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Abstract
Injection, mixing and combustion under high-pressure conditions are key processes in modern
energy conversion machines. Driven by the demand for higher efficiency and reduction of pollutants,
intensive investments are made in recent years in the further development of especially two types of
fuel-fired engines: liquid-propellant rocket engines (LREs) and gas engines (GEs). This arises from
the fact, that LREs will remain an essential component for payload launchers in the foreseeable
future and that GEs fired with hydrogen or natural gas are a possible solution to gradually diversify
towards cleaner energy conversion machines. Computational fluid dynamics (CFD) can contribute
to a better understanding of the injection, mixing and combustion processes within these types of
engines. Here, especially one thermodynamic topic is of paramount interest within recent years:
phase separation processes under initially supercritical conditions. This work presents a CFD tool
that enables the thorough investigation of these processes. Both a pressure- and a density-based
solver framework are introduced. The first comprises different formulations of the pressure equation
to cover a wide range of Mach numbers. A double-flux scheme specifically tailored for real-gas flows
is the core of the density-based solver. The thermodynamic framework relies on a rigorous and fully
conservative description of the thermodynamic state. Cubic equations of state and the departure
function concept form the basis of the thermal and caloric closure. Consequently, real-gas effects
are included inherently. Multicomponent phase separation processes are considered by means of a
minimization of the Gibbs energy. For the investigation of the non-premixed combustion process, a
tabulated combustion model based on the flamelet concept is employed. Overall, measurement data
from five different experimental test campaigns are used to validate the numerical framework. Both
Large-Eddy Simulations and Reynolds-Averaged Navier-Stokes simulations are performed. Most of
the simulations are conducted with the pressure-based framework. In the first step, real-gas effects
in underexpanded jets are investigated. Very good agreement with experimental speed of sound
measurements is found. Further investigations demonstrate the importance of the consideration of
real-gas effects to correctly capture the jet mixing process. Next, the phase separation process in
an underexpanded argon jet is studied. In the fully developed jet, the single-phase instabilities are
found downstream of the nozzle exit and upstream of the Mach disk. This is in excellent agreement
with experimental Mie scattering measurements. Next, the possibility of phase separation under
GE-like operating conditions is investigated. Two different fuels – hydrogen- and methane-based
– are considered. For the latter, pronounced phase separation processes are found which are
triggered by a strong expansion and a mixing with the ambient gas. No two-phase effects occur in
the hydrogen-based fuel as the critical temperature of the less volatile component is dramatically
lower as in the methane-based fuel. For the investigation of phase separation processes under
LRE-like operating conditions a combined experimental and numerical study together with the
University of Stuttgart is conducted. Three different test cases are defined. The characteristics
of the phase formation process agree well between experiments and simulations. The single-phase
instability is caused solely by a mixing process of the injected fuel with the ambient gas. Next,
the prediction capabilities of the pressure- and the density-based solver are assessed in detail. For
the pressure-based approach a very good agreement with three experimental test cases is found.
The density-based method, in contrast, yields possibly nonphysical states indicated by a strong
entrainment into the two-phase region. Finally, phase separation effects in a hydrogen and a
methane flame under LRE-typical operating conditions are studied. Single-phase instabilities are
found on both sides of the flamelet caused by the low temperatures and the presence of water. For
the methane flame, a Large-Eddy Simulation for a reference experiment is conducted. The results
show that the region of phase separation is mostly restricted to the oxygen core. The OH∗ emission
images indicate that both flame length and shape are in good agreement with the experimental
results.





Kurzfassung
Einspritzung, Mischung und Verbrennung unter Hochdruckbedingungen sind Schlüsselprozesse in
modernen Energieumwandlungsmaschinen. Getrieben durch den Bedarf nach höherer Effizienz und
Schadstoffreduzierung wird in den letzten Jahren die Weiterentwicklung von zwei Typen von Ver-
brennungsmaschinen stark vorangetrieben: Flüssigkeitsraketentriebwerke (LREs) und Gasmoto-
ren (GEs). Dies resultiert aus der Tatsache, dass LREs in absehbarer Zukunft eine wesentliche
Komponente für Nutzlastträgerraketen bleiben werden und dass mit Wasserstoff oder Erdgas be-
feuerte GEs eine mögliche Lösung für eine allmähliche Diversifizierung hin zu saubereren Ener-
gieumwandlungsmaschinen darstellen. Die numerische Strömungsmechanik (CFD) kann zu einem
besseren Verständnis der Einspritz-, Mischungs- und Verbrennungsvorgänge innerhalb dieser Ver-
brennungsmaschinen beitragen. Dabei ist in den vergangenen Jahren vor allem ein Thema von
besonderem Interesse: Phasenzerfallsprozesse unter ursprünglich überkritischen Bedingungen. Die
vorliegende Arbeit liefert ein CFD-Werkzeug, das die genaue Untersuchung dieser Vorgänge er-
möglicht. Es werden sowohl ein druck- als auch ein dichtebasierter Strömungslöser vorgestellt.
Ersterer umfasst verschiedene Formulierungen der Druckgleichung, um einen weiten Bereich von
Machzahlen abzudecken. Der dichtebasierte Löser baut auf einem Double-Flux Schema auf, das
speziell auf Realgasströmungen zugeschnitten ist. Die thermodynamische Schließung stützt sich
auf eine vollständig konservative Beschreibung des thermodynamischen Zustands. Kubische Zu-
standsgleichungen und der Departure Function Ansatz werden für die thermische und kalorische
Schließung verwendet. Realgaseffekte sind folglich inhärent enthalten. Phasenzerfallsvorgänge in
Gemischen werden mittels einer Minimierung der Gibbs-Energie berücksichtigt. Für die Unter-
suchung nicht-vorgemischter Verbrennungsprozesse wird ein tabelliertes Verbrennungsmodell auf
der Basis des Flamelet-Konzepts angewandt. Insgesamt werden Messdaten aus fünf verschiedenen
experimentellen Testkampagnen zur Validierung des CFD-Werkzeugs herangezogen. Es werden
sowohl Grobstruktursimulationen als auch Reynolds-gemittelte Navier-Stokes Simulationen durch-
geführt. Für den Großteil der Simulationen wird ein druckbasierter Strömungslöser eingesetzt.
Im ersten Schritt werden Realgaseffekte in unterexpandierten Jets untersucht. Die Simulations-
ergebnisse stimmen sehr gut mit den experimentellen Schallgeschwindigkeitsmessungen überein.
Weiterführende Untersuchungen zeigen, wie wichtig die Berücksichtigung von Realgaseffekten für
die korrekte Wiedergabe des Mischungsprozesses ist. Als nächstes wird der Phasenzerfallsprozess in
einem unterexpandierten Argon-Jet analysiert. Im voll entwickelten Strahl tritt der Phasenzerfall
stromabwärts des Düsenaustritts und stromaufwärts der Mach-Scheibe auf. Dies ist in hervorra-
gender Übereinstimmung mit experimentellen Mie-Streuungsmessungen. Darauf aufbauend wird
die Möglichkeit des Phasenszerfalls bei GE-ähnlichen Betriebsbedingungen untersucht. Zwei ver-
schiedene Brennstoffe – auf Wasserstoff- und Methanbasis – werden berücksichtigt. Bei letzterem
treten ausgeprägte Phasenzerfallseffekte auf, die durch eine starke Expansion und eine Vermischung
mit dem Kammergas ausgelöst werden. Beim wasserstoffbasierten Brennstoff kommt es zu keinen
Zweiphaseneffekten, da die kritische Temperatur der weniger flüchtigen Komponente sehr niedrig
ist. Zur Untersuchung von Phasenzerfallsprozessen unter LRE-ähnlichen Betriebsbedingungen wird
eine kombinierte experimentelle und numerische Studie zusammen mit der Universität Stuttgart
durchgeführt. Es werden drei verschiedene Testfälle definiert. Die Charakteristika des Phasenzer-
fallsprozesses zeigen eine gute Übereinstimmung zwischen Experimenten und Simulationen. Der
Phasenzerfall wird ausschließlich durch einen Vermischungsprozess des Brennstoffs mit dem Um-
gebungsgas verursacht. Als nächstes werden die Vorhersagefähigkeiten des druck- und des dich-
tebasierten Lösers genauer bewertet und gegenübergestellt. Für den druckbasierten Ansatz wird
eine sehr gute Übereinstimmung mit drei experimentellen Testfällen gefunden. Die dichtebasierte
Methode liefert hingegen möglicherweise nichtphysikalische Zustände, die durch ein starkes Ein-
dringen in das Zweiphasengebiet ersichtlich werden. Abschließend werden Phasenzerfallseffekte in
einer Wasserstoff- und einer Methanflamme unter LRE-typischen Betriebsbedingungen untersucht.
Zweiphasige Zustände treten auf beiden Seiten der Flamme auf und werden durch die niedrigen
Temperaturen und die Anwesenheit von Wasser verursacht. Für die Methanflamme wird eine Grob-
struktursimulation zu einem Referenzexperiment durchgeführt. Die Ergebnisse veranschaulichen,
dass der Bereich des Phasenzerfalls fast ausschließlich auf den Sauerstoffkern beschränkt ist. Die
OH∗-Emissionsbilder zeigen, dass sowohl die Flammenlänge als auch die Flammenform in guter
Übereinstimmung mit den experimentellen Ergebnissen sind.





Contents

Contents ix

List of figures xiii

List of tables xix

Nomenclature xxi

I Fundamentals 1

1 Introduction 2
1.1 High-pressure injection, mixing and combustion . . . . . . . . . . . . . . . . . . . . 2
1.2 Injection and mixing under rocket-relevant conditions . . . . . . . . . . . . . . . . 4
1.3 High-pressure combustion under rocket-relevant conditions . . . . . . . . . . . . . . 9
1.4 Injection and mixing under gas engine relevant conditions . . . . . . . . . . . . . . 11
1.5 Objectives and outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2 Governing equations 15
2.1 Conservation equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2 Turbulence modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.3 Large-Eddy Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.3.1 Filtered equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.3.2 Sub-grid scale models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.4 Reynolds-Averaged Navier-Stokes simulation . . . . . . . . . . . . . . . . . . . . . . 24
2.4.1 Filtered equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.4.2 Turbulence model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

II Numerics and modeling 27

3 Numerical methods 28
3.1 Finite volume method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.1.1 Discretization of the solution domain . . . . . . . . . . . . . . . . . . . . . . 28
3.1.2 Spatial discretization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.1.3 Temporal discretization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.2 Numerical solution algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.3 Pressure-based solver framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.3.1 Formulation for subsonic flows . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.3.2 Extension for subsonic real-gas flows . . . . . . . . . . . . . . . . . . . . . . 36
3.3.3 Solution procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.3.4 General extension for high-speed flows . . . . . . . . . . . . . . . . . . . . . 38
3.3.5 Hybrid pressure-based approach for high-speed flows . . . . . . . . . . . . . 39

3.4 Density-based solver framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.4.1 Spurious pressure oscillations . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.4.2 Double-flux method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4 Thermodynamics modeling 47
4.1 Fundamental properties and equations . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.2 Maxwell relations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.3 Thermodynamic equilibrium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

ix



x Contents

4.4 Departure function concept . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
4.5 Partial molar and specific properties . . . . . . . . . . . . . . . . . . . . . . . . . . 56
4.6 Ideal-gas model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.6.1 Thermal and caloric equation of state . . . . . . . . . . . . . . . . . . . . . 57
4.6.2 Transport properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.7 Real-gas model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
4.7.1 Cubic equations of state . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
4.7.2 Multicomponent mixtures . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
4.7.3 Caloric and derived properties . . . . . . . . . . . . . . . . . . . . . . . . . 65
4.7.4 Transport properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.8 Phase separation modeling in multicomponent fluids . . . . . . . . . . . . . . . . . 69
4.8.1 Derivation of the tangent-plane distance criterion . . . . . . . . . . . . . . . 70
4.8.2 Fugacity and fugacity coefficient . . . . . . . . . . . . . . . . . . . . . . . . 73
4.8.3 Evaluation of the tangent-plane distance criterion . . . . . . . . . . . . . . . 74
4.8.4 Equilibrium flash . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
4.8.5 Caloric and transport properties in multiphase fluids . . . . . . . . . . . . . 80
4.8.6 Compressibility and speed of sound in multiphase fluids . . . . . . . . . . . 80
4.8.7 Realization in OpenFOAM . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.9 Characteristics of multicomponent phase equilibria . . . . . . . . . . . . . . . . . . 84
4.9.1 Construction of the phase envelope . . . . . . . . . . . . . . . . . . . . . . . 85
4.9.2 Stability and criticality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
4.9.3 Homogeneous nucleation in binary mixtures . . . . . . . . . . . . . . . . . . 91

5 Combustion modeling 95
5.1 Real-gas flamelet model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
5.2 Reaction kinetics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

III Results 101

6 Mixing under supersonic flow conditions 102
6.1 Influence of real-gas effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

6.1.1 Experimental setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
6.1.2 Numerical setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
6.1.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
6.1.4 Thermodynamic analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
6.1.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

6.2 Phase separation in pure fluids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
6.2.1 Experimental setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
6.2.2 Numerical setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
6.2.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
6.2.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

6.3 Phase separation in multicomponent fuels . . . . . . . . . . . . . . . . . . . . . . . 123
6.3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
6.3.2 Numerical setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
6.3.3 Probability of phase separation . . . . . . . . . . . . . . . . . . . . . . . . . 124
6.3.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
6.3.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

7 Mixing under subsonic flow conditions 135
7.1 Phase separation due to multicomponent mixing . . . . . . . . . . . . . . . . . . . 135

7.1.1 Experimental setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
7.1.2 Numerical setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
7.1.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
7.1.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142



Contents xi

7.2 Comparison of fully- and quasi-conservative solvers . . . . . . . . . . . . . . . . . . 142
7.2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
7.2.2 Single-phase test case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
7.2.3 Numerical setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
7.2.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
7.2.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

8 Single-phase instability in high-pressure combustion 151
8.1 Thermodynamic closure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
8.2 Test cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
8.3 Counterflow diffusion flames . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

8.3.1 General discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
8.3.2 Phase separation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

8.4 Large-Eddy Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
8.4.1 Test case and numerical setup . . . . . . . . . . . . . . . . . . . . . . . . . . 156
8.4.2 General flame features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
8.4.3 Phase separation effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
8.4.4 Comparison with the experiment and the single-phase closure . . . . . . . . 158

8.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

IV Summary and outlook 161

9 Summary 162

10 Outlook 167

Bibliography 169

A Numerical flux schemes 189
A.1 Short overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189
A.2 Derivation of the central-upwind scheme . . . . . . . . . . . . . . . . . . . . . . . . 190
A.3 Flux-vector splitting approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194

B Thermophysical properties 199
B.1 Critical properties, acentric factor and molar weight . . . . . . . . . . . . . . . . . 199
B.2 High-pressure diffusion coefficients . . . . . . . . . . . . . . . . . . . . . . . . . . . 199

C Departure functions for the state equation due to Soave, Redlich and Kwong 201

D Partial derivatives of the fugacity coefficient 203
D.1 Equation of state due to Peng and Robinson . . . . . . . . . . . . . . . . . . . . . . 203
D.2 Equation of state due to Soave, Redlich and Kwong . . . . . . . . . . . . . . . . . . 205

E Solver instabilities due to real-gas thermodynamics 207

F Additional material: Underexpanded jets 211
F.1 Validation of the hybrid pressure-based approach . . . . . . . . . . . . . . . . . . . 211
F.2 Determination of the choked flow conditions . . . . . . . . . . . . . . . . . . . . . . 212
F.3 Assessment of the axial Mach disk position . . . . . . . . . . . . . . . . . . . . . . 213

G Validation of the density-based solver 215
G.1 One-dimensional advection problem . . . . . . . . . . . . . . . . . . . . . . . . . . 215
G.2 Real-gas shock tube problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216
G.3 Transcritical planar jet - pure fluid . . . . . . . . . . . . . . . . . . . . . . . . . . . 217
G.4 Transcritical planar jet - binary mixture . . . . . . . . . . . . . . . . . . . . . . . . 218





List of figures

1.1 General reduced pressure-temperature diagram showing typical injection conditions
for LREs and GEs: The solid black line denotes the vapor-pressure curve of a pure
fluid determined by the critical point (pr = Tr = 1). The dashed line corresponds
to the Widom line. The iso-lines show constant compressibility factors Z. . . . . . 2

1.2 Exemplary shadowgraphs of an isobaric and a high-speed jet at supercritical injec-
tion conditions. Both images have been taken from the work of Baab et al. [14, 16].
Figure a) is reprinted from Fuel, volume 233, Baab, S., Steinhausen, C., Lamanna,
G., Weigand, B. and Förster, F. J., A quantitative speed of sound database for multi-
component jet mixing at high pressure, pp. 918–925, © (2018) with permission from
Elsevier. Figure b) is reprinted by permission from Springer Nature Customer Ser-
vice Centre GmbH: Springer Nature, Experiments in Fluids, Baab et al. [14], © (2016). 3

1.3 Approximated thermodynamic trajectories under GE-like and LRE-like injection
conditions together with the relevant vapor-liquid equilibrium for a pure fluid (sub-
figure a) and a binary mixture (subfigure b). The subscripts HV and LV denote the
high and the low volatile component of the mixture, respectively. An isopleth is a
line of constant overall composition. . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.4 Injection of liquid N2 (90 K) into a pressurized test chamber: a) into subcritical N2

at 28 bar; b) into near-critical N2 at 35 bar; c) into supercritical N2 at 69 bar; d)
into a binary N2/He mixture at 69 bar. The figures have been taken from Mayer
et al. [189]; reprinted by permission of the American Institute of Aeronautics and
Astronautics, Inc. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.5 Coaxial injection of liquid N2 (97 K, inner tube) and gaseous He (280 K, outer
annulus) into a pressurized helium atmosphere at 10 bar and 60 bar, right images.
On the left, a temperature-composition diagram together with the binary VLEs at
the relevant pressures, the mixture critical locus and an exemplary mixing path are
shown. The VLEs and the mixture critical locus have been calculated using the
cubic equation of state of Peng and Robinson [226]. The shadowgraphs have been
taken from Mayer et al. [189]; reprinted by permission of the American Institute of
Aeronautics and Astronautics, Inc. . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.6 Spurious pressure oscillations during the injection of cryogenic nitrogen (71.5 K) into
its own gas phase (332.2 K) at a pressure of 50 bar. The instantaneous snapshots
of the temperature (a) and the pressure field (b) have been taken from Terashima
and Koshi [311]. The density data have been obtained from CoolProp [27]. The
figures a) and b) are reprinted from Journal of Computational Physics, volume
231, Terashima, H. and Koshi, M., Approach for Simulating Gas–Liquid-Like Flows
Under Supercritical Pressures Using a High-Order Central Differencing Scheme, pp.
6907–6923, © (2012) with permission from Elsevier. . . . . . . . . . . . . . . . . . 9

1.7 Shadowgraphies of methane/ethylene jets injected into a chamber filled with nitro-
gen: a) Variation of the NPR for a methane mole fraction of 90%; b) Variation of
the injection temperature for a methane mole fraction of 10%. Tc and pc are the
respective critical mixture temperature and pressure. The images have been taken
from the work of Lin et al. [170]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.1 Energy spectrum of isotropic turbulence for Re = 2.15×105 according to Pope [238].
The dashed line shows the 80% criteria K80%

∆ for the LES resolution. In addition,
computed and modeled wave number ranges in DNS, LES and RANS are shown
(adopted from Poinsot et al. [236]). . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.1 Schematic of two control volumes sharing a common internal face f . The vector
directions and the nomenclature represent the standard OpenFOAM terms. . . . . 29

