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Abstract

This thesis aims at investigating and developing numerical methods for �nite dimensional constrained
structured optimization problems. These provide a modeling framework for a variety of applications,
as they o�er a simple yet expressive language to formulate a broad class of problems. An algorithm
is proposed that interlaces proximal methods and the augmented Lagrangian scheme. Relying on
theoretical results, convergence guarantees are established for nonconvex problems. The inner sub-
problems can be solved by any method for structured optimization and the overall algorithm can
be made matrix-free. Illustrative examples show the bene�ts of constrained structured programs
as a modeling tool and of a careful problem formulation. When tested and compared on small to
medium-size nonlinear programming benchmark problems, the proposed method prove competitive
against a state-of-the-art solver.

The proposed framework is adopted in the context of switching time optimization for constrained
mixed-integer optimal control with switching costs. We describe the reformulation as constrained
structured programs via the cardinality function, and discuss possible extensions to deal with more
general problems. Then, we prove that this formulation satis�es the assumptions underlying the
proximal augmented Lagrangian algorithm. Numerical examples show the �ltering action of switching
costs, which rules out chattering solutions.

Finally, we develop a primal-dual Newton-type proximal method for convex quadratic program-
ming. This is based on the proposed proximal augmented Lagrangian framework and weaves together
the proximal point algorithm and a damped semismooth Newton’s method. The outer proximal
regularization yields a numerically stable method, and we interpret the proximal operator as the
unconstrained minimization of the primal-dual proximal augmented Lagrangian function. The inner
tailored Newton’s scheme is fast, the linear systems are always solvable, and exact linesearch can be
performed. The method handles degenerate problems, provides a mechanism for infeasibility detection,
and exploits warm starting, while requiring only convexity. Numerical results against full-�edged
solvers demonstrate our method is robust and e�cient.

All proposed algorithms are implemented in software packages that allow for the generic, e�cient
solution of problems using the methods developed in this thesis.
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Zusammenfassung

Das Ziel der vorliegenden Arbeit ist die Untersuchung und Entwicklung numerischer Methoden für
endlichdimensionale, beschränkte, strukturierte Optimierungsprobleme. Diese bieten einen Modellie-
rungsrahmen für eine Vielzahl von Anwendungen, da sie eine einfache, aber ausdrucksstarke Notation
zur Formulierung einer breiten Klasse von Problemen bieten. Es wird ein Algorithmus vorgeschlagen,
der proximale Methoden und das erweiterte Lagrange-Schema kombiniert. Für nicht konvexe Proble-
me werden auf Basis theoretischer Ergebnisse Kriterien, die die Konvergenz garantieren, festgelegt.
Die inneren Teilprobleme können mit beliebigen Methoden der strukturierten Optimierung gelöst
werden, und der Gesamtalgorithmus kann frei von Matrizen formuliert werden. Mittels anschaulicher
Beispiele werden die Vorteile von beschränkten, strukturierten Programmen als Modellierungswerk-
zeug und einer sorgfältigen Problemformulierung veranschaulicht. Beim Testen und Vergleichen an
Benchmarkproblemen der nichtlinearen Programmierung von kleiner bis mittlerer Größe erweist
sich die vorgeschlagene Methode als kompetitiv gegenüber einem state-of-the-art Solver.

Die vorgeschlagene Struktur wird im Zusammenhang mit der Optimierung der Schaltzeit für
eine eingeschränkte gemischt-ganzzahlige optimale Steuerung mit Schaltkosten übernommen. Wir
beschreiben die Umformulierung als ein beschränktes, strukturiertes Programm mittels der Kardinali-
tätsfunktion und diskutieren mögliche Erweiterungen, um allgemeinere Probleme zu lösen. Dann
zeigen wir, dass diese Formulierung die Annahmen erfüllt, die dem proximal erweiterten Lagrange-
Algorithmus zugrunde liegen. Numerische Beispiele zeigen die Filtereigenschaft von Schaltkosten, die
oszillierende Lösungen ausschließt.

Schließlich entwickeln wir eine proximale Primal-Duale-Newton-Methode für die konvexe qua-
dratische Programmierung. Diese basiert auf dem vorgeschlagenen proximalen Augmented-Lagrange
Verfahren und verknüpft den Proximalpunkt-Algorithmus mit einer gedämpften Semismooth-Newton-
Methode. Die äußere proximale Regularisierung ergibt eine numerisch stabile Methode und wir
interpretieren den proximalen Operator als die uneingeschränkte Minimierung der primal-dualen
proximalen, erweiterten Lagrange-Funktion. Das innere maßgeschneiderte Newtonsche Schema ist
schnell, die linearen Systeme sind immer lösbar, und es kann eine exakte Liniensuche durchgeführt
werden. Die Methode behandelt entartete Probleme, bietet einen Mechanismus zur Erkennung von
Unlösbarkeit und nutzt den Warmstart, während nur Konvexität erforderlich ist. Numerische Ergeb-
nisse im Vergleich mit etablierten Problemlösern zeigen, dass unsere Methode robust und e�zient
ist.

Alle vorgeschlagenen Algorithmen sind in Softwarepaketen implementiert, die die generische und
e�ziente Lösung von Problemen mithilfe der in dieser Arbeit entwickelten Methoden ermöglichen.
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Preface

Mathematical optimization is usually associated with the analysis and characterization of a problem
and the development of suitable methods for solving it. However, di�erent formulations of the same
problem, although mathematically equivalent, can lead to surprisingly di�erent paths to a solution.
We argue in this thesis that formulating a problem impacts the way we can solve it, and thus that
modeling is a key part of mathematical optimization. Constrained structured programming o�ers
a versatile framework for modeling a wide spectrum of problems. This abstract model and the
methodological developments at the base of this thesis stem from the analysis and reinterpretation of
mixed-integer optimal control problems with switching costs. These provided a challenging application
that stimulated a shift of paradigm, highlighting a novel perspective for their formulation. Conforming
to constrained structured programs and exploiting their features, we devised a suitable numerical
method for computing approximate solutions, under mild assumptions. The broad perspective of
augmented Lagrangian and proximal methods was then specialized to convex quadratic programming,
which is a fundamental topic and forms the basis for many optimization methods and applications.
The shifted penalty was found to be nothing but a proximal regularization, leading a robust method.
Exploring the area where numerical linear algebra and optimization merge, we were able to design a
generic, yet tailored and fast, method for solving quadratic programs. The extension of this approach
to general nonlinear programming is ongoing research.

Mühldorf am Inn, June 2021 Alberto De Marchi
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Chapter 0

Introduction

I think, therefore I sum.
—D. R. Hofstadter [36]

Mathematics pervades our life and is crucial to our understanding of the Universe [2]. Op-
timization is a fundamental branch of mathematics, and its long history proves it. In the
antiquity, in his Elements Euclid considered the minimal distance between a point and a

line, and Virgil’s Aeneid gives an account of Dido’s problem of enclosing the maximum area within a
boundary of �xed length. Still in the prehistory of calculus, J. Kepler studied the wine barrel problem
[1], and in 1638 G. Galilei, while reviewing his own work on naturally accelerated motion, suggested
the need for a higher science than his against possible fallacies [3]. Shortly after, I. Newton and G. W.
von Leibniz set the foundations of mathematical analysis [4, 5]. In 1696 the Bernoulli brothers proposed
the brachistochrone’s problem [6], and the calculus of variations was born. Nowadays, optimization
problems are ubiquitous in science and engineering, but a�ect also economics and biology, among
others. In fact, mathematical optimization comes into play whenever some decision variables, possibly
subject to restrictions, a�ect some cost function, or performance index, that is to be minimized.

The discipline of nonlinear programming (NLP) deals with the search of minima of a smooth
objective function over a continuous set of real variables, possibly subject to the satisfaction of
constraints, usually in the form of equalities and inequalities involving smooth functions. This research
�eld was in�uenced by unpublished lecture notes of W. Fenchel [9] and took o� when H. W. Kuhn and
A. W. Tucker [10] reinvented optimality conditions for nonlinear problems, earlier presented by W.
Karush [7] in similar form. The exploitation of these conditions lead to numerical methods able to cope
with large-scale nonconvex problems with many nonlinear constraints. Augmented Lagrangian (AL),
sequential quadratic programming (SQP), and interior point (IP) methods are the most prominent in
the �eld. Following di�erent approaches, these cope with nonlinearities and constraints by introducing
a sequence of nontrivial, yet related and simpler, subproblems. The availability of �rst- and possibly
second-order derivatives and the advancement of numerical linear algebra techniques have made
possible the design of e�cient, reliable, and scalable algorithms. For further details, we refer, e.g., to
[100, 31, 34] and [150] for SQP methods, [42, 55] and [72, 90, 108, 151] for IP methods, to [21, 22, 24]
and [49, 62, 163] for AL methods, and the textbooks [45, 112, 180]. Further in�uential works are [20, 26,
38], among others.

In a di�erent vein, structured optimization is concerned with the minimization of a proper, lower
semi-continuous, extended-real valued function, which is the sum of a smooth function and a possibly
nonsmooth one. These problems are unconstrained in the sense that, if restrictions on the decision
variables are in place, these are enforced via characteristic functions and the like, namely by penalizing
infeasible values with an in�nite cost. Proximal methods (PM), also known as operator splitting
techniques, generate a series of simple subproblems, which are often elementary. Whenever this is
the case, these methods easily handle nonsmooth terms, require simple algebraic operations, scale
well with the problem size, and naturally lead to matrix-free implementations. For these reasons, they
are particularly suitable for applications with limited hardware resources and for high-dimensional
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problems, such as embedded control [187], signal processing [140, 229], and statistical learning [138].
However, Newton-type methods with superlinear convergence rate and robustness to ill-conditioning
as well as the analysis for fully nonconvex problems have been only recently developed [214]. Indeed,
the e�cient treatment of general constraints is still a challenge [202, 209]. For an overview and further
references, see the survey [170] on proximal algorithms and the textbooks [30, 143, 191].

The augmented Lagrangian (AL) approach is of particular interest in this thesis for several reasons.
SQP-type methods build a linear-quadratic model of the problem around the current estimate of the
solution. Thus, it is not fully clear how to handle nonsmooth problems. Interior point (IP) methods
handle inequality constraints via a barrier term, thus maintaining the iterates strictly feasible. In
this context, it is hard, if possible, to manage feasible sets with complicated geometry. Augmented
Lagrangian methods adopt a penalty approach to (approximately) satisfy constraints and shifts to
avoid unbounded penalization, if possible. Unfortunately, due to the constraint relaxation, the arising
subproblems can be unbounded from below [131] and generate infeasible iterates. Moreover, some
forcing sequences have to be de�ned, that drive and control the convergence. On the other hand, the
AL framework naturally provides some desirable features. The sequence of subproblems is generated
from a high-level perspective, thus maintaining the overall problem structure, these subproblems are
usually unconstrained or simply constrained, and a regularization of the constraints is introduced
by the penalty term [114, 146]. The interested reader may refer to [49, 62, 114, 163, 242, 228] for more
details.

In the classical work [29], the profound connection between the augmented Lagrangian and the
proximal point methods was uncovered in the convex setting. Inspired by the key ideas behind these
approaches, yet aware of their drawbacks, this thesis attempts to carry on their symbiosis, seeking
e�cient and robust numerical methods, and to contribute to this fascinating blend of heuristics and
rigour, of theory and experiment [45] that is the �eld of mathematical optimization.

0.1 Contributions and Outline

The aim of this thesis is to investigate the theory and develop numerical methods for (nonlinear, non-
convex, nonsmooth) constrained structured programs (NCSP), that is, �nite-dimensional optimization
problems with structured objective function and smooth constraints.

The foundations of this thesis are laid out in Chapter 1, where we state the problem formulation and
characterize its solutions. Then, relying on both the augmented Lagrangian framework and proximal
methods, we design an algorithm for its numerical solution and investigate its convergence properties.
The methodology is then veri�ed with numerical tests on a variety of problems. Although some ideas
have been recently published by the author, this chapter revisits and extends those results, providing
a uni�ed framework and a more detailed analysis. We implemented the algorithms introduced in this
chapter in Bazinga, an open-source software package for Julia [192]. This toolbox contains generic
implementations of several algorithms, and allows to apply them on a variety of problems, as well as
to modify and extend the code. We also provide OptiMo, a modelling tool for NCSPs in Julia, available
online. We report numerical results on some illustrative examples and compare the proposed method
against a state-of-the-art solver on some nonlinear programming benchmark problems.

Based on:

[235] A. De Marchi. “Constrained and Sparse Switching Times Optimization via Augmented La-
grangian Proximal Methods”. In: 2020 American Control Conference (ACC). Denver, CO, USA:
IEEE, 2020, pp. 3633–3638. doi: 10.23919/ACC45564.2020.9147892;

• Bazinga, 2020. url: h�ps://github.com/aldma/Bazinga.jl;

• OptiMo, 2020. url: h�ps://github.com/aldma/OptiMo.jl.

Chapter 2 deals with switching time optimization (STO) problems with switching costs and con-
straints. These problems are relevant for applications and interesting in that they combine optimal
control and discrete optimization in many ways. However, their hybrid nature makes them di�cult
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to harness by both continuous and discrete optimization techniques. We propose to interpret the
switching costs as a sparsity-inducing regularization of the switching times. Following a �rst dis-
cretize, then optimize approach, this yields a constrained structured optimization problem. Despite the
cardinality function being discontinuous, we show the numerical method developed in Chapter 1 is
still applicable. The proposed methodology is applied to constrained STO problems with nonlinear
dynamics and switching costs. We provide ScSTO, a modelling tool in Julia for STO problems with
switching costs, available online. Solvers available in Bazinga can be invoked through the interface
provided by OptiMo.

Based on:

[221] A. De Marchi. “On the Mixed-Integer Linear-Quadratic Optimal Control with Switching Cost”.
In: IEEE Control Systems Letters 3.4 (Oct. 2019), pp. 990–995. doi: 10.1109/LCSYS.2019.2920425;

[235] A. De Marchi. “Constrained and Sparse Switching Times Optimization via Augmented La-
grangian Proximal Methods”. In: 2020 American Control Conference (ACC). Denver, CO, USA:
IEEE, 2020, pp. 3633–3638. doi: 10.23919/ACC45564.2020.9147892;

[237] A. De Marchi and M. Gerdts. “Sparse Switching Times Optimization and a Sweeping Hessian
Proximal Method”. In: Operations Research Proceedings 2019. Ed. by J. S. Neufeld, U. Buscher,
R. Lasch, D. Möst, and J. Schönberger. Cham: Springer, 2020, pp. 89–95. doi: 10.1007/978-3-030-
48439-2_11;

• ScSTO, 2020. url: h�ps://github.com/aldma/ScSTO.jl.

Chapter 3 deals with convex quadratic programming (QP), a fundamental topic in optimization.
Building upon augmented Lagrangian and proximal methods, we develop a simple, yet e�cient and
robust, numerical method for convex QPs. The tailored design exploits and preserves their structure,
while taking advantage of the regularization induced by the proximal augmented Lagrangian approach.
The theoretical convergence properties of the proposed scheme are investigated, as well as the
relationships with other numerical methods for convex quadratic programming. We implemented
our algorithm in open-source C code and benchmarked it against state-of-the-art QP solvers, with
promising results.

Based on:

[236] A. De Marchi. On a Primal-Dual Newton Proximal Method for Convex Quadratic Programs.
Submitted. Dec. 2020. doi: 10.13140/RG.2.2.33215.12964;

[256] QPDO, 2021. url: h�ps://github.com/aldma/qpdo.

Chapter 4 contains some �nal remarks and conclusions, and outlines directions of future research.

0.2 Notation and Preliminaries

Throughout this thesis, the notation aims to be simple and intuitive, yet precise; it follows the standard
notation of optimization and analysis books [191, 180, 143, 163]. For the sake of clarity, we now properly
specify the adopted conventions, and brie�y recap known de�nitions and facts. The interested reader
is referred for more details to the aforementioned monographs.

Numbers and sets

The set of natural numbers is denoted by N, and we adopt the convention that 0 ∈ N. The set of
integer, real, and extended-real numbers are denoted by Z, R, and R := R ∪ {∞}, respectively. The
symbol := denotes a de�nition. Unless di�erently speci�ed, we adopt the convention that 1/0 = ∞.
The set of positive real numbers is indicated as R+ := [0,∞), and that of strictly positive real numbers
as R++ := (0,∞). In Rn , the relations <, ≤, =, ≥, and > are understood component-wise.
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Given a,b ∈ R, we indicate with (a,b) and [a,b], respectively, the open and closed (possibly
extended-real) intervals having a and b as endpoints. Intervals (a,b] and [a,b) are de�ned accordingly.
Occasionally, (a,b) may also indicate a pair or a vector in R2, however the context will always be
explicit enough to avoid confusion. [a;b], (a;b), [a;b), and (a;b] stand for discrete intervals, e.g.,
[a;b] = [a,b] ∩ Z.

The closure and interior of E ⊆ Rn are denoted as clE and intE, respectively. The boundary of E
is ∂E := clE \ intE. With Br (x) we indicate the closed ball centered at x with radius r .

Vectors and matrices

Then×n identity matrix is denoted as In , and the Rn vector with all elements equal to 1 as 1n ; whenever
n is clear from context we simply write I and 1, respectively. We use the Kronecker symbol δi, j for the
(i, j)-th entry of I . Given a vector v ∈ Rn , v> denotes its transpose and vi its i-th component. With
diag v we indicate the n × n diagonal matrix whose i-th diagonal entry is vi .

Sym(Rn), Sym+(Rn), and Sym++(Rn) denote respectively the set of symmetric, symmetric positive
semide�nite, and symmetric positive de�nite matrices in Rn×n . For Q , R ∈ Sym(Rn) we write Q � R
to indicate thatQ−R ∈ Sym+(Rn), and similarlyQ � R indicates thatQ−R ∈ Sym++(Rn). Any matrix
Q ∈ Sym+(Rn) induces the semi-norm ‖ · ‖Q on Rn , where ‖x‖2Q := 〈x,Qx〉; in case Q = I , that is,
for the Euclidean norm, we omit the subscript and simply write ‖ · ‖. No ambiguity occurs in adopting
the same notation for the induced matrix norm, namely ‖M ‖ := max{‖Mx‖ : x ∈ Rn , ‖x‖ = 1} for
M ∈ Rn×n . For p ∈ [1,∞], the `p norm on Rn is denoted by ‖ · ‖p , where

‖x‖∞ := max{|xi | : i = 1, . . . ,n}, and ‖x‖p :=

(
n∑
i=1
|xi |

p

) 1/p

,

for p ∈ [1,∞). The de�nition extends to p ∈ (0, 1) as well, although in this case ‖ · ‖p is not subadditive
and thus is only a quasi-norm. The `0 quasi-norm, namely ‖x‖0 := nnz(x) the number of nonzero
entries of x, additionally fails to be homogeneous.

Sequences

The notation {ak }k ∈K represents a sequence indexed by elements of the set K , and given a set A we
write {ak }k ∈K ⊂ A to indicate that ak ∈ A for all indices k ∈ K . We may omit the index set, and write
just {ak } ⊂ A, when K = N or the K is clear from the context without ambiguity.

De�nition 0.2.1. A sequence {xk } ⊂ Rn of iterates is said to be q-convergent with limit x? ∈ Rn if
there exists p ≥ 1 and µ ∈ [0, 1) ⊂ R such that

lim
k→∞

‖xk+1 − x?‖
‖xk − x?‖p

= µ .

If p = 1, the sequence is said to converge q-linearly. If in addition µ = 0, the sequence is said to
converge q-superlinearly. If p = 2, the sequence is said to converge q-quadratically.

We will adopt the big-O and small-o notation: given sequences {xk } ⊂ R and {ϵk } ⊂ R++, we
write xk ∈ O(ϵk ) and xk ∈ o(ϵk ) to indicate that

lim sup
k→∞

|xk |

ϵk
< ∞ and lim

k→∞

|xk |

ϵk
= 0,

respectively.

Extended-real-valued functions

Given a function h : Rn → R, its domain is the set domh := {x ∈ Rn : h(x) < ∞}, while its epigraph
is epih := {(x,y) ∈ Rn ×R : h(x) ≤ y}. Function h is said to be proper if domh , ∅. We say h is lower
semicontinuous if epih is a closed set in Rn+1.
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Set-valued mappings

We use the notation H : Rn ⇒ Rm to indicate a point-to-set function, that is, a mapping from Rn

to the set of all subsets of Rm . The domain of H is the set domH := {x ∈ Rn : H (x) , ∅}, while its
graph is gphH := {(x, y) ∈ Rn ×Rm : y ∈ H (x)}.

For notational simplicity, in case H (x) is a singleton we may treat it as a point rather than a set,
allowing notational abuses such as H (x) = y as opposed to H (x) = {y}.

The projection onto a nonempty and closed set S ⊆ Rn will be meant in the set-valued sense;
namely, ΠS : Rn ⇒ Rn is de�ned by ΠS (x) := arg minz∈S ‖z − x‖. With distS (x) := infz∈S ‖z − x‖ we
indicate the distance of x from S .

Subdi�erential

Consider a proper and lower semicontinuous function h : Rn → R and a point x with h(x) �nite. A
vector v ∈ Rn is a regular subgradient of h at x, denoted by v ∈ ∂̂h(x) [143, Def. 8.3], if

lim
x→x
x,x

h(x) − h(x) − v>(x − x)
‖x − x‖

≥ 0.

We denote by ∂̂h : Rn ⇒ Rn the regular subdi�erential of h. The following result is given in [143,
Thm 10.1].

Lemma 0.2.2. Let h : Rn → R be proper and lower semicontinuous. If x is a local minimizer for h,
then 0 ∈ ∂̂h(x).

The (limiting) subdi�erential of h is ∂h : Rn ⇒ Rn , and v ∈ ∂h(x) if and only if there exists a
sequence {(xk , vk )} ⊆ gph ∂̂h such that limk→∞(xk ,h(xk ), vk ) = (x,h(x), v).

Let X ⊆ Rn be a convex set and f : X → R. The conjugate function of f is f ∗ : X ∗ → R de�ned
as

f ∗(z) := sup
x∈X

z>x − f (x),

where
X ∗ :=

{
z ∈ Rn : sup

x∈X
z>x − f (x) < ∞

}
.

Proximal map and Moreau envelope

The proximal mapping [18] of a function д : Rn → R with parameter γ > 0 is the set-valued map
proxγд : Rn ⇒ domд de�ned by

proxγд(x) := arg min
z∈Rn

{
д(z) +

1
2γ
‖z − x‖2

}
.

This can be interpreted as an approximate gradient step for д [170]; when д is di�erentiable and γ is
su�ciently small, it is proxγд(x) ≈ x−γ∇д(x). We say that a function д is prox-bounded if д+ 1

2γ ‖ · ‖
2

is bounded from below for some γ > 0. The supremum of all such γ — which is possibly in�nite, as it
is the case when д is lower bounded or convex — is the threshold of prox-boundedness of д, denoted
as γд . The value function of the minimization problem de�ning the proximal mapping is the Moreau
envelope with parameter γ , denoted дγ : Rn → R, namely

дγ (x) := inf
z∈Rn

{
д(z) +

1
2γ
‖z − x‖2

}
.

The proximal mapping can be regarded as a generalized projection, in the sense that if χS is the
characteristic function of a nonempty set S ⊆ Rn , i.e.,

χS (x) :=

{
0 if x ∈ S,
+∞ otherwise,

(0.2.1)
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then proxγ χS = ΠS is the projection onto S for any γ > 0. Properties of the Moreau envelope
and the proximal mapping are well documented in the literature [143, 140, 191]. For a proper, lower
semicontinuous function д, it holds дγ ≤ д.

If д is also convex, then proxγд is single-valued and continuous, and дγ is convex and continuously
di�erentiable, with gradient

∇дγ (x) =
x − proxγд(x)

γ
, (0.2.2)

which is γ−1-Lipschitz continuous [191, Prop. 12.29].
Structured optimization [229, 200, 214] is concerned with problems in the form

minimize
x∈Rn

φ(x) := f (x) + д(x). (0.2.3)

Here, function f : Rn → R is di�erentiable with Lf -Lipschitz continuous gradient, function д : Rn →

R is proper, lower semicontinuous and prox-bounded with threshold γд , and arg minφ , ∅; cf. [215,
Ass. I]. Points of interest can be classi�ed based on their strength as solution candidate.

De�nition 0.2.3. A point x? ∈ domφ is called

• optimal if x? ∈ arg minφ, i.e., if it solves (0.2.3),

• critical if x? ∈ proxγд
(
x? − γ∇f (x?)

)
for some γ ∈ (0,γд),

• stationary if 0 ∈ ∂̂φ(x?).

It is shown in [215, Prop. 3.5] that

optimality ⇒ criticality ⇒ stationarity.

Thus, criticality is a halfway property between stationarity and optimality. In light of these relations,
critical points satisfy a stronger necessary condition than mere stationary points. We refer to [215, §3]
for a detailed discussion.

The forward-backward splitting (FBS) algorithm, also known as proximal gradient method, is a
well-known algorithm for addressing structured optimization problems. Based on the recurrence

xk+1 ∈ proxγд (xk − γ∇f (xk )) , γ ∈ (0,γд),

it only requires ∇f and proxγд as oracles and converges to a critical point under very mild assumptions
[155]. The key is the following su�cient decrease property, whose proof can be found in [164, Lem.
2].

Lemma 0.2.4. Suppose д is prox-bounded with threshold γд . Let x ∈ Rn be arbitrary. Then, for all
γ ∈ (0,γд) and for any x ∈ proxγд(x − γ∇f (x)), it holds

φ(x) ≤ φ(x) −
1 − γLf

2γ
‖x − x‖2.

Apparently, selecting anyγ ∈ (0,min{γд, 1/Lf }) guarantees that every forward-backward (or proximal-
gradient) step yields su�cient decrease of the objective function φ.

The forward-backward envelope (FBE), �rst proposed in [161], serves as a real-valued, continuously
di�erentiable, exact penalty function for the original problem (0.2.3). Hence, it allows to bridge the
gap between structured optimization and smooth unconstrained optimization; cf. [200, 214]. The FBE
of φ with parameter γ > 0 is given by

φγ (x) := inf
z∈Rn

{
f (x) + ∇f (x)>(z − x) +

1
2γ
‖z − x‖2 + д(z)

}
. (0.2.4)

Remarkably, the FBE can be computed solely based on the same oracles required by the FBS, namely
∇f and proxγд , and it is a surrogate of the Moreau envelope [18] for structured problems of the form
(0.2.3).
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First-order necessary conditions

Let us consider a general nonlinear program (NLP) in the form

minimize
x∈Rn

f (x) (0.2.5)

subject to ci (x) = 0 i ∈ E

ci (x) ≤ 0 i ∈ I,

where f : Rn → R and c : Rn → Rm are all smooth, real-valued functions, and E and I are two �nite
sets of indices, such that E ∪ I = [1;m]. As before, we call f the objective function, while ci , i ∈ E,
are the equality constraints and ci , i ∈ I, are the inequality constraints. The Lagrangian function for
the constrained problem (0.2.5) is de�ned as

L(x, y) := f (x) + y>c(x). (0.2.6)

Regularity conditions known as constraint quali�cations are adopted to ensure degenerate behavior
does not occur at points of interest. One such constraint quali�cation, often used albeit strong, is the
following one [112, Def. 12.1].

De�nition 0.2.5. Given a point x, the linear independence constraint quali�cation (LICQ) holds if the
set of active constraint gradients {∇ci (x) : i ∈ E ∨ ci (x) = 0} is linearly independent.

Note that if this condition holds, none of the active constraint gradients can be zero. In practice,
weaker constraint quali�cations are preferred since they provide stronger optimality conditions [180,
Chap. 4].

Constraint quali�cations allow us to establish necessary optimality conditions for the general
NLP in (0.2.5) [112, Thm. 12.1]. We refer to these as �rst-order conditions because they involve the
gradients of the objective and constraint functions. The conditions (0.2.7) below are known as the
Karush–Kuhn–Tucker (KKT) conditions, tracing back to [7, 10].

Theorem 0.2.6. Suppose that x? ∈ Rn is a local solution of (0.2.5) and that the LICQ holds at x?.
Then there exists a unique Lagrange multiplier vector y? ∈ Rm such that

∇xL(x?, y?) = 0 (0.2.7a)
ci (x?) = 0 i ∈ E (0.2.7b)

max
(
ci (x?),−yi?

)
= 0 i ∈ I. (0.2.7c)

Points that satisfy the KKT conditions will be called KKT points. From this perspective, the KKT
conditions are pointwise, while the approximate, or asymptotic, KKT (AKKT) conditions are sequential
optimality conditions. These appear in the following de�nition, from [163, Def. 3.1].

De�nition 0.2.7. We say that x? ∈ Rn satis�es the AKKT conditions for (0.2.5) if x? is feasible and
there exist sequences {xk } ⊆ Rn and {yk } ⊆ Rm such that

lim
k→∞

xk = x? (0.2.8a)

lim
k→∞
∇xL(xk , yk ) = 0 (0.2.8b)

lim
k→∞

ci (xk ) = 0 i ∈ E (0.2.8c)

lim
k→∞

max
(
ci (xk ),−yik

)
= 0 i ∈ I. (0.2.8d)
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Note that, unlike KKT, the AKKT conditions hold at every local minimizer of an optimization
problem independently of the ful�llment of constraint quali�cations. Constraint quali�cations are
properties of the constraints of optimization problems that, when satis�ed at a local minimizer x,
independently of the objective function, imply that x ful�lls the KKT condition [163, §3.1.2]. Sequential
optimality conditions constitute an active �eld of research [129, 136, 216], also in relation with the
design and analysis of optimization algorithms [228].

Semismoothness

We present here some general results concerning the concept of semismoothness, �rstly introduced
in [32]; see also [57, 56, 65, 76] and [47, 54].

A function h : Rn → R is directionally di�erentiable at x ∈ domh if for every d ∈ Rn the limit

h′(x; d) := lim
τ→0+

h(x + τd) − h(x)
τ

(0.2.9)

exists. The quantity h′(x; d) is the directional derivative of h at x along direction d. For a vector-valued
function f : Rn → Rm , ∇f(x) := f ′(x)> denotes the Jacobian matrix of f at x ∈ Rn . The following
de�nitions are taken from [69].

