy
[

iy
N

iy
w

=
~

iy
(6]

iy
(2}

iy
]

iy
[ec]

=
©

n
o

N
[y

N
N

N
w

N
EN

N
(5,2}

N
(2]

N
3

nN
©

N
©

wmwmmmmmmwmmmmmmmmmmmm
= O

0.024929  0.024929 0.017609  0.017609 0.070441  0.025278 0.070441  0.034612
0.093703  0.035906  0.056633  0.056633  0.070441 0.03891  0.102889  0.102889
0.109873  0.040128 0.066739  0.081032  0.095051  0.104423  0.122772  0.122772
0.120912 0.054991 0.090985  0.090985 0.112461  0.107609  0.148009  0.148009
0.130333 0.060513 0.102623  0.118127 0.143961 0.110326  0.161544  0.159843
0.132655 0.084103 0.131478  0.118755  0.145567  0.112702  0.181204 0.19531
0.16076  0.086882  0.147184  0.121505 0.148753  0.112702 0.211981  0.211981
0.205298  0.09004  0.175648 0.121982  0.151385 0.135215 0.237787  0.246324
0.21668  0.093091 0.177572 0.139586  0.164822  0.145293  0.241981  0.250518
0.221359  0.095569  0.177958  0.146041 0.170191  0.161213  0.265695  0.268963
0.225707  0.09947 0.205979  0.146041 0.198306  0.161213 0.267511  0.270511
0.229901 0.102977  0.231997 0.147081  0.201894  0.174567  0.278862  0.271695
0.233856  0.106608  0.242161  0.147081  0.201894  0.174567  0.279966  0.292352
0.259675  0.11714  0.246083  0.149318 0.222828  0.181035 0.28256 0.292983
0.260779  0.128977  0.255204  0.159859  0.236491  0.183565  0.298354  0.294087
0.275288  0.14305 0.283381  0.159859  0.236737  0.188252  0.299459  0.303088
0.294863  0.146344  0.325525  0.164622  0.241284  0.194992  0.312412  0.310173
0.295241 0.172719 0326872  0.165346  0.252199  0.218457 0.316368  0.314686
0.30102  0.181435 0.328513 0.166694 0.252199  0.237812 0.317618  0.317315
0.302432 0.181876 0.328885 0.171246  0.268307  0.240834  0.322131  0.322414
0.305431 0.185993  0.331592  0.171246  0.268763  0.248759  0.324732 0.32637
0.306105 0.189928  0.335014  0.171246  0.271967  0.251508  0.333157  0.327219
0.307355 0.189928 0.338176  0.171246  0.273599  0.257305 0.335786  0.337384
0.307355  0.219503  0.341099  0.183075 0.274125 0.266892  0.336635  0.343102
0.32555  0.223658  0.341554  0.187401 0.276909 0.278694  0.336989  0.344352
0.326268  0.223658 0.34629 0.187633  0.279555  0.282714  0.337981  0.345588
0.32726 0.22389 0.348919  0.191785  0.284389  0.311071  0.340489  0.345942
0.327589  0.22389 0.3499 0.191785  0.287094  0.315265 0.342095 0.347494
0.328117  0.225027 0.3499 0.191785  0.298563 0.31645  0.342813 0.34836
0.328117  0.250518  0.350321  0.191785  0.300459 0.31909  0.344772  0.350328
0.328117  0.254067 0.35162 0.206065 0.300839  0.320107  0.348327  0.351319
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positive ideal solution

Table A-12: The values of separation distance from each node to every

ID Sy ID S ID S, ID S

1 0.108213504 32 0.267554286 63 0.27614541 94 0.299723602
2 0.145440905 33 0.256248189 64 0.255088865 95 0.315869987
3 0.299602325 34 0.179621607 65 0.307331245 96 0.334847378
4 0.151734935 35 0.201955864 66 0.213724862 97 0.310933705
5 0.298265457 36 0.288310462 67 0.286711204 98 0.308185062
6 0.270274011 37 0.249950344 68 0.289695607 99 0.331775639
7 0.31960366 38 0.238572929 69 0.283108299 100 0.271123898
8 0.324183965 39 0.299832966 70 0.316479022 101 0.332660096
9 0.252184624 40 0.236916333 71 0.231068351 102 0.21163983
10 0.317217622 41 0.176791292 72 0.296876963 103 0.108704544
11 0.317348558 42 0.288349397 73 0.308807102 104 0.193175191
12 0.329039188 43 0.301608718 74 0.328027737 105 0.272484997
13 0.30549264 44 0.25806816 75 0.287086593 106 0.29169346
14 0.284255097 45 0.295517717 76 0.296674269 107 0.226832899
15 0.299905997 46 0.274904935 77 0.277115114 108 0.227983905
16 0.265065795 47 0.279281483 78 0.287595223 109 0.245647853
17 0.304622864 48 0.282191483 79 0.295845351 110 0.256085461
18 0.190073169 49 0.282961485 80 0.299178122 111 0.265280873
19 0.295717591 50 0.247268247 81 0.303447006 112 0.273485818
20 0.331461419 51 0.282465921 82 0.210268857 113 0.28055756
21 0.288114321 52 0.246244841 83 0.305301927 114 0.290628182
22 0.192360489 53 0.244166406 84 0.297176084 115 0.302994001
23 0.260764594 54 0.282714947 85 0.237212553 116 0.314364786
24 0.223868586 55 0.300539936 86 0.294873802 117 0.333710573
25 0.29663808 56 0.302791838 87 0.276197726 118 0.291993805
26 0.210247032 57 0.319996366 88 0.328785229 119 0.305932002
27 0.204451371 58 0.335766442 89 0.252955 120 0.318774592
28 0.253884768 59 0.27207728 90 0.284711381 121 0.334544041
29 0.280430511 60 0.282615412 91 0.171986294
30 0.279357469 61 0.289282786 92 0.229550376
31 0.275313629 62 0.287413648 93 0.311391488
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negative ideal solution