3.2 Definition of the grid nodes (C,D and U) used to determine r in Eq. (3.15). . . . . 31

xiii



xiv List of figures

3.3 Flowchart of the pressure-based PIMPLE algorithm in OpenFOAM. . . . . . . . . 37
3.4 Definitions of the interpolation directions in OpenFOAM. . . . . . . . . . . . . . . 39
3.5 Influence of the filter width on a transcritical state change of supercritical oxygen

at a pressure of 150 bar and a temperature range of 150 K ≤ T ≤ 300 K. . . . . . 42
3.6 Influence of the filter width on an almost ideal state change of supercritical oxygen

at a pressure of 150 bar and a temperature range of 500 K ≤ T ≤ 1000 K. . . . . . 42
3.7 Variation of γ∗ and 1/ (γ∗ − 1) for supercritical oxygen. . . . . . . . . . . . . . . . 43
3.8 Flowchart of the double-flux method. . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.9 Schematic representation of the Euler fluxes on the LHS and RHS side of the cell

face at j + 1/2 together with a theoretical variation of γ∗. . . . . . . . . . . . . . . 45

4.1 Sketch of a closed system defining the first law of thermodynamics. . . . . . . . . . 48
4.2 Schematic of an isolated system consisting of two subsystems. . . . . . . . . . . . . 53
4.3 Demonstration of the nonideal fluid behavior: a) pv,p - diagram at T = 293.15 K

for four different fluids; b) Variation of the compressibility factor Z of methane
with pressure and temperature. The data for both figures have been taken from
CoolProp [27]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.4 Coexistence region of vapor and liquid for a general pure fluid: a) Influence of the
selected critical parameter set (Tc, pc vs. Tc, vc) in cubic EoSs (adopted from Chou
and Prausnitz [49]); b) Visualization of the van der Waals isotherm (T < Tc). . . . 61

4.5 Demonstration of the corresponding states principle for three different fluids. The
splines have been fitted through the available data points of the respective reduced
temperature. The data have been taken from CoolProp [27]. . . . . . . . . . . . . . 62

4.6 Comparison of the PR-EoS [226] and the SRK-EoS [296] with reference data from
CoolProp [27]: a) Density ρ for different alkanes from the homologue series at pr =
p/pc = 1.5 and Tr = T/Tc = 0.75; b) Compressibility factor Z of methane, hydrogen
and n-hexane at T = 300 K. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.7 Representation of the multiphase state in the numerical simulation. . . . . . . . . . 70
4.8 Schematic of a single- and a two-phase system at the same temperature T and

pressure p. The illustration has been adopted from Firoozabadi [77]. . . . . . . . . 70
4.9 Schematic representation of the variation of the molar Gibbs energy of mixing of a

binary mixture as function of the trial phase composition w1. . . . . . . . . . . . . 71
4.10 Schematic representation of the TPD criterion of a generic binary mixture for a

single-phase state (left) and a two-phase state (right). . . . . . . . . . . . . . . . . 72
4.11 Investigation of the 14 component Prudhoe Bay mixture [231] at four different pres-

sure levels (10 bar, 30 bar, 50 bar and 70 bar): a) Vapor-liquid equilibrium; b) Speed
of sound (solid: thermodynamic calculation, dashed: Wood’s correlation [354]); c)
Isentropic compressibility; d) Isenthalpic compressibility; e) Isothermal compress-
ibility; f) Grüneisen parameter. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.12 Flowchart visualizing the general procedure for solving and evaluating the multi-
component VLE model in OpenFOAM. . . . . . . . . . . . . . . . . . . . . . . . . 84

4.13 Schematic of the vapor-liquid equilibrium of a generic multicomponent mixture to-
gether with the shape of the Gibbs energy at a fixed temperature. . . . . . . . . . 85

4.14 Schematic of a binary VLE with a type I critical locus [335]. . . . . . . . . . . . . 85
4.15 Comparison of the RE and HK [117] approaches for different binary mixtures. The

experimental data have been taken from the literature [38, 52, 44, 304, 72]. . . . . 90
4.16 Sketch of a binary mixture with a type III critical locus. . . . . . . . . . . . . . . . 91
4.17 Illustration of the change of the normalized nucleation rate I with the subcooling. 92
4.18 Schematic of the formation free energy as function of the number of molecules for

a binary mixture. The figures have been taken from Vehkamäki [340]; reprinted by
permission from Springer Nature Customer Service Centre GmbH: Springer Nature,
Classical Nucleation Theory in Multicomponent Systems by Vehkamäki, H. © (2010). 92

5.1 Schematic of non-premixed combustion: a) Turbulent diffusion flame emanating
from a co-axial injection element; b) Concept of the counterflow diffusion flame
approach. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95



List of figures xv

5.2 Schematic procedure of the real-gas flamelet model. . . . . . . . . . . . . . . . . . . 99

6.1 Schematic of the test chamber used at the ITLR for the experimental investiga-
tions of high-pressure mixing processes. The figure has been taken from Baab et
al. [14]; reprinted by permission from Springer Nature Customer Service Centre
GmbH: Springer Nature, Experiments in Fluids, Baab et al. [14], © (2016). . . . . 102

6.2 Comparison of the PR-EoS [226] with reference data taken from CoolProp [27]. The
evaluation is conducted for n-hexane at three different pressures, namely 300, 100
and 50 bar. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

6.3 Schematic of the computational domain together with the major dimensions. . . . 104
6.4 Mesh convergence study along the centerline for the case NPR60-T600. The near-

nozzle region up to the Mach disk is shown in subfigure a. Far-field results are plotted
in subfigure b including an evaluation of the speed of sound at the measurement
position x/D = 110. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

6.5 Numerical simulation results of the underexpanded jets at a total reservoir temper-
ature of 630 K. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

6.6 Comparison of the speed of sound measurements [14, 80] with the simulation results.
The dashed lines are linear regressions of the experimental data at identical axial
positions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

6.7 Comparison of the average n-hexane field for the case NPR600-T577. . . . . . . . . 108
6.8 Comparison of the speed of sound taken from the RANS simulations with data a

posteriori evaluated using CoolProp [27]. . . . . . . . . . . . . . . . . . . . . . . . . 108
6.9 Concentration and velocity decay along the centerline for the three NPR150 cases.

The curve fit was done manually to underline the self-similarity of the jets for suf-
ficiently large distances from the source. Only every 5th point from the simulation
results is shown and data points below x/D ≈ 45 are excluded. . . . . . . . . . . . 109

6.10 Comparison of the centerline concentration for the investigated n-hexane jets. Ex-
perimental data have been taken from the work of Baab et al. [14] and Förster et
al. [80]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

6.11 Change of the pressure and the compressibility factor along the center axis for the
test case NPR150-T577. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

6.12 Expansion path along the chamber centerline for the case NPR150-T577. Every 5th
data point of the RANS simulation result is plotted and colored with the respective
compressibility factor Z. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

6.13 Comparison of ideal and real gas RANS results for the case NPR150-T577. Only
every 5th point from the simulations along the chamber centerline is shown. . . . . 112

6.14 Comparison of ideal and real gas RANS results for the case NPR150-T577 in terms
of the speed of sound and the temperature along the centerline of the chamber. . . 112

6.15 Expansion of an underexpanded jet with the corresponding total enthalpy and static
enthalpy characteristics. At the nozzle exit, the Mach number equals unity and hence
the velocity is equal to the local speed of sound, i.e., the flow is choked. . . . . . . 113

6.16 Enthalpy-pressure diagram of n-hexane. The black lines show the two-phase region,
the Widom line and eight isotherms. The colored lines highlight isenthalpic and
isentropic state changes originating from the respective reservoir conditions (filled
circle). The choked flow conditions and the post-shock states are marked by the
white-filled dashed and bold circles, respectively. . . . . . . . . . . . . . . . . . . . 114

6.17 Sketch of the adiabatic mixture concept for advection-controlled mixing. . . . . . . 115
6.18 Specific enthalpy and speed of sound along the adiabatic mixture path for the case

NPR150-T577. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
6.19 Comparison of the centerline concentration for the investigated n-hexane jets. Ex-

perimental speed of sound data were taken from Baab et al. [14] and Förster et
al. [80] and have been post-processed using the adiabatic mixture concept. . . . . . 116

6.20 Pressure-temperature diagram of argon together with an approximated isentropic
expansion path for a perfect gas (Ar: γ = 1.67) from reservoir to chamber conditions.118



xvi List of figures

6.21 Two-phase dome of argon calculated with the PR-EoS [226] for the pure fluid and
for the binary mixture of argon and nitrogen z = [0.985, 0.015]. The reference data
have been taken from CoolProp [27] for pure argon. . . . . . . . . . . . . . . . . . 118

6.22 Comparison of the near-nozzle flow structure by means of single-shot images. The
experimental image (left) has been taken from Xiao et al. [360] who applied Schlieren
measurements for the visualization. In the numerical simulation (right), the line-
of-sight integrated magnitude of the streamwise density gradient |∂ρ/∂x| is used
to show the underexpanded flow structure. Reprinted by permission from Springer
Nature Customer Service Centre GmbH: Springer Nature, Flow, Turbulence and
Combustion, Xiao et al. [360], © (2019). . . . . . . . . . . . . . . . . . . . . . . . . 119

6.23 Visualization of the flow field downstream of the Mach disk by means of the averaged
velocity. The experimental image has been taken from Xiao et al. [360]. Reprinted by
permission from Springer Nature Customer Service Centre GmbH: Springer Nature,
Flow, Turbulence and Combustion, Xiao et al. [360], © (2019). . . . . . . . . . . . 119

6.24 Comparison of the mean axial velocity at four different axial positions in the cross-
stream direction. The experimental data have been taken from Xiao et al. [360]. . 120

6.25 Comparison of the RMS velocity at four different axial positions in the cross-stream
direction. The experimental data have been taken from Xiao et al. [360]. . . . . . . 121

6.26 Visualization of the phase separation process upstream of the Mach disk. In the left
figure, a single shot image of the Mie scattering is shown which has been taken from
Fond et al. [79]. The right image shows an instantaneous snapshot from the present
LES where the vapor mole fraction is used to highlight regions of phase separation
(gray) and regions without phase separation (black). Reprinted by permission from
Springer Nature Customer Service Centre GmbH: Springer Nature, Experiments in
Fluids, Fond et al. [79], © (2018). . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

6.27 Pressure-temperature diagram of pure argon visualizing the expansion path of the
underexpanded jet. The scatter data from the LES have been taken along the
centerline. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

6.28 Three dimensional view of the square duct chamber. The instantaneous iso-contour
encloses the region of phase separation downstream of the nozzle exit. The back and
the bottom planes show the averaged velocity and temperature fields, respectively. 122

6.29 Schematic of the numerical domain used to study possible phase separation processes
under GE-like operating conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . 124

6.30 VLEs of the binary nitrogen/hydrogen mixture. The dots in subfigure b are repre-
senting experimental data taken from the literature [303, 361, 288]. . . . . . . . . . 125

6.31 VLEs of the ternary methane/ethane/nitrogen mixture at two different temperatures
(200 K and 160 K) and two different pressures (40 bar and 20 bar). The CNG
composition is marked with a white dot. The colored dots represent experimental
data taken from the literature [317]. . . . . . . . . . . . . . . . . . . . . . . . . . . 126

6.32 VLEs of different binary mixtures of methane, ethane and nitrogen. The dots rep-
resent experimental data taken from the literature [304, 350, 140, 44, 38, 304, 52]. 127

6.33 Snapshots of the temporal evolution of the underexpanded jet for the test case CNG-
p600. In the left column, the fields of the temperature and the vapor fraction are
superimposed. In the right column, a superposition of the pressure and the Mach
number is shown. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

6.34 Detailed view of different flow properties for the CNG-p600 test case at 40 µs after
injection. The snapshots have been taken at the tip of the jet and the view corre-
sponds to the red box in Fig. 6.33. The yellow and orange boxes mark the sampling
areas for Fig. 6.35. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

6.35 Ternary phase diagrams for the CNG test-case CNG-p600. The colored points mark
the sampling data highlighted in Fig. 6.34 by the appropriate colored boxes. . . . . 130

6.36 Comparison of the near-nozzle flow structures between the two CNG test cases
CNG-p600 (upper half) and CNG-p300 (lower half). . . . . . . . . . . . . . . . . . 131

6.37 Comparison of the near-nozzle flow structures for CNG (upper half) and CHG (lower
half) at a total fuel pressure of 300 bar. . . . . . . . . . . . . . . . . . . . . . . . . 132



List of figures xvii

6.38 Evolution of the normalized jet penetration depth for both 300 bar cases. The
colored lines show the analytical correlations of Abraham [5], Hill and Ouellette [119]
and Gerold et al. [90]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

7.1 Sketch of the experimental facility including the optical arrangement for the simul-
taneous shadowgraphy and elastic light scattering measurements. . . . . . . . . . . 135

7.2 Comparison of the thermodynamic framework for n-hexane at a pressure of 50 bar
with reference data obtained from CoolProp [27]. The thermal state equation due
to Peng and Robinson [226] is used. The viscosity is calculated based on the method
of Chung et al. [51]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

7.3 VLEs of the n-hexane/nitrogen mixture. The experimental reference data have been
taken from the literature [72, 239]. . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

7.4 Adiabatic mixtures of n-hexane and nitrogen for three different n-hexane tempera-
tures at a pressure of 50 bar. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

7.5 Results of the mesh convergence study in terms of the mean density 〈ρ〉 and the
corresponding root mean square

√
〈ρ′ρ′〉 along the centerline of the chamber. . . . 139

7.6 Fully developed jet structure of the T600 test case. Left: Experimental shadowgra-
phy image; Right: Line-of-sight integrated Laplacian of the density obtained from
the LES result. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

7.7 Comparison of experimental and numerical snapshots for the test case T600. Ĭ is
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Nomenclature
In the following, only the specific (mass-related) variables are listed. Mole-related properties are
denoted by � in this work.

Latin symbols

A [-] Dimensionless attractive parameter
A [m2] Surface area or cross-section area
a [kg m5 s−2 mol−2] Attractive term of the cubic state equation
a [m s−1] Speed of propagation
ă [m3 s−1] Volumetric flux related to the speed of propagation
a Coefficient matrix in the finite volume method
aN [kg m−3 s−1] Matrix coefficient of the pressure equation

for cell neighbors
aP [kg m−3 s−1] Matrix coefficient of the pressure equation

for cell owners
as [m s−1] Speed of sound
B [-] Dimensionless repulsive parameter
b [m3 mol−1] Repulsive term of the cubic state equation
b Vector of sources in the finite volume method
bP [kg m−2 s−2] Source/explicit contribution in the pressure equation

for cell owners
C [-] General constant in the cubic state equation
CD [-] Discharge coefficient
Cp [J K−1] Heat capacity at constant pressure
Cv [J K−1] Heat capacity at constant volume
ci [mol m−3] Molar concentration of species i
cp [J kg−1 K−1] Specific heat at constant pressure
cv [J kg−1 K−1] Specific heat at constant volume
D [m] Diameter
D [m2 s−1] Diffusion coefficient
d [m] Distance between cell centers
d⊥ [m] Wall-nearest distance
di [-] Share of the feed of species i in the TPD criterion
E [J] Internal energy
e [J kg−1] Specific internal energy
e0 [J kg−1] Reference specific internal energy
F [J] Helmholtz free energy
F1 [-] Blending function in the k,ω-SST-model
F2 [-] Blending function in the k,ω-SST-model
f [J kg−1] Specific Helmholtz free energy
f [Pa] Fugacity
f [-] Mixture fraction
f ′′2 [-] Variance of the mixture fraction
fa [-] Scaling function in the AUSM scheme
fi [Pa] Fugacity of species i
G [J] Gibbs energy
g [J kg−1] Specific Gibbs energy
H [J] Enthalpy
HP [kg m−2 s−2] Operator used in the pressure equation of OpenFOAM
h [J kg−1] Specific enthalpy

xxi



xxii Nomenclature

hi [J kg−1] Partial enthalpy of species i
I [-] Normalized nucleation rate
J [m−3 s−1] Nucleation rate
ji [kg m−2 s−1] Diffusive species flux of species i
K [m−3 s−1] Kinetic pre-factor
Ki [-] Equilibrium ratio of component i
k [m2 s−2] Turbulent kinetic energy
kf [m2] Nonparallel part of the face normal vector
kb,r [l mol−1 s−1] Reverse rate constant of the r-th reaction
kf,r [l mol−1 s−1] Forward rate constant of the r-th reaction
kij [-] Binary interaction coefficient
L [m] Characteristic length
li [-] Amount of species i in the liquid phase
M [kg mol−1] Molar weight
Map [-] Low Mach number contribution in the

AUSM+-up scheme for all speeds
m [kg] Mass
ṁ [kg s−1] Mass flow rate
mt [kg] Total mass of the mixture
Nc [-] Number of components
Nr [-] Number of reactions
n [mol] Mole number
ni [-] Face normal vector in the i-th direction
nt [mol] Total mole number of the mixture
Pi [kg1/4 m3 s−1/2 mol−1] Parachor factor of species i
p [Pa] Pressure
pu [Pa] Low Mach number contribution in the

AUSM+-up scheme for all speeds
Q [J] Absorbed heat
Q [J mol−2] Hessian matrix of the Helmholtz free energy

with respect to the mole number
q [J s−1 m−2] Diffusive heat flux
R [J kg−1 K−1] Specific gas constant
r [-] Function of successive gradients
r [m] Radius
S [J K−1] Entropy
S [m2] Surface of the cell in the finite volume method
Sf [m2] Face normal vector in the finite volume method
Sij [s−1] Rate of strain tensor
s [J kg−1 K−1] Specific entropy
T [K] Temperature
TPD [J mol−1] Tangent-plane distance
t [s] Time
tm [-] Modified TPD criterion
u [m s−1] Velocity
u [-] Model parameter in the cubic state equation
U Vector of conservative variables
V [m3] Volume
v [m3 kg−1] Specific volume
vi [-] Amount of species i in the vapor phase
vi [m3 kg−1] Partial volume of species i
W [J] Work done on the system
Wi [-] Formal mole number of species i

in the modified TPD criterion
w [-] Model parameter in the cubic state equation



Nomenclature xxiii

wi [-] Mole fraction of species i in the trial phase
x, y, z [m] Cartesian coordinates
xi [-] Mole fraction of species i in the liquid phase
Yi [-] Mass fraction of species i
yi [-] Mole fraction of species i in the vapor phase
Z [-] Compressibility factor
zi [-] Mole fraction of species i in the overall mixture/feed

Calligraphic symbols

a [-] Coefficients of the NASA polynomials
B Extensive property
b Specific property of B
C [-] Curve in the state space
C1 [Pa s] Constant in the Sutherland model
C2 [K] Constant in the Sutherland model
d [m−1] Diffusion driving force
E [m3 s−2] Energy spectrum of turbulent flow
F Flux in the hyperbolic conservation law
G Vector of objective functions
H Numerical flux in the hyperbolic conservation law
J Jacobian matrix of the vector of objective functions
K [m−1] Wave number of turbulent motion
L [m] Length scale of turbulent motion
M [J] State property
M(i) [-] i-th order polynomial in the AUSM scheme

for the interface Mach number
P(i) [-] i-th order polynomial in the AUSM scheme

for the interface pressure
Pk [kg m−1 s−3] Production of turbulent kinetic energy
Psgs [-] Joint probability density function
Pω [kg m−3 s−2] Production of turbulent dissipation
qi [mol] Mole number of species i in the second phase
S [kg m−3 s−1] Source term
S Specification parameter
T [s] Variable used for the time integration
t [-] Tangent to the Gibbs energy of mixing
u [-] General property used in central schemes
V [-] Interpolation factor in the CD scheme
w [-] Staggered grid property in central flux schemes
X Vector of independent variables for the

construction of the phase envelope
x Thermodynamic variable in the Legendre transformation
y Fundamental equation in the Legendre transformation