De�nition 0.2.8. A locally Lipschitzian function f : Rn → Rm is semismooth at x ∈ Rn if

lim
V ∈∂f(x+td′)
d′→d,t ↓0

{Vd′}

exists for any d ∈ Rn .

Herein, ∂f denotes the generalized subdi�erential of f [40]

∂f(x) := convh

 lim
xk ∈Df

xk→x

∇f(xk )


where Df is the set where f is di�erentiable and convh denotes the convex hull. If f is semismooth at
x, then f is directionally di�erentiable at x and f ′(x; d), that is, the directional derivative of f at x in
the direction d, is equal to the limit in De�nition 0.2.8.

De�nition 0.2.9. Suppose f : Rn → Rm is semismooth at x ∈ Rn . Then, f is strongly semismooth at
x if for any V ∈ ∂f(x + d), d→ 0,

Vd − f ′(x; d) = O
(
‖d‖2

)
.

Note that strong semismoothness is also referred to as 1-order semismoothness [57].
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Chapter 1

Constrained Structured Optimization

This chapter introduces the problem class considered in this thesis, develops a numerical method based on
the augmented Lagrangian and proximal frameworks, investigates its convergence properties, and reports
on numerical results.

Some ideas contained in this chapter appear in [235].

1.1 Introduction

Augmented Lagrangian and proximal methods have recently attracted revived and grown
interest. While the latter easily handle nonsmooth and extended-real valued terms, the former

are able to e�ciently tackle large-scale constrained problems. This chapter introduces the class
of constrained structured optimization problems, and develops a numerical method for their solution.
This builds upon both the augmented Lagrangian framework, which traces back to the classical work
of Hestenes [21], Powell [22, 35], and Rockafellar [29], and proximal methods inaugurated by Moreau
[18]. More recent accounts on these topics can be found in [49, 62, 163] and [170, 214]. Part of this
chapter is based on the generalized and proximal augmented Lagrangian approaches, described in
details in [114, 149] and [222].

We are interested in nonlinear, nonconvex, nonsmooth Constrained Structured Programs (NCSPs),
namely optimization problems of the form

minimize
x∈Rn

φ(x) := f (x) + д(x) subject to c(x) ∈ S, (1.1.1)

where x is the decision variable, f andд form the objective function φ, c represents the constraints, and
S is the constraint set. As such, NCSPs are �nite-dimensional optimization problems with structured
objective function subject to constraints.

The following blanket assumptions are considered throughout the rest of this chapter:

• f : Rn → R and ci : Rn → R, i ∈ [1;m], are continuously di�erentiable functions with
Lipschitz continuous gradient;

• д : Rn → R is a proper, lower semi-continuous, extended-real valued function; д is continuous
on its domain Ω := domд, which is a convex compact set in Rn ;

• S ⊆ Rm is a nonempty, closed, possibly nonconvex set;

• the feasible set D := {x ∈ Rn : c(x) ∈ S} ∩ Ω is nonempty and closed;

• the set of feasible minimizers is nonempty, namely arg minx∈D φ(x) , ∅.

Moreover, we work under the practical assumption that the proximal mapping of д and the projection
onto S can be e�ciently evaluated at any point, namely that
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• given any x ∈ Rn , any γ > 0, and any v ∈ Rm , it is required negligible computational e�ort to
�nd arbitrary x ∈ proxγд(x) and v ∈ ΠS (v).

The method proposed in this chapter heavily relies on these two oracles, which are, indeed, the only
way both the objective д and the constraint set S are accessed.

Note. Signal processing, statistics, and numerical optimization have always in�uenced each other
[229]. Classical examples are regularized inverse problems, such as penalized least-squares problems,
among others [63, 116, 174]. In common applications, function д represents a regularization or sparsity-
inducing term, and can be, e.g., the `0 or `1 norms. For these and many other functions, the proximal
operator can be expressed analytically or evaluated very e�ciently. The same applies to the projection
operator of the constraint set S , which often is convex, a polytope, or consists of the union of closed,
convex sets [206]. For an exhaustive list of functions arising in many applications, see [138, 170] and
the collections in [186, 258, 252].

Structured optimization deals with the minimization ofφ := f +д, without any (explicit) restrictions.
Proximal algorithms (also known as operator splitting techniques) are often the methods of choice due
to their simplicity and versatility [214]. For an overview on this topic, we refer to [139, 140, 138, 200,
229, 234]. In this context, constraints are usually enforced via the nonsmooth term д, including the
characteristic function of the feasible set. An analogous procedure can be adopted to deal with (1.1.1).
As function д is allowed to be extended-real valued and nonsmooth, one could move the constraint
c(x) ∈ S into the objective function by replacing д with д̃ : Rn → R de�ned as д̃(x) := д(x)+ χS (c(x))
for any x ∈ Rn . In this thesis, however, we face NCSPs from a di�erent perspective, in order to
shed light on the relationships between methods arising in di�erent optimization contexts, such as
proximal techniques for structured optimization and augmented Lagrangian methods for nonlinear
programming. The latter approach is considered here because it is based on a sequence of unconstrained
or simply constrained subproblems, it can handle nonconvex constraints and is often superior to pure
penalty methods, and it enjoys good warm-starting capabilities; see [49, 180, 242]. It allows to avoid
ill-conditioning due to a pure penalty approach and to deal with constraints without softening them,
in contrast with [202, 209, 257]. In this framework, proximal methods play a key role, since NCSPs
yield subproblems in the form of structured optimization problems.

The contribution is outlined as follows. Necessary conditions are derived in §1.2, which characterize
solutions and form the basis for designing a numerical method. The shifted penalty approach is
introduced and discussed in §1.3. Further development in §1.4 yields the augmented Lagrangian
proximal method. The designed algorithm is presented in §1.5, along with its convergence analysis.
Finally, implementation details and numerical evaluations are reported in §1.6.

1.2 Optimality Conditions

Constrained optimization aims at �nding the lowest possible value of an objective function within a
given domain, the feasible set of the decision variable. If the feasible set D is nonempty, we say the
problem is feasible, and a point x ∈ Rn is called feasible if x ∈ D. A point x? ∈ D is referred to as a
(strict) global minimizer if φ(x?) ≤ φ(x) (<) for all x ∈ D. Instead, it is referred to as a (strict) local
minimizer if there exists ϵ > 0 such that φ(x?) ≤ φ(x) (<) for all x ∈ D ∩ Bϵ (x?). The value of φ at
a (local or global) minimizer will be called (local or global) minimum. If D is compact (closed and
bounded in Rn), the Bolzano–Weierstrass theorem guarantees that a (global) minimizer of φ over D
exists.

Global optimization techniques are available that tackle the task of �nding a global minimizer,
which is usually very hard. In this thesis, we focus on a�ordable, iterative algorithms [163, §3], which only
guarantee convergence to points that satisfy some necessary optimality condition. These are conditions
that necessarily hold at every local (or global) minimizer. In general, points that satisfy necessary
optimality conditions are only candidate, i.e., probable, minimizers. In nonlinear programming, points
that satisfy necessary optimality conditions are usually said to be stationary or critical. In structured
optimization, instead, a hierarchy of optimal, critical, and stationary points exist [215, Prop. 3.5]:

optimality ⇒ criticality ⇒ stationarity.
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This means optimal points are necessarily critical, and critical ones are necessarily stationary. Moreover,
for iterative methods, it is useful to rely on sequential optimality conditions. These consider sequences
of points, instead of single points, and thus inspire termination criteria for iterative methods; see, e.g.,
[136, 228] and [163, 173]. The following result gives necessary, sequential optimality conditions for the
NCSP in (1.1.1).

Theorem 1.2.1. Let x? be a feasible local minimizer for problem (1.1.1). Assume that f and c admit
�rst derivatives in a neighborhood of x?. Then, there exist sequences {xk } ⊂ Rn , {yk } ⊂ Rm , and
{ηk } ⊂ R++ such that

lim
k→+∞

xk = x? (1.2.1)

lim
k→+∞

distS (c(xk )) = 0 (1.2.2)

lim
k→+∞

‖c(xk ) − ΠS (c(xk ) + ηkyk )‖ = 0 (1.2.3)

lim
k→+∞




xk − proxγkд
(
xk − γk

[
∇f (xk ) + ∇c(xk )>yk

] )


 = 0 (1.2.4)

for all {γk } ⊂ R++ su�ciently small.

Proof. The proof is divided into four main steps, one for each condition, and follows standard arguments
[163, 180].

(i) First, based on an auxiliary problem, we construct a sequence {xk } which admits a limit point x
and then we show that x coincides with x?. By hypothesis, there exists ϵ > 0 such that x? is a global
minimizer of φ on D ∩ Bϵ (x?). Therefore, x? is the unique global minimizer of φ(x) + ‖x − x?‖2 on
D ∩ Bϵ (x?). Consider, for all k ∈ N, the problem

minimize
x∈Bϵ (x?)

φ(x) +
k

2
dist2

S (c(x)) + ‖x − x
?‖2, (1.2.5)

which admits a solution xk ∈ Bϵ (x?), by the Bolzano–Weierstraß theorem. Since Bϵ (x?) is compact
and, by de�nition, xk ∈ Bϵ (x?) for all k ∈ N, there exists a limit point x ∈ Bϵ (x?) and a subsequence
K ⊂ N such that limk ∈K xk = x. By de�nition of xk , for all k ∈ N, it holds

φ(xk ) +
k

2
dist2

S (c(xk )) + ‖xk − x
?‖2 ≤ φ(x?) +

k

2
dist2

S
(
c(x?)

)
+ ‖x? − x?‖2

= φ(x?), (1.2.6)

since x? is a feasible point. By continuity of φ and c, taking the limit for k ∈ K , (1.2.6) yields
dist2

S (c(x)) = 0. Thus, x is a feasible point too. Furthermore, since the term k dist2
S (c(xk )) is non-

negative, we have from (1.2.6) that φ(xk ) + ‖xk − x?‖2 ≤ φ(x?). Taking the limit for k ∈ K gives
φ(x)+ ‖x−x?‖2 ≤ φ(x?). However, since x ∈ Bϵ (x?) and x? is the global minimizer ofφ(x)+ ‖x−x?‖2
on D ∩ Bϵ (x?), it must be that x = x?. This proves (1.2.1).

(ii) By (i), feasibility of x?, continuity of c and distS , (1.2.2) readily follows.
(iii) Due to (i), for su�ciently large k ∈ K , it is xk ∈ intBϵ (x?). Hence, xk is a unconstrained

optimal point for (1.2.5), therefore it is also critical [215]. Let ψk : Rn → R collect the terms in the
objective function of (1.2.5) apart from д, namely

ψk (x) := f (x) +
k

2
dist2

S (c(x)) + ‖x − x
?‖2.

Without explicit constraints on x for (1.2.5), since xk ∈ intBϵ (x?), it necessarily holds

xk ∈ proxγkд (xk − γk∇ψk (xk )) (1.2.7)

for some γk > 0 su�ciently small. Direct calculation yields

∇ψk (xk ) = ∇f (xk ) + k∇c(xk )> [c(xk ) − p(xk )] + 2(xk − x?), (1.2.8)
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with p(xk ) ∈ ΠS (c(xk )), showing that ∇ψk is possibly set-valued. By de�ning

yk := k [c(xk ) − p(xk )] (1.2.9)

and taking the limit for k ∈ K , (1.2.7)–(1.2.9) yield (1.2.4).
(iv) It remains to prove that the sequences {xk }, {yk } constructed in (i) and (iii) satisfy (1.2.3) for

some sequence {ηk } ⊂ R++. Let us consider two cases: (a) there exists k0 ∈ N such that c(xk ) ∈ S for
all k ≥ k0, k ∈ K , or (b) c(xk ) ∈ Rm \ S for all k ∈ K .

(iv-a) It is ΠS (c(xk )) = c(xk ), and thus yk = 0 by (1.2.9), for all k ≥ k0, k ∈ K . Then, by continuity
of distS , (1.2.3) follows.

(iv-b) For such sequence, it is pk := p(xk ) , c(xk ) and yk , 0 for all k ∈ K . Let us denote
wk := c(xk ) + ηkyk , for some ηk > 0, and zk ∈ ΠS (wk ) for any k ∈ K . Hence, (1.2.3) can be expressed
as limk→+∞ ‖c(xk ) − zk ‖ = 0. Moreover, we have the following upper bound

‖c(xk ) − zk ‖ ≤ ‖c(xk ) −wk ‖ + ‖wk − zk ‖
≤ ‖c(xk ) −wk ‖ + ‖wk − pk ‖
= ‖wk − c(xk )‖ + ‖wk − c(xk ) + c(xk ) − pk ‖
= ‖ηkyk ‖ + ‖ηkyk + c(xk ) − pk ‖
= kηk ‖c(xk ) − pk ‖ + (kηk + 1)‖c(xk ) − pk ‖
= (2kηk + 1) distS (c(xk )) , (1.2.10)

where the �rst line is due to the triangle inequality, and the second holds because, by de�nition, zk
has minimum distance to wk . The following lines are obtained by considering (1.2.9), ηk > 0, k ≥ 0,
and the de�nitions of wk and distS . Therefore, by using (ii), it is su�cient to select {ηk } ⊂ R++ such
that {kηk } is bounded in order to guarantee that limk→+∞ ‖c(xk ) − zk ‖ = 0. This implies (1.2.3), and
concludes the proof. �

Note that parameters γk and ηk are positive scalars in Theorem 1.2.1. Nonetheless, with minor mod-
i�cations, they can be replaced by positive de�nite matrices, as in [208, 224] and [49]. In practice,
algorithms may bene�t from a �ner tuning of parameters, for controlled ill-conditioning and improved
regularization.

Theorem 1.2.1 closely matches the approximate KKT, or AKKT, conditions in NLP, which are the
sequential counterpart of the classical KKT conditions [136], widely discussed in the literature [112,
163, 180]. Condition (1.2.4) corresponds to the stationarity of the Lagrangian function, extended to
structured optimization. Similarly, (1.2.3) replaces the transversality conditions. Indeed, by considering
constraints of the form c(x) ≤ 0, and hence the set S := Rm

− , (1.2.3) simpli�es and the classical condition
is recovered, namely limk→+∞ ‖max{c(xk ),−yk }‖ = 0. We highlight the latter does not depend on
the sequence {ηk }, by convexity of S . Indeed, due to the hidden, possibly nontrivial structure of S ,
de�ning a complementarity condition for NCSP is not straightforward. The following result shows
yet another necessary condition, on the vein of [129, 173], which aims at enforcing feasibility and
complementarity separately.

Proposition 1.2.2. Let x? be a feasible local minimizer for problem (1.1.1). Assume that f and
c admit �rst derivatives in a neighborhood of x?. Let the sequences {xk } ⊂ Rn , {yk } ⊂ Rm ,
{γk } ⊂ R++, and {ηk } ⊂ R++ be constructed as in Theorem 1.2.1. Then, it holds

lim
k→+∞

〈yk , c(xk ) − ΠS (c(xk ))〉 = 0. (1.2.11)

Proof. By continuity of φ, (1.2.1), and nonnegativity of the distance, taking the limit for k → +∞ in
(1.2.6) yields limk→+∞ k dist2

S (c(xk )) = 0. Thus, it is

0 = lim
k→+∞

k dist2
S (c(xk )) = lim

k→+∞
k ‖c(xk ) − p(xk )‖2 = lim

k→+∞
〈yk , c(xk ) − p(xk )〉

with p(xk ) and yk as de�ned in Theorem 1.2.1. The result readily follows. �
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Condition (1.2.11) resembles a transversality condition, but it is not. In fact, since c(x) = ΠS (c(x))
for every c(x) ∈ S , it does not guarantee limk→∞ yk = 0 in the case limk→∞ c(xk ) ∈ int S . Instead,
condition (1.2.3) generalizes the classical transversality condition, in that it combines feasibility and
complementarity. Unfortunately, it introduces the need for an additional positive parameter η, which
scales the dual variable y and makes the transversality conditions dependent on its direction only.
It is apparent that (1.2.3) implies feasibility of the limit point. The following result shows that, for a
strictly feasible minimizer, i.e. c(x?) ∈ int S , condition (1.2.3) guarantees the dual variable vanishes, i.e.
limk→+∞ yk = 0.

Proposition 1.2.3. Suppose S has nonempty interior. Let x? be a feasible (local) minimizer for
problem (1.1.1). Let the sequences {xk } ⊂ Rn , {yk } ⊂ Rm , and {ηk } ⊂ R++ satisfy (1.2.3). Let
K ⊂ N be a subsequence such that limk ∈K xk = x?. Then, if c(x?) ∈ int S , it is yk = 0 for all k ∈ K
su�ciently large.

Proof. By continuity of c, there exists k0 ∈ N such that c(xk ) ∈ int S for all k ≥ k0, k ∈ K . Therefore,
since ηk > 0 for all k , it follows from (1.2.3) that yk = 0 for all k ≥ k0, k ∈ K , yielding the result. �

It remains to show that, for c(x?) ∈ ∂S , the dual variable points outwards and is normal to S at c(x?),
in the sense of the following de�nition, which extends concepts usually adopted for convex sets.

De�nition 1.2.4. Let a closed set S ⊂ Rm and a point s ∈ ∂S be given. A vector v ∈ Rm is said to
point outwards S at s if and only if v , 0 and there exists a scalar α > 0 such that s + αv < S for all
α ∈ (0,α]. A vector v is said to be normal to S at s if and only if v , 0 and there exists a scalar α > 0
such that s ∈ ΠS (s + αv) for all α ∈ [0,α].

Notice that, for a nonconvex set S , the scaling factor α > 0 is needed in a projection-based
de�nition, in order to account only for the direction of v, and not for its magnitude, analogously to ηk
in (1.2.3). Moreover, a vector v normal to S at s necessarily points outwards S at s. Since Theorem 1.2.1
gives sequential optimality conditions, we seek a sequential transversality condition, i.e., the dual
variable is expected to be pointing outwards and normal to S only asymptotically.

Proposition 1.2.5. Let x? be a feasible local minimizer for problem (1.1.1). Let the sequences {xk } ⊂
Rn , {yk } ⊂ Rm , and {ηk } ⊂ R++ satisfy (1.2.3). Let K ⊂ N be a subsequence such that limk ∈K xk =
x?. Moreover, suppose that for all k0 ∈ K there exists k ≥ k0 such that yk , 0. Then, it is c(x?) ∈ ∂S
and either limk→+∞ yk = 0 or the elements of the sequence {yk }k ∈K asymptotically point outwards
and are normal to S at c(x?), in the sense of De�nition 1.2.4.

Proof. From the feasibility of x? and (the negation of) Proposition 1.2.3, we deduce that c(x?) ∈ ∂S .
By (1.2.3), it is limk→∞ ‖c(xk ) − ΠS (c(xk ) + ηkyk )‖ = 0. Since ηk > 0 for all k , this implies that
either the dual sequence vanishes or it is asymptotically normal to S , and thus pointing outwards, at
limk→+∞ c(x) = c(x?). �

Let us brie�y elaborate on the optimality condition (1.2.7), given above for the unconstrained
subproblem. Here we show that (1.2.7) is a valid necessary optimality condition, despite the gradient
ofψ being possibly a set-valued mapping, in case S is nonconvex. Firstly, we equivalently reformulate
the subproblem (1.2.5) as

minimize
x∈Bϵ (x?), z∈Rm

φ(x) + χS (z) +
k

2
‖z − c(x)‖2 + ‖x − x?‖2, (1.2.12)

which is a structured optimization problem, whose objective function is proper, lower semi-continuous,
and extended-real valued, and consists of two terms. Let us denote

ψ z (x, z) := f (x) +
k

2
‖z − c(x)‖2 + ‖x − x?‖2
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the continuously di�erentiable term, whose gradient reads

∇ψ z (x, z) =
(
∇f (x) + k∇c(x)> [c(x) − z] + 2(x − x?)

k [z − c(x)]

)
.

The remaining, nonsmooth term is given by дz (x, z) := д(x) + χS (z) and, thanks to the separable
structure, for any given γ > 0, its proximal mapping is

proxγдz (x, z) =
(
proxγд(x)

ΠS (z)

)
.

An unconstrained solution (xzk , z
z
k ) of (1.2.12) necessarily satis�es

xzk ∈ proxγ zk д
(
xzk − γ

z
k∇xψ

z (xzk , z
z
k )

)
for some γ zk > 0 su�ciently small [170, 214]. Moreover, by looking at (1.2.12), it is apparent the optimal
value zzk for z must be the point in S closest to c(xzk ), that is, zzk ∈ ΠS (c(xzk )). Thus, it is zzk = c(xzk ) if
c(xzk ) ∈ S and, if c(xzk ) < S , zzk ∈ ∂S and the vector vzk := c(xzk ) − z

z
k , 0 points outwards and is normal

to S at zzk , according to De�nition 1.2.4, since

zzk ∈ ΠS
(
c(xzk )

)
= ΠS

(
zzk + v

z
k
)

and therefore zzk ∈ ΠS (zzk + αv
z
k ) for all α ∈ [0, 1]. Comparing with Theorem 1.2.1, it is su�cient to

(arbitrarily but accordingly) select p(xzk ) = zzk ∈ ΠS (c(xzk )) in order to recover the same expressions.
Not only this shows the optimality condition (1.2.4) is valid, but also provides a glimpse on how to
exploit the structure of NCSP for an implicit treatment of slack variables. This idea is made more
precise in §1.4, by introducing the augmented Lagrangian proximal framework.

1.3 Shifted Penalty Method

Consider the NCSP in (1.1.1). The penalty method is a simple yet e�ective approach for constrained
optimization [20, 180]. Thanks to the continuity assumptions on φ and c, it can be applied to solve
(1.1.1). This relies on the concept of penalty function. A function p : Rm → R is called a penalty
function for the nonempty set S ⊆ Rm if the following hold:

p(z) = 0 ⇔ z ∈ S (1.3.1a)
p(z) > 0 ⇔ z < S (1.3.1b)

As the name suggests, this function is adopted for discouraging constraint violations. In fact, a
constrained problem is tackled by solving a sequence of unconstrained problems of the form

minimize
x∈Rn

qk (x) := φ(x) + ηkp (c(x)) (1.3.2)

for some strictly increasing sequence {ηk } ⊂ R+, with limk→+∞ ηk = +∞. Note that qk plays the role
of a (parametric) merit function, which balances objective and constraint violations. Denoting xk an
unconstrained minimizer of qk , it is well-known that any limit point x of the sequence {xk } is indeed
a solution to the original constrained problem (1.1.1) [180]. The following result collects some basic
properties exhibited by the penalty method.

Lemma 1.3.1 (Penalty lemma). The following hold:

(i) qk (xk ) ≤ qk+1(xk+1) (iii) φ(xk ) ≤ φ(xk+1)

(ii) p(c(xk )) ≥ p(c(xk+1)) (iv) φ(xk ) ≤ qk (xk ) ≤ φ(x?)
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Proof. For the sake of brevity, we use subscripts and omit arguments whenever the meaning is clear,
e.g., φk = φ(xk ) and pk = p(c(xk )). Using de�nition of qk and xk , we have

qk (xk ) = φk + ηkpk ≤ φk+1 + ηkpk+1 ≤ φk+1 + ηk+1pk+1 = qk+1(xk+1),

which proves (i). Furthermore, by noticing that φk + ηkpk ≤ φk+1 + ηkpk+1 and φk+1 + ηk+1pk+1 ≤

φk + ηk+1pk , we obtain
ηk [pk − pk+1] ≤ φk+1 − φk ≤ ηk+1[pk − pk+1],

which implies (ii) since ηk+1 > ηk . Using φk + ηkpk ≤ φk+1 + ηkpk+1 and ηk ≥ 0, (ii) yields (iii). The
de�nition of penalty function yields qk (xk ) = φk + ηkpk ≥ φk and, with feasibility of x?, for any ηk

φ(x?) = φ(x?) + ηkp(x?) ≥ φk + ηkpk = qk (xk ),

which prove (iv). �

The next result concerns convergence of the penalty method under some continuity assumptions
on the problem and the penalty function; cf. [180].

Theorem 1.3.2 (Penalty convergence). Suppose that φ, c, and p are continuous functions. Let a
strictly increasing sequence {ηk } ⊂ R+ be given, with limk→+∞ ηk = +∞. Let {xk } be a sequence of
solutions xk to (1.3.2). Then, any limit point x of {xk } solves (1.1.1).

Proof. Let x be any limit point of {xk }, and let K ⊂ N be any subsequence such that limk ∈K xk = x.
From continuity of φ, we have limk ∈K φk = φ(x). Moreover, due to Lemma 1.3.1(iv),

q? := lim
k ∈K

qk (xk ) ≤ φ(x?)

is bounded from above. Then

lim
k ∈K

ηkpk = lim
k ∈K
[qk (xk ) − φk ] = q? − φ(x)

remains bounded despite ηk → +∞, which implies limk ∈K pk = 0. From the continuity of c and
p, p(c(x)) = 0, and so, by de�nition of penalty function, x is a feasible point, since c(x) ∈ S . From
Lemma 1.3.1(iv), φ(x?) ≥ φk for all k , and so φ(x) ≤ φ(x?), which proves that x is a feasible minimizer
for (1.1.1). �

1.3.1 Shifting the constraints

The classical penalty method, as represented by (1.3.2), introduces a penalization term based directly
on constraints violation. The parametric merit function q combines both optimality and constraint
violation requirements, as a weighted sum of the two terms. As parameter η grows, the constraint
violation is expected to reduce, by Lemma 1.3.1(ii), and, eventually, a feasible minimizer is found, cf.
Theorem 1.3.2. However, increasing η makes the unconstrained subproblems (1.3.2) more and more
ill-conditioned, although benignly [94]. A classical approach for alleviating this phenomenon, if not
for avoiding it, is to penalize infeasibility with respect to shifted constraints, namely considering
unconstrained subproblems of the form

minimize
x∈Rn

φ(x) + ηp
(
c(x) +

y
η

)
(1.3.3)

for some vector y ∈ Rm . The quantities y/η and y are usually referred to as shift and Lagrange
multiplier. The idea behind shifting the constraints is that, for some speci�c shift y, the solution to
subproblem (1.3.3) may, perhaps approximately, coincide with the desired minimizer of (1.1.1), even
with a bounded penalty parameter η [94, 163].

The classical formulation (1.3.3) has a peculiar form which suggests some crucial properties of
the shift and of the resulting method. Firstly, let us observe that, as the penalty parameter η tends to
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in�nity, the shift should vanish. In fact, if this is not the case, some feasible points would be hardly
penalized, and thus considered as infeasible. Hence, we expect yk/ηk → 0 as ηk → +∞. This is the
peculiar feature of safeguarded augmented Lagrangian methods [163, 196, 211]. This designation stems
from the observation that, if a suitable shift cannot be found that solves the problem with a bounded
penalty parameter, subproblems (1.3.3) tend to (1.3.2) and the method falls back to the classical penalty
method, and then relies on Theorem 1.3.2. Perhaps the simplest and most common strategy, yet not
the only one, to guarantee the safeguarding vanishing property is to consider bounded multipliers
yk ∈ Y ⊂ Rm .

The function p(z) := dist2
S (z)/2 is a continuous penalty function for the constraint c(x) ∈ S . In

general, the gradient of p is given by ∇p(z) = z − ΠS (z) and therefore is a set-valued mapping. Only
if the set S is convex, function p is continuously di�erentiable with Lipschitz continuous gradient.
Nevertheless, this quadratic penalization gives a favorable expression for its gradient, despite the
possibly complicated structure of S , and relies only on the projection operator ΠS . From (1.3.3), it leads
to the shifted penalty subproblem

minimize
x∈Rn

f (x) + д(x) +
η

2
dist2

S

(
c(x) +

y
η

)
, (1.3.4)

which is an unconstrained, structured optimization problem that can be handled by proximal algorithms
such as, e.g., PANOC [202]. In §1.5, an algorithm for solving (1.1.1) is framed around subproblem (1.3.4)
and its convergence properties are investigated. In particular, §1.5.4 discusses convergence guarantees
for proximal algorithms solving the subproblem in the case the set S is nonconvex (and д lower
semicontinuous), on the vein of (1.2.5) and (1.2.12).

1.3.2 Discontinuous objective

It is of great interest the possibility to drop the continuity assumption on the nonsmooth term д. In
such case, however, the penalty method is not guaranteed to converge to solutions of the original,
constrained problem. Nonetheless, there are some approaches to overcome this issue, which are brie�y
discussed in the following.

Enveloped objective A simple idea is to �nd an equivalent yet continuous reformulation of the
problem, so to recover the convergence guarantee given by the penalty method. The forward-backward
envelope (FBE), proposed in [161], has been exploited for adopting algorithms for smooth optimization
on nonsmooth problems [202, 200, 214]. Extending the Moreau envelope [18], the FBE φFB

γ of φ is an
exact, continuous, real-valued penalty function for the unconstrained problem minimizex∈Rn φ(x)
[215, Prop. 4.2], for some su�ciently small stepsize γ > 0. The following result shows that replacing φ
with φFB

γ yields a suitable problem reformulation. In the following, we adopt the simpler notation φγ
for the FBE of φ, without superscript whenever clear from context.

Lemma 1.3.3. Let φγ be the FBE of φ := f + д with γ ∈ (0,min{1/Lf ,γд}). Then, the problem

minimize
x∈Rn

φγ (x) subject to c(x) ∈ S (1.3.5)

is equivalent to (1.1.1).