Table A-13: The values of separation distance from each node to every

ID Sio 1D Sio ID Sio 1D Sio

1 0.276028829 32 0.092209227 63 0.076780158 94 0.042621602
2 0.227086898 33 0.110875798 64 0.098536578 95 0.025732784
3 0.059801817 34 0.2204721 65 0.045011741 96 0.006408887
4 0.268161158 35 0.163534173 66 0.142468983 97 0.031069753
5 0.051925145 36 0.069169476 67 0.062081674 98 0.036760734
6 0.082853747 37 0.101901445 68 0.058932055 99 0.012792719
7 0.03007394 38 0.117929823 69 0.066725738 100 0.07933817
8 0.024402629 39 0.064334416 70 0.034206655 101 0.010541316
9 0.098850145 40 0.118327522 71 0.123274546 102 0.137531195
10 0.031460599 41 0.197217403 72 0.047606555 103 0.300651253
11 0.027556325 42 0.0650409 73 0.034012528 104 0.162131496
12 0.019395371 43 0.050185117 74 0.02148031 105 0.077270074
13 0.050132782 44 0.096807792 75 0.074204233 106 0.097987674
14 0.065335787 45 0.064802457 76 0.054596312 107 0.134209981
15 0.041714353 46 0.075186885 77 0.071839912 108 0.138503512
16 0.107981157 47 0.070855819 78 0.059216946 109 0.118695241
17 0.045692801 48 0.067961927 79 0.049587004 110 0.102994789
18 0.1588131 49 0.07809909 80 0.048074448 111 0.089619223
19 0.058185925 50 0.122268853 81 0.043930898 112 0.077755626
20 0.011372634 51 0.069224 82 0.160709169 113 0.067840934
21 0.066315585 52 0.105066662 83 0.046113149 114 0.055084689
22 0.176635329 53 0.107378918 84 0.056035816 115 0.040485542
23 0.090885206 54 0.066465757 85 0.113596046 116 0.028385944
24 0.148725359 55 0.044700136 86 0.055646997 117 0.010561391
25 0.058002619 56 0.039267966 87 0.073915544 118 0.05434171
26 0.149770933 57 0.022199779 88 0.01905407 119 0.037459302
27 0.151523661 58 0.004538251 89 0.097398492 120 0.023871974
28 0.096867014 59 0.078203829 90 0.060296692 121 0.008756918
29 0.070710441 60 0.06712183 91 0.197273316

30 0.072829656 61 0.060014413 92 0.159599216

31 0.079696162 62 0.062971211 93 0.044675869
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Table A-14: The results according to TOPSIS-based aggregation measure

O

TOPSIS-based

1D

TOPSIS-based

ID

TOPSIS-based

1D

TOPSIS-based

Measure Measure Measure Measure

1 0.718371729 32 0.25630511 63 0.217553403 94 0.124498903
2 0.609583757 33 0.30201186 64 0.278646743 95 0.075329553
3 0.166391563 34 0.551051157 65 0.127749785 96 0.018780275
4 0.638636945 35 0.447438114 66 0.399975982 97 0.090846314
5 0.148276808 36 0.19349191 67 0.177990086 98 0.106569596
6 0.234628248 37 0.289614685 68 0.169040101 99 0.037126795
7 0.086004766 38 0.330796389 69 0.19073541 100 0.226381618
8 0.070004497 39 0.176661665 70 0.097542206 101 0.030714663
9 0.28159645 40 0.33308816 71 0.347896196 102 0.393879173
10 0.090228174 41 0.527307 72 0.138196903 103 0.734449727
11 0.079895434 42 0.184048348 73 0.099214061 104 0.456314227
12 0.055664315 43 0.142654908 74 0.061458698 105 0.220926244
13 0.140970749 44 0.272793329 75 0.205386429 106 0.251456037
14 0.186892135 45 0.179846874 76 0.155425233 107 0.371728646
15 0.122107342 46 0.214763329 77 0.205871551 108 0.377921603
16 0.289457282 47 0.20236581 78 0.170746449 109 0.325778758
17 0.130433221 48 0.194091861 79 0.143550548 110 0.286829446
18 0.455200202 49 0.216304675 80 0.138442311 111 0.252519581
19 0.164411831 50 0.330870305 81 0.126464285 112 0.221373723
20 0.033172416 51 0.196832482 82 0.433204011 113 0.194722237
21 0.187104937 52 0.299069802 83 0.131221317 114 0.15933653
22 0.478691954 53 0.30544829 84 0.158646456 115 0.117868859
23 0.258453741 54 0.190347738 85 0.323812034 116 0.08281804
24 0.39916204 55 0.129475515 86 0.158755193 117 0.030677464
25 0.163553194 56 0.11479854 87 0.211118944 118 0.156904815
26 0.416009609 57 0.064874428 88 0.054778371 119 0.109086344
27 0.425658115 58 0.013335847 89 0.278000631 120 0.06966938
28 0.276169698 59 0.223260197 90 0.17476893 121 0.025507993
29 0.201373382 60 0.19192074 91 0.534240169