Greek symbols

αf [-] Weighting factor in central flux schemes
αi [-] Substituted variable in Newton’s method

of the TPD criterion
αp [K−1] Thermal compressibility
β [-] Vapor (mole) fraction
βm [-] Vapor mass fraction
βv [-] Vapor volume fraction



xxiv Nomenclature

Γ [-] Mass-based coefficient in the determination
of the diffusion driving force

ΓBD [-] Blending factor applied in the BD scheme
γ [-] Specific heat ratio
∆ [m] Filter width
∆G [J] Free reversible energy of formation for a critical droplet
∆M0 [J] Difference in the hypothetical gas state
∆T [K] Subcooling
∆t [s] Time step
∆x [m] Representative cell dimension or cell width in 1D
∆∗µi [J mol−1] Difference of the chemical potential of liquid and vapor
δf [m2] Parallel part of the face normal vector
δij [-] Kronecker delta
ε [m2 s−3] Turbulent kinetic energy dissipation rate
ζ [m] Variable used in the spatial integration
Θ [-] General constant for the blending in the k,ω-SST-model
ϑ Table values in the flamelet model
κ [-] Function of the acentric factor

in the cubic state equation
Λ [-] Multiplicative parameter in first-order functions
λ [J s−1 m−1 K−1] Thermal conductivity
λi [-] i-th eigenvalue of the speed of propagation
λTPD [-] Eigenvalue used in the solution of the TPD criterion
λflash [-] Eigenvalue used in the solution of the Tpn-flash
µ [kg m−1 s−1] Dynamic viscosity
µ [J mol−1] Chemical potential of the pure fluid
µi [J mol−1] Chemical potential of component i
µ∗i [-] Normalized chemical potential of component i
ν [-] Stoichiometric coefficient
Ξ [kg m−3] Mass density of the general scalar variable
ξ [-] General scalar variable
ρ [kg m−3] Density
σ [kg s−2] Surface tension
τ [kg m−1 s−2] Viscous stress tensor
Φf [m3 s−1] Volumetric flux through face f
φf [kg s−1] Mass flux through face f
φ [-] Grüneisen parameter
ϕ [-] Fugacity coefficient of the pure fluid
ϕi [-] Fugacity coefficient of species i
χ [s−1] Scalar dissipation rate
Ψ [s2 m−2] Pseudo-compressibility used in the

hyperbolic pressure equation
Ψh [s2 m−2] Partial derivative of the density with respect to the

pressure at isenthalpic conditions
ψ [m s2 kg−1] Compressibility
Ω [m3] Cell volume
ω [s−1] Specific turbulent dissipation rate
ω [-] Acentric factor
ωf [m3 s−1] Volumetric flux in central flux schemes
ω̇k [kg m−3 s−1] Source term of species k

Dimensionless numbers

CFLa Acoustic Courant-Friedrichs-Lewy number
CFLc Convective Courant-Friedrichs-Lewy number



Nomenclature xxv

Da Damköhler number
Le Lewis number
Ma Mach number
Pr Prandtl number
Re Reynolds number
Sc Schmidt number

Constants

a1 0.31 Constant in the k,ω-SST-model
aRiazi 1.07 Constant in the diffusion model of Riazi and Whitson
Cad 0.04 Constant in the localized artificial dissipation approach
Cf 0.7 Constant in the jet penetration correlation of Abraham
CS 0.17 Smagorinsky constant
Ct 0.0161 Constant in the jet penetration correlation of Abraham
CV 0.07 Constant in the Vreman sub-grid model
CW 0.325 Constant in the WALE model
Cχ 2 Constant in the variance equation of f
Cµ 0.09 Constant in the k,ω- and k,ε-model
KP 0.25 Constant in the AUSM+-up scheme for all speeds
Ku 0.75 Constant in the AUSM+-up scheme for all speeds
kB 1.380658× 10−23 J K−1 Boltzmann constant
NA 6.02214076× 1023 mol−1 Avogadro constant
R 8.314472 J mol−1 K−1 Universal gas constant
α k,ω: 0.555; k,ε: 0.44 Constant in the k,ω- and k,ε-model
β k,ω: 0.075; k,ε: 0.0828 Constant in the k,ω- and k,ε-model
βAUSM 0.125 Constant in the AUSM+-up scheme for all speeds
β∗ 0.09 Constant in the k,ω-SST-model
Γ 3.0± 0.1 Scaling parameter in jet penetration depth correlations
η [0.11, 0.2766, 0.5, 1.0] Constants in the Runge-Kutta time integration scheme
π 3.141593 Pi
σAUSM 1.0 Constant in the AUSM+-up scheme for all speeds
σk k,ω: 0.85; k,ε: 1.0 Constant in the k,ω- and k,ε-model
σω k,ω: 0.5; k,ε: 0.856 Constant in the k,ω- and k,ε-model

Subscripts

0 Initial state of interest in the HK method
1/2 Interface value in the AUSM scheme
C Grid node in the BD scheme
c Critical property
ch Chamber
D Grid node in the BD scheme
ext Extinction
F Fuel
f Face value
HV High volatile component
h Isenthalpic
inj Injection
j Cell index
L Left-hand sided face state
LV Low volatile component
l Left-hand side extent of the Riemann fan
m Mean value in the AUSM scheme



xxvi Nomenclature

md Mach disk
max Maximum value
min Minimum value
mix Contribution of the ideal or nonideal mixing behavior
N Neighbor cell
ni Iso-composition in terms of mole numbers
Ox Oxidizer
P Owner cell
p Isobaric
ps Post-shock
R Right-hand sided face state
r Reduced with respect to the critical point
r Right-hand side extent of the Riemann fan
rev Reversible
S Isentropic
s Isentropic
st Stoichiometric
T Reference time
T Isothermal
t Turbulent or total
U Grid node in the BD scheme
V Isochoric
v Isochoric
Y Iso-composition in terms of mass fractions
z Iso-composition in terms of mole fractions

Superscripts

− Reconstruction direction
+ Reconstruction direction
∞ Extrapolated value in the dominant eigenvalue method
0 Hypothetical/ideal gas state
(0) Fundamental function for the Legendre transformation
I/II Theoretical thermodynamic subsystems
∗ Real-gas property in the double-flux method
(c) Convective part of the Eulerian flux
e Eulerian
flash Tpn-flash
k Iteration step
(k) k-th Legendre transform
l Liquid phase
n Time level
PE Phase envelope
(p) Pressure part of the Eulerian flux
pure Thermodynamic property of the pure fluid
RE Rapid estimate
r Residual part of the state function
ref Reference state in the departure function formalism
rg Real-gas
s Surface
sgs Sub-grid scale
sp Stationary point
tp Two-phase
v Viscous
v Vapor phase



Nomenclature xxvii

�̂ Variable for integration
�̃ Favre-averaged variable
˜̃� Piecewise polynomial reconstruction in central schemes
�̄ Filtered variable
¯̄� Piecewise constant approximation in central schemes
�′ Resolved fluctuation
�′′ Unresolved fluctuation

Abbreviations

AUSM Advection Upstream Splitting Method
BD Blended Differencing
CD Central Differencing
CFD Computational Fluid Dynamics
CHG Compressed Hydrogen Gas
CNG Compressed Natural Gas
CNT Classical Nucleation Theory
CP Critical Point
CSP Corresponding States Principle
CV Control Volume
DEM Dominant Eigenvalue Method
DI Direct Injection
DLR German Aerospace Center

(German: Deutsches Zentrum für Luft- und Raumfahrt)
DNS Direct Numerical Simulation
ECN Engine Combustion Network
ELS Elastic Light Scattering
EoS Equation of State
FC Fully Conservative
GE Gas Engine
GRI Gas Research Institute
HK Heidemann and Khalil
HV High Volatile
ICE Internal Combustion Engine
ITLR Institute of Aerospace Thermodynamics
KNP Kurganov, Noelle and Petrova
KT Kurganov and Tadmor
LES Large-Eddy Simulation
LHS Left-Hand Side
LG Liquid-Gas
LITA Laser-Induced Thermal Acoustics
LLG Liquid-Liquid-Gas
LOx Liquid-like Oxygen
LRE Liquid-propellant Rocket Engines
LV Low Volatile
LxF Lax and Friedrichs
MKL Math Kernel Library
MUSCL Monotonic Upstream-centered Scheme

for Conservation Laws
NASA National Aeronautics and Space Administration
NIST National Institute of Standards and Technology
NM Newton’s Method
NPR Nozzle Pressure Ratio
NT Nessyahu and Tadmor
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ODE Ordinary Differential Equation
PDF Probability Density Function
PIMPLE Acronym combining PISO and SIMPLE
PISO Pressure-Implicit with Splitting of Operators
PLIF Planar Laser Induced Fluorescence
PMAL Parallel Memory Abstraction Layers
PR Peng and Robinson
QC Quasi Conservative
QUICK Quadratic Upstream Interpolation

for Convective Kinematics
RANS Reynolds-Averaged Navier-Stokes
RE Rapid Estimate
RHS Right-Hand Side
RK Redlich and Kwong
RMS Root Mean Square
RR Rachford-Rice
SGS Sub-Grid Scale
SIMPLE Semi-Implicit Method for Pressure Linked Equations
SRK Soave, Redlich and Kwong
SSM Successive Substitution Method
SSME Space Shuttle Main Engine
SST Shear Stress Transport
TCI Turbulence Chemistry Interaction
TPD Tangent-Plane Distance
TVD Total Variation Diminishing
UD Upwind Differencing
VLE Vapor-Liquid Equilibrium
vdW van der Waals
WALE Wall-Adapting Local Eddy-viscosity
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1 Introduction

1.1 High-pressure injection, mixing and combustion
Injection, mixing and combustion under high-pressure conditions are key processes in modern
energy-conversion machines. In general, large operating pressures are preferred in many conversion
processes to extract the maximum energy from the available fuel and convert it to, for instance,
mechanical power or thrust. Although a lot of progress has been made in recent decades, the
demands for efficiency improvements still leave much work and open questions [28, 362, 217, 156,
178, 29]. In the last few years, major research efforts have been undertaken to understand and
study two types of fuel-fired engines in particular: liquid-propellant rocket engines (LREs) and gas
engines (GEs). This arises from the fact, that LREs will remain an essential component for payload
launchers in the foreseeable future and that GEs fired with hydrogen or natural gas are a possible
solution to gradually diversify towards cleaner energy conversion machines. A common feature
of LREs and GEs is that the injection and combustion process take place under high-pressure
conditions. This has distinct reasons: In LREs, the specific impulse is proportional to the pressure
and hence a larger combustion chamber pressure results in a higher propulsion efficiency [306].
In spark-ignited GEs, direct injection (DI) is considered to be a preferable approach compared to
port-fuel injection [61, 111] as DI offers, for instance, a higher volumetric efficiency and a greater
flexibility with respect to the control of the fuel-air mixture preparation. As gaseous fuels exhibit a
much smaller density compared to liquid fuels, high injection pressures are necessary for injecting
sufficiently large fuel masses into the cylinder.

For both engine types, the high combustion chamber pressures result in supercritical injection
conditions, i.e., the injection pressures lie above the critical point of the pure fluids (pr = p/pc > 1
for both fuel as well as oxidizer). Figure 1.1 shows a general pressure-temperature (p-T ) diagram
of a pure fluid where typical injection conditions found in LREs and GEs are marked. The temper-
ature and the pressure have been reduced by their respective critical values and the critical point
(CP) is marked by the black dot which determines the vapor-pressure curve (solid black line). In
this region, liquid and vapor coexist and both surface tension effects as well as vaporization and
condensation processes take place. Consequently, the vapor-pressure curve separates the pure liq-
uid from the pure gas state under subcritical pressure (p < pc) conditions. Above the critical point
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Figure 1.1: General reduced pressure-temperature diagram showing typical injection conditions for
LREs and GEs: The solid black line denotes the vapor-pressure curve of a pure fluid determined
by the critical point (pr = Tr = 1). The dashed line corresponds to the Widom line. The iso-lines
show constant compressibility factors Z.

2



1 Introduction 3

(p > pc), the fluid behaves either liquid-like (high density) or gas-like (low density). As surface
tension effects vanish under supercritical pressure conditions, the transition between both states
is continuous. Both regions are separated by the Widom line [291] (dashed line) which is usually
determined based on the maximum of the specific heat under isobaric conditions.

Different injection characteristics arise in both engine types due to the different injection den-
sities (LRE: liquid-like/large; GE: gas-like/small) and nozzle pressure ratios (NPRs). The NPR
is the pressure ratio between the fluid in the reservoir and the chamber into which the fluid is
injected. In LREs, the injection process inside the combustion chamber can be considered roughly
isobaric (small/vanishing NPR). After injection, the fluid transitions from a liquid-like to a gas-like
state by interaction with its surrounding, see Fig. 1.1. This process is commonly termed trans-
critical injection [221] as the fluid crosses the critical point during mixing and heating. Due to
the supercritical pressure conditions, the occurring density variation is temperature induced and
steep density gradients are present in the region of the Widom line. No phase separation effects
occur under pure fluid conditions and therefore the mixing process is dominated by turbulence
and diffusion effects. Within experiments, this process is indicated by finger-like structures at
the jet periphery and the jet gradually dissolves into the environment, see Fig. 1.2a. In contrast,
GEs feature high NPRs between the fuel reservoir and the combustion chamber. This results in
the formation of high-speed jets with underexpansion and distinct flow features like shocks and
expansion waves, see Fig. 1.2b. Therefore, strong pressure and temperature changes occur during
the injection process mainly induced by fluid dynamics effects, cf. Fig. 1.1.
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(a) Isobaric injection.
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(b) High-speed injection.

Figure 1.2: Exemplary shadowgraphs of an isobaric and a high-speed jet at supercritical injection
conditions. Both images have been taken from the work of Baab et al. [14, 16]. Figure a) is reprinted
from Fuel, volume 233, Baab, S., Steinhausen, C., Lamanna, G., Weigand, B. and Förster, F. J.,
A quantitative speed of sound database for multi-component jet mixing at high pressure, pp. 918–
925, © (2018) with permission from Elsevier. Figure b) is reprinted by permission from Springer
Nature Customer Service Centre GmbH: Springer Nature, Experiments in Fluids, Baab et al. [14],
© (2016).

A common feature of both types of engines are the relatively low injection temperatures (LRE:
Tr < 1; GE: 1 < Tr < 2). The elevated pressure conditions and the moderate temperatures result
in the presence of real-gas effects which are indicated by a nonunity compressibility factor Z,
see Fig. 1.1. Under real-gas conditions (Z 6= 1), the ideal-gas assumption (Z = 1) is not valid
anymore as intermolecular forces are present resulting in a nonlinear behavior of the fluid properties.
Consequently, the thermodynamic properties depend on both temperature as well as pressure.
Due to the initially supercritical pressure conditions, a single-phase state is assumed in most
investigations. Recent experimental and numerical investigations [87, 86, 314, 71, 298, 357, 170,
169, 15], however, suggest that this assumption has to be questioned and further careful studies
are necessary to better understand the possible recurrence of phase separation processes under
initially supercritical pressure conditions. Under GE-like injection conditions, phase separation
might be triggered due to the strong simultaneous changes in both pressure and temperature
during the expansion process from reservoir to chamber conditions. In Fig. 1.3a, a pressure-
specific volume (p-v) diagram is shown with focus on the approximated expansion process in GEs
and the vapor-liquid equilibrium (VLE) of a pure fluid. Depending on the minimum pressure
during the expansion, the dew-point line can be crossed and phase separation might occur. In
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Figure 1.3: Approximated thermodynamic trajectories under GE-like and LRE-like injection condi-
tions together with the relevant vapor-liquid equilibrium for a pure fluid (subfigure a) and a binary
mixture (subfigure b). The subscripts HV and LV denote the high and the low volatile component
of the mixture, respectively. An isopleth is a line of constant overall composition.

contrast, under LRE-like conditions, phase separation is primarily triggered by the mixing of the
injected fluid with its surrounding. In multicomponent fluids, the critical points of the pure fluids
degenerate to a critical locus which extent depends on both the fluids forming the mixture and
the thermodynamic properties pressure, temperature and composition. As the critical locus can
by far exceed the critical point of the pure components, phase separation can also occur under
initially supercritical injection conditions, see Fig. 1.3b. Therefore, the term supercritical has to
be used with caution when multicomponent mixtures are investigated as it might not be possible
to define a single, representative critical point which marks the border between subcritical and
supercritical conditions. In addition, the critical locus can have various forms and shapes, see, e.g.,
van Konynenburg and Scott [335], which further increases the complexity of the investigation and of
the predictability of this thermodynamic process. This can get even more complex when looking at
the combustion process under LRE-like conditions where species are produced and consumed by the
reaction process. Here, fuel and oxidizer are typically injected separately through a coaxial injection
element and the conditions are initially supercritical. Due to mixing and reaction processes, the
single-phase assumption might be violated locally.

In the following, an overview regarding studies on high-pressure injection, mixing and combustion
with a special focus on phase separation effects under initially supercritical conditions is given.
Three different topics, which are relevant for the present work, are covered: (1) Injection and
mixing under LRE-like conditions, (2) High-pressure combustion under LRE-like conditions and
(3) Injection and mixing under GE-like conditions.

1.2 Injection and mixing under rocket-relevant conditions

Experimental investigations

Table 1.1 provides an overview of experimental studies focusing on multicomponent mixing under
high-pressure conditions. The earliest investigation dates back to 1971 and was conducted by
Newman and Brzustowski [209]. In this first systematic study on high-pressure fluid injection,
liquid carbon dioxide (CO2: pc = 73.74 bar, Tc = 304.12 K) was injected through a circular
nozzle into a pressurized chamber filled with a binary mixture of nitrogen (N2: pc = 33.96 bar,
Tc = 126.19 K) and carbon dioxide. The chamber pressure and temperature were changed from
sub- to supercritical conditions with respect to the critical point of CO2. Large changes in the
jet disintegration process from a classical liquid spray break-up (two-phase) to a gas/gas mixing
(single-phase) were reported. Especially, in the near-critical cases, the break-up process of the jet
was very sensitive with respect to the chamber conditions which in turn underlines the complexity
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6 1.2 Injection and mixing under rocket-relevant conditions

Figure 1.4: Injection of liquid N2 (90 K) into a pressurized test chamber: a) into subcritical N2 at
28 bar; b) into near-critical N2 at 35 bar; c) into supercritical N2 at 69 bar; d) into a binary N2/He
mixture at 69 bar. The figures have been taken from Mayer et al. [189]; reprinted by permission
of the American Institute of Aeronautics and Astronautics, Inc.

of assessing the true thermodynamic state (single- or two-phase) in multicomponent mixtures. First
clear evidence of high-pressure mixture-induced phase separation under engine-relevant conditions
was reported by Woodward and Talley [356, 355] in 1996. By injecting pure nitrogen N2 into
its own gas phase and altering the pressure from sub- to supercritical conditions, Woodward and
Talley [356, 355] demonstrated a transition from a fully subcritical jet with surface tension effects
and droplets to a supercritical, single-phase jet with stringy fluid structures and an absence of
droplet formation, see Figs. 1.4a-c. Introducing helium (He: pc = 2.3 bar, Tc = 5.2 K) into the
high-pressure chamber, i.e., filling the chamber with a binary mixture of N2 and He, brought the
jet back to a subcritical fluid behavior with a distinct interface and evidence of surface tension, see
Fig. 1.4d. Two years later, similar findings were reported by Mayer et al. [189] for an identical binary
mixture. In contrast to Woodward and Talley [355], Mayer et al. [189] used a coaxial injector where
they injected liquid N2 (97 K) through the inner tube and gaseous He (280 K) through the outer
annulus into a test chamber filled with He (In 2000, Telaar et al. [310] did identical investigations
with N2 as chamber gas). The shadowgrams from the investigations of Mayer et al. [189] are shown
in Fig. 1.5 right. By changing the pressure from 10 bar to 60 bar, an unambiguous visual difference
in the jet mixing process occurs from a subcritical disintegration process with clear evidence of large
droplets and ligaments to a rather diffuse mixing process where the inner dense core appears black.
Thermodynamic analyses of this binary N2/He-system show that the critical mixing temperature
at 60 bar is at 125.7 K [188, 323] and therefore parts of the inner mixing layer might undergo
a mixture-induced phase separation process which might be hidden by the dark jet core. This a
posteriori analysis is shown in more detail in Fig. 1.5 left. Following the exemplary mixing path
(here: ideal (linear) mixing is assumed for simplicity), the trajectory clearly crosses both VLE
regions at 10 bar and 60 bar. This further underlines the expectation that the mixture at 60 bar
might be found locally in a subcritical state. Unfortunately, the interpretation of the shadowgraph
alone is not straightforward and bears uncertainties as, for instance, discussed by Lamanna et
al. [158]. Therefore, more suitable measurement techniques apart from sole shadowgraphy are
necessary to properly assess phase separation phenomena at elevated pressure conditions.