Proof. Rewrite (1.1.1) as minimizex∈D φ(x), and move the constraint into the objective via the char-
acteristic function χD of D: minimizex∈Rn φ(x) + χD (x). Denoting φ̃ := φ + χD and φ̃γ its FBE, the
previous is equivalent to minimizex∈Rn φ̃γ (x), since the FBE shares in�ma and minimizers, under the
Lemma’s standing assumptions [215]. Due to χD , the minimizers of φ̃γ are feasible, hence one can
rewrite minimizex∈D φ̃γ (x). Indeed, for feasible points, the term χD does not give any contribution to
φ̃γ , which then collapses to φγ . This gives minimizex∈D φγ (x), proving the result. �

Based on Theorem 1.3.2, we can �nd a solution x?γ to the associated constrained enveloped problem
(1.3.5) by using the (classical) penalty method, that is, by considering a sequence of unconstrained
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penalty enveloped problems
minimize

x∈Rn
φγ (x) + ηp(c(x)) (1.3.6)

Then, due to Lemma 1.3.3, x?γ is feasible and optimal for φγ and therefore a solution to (1.1.1). Despite
the fact that the FBE φγ is smoother than φ, even continuously di�erentiable if f is twice continuously
di�erentiable, evaluating its gradient ∇φγ can be computationally expensive, in that it involves the
Hessian of f [215]. Nevertheless, algorithms not requiring the gradient of the FBE could be investigated;
compare, e.g., [201] and [215]. Finally, it should be highlighted that, for д not necessarily continuous,
one could use proximal methods for solving (1.3.2), and these could implicitly construct the FBE
of φ + ηp ◦ c and minimize it. Despite the strong resemblance with (1.3.6), these problems are not
equivalent in general.

Characteristic function Another approach to cope with (1.1.1) is to move the constraints to the
objective via characteristic functions. As mentioned in §1.1, this is perhaps the standard approach.
This reformulation gives the equivalent problem

minimize
x∈Rn

f (x) + д(x) + χS (c(x)) (1.3.7)

and three-terms splitting algorithms can be directly applied [197, 193]. However, these usually require
evaluating the proximal operator of the nonsmooth terms, which for χS ◦ c corresponds to solving
the problem

minimize
x∈Rn

χS (c(x)) +
1

2γ
‖x − x̂‖2

for some given x̂ ∈ Rn and γ > 0. In fact, this is equivalent to projecting x̂ onto the feasible set D, and
this can be as di�cult as the original problem (1.1.1). De�ning д̃ = д + χS ◦ c and adopting two-terms
splitting algorithms yields similar, if not more di�cult, subproblems, and thus carry comparable
drawbacks.

A slightly di�erent reformulation of (1.1.1) introduces an auxiliary variable z ∈ Rm and reads

minimize
x∈Rn, z∈Rm

f (x) + д(x) + χS (z) subject to c(x) = z. (1.3.8)

Then, using the characteristic function of {0} and moving the equality constraints to the objective,
one obtains the unconstrained, structured problem

minimize
x∈Rn, z∈Rm

f (x) + д(x) + χS (z) + χ {0}(c(x) − z). (1.3.9)

This gives rise to two additional ways to adopt three-terms splittings, depending on the pairing of the
nonsmooth terms.

The �rst comprises the nonsmooth terms д(x) + χS (z) and χ {0}(c(x) − z). Evaluating the proximal
operator of the former turns out to be fairly simple, as it boils down to evaluating the proximal operator
of д and projecting onto S , which are both cheap operations by assumption. The proximal operator
of the latter, instead, is equivalent to solving a nonlinear least-squares problem (1.3.10) or projecting
onto a manifold generated by the constraints (1.3.11).

minimize
x∈Rn,z∈Rm

χ {0}(c(x) − z) +
1

2γ
‖x − x̂‖2 +

1
2γ
‖z − ẑ‖2

⇒ minimize
x∈Rn





( x
c(x)

)
−

(
x̂
ẑ

)



2

(1.3.10)

⇒ minimize
x∈Rn,z∈Rm





(xz) − (
x̂
ẑ

)



2

(1.3.11)

subject to c(x) = z
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E�cient and robust algorithms are available for solving such problems, possibly depending on the
structure of c, based upon Gauß–Newton, Levenberg–Marquardt [8, 17], and Powell’s dogleg [23]
methods, among others.

The second three-terms splitting of (1.3.9) is based on the terms χS (z) and д(x) + χ {0}(c(x) − z).
Clearly, the former has an inexpensive proximal operator, which corresponds to the projection onto the
set S . However, the latter may require more computational e�ort. This, again, o�ers two reformulations,
which mirror (1.3.10) and (1.3.11).

minimize
x∈Rn,z∈Rm

д(x) + χ {0}(c(x) − z) +
1

2γ
‖x − x̂‖2 +

1
2γ
‖z − ẑ‖2

⇒ minimize
x∈Rn

д(x) +
1

2γ





( x
c(x)

)
−

(
x̂
ẑ

)



2

(1.3.12)

⇒ minimize
x∈Rn,z∈Rm

д(x) +
1

2γ





(xz) − (
x̂
ẑ

)



2

(1.3.13)

subject to c(x) = z

The constrained formulation given in (1.3.13) has the form of the original problem (1.1.1) and thus, at a
�rst glance, it gives a cul-de-sac. Nevertheless, it may be easier, since it involves a strongly convex
smooth objective function and only equality constraints, and thus solvable in di�erent ways [257, 209].
On the other hand, the unconstrained (sub)problem (1.3.12) is a structured, nonsmooth problem itself.
Hence, generic proximal methods can be adopted to solve it [202, 220]. Depending on the structure of
д, more speci�c methods may apply, such as those discussed in [122, 128, 137, 139, 168, 182].

Considering both three-terms formulations with auxiliary variable, evaluating the proximal opera-
tor of one of such terms requires solving a subproblem. Nevertheless, this nested, two-loops structure
is a common feature of iterative methods for nonlinearly constrained optimization. Although not
further investigated here, these reformulations o�er opportunities for novel analysis, interpretations,
and algorithms for problem (1.1.1) without continuity assumption on д.

1.4 Augmented Lagrangian and Proximal Approaches

Here we consider di�erent ways to approach the possibly nonsmooth subproblems introduced in the
shifted penalty method. Two interpretations are given.

Let us consider once more the reformulation given in (1.3.8)

minimize
x∈Rn, z∈Rm

f (x) + д(x) + χS (z) subject to c(x) = z,

which introduces an auxiliary variable z ∈ Rm . This closely resembles the reformulation behind the
alternating direction method of multipliers (ADMM), which traces back to [11, 28, 37, 52]; more recent
works are [138, 170, 185]. We now proceed as standard in the AL framework for NLP [62, 112, 163, 180].
Let us de�ne the Lagrangian function

Lz (x, z, y) := f (x) + д(x) + χS (z) + y>[c(x) − z] (1.4.1)

where y ∈ Rm is the Lagrange multiplier associated with the equality constraint. Note that, x and y
are often referred to as primal and dual variable, respectively, and a pair (x, y) as a primal-dual pair.
Then, let us consider the (Powell–Hestenes–Rockafellar) augmented Lagrangian function [22, 21, 25,
27, 35]

Lz
µ (x, z, y) := Lz (x, z, y) +

1
2µ
‖c(x) − z‖2 (1.4.2)

with µ > 0 a given penalty parameter. In the classical AL framework, problem (1.1.1) is replaced by
a sequence of subproblems, each of which consists of minimizing the AL function Lz

µ with respect
to the primal variables, here x and z, for some given penalty parameter µ > 0 and (safeguarded)
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estimate of Lagrange multiplier y. We better expose the elements in Lz
µ by completion of squares and

rearranging; this yields

Lz
µ (x, z, y) = f (x) + д(x) + χS (z) + y>[c(x) − z] +

1
2µ
‖c(x) − z‖2

= f (x) + д(x) + χS (z) +
1

2µ
‖z − [c(x) + µy] ‖2 −

µ

2
‖y‖2. (1.4.3)

Owing to the structure exhibited in (1.4.3), the minimization of Lz
µ (·, ·, y) can proceed inspired by

several strategies. In the following, we discuss two approaches to carry out this task, namely solving
the AL subproblems. First, we introduce the augmented Lagrangian proximal (ALP) approach, adopted
in [235, 257]. The AL subproblem is solved as a structured optimization problem, i.e., auxiliary variable
z is left to optimization along with x. Then, we discuss the proximal augmented Lagrangian (PAL)
approach [29, 194, 222], which explicitly minimizes Lz

µ with respect to the auxiliary variable z, so that
only the primal variable x is left as decision variable for the subproblem. Indeed, the AL framework is
in common, and these two approaches are just di�erent ways to face the AL subproblems; recall the
relationship between (1.2.5) and (1.2.12). The PAL strategy tends to generate smoother, regularized,
smaller problems, while the ALP leads to larger, possibly more structured and sparse, problems. In
contrast with the fact that cheap projections are often disregarded [87, 163], both approaches heavily
rely on the projection onto the constraint set S .

Augmented Lagrangian proximal approach The problem of minimizing the AL function Lz
µ

given in (1.4.3), for some multiplier estimate y and penalty parameter µ > 0, can be expressed as

minimize
x∈Rn, z∈Rm

f z (x, z) + дz (x, z), (1.4.4)

where the smooth and the nonsmooth terms, respectively f z and дz are clear from (1.4.3). Function
f z inherits regularity from f and c, and thus is continuously di�erentiable with Lipschitz continuous
gradient, which after rearrangement reads

∇f z (x, z) =
(
∇f (x) + ∇c(x)> (y + [c(x) − z]/µ)

− (y + [c(x) − z]/µ)

)
. (1.4.5)

Similarly to (1.2.12), the proximal operator of дz boils down to

proxγдz (x, z) =
(
proxγд(x)

ΠS (z)

)
(1.4.6)

for any γ > 0. Although evaluating these quantities can be done e�ciently, subproblem (1.4.4) possibly
has many more decision variables than the original problem (1.1.1), as the minimization is over both x
and z. Nevertheless, as the oracles are fairly inexpensive, this may be a viable approach for solving
the AL subproblem (1.4.3); depending on the problem, further exploitation may also be possible.

Proximal augmented Lagrangian approach Considering the minimization ofLz
µ (·, ·, y), one can

formally solve for z for each �xed x:

zµ (x, y) := arg min
z∈Rm

Lz
µ (x, z, y) (1.4.7)

= arg min
z∈Rm

χS (z) +
1

2µ
‖z − [c(x) + µy] ‖2

= proxµ χS (c(x) + µy)

= ΠS (c(x) + µy) . (1.4.8)
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This re�ects the spirit of the PAL strategy of [222] but also resembles the classical approach to handle
inequality constraints in the AL framework [62, §3.1]. Injecting this back into (1.4.3), we obtain the
PAL function

Lµ (x, y) := Lz
µ (x, zµ (x, y), y) (1.4.9)

= f (x) + д(x) + χ µS (c(x) + µy) −
µ

2
‖y‖2

= f (x) + д(x) +
1

2µ
dist2

S (c(x) + µy) −
µ

2
‖y‖2, (1.4.10)

where χ µS denotes the Moreau envelope of χS with stepsize µ > 0 [143, 215]. Thus, the AL subproblem
is expressed in terms of x only. We notice that, comparing (1.3.4) and (1.4.10), the penalty parameter
µ > 0 plays the same role as η−1 > 0 and, for any given multiplier estimate y ∈ Rm , the two
expressions di�er by a constant term, which has no e�ect when minimizing with respect to variable
x. Although foreseeable, this correspondence emphasizes the remarkable relationships between
augmented Lagrangian function, proximal operator, and shifted penalty method [27, 29, 94, 214].

1.4.1 Gradients and shift updates

Let the smooth part of the Lagrangian and the proximal augmented Lagrangian functions be denoted
respectively by

π (x, y) := f (x) + c(x)>y (1.4.11)

πµ (x, y) := f (x) +
1

2µ
dist2

S (c(x) + µy) −
µ

2
‖y‖2. (1.4.12)

Then, the point-wise necessary optimality condition for a solution (x?, y?) to the original problem
(1.1.1) reads

x? ∈ proxγд
(
x? − γ∇xπ (x?, y?)

)
(1.4.13)

for some γ > 0 su�ciently small; see Theorem 1.2.1. Given a dual estimate yk ∈ R
m and a penalty

parameter µk > 0, the (primal) subproblem solution xk , namely a minimizer of Lµk (·, yk ), satis�es

xk ∈ proxγkд
(
xk − γk∇xπµk (xk , yk )

)
(1.4.14)

for some γk > 0 su�ciently small. We can �nd an update rule for the dual estimate, that is, a way to
correct the estimate yk given xk , by comparing and matching (1.4.13) and (1.4.14). A di�erent, more
pragmatic, yet equivalent derivation is the one in [163, §4.1]. Let us denote ŷ a generic updated dual
estimate such that the condition

∇xπ (xk , ŷ) = ∇xπµk (xk , yk ) (1.4.15)

is satis�ed. Direct calculation based on (1.4.11) and (1.4.12) gives

∇f (xk ) + ∇c(xk )>ŷ = ∇f (xk ) + ∇c(xk )>
[
yk +

c(xk ) − ΠS (c(xk ) + µkyk )
µk

]
,

which guarantees the existence of such an update ŷ, but also shows its uniqueness depends on the
rank of ∇c(xk ). We choose

ŷk = ŷ(xk , yk , µk ) := yk +
c(xk ) − ΠS (c(xk ) + µkyk )

µk
, (1.4.16)

which is valid for any ∇c(xk ). This generalizes the classical �rst-order multiplier update to constraints
expressed as in (1.1.1), cf. [62, 163]. However, since the projection onto S is possibly set-valued, so is the
update ŷk . Indeed, the expression above can be equivalently rewritten, by exposing its set-valuedness,
as

zk ∈ ΠS (c(xk ) + µkyk ), ŷk = yk +
c(xk ) − zk

µk
.
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These results can also be obtained by following the ALP approach and applying analogous arguments.
It is clear that ŷk depends on the (arbitrary) choice of zk .

A by-product of the update rule presented above is that, by construction, the gradient of the
(smooth) Lagrangian function (1.4.11) at the updated primal-dual pair coincides with the gradient of the
(smooth) augmented Lagrangian function (1.4.12) at the subproblem solution, that is, (1.4.15) holds. As
highlighted in [242], this means that the subproblem termination condition, based on the approximate
satisfaction of (1.4.14), can be directly adopted for checking (1.4.13) for the outer, original problem.

1.4.2 Primal–dual approaches

The generalized augmented Lagrangian function has been proposed in [114, 149]. Several methods
draw upon its primal-dual instantiation, which naturally leads to regularized and stabilized methods
[158, 177, 183, 195, 238]. In the context of PAL methods, it has been employed as a primal-dual merit
function in [194, 222] for convex structured optimization.

Following [114], one can replace the (primal) AL function Lz
µ in (1.4.3) with the corresponding

primal-dual AL functionMz
µ,ρ , de�ned by

Mz
µ,ρ (x, z, y, y) := Lz

µ (x, z, y) +
1

2ρ
‖z − c(x) + ρ(y − y)‖2.

for some ρ > 0. Furthermore, one can consider an additional proximal regularization for the primal
variable, given an estimate x ∈ Rn and a penalty parameter σ ≥ 0, which yields

Mz
µ,ρ,σ (x, z, y, x, y) :=Mz

µ,ρ (x, z, y, y) +
σ

2
‖x − x‖2

= f (x) + д(x) + χS (z) +
σ

2
‖x − x‖2 +

1
2µ
‖z − c(x) − µy‖2

−
µ

2
‖y‖2 +

1
2ρ
‖z − c(x) + ρ(y − y)‖2. (1.4.17)

As its name suggests, the primal-dual AL function is to be minimized, in each subproblem, with respect
to both primal and dual variables. Therefore, parameters σ and ρ allow to control the deviation from
the current primal and dual estimates, respectively, via a (proximal) quadratic penalty. Notice that
Mz

µ,ρ,σ falls back to Lz
µ with ρ → +∞ and σ = 0.

Both the ALP and the PAL approaches are still valid, and similar pondering applies. In particular,
the explicit minimization with respect to the auxiliary variable z can be performed and a dual estimate
update rule can then be derived. These steps are covered in the rest of this section.

In order to expose the structure of (1.4.17) with respect to z, we use the following identity, valid
for α + β , 0,

α ‖z − a‖2 + β ‖z − b‖2 = (α + β)




z − αa + βbα + β





2
+

αβ

α + β
‖a − b‖2.

With α = 1/(2µ), β = 1/(2ρ), a = c(x) + µy, and b = c(x) + ρ(y − y), this yields

Mz
µ,ρ,σ (x, z, y, x, y) = f (x) + д(x) + χS (z) −

µ

2
‖y‖2 +

σ

2
‖x − x‖2

+
ρ + µ

2µρ





z − c(x) − 2µρ
ρ + µ

(y − y/2)




2
+

1
2(ρ + µ)

‖(µ − ρ)y + ρy‖2.

With this expression at hand, it is easy to obtain the minimizer ofMz
µ,ρ,σ with respect to z:

zMµ,ρ (x, y, y) := arg min
z∈Rm

Mz
µ,ρ,σ (x, z, y, x, y)

= prox µρ
ρ+µ χS

(
c(x) +

2µρ
ρ + µ

(y − y/2)
)

= ΠS

(
c(x) +

2µρ
ρ + µ

(y − y/2)
)
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Notably, zMµ,ρ does not depend on the primal estimate x nor on the penalty parameter σ , and, although
not identical, its expression closely resemble (1.4.8). Injecting zMµ,ρ intoMz

µ,ρ,σ gives the counterpart
of Lµ in (1.4.10), namely the primal-dual PAL functionMµ,ρ,σ :

Mµ,ρ,σ (x, y, x, y) :=Mz
µ,ρ,σ

(
x, zMµ,ρ (x, y, y), y, x, y

)
= f (x) + д(x) +

ρ + µ

2µρ
dist2

S

(
c(x) +

2µρ
ρ + µ

(y − y/2)
)

+
σ

2
‖x − x‖2 −

µ

2
‖y‖2 +

1
2(ρ + µ)

‖(µ − ρ)y + ρy‖2

By choosing ρ = µ as in [114, §3.7], these expressions simplify into

zMµ (x, y, y) = ΠS (c(x) + µ (y − y/2)) (1.4.18)

and

Mµ,σ (x, y, x, y) = f (x) + д(x) +
1
µ

dist2
S (c(x) + µ (y − y/2))

+
σ

2
‖x − x‖2 −

µ

2
‖y‖2 +

µ

4
‖y‖2. (1.4.19)

Comparing (1.4.19) to (1.4.10), we notice that the coe�cient in front of the squared distance is doubled,
for a given parameter µ > 0. However, the primal PAL function Lµ in (1.4.10) is easily recovered by
setting y = y and adjusting µ.

Let us focus on the dual estimate update rule, which we expect to di�er from (1.4.16) for the classical
AL approach, since the dual solution yk may play also a role. A solution (xk , yk ) of the primal-dual
PAL subproblem necessarily satis�es a condition analogous to (1.4.14), which simpli�es into

xk ∈ proxγkд
(
xk − γk∇xκµk ,σk (xk , yk , xk , yk )

)
(1.4.20a)

0 = ∇yκµk ,σk (xk , yk , xk , yk ) (1.4.20b)

with κµ,σ (x, y, x, y) :=Mµ,σ (x, y, x, y) −д(x) the smooth part ofMµ,σ . Comparing and matching the
�rst one with (1.4.13), we may insist on

∇xπ (xk , y̆) = ∇xκµk ,σk (xk , yk , xk , yk )

to obtain a (primal-dual) dual estimate update y̆, consistently with (1.4.15). For the sake of brevity, let
us denote w̆k := c(xk ) + µk (yk − yk/2) and z̆k ∈ ΠS (w̆k ). Then, direct calculation yields

∇f (xk ) + ∇c(xk )>y̆ = ∇f (xk ) +
2
µk
∇c(xk )> [w̆k − z̆k ] + σk (xk − xk ).

Neglecting the primal proximal regularization term, which should vanish on its own, there exists a
(possibly nonunique) dual update y̆ that satis�es the equality, independent on ∇c(xk ), namely

y̆k = y̆(xk , yk , yk , µk ) :=
2
µk

[
c(xk ) + µk (yk − yk/2) − z̆k

]
= 2

[
yk +

c(xk ) − z̆k
µk

]
− yk . (1.4.21)

From the second optimality condition above, namely

0 = − [w̆k − z̆k ] + µkyk/2 = z̆k − c(xk ) + µk (yk − yk ),

one can formally solve for yk , since µk > 0, obtaining

yk = yk +
c(xk ) − z̆k

µk
. (1.4.22)

Since yk coincides with the term in brackets, by (1.4.21) the primal-dual �rst-order multiplier estimate is
just y̆k = yk . Although a result analogous to (1.4.21) was obtained in [114, p. 81] (for equality constraints
only), it seems the last development was overlooked, based on the coupling with the second optimality
condition. Nevertheless, it must be said that these relations are valid in the case the subproblems are
solved exactly, and it is not clear the e�ect of solving them only approximately, as is usual practice.
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1.4.3 Embedding simple constraints

Often some constraints are simple, in the sense that they can be easily satis�ed, and hard, in the sense
that they cannot be violated nor relaxed [163]. In such cases, the relaxation introduced by adopting a
penalty function may induce an unacceptable violation of such constraints. Therefore, thanks to the
(rich and �exible) structure of (1.1.1), these simple and hard constraints are better embedded into the
optimization problem by considering a characteristic function in the objective. General lower-level
constraints [87, 115] may help dealing with the greediness phenomenon and unbounded subproblem
in the AL framework [131]. Simple, hard constraints should be embedded into the nonsmooth term д,
in order to cope with them in a straightforward manner. This is illustrated in §1.6 with some examples.

1.5 Algorithm and Convergence

In this section we propose an algorithmic framework for solving NCSPs and assess its convergence
properties. The development follows the classical AL framework, as in [163], and extends it to accom-
modate the general formulation in (1.1.1).

Algorithm 1 is a basic AL-type algorithm for solving NCSPs. It proceeds by minimizing the AL
function Lµ at each iteration, for �xed dual estimate and penalty parameter, and updating Lagrange
multipliers and penalty parameters between iterations. Despite its generality and vagueness, it is
possible to analyze several aspects under di�erent conditions. Algorithm 1 is adapted from [163, Alg.
4.1], but similar, additional, or related features can be found in [49, 114, 145, 173, 196, 257].

Algorithm 1 Abstract Augmented Lagrangian Proximal algorithm
Input: x0 ∈ R

n , y0 ∈ R
m , Y ⊆ Rm compact, θ ∈ (0, 1)

set k ← 0 and select µk > 0
while true do

select yk ∈ Y . dual estimate
select ϵk > 0 such that limk→+∞ ϵk = 0
�nd an ϵk -approximate minimizer xk of Lµk (·, yk ), given in (1.4.10) . subproblem
select zk ∈ ΠS

(
c(xk ) + µkyk

)
set yk ← yk + [c(xk ) − zk ]/µk
set Ck ← ‖c(xk ) − zk ‖
if k = 0, or Ck ≤ θCk−1 then

set µk+1 ← µk
else

select µk+1 ∈ (0, µk ) such that limk→+∞ µk = 0 . penalty update
end if
update k ← k + 1

end while

Some comments are in order. The dual estimate yk is selected from a compact set Y ⊆ Rm ,
making the method safeguarded, possibly based on the previous update yk−1. Similarly, solving
the AL subproblem may be warm-started at the previous solution xk−1. An element zk of the set-
valued projection is selected arbitrarily, but additional criteria could be considered. Then, the dual
estimate update is found, according to §1.4.1, and the residual of the complementarity condition
(1.2.3) in Theorem 1.2.1 is computed. This plays the role of test function, for assessing whether it
is appropriate to strengthen the penalty term. Note also that special treatment is given to the case
k = 0, since C−1 is unde�ned. However, this is not just for formal reasons: it allows to reset the
penalty parameter, based on the �rst subproblem solution, which may improve the balance between
objective and constraint violation. Moreover, following the analysis in [163, 211], we have left the term
“ϵk -approximate minimizer” unspeci�ed: in §1.5.1 and §1.5.2 we establish results in the case one seeks
global minima or critical points for the subproblems, respectively.
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Although many computational details are left ambiguous in Algorithm 1, it already provides a
useful property concerning the Lagrange multiplier for inactive constraints.

Theorem 1.5.1. Suppose the set S has nonempty interior. Let {xk } be a sequence generated by
Algorithm 1, x? be any limit point of {xk } and K ⊂ N a subsequence such that limk ∈K xk = x?.
Then, if c(x?) ∈ int S , it holds yk = 0 for all k ∈ K su�ciently large.

Proof. Let c(x?) ∈ int S , ∅. Then, by continuity, for all su�ciently large k ∈ K it holds c(xk ) ∈ int S .
There are two cases: either (i) the sequence {µk } tends to zero or (ii) it is bounded away from zero.

(i) Since c(xk ) ∈ int S fork ∈ K su�ciently large and {yk } is bounded, we have c(xk )+µkyk ∈ int S
for su�ciently large k ∈ K .

(ii) Condition Ck ≤ θCk−1 holds for all k ∈ K su�ciently large, and thus limk→∞Ck = 0, since
θ ∈ (0, 1). This implies limk→∞ µkyk = 0, because it is c(xk ) ∈ int S for k ∈ K su�ciently large, and
the boundedness of {µk } away from zero gives limk→∞ yk = 0. Hence, we have c(xk ) + µkyk ∈ int S
for k ∈ K su�ciently large.

Therefore, in both cases, for k ∈ K su�ciently large it is zk = c(xk )+ µkyk ∈ S . Then, substituting
and rearranging, it follows that yk = yk + [c(xk ) − zk ]/µk = 0 for all k ∈ K su�ciently large. �

The Lagrange multiplier vanishes for constraints that are inactive in the limit, independently of the
feasibility of the limit point, whose existence is assumed. Notice that, if it is the case, Theorem 1.5.1 can
be re�ned by exploiting the separable structure of S . For instance, considering the standard hyperbox
[`, u] ⊆ Rm , the result applies componentwise, recovering the classical result [163, Thm. 4.1].

1.5.1 Global minimization of subproblems

This section investigates the convergence properties of Algorithm 1 considering the subproblems
solved at global optimality. The discussion is based on [163, Ch. 5]. Let us work under the following
assumption:

Assumption 1.5.2. Let {ϵk } be a bounded sequence of nonnegative tolerances. For all k ∈ N, it
holds Lµk (xk , yk ) ≤ Lµk (x, yk ) + ϵk for all x ∈ Rn .

Notice that the bounded tolerances need not be small in principle. The following result shows that limit
points of sequences generated by Algorithm 1 tend to minimize infeasibility, namely the constraint
violation. Therefore, if problem (1.1.1) is feasible, minimal infeasibility corresponds to feasibility, and
thus limit points are feasible.

Theorem 1.5.3. Let {xk } be a sequence generated by Algorithm 1 under Assumption 1.5.2. Let
x? be a limit point of {xk } and K ⊂ N a subsequence such that limk ∈K xk = x?. Then, it holds
dist2

S (c(x
?)) ≤ dist2

S (c(x)) for all x ∈ R
n .

Proof. There are two cases: either (i) the sequence {µk } is bounded away from zero or (ii) it tends to
zero.

(i) Condition Ck ≤ θCk−1 must hold for all su�ciently large k . Thus, it is limk→∞Ck = 0, since
θ ∈ (0, 1). This implies that c(xk ) approaches the set S , since zk ∈ S for all k . Then, the limit point x?
is feasible. By nonnegativity of the distance and the fact that distS (c(x?)) = 0, the result is obtained.

(ii) Let us assume there exists x ∈ Rn such that dist2
S (c(x

?)) > dist2
S (c(x)). In such case, by continu-

ity of c and dist2
S , boundedness of {yk }, and {µk } → 0, there exists ξ > 0 such that dist2

S
(
c(xk ) + µkyk

)
>
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dist2
S
(
c(x) + µkyk

)
+ ξ for all su�ciently large k ∈ K . This implies that

Lµk (xk , yk ) = φ(xk ) +
1

2µk
dist2

S
(
c(xk ) + µkyk

)
−
µk
2
‖yk ‖

2

> φ(xk ) +
1

2µk
dist2

S
(
c(x) + µkyk

)
−
µk
2
‖yk ‖

2 +
1

2µk
ξ

= Lµk (x, yk ) +
1

2µk
ξ + φ(xk ) − φ(x)

> Lµk (x, yk ) + ϵk

for all su�ciently large k ∈ K , since {xk } → x?, φ is continuous, ξ > 0, {µk } → 0, and {ϵk } is
bounded. This contrasts with Assumption 1.5.2, proving the result by contradiction. �

The following results shows that feasible limit points are global minimizers, exposing a powerful feature
of the AL framework. If the unconstrained (or simply constrained) subproblems are solved to global
optimality, a global minimizer is to be expected for the original constrained (feasible) problem.

Theorem 1.5.4. Let {xk } be a sequence generated by Algorithm 1 under Assumption 1.5.2 with
limk→∞ ϵk = 0. Suppose that problem (1.1.1) is feasible. Let x? be a limit point of {xk } and K ⊂ N a
subsequence such that limk ∈K xk = x?. Then, x? is a global minimizer.

Proof. By Theorem 1.5.3, feasibility of the problem implies that x? is feasible. Let x ∈ Rn be an
arbitrary feasible point. By Assumption 1.5.2, for all k ∈ N it holds Lµk (xk , yk ) ≤ Lµk (x, yk ) + ϵk ,
which implies (the second line of)

φ(xk ) ≤ φ(xk ) +
1

2µk
dist2

S
(
c(xk ) + µkyk

)
(1.5.1)

≤ φ(x) +
1

2µk
dist2

S
(
c(x) + µkyk

)
+ ϵk

≤ φ(x) +
µk
2
‖yk ‖

2 + ϵk , (1.5.2)

where the �rst line is due to the nonnegativity of dist2
S and the last line comes from the following

inequality, which holds for any feasible x ∈ Rn and any v ∈ Rm :

dist2
S (c(x) + v) = ‖c(x) + v − ΠS (c(x) + v) ‖2

≤ ‖c(x) + v − c(x)‖2 = ‖v‖2. (1.5.3)

Herein, the inequality is due to the minimal distance of the projection. There are two cases: either (i)
the sequence {µk } tends to zero or (ii) it is bounded away from zero.