30 0.2067925 61 0.171814756 92 0.410123045

31 0.224490039 62 0.179720127 93 0.125470275
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Table A-15(a): Node ID versus corresponding station name

ID Station name 1D Station name
1 Frankfurt(Main)Hbf 32 Lippstadt

2 Frankfurt(M) Flughafen Fernbf 33 Soest

3 Darmstadt Hbf 34 Hamm(Westf)
4 Mannheim Hbf 35 Dortmund Hbf
5 Neustadt(Weinstr)Hbf 36 Bochum Hbf
6 Kaiserslautern Hbf 37 Essen Hbf

7 Homburg(Saar)Hbf 38 Duisburg Hbf
8 Saarbricken Hbf 39 Oberhausen Hbf
9 Karlsruhe Hbf 40 Dsseldorf Hbf
10 Baden-Baden 41 Kdn Hbf

11 Offenburg 42 Bonn Hbf

12 Freiburg(Breisgau) Hbf 43 Koblenz Hbf
13 Heidelberg Hbf 44 Mainz Hbf
14 Stuttgart Hbf 45 Wiesbaden Hbf
15 Ulm Hbf 46 Limburg sid
16 Augsburg Hbf 47 Montabaur
17 Minchen-Pasing 48 Siegburg/Bonn
18 Muinchen Hbf 49 Kdn/Bonn Flughafen
19 Minchen Ost 50 Kdn Messe/Deutz GI.11-12
20 Rosenheim 51 Solingen Hbf
21 Ingolstadt Hbf 52 Wuppertal Hbf
22 NUrnberg Hbf 53 Hagen Hbf
23 Hanau Hbf 54 Mnster(westf)Hbf
24 Wirzburg Hbf 55 Osnabrick Hbf
25 Aschaffenburg Hbf 56 Regensburg Hbf
26 Fulda 57 Plattling

27 Kassel-Wilhelmsh&he 58 Passau Hbf
28 Gdtingen 59 Erlangen

29 Warburg(Westf) 60 Bamberg

30 Altenbeken 61 Lichtenfels
31 Paderborn Hbf 62 Saalfeld

187



Appendix: Tables

Table A-15(b): Node ID versus corresponding station name

ID Station name 1D Station name

63 Jena Paradies 94 Libeck Hbf

64 Naumburg(Saale)Hbf 95 Oldenburg(Holst)
65 Frankfurt(Main)std 96 Puttgarden

66 Erfurt Hbf 97 Neumunster

67 Gotha 98 Garmisch-Partenkirchen
68 Eisenach 99 Mittenwald

69 Bad Hersfeld 100 Bitterfeld

70 Aachen Hbf 101 Kiel Hbf

71 Leipzig Hbf 102 Berlin-Spandau
72 Riesa 103 Berlin Hbf

73 Dresden-Neustadt 104 Berlin Stkreuz
74 Dresden Hbf 105 Lutherstadt Wittenberg
75 Dsseldorf Flughafen 106 Berlin Ostbahnhof
76 Halle(Saale)Hbf 107 Berlin Gesundbrunnen
77 Tutzing 108 Eberswalde Hbf
78 Murnau 109 Angerminde

79 Oberau 110 Prenzlau

80 Braunschweig Hbf 111 Pasewalk

81 Hildesheim Hbf 112 Anklam

82 Hannover Hbf 113 ZUgsow

83 Minden(Westf) 114 Greifswald

84 Herford 115 Stralsund Hbf
85 Bielefeld Hbf 116 Bergen auf Rigen
86 Gtersloh Hbf 117 Ostseebad Binz
87 Bremen Hbf 118 Neustrelitz Hbf
88 Oldenburg(Oldb) 119 Waren(MUritz)
89 Wolfsburg Hbf 120 Rostock Hbf

90 Hamburg-Harburg 121 Warneminde Werft
91 Hamburg Hbf

92 Hamburg Dammtor

93 Hamburg-Altona
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