After these first groundbreaking studies the interest in mixture-induced phase separation got
somewhat lost and a lot of groups focused on the basic understanding of supercritical pure fluid
jets, see the review articles of Chehroudi [45] and Oschwald et al. [221]. More recent experimental
studies have brought back scientific interest in the phenomenon of mixture-induced phase separa-
tion: For instance, in 2013, Roy et al. [265] injected initially supercritical fluoroketone (FK) into
a supercritical nitrogen atmosphere and used planar laser induced fluorescence (PLIF) as mea-
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Figure 1.5: Coaxial injection of liquid N2 (97 K, inner tube) and gaseous He (280 K, outer annulus)
into a pressurized helium atmosphere at 10 bar and 60 bar, right images. On the left, a temperature-
composition diagram together with the binary VLEs at the relevant pressures, the mixture critical
locus and an exemplary mixing path are shown. The VLEs and the mixture critical locus have
been calculated using the cubic equation of state of Peng and Robinson [226]. The shadowgraphs
have been taken from Mayer et al. [189]; reprinted by permission of the American Institute of
Aeronautics and Astronautics, Inc.

surement technique to visualize the jet structure up to a downstream position of 20 times the
jet diameter. For sufficiently low ambient temperatures and far downstream from the injector
(> 10 times the injector diameter), Roy et al. [265] found droplets and ligaments at the periph-
ery of the jet which indicated mixture-induced phase separation. Manin et al. [179] performed
high-speed long-distance microscopy experiments where n-dodecane (C12H26) was injected into a
high-pressure, high-temperature chamber filled with nitrogen. Their investigations mainly focused
on observations after the end of the injection. For sufficiently high chamber temperatures, Manin
et al. [179] reported a transition from an atomization to a diffusion-driven mixing process with an
absence of surface tension effects. In 2015 and 2016, Muthukumaran and Vaidyanathan [206, 207]
followed the work of Roy et al. [265] and conducted PLIF measurements to study the thermody-
namic behavior of binary jets emerging from an elliptical [206] and a circular [207] orifice. In the
experiments, fluoroketone was injected into a pressurized chamber filled with either nitrogen or
helium. Similar as in the experiments of Roy et al. [265], droplets occurred at the jet periphery at
sufficiently low ambient temperatures. Furthermore, a dependency of the two-phase phenomenon
on the pressure was found which was attributed to density changes of the injectant induced by
the variation of the reservoir pressure. Using the identical setup as Roy et al. [265], DeSouza and
Segal [65] focused on the effect of the density ratio between chamber gas and injectant on the
jet break-up process and conducted a total of 48 measurements. Based on three selected cases,
the change in the jet topology from a subcritical breakup to a supercritical turbulent mixing pro-
cess was studied by means of both PLIF and shadowgraphy. DeSouza and Segal [65] found that
both temperature and pressure influence the disintegration characteristics and that gas/gas mixing
occurred when both chamber and injectant conditions are supercritical.

Numerical simulations

In the field of numerical simulations under high-pressure engine-relevant conditions, multicom-
ponent phase separation processes were considered for the first time in studies focusing on the
vaporization of isolated droplets. Among others, Manrique and Borman [180], Umemura [327],
Litchford and Jeng [174], Delplanque and Sirignano [63], Yang and Shuen [363], Haldenwang et
al. [107] and Sirignano and Delplanque [294] investigated the thermodynamic behavior of isolated
transcritical droplets subjected to a gaseous environment. Upon exceeding the mixture critical
temperature, a transition from a sharp to a diffuse interface occurs. A review of trans- and su-
percritical vaporization and mixing in liquid-fueled propulsion systems can be found in the work



8 1.2 Injection and mixing under rocket-relevant conditions

of Yang [362]. With the beginning of the 21st century, Bellan and coworkers started excessive
studies on the thermodynamic behavior and transport anomalies in mixing layers under super-
critical conditions, see, e.g., Bellan [28], Okong’o and Bellan [217, 218, 219] or Selle et al. [285].
For an inert n-heptane/nitrogen mixing layer, Okong’o and Bellan [217] compared their simulation
data to the a posteriori calculated critical locus of the binary mixture. They reported that the
local temperature is always larger than the mixture critical temperature and therefore concluded
that the fluid is supercritical throughout the complete simulation domain. In contrast, Masi et
al. [184] investigated a mixing layer containing a mixture of five different species where n-heptane
C7H16 represents the fuel, nitrogen N2 and oxygen O2 the oxidizer air and carbon-dioxide CO2

and water H2O the two main combustion products. Masi et al. [184] found negative values in the
mass-diffusion matrix indicating a counter-gradient diffusion and hence a spinodal decomposition,
i.e., a possible intrinsic triggering of a phase separation process. This effect was mainly traced back
to the presence of water. In a recent investigation of Castiglioni and Bellan [43], the statement
of possible spinodal decomposition was revised and stated that the negative matrix values only
result in an uphill diffusion effect. In addition, three different Diesel surrogates and their mixtures
with air were compared to their spinodal locus and single-phase stability was reported for the
Diesel-engine cold-ignition regime.

In 2014, Qiu and Reitz [244] were the first to employ a multicomponent vapor-liquid equi-
librium model [246, 248, 244, 247] in computational fluid dynamics (CFD) and to evaluate the
thermodynamic stability of the mixture state during run-time. In their study, Qiu and Reitz [244]
investigated the jets of Roy et al. [265] and demonstrated that numerical simulations are able
to represent mixture-induced phase separation. However, the simulations of Qiu and Reitz [244]
showed two-phase effects in the near-injector region. In contrast, Roy et al. [265] reported droplets
far downstream which is a clear discrepancy between the experimental and numerical results. This
in turn underlines the challenges and difficulties in the thermodynamic investigation of the jet
break-up process. Applying the same numerical framework and motivated by the work of Dahms
et al. [57], Qiu and Reitz [245] studied in a follow-up work the injection and mixing process under
Diesel-like conditions. In their numerical investigation, Qiu and Reitz [245] injected n-dodecane
into three different high-pressure, high-temperature nitrogen atmospheres similar to those of the
Engine Combustion Network (ECN) Spray A test case [232, 58]. Using the adiabatic mixture
concept proposed by Siebers [289], Qiu and Reitz [245] studied possible phase separation processes
in an a priori analysis and compared single-phase (dense-gas) with two-phase (thermodynamic
equilibrium) results pointing out large temperature differences between both approaches. In their
CFD simulations, local condensation processes were reported for all three chamber conditions con-
sistent with the a priori analysis demonstrating the possibility of subcritical mixing even under
high temperature ambient gas conditions. Following the work of Qiu and Reitz [245], Matheis
and Hickel [185] performed Large-Eddy Simulations (LESs) of the ECN Spray A case [232] and
found very good agreement between measurement and simulation data. Similar to previous works
of other groups, see, e.g., Lacaze et al. [153], their scatter plots of temperature vs. nitrogen con-
centration closely followed the adiabatic mixture concept. In addition, Matheis and Hickel [185]
compared results obtained with their fully-conservative (FC) to those from a quasi-conservative
(QC) scheme proposed by Terashima and Koshi [311]. The authors reported a significantly higher
temperature field in the result of the QC scheme compared to the FC scheme. It is therefore not
surprising that the QC result clearly deviated from the adiabatic mixture concept.

The development of QC schemes is motivated by the fact that FC schemes in combination with
real-gas equations of state suffer from numerical difficulties which usually manifest themselves in
spurious pressure oscillations. In Figs. 1.6a and b, the problem is demonstrated by means of instan-
taneous temperature and pressure fields taken from the work of Terashima and Koshi [311]. Here,
liquid-like nitrogen (71.5 K) is injected into its own gas phase at a temperature of 332.2 K and a
supercritical pressure of 50 bar. Nonphysical pressure oscillations in the order of ±20 bar occur.
These result in a failure of the numerical simulation and are closely related to the steep density
gradient during the transcritical injection process, see Fig. 1.6 left. To overcome such problems,
different strategies have been suggested in the literature: Schmitt et al. [281, 279] employed an en-
ergy correction procedure in addition to an artificial viscosity approach which reduces nonphysical
noise induced by the steep density gradients. Following the works of Karni [135] and Abgrall [3],
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Figure 1.6: Spurious pressure oscillations during the injection of cryogenic nitrogen (71.5 K) into its
own gas phase (332.2 K) at a pressure of 50 bar. The instantaneous snapshots of the temperature
(a) and the pressure field (b) have been taken from Terashima and Koshi [311]. The density data
have been obtained from CoolProp [27]. The figures a) and b) are reprinted from Journal of
Computational Physics, volume 231, Terashima, H. and Koshi, M., Approach for Simulating Gas–
Liquid-Like Flows Under Supercritical Pressures Using a High-Order Central Differencing Scheme,
pp. 6907–6923, © (2012) with permission from Elsevier.

Terashima and Koshi [311] replaced the energy conservation equation with a transport equation
for the pressure and were able to conserve the pressure equilibrium across contact interfaces. More
recently, Ma et al. [177] followed the pioneering work of Abgrall and Karni [4] and Billet and
Abgrall [32]. Ma et al. [177] extended the double-flux method [4, 32] to real-gas flows and com-
bined it with an additional entropy-stabilized scheme to avoid nonphysical thermodynamic states
during the time marching process. Despite representing a highly robust scheme, the extended
double-flux approach is deemed QC and results in temperature fields which can significantly dif-
fer from those obtained with the FC schemes [177, 178]. Recently, Lacaze et al. [156] proposed
a so-called enthalpy-based approach where they combined a classical flux-limited density-based
method [155] with a pressure transport equation similar to the work of Terashima and Koshi [311].
The flux-limited scheme is inspired by the work of Swanson and Turkel [308] and is a blending of
a third-order quadratic upstream interpolation for convective kinematics (QUICK) scheme with a
robust first-order upwind scheme in combination with a convective flux limiter adapted for real-gas
flows [155, 156]. By combining this basic approach with the pressure transport equation, a FC
scheme without spurious pressure oscillations is created. The energy conservative character of the
newly proposed approach was demonstrated by comparing temperature-composition scatter data
from their numerical simulations with the adiabatic mixing concept. Recently, Ma et al. [178]
investigated the mixing behavior of both FC and QC schemes. In accordance with other investi-
gations [153, 185, 156], the FC results closely follow the adiabatic mixture assumption. For the
QC double-flux scheme, Ma et al. [178] showed that the results of their investigated cases closely
resemble an isochoric mixing approach where a linear behavior of the molar/specific volume is
assumed in mixture space.

1.3 High-pressure combustion under rocket-relevant condi-
tions

Nowadays, main stage liquid-propellant rocket engines are typically operated at elevated combus-
tion chamber pressures up to more than 200 bar. Table 1.2 provides an overview of several LREs
using liquid-like oxygen (LOx) and hydrogen (H2) as propellant combination. Especially the space

Table 1.2: Overview of typical combustion chamber pressures in LOx/H2 LREs with respect to the
critical point of oxygen (pc = 50.43 bar, Tc = 154.58 K).

Rocket engine Vinci Vulcain 1 Vulcain 2 LE-7A SSME (RS-25)

p/pc,O2
[-] 1.21 1.98 2.33 2.38 4.10
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shuttle main engine (SSME) stands out with a combustion chamber pressure of approximately
200 bar. The other engines have chamber pressures in the range of 100 bar. The very high pres-
sures and temperatures during the combustion process make the conduction of experiments very
challenging and costly. Therefore, many researchers focus on the numerical investigation of the
combustion process in LREs. A comprehensive overview on the experimental work and the most
important findings during the past two decades can be found in the PhD thesis of Cutrone [56]
and in the overview paper of Haidn et al. [106]. In the following, the focus is put on numerical
investigations of high-pressure combustion under LRE-relevant conditions with focus on real-gas
modeling and investigation of possible phase separation processes.

First outstanding numerical investigations of reacting flows under LRE-like conditions were
done by Oefelein [214] in 2005. In his work, Oefelein [214] characterized a supercritical LOx/H2

flame emanating from a shear-coaxial injector using Direct Numerical Simulation (DNS) and LES.
The results indicated the large influence of the LOx core onto the flame structure. Due to the
steep thermodynamic gradients in the near injector region, a re-circulation zone occurs near the
injector posttip which provides the main flame-holding mechanism and effectively separates the
fuel from the oxidizer. Another approach apart from DNS and LES to study non-premixed reacting
flows at representative operating conditions is the analysis of one-dimensional counterflow diffusion
flames. Amongst others, Ribert et al. [259], Lacaze and Oefelein [154] and Banuti et al. [22,
24, 23] conducted detailed investigations of LOx/H2 flames: Ribert et al. [259] focused on the
dependency of the flame thickness and the heat release on pressure and strain rate in physical space
and quantified the influence of Soret and Dufour effects. Lacaze and Oefelein [154] performed a
detailed analysis of strain effects, pressure and temperature boundary conditions as well as real-fluid
effects on the flame structure in both physical and mixture fraction space to develop a tabulated
combustion model. Banuti et al. [22] investigated the transition of the thermodynamic state of LOx
from a liquid-like state to a gas-like state to an ideal-gas state. They concluded that the real-gas
effects are mainly limited to the pure oxygen and thus mixing occurs under ideal gas conditions.

In recent years, the reusability of the LREs is getting more and more into the focus. In this
context, the most promising propellant combination is LOx/methane (CH4), see, e.g., Zurbach et
al. [371] or Preclik et al. [242]. Consequently, many researchers focused on methane combustion
and performed studies on one-dimensional LOx/CH4 counterflow diffusion flames. Kim et al. [142]
solved the real-gas flamelet equations in the mixture fraction space and established a library of
the thermo-chemical state incorporating oxygen/methane chemistry and real-gas thermodynamics.
Lapenna et al. [160] analyzed unsteady non-premixed LOx/CH4 flamelets at supercritical pressures
to study the effects of pressure and strain on autoignition, re-ignition and quenching. Slightly out
of the scope of the LRE conditions, Juanós and Sirignano [133] used both steady air/methane as
well as air/water-vapor/methane flamelets between 1 and 100 bar to investigate the pressure effects
of these propellants and the required modeling.

Inspired by the inert investigations on mixture-induced phase separation effects some of these
research groups performed a posteriori analysis of possible single-phase instabilities [154, 22, 160,
23]. All of them came to the finding that multi-phase effects do not occur and the mixture always
stays in a single-phase state. A deficiency of these studies was that these groups applied a rapid
estimation (RE) method for the determination of the mixture critical locus. Unfortunately, RE
methods produce severe deviations from the real critical locus in complex mixtures like they occur
during the combustion process. Therefore, evaluations of the thermodynamic state based on RE
methods are prone to considerable uncertainties. Recently, Banuti et al. [24] used a high fidelity
method a posteriori and pointed out that phase separation might be possible under rocket-relevant
conditions but further investigations are necessary. Gaillard et al. [86] derived a diffuse-interface all-
pressure flame model including water as a disperse phase. Using this framework, they investigated
oxygen/hydrogen flames at rocket-relevant conditions and reported a possible occurrence of liquid
water. Recent experimental investigations of Theron et al. [314] further underline this finding and
give rise to the expectation that a pure single-phase treatment of the high-pressure combustion
process under LRE-like conditions might not correctly reflect the actual thermodynamic state.
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1.4 Injection and mixing under gas engine relevant conditions

Experimental investigations

Large injection pressures are key features in DI engines to provide an efficient fuel/oxidizer prepa-
ration [124] and sufficiently high fuel mass flow rates into the combustion chamber. As a result
of the latter, the flow inside the injector nozzle is typically choked and an underexpanded jet is
forming downstream of the nozzle exit to adjust the fuel jet to ambient conditions. The expansion
characteristic of the underexpanded jet strongly depends on the pressure ratio between the fuel
reservoir pt and the ambient pch, i.e., the nozzle pressure ratio NPR = pt/pch. According to Fran-
quet et al. [81], four different scenarios are possible with increasing NPR: (1) weak underexpansion
with a normal shock at the nozzle exit, (2) a moderately underexpanded jet with a diamond-like
structure, (3) a highly underexpanded jet with a barrel structure and (4) an extremely underex-
panded jet with a unique barrel with one single strong shock. This shock is usually termed Mach
disk and its size and distance depends on the pressure ratio [55]. In Fig. 1.7a, shadowgraphs of
three different jets at different NPRs are shown. The NPR increases from left to right resulting in
a stronger manifestation of the first shock barrel downstream of the nozzle exit. Due to the mod-
erate injection temperatures, these flow structures can be accompanied by both real-gas effects, cf.
Fig. 1.1, and condensation processes resulting from the strong expansion downstream of the nozzle,
cf. Fig. 1.3a. The latter is shown in Fig. 1.7b, where the reduction of the injection temperature
brings the fuel jet from a single-phase (left) to a two-phase (right) state. Similar to the discussion
of the subsonic mixing cases before, the jet structure occurs as a dark opaque core. Here, the
assessment of the thermodynamic state based on the sole shadowgram bears a lot of uncertain-
ties [158]. Experimentally, the occurrence of possible condensation processes was reported for the
first time by Wu et al. [357, 358] who conducted a systematic study where supercritical ethylene
was injected into nitrogen. The findings of Wu et al. [357] were later confirmed by Edwards et
al. [71] by means of numerical simulations. Recently, Baab et al. [15] investigated underexpanded
n-hexane jets by means of Elastic Light Scattering (ELS) and found phase separation effects. Based
on a slight variation of the injection temperature of 3-4 K close to the critical temperature, Baab
et al. [15] reported a change in the disintegration regime from near-critical flashing to gaseous jets
with embedded fuel condensation. The latter effects were also reported by Fond et al. [79] who
investigated extremely underexpanded argon jets using Mie scattering measurements. The authors
detected bright regions upstream of the Mach disk and in the outer shear layer indicating a possible
phase separation process.

pt/pc 1.17 1.29 1.38 1.16 1.15
pt/pch 2.20 9.20 37.5 35.7 36.7
Tinj/Tc 1.46 1.46 1.46 1.23 1.03

(a) Pressure variation for zCH4 = 0.9. (b) Temperature variation for zCH4 = 0.1.