(i) By continuity of φ, boundedness of {yk }, {µk } → 0, and {ϵk } → 0, taking the limit for k ∈ K ,
we get

φ(x?) ≤ φ(x), (1.5.4)

which proves the result, since x is an arbitrary feasible point.
(ii) Condition Ck ≤ θCk−1 holds for all k ∈ K su�ciently large, and thus limk→∞Ck = 0, since

θ ∈ (0, 1). This yields limk→∞ c(xk ) − ΠS
(
c(xk ) + µkyk

)
= 0 and, by continuity, we have

lim
k→∞

dist2
S
(
c(xk ) + µkyk

)
= lim

k→∞
‖c(xk ) + µkyk − ΠS

(
c(xk ) + µkyk

)
‖2

= lim
k→∞
‖µkyk ‖

2 (1.5.5)

Finally, comparing (1.5.1) and (1.5.2), taking the limit for k ∈ K , substituting (1.5.5) and rearranging, we
get (1.5.4), concluding the proof. �
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It is interesting to investigate the behaviour of Algorithm 1 for infeasible problems. In such cases,
Theorem 1.5.3 guarantees that sequences generated by Algorithm 1 converge to (global) minimizers
of the infeasibility. However, as Theorem 1.5.4 does not apply, we are left with no guarantees on the
quality of the limit points in terms of the objective function.

Let us consider the classical penalty method, introduced in §1.3, with the subproblems solved
at global optimality. Then, intuitively, we expect the objective to be minimized once the minimal
infeasibility is reached, since this minimizes the merit function which combines objective function
and constraint violation. Indeed, this holds true, as shown and exploited in the following. On the
other hand, the introduction of nonzero shifts, as in §1.3.1, modi�es the merit function, and thus may
perturb the limit points. This suggests it is recommendable to avoid shifting the constraints when
the problem is, or is detected to be, infeasible. We further argue to support the bene�ts of resetting
the dual estimate. By Algorithm 1, infeasible problems lead to sequence {Ck } being bounded away
from zero and thus {µk } → 0. By boundedness of {yk }, the multiplier update (1.4.16) is expected
to return extremely large values for yk as µk approaches zero. In contrast, for di�cult yet feasible
problems, as µk → 0 we expect Ck → 0 and yk to remain bounded. Therefore, the extreme growth
of the multiplier update yk can be adopted as a proxy to detect problem infeasibility. If this is the
case, shifting constraints can be deactivated and the algorithm is expected to fall back to the classical
penalty method, which returns a minimizer of the objective function subject to minimal infeasibility
[173]. On the other hand, as noticed in §1.3, with a strong penalty term it barely makes sense to shift
the constraints (unless the exact one is known, perhaps). These motivate the idea of resetting the dual
estimate, possibly temporarily, as established in the following assumption.

Assumption 1.5.5. For all k ∈ N, if yk < Y , then yk+1 = 0.

Furthermore, in the case {µk } → 0, one can interpret Assumption 1.5.5 as a mechanism to achieve
�nite convergence of µkyk to zero, leading to a safeguarded method and recovering the classical
penalty method [196, 173]. The following result is adapted from [163, Thm. 5.3].

Theorem 1.5.6. Let {xk } be a sequence generated by Algorithm 1 under Assumptions 1.5.2 and 1.5.5
with limk→∞ ϵk = 0. Let x? be a limit point of {xk } andK ⊂ N a subsequence such that limk ∈K xk =
x?. Then, φ (x′) ≥ φ

(
x?

)
for all x′ ∈ Rn such that dist2

S (c(x
′)) = dist2

S (c(x
?)).

Proof. By Theorem 1.5.3, the limit point x? is a (global) minimizer of the infeasibility, therefore it is
dist2

S (c(xk )) ≥ dist2
S (c(x

?)) for all k ∈ N. If the limit point x? is feasible, the result follows immediately
from Theorem 1.5.4.

Let us focus on the infeasible case, i.e., when dist2
S (c(x

?)) > 0. This implies that {Ck } is bounded
away from zero and, consequently, it must be limk→∞ µk = 0. Let x ∈ Rn be arbitrary. Rearranging
the inequality given in Assumption 1.5.2, it holds

φ(xk ) ≤ φ(x) + ϵk +
1

2µk

[
dist2

S
(
c(x) + µkyk

)
− dist2

S
(
c(xk ) + µkyk

) ]
(1.5.6)

for allk ∈ N. By boundedness of {yk }, boundedness of {Ck } away from zero, and the fact that {µk } → 0,
the update (1.4.16) generates yk+1 < Y for su�ciently large k ∈ N. Hence, by Assumption 1.5.5, it
is yk = 0 for su�ciently large k ∈ N. This is su�cient, along with the fact that dist2

S (c(x
′)) =

dist2
S (c(x

?)) ≤ dist2
S (c(xk )) for all k ∈ N, for (1.5.6) to imply that

φ(xk ) ≤ φ(x′) + ϵk

for su�ciently large k ∈ N. Taking the limit for k ∈ K , this gives φ
(
x?

)
≤ φ (x′), and the result

follows from the arbitrariness of x′. �

1.5.2 A�ordable minimization of subproblems

Let us focus on the AL framework with the subproblems solved via a�ordable methods, which are
designed to converge to mere stationary (or critical) points, not necessarily global minima [163, Ch. 6].
In this context, we consider the following assumption [202].
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Assumption 1.5.7. Suppose д is prox-bounded with threshold γд . For all k ∈ N, let Lk denote
the Lipschitz constant of the gradient of πµk (·, yk ), see (1.4.12). Let {ϵk } be a bounded sequence
of nonnegative tolerances. Then, for all k ∈ N, it holds ‖xk − uk ‖/γk ≤ ϵk for some uk ∈
proxγkд

(
xk − γk∇xπµk (xk , yk )

)
and γk ∈ (0,min{1/Lk ,γд}).

Remark 1.5.8. The condition given in Assumption 1.5.7 can be employed as a stopping criterion in
structured optimization, and it deserves some comments. In fact, structured optimization solvers
usually return an element of the proximal mapping, namely uk , as solution, instead of xk . The reason
for this is twofold: (i) if the nonsmooth term represents some constraints, then uk is guaranteed to
be feasible, because projected onto the feasible set; (ii) for suitable values of the stepsize γk , every
proximal gradient step yields some su�cient decrease in the objective function [200, 214], hence
uk improves the objective over xk . For purely smooth problems, that is, omitting д = 0, condition
‖xk − uk ‖/γk ≤ ϵk boils down to ‖∇xLµk (xk , yk )‖ ≤ ϵk , which is a classical termination condition
for unconstrained smooth problems. This, however, evaluates the gradient at xk , and not at uk , as one
would expect. Adopted in [257], the condition



xk − ukγk

+ ∇xπµk (uk , yk ) − ∇xπµk (xk , yk )




 ≤ ϵk

overcomes this mismatch. Nonetheless, although this seems a more robust and consistent condition,
its theoretical properties are not discussed in [257]. Indeed, its practical consequences are still unclear.

The next theorem shows that, considering sequences generated by Algorithm 1, feasible limit
points satisfy the (sequential) optimality conditions given in Theorem 1.2.1. This result is strongly
related to the AKKT conditions [136]; see also [163, Thm. 6.2].

Theorem 1.5.9. Let {xk } be a sequence generated by Algorithm 1 under Assumption 1.5.7 with
limk→∞ ϵk = 0. Let x? be a feasible limit point of {xk } and K ⊂ N a subsequence such that
limk ∈K xk = x?. Then, x? satis�es the (sequential) necessary optimality conditions given in Theo-
rem 1.2.1.

Proof. Condition (1.2.1) holds by assumption. Feasibility of x? and continuity of c yield (1.2.2). Consid-
ering Assumption 1.5.7, injecting (1.4.15), and taking the limit yields

lim
k ∈K






xk − proxγkд (xk − γk∇xπ (xk , yk ))
γk






 = 0 (1.5.7)

since {ϵk } → 0. This, by boundedness of {γk }, gives (1.2.4). Let us focus on (1.2.3). The particular case
c(x?) ∈ int S is covered by Theorem 1.5.1. It remains to show that it holds also in the case c(x?) ∈ ∂S .
Denoting pk ∈ ΠS (c(xk )), wk = c(xk ) + µkyk , and zk ∈ ΠS (wk ), the dual update rule (1.4.16) reads
yk = (wk − zk )/µk . There are two cases: either (i) the sequence {µk } is bounded away from zero or
(ii) it tends to zero.

(i) By boundedness of {µk } away from zero, condition Ck ≤ θCk−1 must hold for all su�ciently
large k ∈ K , and thus limk ∈K Ck = 0, since θ ∈ (0, 1). Therefore, it is limk ∈K ‖c(xk ) − zk ‖ = 0 and, by
properties of norms, limk ∈K c(xk ) − zk = 0. Thus,

lim
k ∈K
‖c(xk ) − ΠS (c(xk ) + µkyk )‖ = lim

k ∈K
‖c(xk ) − ΠS (c(xk ) +wk − zk )‖

= lim
k ∈K
‖c(xk ) − ΠS (wk )‖

= lim
k ∈K
‖c(xk ) − zk ‖ = 0.

(ii) Since {µk } → 0, by boundedness of {yk }, it is limk ∈K c(xk ) − wk = 0 and, consequently,
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limk ∈K zk − pk = 0. By feasibility of x?, it is limk→∞ c(xk ) − pk = 0. Thus,

lim
k ∈K
‖c(xk ) − ΠS (c(xk ) + µkyk )‖ = lim

k ∈K
‖c(xk ) − ΠS (c(xk ) +wk − zk )‖

= lim
k ∈K
‖c(xk ) − ΠS (c(xk ) + c(xk ) − pk )‖

= lim
k ∈K
‖c(xk ) − ΠS (c(xk ))‖

= lim
k ∈K
‖c(xk ) − pk ‖ = 0.

In both cases, since K ⊂ N is an arbitrary subsequence, (1.2.3) is satis�ed and the proof is complete. �

Dropping the feasibility assumption, a similar, yet local, counterpart of Theorem 1.5.3 can be obtained.
The following theorem establishes that infeasible limit points are (local) minimizers of the infeasibility.
Interestingly, there is no need to assume that limk→∞ ϵk = 0.

Theorem 1.5.10. Let {xk } be a sequence generated by Algorithm 1 under Assumption 1.5.7. Let x?

be a limit point of {xk } and K ⊂ N a subsequence such that limk ∈K xk = x?. Then, x? satis�es the
(sequential) necessary optimality conditions, given in Theorem 1.2.1, for the problem

minimize
x∈Rn

Φ(x) :=
1
2

dist2
S (c(x)).

Proof. There are two cases: (i) the sequence {µk } is bounded away from zero or (ii) it tends to zero.
(i) Condition Ck ≤ θCk−1 must hold for all su�ciently large k , and thus limk→∞Ck = 0, since

θ ∈ (0, 1). Therefore, the limit point x? is feasible, since zk ∈ S for all k . By nonnegativity of the
distance and the fact that distS (c(x?)) = 0, x? is a (global) minimizer of Φ and necessarily satis�es the
conditions given in Theorem 1.2.1.

(ii) Let us denote, for all k ∈ N, the residual

rk :=
xk − proxγkд

(
xk − γk∇xπµk

(
xk , yk

) )
γk

.

By Assumption 1.5.7 and boundedness of {ϵk }, the residual norm ‖rk ‖ is bounded too. Hence, {µk } → 0
implies that {µkrk } → 0. Since γk ∈ (0,min{γд, 1/Lk }) from Assumption 1.5.7, it is γk = O(µk ) as
µk → 0. Therefore, {γk } → 0 and, by continuity of д and de�nition of the proximal operator, rk =
O

(
∇xπµk

(
xk , yk

) )
as µk → 0. Consequently, we have limk ∈K µk∇xπµk

(
xk , yk

)
= limk ∈K µkrk = 0.

By boundedness of {∇f (xk )}, {∇c(xk )}, and {yk }, and (1.4.12), after trivial simpli�cations, it is

0 = lim
k ∈K
∇c(xk )> [c(xk ) − ΠS (c(xk ))] = lim

k ∈K
∇Φ(xk ).

Since K is an arbitrary subsequence and the feasibility problem is unconstrained, this proves the
result. �

The following result, not provided in [163], extends Theorem 1.5.6 to a�ordable algorithms. This means
that, with a resetting safeguard on the Lagrange multiplier, limit points are critical points subject to
minimal infeasibility.

Theorem 1.5.11. Let {xk } be a sequence generated by Algorithm 1 under Assumptions 1.5.5 and 1.5.7
with limk→∞ ϵk = 0. Let x? be a limit point of {xk } andK ⊂ N a subsequence such that limk ∈K xk =
x?. Then, x? satis�es the (sequential) necessary optimality conditions of the problem

minimize
x∈Rn

f (x) + д(x) subject to dist2
S (c(x)) = dist2

S (c(x
?)).
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Proof. By Theorem 1.5.10, any limit point x? is a stationary point of the infeasibility. Therefore, for
any feasible limit point x?, the result follows immediately from Theorem 1.5.9.

Let us focus on an infeasible limit point x?. Since dist2
S (c(x

?)) > 0, {Ck } is bounded away from
zero and, consequently, {µk } tends to zero. By boundedness of {yk }, boundedness of {Ck } away from
zero, and the fact that {µk } → 0, the dual update rule (1.4.16) generates yk+1 < Y for k ∈ K su�ciently
large. Thus, by Assumption 1.5.5, it is yk = 0 for su�ciently large k ∈ K . Let us de�ne, for all x ∈ Rn ,
the smooth function ξ (x) := dist2

S (c(x)) − dist2
S (c(x

?)) and denote ξ (x) = 0 the scalar constraint in
the problem above. Then, ∇ξ (x) = 2∇c(x)>[c(x) − ΠS (c(x))] and

∇xπµk (xk , 0) = ∇f (xk ) + µ
−1
k ∇c(xk )

>[c(xk ) − ΠS (c(xk ))]
= ∇f (xk ) + ηk∇ξ (xk ),

where ηk := 1/(2µk ) > 0. Therefore, by Assumption 1.5.7 and {ϵk } → 0, it is

lim
k ∈K






xk − proxγkд (xk − γk [∇f (xk ) + ηk∇ξ (xk )])
γk






 = 0

for someγk > 0 su�ciently small, which proves (1.2.4). Since S = {0}, (1.2.3) boils down to limk→∞ ‖ξ (xk )‖ =
0. Consequently, by continuity of ξ and ξ (x?) = 0, both (1.2.2) and (1.2.3) are satis�ed, concluding the
proof. �

1.5.3 Boundedness of the penalty parameter

The theoretical results presented so far are valid for any (safeguarded) choice of the dual estimate
yk . This comprises even the case that the Lagrange multiplier is safeguarded by the trivial choice
yk = 0 for all k ∈ N, which corresponds to the (classical, external) penalty method [20], in which the
constraints are not shifted. However, stronger results are available in NLP when the dual estimate is
e�ectively updated employing the strategy derived in §1.4.1, possibly subject to safeguards [49, 62,
163]. Similarly, we expect additional properties to hold in NCSP under similar assumptions, that is,
for feasible, su�ciently regular limit points. Employing the following dual update rule, there exists a
limit point for the sequence of dual variable {yk }.

Assumption 1.5.12. For all k ∈ N, if yk ∈ Y , then yk+1 = yk .

Proposition 1.5.13. Let {xk } be a sequence generated by Algorithm 1 under Assumptions 1.5.5
and 1.5.12. Let x? be a limit point of {xk } and K ⊂ N a subsequence such that limk ∈K xk = x?. Then,
if {µk } is bounded away from zero, the sequence {yk } admits a limit point y?.

Proof. By boundedness of {µk } away from zero, it is limk ∈K Ck = 0. Therefore, by properties of
norms, limk ∈K c(xk ) − zk = 0. Thus, by (1.4.16), limk ∈K yk − yk = 0. By Assumptions 1.5.5 and 1.5.12,
compactness of Y yields the result. �

Furthermore, we argue, it is reasonable to expect the boundedness of {µk } away from zero, possibly
under additional assumptions. This is in fact a desirable feature since the di�culty of solving subprob-
lems increases with the penalty parameter approaching zero. Although the penalty term introduces a
benign ill-conditioning [94], gradient-based methods may struggle, and Newton-type methods are
needed to overcome this issue. Quasi-Newton methods for structured optimization, such as ZeroFPR
[215] and PANOC [202], may also be able to e�ectively cope with severely ill-conditioned problems.

The Augmented Lagrangian method has the property of converging to the correct solution
maintaining bounded penalty parameters, under mild assumption [163, §7.8]. Thus, in practice, this
means that the occurrence of extremely large penalty parameters is a symptom of infeasibility.
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1.5.4 Subproblem convergence

A fundamental step in Algorithm 1, and perhaps the most computationally demanding, is the (approx-
imate) minimization of the AL function; of course, this plays a key role in any declination of the AL
framework. Independent on the approach chosen, either PAL or ALP, the arising subproblem is a struc-
tured optimization problem, with a proper, lower semi-continuous, nonconvex objective function; see
§1.4. Quasi-Newton methods for such class of problems have been only recently developed, pioneered
by the work of Stella, Themelis, and Patrinos [200, 214]. In the following we build upon ZeroFPR [215]
and PANOC [202], two linesearch-based quasi-Newton methods for structured optimization. Although
they can cope with fully nonconvex problems, they require only simple algebraic operations, have a
small memory footprint, and can exploit second-order information to enable asymptotic superlin-
ear rates under mild assumptions. The interested reader may refer to [202, 215, 229] for a detailed
convergence analysis of such methods.

Algorithm 2 is designed for solving the structured problem

minimize
x∈Rn

φ(x) := f (x) + д(x).

For the sake of a concise notation, we denote by xγ a proximal-gradient step, by rγ the forward-
backward residual (related to Assumption 1.5.7), by f̆γ the quadratic model of the smooth term f ,
de�ned by

xγ (x) ∈ proxγд(x − γ∇f (x)), (1.5.8)

rγ (x) := x − xγ (x), (1.5.9)

f̆γ (x) := f (x) − ∇f (x)>rγ (x) +
1

2γ
‖rγ (x)‖2, (1.5.10)

respectively. The FBE φγ of φ := f + д, de�ned in (0.2.4), can be expressed as

φγ (x) := inf
z∈Rn

{
f (x) + ∇f (x)>(z − x) +

1
2γ
‖z − x‖2 + д(z)

}
= inf

z∈Rn

{
f (x) −

γ

2
‖∇f (x)‖2 +

1
2γ
‖z − x + γ∇f (x)‖2 + д(z)

}
= f (x) + ∇f (x)>(xγ (x) − x) +

1
2γ
‖xγ (x) − x‖2 + д(xγ (x))

= f̆γ (x) + д
(
xγ (x)

)
. (1.5.11)

Finally, we de�ne the su�cient decrease parameter as

σγ := ασ (1 − αγ )/(2γ ). (1.5.12)

Although Algorithm 2 closely resembles PANOC, originally proposed in [202], it should be com-
plemented with comments regarding two aspects: the possibly set-valued gradient of the smooth
objective, and the conditions on the forward-backward stepsize γ .

Following the PAL strategy, for a nonconvex set S , the gradient (of the smooth part) of the AL
function Lµ (·, y) is set-valued, due to the projection ΠS . Whenever an iterate exhibits set-valued
gradient, however, one could switch to the ALP formulation, which yields a continuously di�erentiable
smooth term, and then proceed. In fact, this is possible because the two approaches stem from, and
aim at solving, the same subproblem. Even better, on the vein of (1.2.5) and (1.2.12), it su�ces to pick
any element of the set-valued projection and proceed without further concern. In fact, this is formally
equivalent to switching strategy and taking a step for the ALP subproblem.

The stepsize γ plays a crucial role in forward-backward splitting (FBS) algorithms and, similarly to
gradient methods, it depends on the Lipschitz constant of the gradient. However, no prior knowledge
of such Lipschitz constant is required in practice, as a simple backtracking procedure can select suitable
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Algorithm 2 PANOC: Proximal averaged Newton-type method, based on [202]
Input: x0 ∈ R

n , γ > 0, αγ ,ασ , βγ , βτ ∈ (0, 1), ϵ > 0.
Output: x?

for k = 0, 1, . . . do
while f (xγ (xk )) ≥ f̆γ (xk ) do

update γ ← βγγ . γ -backtracking
end while
if ‖rγ (xk )‖ ≤ γϵ then

return xγ (xk )
end if
select dk ∈ Rn and set τ ← 1 . search direction
while true do

set xk+1 ← (1 − τ )xγ (xk ) + τ (xk + dk ) . tentative update
if f (xγ (xk+1)) < f̆γ (xk+1) and φγ (xk+1) ≤ φγ (xk ) − σγ ‖rk ‖2 then

break
end if
update τ ← βττ . τ -backtracking

end while
end for

values for γ in �nitely many iterations [202, Rem. III.4]. In fact, this is the goal of the γ -backtracking
loop in Algorithm 2: the value of γ is repeatedly decreased until the quadratic upper bound is satis�ed.
Diverging from [202, 255, 257], this condition is additionally checked within the linesearch procedure.
The rationale behind this feature is related to increased robustness. Firstly, it is worth noticing that the
value of the FBE φγ (xk+1) at the tentative update xk+1 depends on the current stepsize γ . Therefore, the
su�cient decrease condition alone is unreliable as a termination criterion for the linesearch. This is
particularly relevant for ill-condition problems, where the gradient can greatly vary between di�erent
regions, and robust to very large search directions. On the other hand, having these two termination
criteria does not a�ect the convergence guarantees: by Lipschitz continuity of the gradient of the
smooth term, suitability of γ at the current iterate, su�cient decrease given by the proximal gradient
step, and continuity of the FBE, there always exists a linesearch stepsize τ > 0 yielding su�cient
decrease within the range of validity of the quadratic upper bound, cf. [202, 215].

1.5.5 Algorithm

This section takes a step toward an implementable algorithm for NCSP, based on Algorithm 1. Although
not trivially derived from it, Algorithm 3 maintains its essential structure and retains its convergence
guarantees, while o�ering additional features which make it more practical and improve its e�ciency.

Let us comment on Algorithm 3 and compare it to Algorithm 1.

• Convergence to an approximate solution is assessed at every iteration, by checking the conditions
given in Theorem 1.5.14 below. This result provides theoretical support for stopping Algorithm 3
and declaring convergence, based on Theorem 1.2.1.

• Although not necessary, the inner solver should be warm-started from the previous solution.
Providing xk−1 as an initial guess for the k-th subproblem can greatly improve performance
and robustness of the method.

• The dual safeguard Y needs not be constant, as in Algorithm 1, nor bounded; see [114, Alg.
4.2.1] for expanding safeguards. Nonetheless, in Algorithm 3, Yk is assumed compact for all
k , for the sake of simplicity. Moreover, the dual resetting mechanism is included, based on
Assumption 1.5.5, so to bene�t from Theorem 1.5.11.
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Algorithm 3 ALPX: Augmented Lagrangian ProXimal method
Input: x0 ∈ R

n , y0 ∈ R
m , ϵopt, ϵfeas > 0, {Yk } ⊆ Rm compact, θ ∈ (0, 1).

Output: x?, y?
select y1 ∈ Y1 and µ1 > 0
for k = 1, 2, . . . do

select ϵk > 0 such that ϵk ≤ ϵopt for k su�ciently large
�nd an ϵk -approximate minimizer xk of Lµk (·, yk ), given in (1.4.10) . subproblem
select zk ∈ ΠS

(
c(xk ) + µkyk

)
set yk ← yk + [c(xk ) − zk ] /µk
if (xk , yk ) is a (ϵopt, ϵfeas)-approximate solution then

return xk , yk
end if
if yk ∈ Yk then set yk+1 ← yk , else set yk+1 ← 0, end if . dual estimate
select z+k ∈ ΠS (c(xk ) + µkyk )
set Ck ← ‖c(xk ) − zk ‖, Fk ← distS (c(xk )), and Vk ← ‖c(xk ) − z+k ‖
select µ◦k+1 > 0 such that limk→+∞ µ

◦
k = 0

if k = 1 or Ck ≤ θCk−1 or max{Vk , Fk } ≤ ϵfeas then
select µk+1 > 0

else
select µk+1 ∈ (0, µ◦k+1] . penalty update

end if
end for

• In contrast to Algorithm 1, iterations are deemed successful [49, 114, 145] considering also an
alternative condition, which enlarges their scope. Su�cient progress, namely Ck ≤ θCk−1,
is no longer necessarily required for iterates characterized by approximate feasibility and
complementarity, namely max{Vk , Fk } ≤ ϵfeas. This strategy is recommended in [145, Alg. 2.2]
and reminiscent of the switching condition in [113, §2.3]. Its rationale is that, in the latter case,
there is no need to tighten the penalty term, since the current iterate is satisfactory in terms of
primal feasibility and, indeed, it may be di�cult to get further progress. This possibly limits the
ill-conditioning of subproblems, as the penalty parameter is decreased fewer times.

• The penalty parameter update is non-monotone, as suggested in [145]. By relaxing the penaliza-
tion term after successful iterations, this yields subproblems with better scaling, which the inner
solver is expected to solve more easily. Yet, the (slowly) decreasing sequence {µ◦k } guarantees
that, if needed, the sequence {µk } decays to zero, preventing the method from cycling.

• The requirement that limk→∞ ϵk = 0 in Algorithm 1 is relaxed, by considering the optimality
tolerance ϵopt > 0. This is possible thanks to the identity (1.4.15) given by the dual update rule
(1.4.16).

Borrowing terminology from [145], we say the k-th iteration is incomplete if the subsolver returns a
solution xk which does not satisfy the condition given in Assumption 1.5.7, namely xk is not an ϵk -
approximate solution to the k-th subproblem. It should be noticed that, in exact arithmetic, reasonable
solvers are guaranteed to �nd a critical point, and so to yield a complete iteration, unless the subproblem
is unbounded from below. This case represents a pathology inherent in the AL framework [131], and
e�ective strategies to detect and handle it should be implemented. However, in practical computations,
incomplete iterations may appear due to di�cult or slow progress, especially due to poor scaling when
the penalty parameter approaches zero. Incomplete iterations may deserve particular care in practice.
An interesting approach is discussed in [145, Alg. 2.3], that explicitly addresses possible failures of the
subproblem minimization solver. Di�erent strategies could be adopted depending on the failure cause,
as well as on the outer loop history.

Theorem 1.5.14 below provides suitable termination criteria for Algorithm 3 and their theoretical
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grounds, based on Theorem 1.2.1: convergence is declared as soon as these conditions hold, see [145,
Thm. 2.3]. Notice that, despite no assumption regarding the problem feasibility is made, we emphasize
it is itself a necessary condition and, in particular, (primal) infeasibility prevents the second condition
to hold. On the contrary, convergence cannot be declared if in�nitely many incomplete iterations take
place, the penalty parameter vanishes, or both. This points out the need for additional termination
criteria in practical implementations, such as, e.g., maximum number of iterations, maximum elapsed
time, detection of (local) infeasibility and unboundedness [113, 163].

Theorem 1.5.14. Let ϵopt, ϵfeas > 0 be arbitrary and {xk }, {yk } denote sequences generated by
Algorithm 3.

(i) If a �nite number of iterations is incomplete, then for all k ∈ N su�ciently large it holds

‖xk − proxγkд
(
xk − γk

[
∇f (xk ) + ∇c(xk )>yk

] )
‖ ≤ γkϵopt

for some suitable γk > 0.

(ii) If {µk } is bounded away from zero, then it holds

distS (c(xk )) ≤ ϵfeas
‖c(xk ) − ΠS (c(xk ) + µkyk )‖ ≤ ϵfeas

for all k ∈ N su�ciently large.

Proof. (i) Since at most a �nite number of iterations is incomplete, there exists k0 ∈ N such that the
condition in Assumption 1.5.7 holds for all k ≥ k0. Then, by using the dual update (1.4.16), the equality
(1.4.15), the gradient of π (·, yk ) in (1.4.11), and the fact that eventually ϵk ≤ ϵopt, the result follows.

(ii) Since {µk } is bounded away from zero, there exists k0 ∈ N such that, for all k ≥ k0, either
Ck ≤ θCk−1 or max{Vk , Fk } ≤ ϵfeas holds. It is su�cient to consider the two cases separately. The
latter case gives trivially the result, by de�nition of Vk and Fk . In the former case, it is {Ck } → 0,
since θ ∈ (0, 1), and thus {c(xk ) − zk } → 0. Since zk ∈ S for all k and, by the dual update (1.4.16),
{yk − yk } → 0, by continuity both conditions are satis�ed for k su�ciently large. �

Some further comments are in order. A peculiar feature of the AL framework is that, in its outer
layer, it is matrix-free. This property is becoming of particular interest to cope with huge-scale
problems [132, 179, 205, 249]. Employing quasi-Newton directions in PANOC and ZeroFPR [202, 215],
e.g., via L-BFGS [38], Algorithm 3 can be readily made matrix-free.

Infeasibility detection is a valuable feature for numerical solvers [113, 165, 242, 232]. A simple
yet e�ective approach is to consider a criterion related to the convergence to an infeasible point.
Given some tolerances ϵ inf

feas, ϵ
inf
opt > 0, one may consider the stationarity of the infeasibility measure

Φ(x) := dist2
S (c(x)). If it holds

‖xk − ΠΩ (xk − ∇Φ(xk ))‖ ≤ ϵ inf
opt and distS (c(x)) ≥ ϵ inf

feas,

then the iterative method may stall at the infeasible point xk , based on Theorems 1.5.10 and 1.5.11.
However, as discussed in [163, §10.2.3], it is not obvious whether this condition should be included
or not as a termination criterion. If a problem is indeed infeasible, the execution should be stopped,
as soon as possible, by enabling this check. On the other hand, if the problem is instead feasible,
successive iterates may move away and eventually �nd a solution in the sense of Theorem 1.2.1, that
is, a point xk that satis�es the conditions given in Theorem 1.5.14.

1.5.6 Parameter selection

Penalty and AL methods require selecting values for some parameter and forcing sequences, e.g., µ0,
θ , and {ϵk } in Algorithm 3. Great e�ort has been devoted to the design of tuning-free algorithms,
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which inspired the use of trust regions [48, 83], �lters [89], �exible penalties [118], and trust funnels
[133], among others. Within this work, however, we focus on the simple, yet e�ective, Algorithm 3.
Therefore, we specify how the forcing sequences are generated; cf. [46, 114, 145, 163].