Figure 1.7: Shadowgraphies of methane/ethylene jets injected into a chamber filled with nitrogen:
a) Variation of the NPR for a methane mole fraction of 90%; b) Variation of the injection tempera-
ture for a methane mole fraction of 10%. Tc and pc are the respective critical mixture temperature
and pressure. The images have been taken from the work of Lin et al. [170].
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Numerical simulations

Over the past years, different groups have conducted numerical investigations to study the char-
acteristics of underexpanded jets. Most of them neglected real-gas thermodynamics and therefore
focused on the fluid dynamics aspects of the injection process: Yu et al. [365] investigated a pulsed
underexpanded fuel jet in a combined experimental and numerical study. In their investigation,
Yu et al. [365] applied PLIF in the experiment and compared the measurements with LESs. Over-
all, the LES was able to reproduce the basic physics of the underexpanded jet and showed good
agreement with the experiment in terms of the shock structures. Using a similar configuration,
Vuorinen et al. [343] investigated the effect of the NPR on the characteristics of underexpanded
jets. Again, PLIF and LES were applied. Good agreement between numerical and experimental
data in terms of the Mach disk dimensions and structures were found. In addition, the dependency
of the Mach disk width on the NPR was studied and compared successfully with available data
from the literature. Using probability density functions of the concentration, Vuorinen et al. [343]
showed that the mixing of the fuel with the ambient gas improves with increasing NPR. Follow-
ing the investigations of Vuorinen et al. [343], Hamzehloo and Aleiferis [108, 109, 111] conducted
several investigations on underexpanded hydrogen and methane jets and studied the mixing pro-
cess under engine-relevant conditions: In their first study, Hamzehloo and Aleiferis [108] reported
that the main mixing was observed downstream of the Mach disk and particularly close to the
jet boundaries. In their subsequent work [109], they extended their studies to elevated pressure
conditions. For a constant NPR, they found that a higher ambient pressure resulted in a faster
formation of the final Mach disk position. This effect was attributed to the faster establishment
of the supersonic flow conditions inside the nozzle. In their most recent study, Hamzehloo and
Aleiferis [111] applied both LES and Reynolds-Averaged Navier-Stokes (RANS) simulations and
compared the results against various data from the literature. They concluded that the RANS
approach is able to predict key characteristics of underexpanded jets and that penetration and
spreading rates are similar to those found in the LES. Similar findings were reported by Gorlé and
Ham [98] and Gorlé and Iaccarino [99].

One of the first numerical studies on underexpanded real-gas jets was published by Khalil and
Miller [139] in 2004 who studied the expansion of an initially supercritical carbon dioxide jet. The
authors applied the Redlich-Kwong [251] equation of state and reported not negligible deviations
of the temperature between the ideal- and the real-gas closure. The most significant real-gas
effects were found downstream of the Mach disk. In contrast, the position of the Mach disk as
well as the minimum pressure were not greatly affected. For the investigation of underexpanded
hydrogen jets, similar findings have been reported by Mohamed and Paraschivoiu [199], Cheng et
al. [46], Khaksarfard et al. [138] and Bonelli et al. [39]. Recently, Hempert et al. [118] investigated
underexpanded methane jets under real-gas conditions. Their comparison of the ideal- and the real-
gas results showed unacceptable deviations between both closure models and hence the necessity to
consider real-gas effects. Regarding numerical simulations focusing on phase separation processes
in underexpanded jets only very little information is available in the literature. Lin et al. [169]
compared their perfect gas simulation a posteriori to the VLE of the binary mixture and hereby
discussed a possible occurrence of two-phase effects. As already mentioned, Edwards et al. [71]
investigated the ethylene jets of Wu et al. [357] and confirmed the findings of the experiments.

1.5 Objectives and outline
Although there seems to be some evidence for the possible occurrence of phase separation processes
during high-pressure injection, mixing and combustion there is no common agreement and under-
standing of these phenomena yet. The major reason is that under engine-relevant high-pressure
conditions experiments and numerical simulations are still very challenging. To contribute to a
better understanding the present work deals with the introduction and validation of a CFD tool
which enables the numerical investigation of these processes under GE- and LRE-like conditions.
Consequently, the tool has to be able to treat low- and high-speed flows, represent ideal- and real-
gas effects and consider phase separation processes in multicomponent mixtures.
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The work is structured as follows: In Sec. 2, the governing equations together with the turbulence
modeling applied in the present work are introduced. Both LES and RANS turbulence closures
are discussed in Secs. 2.3 and 2.4. The numerical methods applied in this work are presented in
Sec. 3. In a first step, the underlying concept of the finite volume method and its realization in
the CFD code are discussed in Sec. 3.1. After that, both a pressure- and a density-based solver
approach are presented in Secs. 3.2 - 3.4. The thermodynamic closure is introduced in Sec. 4. This
includes a fundamental introduction into real fluid thermodynamics in Secs. 4.1 - 4.5 followed by the
discussion of the applied ideal- and real-gas models in Secs. 4.6 and 4.7. Based on that, the vapor-
liquid equilibrium model is introduced in Sec. 4.8. Finally, in Sec. 4.9, important characteristics
of multicomponent phase equilibria are discussed. In Sec. 5, the transcritical combustion model
applied in the present work is introduced briefly. After that, the results are presented in the
following three sections: First, real-gas effects and the possibility of phase separation in high-
speed jets are assessed in Sec. 6. Second, mixture-induced phase separation under inert LRE-like
conditions is investigated in Sec. 7. Third, the possibility of locally subcritical thermodynamic
states in high-pressure combustion is discussed in Sec. 8. Finally, an overall summary and outlook
to future work are given in Secs. 9 and 10, respectively.





2 Governing equations
Computational fluid dynamics relies on the description of the fluid motion by a set of nonlinear
partial differential equations. Although gases and liquids have significantly different fluid proper-
ties, both obey the same law of motions and can be treated as a continuum under the conditions
relevant for this thesis [75]. Applying the Eulerian approach, the flow at a fixed location may be
described by the time history of the flow properties. The state at this fixed location can be changed
by convection, diffusion and source/sink terms. In this chapter, the basics for the mathematical
description of fluid motion are presented. The underlying conservation equations are introduced
in Sec. 2.1. Next, the modeling ideas of turbulence are discussed in Sec. 2.2. In the following two
Secs. 2.3 and 2.4, the turbulence modeling approaches applied in this work are described briefly.

2.1 Conservation equations
For a pure compressible fluid, the temporal change of the flow is governed by the conservation
of mass, momentum and energy. In multicomponent flows, the set of conservation equations has
to be supplemented by transport equations for the different species. In this work, nuclear fusion,
radiation or volume forces like, for instance, gravitation are neglected. Einstein’s summation
convention is applied to present the conservation equations in a Cartesian coordinate system. A
detailed derivation and discussion of these governing equations can be found in the textbooks of,
e.g., Anderson [7], Blazek [37], Ferziger and Perić [75], Wesseling [348] or Kuo [146].

Conservation of mass

In all fluid systems considered in this work, mass is an extensive property which is conserved. Hence,
mass can neither be created nor destroyed and the temporal change of mass inside a control volume
equals the masses crossing the enclosing surfaces. In differential form, the mass conservation reads

∂ρ

∂t
+
∂ (ρui)

∂xi
= 0 , (2.1)

where ρ is the density, t is the time and ui is the velocity in the direction xi.

Conservation of momentum

The derivation of the momentum equation relies on Newton’s second law which states that a
variation of momentum of a material volume is caused by the net force acting on the volume. In
the present work, the forces result from the pressure p and the deformation of the fluid element
expressed by the viscous stress tensor τ . Applying these principles, the resulting differential
equations describe the motion of a viscous fluid and are commonly referred to as Navier-Stokes
equations:

∂ (ρui)

∂t
+
∂ (ρuiuj)

∂xj
= − ∂p

∂xi
+
∂τij
∂xj

. (2.2)

For Newtonian fluids, the shear stress is proportional to the velocity gradient. Applying Stokes’
hypothesis, the viscous stress tensor can be expressed as:

τij = 2µ

(
Sij −

1

3
δijSkk

)
. (2.3)

Here, µ is the dynamic viscosity, Sij is the rate of strain tensor

Sij =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
(2.4)

and δij denotes the Kronecker delta which is one for i = j and zero for i 6= j.

15
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Conservation of energy

The first law of thermodynamics is the basis for the derivation of the energy conservation equation.
The law states that energy can neither be created nor destroyed. Therefore, the total energy of an
isolated system is constant and energy can be transformed from one form into another. As a result,
the temporal variation of the energy in a control volume is caused by the work acting on the volume
and the net heat fluxes. Different forms of the energy conservation equation exist [146, 236] since
thermodynamic quantities can be converted into each other. In the present work, the conservation
of energy is described in a form based on the static specific enthalpy h1

∂ (ρh)

∂t
+
∂ (ρuih)

∂xi
=
∂p

∂t
+ ui

∂p

∂xi
− ∂qi
∂xi

+ τij
∂ui
∂xj

. (2.5)

Here, qi denotes the heat flux in the direction xi which is in general caused by conduction, diffusion
and Dufour effects [146]. The exact modeling of the heat flux in this work will be discussed after the
introduction of the species transport equations. The fourth term on the right-hand side of Eq. (2.5),
τij∂ui/∂xj , is the source term due to viscous heating and therefore describes the dissipation caused
by viscous stresses.

Species transport equations

For the complete mathematical description of inert and reacting multicomponent flows, the mass,
momentum and energy equations have to be supplemented with transport equations for the dif-
ferent species. In the present work, the number of species Nc ranges from a minimum of two for
binary (inert) mixtures up to a maximum of 53 different species in methane/oxygen combustion
for the largest reaction mechanism employed in the present work. The species transport equations
are convection-diffusion equations describing the temporal variation of the mass fraction Yk of
component k in the flow field:

∂ (ρYk)

∂t
+
∂ (ρuiYk)

∂xi
= −∂jk,i

∂xi
+ ω̇k k = 1, ..., Nc . (2.6)

The mass fraction Yk represents the proportion of the species k in the total mixture and can
therefore be calculated as:

Yk =
mk

mt
=

mk∑Nc
i=1mi

k = 1, ..., Nc . (2.7)

Here, mk and mt denote the mass of component k and the total mass of the mixture, respectively.
Per definition, the mass fractions of all components sum up to unity, i.e.,

∑Nc
i=1 Yi = 1, and

therefore only Nc − 1 species transport equations have to be solved in the numerical simulation.
In the species transport equation (2.6), jk,i denotes the flux due to diffusion and Soret effects into
the direction xi. Its mathematical modeling will be discussed in the next section together with the
approach for the heat flux. The last term in Eq. (2.6), ω̇k, represents the source term of species k
due to reactions. Under inert flow conditions, ω̇k is zero as no chemical reactions take place. In
reacting flows, the modeling of the chemical source term relies on suitable reaction mechanisms.

Modeling of the diffusive heat and species fluxes

For the modeling of the heat and species diffusion fluxes in Eqs. (2.5) and (2.6), approaches of
different fidelity and complexity are available in the literature, see the textbooks of, for instance,
Hirschfelder et al. [121] or Poling et al. [237]. To reduce the numerical effort to an acceptable level, a
widely applied assumption in application-relevant numerical simulations is the neglect of Soret and
Dufour effects. This is also done in the present work and could possibly lead to small errors under

1The absolute enthalpy will be used exclusively in this work which is the sum of the sensible enthalpy and the
enthalpy of formation. As a result, the energy conservation equation does not include a heat release term due to
reactions, see, e.g., Poinsot and Veynante [236]. This fact is advantageous for the derivation and formulation of the
applied combustion model. In nonreacting flows, the application of the absolute enthalpy has no big advantages
except for the fact that the absolute enthalpy approach is slightly more efficient in terms of computing time.
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high-pressure conditions depending on the investigated configuration. For a reacting LOx/H2 case
under supercritical pressure conditions, Oefelein [215] showed that both effects (Soret and Dufour)
are negligible. In contrast, investigations from the group of Bellan [217, 93] demonstrate that in
inert mixing processes the Soret effect might not be negligible. However, the investigations also
showed that the diffusion flux due to the species gradient is dominating by far. Based on the DNS
results of a binary nitrogen/carbon-dioxide jet, Gnanaskandan and Bellan [93] reported that the
Soret term is approximately two orders of magnitude smaller than the mass fraction gradient term.

Neglecting Dufour and Soret effects, the diffusion fluxes of heat and species can be written in
the following general form according to Gaillard et al. [87, 92]:

jk,i = −
Nc∑

j=1

ρYkDkjdj,i k = 1, ..., Nc , (2.8)

qi = −λ ∂T
∂xi

+

Nc∑

k=1

hkjk,i . (2.9)

Here, Dij is the multicomponent diffusion coefficient, which is generally a function of temperature,
pressure and composition. Furthermore, dj,i is the diffusion driving force of the j-th species in the
direction xi, λ is the thermal conductivity, T is the temperature and hk is the partial enthalpy of
species k. For moderate temperature gradients, the diffusion driving force is proportional to the
gradient of the normalized chemical potential of component i, µ∗i , under isothermal conditions

dj,i = zj
∂µ∗j
∂xi

∣∣∣∣
T

, (2.10)

where zj is the mole fraction of the j-th species. In accordance to the mass fraction definition in
Eq. (2.7), the mole fraction describes the amount of a constituent denoted by its mole number ni
in the total mixture nt:

zi =
ni
nt

=
ni∑Nc
j=1 nj

. (2.11)

Per definition, all mole fractions in a mixture sum up to unity, i.e.,
∑Nc
i=1 zi = 1. Furthermore,

mass and mole fractions can be converted into each other as

Yi =
Mi

M
zi i = 1, ..., Nc , (2.12)

where Mi and M are the the molar weights of species i and the mixture, respectively. The molar
weight of the mixture can be calculated as a weighted sum, i.e.,

M =

Nc∑

i=1

ziMi . (2.13)

The chemical potential is closely related to phase separation processes. According to Gaillard et
al. [87], in the low Mach number limit, i.e., dp = 0, the diffusion driving force can be further
simplified to

dj,i = zj
∂µ∗j
∂xi

∣∣∣∣
T,p

=

Nc∑

k=1

(
YjM

RT

∂2g

∂Yj∂Yk

∣∣∣∣
T,p

∂Yk
∂xi

)
. (2.14)

Here, g is the specific (mass-related) Gibbs energy and R is the universal gas constant which has a
value of 8.314472 J(mol K)

−1. Applying nonideal Stefan-Maxwell relations and assuming a binary
mixture, the diffusion flux vector of component 1 can be determined as [87]

j1,i = −ρΓD12
∂Y1

∂xi
, (2.15)
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where the mass-based coefficient Γ is expressed as

Γ = − ∂2g

∂Y1∂Y2

∣∣∣∣
T,p

M1M2

MRT
. (2.16)

Therefore, under nonideal conditions, the diffusion flux vector jk is proportional to the second
derivative of the Gibbs energy. This derivative is again closely related to phase separation pro-
cesses as it is linked to the limit of spinodal decomposition: Γ = 0 [87]. Thermodynamic stability
therefore holds if and only if Γ > 0. Moreover, the diffusion process vanishes at the chemical
stability limit Γ = 0 and leads to nonmixing layers [87].

In the present work, nonideal mixing phenomena for the modeling of the diffusion fluxes are
neglected. Nevertheless, the knowledge about the proportionality between the diffusion process and
the partial derivatives of the Gibbs energy is essential for future investigations as more detailed
simulations, e.g., DNS, demands for more accurate modeling approaches. Under ideal diffusion
conditions, the species diffusion fluxes can be modeled based on Fick’s law:

jk,i = −ρD∂Yk
∂xi

k = 1, ..., Nc . (2.17)

Here, the driving force for the diffusion process is the gradient of the mass fraction. A mean
diffusion coefficient D for all species is assumed. The diffusion coefficient is deduced from the
assumption of a unitary Lewis number Le which is defined as

Le =
λ

ρcpD
, (2.18)

where cp denotes the specific heat at constant pressure. This assumption is also applied in the
flamelet approach which is the basis for the tabulated combustion model in this work. Recent
investigations [370] on methane/oxygen combustion show that this assumption is acceptable for
rocket-relevant conditions. However, when the molar weights of the species differ too much from
each other, for instance in hydrogen/oxygen flames, this assumption may lead to inaccuracies, see,
e.g., Pohl et al. [235]. Recently, Yao et al. [364] investigated the influence of different diffusion
models on the prediction of single-phase instabilities in high-pressure flames. No significant effects
were reported making the unity Lewis number approach an appropriate choice for the present
investigations.

Applying the unitary Lewis number assumption to the formulation of the diffusive heat flux
according to Eq. (2.9), an enthalpy-based formulation can be derived. The basis for this derivation
is the total differential of the specific enthalpy. In a general multicomponent fluid, the enthalpy is
a function of pressure, temperature and composition, i.e., h = h (p, T,Y), where Y = [Y1, ..., YNc ]
denotes the vector of mass fractions. Therefore, the spatial derivative of the specific enthalpy can
be written as:

∂h

∂xi
=
∂h

∂T

∣∣∣∣
p,Y

∂T

∂xi
+
∂h

∂p

∣∣∣∣
T,Y

∂p

∂xi
+

Nc∑

j=1

∂h

∂Yj

∣∣∣∣
T,p,Yk 6=j

∂Yj
∂xi

= cp
∂T

∂xi
+
∂h

∂p

∣∣∣∣
T,Y

∂p

∂xi
+

Nc∑

j=1

hj
∂Yj
∂xi

.

(2.19)

Applying this total derivative together with Fick’s law from Eq. (2.17) and the unitary Lewis
number assumption to Eq. (2.9) yields:

qi = − λ
cp

(
∂h

∂xi
− ∂h

∂p

∣∣∣∣
T,Y

∂p

∂xi

)
. (2.20)
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In the low Mach number regime, contributions due to pressure changes to the heat flux are usually
negligible and therefore the diffusive heat flux under subsonic flow conditions is modeled as

qi = − λ
cp

∂h

∂xi
. (2.21)

This approach is well-known from ideal-gas simulations where the enthalpy is solely a function of
temperature and composition. The enthalpy-based formulation of the heat flux is beneficial for the
solver stability as the divergence of the heat flux vector can be handled implicitly.

2.2 Turbulence modeling
Under engineering-relevant conditions, most flows are turbulent. First scientific studies on turbu-
lence date back to the work of Osborne Reynolds in the 19th century. By means of experimental
investigations, Reynolds demonstrated the transition between the laminar and the turbulent flow
regime. Based on his observations, Reynolds suggested that this transition is directly linked to the
ratio between inertial and viscous forces. This ratio was later termed Reynolds number

Re =
ρuL

µ
, (2.22)

where L denotes the characteristic length of the flow. In engineering applications, like it is the case
in the present work, the Reynolds number is in the order of O

(
105
)
or even higher. Therefore,

the flow is prevalently turbulent as the nonlinear convective term by far exceeds the linear viscous
term. An advantage of turbulent flows compared to laminar flows is the more efficient transport
and mixing of the different fluids [238] which is desired in most technical applications.

In general, the motion of the fluid in a turbulent flow is three-dimensional, transient, irregular,
random and chaotic. Turbulence can be seen as a composite of a large collection of mutually
interacting and continuously evolving three-dimensional eddies which size range typically covers
several orders of magnitude. This process can be described mathematically in terms of an energy
spectrum E being a function of the wave number K = 2π/L, where L is the length scale of
the motion. In Fig. 2.1, the energy cascade for isotropic turbulence at a representative Reynolds
number Re = 2.15 × 105 is shown. This so-called Kolmogorov spectrum illustrates the transfer
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Figure 2.1: Energy spectrum of isotropic turbulence for Re = 2.15 × 105 according to Pope [238].
The dashed line shows the 80% criteria K80%

∆ for the LES resolution. In addition, computed
and modeled wave number ranges in DNS, LES and RANS are shown (adopted from Poinsot et
al. [236]).
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of energy from large scales of motion to the small scales. The cascade can be divided into three
sections: the energy-containing range, the inertial subrange and the dissipation range. On the
largest scales (associated with the smallest wave numbers), the kinetic energy is extracted from
the mean flow and therefore the biggest amount of energy is contained in the large eddies (energy-
containing range). The size of these eddies is determined by the dimensions of the investigated
geometry, for instance, the pipe diameter. In the inertial subrange, the energy spectrum is described
by Kolmogorov’s scaling law [238] E (K) ∝ K−5/3. This is the wave number range, where energy
is transferred from the larger scale eddies to the smaller eddies. The largest wave numbers of the
cascade are associated with length scales smaller than the Kolmogorov length scale. This is the
dissipation range in which most kinetic energy is dissipated due to viscous friction.

The most general way to simulate turbulent flows is to directly solve the conservation equations
introduced in Sec. 2.1 without any averaging or approximation other than numerical discretiza-
tion approaches [75]. Therefore, all motions present throughout the flow are represented. This
approach is called Direct Numerical Simulation and covers the complete energy spectrum, see
Fig. 2.1. Currently, the application of DNS is mostly limited to generic academic investigations
like binary mixing layers, see, e.g., Bellan [29], as DNS is usually not affordable in most engineering
applications. This results from the fact that the mesh size needed for a sufficient spatial resolution
of all turbulent motions scales as Re9/4 and the computing time as Re3 [37]. In practical appli-
cations, the effects of turbulence have to be accounted for in an approximated manner by means
of suitable modeling approaches. In the following, the two approaches applied in the current work
– Large-Eddy Simulation (Sec. 2.3) and Reynolds-Averaged Navier-Stokes simulation (Sec. 2.4) –
are introduced.

2.3 Large-Eddy Simulation
The concept of Large-Eddy Simulation is based on the idea that specific length scales of the
energy cascade are discarded to reduce the range of scales that are resolved by the numerical
simulation. This approach relies on Kolmogorov’s hypothesis according to which large eddies are
anisotropic and characterized by the boundary conditions, whereas small eddies are isotropic and
universal [83, 88]. Therefore, the basic idea of the LES reduces to a scale separation. Large scales
are resolved on the computational grid (grid scale) and the unresolved small scales are modeled
(sub-grid scale) [83], see Fig. 2.1.

Mathematically, the scale separation is realized by means of a filtering approach using a high-
pass filter which is also a low-pass filter in the wave number domain [88]. In physical space, the
filtering operation is represented by a convolution product with the filter kernel G [83, 236]

ξ (xi) =

∫
ξ (ζi)G (xi − ζi) dζi , (2.23)

where ξ denotes the resolved part of the component ξ and ζi is the Cartesian integration variable.
Different filter kernels can be used to perform the desired scale separation and a thorough discussion
on this topic can be found in the textbooks of, e.g., Fröhlich [83] or Garnier et al. [88]. In the
present work, the filter kernel corresponds to a box/top hat filter which can be denoted as [236]

G (xi) =

{
1/∆3, if |xi| ≤ ∆/2, i = 1, 2, 3

0, otherwise .
(2.24)

According to Pope [238], ∆ should be chosen such that 80% of the turbulent kinetic energy is
resolved. In Fig. 2.1, the vertical dashed line K80%

∆ marks the appropriate scale separation in the
frequency domain for a Reynolds number Re = 2.15× 105.

In variable-density flows, it is advantageous to apply Favre-averaging to the different components.
Favre-averaging is a density-weighted approach which does not produce undesired additional fil-
tering terms in the governing equations and can be introduced according to Eq. (2.23) as [236]:

ρξ̃ =

∫
ρ ξ (ζi)G (xi − ζi) dζi . (2.25)
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As a result of the filtering operation, an arbitrary quantity ξ (xi, t) of the flow field is decomposed
into a low frequency part ξ̃ and a high frequency part ξ′′ [88]:

ξ (xi, t) = ξ̃ (xi, t) + ξ′′ (xi, t) . (2.26)

Here, ξ̃ is the Favre-average according to

ξ̃ =
ρξ

ρ
(2.27)

which represents the resolved part of the flow and covers all length scales being larger than the
selected filter width ∆. The high frequency part ξ′′, which is not resolved on the grid, has to be
modeled by a suitable sub-grid scale (SGS) model. In the following, the filtered equations and the
applied SGS-models are introduced. More information on the concept of Large-Eddy Simulations
can be found in the textbooks of, for instance, Fröhlich [83], Garnier et al. [88] or Sagaut [270].

2.3.1 Filtered equations

Based on the idea of scale separation, the filtered quantities are directly solved in the LES. Apply-
ing the Favre-averaging according to Eq. (2.27) to the low Mach number conservation equations
(neglecting viscous heating and pressure contributions to the heat flux) yields the following set of
filtered equations [236]:

∂ρ

∂t
+
∂(ρũi)

∂xi
= 0 , (2.28)

∂(ρũi)

∂t
+
∂(ρũiũj)

∂xj
= − ∂p

∂xi
+
∂ [τ ij − ρ (ũiuj − ũiũj)]

∂xj
, (2.29)

∂(ρh̃)

∂t
+
∂(ρũih̃)

∂xi
=
∂p

∂t
+ ui

∂p

∂xi
+

∂

∂xi

[
λ

cp

∂h

∂xi
− ρ

(
ũih− ũih̃

)]
, (2.30)

∂(ρỸk)

∂t
+
∂(ρũiỸk)

∂xi
=

∂

∂xi

[
ρD

∂Yk
∂xi
− ρ

(
ũiYk − ũiỸk

)]
+ ω̇k k = 1, ..., Nc . (2.31)

In accordance to Eqs. (2.3) and (2.4), the resolved part of the viscous stress tensor in Eq. (2.29) is
modeled as:

τ ij = µ

(
∂ũi
∂xj

+
∂ũj
∂xi
− 2

3

∂ũk
∂xk

δij

)
. (2.32)

Furthermore, the pressure velocity term in the filtered energy conservation equation (2.30) is
approximated as [236]

ui
∂p

∂xi
≈ ũi

∂p

∂xi
. (2.33)

The filtered laminar diffusion fluxes in Eqs. (2.30) and (2.31) are modeled based on the gradient
assumption [236]:

λ

cp

∂h

∂xi
≈ λ

cp

∂h̃

∂xi
and ρD

∂Yk
∂xi
≈ ρD∂Ỹk

∂xi
. (2.34)

Due to the nonlinear convective terms in the momentum, energy and species equations, additional
unresolved terms occur on the right-hand side. These terms represent the effect of the unresolved
scales on the filtered flow properties. In the momentum equation (2.29), these terms can be
interpreted as a turbulent stress tensor

τ sgsij = ρ (ũiuj − ũiũj) . (2.35)

In the same way, the unresolved terms in the energy and species equations can be aggregated to a
turbulent heat flux

qsgsi = ρ
(
ũih− ũih̃

)
(2.36)
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and a turbulent flux of the k-th species

jsgsk,i = ρ
(
ũiYk − ũiỸk

)
. (2.37)

Here, the superscript sgs is used to distinguish the unresolved sub-grid scale part from its resolved
counter-part. To model the unresolved terms, suitable modeling approaches are necessary.

In the species transport equation (2.31), the last term on the right hand-side denotes the filtered
reaction rate ω̇k of component k. This term has to be modeled as the combustion process takes
places on the smallest scales which are, as a result of the scale separation, cut-off in the LES. The
demands on the determination of ω̇k are quite intense, as the combustion closure has to reflect the
complex turbulence-chemistry interaction happening on the sub-grid scale level.

2.3.2 Sub-grid scale models

The unresolved SGS terms summarized in Eqs. (2.35) - (2.37) need to be modeled appropriately to
represent the influence of the small scale motions onto the mean flow. The big advantage of Large-
Eddy Simulations is that the small eddies are isotropic and universal. Therefore, the modeling of
the unresolved terms is rather simple compared to Reynolds-Averaged Navier-Stokes simulations.
In the RANS context, the entire range of turbulent scales has to be assimilated into a statistical
approach. In the following, only the modeling approaches applied in the LESs in the present work
are introduced. A more thorough discussion and introduction of SGS modeling in the context of
Large-Eddy Simulations can be found in the textbooks of, for instance, Fröhlich [83], Pope [238]
or Garnier et al. [88].

The applied SGS models are based on the eddy viscosity concept which was proposed by Boussi-
nesq in the 19th century. The Boussinesq approximation relates the turbulent unresolved stress
tensor τ sgsij to the mean flow and introduces an eddy viscosity µsgs in analogy to the laminar Stokes’
hypothesis:

τ sgsij = −2µsgs
(
S̃ij −

1

3
S̃kkδij

)
. (2.38)

The eddy viscosity model assumes that turbulence is isotropic which agrees with the basic modeling
idea of the LES. Due to the relation of the turbulent unresolved stresses to the rate of strain tensor
based on the filtered velocity field, only the eddy viscosity has to be modeled. A similar approach
can be applied to model the unresolved turbulent heat and species fluxes. The concept is termed
gradient-diffusion hypothesis [238] and treats the turbulent fluxes analogously to their laminar
counter-parts. After introducing the turbulent Prandtl number

Prt =
µsgscp
λsgs

(2.39)

and the turbulent Schmidt number
Sct =

µsgs

ρDsgs (2.40)

in accordance to their laminar definitions, the unresolved turbulent heat and species fluxes can be
expressed as:

qsgsi = −λ
sgs

cp

∂h̃

∂xi
= −µ

sgs

Prt
∂h̃

∂xi
, (2.41)

jsgsk,i = −ρDsgs ∂Ỹk
∂xi

= −µ
sgs

Sct
∂Ỹk
∂xi

. (2.42)

A species-independent turbulent diffusion coefficient Dsgs is applied as proportionality constant in
the unresolved species fluxes. Therefore, only a single turbulent Schmidt number is necessary in
the simulations. If not stated differently, a turbulent Schmidt and Prandtl number of unity will
be used in the simulations, i.e., Sct = Prt = 1 which yields a unity turbulent Lewis number Let
= Sct/Prt = 1. Comparing Eqs. (2.38) - (2.42) it gets obvious that all quantities except the eddy
viscosity µsgs can be extracted from the resolved mean flow. In the present work, three different
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eddy viscosity models are employed which can be expressed in the following general form [161]:

µsgs = ρ (C∆)
2
OP . (2.43)

Here, C is a constant, ∆ is the filter width and OP is an appropriate generic operator which relates
the eddy viscosity to the filtered flow field. The filter width ∆ is determined based on the cell
volume Ω as ∆ = 3

√
Ω.

Smagorinsky model

The SGS model due to Smagorinsky [295] is the most common one and can be considered the
pioneer sub-grid scale model for LES. The model is based on the equilibrium hypothesis which
implies that the small scales of motion dissipate all the energy which they receive from the large
scales [37]. According to Smagorinsky [295], the eddy viscosity can be computed as:

µsgs = ρ (CS∆)
2
√

2S̃ijS̃ij . (2.44)

Here, CS is the Smagorinsky constant, which can take values between 0.1 and 0.2 depending on the
investigated flow [88]. The theoretical value found by Lilly [168] is CS = 0.18. This value is based
on the assumption of a local equilibrium and a Kolmogorov spectrum together with a Kolmogorov
constant of 1.4 [88]. In the present work, a Smagorinsky constant of 0.17 is used.

Vreman model

For combustion simulations, the sub-grid model due to Vreman [341] is applied following the work
of Müller [202] and Zips et al. [368]. The Vreman model [341] is similarly compact as the approach
of Samogrinsky [295] since it only needs the local filter width and the spatial derivatives of the
velocity field. The algebraic equation to determine the eddy viscosity according to Vreman [341]
reads

µsgs = ρCV

√
Bβ

αijαij
. (2.45)

Here, CV denotes the model constant which can be deduced from isotropic turbulence as CV ≈
2.5C2

S = 0.07. The other variables occurring in Eq. (2.45) can be determined from the filtered
velocity field as follows:

Bβ = β11β22 − β2
12 + β11β33 − β2

13 + β22β33 − β2
23 , βij = ∆2αkiαkj and αij =

∂ũj
∂xi

. (2.46)

The advantage of the Vreman model [341] is that it is more favorable in laminar and transitional
flows as the predicted dissipation is smaller in these regions compared to the model of Smagorin-
sky [295].

WALE model

The third SGS model used in this work is the Wall-Adapting Local Eddy-viscosity (WALE) model
due to Nicoud and Ducros [211]. Following the work of Hamzehloo and Aleiferis [109, 110], this
eddy viscosity approach is used in the simulation of high-speed jets for two reasons: First of all, the
WALE model produces zero eddy viscosity in pure shear flows making it capable of reproducing
turbulent transitional processes more accurately through the growth of unstable modes [211]. Sec-
ond, for near-wall flows, it predicts the correct behavior of the turbulent viscosity. In the WALE
model [211], µsgs is determined as:

µsgs = ρ (CW∆)
2

(
S̃dijS̃

d
ij

)2/3

(
S̃ijS̃ij

)5/2

+
(
S̃dijS̃

d
ij

)5/4
. (2.47)
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Here, the eddy viscosity is proportional to the traceless symmetric part of the square of the velocity
gradient tensor S̃dij which can be calculated from the filtered velocity field as [161]

S̃dij =
1

2

(
g̃2
ij + g̃2

ji

)
− 1

3
g̃2
kkδij with g̃ij =

∂ũi
∂xj

. (2.48)

Furthermore, CW is a model constant which Nicoud and Ducros [211] reported to be in the range
of 0.55 ≤ CW ≤ 0.60 for homogeneous turbulence. More recent investigations [313] suggest a
constant value of 0.325, which was also employed in the present work.

2.4 Reynolds-Averaged Navier-Stokes simulation
In RANS simulations, the complete turbulence spectrum has to be modeled and the solution of
the filtered governing equations yields the mean flow field. This is in strong contrast to the LES
approach where the mean of the fluctuating quantities does not vanish. In accordance to the
LES, however, it is likewise advisable to apply Favre-averaging for the derivation of the filtered
equations to avoid additional unclosed terms [146, 236]. As only the mean field is solved for in the
RANS simulations, symmetries of the investigated geometries can be used. Therefore, the required
computational power can be reduced drastically compared to LESs where the full geometry has to
be taken into account. In the following, the applied RANS approach is introduced briefly including
the filtered equations and the employed turbulence model. For a more thorough introduction and
discussion of the RANS approach it is referred to the textbooks of, e.g., Kuo [146], Poinsot and
Veynante [236] or Wilcox [351].

2.4.1 Filtered equations

Using the Favre-averaging, every component ξ of the flow field is split into a mean and a fluctuating
part ξ = ξ̃+ ξ′′ whereby in the context of RANS simulations the mean of the fluctuation vanishes,
i.e., ξ̃′′ = 0. Applying this formalism to the inert conservation equations of mass, momentum,
energy and species yields the following set of filtered equations [236]:

∂ρ

∂t
+
∂(ρũi)

∂xi
= 0 , (2.49)

∂(ρũi)

∂t
+
∂(ρũiũj)

∂xj
= − ∂p

∂xi
+
∂
(
τ ij − ρũ′′i u′′j

)

∂xj
, (2.50)

∂(ρh̃)

∂t
+
∂(ρũih̃)

∂xi
=
∂p

∂t
+ ui

∂p

∂xi
+

∂

∂xi

(
λ

cp

∂h

∂xi
− ρũ′′i h′′

)
, (2.51)

∂(ρỸk)

∂t
+
∂(ρũiỸk)

∂xi
=

∂

∂xi

(
ρD

∂Yk
∂xi
− ρũ′′i Y ′′k

)
k = 1, ..., Nc . (2.52)

Viscous heating and pressure contributions to the heat flux are neglected. In accordance with the
LES, the stress tensor, the pressure velocity term and the laminar diffusion fluxes are modeled as
follows [236]:

τ ij = µ

(
∂ũi
∂xj

+
∂ũj
∂xi
− 2

3

∂ũk
∂xk

δij

)
, ui

∂p

∂xi
≈ ũi

∂p

∂xi
,
λ

cp

∂h

∂xi
≈ λ

cp

∂h̃

∂xi
and ρD

∂Yk
∂xi
≈ ρD∂Ỹk

∂xi
.

Three unclosed terms are remaining in the Favre-averaged conservation equations: the Reynolds
stresses ρũ′′i u′′j and the turbulent fluxes of the enthalpy ρũ′′i h′′ and of the species ρũ′′i Y ′′k . For the
modeling of these terms, the Boussinesq approximation and the gradient-diffusion hypothesis [238]
are applied:

ρũ′′i u
′′
j = −2µt

(
S̃ij −

1

3
S̃kkδij

)
, (2.53)
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ρũ′′i h
′′ = − µt

Prt
∂h̃

∂xi
, (2.54)

ρũ′′i Y
′′
k = − µt

Sct
∂Ỹk
∂xi

. (2.55)

Please note in Eq. (2.53) that the contribution due to the turbulent kinetic energy k is missing.
In the applied open-source CFD tool OpenFOAM, this part is absorbed into the mean pressure
to be able to treat LES and RANS formally identical which reduces the programming effort. For
a more thorough discussion on this topic see, e.g., Pope [238] or Holzmann [122]. Furthermore
it is noteworthy, that in Eqs. (2.54) and (2.55) the definitions of the turbulent Prandtl and
Schmidt number are identical to the definitions in the LES, see Eqs. (2.39) and (2.40). Only the
superscript sgs is replaced with a subscript t, which denotes the turbulent properties in the RANS
context and therefore clearly distinguishes between sub-grid scale modeling in the LES and full
turbulence modeling in the RANS simulation.

2.4.2 Turbulence model

In RANS simulations, the entire range of turbulent scales has to be assimilated by a model that
is able to represent the effect of turbulence onto the mean flow. As the Boussinesq approximation
is used in this thesis, three different types of turbulence models are generally available: algebraic,
one- or two-equation models. An overview on the wide field of different models can be found in
the works of, for instance, Leschziner [166] or Wilcox [351].

In the present work, the k,ω Shear Stress Transport (SST) model due to Menter [191, 192, 193]
is employed which belongs to the class of two-equation eddy viscosity models. The k,ω-SST-model
combines the k,ω-model of Wilcox [351] with the k,ε-model of Jones and Launder [132]. The former
is advantageous in the boundary layer and the latter in the free shear flow making the k,ω-SST-
model a universal turbulence model for a large number of different flow and boundary conditions.
The variables k, ω and ε denote the turbulent kinetic energy, the specific rate of dissipation and
the dissipation rate of the turbulent kinetic energy, respectively. These quantities can be related
to each other as

ω =
ε

Cµk
=

ε

β∗k
(2.56)

and represent the length and time scales of the turbulence. Here, Cµ = 0.09 is a constant which is
used in the k,ω-model and k,ε-model. In the k,ω-SST-model, Cµ is replaced by β∗.

According to Menter [191, 192, 193], the two differential equations for k and ω solved in the
k,ω-SST-model read:

∂ (ρk)

∂t
+
∂ (ρũik)

∂xi
= Pk +

∂

∂xi

[
(µ+ σkµt)

∂k

∂xi

]
− ρβ∗kω , (2.57)

∂ (ρω)

∂t
+
∂ (ρũiω)

∂xi
= αPω +

∂

∂xi

[
(µ+ σωµt)

∂ω

∂xi

]
− βω2 + 2ρ (1− F1)σω2

1

ω

∂k

∂xi

∂ω

∂xi
. (2.58)

The partial differential equations of k and ω include production, transport (convection and dif-
fusion) and dissipation terms. The temporal variation of k and ω together with the convective
transport are on the left-hand side of Eqs. (2.57) and (2.58), whereby the other terms (production,
diffusion and dissipation) are on the right-hand side.