The sequence {ϵk } of inner tolerances plays an important role, in that it balances the number
of inner and outer iterations. Let ϵopt, ϵfeas ∈ (0, 1) be arbitrary and given. Following [145], we take
ϵ1 =
√
ϵopt and generate successive values depending on the iterates. If the k-th iteration is complete

and max{Vk , Fk } ≤
√
ϵfeas, then

ϵk+1 = max
{
αϵϵopt,min {βϵϵk , βr ‖rk ‖∞}

}
,

otherwise we set ϵk+1 = ϵk . Here, rk := [xk − xγk (xk )]/γk denotes the subproblem residual (see §1.5.4
and Assumption 1.5.7), and αϵ ∈ (0, 1], βϵ , βr ∈ (0, 1) are given parameters.

As mentioned above, multiple penalty parameters are considered, for better scaling of the constraint
violations. For some k ∈ N, let xk ∈ Ω, ck = c(xk ), pk ∈ ΠS (ck ), and φk = f (xk ) + д(xk ). Based on
balancing objective and constraint violation [163, Eq. 12.1], we take

µik := µest
max

{
1, (cik−1 − p

i
k−1)

2/2
}

max {1, |φk−1 |}

for some µest > 0. Smaller values of µest emphasize constraint violation and may yield faster con-
vergence, whereas larger values result in easier, possibly better scaled, subproblems. If approximate
feasibility and complementarity hold, namely max{Vk , Fk } ≤ ϵfeas, we relax the penalization by setting
µk+1 ← min{α+µk , µmax}, with α+ ≥ 1 and µmax > 0. If there is only su�cient progress, namely
Ck ≤ θCk−1, the penalization is left untouched, i.e. µk+1 ← µk . For unsuccessful iterations, we sim-
ply take µk+1 = min{α−µk , µ◦k+1}, with α− ∈ (0, 1). The zero sequence {µ◦k } is generated by having
µ◦k := αk◦ µmax, with α◦ ∈ (0, 1).

It was recently highlighted in [228, §3.4] that having independent penalty parameters for the
di�erent constraints may lead to poorer convergence guarantees. Nevertheless, we believe the penal-
ization of each constraint should be balanced, i.e., provide a trade-o� between objective function and
constraint violation. In this perspective, the use of multiple penalty parameters, one attached to each
constraint, can e�ectively scale the constraint violations. The relative magnitude is estimated a few
times following [163, §12.4], e.g., k ∈ {1, 2}, and then scaled all accordingly. Therefore, we can rely on
the convergence analysis based on a single penalty parameter, without further modi�cations.

Finally, let us consider the dual safeguards Yk , which play a role in controlling the growth of
the dual variable, see [114, 196]. For the sake of simplicity, we construct each Yk to be a bounded
hyperbox in Rm containing the origin {0}. However, we allow this hyperbox to expand, inspired by
[114, Alg. 4.2.1]. If a dual update falls outside Yk , the bounds corresponding to the overstepped faces
are increased, by a factor βy ≥ 1 and up to a given maximum size Ymax. This procedure is applied
componentwise, as well as the reset of the dual estimate.

1.6 Numerical Results

This section presents details of our implementation of Algorithm 3, named ALPX, and reports on
numerical evaluations. Some examples involving vanishing and disjunctive constraints are discussed,
highlighting the advantages of formulating these problems as NCSPs. Then, ALPX is benchmarked
against the open-source interior-point solver IPOPT [113] on a suite of NLPs.

Implementation We implemented Algorithm 3 in Julia during the writing of this thesis, see
§0.1. The code is freely available within the open-source Bazinga package, which collects ALPX and
other tools for constrained, structured optimization, such as PANOC and ZeroFPR, among others. An-
other package, called OptiMo, was developed as a modelling tool for NCSPs that generates problem
formulations in a format suitable for Bazinga.

In the spirit of matrix-free methods [179, 249],ALPX does not require to explicitly form the constraint
Jacobian ∇c, but only the transposed Jacobian-vector product is accessed, as an oracle. In particular,
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Table 1.1: Default parameters of ALPX, PANOC, and ZeroFPR.

Parameter Value Parameter Value
ALPX

ϵopt 10−8 ϵfeas 10−8

θ 0.5 ϵ0
√
ϵopt

αϵ 1 βϵ 0.1
βr 0.5 µmax 106

µest 0.1 α− 0.25
α+ 10 α◦ 0.99
Y0 [−103, 103] Ymax [−106, 106]

βy 1.1 max iterations 50
PANOC and ZeroFPR

αγ 0.95 ασ 0.5
βγ 0.5 βτ 0.5
γmin 10−16 τmin 10−8

L-BFGS memory 8 max iterations 1000

this concerns the gradient evaluation of the augmented Lagrangian (1.4.12): the constraint Jacobian
∇c should not be formed ifm is large and if the transposed Jacobian-vector product can be computed
more e�ciently. Moreover, the subproblems solvers, PANOC and ZeroFPR, are equipped with search
directions based on L-BFGS, a limited-memory quasi-Newton method, with the two-loop recursion
[38]. Table 1.1 reports the default settings adopted in the numerical evaluations. Notice that parameters
γmin and τmin are employed in our implementation: the solvers exit the linesearch procedure with
τ = 0, i.e., taking a proximal-gradient step, when the linesearch stepsize τ is decreased below τmin;
also, they abort as soon as γ < γmin, as progressing becomes di�cult.

1.6.1 Illustrative examples

Disjunctive programming problems [206] can be cast into the form of (1.1.1). We now consider a few
exemplary problems to illustrate some of the advantages o�ered by modeling problems in the form
of (1.1.1). We give detailed reformulations of two examples of mathematical program with vanishing
constraints (MPVCs) and a program with either-or constraints.

AcademicMPVC Let us consider a two dimensional problem arising in truss topology optimization
[64], a classical example in the context of MPVCs [124, 240]. The variables x ∈ R2 represent cross
sectional areas of two di�erent groups of truss bars and the meaning of the objective function is the
weight of the structure. The problem reads

minimize
x∈R2

4x1 + 2x2 (1.6.1)

subject to x1 ≥ 0, x2 ≥ 0

(x1 + x2 − 5
√

2)x1 ≥ 0
(x1 + x2 − 5)x2 ≥ 0.

The origin x◦ = 0 is the unique global minimizer of the problem, and x? = (0, 5) is a local minimizer.
However, numerical evidence have shown that, due to lack of constraint quali�cation, solvers may end
up also at x+ = (0, 5

√
2), which is not a local minimizer. This happens because of the geometry of the

feasible set; see Figure 1.1. We reformulate (1.6.1) as a NCSP by considering (1.1.1) with the following
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Figure 1.1: Feasible set of problem (1.6.1) (left) and (projection of) set S in (1.6.2) (right).

terms:

f (x) := 4x1 + 2x2 д(x) := χR+(x1) + χR+(x2) (1.6.2)

c(x) :=
©­­­«

x1
x2

x1 + x2 − 5
√

2
x1 + x2 − 5

ª®®®¬ S := {(a, b) ∈ R4 | ∀i ∈ [1; 2] ai = 0 ∨ (ai ≥ 0 ∧ bi ≥ 0)}.

This seems to be a fairly unusual formulation. In fact, MPVCs are often solved adopting smoothing,
regularization, and continuation techniques [124, 152, 240]. Conversely, the reformulation associated
with (1.6.2) has no regularization nor relaxation. Instead, the set S is nonconvex and its projection
operator ΠS is not single-valued, but can be evaluated e�ciently; see Figure 1.1.

We run ALPX, with the default settings, starting from a uniform grid of 2601 initial points in
[−5, 20]2. Computational results are summarized in Table 1.2 and displayed in Figure 1.2, where initial
points are marked according to the solution found (within 10−3). ALPX always returns either the global
minimizer x◦ or the local minimizer x?, depending on the initial guess. In [240, §4.1], the Authors
compare four di�erent regularization methods, obtaining the global minimizer only 13–15% of the
times (with 676 initial points).

Recalling the practical background of problem (1.6.1), we arti�cially exclude the point x◦ = 0 from
the feasible set, as trusses must have a positive cross sectional area. Following [124, §9.5.1], we add the
linear constraint x1 + x2 ≥ 3 appending a smooth constraint, namely

c5(x) := x1 + x2, S5 := [3,+∞). (1.6.3)

As shown in Figure 1.2b, ALPX is not able to return a feasible solution for some initial guesses. Neverthe-
less, for all other cases, the (global, now) minimizer x? is found. In fact, with this problem formulation,
the penalty-based method is not able to escape the infeasible region, for some initial points, and thus
remains stuck with x1 + x2 < 3.

However, another formulation is possible, thanks to the rich structure of (1.1.1). In fact, the linear
constraint can be enforced exactly by replacing д in (1.6.2) with

д(x) := χR+(x1) + χR+(x2) + χR+(x1 + x2 − 3), (1.6.4)

whose proximal operator can be easily evaluated, due to its convex, simple structure. In this case, the
additional constraint x1 + x2 ≥ 3 is satis�ed at each and every iteration, as well as the nonnegativity
of x. Thus, the shifted penalty method is left with the vanishing constraints only. Numerical evidence
shows that ALPX always �nds the desired solution x? = (0, 5); see Figure 1.2c.
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(a) MPVC (1.6.2), with x◦ included.
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(b) MPVC (1.6.3), with x◦ excluded.
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(c) MPVC (1.6.4), with x◦ excluded.

Figure 1.2: Results for the academic MPVC example. Initial points are marked if the solution found is
close to x◦ = (0, 0) (blue circle) or x? = (0, 5) (red star).

Table 1.2: Run time (median) and success rate of ALPX on the academic MPVC problem.

MPVC Time [ms] x◦ = (0, 0) x? = (0, 5)
(median)

(1.6.2) 0.6 707 (27.2%) 1894 (72.8%)
(1.6.3) 0.7 0 (0.0%) 2404 (92.4%)
(1.6.4) 0.7 0 (0.0%) 2601 (100.0%)
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Figure 1.3: Results for the QPVC example. Problem size n versus run time t .

Quadratic programs with vanishing constraints MPVCs arise also in applications with combi-
natorial or logic constraints. The adoption of SQP-type methods for such problems leads to quadratic
programs with vanishing constraints (QPVCs) [159]. These problems have a feasible set which is
structurally combinatorial, hence nonconvex. Without loss of generality, we focus on the following
QPVC:

minimize
x∈Rn

f (x) :=
1
2
x>Qx + q>x (1.6.5)

subject to (Gix − gi )xi ≥ 0, xi ≥ 0, i ∈ [1;N ]

where Q ∈ Sym++(Rn), G ∈ RN×n , q ∈ Rn , g ∈ RN , and N ∈ N denotes the number of vanishing
constraints. This problem formulation can always be obtained by introducing slack variables and
suitable rearrangements [159, §2.5]. We consider (1.1.1) with the following terms:

д(x) := χRN
+
(x1:N ) c(x) :=

©­­­­­­«

x1
[Gx − g]1
...

xN
[Gx − g]N

ª®®®®®®¬
S := VCN .

Herein the nonconvex setVC is adopted to model the vanishing constraint, and its projection operator
ΠVC can be easily evaluated.

VC := {(a,b) ∈ R2 : a = 0 ∨ (a ≥ 0 ∧ b ≥ 0)}

Whenever the projection ΠVC ((a,b)) is set-valued, namely a > 0 and a +b = 0, we select the element
(a, 0). Analogous results were obtained choosing (0,b) instead.

We consider 1000 problems with n ∈ [10; 250], N = dn/5e, and randomly generated problem data.
We set Q = P>P , where P ∈ Rn×n and Pi j ∼ N(0, 1), qi ∼ N(0, 1),Gi j ∼ N(0, 1), and gi ∼ N(0, 1). We
run ALPX, with the default settings, starting from the initial guess x0 = 0, with dual estimate y0 = 0.
ALPX is able to solve all the problem instances, requiring a modest number of (outer) iterations, 12 on
median value, ranging from 4 to 25. Computation times are reported in Figure 1.3.

Either-or constraints We now consider an optimization problem with either-or constraints [225,
§5.2.1]. The problem reads

minimize
x∈R2

(x1 − 8)2 + (x2 + 3)2 (1.6.6)

subject to x1 − 2x2 ≤ −4 ∨ x1 ≤ 2
x2

1 ≤ 4x2 ∨ (x1 − 3)2 + (x2 − 1)2 ≤ 10.
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Figure 1.4: Feasible set (left) and results for problem (1.6.7). Initial points are marked if the solution
found is close to x◦ = (2,−2) (blue circle) or x? = (4, 4) (red star).

It admits a unique global minimizer x◦ = (2,−2), a local minimizer x? = (4, 4), and its feasible set is
depicted in Figure 1.4. We reformulate (1.6.6) as a NCSP by considering (1.1.1) with the following terms:

f (x) := (x1 − 8)2 + (x2 + 3)2 д(x) := 0 (1.6.7)

c(x) :=
©­­­«

x1 − 2x2 + 4
x1 − 2

x2
1 − 4x2

(x1 − 3)2 + (x2 − 1)2 − 10

ª®®®¬ S := EO2.

Herein the nonconvex set EO is adopted to model the either-or constraint:

EO := {(a,b) ∈ R2 : a ≤ 0 ∨ b ≤ 0}.

Thus, in contrast with the approach followed in [225, §5.2.1], we need not introduce additional variables.
Moreover, despite EO being nonconvex, computing an element of the projection ΠEO is trivial; ditto
for ΠS . Based on the fact that

ΠEO ((a,b)) =


(a, 0) if a > b > 0,
{(a, 0), (0,b)} if a = b > 0,
(0,b) if b > a > 0,
(a,b) otherwise,

(1.6.8)

we solved the problem selecting always the element (a, 0) whenever the case a = b > 0 applied.
We run ALPX, with the default settings, starting from a grid of 2401 initial points in [−4, 8]2.

Figure 1.4 depicts the results, with the same procedure followed in Figure 1.2. The median run time
was 1.5 ms. ALPX returns a point within 10−3 from x◦ and x? respectively 1954 (81.4%) and 447 times
(18.6%). Thus, the solver always converges to a feasible minimizer; Figure 1.4 shows the basin of
attraction of x◦ and x? for the adopted formulation and settings. Analogous results were obtained
by choosing the element (0,b) 3 ΠEO ((a,b)) whenever a = b > 0. This led to x◦ and x? respectively
1972 (82.1%) and 429 times (17.9%).
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Nonconvex optimization Let us consider the example given in [257, §4.1], entailing the constrained
optimization of the Rosenbrock function. It reads

minimize
x∈R5

f (x) :=
4∑
i=1

p2(xi+1 − x
2
i )

2 + (p1 − xi )
2 (1.6.9)

subject to ‖x‖ ≤ p4

p3 sinx1 = cos(x2 + x3)

x3 + x4 ≤ p5

where p = (1, 50, 1.5, 0.73, 0.2) are given parameters. Problem (1.6.9) can be written in multiple ways
in the form of (1.1.1). Following the second formulation given in [257], we choose the terms

д(x) := χNC (x) NC := {x ∈ R5 : ‖x‖ ≤ p4}

c(x) :=
(
p3 sinx1 − cos(x2 + x3)

x3 + x4 − p5

)
S := {0} × (−∞, 0].

Herein NC denotes the set of vectors whose norm is less than or equal to p4, and it is adopted to
enforce the norm constraint. The proximal operator of д := χNC coincides with the projection ΠNC ,
which is single-valued and computationally inexpensive.

In [257, §4.1], the Authors state that “the formulation based on the augmented Lagrangian method
ran in 1.4 ms after 5 outer and 175 total inner iterations.” Adopting the same settings as in [257], namely
ϵopt = 10−5, ϵfeas = 10−4, ϵ0 = 10−4, µ0 = 10−3, and α− = 0.2, ALPX takes approximately 3.1 ms, 8 outer
and 95 inner iterations to solve the problem. With these looser tolerances but its own default settings,
ALPX takes 4.0 ms, 10 outer and 97 inner iterations. Finally, ALPX takes 9.9 ms, 23 outer and 282 inner
iterations to solve the problem with high accuracy, namely with ϵopt = ϵfeas = 10−8. Considering that
OpEn generates code for a problem-speci�c solver, the performance shown by ALPX seems satisfactorily
and, indeed, promising.

1.6.2 Nonlinear programming

Nonlinear programming is a fundamental topic in mathematical continuous optimization [112, 180].
Many methods and algorithms have been designed and analyzed during the last decades. Concurrently,
developing e�cient and robust numerical solvers has attracted growing interest and e�ort. Some
state-of-the-art solvers are IPOPT [113], WORHP [157, 212], LANCELOT [49, 51], SNOPT [91, 103], Knitro [109],
MINOS [33, 39], LOQO [93], PENNON [95], ALGENCAN [87, 115, 163], and IPFILTER [99], among others.

General nonlinear programs (NLPs) can be represented in the form

minimize
x∈Rn

f (x) (1.6.10)

subject to xl ≤ x ≤ xu

cl ≤ c(x) ≤ cu,

where the constant vectors xl, xu, cl, cu satisfy xl ≤ xu, cl ≤ cu, and the inequalities are understood
componentwise. A simple reformulation of (1.6.10) to recover the form of (1.1.1) is obtained by setting

д := χ[xl,xu] and S := [cl, cu].

Since both [xl, xu] and [cl, cu] are convex sets, this gives smooth, bound-constrained subproblems
in Algorithm 3, which boils down to those in [49, 163]. Therefore, one can, and likely should, use
methods tailored for such problems, e.g., LBFGS-B [59, 73], TRON [78], and GENCAN [87, 163], instead of
methods for structured optimization, such as ZeroFPR and PANOC, that do not exploit the properties of
smooth problems. Aware of this drawback, we are interested in testing the performance of ALPX and
comparing it to a state-of-the-art NLP solver. However, testing and benchmarking optimization codes
deserves signi�cant e�ort and full-�edged solvers; this analysis does not dare to achieve this goal.
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Metrics Let S , P , and ts,p denote the set of solvers, the set of problems, and the time required for
solver s ∈ S to return a solution for problem p ∈ P . The shifted geometric mean (sgm) t̂s of the run
times for solver s ∈ S on P is de�ned by

t̂s := exp ©­« 1
|P |

∑
p∈P

ln
(
ts,p + tshift

)ª®¬ − tshift

with the shift tshift = 1 s [259]. Here, when solver s fails to solve problem p, the term ts,p is set to the
time limit. We also adopt the performance pro�les [88] to compare the solver timings. These plot the
function f r

s : R→ [0, 1], s ∈ S , de�ned by

f r
s (τ ) :=

|{p ∈ P : ts,p ≤ τ tmin
p }|

|P |
, tmin

p := min
s ∈S

ts,p .

Considering ts,p = +∞ when solver s fails on problem p, f r
s (τ ) is the fraction of problems solved by

solver s within τ times the best timing. Since performance pro�les may be misleading when more
than two solvers are compared [184], we will compare them pair-wise.

Furthermore, performance pro�les do not provide the percentage of problems that can be solved
(for some given tolerance ϵ) within a given time t . Thus, on the vein of data pro�les [125, §2.2], we
plot the function f a

s : R→ [0, 1], s ∈ S , de�ned by

f a
s (t) :=

|{p ∈ P : ts,p ≤ t}|

|P |
.

Considering ts,p = +∞ when solver s fails on problem p, f a
s (t) is the fraction of problems solved by

solver s within the time t . Note that, in contrast to f r
s , the time pro�le t 7→ f a

s (t) is independent from
other solvers and displayed with the actual timings of solver s .

Setup We consider the subset of the CUTEst benchmark problems [175] with at least one variable,
one nonlinear constraint, and at most 100 variables and 100 nonlinear constraints; this selection
yields 446 problems. We also consider IPOPT, a well-established code implementing a primal-dual
�lter-linesearch interior-point method [107, 106, 113]; see h�ps://coin-or.github.io/Ipopt/. A similar
comparison of IPOPT against an augmented Lagrangian �lter method can be found in [242].We access
the problems and the solver through the infrastructure and the tools given by CUTEst.jl [246] and
NLPModelsIpopt.jl [248], respectively. OptiMo o�ers a tool to import NLP models expressed with
NLPModels.jl [247], and so to feed ALPX with CUTEst problems.

We run both ALPX and IPOPT with their default settings, besides the convergence tolerance ϵ =
ϵopt = ϵfeas. A problem instance is considered solved by a solver if the output status is first_order,
for ALPX, or Solve_Succeeded, for IPOPT; otherwise, it is a failure.

Results Computational results are reported in Table 1.3, with run times and failure rates, and
depicted in Figure 1.5 with performance and time pro�les, for di�erent tolerance values. Although,
at the moment of writing, the codes in the software package Bazinga are implemented for research
purposes and are far from being production-ready, ALPX proves to be relatively robust. Many features
which make IPOPT well-respected are not yet implemented, such as, e.g., a robust restoration phase.
For example, the optimizers in Bazinga stop as soon as a IEEE NaN or Inf is detected, without any
tentative of recovery.

In terms of shifted geometric mean, ALPX is slower than IPOPT for all the tolerance values; see
Table 1.3. However, inspecting the pro�les in Figure 1.5, we can better appreciate the di�erences of
the two methods. The time pro�les demonstrate that IPOPT’s timings lies in a narrow interval and, in
contrast, ALPX is very fast on some problems and takes long on others. An example of these problems
is MANCINONE (n = m = 100), where ALPX stalls: with ϵ = 10−8, IPOPT succeeds in 4 iterations while
ALPX �nds a feasible point with dual residual 4.2 · 10−8 in 6 outer and 97 inner iterations, but it is not
able to progress further until the maximum number of iterations is reached. Indeed, IPOPT relies on
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Table 1.3: Run time and failure rate on the CUTEst problems with n,m ∈ [1; 100].

Tolerance ϵ 10−4 10−6 10−8

ALPX Time (sgm) [s] 3.010 3.532 4.242
Failure rate [%] 28.9 31.6 34.8

IPOPT Time (sgm) [s] 2.748 2.828 2.833
Failure rate [%] 28.5 28.9 28.9

a second-order Newton-type method, tailored to smooth NLPs, whereas ALPX does not exploit their
structure. Nevertheless, on the considered test set, our ALPX seems competitive against IPOPT in terms
of robustness and speed.

1.7 Summary

We presented the class of constrained structured optimization problems. By combining the augmented
Lagrangian framework and proximal methods, we derived a numerical method and designed an
algorithm for their approximate solution. Then, we investigated the convergence properties of the
proposed algorithm and implemented it in the open-source Julia package Bazinga, available online.
Numerical examples showed the bene�ts of formulating problems in the form of constrained structured
programs. Finally, our implementation proved competitive with a state-of-the-art solver for small to
medium-size nonlinear programming problems.
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Figure 1.5: Results on the 446 CUTEst problems with n,m ∈ [1; 100], for di�erent tolerance values:
performance pro�les (left) and time pro�les (right).
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Chapter 2

Sparse Constrained Switching Time
Optimization

All things being equal,
the simplest solution tends to be the best one.

—William of Ockham

This chapter considers mixed-integer optimal control problems with switching costs. A reformulation
based on the cardinality function is proposed, which leads to constrained, structured problems.

The content of this chapter partially appears in [221, 237, 235].

2.1 Introduction

Mixed-integer optimal control problems o�er many challenges, prominently posed by
the discrete nature of the admissible control set [105, 134, 203]. The combinatorial structure
of the problem makes approaches based on discrete optimization impractical [102]. This

can be overcome by relaxing the integrality constraints, solving the relaxed problem with continuous
optimization techniques, and then properly reconstruct the discrete-valued control. The combinatorial
integral approximation (CIA) is a well-studied decomposition approach which takes advantage of the
peculiar properties and structure of mixed-integer optimal control problems (MIOCPs) [144, 154, 241,
134]. Theoretical results provide error bounds to the exact solution [144, 241] and numerical evidence
seems promising [126]. Other approaches stem from di�erent reformulations, and comprise the control
parametrization enhancing technique (CPET) [50, 67, 75, 77, 81], the variable time transformation
(VTT) [111], and the switching time optimization (STO) [110, 178, 204].

Some MIOCPs exhibit solutions with chattering behavior, also known as Zeno’s phenomenon,
i.e., the optimal solution may switch in�nitely many times in a �nite amount of time [58]. However,
such solutions may be unrealistic and undesired in applications, and possibly just modeling artifacts.
Moreover, one may wish to limit or penalize variations in the control inputs, even for problems with
continuous-valued controls [160] or whose solution has �nitely many switches. These observations
lead to the formulation of MIOCPs with switching constraints and/or costs [134, 226]. Approaches
for numerically solving such problems have been recently proposed, based on CIA and exploiting
structure of the integer program for reconstructing the discrete-valued control [219]. These ideas
introduce a trade-o� between the approximation accuracy of the reconstruction and the costs induced
by the optimized control function; see [230].

In this chapter we follow and discuss the approach proposed in [221] and extended in [237, 235].
Here we focus on problems with discrete-valued control inputs, so that the STO reformulation can be
readily applied. In particular, we refer to the formulation adopted in [204], which proved e�ective but
did not include switching costs. Strategies for dealing also with continuous-valued controls have been
detailed in [221, 235] and can build upon, e.g., the direct multiple shooting method [15, 41, 142]. Another
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way would be considering indirect methods for OCPs [181], possibly by exploiting the minimum
principle [16] and algorithms for solving generalized equations.

Some works which motivated and inspired this chapter are [111, 160, 156], whereas the approaches
in [110, 162, 178, 174, 210, 230] di�er in spirit but attempt to tackle similar problems from di�erent
perspectives. Although, at the moment of writing, it appears that both the time transformation in STO
and the cardinality-based regularization yield unfortunate formulations, as recently underlined in
[207, 251], the approach detailed in this chapter aims at providing and investigating a fresh viewpoint
on switching costs.

Mixed-integer optimal control The problems considered in the remaining of this chapter belong
to a broader class of constrained optimal control problems involving dynamic processes modeled by
ordinary di�erential equations. These can be referred to as mixed-integer optimal control problems
(MIOCPs) with control-volatility costs:

minimize
x(·),u(·),w(·)

J (x) +V (u,w) (2.1.1)

subject to Ûx(t) = f(t , x(t), u(t),w(t)), t ∈ [ti, tf]

0 = b(x(ti), x(tf))
0 ≤ r(t , x(t), u(t),w(t)), t ∈ [ti, tf]

u(t) ∈ U ,w(t) ∈W , t ∈ [ti, tf].

The state trajectory x(·) of the dynamical system is a�ected by continuous controls u(·) as well as
discrete controls w(·). The former attain values from the control setU , assumed to be a closed set with
nonempty interior, whereas the latter attain values from a �nite discrete set

W := {w1, . . . ,wnW }, with cardinality |W | = nW < ∞.

The functions J , f , b, r are supposed to be su�ciently smooth and, without loss of generality, it is
assumed that the initial time ti and the �nal time tf are �xed. The objective function consists of two
terms. The �rst term J depends on the state vector and represents the control objective; although
common in practice, it is not our focus in this chapter. The second term V encodes volatiliy costs,
that is, penalization terms for variations of the continuous controls [160, 244] and switchings of the
discrete controls [219, 230]. For more details on numerical methods for MIOCPs, we refer to [102, 105,
111, 135], and [134, Ch. 2].

In this chapter we explore the switching time optimization (STO) approach for solving problems of
the kind in (2.1.1). Without the term V of volatility costs, STO carries some drawbacks and challenges,
such as the unknown number of switches, the nonregularity that occurs when intervals vanish, and the
additional nonconvexities [135, 251]. Nevertheless, we believe STO o�ers some advantages to harness
switching costs, namely to discourage frequent changes of the discrete controls. In fact, the STO
approach takes the discrete controls w(·) �xed on a grid and optimizes the switching times, that is, the
grid points. Thus, it is based on a re-parametrization of the original problem, on the vein of the variable
time transformation (VTT) [111] and the control parametrization enhancing technique (CPET) [50, 77].
All these approaches seek optimal switching times for a given discrete control grid in place of optimal
discrete controls for a given time grid. Instead of seeking the optimal control w(·) : [ti, tf] →W , we �x
a number of intervals N ∈ N, choose a discrete control sequence {w1, . . . ,wN } ⊆W with N elements
and de�ne the N control functions

w̃k : [τk ,τk+1] → wk , k ∈ [1;N ],
with ti = τ0 ≤ τ1 ≤ · · · ≤ τN ≤ τN+1 = tf.

As we take interest in penalizing changes of the discrete controls, we assume that an optimal control
functionw(·) switches only �nitely many times. Hence, the original problem is equivalent to optimizing
the number of intervals N and the vector of switching times τ , along with x(·) and u(·). STO arises
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from �xing the number of intervals N and optimizing the switching times τ . We further re-parametrize
the problem in terms of the set ∆ ⊆ RN

+ and the vector of switching intervals d ∈ ∆, given by

∆ :=
{
d ∈ RN

+ : 1>d = tf − ti
}
, dk := τk+1 − τk , k ∈ [1;N ].

2.2 Problem Formulation

Let us consider problem (2.1.1) without continuous controls, with autonomous dynamics and constraints,
and with �xed given initial time ti = 0 and �nal time tf = T > 0. Following the STO approach, we
consider N intervals, a �xed discrete control sequence {w1, . . . ,wN } ⊆W , a vector of switching times
τ ∈ RN+1, with τ1 = ti and τN+1 = tf, and the sequences of dynamics {fk } and constraints {rk } de�ned
by

fk (x) := f(x,wk ), rk (x) := r(x,wk ), k ∈ [1;N ].

In terms of switching intervals d, the switching cost can be expressed as s(d), with s : ∆→ R, and
the problem is reformulated as

minimize
x(·),d

J (x) + s(d)

subject to Ûx(t) = fk (x(t)), t ∈ [τk ,τk+1), k ∈ [1;N ]
0 = b(x(0), x(T ))
0 ≤ rk (x(t)), t ∈ [τk ,τk+1), k ∈ [1;N ]
d ∈ ∆.

The set ∆ is the simplex of radiusT and introduces an additional (linear) constraint which couples the
switching intervals d. For free �nal time problems, only the nonnegativity constraint would remain
[221]. For the sake of focusing on the switching costs s(·), we consider further simpli�cations: an initial
state x0 ∈ Rnx is given, terminal conditions are neglected, and the state cost J is linear-quadratic;
see (2.2.1). Moreover, we express the constraints as a function only of the switching intervals d, in
the form c(d) ∈ S , with given constraint function c : ∆→ Rnc and constraint set S ⊆ Rnc . Then, the
problem of interest reads

minimize
x(·),d

x(T )>Ex(T ) +
∫ T

0
x(t)>Qx(t)dt + s(d) (2.2.1)

subject to Ûx(t) = fk (x(t)), t ∈ [τk ,τk+1), k ∈ [1;N ]
x(0) = x0

c(d) ∈ S
d ∈ ∆.

Herein, state cost matricesQ ∈ Sym+(Rnx ) and E ∈ Sym+(Rnx ) are given, functions fk ,k ∈ [1;N ], and
c are assumed su�ciently smooth and the feasible set nonempty, without further mention. Employing
the direct single shooting approach [85, 141], the state evolution becomes implicit, and only the
switching intervals d are left to optimization. Hence, following [204], problem (2.2.1) can be rewritten
as

minimize
d∈RN

+

x>0 J (d)x0 + s(d) (2.2.2)

subject to c(d) ∈ S, d ∈ ∆,

where J : RN
+ → Sym+(Rnx ) is a matrix-valued function. As detailed in [188, 204], function J

corresponds to the linearization of the dynamics around d, the evaluation of the state transformation
matrix, and the integration of the associated cost.
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General MIOCPs can be reformulated as (2.2.2), and then as NCSPs in the form of (1.1.1), possibly
introducing slack variables, augmenting the state dimension and system dynamics, or applying other
standard transformations for OCPs [141, 235].

Note. Problem (2.2.2) is obtained with many assumptions and after several simpli�cations. These
have been applied here to focus on the switching costs and their interplay with the STO approach.
Nonetheless, the ideas detailed in this chapter can �t the broader class of MIOCPs: general nonlinear
smooth objective terms, continuous controls, state and control constraints, boundary conditions,
and non-autonomous dynamics can be included. The integration of all these elements could be
accomplished via �rst discretize, then optimize approaches, such as the multiple shooting method [41].

In this context, we are particularly interested in the switching cost term s , which is introduced to
discourage changes in the discrete control; see [134, 230]. We propose to de�ne it as

s(d) := σ nnz(d) (2.2.3)

for some given scalar σ ∈ R+, where the cardinality-like function nnz counts the nonzero elements of
a vector, namely

nnz(d) := |{i | di , 0, i ∈ [1;N ]}|. (2.2.4)

In fact, it is a (uniformly) weighted cardinality function. In the literature it is referred to as `0-norm,
with slight abuse of terminology [186, 258, 252]. However, the switching cost term s , as de�ned in (2.2.3),
is not continuous on RN

+ , because nnz is discontinuous. Therefore, the method presented in Chapter 1,
namely ALPX detailed in Algorithm 3, is not guaranteed to work since the underlying assumptions fail
to hold. In particular, the cost term д fails to be continuous on its domain, which leaves us with no
guarantees on the convergence of the (shifted) penalty method. This issue is discussed and surmounted
in the next section. Although restricted to this context, the results established in §2.3 show that it is
possible to relax the assumptions behind the method developed in Chapter 1 for tackling NCSPs.

2.3 Cardinality, Simplex and Proximal Operator

The nonsmooth function s in (2.2.3) is accessed by ALPX, i.e. Algorithm 3, only through its proximal
mapping, as an oracle, when solving (2.2.2). In the following §2.3.1, we construct a function which
is a continuous relaxation of the cardinality function nnz in (2.2.4) but whose proximal mapping is
the same. Then, thanks to this indistinguishable oracle, we can argue ALPX retains its convergence
guarantees for solving the STO problem (2.2.2). Subsequently, we consider in §2.3.2 the proximal
mapping of s subject to a simplex constraint. This allows to satisfy the �xed �nal time constraint
exactly, by design. Furthermore, for �xed �nal time problems without additional constraints, this
allows to reformulate (2.2.2) as a structured optimization problem and adopt suitable solvers, avoiding
the augmented Lagrangian outer loop at once.

Let us start with the proximal mapping of nnz, without any constraint. Thanks to the separable
structure, it is su�cient to consider the scalar case. Despite its simplicity, it does not admit a unique
solution in general, due to the intrinsic nonconvex nature. Let γ > 0 be arbitrary in the following.

proxγ nnz(x) := arg min
z∈R

{
nnz(z) +

1
2γ
(z − x)2

}
For z = 0, the term in braces attains the value x2/(2γ ), whereas, for z , 0, the �rst term is 1 and the
second is minimum for z = x at zero, yielding the value 1. The well-known result is recovered by
comparing these two cases, namely

proxγ nnz(x) =


0 if |x | <

√
2γ

{0,x} if |x | =
√

2γ
x if |x | >

√
2γ .

(2.3.1)
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Figure 2.1: A proximal point x (black circles) of ñnzα (blue, solid line) at x is obtained by considering
the minimizers of the corresponding proximal subproblem (red, dotted lines).

The nonnegativity constraint is useful in this context since switching intervals cannot attain negative
values. Hence, we de�ne the nonnegativity-constrained proximal mapping of nnz as

proxγ nnz,R+(x) := arg min
z∈R+

{
nnz(z) +

1
2γ
(z − x)2

}
,

which can be evaluated following similar arguments:

proxγ nnz,R+(x) =


0 if x <

√
2γ

{0,x} if x =
√

2γ
x if x >

√
2γ .

(2.3.2)

2.3.1 Relaxed cardinality and proximal operator

In Chapter 1 it is assumed the possibly nonsmooth function д in (1.1.1) is continuous on its domain.
Without this assumption, ALPX, which builds upon the (shifted) penalty method, is not guaranteed
to work. The cardinality formulation given in (2.2.3) does not satisfy this assumption. Nonetheless,
in this section we show that, for solving (2.2.2), ALPX is still a valuable tool. The core idea is that,
since it accesses only the proximal mapping of the nonsmooth function and possibly evaluates it
at the proximal point, it is su�cient to �nd a continuous function which acts as an equivalent,
indistinguishable oracle. This is indeed the goal of this section.

Let us introduce the function ñnzα : R→ R, de�ned by

ñnzα (x) := min{1, |x |/α } (2.3.3)

for some given α > 0, which is a continuous function and gives a (symmetric, nonconvex, nonsmooth)
approximation of nnz. The following result provides explicit expressions for the proximal mapping of
ñnzα , depending on the parameter α ; see also Figure 2.1.

Proposition 2.3.1. Let α ,γ > 0 and x ∈ R be arbitrary. If α ≤
√
γ/2, then it holds

proxγ ñnzα (x) =


0 if |x | <

√
2γ

{0,x} if |x | =
√

2γ
x if |x | >

√
2γ .

(2.3.4)
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If α >
√
γ/2, then it holds

proxγ ñnzα (x) =


0 if |x | ≤ γ/α
x − sign(x)γ/α if |x | ∈ (γ/α ,α + γ/(2α))
{x − sign(x)γ/α ,x} if |x | = α + γ/(2α)
x if |x | > α + γ/(2α).

(2.3.5)

Proof. Let us denote the value cγ ñnzα (z;x) := min{1, |z |/α } + (z − x)2/(2γ ) and the proximal point
x ∈ proxγ ñnzα (x). We can consider the two cases x ∈ [0,α] and x ≥ α , and then rely on symmetry. In
the latter case, it must be

x = arg min
z∈R

{
1 +

1
2γ
(z − x)2

}
= x ≥ α .

In the former case, instead, it is

x = arg min
z∈R

{
z

α
+

1
2γ
(z − x)2

}
= x −

γ

α
∈ [0,α],

and therefore it is valid only for x ∈ [γ/α ,α+γ/α]. For x ∈ [0,γ/α], by symmetry and continuity of the
value function, it is x = 0. Hence, there are at most three, possibly overlapping, intervals, characterized
by (i) x = 0 for x ∈ [0,γ/α], (ii) x = x −γ/α for x ∈ [γ/α ,α +γ/α], and (iii) x = x for x ≥ α . It remains
to �nd the points where the corresponding values of cγ ñnzα coincide. In particular, it is relevant where
(iii) is positioned with respect to (i) and (ii). Algebraic manipulations give the breakeven point for
(i) and (iii) at x =

√
2γ , valid if α ≤

√
γ/2, and for (ii) and (iii) at x = α + γ/(2α), valid if α ≥

√
γ/2.

Therefore, if α ≤
√
γ/2, there exist only regions (i) and (iii), proving (2.3.4). Otherwise, the three

regions coexist, as in (2.3.5). �

Remarkably, Proposition 2.3.1 establishes that selecting α > 0 su�ciently small, in fact α ∈
(0,

√
γ/2], yields a proximal mapping for ñnzα with the same structure as for nnz; see (2.3.1) and (2.3.4).

Indeed, the same value is attained at the proximal point:

ñnzα (x) = min{1, |x |/α } = nnz(x).

Therefore, for su�ciently small α > 0, the cardinality function nnz and the continuous relaxation
ñnzα have indistinguishable oracles. We deduce it is possible to use the cardinality formulation while
retaining the convergence properties and guarantees of ALPX, since it cannot de facto distinguish the
two oracles.

2.3.2 Simplex-constrained proximal operator

This section is devoted to the simplex-constrained proximal mapping of nnz, which reads

proxγ nnz,∆(x) := arg min
z∈∆

{
nnz(z) +

1
2γ
‖z − x‖2

}
(2.3.6)

with γ > 0 and ∆ := {d ∈ Rn
+ | 1>d = β}, β ≥ 0. Some blanket assumptions are considered in the

following.

Assumption 2.3.2. (i) β > 0. (ii) x ∈ Rn is sorted, i.e., x1 ≤ x2 ≤ · · · ≤ xn .

In fact, these conditions give no loss of generality. (i) For β = 0, the feasible set collapses to the origin,
i.e., it is ∆ = {0}, and thus the solution is trivially the origin. (ii) The cardinality function, and thus its
proximal operator, are invariant under permutation of the input vector (and reverse-permutation of
the output vector). Nonetheless, from a computational point-of-view, sorting may be ine�cient for
large values of n, which may ask for di�erent approaches.

50



We notice that, for both the unconstrained and the nonnegative proximal mapping, the computation
can be performed entrywise in that the underlying optimization problems are separable. Conversely,
the simplex constraint couples the decision variable all together via a linear equality constraint. This
leads us to follow a di�erent approach, in particular the one proposed in [221]. Let us reformulate
the simplex-constrained problem (2.3.6) in terms of the number of zero elements, denotedm, in the
output vector x, namelym := n − nnz(x). Introducing the integer variablem, problem (2.3.6) can be
viewed as a constrained mixed-integer quadratic program, and can be solved as such. However, here
we seek a tailored method exploiting its structure. In our approach, problem (2.3.6) is interpreted and
tackled as a bilevel problem, aiming at optimizing the number of zero elements m, at the upper level,
while accounting for the positive entries of x at the lower level. Considering the problem size n to be
relatively small in practice, say n < 100, we look for an e�cient routine for solving the lower level
problem and evaluating the associated upper level cost, so that a minimizer is then found by parsing
the entire space of (feasible) values form.

For any positive scalar β , the integer scalar m takes values inM := [0;n − 1]. Let us de�ne the
(nonconvex) set ∆[m] consisting of vectors in the simplex ∆ withm zero entries, namely ∆[m] := {d ∈
∆ | nnz(d) = n −m}. Then, the proximal problem (2.3.6) is equivalent to the mixed-integer program

(m, x[m]) = arg min
m∈M,
z∈∆[m]

{
n −m +

1
2γ
‖z − x‖2

}
(2.3.7)

where x[m] is a ∆[m]-constrained proximal point. For any givenm ∈ M, this can be found by solving
the lower level problem

x[m] = arg min
z∈∆[m]

‖z − x‖2. (2.3.8)

The following result provides a structural characterization of x[m].

Proposition 2.3.3. Let Assumption 2.3.2 hold. Then, there exists a vector x[m] that solves problem
(2.3.8) and hasm initial zero entries followed by (n −m) positive entries. If Assumption 2.3.2(ii) holds
with strict inequalities, namely x1 < x2 < · · · < xn , then the solution vector x[m] is unique.

Proof. Existence follows from compactness of ∆[m] and continuity of the objective function. The
solution structure follows from Assumption 2.3.2 and the simplex constraint. �

Let us denote L the Lagrange function for the lower level problem and λ the multiplier associated to the
equality constraint induced by the simplex, namely 1>z = β . Omitting nonnegativity and cardinality
constraints, the Lagrange function L reads

L(z, λ) :=
1
2
‖z − x‖2 + λ(β − 1>z) . (2.3.9)

The �rst-order necessary optimality condition ∇zL(z, λ) = 0, together with direct derivation of L in
(2.3.9) and Proposition 2.3.3, yields

x i [m] =

{
0 if i ∈ [1;m]
xi + λ[m] if i ∈ [m + 1;n].

(2.3.10)

Substituting this into the equality constraint, one obtains an expression for the multiplier λ, after
some rearrangements, as dependent solely onm and the problem data.

λ[m] =
1

n −m

(
β −

n∑
i=m+1

xi

)
(2.3.11)

The nonnegativity constraints are not enforced so far. However, given a vector x, for any m ∈ M, the
associated multiplier λ[m] is �xed by (2.3.11) and thus one can check whether the vector x[m] from
(2.3.10) has negative entries or not. Given m, it su�ces to check xm+1 + λ[m] > 0, since x is sorted, by
Assumption 2.3.2. If this condition is not met, the tentative value ofm is actually invalid and should
be discarded. Let us denote F ⊆ M the set of feasible values form.
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Remark 2.3.4. There exists always at least a feasible value form, i.e.,F , ∅. Indeed, since λ[n−1] = β−xn
and hence xn[n − 1] = xn + λ[n − 1] = β > 0, it is always n − 1 ∈ F .

For any m ∈ F , the lower level solution x[m] reads as in (2.3.10), where the multiplier λ[m] is
given in (2.3.11). The associated cost c[m] is given by

c[m] = nnz(x[m]) +
1

2γ
‖x[m] − x‖2

= (n −m) +
1

2γ

m∑
i=1

x2
i +

1
2γ
(n −m)λ2[m]. (2.3.12)

With this expression at hand, one can search the minimum of c[m] form ∈ F , retrieve the minimizer
m, and then set x = x[m]. Notice that the numerical evaluation of λ[m] and c[m] can be performed
more e�ciently by storing the cumulative sums in (2.3.11) and (2.3.12). The following observation can
be exploited to prune infeasible values ofm ∈ M.

Lemma 2.3.5. Let Assumption 2.3.2 hold. Then, the feasible set can be expressed as F = {m | m ≥
m`,m ∈ M}, where the value ofm` ∈ M depends on x and β , and corresponds to the lowest value
m ∈ M such that xm+1 + λ(m) > 0.

Proof. Let us denote ζ (m) := xm+1 + λ[m]. Hence, by construction, it ism ∈ F if and only ifm ∈ M
and ζ (m) > 0. Consider any p ∈ F and q ∈ M such that p < q. We seek a proof that q ∈ F , that is,
ζ (q) > 0. Based on (2.3.11) and the de�nition of ζ , we have that

(n − q)ζ (q) = (n − q)xq+1 + β −
n∑

i=q+1
xi

= (n − q)xq+1 + (n − p)[ζ (p) − xp+1] +

q∑
i=p+1

xi ,

after expanding and rearranging the terms to collect ζ (p). A lower bound for the last term is obtained
by observing that

∑q
i=p+1 xi ≥ (q − p) xp+1 by Assumption 2.3.2. Thus, by ζ (p) > 0, it follows that

ζ (q) ≥ xq+1 +
n − p

n − q
[ζ (p) − xp+1] +

q − p

n − q
xp+1 = xq+1 +

n − p

n − q
ζ (p) − xp+1

≥
n − p

n − q
ζ (p) > ζ (p) > 0,

concluding the proof. �

Finally, we point out that, as Lemma 2.3.5 suggests, one can obtain a coarse lower bound for the
number of zeros by inspecting the projection of x onto the simplex, namelym ≥ n − nnz(Π∆(x)). In
fact, the sparsity-inducing regularization can only reduce the number of nonzeros in x with respect
to Π∆(x).

2.4 Numerical Results

This section presents numerical results obtained with the proposed method. We implemented a
modelling tool for STO problems with switching costs in the Julia package ScSTO, see §0.1. This
builds upon SwitchTimeOpt, a module provided by [204]. ScSTO provides high-level language and
routines, which allow the user to easily de�ne problem instances and seamlessly interface with
suitable solvers. Currently, ScSTO supports the solvers for constrained and unconstrained structured
optimization provided by Bazinga, through OptiMo (cf. §1.6). All examples described in the following
are available as accompanying demos of ScSTO.
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We investigate potential and limitations of the proposed approach on three problems with switch-
ing costs: a �shing problem with switched Lotka–Volterra dynamics, with and without constraints,
and a machine maintenance planning problem. All the examples are solved with the default solvers’
options and initialized with equally spaced switching times between the initial and �nal times. The
interested reader may �nd additional examples and benchmark problems in [153] and [221, 235, 237].

2.4.1 Fishing problems

Let us consider the optimal switching control problem of Lotka–Volterra dynamics [105, 204], with
tracking and switching costs, �xed �nal time, and no further constraints. Besides the switching costs,
this problem is a classical example in mixed-integer optimal control [153]. The dynamics can be
described by

f(x,u) =
(
x1 − x1x2 − 0.4x1w
x1x2 − x2 − 0.2x2w

)
, w ∈ {w−,w+},

and the two control inputs w− = 0 and w+ = 1. We consider the �nal time T = 12, the initial state
x0 = (0.5, 0.7), N = 11 switching intervals, with control input sequence {w−,w+,w−,w+, . . . }. The
tracking-type cost term

∫ T
0 ‖x(t) − 1‖2dt is accounted for by augmenting the system state with

two constant states; see [141, 204]. For gradient computations via sensitivity analysis, we adopt a
�xed discretization grid with n = 100 time points. Without constraints c in (2.2.2), by exploiting the
simplex-constrained proximal mapping from §2.3.2, we obtain an unconstrained structured problem
formulation. This is solved via ZeroFPR (50 max iterations).

Figure 2.2 displays the results obtained with switching cost σ ∈ {0, 0.1, 1}. As changes in the
dynamics are more penalized, fewer switching intervals are assigned with a positive duration. Despite
the con�icting objectives of minimizing tracking error and switching cost, the overall state evolution
seems to be only slightly a�ected. Without any switching cost, the control activates three times, each
time for a shorter time period; an analogous solution is found with a small switching cost, whereas
for a high value of the switching cost just one activation is left. This suggests that the activation at
around t ≈ 2.5 until t ≈ 4.2 is (in some sense) a robust choice. Also, we can see the �ltering action
of switching costs. For σ = 0.1, the third activation disappears, meaning that its contribution to
the smooth objective term is smaller than the switching cost. Therefore, unrealistic control inputs
corresponding to chattering solutions can be easily avoided by introducing a positive σ .

It is worth mentioning that the solver, ZeroFPR in this case, returns an iterate which does not satisfy
the optimality tolerance after the maximum number of iterations. This is due to the discretization and
linearization procedure proposed in [204], and currently employed in ScSTO, in the spirit of direct
single shooting methods. In fact, numerical tests have shown that, with �ner discretization grids, say
n = 1000, the solver succeeds. However, these have also highlighted that the solver, with the chosen
settings (n = 100 and max 50 iterations), returns iterates very close to a solution.

Let us now introduce some constraints on the switching times. In particular, we seek

1 ≤ τ1 ≤ 2, 4 ≤ τ3 ≤ 5, and 7 ≤ τ5 ≤ 8.

These conditions are automatically reformulated by ScSTO in the form of (2.2.2). Inspecting the control
w in Figure 2.2, we expect the �rst activation at τ1 = 2.5 to move backward to t = 2 and the second at
τ3 = 5.1 to t = 5. We point out that, in contrast with the previous example, we now have a constrained
structured problem, which can be solved by running ALPX. We consider maximum 10 outer iterations,
subsolver ZeroFPR with maximum 10 iterations, and start from the unconstrained solution (and null
dual variable).

Figure 2.3 depicts the results for σ = 0.1, comparing the constrained and unconstrained solutions.
The constrained solution gives τ1 = 2, as expected, but, interestingly, the second activation takes
place at τ3 = 4. This counter-intuitive behaviour likely stems from the nonconvexities present in the
problem formulation.
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Figure 2.2: Unconstrained �shing problem: state and control trajectories for increasing switching cost
σ .
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Figure 2.3: Constrained and unconstrained �shing problems: state and control trajectories with
switching cost σ = 0.1.
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2.4.2 Machine maintenance problem

The illustrative example presented in this section is concerned with the optimal planning of a machine
maintenance throughout its life-cycle. This application was suggested by Eleonora Florian (University
of Padua, 2019), kindly acknowledged. Indeed, this underlines the far reaching relevance of switching
costs in real applications.

We construct a numerical example based on a continuous-time switched dynamical system; see
[172] and references therein. Let us consider a machine (or a production plant, or anything of the kind)
that requires some maintenance action. The machine has three operating modes: (0) full production, (1)
minor maintenance, and (2) major maintenance. With (0), the machine is fully productive and subject
to degradation. With (1), the production is slower, but not necessarily null, while the machine state is
improved. With (2), the machine is not productive but its state is quickly restored. The problem under
consideration is to plan the operating modes to minimize the total cost of operating and maintaining
the machine.

Let us consider the time interval [0, 1] and the system state x = (s,p). The machine state s and the
pro�t p satisfy s(t) ∈ [0, 1], with s = 1 being the perfect condition, and p(t) ≥ 0 at all t ∈ [0, 1]. We
set the initial state x0 := (1, 0) and consider the dynamics governed by Ûx = f(x,w), with w ∈ {0, 1, 2}.
The following simple model is proposed for the three operating modes w :

f(x, 0) =
(
−k1s

k2s
2 − k3

)
, f(x, 1) =

(
k4(1 − s)
k5s

2 − k6

)
, f(x, 2) =

(
k7(1 − s2)

−k8

)
, (2.4.1)

with parameters k ∈ R8
+. The degradation rate in (0) and the reconditioning rate with (1) are linear

in the machine state s , while the generated pro�t is quadratic. Some constant o�sets are associated
with the production and reconditioning costs. On the other hand, during major maintenance (2), the
machine state quickly approaches the unit, that is, the perfect condition, while the pro�t declines due
to high maintenance costs. We found that the parameter values

k = (2, 25, 1, 1, 8, 2, 50, 40)

produced a reasonable and interesting response of the model. Since the system dynamics have three
operating modes, the sequence selected for the STO formulation may a�ect the solution, as pointed
out in [111, 199, 204]. Owing to the fact that major maintenance is not expected to occur many times,
we choose the following control sequence with N = 17 switching intervals:

{wk } = {0, 1, 0, 1, 0, 2, 0, 1, 0, 1, 0, 2, 0, 1, 0, 1, 0}.

The objective function aims at maximizing the overall pro�t, i.e.,p(1): we setQ = 0 and E = diag(0,−1).
Finally, we set the �xed discretization grid with n = 400 time points. The resulting structured
optimization problem is solved via ZeroFPR, with maximum 100 iterations.

Figure 2.4 reports the machine state, pro�t, and operating mode for the solution found without
switching costs (σ = 0). Therein, the initial guess is also drawn for comparison. Although switches
are not discouraged, the optimal control with σ = 0 activates only 6 out of N = 17 intervals. For the
most time, the plant operates in full production mode, requiring the two major maintenance breaks to
quickly recover and make the system productive. The initial minor maintenance phase allows to keep
the plant in perfect condition before starting the bang-bang-like part of the solution.

Let us now consider the e�ect of switching cost σ ∈ {25, 30}. Concurrently with dynamics f
and parameters k, these values have been selected to obtain interesting results; in most cases, the
solution found was relatively uninteresting. The solution for σ = 0 is given to ZeroFPR as initial guess.
Figure 2.5 depicts the resulting state and control trajectories. With increasing switching cost, the
number of activated intervals decreases, as one would expect. With σ = 25, minor maintenance is held
longer and major maintenance is adopted only once. Even more, with σ = 30, minor maintenance
is active most of the time whereas major maintenance is never invoked. These results show the
considerable impact switching costs may have on scheduling and planning.
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Figure 2.4: Maintenance problem: state and control trajectories without switching cost (σ = 0); initial
guess and retrieved solution.
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Figure 2.5: Maintenance problem: state and control trajectories for increasing switching cost σ .
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2.5 Summary

We presented an approach for dealing with switching time optimization (STO) problems with con-
straints and switching costs. Borrowing ideas from sparse optimization and numerical optimal control,
these are reformulated in the form of constrained structured programs, whose numerical solution
has been investigated in Chapter 1. Although the proposed framework su�ers from the limitations
of STO, it can be extended to deal with nonlinear, constrained, multi-phase mixed-integer optimal
control problems with switching costs. Furthermore, coupling our approach with rounding-based
methods could greatly mitigate the drawbacks of the former, while improving accuracy of the latter.
We implemented a modelling tool for constrained, sparse STO problems in the Julia package ScSTO.
Numerical examples showed the potential of switching costs for extending the current modeling
capabilities and their �ltering action, ruling out undesired solutions.
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Chapter 3

Convex Quadratic Programming

Linear Algebra and Optimization:
Together Forever!

—M. H. Wright [127]

This chapter details a primal-dual proximal Newton-type method for solving convex quadratic programs.
The proximal point algorithm and a semismooth Newton’s method are e�ectively weaved together via the
primal-dual proximal augmented Lagrangian function.

The content of this chapter partially appears in [236].

3.1 Introduction

Convex programming appears in a variety of applications. Optimization problems of this form
are of interest in engineering, statistics, �nance and many other �elds. In particular, convex
quadratic programs (QPs) often arise within more general nonlinear optimization methods [97,

104, 112]. QPs cover many practical applications, greatly vary in terms of problem size and structure,
and often have to be solved with limited computing resources and strict time constraints. Grown
interest and e�ort has been recently devoted to solving convex QPs, embracing all these challenges.
Methods di�er in how they balance the number of iterations and the cost (e.g., run time) per iteration.
Interior point methods usually require few but rather demanding iterations [104, 112, 151]. Active set
methods take more but cheaper iterations, as factorization updates can be used [166]. On the other
hand, �rst-order methods take many but cheap iterations [185, 253, 87], and several schemes have
been proposed to accelerate such methods; cf. [215, 171, 185] and [189, 227]. The augmented Lagrangian
framework [49, 62, 112], semismooth Newton’s methods [57, 121], and proximal techniques [30, 29,
170] are undergoing a revival, as their seamless combination exhibits valuable properties and provides
useful features [194, 208, 224, 243]. Indeed, in this chapter we build upon these methods and introduce
QPDO, a numerical solver for convex quadratic programming.

Most of the results in this chapter hold, possibly with minor modi�cations, also in the case of
general convex programming. Nonetheless, we focus on convex QPs, for two compelling reasons:
convex QPs play a key role in continuous optimization and exhibit plenty of structure. In particular,
the latter tempts us to heavily exploit the underlying linear algebra.

Let us consider a general convex quadratic program (QP) in the form

minimize
x∈Rn

1
2
x>Qx + q>x (3.1.1)

subject to l ≤ Ax ≤ u.

Here x ∈ Rn is the decision variable, matrix Q ∈ Rn×n and vector q ∈ Rn de�ne the objective
function, whereas the constraints are encoded by matrix A ∈ Rm×n and vectors l, u ∈ R

m
. In the rest

of this chapter, without further mention, we assume the following requirements are satis�ed; cf. [253,
224].
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Assumption 3.1.1. MatrixQ ∈ Sym+(Rn) and vectors l and u satisfy l ≤ u, l < +∞, and u > −∞
component-wise.

We will refer to the nonempty, closed and convex set

C := {z ∈ Rm : l ≤ z ≤ u}

as the constraint set. Note that (3.1.1) represents a general convex QP, in that it can accommodate also
equality constraints and bounds.

3.1.1 Background

Convex QPs have been studied since the 1950s [12] and several numerical methods have been developed
since then. These di�er in how they balance the number of iterations and the cost (e.g., run time) per
iteration.

Active-set methods for QPs originated from extending the simplex method for linear programs
(LPs) [13]. These methods select a set of binding constraints and iteratively adapt it, seeking the set
of active constraints at the solution. Active-set algorithms can be easily warm started and can lead
to �nite convergence. Moreover, by adding and dropping constraints from the set of binding ones,
factorization updates can be adopted for solving successive linear systems. However, these methods
may require many iterations to identify the correct set of active constraints. Modern solvers based on
active-set methods are qpOASES [166] and NASOQ [233].

First-order methods iteratively compute an optimal solution using only �rst-order information
about the cost function [171, 185]. As these methods consist of computationally cheap and simple
steps, they are well suited to applications with limited computing resources [253]. However, �rst-
order algorithms usually require many iterations to achieve accurate solutions and may su�er from
ill-conditioning of the problem data. Several acceleration schemes have been proposed to improve
their behaviour [189, 227]. The OSQP [253] solver o�ers an implementation based on ADMM [138].

Interior-point methods consider the problem constraints in the objective function via barrier
functions and solve a sequence of parametric subproblems [97, Chap. 11], [112, §16.6]. Although not
easily warm started, the polynomial complexity makes interior-point methods appealing for large
scale problems [151]. They usually require few but rather demanding iterations [104, 112]. Recent
developments are found in the regularized method IP-PMM [250].

Semismooth Newton’s methods apply a nonsmooth version of Newton’s method to the KKT
conditions of the original problem [57, 69]. In the strictly convex case, i.e., with Q � 0, this approach
performs very well as long as the underlying linear systems are nonsingular. Regularized, or sta-
bilized, semismooth Newton-type methods, such as QPALM [224, 239] and FBstab [243], overcome
these drawbacks. Augmented Lagrangian [49, 62, 112] and proximal techniques [30, 170] introduce a
regularizing outer layer that enhances numerical stability [208, 224, 243]. These ideas form the basis
for our approach.

3.1.2 Approach

We present a numerical method for solving general convex QPs. The proposed algorithm is based
on the proximal point algorithm and a semismooth Newton’s method for solving the subproblems,
which are always solvable for any choice of problem data. We therefore impose no restrictions such as
strict convexity of the cost function or linear independence of the constraints. As such, our algorithm
gathers together the bene�ts of fully regularized primal-dual methods and semismooth Newton’s
methods with active-set structure. Our algorithm can exploit warm starting to reduce the number of
iterations, as well as factorization caching and multi-rank update techniques for e�ciency, and it can
obtain accurate solutions.