In Eq. (2.57), Pk denotes the production of turbulent kinetic energy. The mathematical formu-
lation of this production term features a limiter to avoid the build-up of turbulence in stagnation
regions [193]:

Pk = min (Pk, 10β∗ρkω)− 2

3
ρkδij

∂ũi
∂xj

with Pk = µt
∂ũi
∂xj

(
∂ũi
∂xj

+
∂ũj
∂xi

)
. (2.59)

The variable σk is a blended model constant, which will be discussed later together with the
constants α, β and σω. In Eq. (2.58), Pω is the production term in the ω-equation which is given
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as:
Pω = ρ

∂ũi
∂xj

(
∂ũi
∂xj

+
∂ũj
∂xi

)
− 2

3
ρωδij

∂ũi
∂xj

. (2.60)

The variable F1 in Eq. (2.58) denotes the blending function which performs the shift between
the k,ω-model in the near-wall region (F1 = 1) and the k,ε-model in the free-stream (F1 = 0).
According to Menter [192], F1 is defined as

F1 = tanh
(
ξ4
)

with ξ = min

[
max

( √
k

β∗ωd⊥
,

500µ/ρ

d2
⊥ω

)
,

4σω2k

CDωd2
⊥

]
, (2.61)

where d⊥ denotes the wall-nearest distance [201] and CDω is calculated as:

CDω = max
(

2σω2
1

ω

∂k

∂xi

∂ω

∂xi
, 10−10

)
. (2.62)

The blending function F1 is further used to calculate the required model constants α, β, σk and σω
based on the constants of the k,ω-model (index: 1) and k,ε-model (index: 2). This is done based
on a linear weighting

Θ = F1Θ1 + (1− F1) Θ2 , (2.63)

where Θ can be replaced by the respective constant. In Tab. 2.1, the model constants (αi, βi, σki
and σωi) of the k,ω- and k,ε-model are listed. Finally, the eddy viscosity in the k,ω-SST-model is
determined as:

µt = ρ
a1k

max
(
a1ω, S̃F2

) . (2.64)

Here, a1 is a constant which takes the value 0.31 and S̃ is the invariant measure of the strain rate,

i.e., S̃ =
√

2S̃ijS̃ij . In addition, F2 is another blending function defined as:

F2 = tanh





[
max

(
2
√
k

β∗ωd⊥
,

500µ/ρ

d2
⊥ω

)]2


 . (2.65)

Table 2.1: Model constants of the k,ω- and k,ε-model used in the k,ω-SST-model [193].

αi βi σki σωi

1 (k,ω-model [351]) 5/9 = 0.555 3/40 = 0.075 0.85 0.5
2 (k,ε-model [132]) 0.44 0.0828 1.0 0.856
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3 Numerical methods
For the set of nonlinear conservation equations introduced in Sec. 2.1 only a few analytical solu-
tions exist which are restricted to simple flow problems such as, for instance, Couette or potential
flows [297]. For turbulent nonreacting or reacting flows in application-relevant (complex) geome-
tries, an analytical solution of the conservation equations is very difficult or even impossible.
Discretization allows the transformation of the set of partial differential equations into a corre-
sponding system of algebraic equations [130]. The solution of this set of discretized equations
yields values for the conservative and related/derived properties at a priori defined locations in
time and space. This is know as numerical simulation and the solution depends on the initial
and boundary conditions of the investigated flow problem. In this work, the implementation and
treatment of initial and boundary conditions is not discussed as it does not significantly contribute
to the overall understanding. Instead, it is referred to the textbook of Moukalled et al. [201] or the
PhD theses of Jasak [130] and Rusche [269].

For nonmoving, constant volume meshes the discretization procedure of the flow problem consists
of two essential steps [120]:

1) Temporal and spatial discretization of the solution domain.

2) Temporal and spatial discretization of the conservation equations.

In the present work, the finite volume method (FVM) is employed for the discretization. The
advantages of the FVM compared to, e.g., the finite difference method are diverse. Two major
advantages are: First, the conservation quantities are inherently conserved on a discrete level as
the balance laws are discretized in an integral form. Second, complex geometries can be investi-
gated as the spatial discretization can include any kind of general polyhedral shape. This kind of
spatial discretization is often termed as unstructured grid/mesh and offers great freedom in mesh
generation and manipulation.

This chapter is structured as follows: The realization of the FVM in the applied open-source
tool OpenFOAM is presented in Sec. 3.1. This includes the discretization of the solution do-
main in Sec. 3.1.1 as well as the spatial and temporal discretization of the governing equations in
Secs. 3.1.2 and 3.1.3, respectively. Next, the different methods for the pressure-velocity coupling
are discussed in Sec. 3.2. In Sec. 3.3, a pressure-based solution framework is presented which is
suitable for the numerical simulation of flows at all speeds. A density-based double-flux method
specifically tailored for transcritical flows is introduced in Sec. 3.4. The pressure-based framework
was implemented in OpenFOAM 4.1 [1]. The density-based method was realized in OpenFOAM
v1806 [2]. More information on different numerical solver approaches can be found in the textbooks
of, e.g., Hirsch [120], Blazek [37], Ferziger and Perić [75] or Moukalled et al. [201].

3.1 Finite volume method

3.1.1 Discretization of the solution domain

A general transient problem requires the discretization of the solution domain into a finite number
of discrete grid points in time and space [120]. The solution at any time is only influenced by the
history, i.e., the conditions at the previous time, as unsteady flows are parabolic in time [223]. This
property makes the time a one-way coordinate [223] and an appropriate time step has to be pre-
scribed which suits the required temporal resolution and stability criteria of the numerical method.
The time step can be constant or variable depending on the local flow conditions. Combustion sim-
ulations were conducted using a constant time step. For inert simulations the convective/acoustic
Courant-Friedrichs-Lewy (CFL) criterion was applied to determine a suitable time step.

The more difficult and time-consuming task is the spatial discretization of the flow problem. The
spatial domain has to be subdivided into a finite number of control volumes (CVs). These cells
have to be contiguous, i.e., not overlapping, and completely fill the domain [269]. The CVs have to
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be arranged such that they resolve the parts of interest in the flow field. Their number has to be
chosen such that the numerical solution of the governing equations is as independent as possible
from the spatial discretization. OpenFOAM tools like, e.g., blockMesh and commercial meshers
like, e.g., ANSYS ICEM CFD were used in the present work for the grid generation. A schematic
of two arbitrary neighboring control volumes together with the nomenclature used in OpenFOAM
is shown in Fig. 3.1. A CV is defined by a certain number of vertices which are connected via

f

P

N

vector between
cell centers di

face normal
vector Sfi

vertex
edge

internal face

boundary face

owner CV

neighbor CV

Figure 3.1: Schematic of two control volumes sharing a common internal face f . The vector
directions and the nomenclature represent the standard OpenFOAM terms.

edges. These edges define faces which in turn bound the control volume and determine its size and
volume. Faces can be of two types: Internal faces connect CVs in the internal mesh. Boundary
faces constrain the solution domain and are the locations where boundary conditions are prescribed
in OpenFOAM. The center of a CV is defined at its centroid [130] and is termed P for the owner
CV and N for the neighbor CV, respectively. The terms owner and neighbor are defined based on
the direction of the face normal vector Sfi of the internal face. The magnitude of Sfi is defined
such that it is equal to the area of the face. The vector between two cell centroids is denoted as
di. In OpenFOAM, dependent variables and other properties are stored at the cell centroids [269]
resulting in a collocated mesh treatment. This arrangement allows for an arbitrary topology of
the CV but demands reconstruction procedures for the interpolation of the cell-centered variables
onto the faces of the CV which are an essential part of the spatial discretization of the balance
laws. In staggered grid arrangements, in contrast, scalar variables are stored in the centroid of
the CVs and velocities and momentum variables are located on the faces. This avoids odd-even
decoupling/checkerboarding [120, 276]. However, for complex geometries the staggered approach
is disadvantageous.

3.1.2 Spatial discretization

For the introduction of the spatial discretization of the balance laws, the conservation equation for
a general scalar variable ξ is used:

∂ (ρξ)

∂t
+
∂ (ρξui)

∂xi
=

∂

∂xi

(
ρDξ

∂ξ

∂xi

)
+ Sξ . (3.1)

Here, the terms from left to right represent the temporal variation, convection, diffusion and sources
of ξ, respectively. For an arbitrary control volume ΩP with the cell center P the integral form of
the transport equation of ξ reads:

∂

∂t

∫

ΩP

ρξdΩ +

∫

ΩP

∂ (ρξui)

∂xi
dΩ =

∫

ΩP

∂

∂xi

(
ρDξ

∂ξ

∂xi

)
dΩ +

∫

ΩP

SξdΩ . (3.2)

The volume integrals have be to approximated by means of numerical integration to arrive at a
system of linear equations.
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For solving the volume integrals of the transient and the source term, the midpoint rule is applied
which yields the following approximation for both terms:

∫

ΩP

ρξdΩ ≈ρP ξP
∫

ΩP

dΩ = ρP ξPΩP , (3.3a)
∫

ΩP

SξdΩ ≈Sξ,P
∫

ΩP

dΩ = Sξ,PΩP . (3.3b)

Here, ρP , ξP and Sξ,P are the density, scalar variable and source term at the cell center P . This
approach assumes that the values at the CV’s centroid P are representative for the entire cell
volume.

The convection and diffusion terms are integrated numerically using Gauss’ theorem which con-
verts the volume integrals into surface integrals. In the FVM, the CV is bounded by faces and the
surface integral can therefore be transferred to the sum of integrals over all faces. For the spatial
gradient of the general scalar variable ξ this concept reads:

∫

ΩP

∂ξ

∂xi
dΩ =

∫

S

ξnidS =
∑

f

(∫

f

ξnidS
)
≈
∑

f

ξfSfi . (3.4)

Here, S is the surface of the cell, ni is the outward-pointing unity vector normal to the boundary S,
ξf is the face-center value of ξ on face f and Sfi is the face area vector of face f in the direction xi.
In OpenFOAM, the face area vector is pointing outwards from the respective CV if f is owned by
it [130], see Fig. 3.1. Therefore, the sum over the faces in Eq. (3.4) has to be split into the sums
over the owned and neighboring faces:

∑

f

ξfSfi =
∑

owner

ξfSfi −
∑

neighbor

ξfSfi . (3.5)

Due to the global data structure in OpenFOAM, this convention is true for all summations over
faces. For the sake of simplicity, the notation according to Eq. (3.5) is omitted in the following.

The convection term

Applying the Gauss theorem, the volume integral of the convection term in the general conservation
equation (3.2) can be written as:

∫

ΩP

∂ (ρξui)

∂xi
dΩ =

∫

S

ρξuinidS ≈
∑

f

(ρui)f ξfSfi =
∑

f

φfξf . (3.6)

Here, φf denotes the mass flux through the face f . The calculation of φf depends on the solver
framework – pressure- or density-based – and is discussed in Secs. 3.3 and 3.4. The only fact which
is important for now is the direction of the flux, i.e., if φf is greater than or smaller than zero or
in other words if the flux is going inwards or outwards of the CV. This determines the upwind and
downwind direction and therefore the numerical stencil for the face interpolation procedure. For the
determination of the face value ξf three different schemes are available in OpenFOAM [130, 269]:
central differencing (CD), upwind differencing (UD) and blended differencing (BD).

The most general interpolation approach is the CD scheme which is second-order accurate. The
face value ξf is determined based on the centroid values of P and N as [130, 269, 100]

(ξf )CD =
fN

PN
ξP +

(
1− fN

PN

)
ξN = VξP + (1− V) ξN , (3.7)

where V is the interpolation factor [131]. Here, fN is the distance between the internal face f
and the neighbor centroid N and PN is the distance between the owner and neighbor cell-centers
P and N . The CD scheme is unbounded and can result in unphysical oscillations in convection
dominated flows.
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The simplest approach to overcome a violation of boundedness is the application of a UD scheme.
In this case, the face value of ξ is determined according to the direction of the flux [130, 269, 100]:

(ξf )UD =

{
ξP if φf > 0

ξN if φf ≤ 0
. (3.8)

The UD scheme is first order accurate and introduces numerical diffusion into the simulation, i.e.,
the boundedness is guaranteed but the accuracy of the numerical result is reduced.

The blended differencing schemes combine the CD and UD approaches to yield a high-order
bounded differencing scheme [131]. In OpenFOAM, BD schemes are realized as a linear combi-
nation of CD and UD applying a blending factor ΓBD which depends on the local flow proper-
ties [130, 131, 100]:

(ξf )BD = (1− ΓBD) (ξf )UD + ΓBD (ξf )CD . (3.9)

Depending on the flow direction – upwind (φf > 0) or downwind (φf ≤ 0) – the face values can
be expressed as:

(ξf )BD,upwind = [1− ΓBD (1− V)] ξP + ΓBD (1− V) ξN , (3.10)

(ξf )BD,downwind = ΓBDVξP + (1− ΓBDV) ξN . (3.11)

The decisive part of the interpolation is now shifted towards the determination of the blending
factor ΓBD. This factor has to facilitate a smooth "switching" between the UD and CD schemes to
avoid instabilities and convergence problems. In the present work, different limiter functions from
the total variation diminishing (TVD) class are used like, e.g., van Leer [336], van Albada [332]
or Minmod [264]. The selection of the appropriate TVD limiting scheme strongly depends on the
considered flow problem. TVD approaches must fulfill the following basic conditions: maxima
must be non-increasing, minima non-decreasing and no new local extrema may be created [37].
The limiter approaches can be written as function of successive gradients r:

van Leer [336] limiter: ΓBD =
r + |r|
1 + |r| , (3.12)

van Albada [332] limiter: ΓBD =
r (r + 1)

r2 + 1
, (3.13)

Minmod [264] limiter: ΓBD = max (min (r, 1) , 0) . (3.14)

In general, r can be expressed as

r =
ξC − ξU
ξD − ξC

, (3.15)

where the subscripts depend on the flow direction, see Fig. 3.2. In unstructured grids, the problem
lies in the definition of the virtual grid point U [131, 60]. Therefore, the expression of r is usually
re-cast in a function which only depends on the centroids C and D [60]:

r =
2
(
∂ξ
∂xi

)
C
dCDi

ξD − ξC
− 1 . (3.16)

U
C

D

f

φf

upwinding case
(φf > 0)

D
C

U

f

φf

downwinding case
(φf ≤ 0)

Figure 3.2: Definition of the grid nodes (C,D and U) used to determine r in Eq. (3.15).
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Here, dCDi is the vector between the nodes C andD. Using the notation with owner and neighboring
grid nodes P and N , r is expressed as follows in OpenFOAM:

r =





2
(
∂ξ
∂xi

)
P
di

ξN−ξP − 1 if φf > 0

2
(
∂ξ
∂xi

)
N
di

ξN−ξP − 1 if φf ≤ 0

. (3.17)

The diffusion term

The volume integral of the diffusion term in Eq. (3.2) can be discretized similarly to the convection
term as: ∫

ΩP

∂

∂xi

(
ρDξ

∂ξ

∂xi

)
dΩ =

∫

S

ρDξ
∂ξ

∂xi
nidS ≈

∑

f

(ρDξ)f

(
∂ξ

∂xi

)

f

Sfi . (3.18)

The face value of (ρDξ)f is determined using the CD scheme. The determination of the face normal
gradient (∂ξ/∂xi)f Sfi depends on the mesh topology.

For orthogonal meshes, i.e., the vectors di and Sfi are parallel, the face normal gradient is
evaluated as [130]: (

∂ξ

∂xi

)

f

Sfi = |Sfi|
ξN − ξP
|di|

. (3.19)

Here, |Sfi| and |di| denote the magnitude of the face area vector and the vector between the cen-
troids.

For nonorthogonal grids, as it is the case in most application-relevant meshes, the vectors di and
Sfi are not parallel. Consequently, a correction term has to be introduced to achieve high accuracy.
In this case, the determination of the face normal gradient is split up into two parts [130]:

(
∂ξ

∂xi

)

f

Sfi = |δf,i|
ξN − ξP
|di|︸ ︷︷ ︸

orthogonal

+ kf,i

(
∂ξ

∂xi

)

f︸ ︷︷ ︸
nonorthogonal

. (3.20)

The decomposition of Sfi into the two vectors δfi and kfi must satisfy

Sfi = δfi + kfi , (3.21)

where δfi is parallel to di. The gradient term in the nonorthogonal contribution is determined by
means of central differencing. In OpenFOAM, a so-called over-relaxed approach is employed to
determine the parallel part of the vector [130]:

δf,i =
di

djSfj
|Sfk|2 . (3.22)

Consequently, kfi can be calculated using Eq. (3.21).

3.1.3 Temporal discretization

In the previous section, the spatial discretization has been discussed which involves the transfor-
mation of volume and surface integrals to discrete algebraic equations based on the values at the
centroids of the CVs. The application of these approaches yields the following semi-discrete form
of the general conservation equation:

∂ (ρP ξP )

∂t
ΩP = −

∑

f

φfξf +
∑

f

(ρDξ)f

(
∂ξ

∂xi

)

f

Sfi + Sξ,PΩP = L
(
ξTP
)
. (3.23)
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Here, L
(
ξTP
)
is the spatial discretization operator at a reference time T [201]. This operator can

be expressed in an algebraic form for every CV of the grid [201]

L
(
ξTP
)

= aP ξ
T
P +

∑

N

aNξ
T
N − bP . (3.24)

The sum
∑
N is taken over all neighboring CVs which influence the computational stencil around

point P . After applying a discretization scheme to the transient term in Eq. (3.23), the general
conservation equation can be written in the form of a system of algebraic equations [130]:

aξ = b . (3.25)

Here, a is a sparse matrix which contains the diagonal (aP ) and the off-diagonal (aN ) coefficients.
The unknowns in the CVs are denoted by the vector ξ and the vector b on the right-hand side
contains the source terms of the respective centroids bP .

In general, two kinds of time marching methods are available: explicit and implicit. When
explicit time stepping is used, the spatial discretization operator L

(
ξTP
)
contains only contributions

from the previous time level. Hence, the time integration can be performed without solving a system
of linear equations. In contrast, when implicit time integration schemes are applied, L

(
ξTP
)
also

depends on the values of the new – unknown – time level. This, in turn, implies the solution of
the system of algebraic equations according to Eq. (3.25). The applied time marching schemes
are presented in the following. In this work, the implicit Euler scheme is used in the combustion
simulations and the second-order accurate backward method is applied in all inert pressure-based
simulations. In the density-based solver, an explicit second-order four-stage low-storage Runge-
Kutta scheme is employed. For the sake of simplicity the different time levels are denoted as

Ξn+1 = Ξ (t+ ∆t) , Ξn = Ξ (t) and Ξn−1 = Ξ (t−∆t) . (3.26)

Here, Ξ is short for ρξ and t and ∆t denote the current time level and the time step, respectively.

Euler implicit

Expressing the face values in the FVM with cell values from the new time level yields the Euler
implicit time integration scheme [130]:

Ξn+1
P − ΞnP

∆t
=

1

ΩP
L
(
ξn+1
P

)
. (3.27)

This time marching scheme is first-order accurate and more stable than the second-order implicit
backward-differencing scheme introduced next.

Second-order implicit backward

Using the information of the current and the previous time level, the implicit backward differencing
scheme can be deduced as [130]:

3Ξn+1
P − 4ΞnP + Ξn−1

P

2∆t
=

1

ΩP
L
(
ξn+1
P

)
. (3.28)

This time integration method is second-order accurate but the boundedness of the solution cannot
be guaranteed.

Second-order four-stage low-storage Runge-Kutta

In density-based solvers, explicit Runge-Kutta (RK) time integration schemes are popular due to
their ease of implementation. In contrast to the implicit time schemes which achieve accuracy by
including multiple time steps, the Runge-Kutta schemes gain accuracy by introducing multiple
stages [120]. In this work, a four stage, low storage variant is applied where only the last time step
and the current Runge-Kutta stage have to be stored. The employed RK method can be written
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in the following general form [37, 157]

Ξ
(i)
P = ΞnP +

ηi∆t

ΩP
L
(
ξ

(i−1)
P

)
i = 1, 2, 3, 4 , (3.29)

where η = [0.11, 0.2766, 0.5, 1.0]. Here, ξ(0)
P corresponds to the solution of the last time step, i.e.,

ξnP , and the final solution of the time marching procedure is Ξn+1
P = Ξ

(4)
P . The RK scheme can be

implemented conveniently in terms of a four-stage loop where the new time level t+ ∆t is updated
gradually.