Our approach, dubbed QPDO from Quadratic Primal-Dual Optimizer, is inspired by and shares many
characteristics with algorithms that have already been proposed, in particular with QPALM [224] and
FBstab [243]. On the other hand, they di�er on some key aspects. QPALM relates to the proximal method
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of multipliers [224, Rem. 2], which in turn is associated to the classical (primal) augmented Lagrangian
function [29]. Instead, FBstab and QPDO apply the proximal point method, yielding exact primal-dual
regularization. However, FBstab reformulates the subproblem via the (penalized) Fischer-Burmeister
NCP function [53, 82], and adopts the squared residual norm as a merit function for the inner iterative
loop; this prevents the use of symmetric sparse linear solvers. Instead, QPDO adopts the minimum
NCP function, which leads to symmetric linear systems with active-set structure. Then, we show the
primal-dual proximal augmented Lagrangian function, introduced in [114, 149] and [222], is a suitable
merit function for the proximal subproblem, which allows us to perform an exact linesearch in a
fully primal-dual regularized context. Indeed, we believe, the main contribution of this work consists
in recognizing this link, exploiting it to bridge the gap between previously proposed methods, and
developing a robust and e�cient algorithm that possesses their advantages but does not su�er from
their inconveniences.

Outline We sketch our algorithmic framework in §3.2 and develop our method in details in §§ 3.3
and 3.4. In particular, in §3.4.1 we establish our key result, which relates the proximal operator and the
primal-dual proximal augmented Lagrangian function. QPDO’s convergence properties are analyzed in
§3.5, and §3.6 juxtaposes QPDO with similar methods. We present details of our implementation in §3.7
and report on numerical experience and benchmarks in §3.8.

Nota bene In an earlier draft of this thesis, the method was presented from a di�erent standpoint,
following the framework developed in Chapter 1. For the sake of a simpler and more direct presentation,
we reverted the perspective. Although now it may seem unrelated to previous chapters, we hope
this gives a clearer interpretation of the method. Originally, we followed the primal-dual proximal
augmented Lagrangian framework discussed in Chapter 1. By convexity, we were then able to show
that solving the arising subproblems is equivalent to evaluating the proximal operator of the KKT
conditions of the original QP in (3.1.1). This is comparable to going backward through §3.3. Establishing
this link allowed us to relax the requirements on parameters and dual estimate updates to those of the
proximal point algorithm, eventually obtaining QPDO.

Notation The algorithm is described with a nested structure, whose outer iterations are indexed by
k ∈ N. We denote y the dual variable associated to the constraints in problem (3.1.1). A primal-dual
pair (x, y) will be denoted by v, and we will refer interchangeably to it as a vector or to its components
x and y. An optimal solution to the problem (3.1.1) will be denoted as

(
x?, y?

)
, or v?. Accordingly,

(x?k , y
?
k ), or v?k , will denote the solution of the proximal subproblem corresponding to the k-th outer

iteration.

3.2 Algorithm

In this section, we outline our Quadratic Primal-Dual Optimizer (QPDO), which weaves together the
proximal point algorithm and a semismooth Newton’s method. The proposed numerical scheme is
sketched in Algorithms 4 and 5, highlighting the nested structure for clarity of presentation. We
denote y a dual variable and v a primal-dual pair (x, y); r and rk the outer and inner residuals de�ned
in (3.3.3) and (3.4.5), respectively. In the following sections, we provide more details on the outer and
inner procedures and investigate their global and local convergence properties.

E�ectively, the proximal operator is evaluated by solving a subproblem via semismooth Newton’s
method. Thus, the latter constitutes a inner iterative procedure, embedded into the outer proximal
point loop. Warm-starting and early termination of these subproblems yield a more e�cient method,
and deserve some comments.

• Warm-starting is good practice, motivated by the iterative nature of the numerical methods we
are interested in. For example, when started close enough to a solution, pure Newton iterations
can rapidly converge to it. In Algorithm 5, the inner loop sequence is constructed starting from
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Algorithm 4 QPDO: Quadratic Primal-Dual Optimizer
input:Q , q, A, l, u
parameters: ϵ > 0, ϵ0 ≥ 0, κϵ ∈ [0, 1), 0 < σmin ≤ σ0, 0 < µmin ≤ µ0
guess: x0 ∈ R

n , y0 ∈ R
m

for k = 0, 1, 2, . . . do
if ‖r(vk )‖∞ ≤ ϵ then . convergence check

return vk
end if
�nd vk+1 such that ‖rk (vk+1)‖∞ ≤ ϵk by invoking Algorithm 5 . subproblem
choose σk+1 ∈ [σmin,σk ] and µk+1 ∈ [µmin, µk ] . parameters update
set ϵk+1 ← κϵϵk

end for

Algorithm 5 QPDO’s inner loop: semismooth Newton’s method
v← vk . warm start
repeat

get δv by solving the linear system (3.4.15) . search direction
get τ by solving the piecewise linear equation (3.4.17) . step size
set v← v + τ δv

until ‖rk (v)‖∞ ≤ ϵk . inner convergence check
vk+1 ← v

the estimate vk . This initial guess turns out to improve at every outer iteration, due to the
contraction properties of the overall method, investigated in §3.5.

• Early termination of the subproblems is convenient for nested algorithms such as Algorithm 4,
mainly because it makes no sense to spend a lot of time solving accurately a subproblem whose
solution may be far from the solution of the original problem [145, p. 955]. The speci�c stopping
criterion stems from the discussion in §3.4.1.

3.3 Outer Loop: Inexact Proximal Point Method

Our method solves problem (3.1.1) using the proximal point algorithm, with inexact evaluation of the
proximal operator. In Algorithm 4, this is evaluated by means of a semismooth Newton-type method,
which constitutes a inner iterative procedure, further investigated in §3.4. This section focuses on the
outer loop corresponding to the proximal point algorithm, which has been extensively studied in the
literature [30]. We recall some important results and refer to [14, 29, 43, 169] for more details.

3.3.1 Optimality conditions

Problem (3.1.1) can be equivalently expressed as

minimize
x∈Rn

f (x) + д(Ax), (3.3.1)

where f : Rn → R and д : Rm → R, given by

f (x) :=
1
2
x>Qx + q>x and д(z) := χC(z),

are the objective function and the characteristic function of the constraint set C, respectively. The
necessary and su�cient, �rst-order optimality conditions of problem (3.3.1), and hence problem (3.1.1),
read

0 ∈ T (v) :=
(
Qx + q +A>y
−Ax + ∂д∗(y)

)
, (3.3.2)
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where ∂д∗ denotes the conjugate subdi�erential of д [169]. We will denote ` := n +m and refer to
T : R` ⇒ R` as the KKT operator for problem (3.1.1). These optimality conditions, in the form
(3.3.2), involve the set-valued operator T . However, noticing that, for any α > 0, the conditions
v = ΠC(v + αu) and v ∈ ∂д∗(u) are equivalent [70, §23], conditions in (3.3.2) can be equivalently
rewritten. Choosing α = 1, we can de�ne the (outer) residual r : R` → R` and express the KKT
conditions for (3.1.1) as

0 = r(v) :=
(
Qx + q +A>y

Ax − ΠC(Ax + y)

)
. (3.3.3)

This reformulation can be obtained also by employing the minimum NCP function [80] and rear-
ranging to obtain the projection operator ΠC . The residual r is analogous to the natural residual
function π investigated in [68]. Since it is an error bound for problem (3.1.1), in the sense that
distT−1(0)(v) = O(‖r(v)‖) [68, Thm 18], the norm of r is a sensitive optimality measure and its value
can be adopted as a stopping criterion.

3.3.2 Proximal point algorithm

The proximal point algorithm [30] �nds zeros of maximal monotone operators by recursively applying
their proximal operator. Since T is a maximal monotone operator [29, 169], the proximal point
algorithm converges to an element v? of the set of primal-dual solutions T −1(0), if any exists [14, 30].
Starting from an initial guess v0, it generates a sequence {vk } of primal-dual pairs by recursively
applying the proximal operator Pk :

vk+1 = Pk (vk ), Pk :=
(
I + Σ−1

k T
)−1
. (3.3.4)

Here, {Σk } is a sequence of non-increasing positive de�nite matrices, namely,Σk � 0 andΣk−Σk+1 � 0
for all k ∈ N. The matrices Σk control the primal-dual proximal regularization and, similarly to exact
penalty methods, these are not required to vanish [29, 30]. Since T is maximally monotone, the
proximal operator Pk is well de�ned and single valued for all v ∈ domT = R` [14]. Thus, from (3.3.4),
evaluating the proximal operator Pk at vk is equivalent to �nding the unique v ∈ R` that satis�es

0 ∈ Tk (v) := T(v) + Σk (v − vk ). (3.3.5)

This is guaranteed to have a unique solution and to satisfy certain useful regularity properties; see §3.4
below. As a result, we can construct a fast inner solver for these subproblems based on semismooth
Newton’s method.

3.3.3 Early termination

The proximal point algorithm tolerates errors, namely the inexact evaluation of the proximal operator
Pk [30]. Criterion (Ar ) in [43] provides conditions for the design of convergent inexact proximal
point algorithms [43, Thm 2.1]. Let v?k := Pk (vk ) denote the unique proximal subproblem solution
and vk+1 ≈ v?k the actual recurrence update. Then, the aforementioned criterion requires

‖vk+1 − v?k ‖ ≤ ek min (1, ‖vk+1 − vk ‖r ) ,

where r ≥ 0 and the sequence of inner tolerances {ek } ⊆ R+ is summable, i.e.,
∑∞

k=0 ek < +∞. However,
since v?k is e�ectively unknown, this criterion is impractical in its form. Instead, in Algorithm 4 it is
required that vk+1 satis�es ‖rk (vk+1)‖∞ ≤ ϵk . Here, rk denotes the residual for the k-th subproblem,
and is de�ned in (3.4.5). In §3.5 we will show that this criterion is a simple and viable substitute, which
retains the signi�cance of (Ar ).

3.3.4 Warm starting

If a solution v? exists, the (outer) sequence {vk } generated by (3.3.4) converges, by the global conver-
gence of the proximal point algorithm [30]. Then, expectedly, Pk (vk ) and vk are arbitrarily close for
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su�ciently large k [243, §4]. This supports the idea of warm starting the inner solver with the current
outer estimate vk , that is, setting v← vk in Algorithm 5. For large k , only one or few Newton-type
inner iterations are needed to �nd an approximate subproblem solution vk+1.

3.4 Inner Loop: Semismooth Newton’s Method

In this section we focus on solving subproblem (3.3.5) via a semismooth Newton’s method. For the
sake of clarity, and without loss of generality, we consider

Σk := blkdiag(σk In , µk Im).

for some �xed parameters σk , µk ∈ R++.

3.4.1 Merit function

We now derive the simple yet fundamental result that is the key to develop our method. This provides
the NCP reformulation of the proximal subproblem with a suitable merit function. The former yields
symmetric active-set linear systems, while the latter leads to exact linesearch.

Let us express the proximal subproblem (3.3.5) in the form

0 ∈
(
Qx + q +A>y + σk (x − xk )
−Ax + µk (y − yk ) + ∂д∗(y)

)
. (3.4.1)

Similarly to (3.3.3), for any given α > 0, this can be rewritten as

0 =
(
Qx + q +A>y + σk (x − xk )
Ax + µk (yk − y) − ΠC(wk )

)
, (3.4.2)

where we denote
wk := Ax + µk (yk − y) + αy. (3.4.3)

Then, for any positive α , µk , the conditions in (3.4.2) are equivalent to

0 =

(
Qx + q + 1

αA
>[wk − ΠC(wk )] + σk (x − xk )

((α − µk )/α)[wk − ΠC(wk )] + (µk − α)y

)
, (3.4.4)

namely their unique solution coincides. Now, we observe that the right-hand side of (3.4.4) is the
gradient of the function

f (x) +
1

2α
dist2

C(wk ) +
σk
2
‖x − xk ‖2 +

µk − α

2
‖y‖2.

By construction, this is a continuously di�erentiable function whose gradient vanishes at the unique
solution of the proximal subproblem. Furthermore, for any α ∈ (0, µk ), it is strictly convex and hence
admits a unique minimizer. This must coincide with the unique proximal point. Therefore, this function
is a suitable merit function for the subproblem. The particular choice α := µk/2 inherits all these
properties and leads to the inner optimality conditions

0 = rk (v) :=
(

Qx + q +A>y + σk (x − xk )
Ax + µk (yk − y) − ΠC(Ax + µk (yk − y/2))

)
, (3.4.5)

with rk : R` → R` the inner residual, and the associated merit function

Mk (v) := f (x) +
1
µk

dist2
C(Ax + µk (yk − y/2)) +

σk
2
‖x − xk ‖2 +

µk
4
‖y‖2. (3.4.6)

In fact,Mk : R` → R is the primal-dual proximal augmented Lagrangian function in (1.4.19), up to the
constant term −µ‖y‖2/2, with c(x) := Ax and S := C. This demonstrates the link to the framework
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developed in Chapter 1. Furthermore, this underlines once again the strong relationship between the
proximal point algorithm and the augmented Lagrangian framework, pioneered in [29]. On the one
hand, by (3.4.6), the dual regularization parameter µk controls the constraint penalization [148, §3.2].
On the other hand, this provides an interpretation of the augmented Lagrangian method as an adaptive
constraint regularization process [205, §2].

The inner residual rk in (3.4.5) is piecewise a�ne, hence strongly semismooth on R` [69, 167].
E�ectively, it can be employed as stopping criterion in place of ‖∇Mk (·)‖. In fact, given the unique,
bounded, and nonsingular matrixTk de�ned by

Tk :=

[
I 2

µk
A>

0 −I

]
, (3.4.7)

we have the identity
∇Mk (v) = Tkrk (v) ∀v ∈ R` . (3.4.8)

The availability of a suitable merit function allows us to adopt a damped Newton-type method
and design a linesearch-based globalization strategy, in contrast with [96, 121, 243]. Since Mk is
continuously di�erentiable and piecewise quadratic, an exact linesearch procedure can be carried out,
which yields �nite convergence [71].

The following result characterizes these subproblems, entailing the minimization ofMk , and
provides useful properties that hold for general convex programs.

Lemma 3.4.1. Let any vk ∈ R` and parameters σk , µk ∈ R++ be given. Then,

(i) ∇Mk is Lipschitz continuous, i.e., there exists Lk ∈ R++ such that

‖∇Mk (v) − ∇Mk (u)‖ ≤ Lk ‖v − u‖ ∀v, ∀u ∈ R` . (3.4.9)

(ii) Mk is strictly convex, i.e., there exists ωk ∈ R++ such that

Mk � ωk I ∀Mk ∈ ∂
2Mk (v), ∀v ∈ R` . (3.4.10)

In particular, it is ωk ≥ min(σk , µk/2) > 0.

Proof. Direct derivation gives that ∇Mk is the composition of Lipschitz continuous terms, since the
constraint set C is convex and the parameters σk , µk > 0. By Assumption 3.1.1,Mk is the sum of
convex terms; cf. (3.4.6). The lower bound on ωk follows from the regularization terms σk ‖x − xk ‖2/2
and µk ‖y‖2/4. �

Finally, we highlight that the method asymptotically reduces to a sequence of regularized semis-
mooth Newton’s steps applied to the original, unperturbed optimality system, on the vein of [190].
This closely relates to the concept of exact regularization [120]. It turns out the proximal primal-dual
regularization is in fact exact; see Proposition 3.4.2 and compare [205, Thm 1].

Proposition 3.4.2. Let k ∈ N be arbitrary.

(i) Suppose v?k solves subproblem (3.4.5) for vk := v?k and for some σk ≥ 0 and µk > 0. Then, v?k
solves the original problem (3.3.3).

(ii) Alternatively, suppose v?k solves subproblem (3.4.5) for yk := y?k , σk := 0, and for some µk > 0.
Then, v?k solves the original problem (3.3.3).

(iii) Conversely, suppose v? solves the original problem (3.3.3). Then, v? solves the subproblem
(3.4.5) for vk := v? and for any σk ≥ 0 and µk > 0.

Proof. The proof is immediate by direct comparison of (3.3.3) and (3.4.5). �
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3.4.2 Search direction

A semismooth Newton’s direction δv = (δx,δy) at v = (x, y) solves

Vk (v)δv = −rk (v). (3.4.11)

Here, the matrix Vk (v) is an element of the generalized Jacobian [70, §23] of rk at v, which has the
form

Vk (v) =

[
Q + σk I A>

(I − Pk (v))A −µk (I − Pk (v)/2)

]
. (3.4.12)

In turn, the diagonal matrix Pk (v) with entries

P iik (v) :=

{
1 if li < wi

k < ui

0 otherwise
, i = 1, . . . ,m, (3.4.13)

is an element of the generalized Jacobian of ΠC at wk , namely Pk (v) ∈ ∂ΠC(wk ). By selecting
P iik (v) = 0 for any v ∈ R` when li = ui , de�nition (3.4.13) is consistent with equality constraints.

Direct calculation shows that, for any v ∈ R` , the matrix

Mk (v) := TkVk (v) (3.4.14)

=

[
Q + σk I +

2
µk
A>(I − Pk (v))A A>(Pk (v) − I )

(Pk (v) − I )A µk (I − Pk (v)/2)

]
is an element of the generalized Hessian ofMk at v, namelyMk (v) ∈ ∂2Mk (v). SinceTk is independent
from v, this directly follows from the identity (3.4.8). We highlight that, by considering linear system
Vk (v)δv = −rk (v) instead of the equivalent Mk (v)δv = −∇Mk (v), we can avoid without further
transformations the possibly dense term A>(I − Pk (v))A, which may destroy the problem’s sparsity.

Owing to the selection of Pk (v) with binary entries, the linear system (3.4.11) can be rewritten
in symmetric form, similar to those arising in active-set methods [92]. To this end, we notice that,
if P iik (v) = 1, the corresponding inner residual in (3.4.5) simpli�es into rn+ik (v) = −µky

i/2, and the
linear equation in (3.4.11) gives δyi = −yi . This yields the crucial observation that, by (3.4.13), it holds
Pk (v)δy = −Pk (v)y for all v ∈ R` . Then, an equivalent yet symmetric linear system is obtained, whose
solution is the search direction δv at v:[

Q + σk I A>(I − Pk (v))
(I − Pk (v))A −µk (I − Pk (v)/2)

] (
δx
δy

)
=

(
A>Pk (v)y

0

)
− rk (v). (3.4.15)

The active-set structure introduced by Pk allows us to obtain a symmetric linear system and adopt
multi-rank factorization updates [26, 84] while maintaining structure and sparsity of the coe�cient
matrix [253, 233]. Factorizing the coe�cient matrix can take signi�cant e�ort, often the vast part for
solving a linear system. Thus, when solving a sequence of related linear systems, it is advisable to
employ factorization updates, whenever possible [26, 117, 119], avoiding a full re-factorization at each
and every iteration. Similarly, problem-speci�c structures should be exploited, such as blocks and
sparsity pattern; see e.g. [147, 231]. The coe�cient matrix in (3.4.15) is symmetric quasi-de�nite [61],
since it has the form [

R S>

S −P

]
, with R, P � 0.

Thus, it always admits an LDL> factorization, with a diagonal intermediate matrix D and no need
for pivoting, and the linear system (3.4.15) always has a unique solution [61]. Despite these useful
properties and many relevant applications, techniques for updating sparse LDL> factorizations are
currently lacking [26, 101, 117] or limited to rank-one updates [239, 233]; these would greatly improve
the performance of our method. In a di�erent spirit, one could opt for iterative methods tailored to
symmetric quasi-de�nite linear systems [176, 198, 245].

Before proceeding, we show that, for every vj and Vj ∈ ∂rk (vj ), a direction δvj exists, is unique,
and indeed a good search direction, namely a direction of descent forMk at vj .
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Lemma 3.4.3. Let any vk , v ∈ R` be given. Denote δv ∈ R` a solution to the linear system
Vδv = −rk (v) for some V ∈ ∂rk (v). Then, for all V ∈ ∂rk (v),

(i) δv exists and is unique,

(ii) δv = 0 if and only if rk (v) = 0,

(iii) if rk (v) , 0, δv is a descent direction forMk at v, namely

δv>∇Mk (v) < 0.

Proof. Let V ∈ ∂rk (v) be arbitrary. As matrixTk de�ned in (3.4.7) is nonsingular, a vector δv solves
Vδv = −rk (v) if and only if, by (3.4.8), it satis�es the linear system Mδv = −∇Mk (v) with M := TkV .
The latter admits a unique solution, since ∂2Mk (v) 3 M � 0 by Lemma 3.4.1. This proves (i), and the
particular case (ii) easily follows. Then, by (ii), for any rk (v) , 0 it is δv , 0. Hence, it is

δv>∇Mk (v) = −δv>Mδv < 0

for any δv , 0, concluding the proof. �

3.4.3 Exact linesearch

Given a primal-dual pair v and a search direction δv, we seek a stepsize τ > 0 to e�ectively update
v← v + τ δv in Algorithm 5. Similarly toMk , the functionψk : τ 7→ Mk (v + τδv) is continuously
di�erentiable, piecewise quadratic, and strictly convex. Thus, the optimal stepsize τ := arg mint ∈Rψk (t)
is found as the unique zero ofψ ′k , i.e.,ψ ′k (τ ) = 0. By direct calculation from (3.4.6), for all τ ∈ R we
have

ψ ′(τ ) = δv>∇M(v + τδv)

=

(
δx
δy

)> (
Q(x + τδx) + q + 2

µk
A> [wk + τδwk − ΠC (wk + τδwk )] + σk (x + τδx − xk )

− [A(x + τδx) + µk (yk − y − τδy) − ΠC (wk + τδwk )]

)
= δx> [Qx + q + σk (x − xk )] +

µk
2
δy>y + τδx> (Q + σk I )δx + τ

µk
2
δy>δy

+

[
2
µk

Aδx − δy
]>
[wk + τδwk − ΠC (wk + τδwk )]

= αkτ + βk +
2
µk
δw>k [wk + τδwk − ΠC (wk + τδwk )] ,

whose coe�cients are given by

αk := δx>(Q + σk I )δx + µkδy>δy/2 (3.4.16a)
βk := δx>[Qx + q + σk (x − xk )] + µkδy>y/2 (3.4.16b)
wk := Ax + µk (yk − y/2) (3.4.16c)
δwk := Aδx − µkδy/2. (3.4.16d)

Thus, the exact linesearch procedure amounts to solving a piecewise linear equation of the form

0 = αkτ + βk +
2
µk
δw> [wk + τδwk − ΠC (wk + τδwk )] (3.4.17)

with respect to τ ∈ R. Thanks to its peculiar structure, (3.4.17) can be solved e�ciently and exactly (up
to numerical precision), e.g., by sorting and linear interpolation, cf. [224, Alg. 2]. We underline that the
stepsize τ is unique and strictly positive. In fact, by the strict convexity ofMk and by Lemma 3.4.3,
we have thatψ ′k is strictly increasing andψ ′k (0) = δv

>∇Mk (v) < 0, respectively. Thus, the optimal
stepsize τ must be unique and positive.
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Armijo’s linesearch A viable alternative to the exact linesearch is a linesearch procedure with
Armijo’s su�cient decrease condition [19]. For a stepsize τ > 0 to be accepted, given some η ∈ (0, 1/2),
this requires

Mk (v + τδv) ≤ Mk (v) + τηδv>∇Mk (v). (3.4.18)

Notice that this is well-de�ned, since δv is a direction of descent forMk at v, by Lemma 3.4.3. Some
comments are in order. Although performing an exact linesearch procedure is advisable, it may be not
necessarily the most convenient option. For example, when su�ciently close to a subproblem solution,
it could be preferable to check whether the unit stepsize τ = 1 could be taken or not, according to
Armijo’s rule, instead of sorting an array, possibly long. For QPs, the linesearch procedure may change
between iterations, dynamically selected based, e.g., on the problem size, regularization parameters,
and current iterate. In the broader context of convex programming, although most of these ideas can
be readily adapted, an exact linesearch procedure may be an inappropriate choice. For this reason, in
§3.5 we establish convergence results for both, the exact and Armijo’s linesearch procedures.

3.5 Convergence Analysis

This section discusses the convergence of QPDO as outlined in Algorithms 4 and 5, under Assump-
tion 3.1.1. Our analysis relies on well-established results for Newton’s and proximal point methods;
in particular, we refer to [30, 43, 71]. Recall that indices k and j denote outer and inner iterations,
respectively. We write index j alone when referring the k-th outer iteration, with k �xed and clear
from the context; nonetheless, quantities indexed by j depend on k too.

3.5.1 Inner loop

First, we focus on the inner loop, described in Algorithm 5 and detailed in §3.4. Since linear system
(3.4.15) is always solvable, the search direction δv exists and is unique. Similarly, there exists a unique
optimal stepsize τ ∈ R++ which solves (3.4.17). Thus, all steps are well-de�ned. It remains to show
that the condition ‖rk (v)‖∞ ≤ ϵk is eventually satis�ed. SinceMk is continuously di�erentiable,
strictly convex, and piecewise quadratic, the semismooth Newton’s method with exact linesearch
exhibits �nite convergence [71, Thm 3]. Thus, ∇Mk (v) = 0 after �nitely many iterations. Then, by the
identity in (3.4.8) withTk nonsingular, rk (v) = 0. Hence, for any ϵk > 0, the inner stopping criterion
is eventually satis�ed, and the inner loop terminates.

We now discuss the convergence of the inner loop with backtracking linesearch procedure and
Armijo’s su�cient decrease condition. These results are included as they could be readily extended to
convex programming, where performing exact linesearch is usually avoided.

Lemma 3.5.1. Let any vk , v ∈ R` and η ∈ (0, 1/2) be given. Denote δv ∈ R` the search direction
at v. Then, the Armijo’s su�cient decrease condition (3.4.18) is satis�ed by any stepsize τ ∈ [0,τ k ]
with

τ k := 2(1 − η)ωk/Lk , (3.5.1)

where Lk ,ωk ∈ R++ are de�ned in Lemma 3.4.1. In particular, it is τ k > 0. Furthermore, within
Algorithm 4, {τ k } ⊆ R++ is bounded away from zero.

Proof. By Lipschitz continuity and strict convexity ofMk (cf. Lemma 3.4.1), we have

Mk (v + τδv) ≤ Mk (v) + ∇M>k (v)τδv +
Lk
2
‖τδv‖2

δv>Mk (v)δv ≥ ωk ‖δv‖2
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for all τ ∈ R. Together with Mk (v)δv = −∇Mk (v), these imply

ητδv>∇Mk (v) = τδv>∇Mk (v) − τ (1 − η)δv>∇Mk (v)
= τδv>∇Mk (v) + τ (1 − η)δv>Mk (v)δv
≥ τδv>∇Mk (v) + τ (1 − η)ωk ‖δv‖2

≥ Mk (v + τδv) −Mk (v) −
Lk
2
‖τδv‖2 + τ (1 − η)ωk ‖δv‖2.

Rearranging and considering τ ∈ [0,τ k ] yield

Mk (v + τδv) ≤ Mk (v) + ητδv>∇Mk (v) + τ
[
τ
Lk
2
− (1 − η)ωk

]
‖δv‖2

≤ Mk (v) + ητδv>∇Mk (v),

since the last term is nonpositive, thus showing that (3.4.18) is satis�ed.
In Algorithm 4, it is σk ≥ σmin > 0 and µk ≥ µmin > 0 for all k ∈ N. Then, by Lemma 3.4.1, {ωk } is

bounded away from zero and {Lk } is bounded from above. Since η < 1, it follows that {τ k } is also
bounded away from zero. �

Theorem 3.5.2. Let any vk ∈ R` be given. Let {vj } be the sequence generated by Algorithm 5
with Armijo’s linesearch. Then, the sequence {vj } is well-de�ned and converges to v?k , the unique
minimizer ofMk .

Proof. Let us suppose Algorithm 5 generates an in�nite sequence {vj } such that rk (vj ) , 0; otherwise,
if rk (vj ) = 0, it is vj = v?k , due to uniqueness; cf. §3.4.1. Then, the sequence {vj } is uniquely de�ned
because linear system (3.4.15) is always solvable (cf. §3.4.2) and the linesearch procedure always
terminates with a positive stepsize (cf. §3.4.3). Recall that the condition rk (v) = 0 corresponds to
the unconstrained minimization ofMk , which we use as a merit function (cf. §3.4.1). The sequence
{Mk (vj )} is decreasing because search directions δvj are descent directions, by Lemma 3.4.3, and
hence there exist positive stepsizes τj yielding su�cient decrease. Then, for some η ∈ (0, 1/2), it is

Mk (vj+1) −Mk (vj ) ≤ ητjδv>j ∇Mk (vj ) < 0.

AsMk is continuous and the optimal value is attained, the sequence {Mk (vj )} must converge to
some limit and limj→∞Mk (vj+1) −Mk (vj ) = 0. Thus, {τjδv>j ∇Mk (vj )} decays to zero. However, the
stepsizes τj are bounded away from zero because, since τj ≥ τ k > 0 always yields Armijo’s su�cient
decrease (cf. Lemma 3.5.1). Thus, {δv>j ∇Mk (vj )} must decay to zero. This, together with Lemma 3.4.3,
implies that limj→∞ ∇Mk (vj ) = 0. This gives also limj→∞ rk (vj ) = 0, hence proving limj→∞ vj = v?k ,
since rk (v) = 0 admits a unique solution (cf. §3.4.1). �

Lemma 3.5.3. Let any vk ∈ R` be given and {vj } be the sequence generated by Algorithm 5. Then,
the sequence {δvj } converges to zero.

Proof. Vector δvj is the unique solution to the linear system Mk (vj )δv = −∇Mk (vj ); cf. Lemma 3.4.3.
By Theorem 3.5.2, it is limj→∞ ∇Mk (vj ) = 0. Then, it follows that also limj→∞ δvj = 0. �

We can prove that the unit stepsize is eventually taken, namely it satis�es the Armijo’s su�cient
decrease condition.

Lemma 3.5.4. Let any vk ∈ R` and η ∈ (0, 1/2) be given, and the sequence {vj } be generated by
Algorithm 5. Then, for j su�ciently large, the unit step size τj = 1 satis�es the su�cient decrease
condition (3.4.18).
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Proof. SinceMk is piecewise quadratic and strictly convex, we have that

Mk (vj + δvj ) −Mk (vj ) ≤ δv>j ∇Mk (vj ) +
1
2
δv>j Mk (vj )δvj +

Ωk

6
‖δvj ‖3

= −
1
2
δv>j Mk (vj )δvj +

Ωk

6
‖δvj ‖3

≤ −
1
2
δv>j Mk (vj )δvj +

Ωk

6
‖δvj ‖

δv>j Mk (vj )δvj
ωk

=

(
1
2
−

Ωk

6ωk
‖δvj ‖

)
δv>j ∇Mk (vj )

for some �nite Ωk ≥ 0 and with ωk > 0 de�ned in Lemma 3.4.1. The second and fourth lines use that
Mk (vj )δvj = −∇Mk (vj ), by (3.4.8) and (3.4.11). Since limj→∞ δvj = 0 by Lemma 3.5.3, for j su�ciently
large it holds

Mk (vj + δvj ) −Mk (vj ) ≤ ηδv>j ∇Mk (vj )

for any given η ∈ (0, 1/2). Hence, the su�cient decrease condition (3.4.18) is eventually satis�ed by
the unit stepsize τj = 1. �

The following local quadratic convergence result follows a general theorem in [56]; see also [57, 69,
76, 65].

Lemma 3.5.5. Let any vk ∈ R` be given and the sequence {vj } be generated by Algorithm 5. If vj
is su�ciently close to v?k and a full step is taken, namely τj = 1, then it holds

vj+1 − v?k



 = O (

vj − v?k 

2
)
. (3.5.2)

Proof. If a full step is accepted, it is vj+1 = vj + δvj and then

‖vj+1 − v?k ‖ = ‖vj + δvj − v
?
k ‖

= ‖vj −M−1
k (vj )∇Mk (vj ) − v?k ‖

≤ ‖M−1
k (vj )‖‖Mk (vj )

(
vj − v?k

)
− ∇Mk (vj )‖

= ‖M−1
k (vj )‖‖Mk (vj )

(
vj − v?k

)
− ∇Mk (vj ) + ∇Mk (v?k )‖.

Here, the second line follows from Mk (vj )δvj = −∇Mk (vj ); the third relies on the existence of a
uniform upper bound to ‖M−1

k (·)‖ by Lemma 3.4.1; the fourth line uses the fact that ∇Mk (v?k ) = 0.
For vj su�ciently close to v?k , we have that

Mk (vj )

(
vj − v?k

)
+ ∇Mk (v?k ) − ∇Mk (vj )



 = O (

vj − v?k 

2
)
,

by the strong semismoothness of ∇Mk [57, 71, 167]. Combining with the previous expression, this
establishes the result. �

Theorem 3.5.6. Let any vk ∈ R` be given and the sequence {vj } be generated by Algorithm 5.
Then, the asymptotic rate of convergence is quadratic, i.e., for j su�ciently large condition (3.5.2)
holds.

Proof. Theorem 3.5.2 guarantees that vj → v?k as j →∞, and then Lemma 3.5.4 shows that full steps
are eventually accepted. Finally, Lemma 3.5.5 establishes the local quadratic convergence rate. �
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3.5.2 Outer loop

Let us consider now the outer loop, sketched in Algorithm 4. This consists of inexact proximal point
iterations [30], hence global and local convergence properties of the outer loop can be derived based on
[43, Thm 2.1]. Recall that, by construction, the regularization parameters are non-increasing, positive,
and bounded away from zero. Also, by ϵ0 ∈ R+ and κϵ ∈ [0, 1), the sequence {ϵk } ⊆ R+ is summable,
since ∑

k ∈N

ϵk =
∑
k ∈N

κkϵ ϵ0 =
ϵ0

1 − κϵ
< +∞.

The following result shows that criterion (Ar ) from [43] is satis�ed.

Lemma 3.5.7. Suppose T −1(0) is nonempty. Let any v0 ∈ R
` be given, and the sequence {vk } be

generated by Algorithm 4. Then, there exists a summable sequence {ek } ⊆ R+ such that

‖vk+1 − v?k ‖ ≤ ek ∀k .

Proof. By the inner stopping condition, for all k ∈ N it holds ‖rk (vk+1)‖ ≤ ϵk , with summable
{ϵk } ⊆ R+. Morever, for any given k ∈ N, we have that, for some η̃k > 0, it is

η̃k ‖v − v?k ‖ ≤ ‖∇Mk (v) − ∇Mk (v?k )‖ = ‖∇Mk (v)‖ = ‖Tkrk (v)‖

for all v ∈ R` , sinceMk is Σk -strongly convex. By the boundedness of Tk , there exists a constant
η > 0 such that the bound ‖v − v?k ‖ ≤ η‖rk (v)‖ holds for all k ∈ N and v ∈ R` . Thus, in particular,
for all k ∈ N it is

‖vk+1 − v?k ‖ ≤ η‖rk (vk+1)‖ ≤ ηϵk .

Let ek := ηϵk , and the proof is complete. �

Notice that we choose r = 0 in (Ar ) for the sake of simplicity, although this may prevent faster
convergence [43]. Then, since problem (3.3.5) is a polyhedral variational inequality [123, §3D], we can
invoke [43, Prop. 1.2].

Theorem 3.5.8. Suppose T −1(0) is nonempty. Let any v0 ∈ R
` be given, and the sequence {vk }

be generated by Algorithm 4. Then, the sequence {vk } is well-de�ned and converges to a solution
v? ∈ T −1(0).

3.6 Relationship with Similar Methods

Our approach is inspired by and shares many features with other recently developed methods. This
section elaborates upon their relationship with QPDO.

FBstab, or proximally stabilized Fischer-Burmeister method, synergistically combines the proximal
point algorithm with a primal-dual semismooth Newton-type method to solve convex QPs [243]. It
takes itself apart from the other methods considered here, because it adopts the (penalized) Fischer-
Burmeister (FB) function [53, 82]. Conversely, it is perhaps the most similar in spirit to QPDO. Consider-
ing both the FB function and the minimum function solely as NCP functions [57, 56], the two methods
essentially match with each other. Nevertheless, they di�er on some, possibly signi�cant, details. While
QPDO relies upon the primal-dual PAL functionM as a merit function, FBstab adopts the squared norm
of the inner residual to get a descent direction, on the vein of [53, 82, 121]. Adopting the FB function,
FBstab may enjoy its nice regularity properties and ease of globalization, at the cost of introducing
some nonlinearity; cf. [96]. On the other hand, QPDO builds upon the piecewise a�ne nature of the
minimum function, which provides no additional nonlinearity besides its nondi�erentiability [223].
Thus, it can exploit factorization updates, perform exact line search by solving a piecewise linear
equation, and handle simultaneously bilateral constraints in a natural manner.
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QPALM is a proximal augmented Lagrangian based solver for convex quadratic programs [224]. Recent
advancements [239] allow to handle nonconvex QPs by adjusting the primal regularization term.
Given a primal-dual estimate v, the exact, unique resolvent update v4 of QPALM [224, Eq. 6], with
Σ = blkdiag(σ−1I , µ−1I ), is given by

x4 = arg minx∈Rn φ(x), (3.6.1a)
y4 = y + µ−1 [

Ax4 − ΠC
(
Ax4 + µy

) ]
. (3.6.1b)

Herein, function φ is given by [224, Eq. 8]

φ(x) := f (x) +
1

2µ
dist2

C (Ax + µy) +
σ

2
‖x − x‖2

and closely resemblesMk in (3.4.6); it is continuously di�erentiable and its gradient reads

∇φ(x) = ∇f (x) +A>y + σ (x − x) +
1
µ
A> [Ax − ΠC(Ax + µy)] .

Since (3.6.1a) yields ∇φ(x4) = 0, combining with (3.6.1b) and rearranging yield necessary and su�cient
conditions for the unique update (x4, y4):

0 = Qx + q +A>y + σ (x − x) , (3.6.2a)
0 = Ax + µ (y − y) − ΠC (Ax + µy) . (3.6.2b)

Conditions (3.6.2) and (3.4.5) are remarkably similar and di�er only in the argument of the projection
ΠC : the term −µy/2 is missing in (3.6.2b), since φ derives from the (primal) proximal augmented
Lagrangian function; see [224, Remark 2]. This underlines the primal-dual nature of QPDO, that may
better cope with changes in the active set [92] and control the quality of both primal and dual variables
during iterations [158, 190], without any additional computational e�ort.

OSQP is a solver for convex quadratic programs based on the alternating direction method of multipliers
[253]. Rearranging from [253, Alg. 1], with parameters α := 1, ρ := µ−1, primal-dual estimate (x, y), and
constraint estimate z ≈ Ax, the primal-auxiliary update (x�, s�) is the unique solution to the linear
system

0 = Qx + q +A>s + σ (x − x), (3.6.3a)
0 = Ax + µ(y − s) − z. (3.6.3b)

Then, the constraint update and the dual update are given by z� = ΠS (z + µs�) and y� = s� +
µ−1 (z − z�), respectively. Conditions (3.6.3) closely resemble (3.4.5). However, an auxiliary variable
s replaces the dual variable y, and the estimate z substitutes the projection in (3.4.5). This makes
subproblem (3.6.3) a linear system, but leads to a �rst-order method, which often requires many
iterations. In [253], the Authors propose an update rule to adapt the values of µ and heuristically
enhance the convergence speed.

2ndMM is a second order primal-dual algorithm for nonsmooth convex composite problems [194],
namely for the minimization of f (x) + д(Ax) with respect to x, with function f smooth and strictly
convex, function д proper, lower semicontinuous, and convex, and matrix A with full row rank.
Since 2ndMM considers a broader class of problems, it does not exploit the peculiar structure of QPs.
Nevertheless, it closely relates to QPDO in that it adopts both the proximal augmented Lagrangian
approach and the primal-dual augmented Lagrangian function, to compute a search direction and as a
merit function, respectively. However, these are not combined nor tightly intertwined as in QPDO.

QPNNLS-PROX is an algorithm for solving convex QPs using nonnegative least squares within
an outer proximal-point iteration scheme [208]. Although similar, this method di�ers from QPDO in
various aspects. It applies only a primal proximal regularization, and the resulting strictly convex
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subproblem is reformulated as a partially nonnegative least squares problem. This can be e�ciently
solved using a tailored, numerically robust, active-set method.

IP-PMM is a primal-dual regularized interior-point method for convex quadratic programming [250].
It inexactly solves the subproblems of the proximal method of multipliers (PMM) via an infeasible
interior-point (IP) method. Under standard assumptions, the algorithm exhibits polynomial complexity
[250], and numerical results have demonstrated that the regularization improves the reliability of the
underlying IP method.

We close this section with some general comments on modern QP solvers, brie�y discussed
here. Remarkably, these share many aspects and, we believe, this is not surprising. In fact, solutions
to convex QPs are fully characterized by their KKT conditions. Hence, numerical methods for QP
essentially solve them, since they are both necessary and su�cient. In particular, we argue, QP solvers
di�er in the manner they deal with the piecewise a�ne structure of these conditions; cf. (3.3.3). Indeed,
the logarithmic barrier in IP methods and the NCP functions in Newton-type methods treat the
inequalities from di�erent perspectives. Furthermore, due to its regularization e�ect, many methods
adopt an outer proximal layer as a mechanism to gain robustness, handle non-strictly convex problems,
and manage degeneracy.

3.7 Implementation Details

We implemented QPDO in open-source C code with an interface to MATLAB™ [254]; see §0.1. Our
implementation can handle any QP formulated as (3.1.1), without any requirement about the problem
data other than Assumption 3.1.1. This section discusses some relevant aspects of the program, such
as the linear solver, parameters update rules, infeasibility detection, and problem scaling.

3.7.1 Linear solver

The linear system (3.4.15) is solved with CHOLMOD [117], a direct sparse solver based on a supernodal
Cholesky factorization. This linear solver is analogous to the one adopted in QPALM [224], for the sake
of comparison. This software package can apply multi-rank factorization updates, but only for linear
systems with symmetric positive de�nite coe�cient matrix. This can be obtained from (3.4.15) via
condensing, or reduction procedure. Let

(
rdual
k , r

prim
k

)
partition the inner residual rk in (3.4.5). Then,

formally solving for δy in (3.4.15), we obtain the expression (omitting subscripts and arguments)

δy = µ−1(I − P/2)−1 [
(I − P)Aδx + rprim]

= µ−1(I + P)
[
(I − P)Aδx + rprim]

= µ−1(I − P)Aδx + µ−1(I + P)rprim,

where the second and third lines are due to the binary structure of P (3.4.13). Substituting δy and
rearranging, we obtain a linear system for δx:[

Q + σI + µ−1A>(I − P)A
]
δx = A>Py − µ−1A>(I − P)rprim − rdual.

This has a symmetric, positive de�nite coe�cient matrix and can be solved by CHOLMOD. On the one
hand, this approach allows multi-rank factorization updates [84], thus avoiding the need for a full
re-factorization at every inner iteration. On the other hand, sparsity pattern may be lost and signi�cant
�ll-in may arise due to the matrix-matrix productA>A. For this reason and to fully exploit the problem
sparsity, the current implementation may bene�t from solving (3.4.15) via sparse symmetric linear
solvers, possibly based on the LDL> factorization [61, 101], with (multi-rank) factorization updates; cf.
§3.4.2.
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3.7.2 Parameters selection

Solving convex QPs via the proximal point algorithm imposes mild restrictions on the sequence of
primal-dual regularization parameters {Σk }. As mentioned in §3.3.2, there are no additional require-
ments other than being non-increasing and positive de�nite. However, similarly to forcing sequences
in augmented Lagrangian methods [49], the sequence of regularization parameters greatly a�ects the
behaviour of QPDO, and a careful tuning can positively impact the performance. For instance, although
faster convergence rates can be expected if Σk → 0 [43], numerical stability and machine precision
should be taken into account. Following [239, §5.3] and [253, §5.2], our implementation considers
only diagonal matrices of the form Σk = blkdiag(σk I , diag(µk )). We refer to the e�ect of σk and µk as
primal and dual regularization, respectively.

Dual regularization The dual regularization parameter µk proves critical for the practical perfor-
mance of the method. We argue, it has such impact since it strikes the balance between the number
of inner and outer iterations, seeking easy-to-solve subproblems, e�ective warm starting, or rapid
constraints satisfaction. After all, suitable forcing sequences are crucial in all augmented Lagrangian
methods. Therefore, we carefully initialize and update the value of µk , guided by the interpretation
as a constraint penalization o�ered by the augmented Lagrangian framework; cf. §3.4.1. In our im-
plementation, we consider a vector µk to gain a �ner control over the constraint penalization [49].
Given a (primal) initial guess x0 ∈ R

n , we initialize as in [163, §12.4]:

d0 := Ax0 − ΠC(Ax0),

µi0 := Π[µmin
0 ,µmax

0 ]

(
κµ

max(1, (di0)
2/2)

max(1, | f (x0)|)

)
, i ∈ [1;m],

where µmax
0 ≥ µmin

0 > 0 and κµ ≥ 0. Then, following [239, §5.3], we monitor the primal residual
rprim(v) := Ax−ΠC(Ax+ y) from (3.3.3) and update the dual regularization parameter µk accordingly.
If |riprim(vk+1)| > max

(
θµ |riprim(vk )|, ϵopt

)
, we set

µik+1 = Π[µmin,µik ]

(
δµ
‖rprim(vk+1)‖∞

|riprim(vk+1)|
µik

)
,

where θµ ∈ (0, 1), µmin > 0, and δµ ≥ 0. Otherwise, we set µik+1 = µik . These rules adapt the constraint
penalization on the current residual, seeking a uniform, steady progression towards feasibility, while
making sure the sequences {µik }, i ∈ [1;m], are non-increasing and bounded away from zero. In our
implementation, the default values are µmin

0 = 10−4, µmax
0 = 104, κµ = 0.1, µmin = 10−8, δµ = 10−2 and

θµ = 0.1.
Remark 3.7.1. Owing to (3.4.13), the dual regularization parameter µ a�ects the identi�cation of the
active set, which is far from being a trivial or negligible task; see [74]. It is interesting to notice the
interpretation given in [92, Rem. 3.4] of the primal-dual active-set strategy or, equivalently, semismooth
Newton’s method, as a prediction strategy for the true active and inactive sets. On the one hand, small
values for µ lead to strong constraint penalization and the active set of the problem solution could be
readily identi�ed. On the other hand, however, the value of µ should be su�ciently large to act as a
regularization term and to avoid numerical di�culties in (3.4.15). Considering a vector µ in place of a
scalar µ might mitigate this issue, allowing a �ner tuning of these trade-o�s for each constraint.

Primal regularization The primal regularization term turns out to be less crucial with respect to
the dual counterpart. For this reason, it is associated to a scalar value and tuned independently from
the residual. Starting from σ0 > 0, we apply

σk+1 = max(σmin,κσσk ),

where σmin > 0 and κσ ∈ [0, 1]. In our implementation the default values are σ0 = 0.1, σmin = 10−7,
and κσ = 0.1.
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Early termination The inner tolerance ϵk also a�ects the performance of QPDO, since it balances
subproblem accuracy and early termination. In Algorithm 4, these aspects relate to the parameters ϵ0
and κϵ , which drive {ϵk } to zero. However, �nite precision should also be taken into account. In fact,
although the semismooth Newton’s method converges in �nitely many iterations, the solution provided
is exact up to round-o� errors and numerical precision. Therefore, we deviate from Algorithm 4 in
this respect and employ the update rule

ϵk+1 = max(ϵmin,κϵϵk ),

where 0 ≤ ϵmin ≤ ϵopt. In our implementation, the default values are ϵ0 = 1, κϵ = 0.1, ϵmin = 10−14, and
ϵopt = 10−6.

3.7.3 Infeasibility detection

A routine for detecting primal and dual infeasibility of problem (3.1.1) is included in Algorithm 4.
This allows the algorithm to terminate with either a primal-dual solution or a certi�cate of primal
or dual infeasibility, for some given tolerances. We adopt the mechanism developed in [218, §5.2],
which holds whenever the proximal point algorithm is employed to solve the KKT conditions (3.3.2).
Problem (3.1.1) is declared primal or dual infeasible based on some conditions on ∆xk := xk+1 − xk
and ∆yk := yk+1 − yk , k ≥ 0. The reader may refer to [253, §3.4], [224, §V.C], and [243, §4.1], and [250,
§4] for analogous applications.

3.7.4 Preconditioning

Although the Newton’s direction and the exact linesearch stepsize are invariant to scaling of the
variables, this may a�ect the behaviour of the overall optimization algorithm; see [98]. Preconditioning,
or scaling, the problem may alleviate ill-conditioning and mitigate numerical issues, especially when
the problem data span across many orders of magnitude. Automatic scaling, or equilibration, of
optimization problems is an active �eld of research, spanning from linear systems to nonlinear
programming [44, 60, 66, 130]. In our implementation, we closely follow [239, §5.2] and scale the
problem data by performing the Ruiz’s equilibration procedure [86] on the constraint matrix A. This
procedure iteratively scales the rows and columns of a matrix in order to make their in�nite norms
approach one. By default, QPDO performs 10 scaling iterations. Slightly di�erent routines are adopted,
e.g., in [253, §5.1] and [250, §5.1.2]. Note that, by default, if the problem is initially scaled, the termination
conditions for both, optimality and infeasibility, refer to the original, unscaled problem.

3.8 Numerical Results

We discuss details of our open-source implementation of QPDO and present computational results on
random problems and the Maros–Mészáros set [79]. We test and compare QPDO against the open-source,
full-�edged solvers OSQP [253] and QPALM [224, 239]. Although our current implementation proves
competitive with more mature solvers, we plan to improve and further extend it. The interested reader
may refer to [208, 243, 253, 239] for more extensive numerical evaluations.

Setup We consider the tolerance ϵopt = 10−5, and set the tolerances in OSQP and QPALM to ϵabs = ϵopt
and ϵrel = 0. In addition, we set the maximum number of iterations and the time limit to 1012 and 100 s,
respectively, for every solver, and we leave all the other settings to the internal defaults. It is worth
mentioning that, since no initial guess is provided, all the solvers start with v0 = 0. We deem optimal
a primal-dual pair v? = (x?, y?) returned by a solver if it satis�es the conditions

‖Qx? + q +A>y?‖∞ ≤ ϵopt, and ‖Ax? − ΠC(Ax? + y?)‖∞ ≤ ϵopt,

otherwise we consider it a failure. All the experiments were carried out on a desktop running Ubuntu
16.04 with Intel Core i7-8700 and 16 GB RAM. The shifted geometric mean (sgm) of the run times, the
performance pro�les, and the time pro�les are used to evaluate and compare the solvers on a test set,
as detailed in §1.6.2.
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Figure 3.1: Comparison on random problems with data pro�les: fraction of problems solved by each
solver as a function of run time.

Table 3.1: Comparison on di�erent problem classes with run time and failure rate.

QPDO QPALM OSQP

Random QPs Timing (sgm) [s] 0.090 0.079 0.112
Failure rate [%] 0.00 0.00 0.00

Random Eq. QPs Timing (sgm) [s] 0.988 1.045 1.648
Failure rate [%] 0.00 0.00 4.00

Maros–Mészáros Timing (sgm) [s] 0.061 0.435 3.141
Failure rate [%] 0.00 6.85 24.66

3.8.1 Random problems

We considered QPs in the form of (3.1.1) with randomly generated problem data. In each problem
instance, the number of variables is n = d10ae and ranges between 101 and 103, with a uniformly
distributed, i.e., a ∼ U(1, 3). The number of constraints is m = 10n. The linear cost is normally
distributed, i.e., qi ∼ N(0, 1). The cost matrix is Q = PP>, where P ∈ Rn×n has 10% nonzero entries
Pi j ∼ N(0, 1). The constraint matrix A ∈ Rm×n contains 10% nonzero entries Ai j ∼ N(0, 1). The
bounds are uniformly distributed, i.e., li ∼ U(−1, 0) and ui ∼ U(0, 1). We also investigated equality-
constrained QPs. For these problems, n ranges between 102 and 104,m = dn/10e, and li = ui ∼ N(0, 1).
We generated 250 instances from each problem class.

Results Computational results are summarized in Table 3.1 and Figures 3.1 and 3.2. QPDO and QPALM

succeeded in all the problem instances, whereas OSQP reached the time limit 10 times. Performance
pro�les suggest that, for both problem classes, QPALM exhibits the best performance, with QPDO slightly
behind and OSQP third. However, the time pro�les in Figure 3.1 show that, on equality-constrained QPs,
QPDO scales better than the other solvers. Indeed, QPDO is the �rst to complete the test set of random
problems. OSQP reaches the time limit on few problems, due to the relative high accuracy requirement.
Overall, all solvers prove competitive.

3.8.2 Maros–Mészáros problems

We considered the Maros–Mészáros test set [79] of hard QPs. This test set is often used to benchmark
convex QP solvers, as it includes many large-scale and ill-conditioned problems. Selecting those with
n ≤ 103 yields 73 problems, with 2 ≤ n ≤ 1000, 3 ≤ m ≤ 1750, and 6 ≤ nnz(Q) + nnz(A) ≤ 22292.
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Figure 3.2: Comparison on random problems with performance pro�les: fraction of problems solved
by each solver as a function of performance ratio.

Results Computational results are summarized in Table 3.1 and Figures 3.3 and 3.4. On this test
set, QPDO demonstrates its robustness, succeeding with all 73 problems. OSQP reaches the maximum
number of iterations in 18 cases, while QPALM fails 5 times. OSQP is very fast for some problems but has
a comparatively high failure rate. As a �rst-order method, OSQP may take many, yet computationally
cheap, iterations to cope with ill-conditioning and the relatively high accuracy requirements. QPALM
fails on some problems, presumably due to linear algebra issues; its relatively high timing in Table 3.1
is associated to the failure rate. Considering only the problems it solved, QPALM’s timing (sgm) is 0.050
s, whereas QPDO takes 0.054 s. Overall, the reliable performance of QPDO appears e�ective and, indeed,
promising.

3.9 Summary

We presented a primal-dual Newton-type proximal method for convex quadratic programs. This builds
upon a simple yet crucial result: a suitable merit function for the proximal subproblem is found in the
proximal primal-dual augmented Lagrangian function. This allows us to e�ectively weave the proximal
point method together with semismooth Newton’s, yielding structured symmetric linear systems,
exact linesearch, and the possibility to apply sparse multi-rank factorization updates. Our method
requires the solution of symmetric quasi-de�nite linear systems, that are always solvable, imposing
no assumptions on the problem data other than convexity. The method is simple and easily warm
started, can exploit sparsity pattern, handle degeneracy, and detect infeasibility. We have implemented
our method QPDO in a general-purpose solver, written in open-source C code. Our solver can take
advantage of arbitrary initial guesses and can provide accurate solutions. We benchmarked it against
state-of-the-art QP solvers, comparing run times and failure rates. Numerical tests on randomly
generated problems and the Maros-Mészáros test set demonstrated promising results. QPDO proved
reliable, e�ective, and competitive.
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Figure 3.3: Comparison on Maros–Mészáros problems with data pro�les: fraction of problems solved
by each solver as a function of run time.
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Figure 3.4: Comparison on Maros–Mészáros problems with performance pro�les: fraction of problems
solved by each solver as a function of performance ratio.
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Chapter 4

Conclusions

This is not the end.
It is not even the beginning of the end.

But it is, perhaps, the end of the beginning.
—W. Churchill, 1942

In this thesis we have explored the class of constrained structured optimization problems and
pioneered general methods for their numerical solution, based on the proximal augmented Lagrangian
framework.

In Chapter 1 we have introduced constrained structured programs (NCSPs) and analyzed their
necessary optimality conditions. Leveraging the augmented Lagrangian framework, we devised
a nested numerical method whose subproblems are structured optimization problems. Then we
proposed an algorithmic scheme able to handle the broad class of NCSPs and we were able to show
its global convergence under standard assumptions. We presented our implementation ALPX with
some illustrative examples involving vanishing and disjunctive constraints. Focusing on nonlinear
programs, we benchmarked ALPX against a state-of-the-art NLP solver and showed its robustness and
e�cacy.

In Chapter 2 we considered switching time optimization (STO) problems with switching costs
and constraints. Based on the sparsity-inducing cardinality function, these problems are reformulated
as constrained structured problems. Then we derived routines to evaluate the simplex-constrained
proximal mapping arising in �xed �nal time problems. Finally, numerical examples evidenced the
potential of switching costs as a modelling tool.

In Chapter 3 we examined convex quadratic programming from the viewpoint of the proximal
augmented Lagrangian framework. We found the method to be equivalent to a proximal point
iteration, and designed the numerical scheme accordingly. Owing to the problem structure, the inner
minimization procedure uses semismooth Newton’s directions and exact linesearch, leading to large
updates in the active set and fast linear system solves. Our solver QPDO demonstrated reliable and
e�cient performance compared to state-of-the-art solvers.
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Outlook

This thesis leaves us with more questions than it answered.
Chapter 1 brings together proximal and augmented Lagrangian methods to deal with constrained

structured optimization problems, following a research direction suggested in [200]. Nevertheless,
we believe this could be better integrated with the continuous-Lyapunov descent (CLyD) framework
developed in [214], which constitutes a signi�cant tool for the analysis of proximal methods. Another
still unanswered issue relates to the assumptions needed for ensuring convergence of our augmented
Lagrangian proximal method. In particular, we believe the requirement of continuity needed for д on
its domain could be relaxed, as shown in §2.3.1.

In Chapter 2 we considered STO problems with switching costs. It would be desirable to consider
instead general MIOCPs, involving continuous controls, state and control constraints, boundary
and switching conditions, as well as switching costs. These could be reformulated as constrained
structured problems via, e.g., direct multiple shooting or indirect methods [141]. Moreover, following the
suggestion in [135], the STO approach should be coupled with the combinatorial integral approximation
(CIA) [144] and shortest path approaches [230] to obtain tighter formulations, gain robustness, and
eventually deliver better solutions.

We developed a QP solver in Chapter 3. The development of linear algebra routines for the e�cient
update of sparse factorizations would be greatly bene�cial, as in [84, 233]. Also, one could investigate
in which cases the exact linesearch procedure may yield unstable behaviour, e.g., due to �nite precision,
and when Armijo’s su�cient decrease rule may be an appropriate substitute. The forcing sequences
of regularization parameters and inner tolerance also play a role; devising rules for their adaptive
tuning is a topic for future research. Also warm starting could have a major impact of the performance.
Running some iterations of a �rst-order method, e.g., OSQP [253], could quickly improve the active set
identi�cation, hence providing QPDO with a good initial point. Finally, as we did for QPs, the augmented
Lagrangian proximal framework could be tailored to convex programming and beyond to nonlinear
programming, mutatis mutandis. This yields primal-dual regularized subproblems, on the vein of [213,
205, 217], that could be e�ciently solved via semismooth Newton’s method.
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List of Acronyms

ADMM Alternating Direction Method of Multipliers
AKKT Approximate Karush-Kuhn-Tucker
AL Augmented Lagrangian
ALP Augmented Lagrangian Proximal
CIA Combinatorial Integral Approximation
CPET Control Parametrization Enhancing Technique
FBE Forward-Backward Envelope
FBS Forward-Backward Splitting
IP Interior Point
KKT Karush-Kuhn-Tucker
LICQ Linear Independence Constraint Quali�cation
MIOCP Mixed-Integer Optimal Control Problem
MPVC Mathematical Program with Vanishing Constraints
NCP Nonlinear Complementarity Problem
NCSP Nonlinear, Nonconvex, Nonsmooth Constrained Structured Programming
NLP Nonlinear Programming
OCP Optimal Control Problem
PAL Proximal Augmented Lagrangian
PM Proximal Methods
PMM Proximal Method of Multipliers
QP Quadratic Programming
QPVC Quadratic Program with Vanishing Constraints
SQP Sequential Quadratic Programming
STO Switching Time Optimization
VTT Variable Time Transformation
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