3.2 Numerical solution algorithms
The selection of the numerical algorithm is usually done with respect to the Mach number. The
Mach number Ma is a dimensionless quantity that relates the local velocity ‖u‖ to the speed of
sound as

Ma =
‖u‖
as

(3.30)

and is a measure for the presence of compressibility effects induced by the fluid flow1. The different
flow regimes can be roughly categorized as follows:

• Low-Mach regime: Ma < 0.3,

• Subsonic regime: Ma < 0.8,

• Transonic regime: 0.8 < Ma < 1.3,

• Supersonic regime: 1.3 < Ma < 5.0,

• Hypersonic regime: Ma > 5.0.

The big difference between the low and high Mach number regime is the role of the pressure [201].
In subsonic conditions (low Mach number), density and pressure as well as density and velocity
are weakly coupled. Hence, the continuity equation acts as a constraint for the velocity field. In
contrast, in high-speed flows changes in pressure induce significant variations in the density. As
a result, the mass conservation equation can be applied to determine the density field. These
facts result in two different types of numerical solver formulations which are widely used [120, 37]:
pressure-based and density-based.

Historically, density-based solvers are applied for the numerical simulation of high Mach num-
ber flows. Density-based frameworks are a straightforward solution approach of the governing
equations, i.e., their algebraic equivalences are solved. Therefore, the velocity and density fields
are calculated from the momentum and mass conservation equations, respectively. The pressure
field is obtained from a suitable thermal equation of state which can be written in the following
pressure-explicit form

p = p (ρ, e,Y) , (3.31)

where e denotes the specific internal energy. Density-based solvers have disadvantages when the
Mach number approaches zero as density variations vanish in the incompressible limit and the
problem becomes numerically ill-conditioned [37]. Different approaches have been developed to
overcome these deficiencies which include, for instance, the introduction of an artificial compress-
ibility, see, e.g., Chorin [48] or Choi and Merkle [47], or pre-conditioning, see, e.g., Turkel et al. [326]
or Weiss and Smith [347].

Pressure-based solvers do not use the density as a primary variable but directly solve for the
pressure. This type of solver can be therefore applied straightforwardly to incompressible cases.
The pressure is solved in a Poisson-like equation which can be derived from the momentum and
continuity equations. Therefore, the pressure is used to force mass conservation by manipulating
the velocity field. The density field is either constant (incompressible case) or can be obtained

1The term "compressibility effect" is used here from a fluid dynamics point of view. Under real-gas conditions,
strong density variations can be introduced by the fluid behavior itself. This type of compressibility is super-
positioned onto the fluid dynamics part and should not be confused with each other.
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from a suitable thermodynamic equation of state, i.e.,

ρ = ρ (p, h,Y) . (3.32)

By explicitly considering the pressure-density coupling in the pressure-based approach, this solver
type can be applied to compressible flows, see, e.g., Moukalled and Darwish [200].

3.3 Pressure-based solver framework
For most of the numerical simulations presented within this work a pressure-based solution frame-
work is applied. The main reason for this is the history of OpenFOAM, which was originally
designed for this type of solver. The basis for the pressure-based solvers in OpenFOAM – for-
mulation and nomenclature – can be found in the PhD thesis of Jasak [130]. In Sec. 3.3.1, the
derivation of the pressure equation for subsonic flow conditions is shown. Next, the extension to
real-gas flows is demonstrated in Sec. 3.3.2. After that, the solution procedure is discussed in
Sec. 3.3.3 and finally the extension of the pressure equation towards the high Mach number regime
is demonstrated in Secs. 3.3.4 and 3.3.5.

3.3.1 Formulation for subsonic flows

Applying the FVM to the momentum conservation equation (2.2) a semi-discrete form can be
derived [130]

aPuP,i = bP,i −
∑

N

aNuN,i −
∂p

∂xi
, (3.33)

where the pressure gradient is not discretized yet. For a further simplification, Jasak [130] intro-
duced the operator HP,i which contains the neighbor contributions aN and the source terms bP,i

HP,i(ui) = bP,i −
∑

N

aNuN,i . (3.34)

Using this notation, the semi-discrete momentum equation and the velocity at the centroid P can
be expressed as follows

aPuP,i = HP,i(ui)−
∂p

∂xi
, (3.35)

uP,i =
HP,i(ui)

aP
− 1

aP

∂p

∂xi
. (3.36)

These two equations form the basis for the realization of the pressure-based solver in OpenFOAM.
Substituting Eq. (3.36) into the mass conservation equation (2.1) and applying the FVM again
yields the final form of the pressure equation:

δρ

δt
+

1

ΩP

∑

f

[(
ρ
HP,i

aP

)

f

Sfi

]
− 1

ΩP

∑

f

[(
ρ

aP

)

f

(
∂p

∂xi

)

f

Sfi

]
= 0 . (3.37)

Here, δ/δt is the operator for the discrete partial differentiation with respect to the time. This
pressure equation (3.37) is elliptical in nature. In addition, it is important to note, that this pressure
equation is different to the pressure equations applied in density-based solvers for stabilization
purpose, see, e.g., Terashima and Koshi [311] or Lacaze et al. [156]. In real-gas flows, density-
based frameworks suffer from spurious pressure oscillations. To overcome this issue, some groups
replace the energy equation with a pressure transport equation, which should not be confused with
Eq. (3.37). Another noteworthy fact is that in the LRE community, see, e.g., Ries et al. [261, 260] or
Lapenna et al. [159, 160], Eq. (3.37) is sometimes referred to as low Mach approach, as it does not
include any modifications for the pressure dependency of the density. Own investigations using the
low Mach-type pressure equation showed, that this approach allows the simulation of moderate
density stratifications in the subsonic regime like, for instance, the Mayer test cases [190]. For
larger density ratios and, especially, under multicomponent conditions, the convergence behavior
is not advantageous as the influence of the real-gas thermodynamics onto the pressure equation is
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missing.

3.3.2 Extension for subsonic real-gas flows

Under real-gas conditions, thermodynamic properties depend on both temperature and pressure.
For the stabilization of the solution procedure, Eq. (3.37) has to be modified to account for the den-
sity variations induced by temperature changes. Following typical pressure correction approaches
in the literature, see, e.g., Ferziger and Perić [75] or Moukalled and Darwish [200], the density
variation in the time derivative of Eq. (3.37) is approximated based on the total differential of the
density ρ = ρ (p, h,Y):

dρ =
∂ρ

∂p

∣∣∣∣∣
h,Y

dp+
∂ρ

∂h

∣∣∣∣∣
p,Y

dh+

Nc∑

i=1

∂ρ

∂Yi

∣∣∣∣∣
h,p,Yj 6=Yi

dYi

= Ψhdp+
∂ρ

∂h

∣∣∣∣∣
p,Y

dh+

Nc∑

i=1

∂ρ

∂Yi

∣∣∣∣∣
h,p,Yj 6=Yi

dYi .

(3.38)

Recasting this total differential into a Taylor series truncated after the first term and neglecting
all variations except for the pressure, i.e., dh = 0 and dYi = 0, gives

ρ = ρn + Ψn
h (p− pn) . (3.39)

Here, the superscript n refers to the last time or iteration step. Substituting Eq. (3.39) into
Eq. (3.37) yields

δ (ρn −Ψn
hp
n)

δt︸ ︷︷ ︸
explicit

+
δΨn

hp

δt︸ ︷︷ ︸
implicit

+
1

ΩP

∑

f

[(
ρ
HP,i

aP

)

f

Sfi

]
− 1

ΩP

∑

f

[(
ρ

aP

)

f

(
∂p

∂xi

)

f

Sfi

]
= 0 . (3.40)

As a result of this substitution in the time derivative, the first term is evaluated explicitly while the
second one is treated implicitly2. With this modified pressure equation flows with larger density
stratification can be simulated compared to the low Mach approach, cf. Eq. (3.37), and Eq. (3.40)
is applied throughout this work for the simulation of subsonic flow problems.

3.3.3 Solution procedure

The pressure-based method is implemented in a segregated solution algorithm. A so-called PIM-
PLE approach is applied in OpenFOAM which is a combination of the Semi-Implicit Method
for Pressure Linked Equations (SIMPLE) due to Patankar and Spalding [224] and the Pressure-
Implicit with Splitting of Operators (PISO) method proposed by Issa et al. [126]. In Fig. 3.3, the
basic structure of the numerical algorithm is illustrated.

In the following, the solution procedure of the PIMPLE algorithm is outlined shortly:

1. After the initialization of the simulation, the discretized momentum conservation equation
is solved. The solution to the momentum equation yields the intermediate velocity field u∗i
which does not satisfy the mass conservation. In addition, two facts are important: First,
the mass flux at the cell faces φf = (ρui)f Sfi in the convection term is taken from the
last time/iteration step as it is only updated within the solution procedure of the pressure
equation. Second, the matrix system for the momentum equations is set up without the
pressure gradient as the different contributions of the discretized momentum equation are
later used to construct the pressure equation according to Eq. (3.40).

2In OpenFOAM, the evaluation of the time derivative is realized by means of the function call fvc :: ddt(rho) +
psi ∗ correction(fvm :: ddt(p)). Here, fvc and fvm denote an explicit and an implicit evaluation of the time
derivative, respectively, and psi corresponds to Ψh.
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2. In the next step, the PISO loop is en-
tered and the species transport and the
energy conservation equations are solved.
This solution structure differs from clas-
sical ideal-gas approaches where these
transport equations are evaluated outside
of the PISO loop. For the robustness
of the solver under real-gas conditions,
the consideration of the coupling between
species, energy and pressure is essential,
see, e.g., Jarczyk [128] or Jarczyk and
Pfitzner [129]. After the mixture com-
position and the energy are updated, the
thermodynamics closure is evaluated.

3. The next step involves the construc-
tion and evaluation of the pressure
equation. First, the pseudo-velocity
HP,i (u∗i ) (aP )

−1 is evaluated at the cell
centroids [330] and is then interpolated
onto the CV faces together with the den-
sity by means of a linear interpolation3.
This step mimics the Rhie-Chow interpo-
lation [256] in OpenFOAM and therefore
avoids checkerboarding due to a missing
contribution of the pressure value of the
respective CV in the numerical stencil.
For more details it is referred to the PhD
thesis of Uroic [330] and the textbook of
Moukalled et al. [201]. Next, the pressure
equation is constructed and solved. Us-
ing the updated pressure field, the mass
fluxes φf are updated which now contain
the influence of the new pressure field and
therefore satisfy mass conservation. Simi-
larly, the velocity field is corrected accord-
ing to Eq. (3.36). In addition, pressure
contributions to the density are consid-
ered explicitly without invoking the ther-
modynamic closure by evaluating

dρ = Ψhdp (3.41)

before and after the evaluation of the
pressure equation.
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Figure 3.3: Flowchart of the pressure-based PIM-
PLE algorithm in OpenFOAM.

4. After convergence is achieved, the sub-grid/turbulence model is evaluated before advancing
to the next time level.

Typically, the outer SIMPLE and the inner PISO loop are evaluated three and one times, re-
spectively. On strongly nonorthogonal meshes, additional orthogonal corrections of the pressure
equation are necessary. Usually, two additional corrections are sufficient to achieve a desirable
convergence behavior.
3In OpenFOAM, the mass flux at the faces actually consists of two terms. The first one is the standard mass
flux, i.e., the pseudo-velocity multiplied by the density and the surface area. The second contribution is termed
fvc::ddtCorr(rho, U, phi) in OpenFOAM. This term cannot be found in the original PISO formulation and is an
undocumented flux correction term. It accounts for the difference between the face velocity and the face flux due
to nonequal face interpolation procedures and can be interpreted as a first order damping term. More details on
this fact can be found in the work of Vuorinen et al. [342].
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The time step is controlled by the convective Courant-Friedrichs-Lewy (CFLc) number criterion

CFLc =
‖u‖∆t

∆x
(3.42)

which relates the time step to a representative cell dimension ∆x and the local velocity ‖u‖. In
the present work, CFLc numbers between 0.4 and 0.8 are applied.

3.3.4 General extension for high-speed flows

The governing equations of high-speed and compressible flows have a hyperbolic character which is
the main reason why density-based solvers are so well suited for simulating this kind of flows [120].
To utilize the pressure-based approach for high-speed flows, the elliptical pressure equation (3.37)
has to be adjusted to account for the variation of density with respect to pressure. In this way, the
character of the pressure equation can be changed from purely elliptical to hyperbolic. This fact
was noticed for the first time by Patankar [222] and was later also adopted by many other groups
to extend their pressure-based solvers to high Mach numbers, see, e.g., Issa and Lockwood [125],
Hah [104, 105], van Doormaal et al. [334], Rhie and Stowers [257] or Rincon and Elder [262].

The consideration of density variations with respect to pressure changes can be done straight-
forwardly as

ρ = Ψp . (3.43)

Independent of the fluid model, Ψ can be expressed as

Ψ =
1

ZRT
. (3.44)

Here, R is the specific gas constant which can be calculated in a multicomponent mixture based on
the mass-weighted sum of the different species. In addition, Z denotes the compressibility factor
in Eq. (3.44) which is defined as:

Z =
p

ρRT
. (3.45)

For an ideal-gas (Z = 1 or ρ = p (RT )
−1), Ψ corresponds to the isothermal compressibility

∂ρ/∂p
∣∣
T

= (RT )
−1. In real fluids, the ideal gas behavior is a special case and Z is usually

unequal to unity. The compressibility factor can be directly obtained from the thermodynamic
equation of state. Note that Ψ in Eq. (3.43) and Ψh in Eq. (3.39) are not identical for real gases
and care has to be taken in the numerical implementation. In OpenFOAM, two different basic
thermodynamic libraries are available: rhoThermo and psiThermo. The first one is historically
intended for incompressible cases and is therefore a good choice for the subsonic pressure-based
framework. In contrast, the psiThermo library is intended for compressible flow problems and is,
consequently, perfectly suited for the supersonic pressure-based framework. The basic difference in
both thermodynamic classes lies in the call of the density field which is stored directly in a scalar
field in the rhoThermo libraries. In the psiThermo libraries, the density is recalculated by means of
Eq. (3.43), i.e., based on the current Ψ and p fields. As a result, the update of the density within
the supersonic PISO loop, i.e., when the psiThermo libaries are used, is done using Eq. (3.43)
instead of Eq. (3.41).

Applying Eq. (3.43) to the subsonic pressure equation (3.37) yields the basic form of the hyper-
bolic pressure equation

δ (Ψp)

δt
+

1

ΩP

∑

f

[(
HP,i

aP

)

f

Sfi (Ψp)f

]
− 1

ΩP

∑

f

[(
ρ

aP

)

f

(
∂p

∂xi

)

f

Sfi

]
= 0 . (3.46)

This pressure equation can be used to simulate trans- and supersonic flows. However, in the
current form, this approach can only be applied for investigating configurations with moderate
density stratifications and without pronounced shock structures. For high-speed flows, like they
occur during the fuel injection process under GE-like conditions, modifications have to be made as
the current flux (pseudo-velocity) formulation and interpolation procedures in the standard Open-
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FOAM libraries are prone to nonphysical pressure oscillations and simulation crashes. In general,
a large number of different approaches exist. For the SIMPLE-family an excessive discussion and
introduction can be found in the works of Moukalled and Darwish [59, 200, 201]. An implicitly
coupled approach based on a Newton linearization was recently presented by Xiao et al. [359]
yielding a highly robust numerical algorithm for all speeds. In the present work, Eq. (3.46) is
augmented with a semi-discrete central-upwind flux scheme suited for high-speed flows which is
derived and discussed in detail in appendix A. In the following, the most important details of the
resulting hybrid pressure-based solver are outlined.

3.3.5 Hybrid pressure-based approach for high-speed flows

The hybrid pressure-based solver for high Mach number flows is based on the work of Greenshields
et al. [101] and Kraposhin et al. [143]. Greenshields et al. [101] applied the semi-discrete central
flux schemes of Kurganov and Tadmor [152] (KT) and Kurganov, Noelle and Petrova [149] (KNP)
for the first time on arbitrary polyhedral meshes in OpenFOAM. The important step of this ap-
plication is the replacement of the dimension-by-dimension reconstruction of cell values onto the
cell interfaces with a face-by-face approach. Therefore, a genuinely multi-dimensional form of re-
construction, as for instance suggested by Kurganov and Petrova [150, 151], can be avoided which
is usually not applicable on arbitrary polyhedral collocated meshes. Using the face-by-face ap-
proach, the central schemes are not applied along the Cartesian coordinates but rather along the
face normal direction making it easily applicable for the FVM on arbitrary meshes. Therefore,
the translation of the flux formulation into OpenFOAM and the reconstruction of cell values onto
the faces are the central points of the implementation of the KT and KNP flux schemes in Open-
FOAM. Recently, Kraposhin et al. [143] used the implementation and suggestions of Greenshields
et al. [101] and included the semi-discrete central flux formulations together with the face-by-face
reconstruction into the pressure-based solver. In this way, the flux formulation and interpolation
is stabilized for the investigation of hyperbolic problems.

The key to incorporate the KT/KNP flux scheme into OpenFOAM is the understanding of
OpenFOAM’s interpolation procedure. The direction of the reconstruction is defined by the di-
rection of the reconstruction procedure and not by the direction of the face normal vector as it is
the case for the derivation of many central schemes, see, e.g., Kurganov [148] and appendix A.2.
Therefore, left- and right-sided face values are associated with a positive and a negative recon-
struction direction, respectively, see Fig. 3.4. In OpenFOAM, the interpolation of cell values onto
the faces is done based on the blended differencing scheme introduced in Eqs. (3.10) and (3.11). To
get left-hand side (LHS) and right-hand side (RHS) face values from the states stored at the cell
centers, either a pseudo positive or negative flux has to be handed to the interpolation procedure,
i.e., pos = 1 or neg = −1. In OpenFOAM, the call takes three different arguments, see Fig. 3.4.
The first contains the values at the cell center (here: the density field rho), the second defines the
interpolation direction and the last argument is a key word (here: reconstruct(rho)) which enables

f

reconstruction into the positive direction, e.g.,
ρ+ = fvc::interpolate(rho, pos, "reconstruct(rho)")

reconstruction into the negazive direction, e.g.,
ρ− = fvc::interpolate(rho, neg, "reconstruct(rho)")

P

N

face normal
vector Sfiowner CV

neighbor CV

Figure 3.4: Definitions of the interpolation directions in OpenFOAM.
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the run-time selection of any TVD scheme. The reconstruction procedure results in discontinuities
at the cell interfaces. These discontinuities travel with left- and right-sided speeds of propagation
which are the basis for the derivation of the family of central schemes. According to Greenshields et
al. [101], the volumetric fluxes associated with the one-sided propagation speeds can be estimated
as

ă+
f = max

(
max

(
Φ+
f + a+

s,f |Sfi| ,Φ−f + a−s,f |Sfi|
)
, 0
)

(3.47)

and
ă−f = min

(
min

(
Φ+
f − a+

s,f |Sfi| ,Φ−f − a−s,f |Sfi|
)
, 0
)
, (3.48)

where a+
s,f and a−s,f denote the left- and right-sided reconstructed speed of sounds, respectively, and

Φf = (ui)f Sfi is the volumetric flux at the faces. As a result of the definition of the reconstruction
directions in OpenFOAM, the one-sided propagation speeds have to be considered as maximum
wave speeds into the respective directions of the face normal vector. This is in contrast to the
definitions of the reconstruction directions as a+

s,f and a−s,f are associated with the left- and right-
handed side of the cell face, respectively.

In the present work, the KNP flux scheme [149] is employed exclusively. The reasons are discussed
in the appendix A. Applying the above OpenFOAM definitions to the semi-discrete KNP flux
scheme, cf. Eq. (A.24), yields the following volumetric flux of the general scalar variable ξ at the
cell face j + 1/2 which is the face between the centroids at xj and xj+1:

(Φξ)j+ 1
2

=
ă+
j+ 1

2

(Φξ)
+
j+ 1

2
− ă−

j+ 1
2

(Φξ)
−
j+ 1

2

ă+
j+ 1

2

− ă−
j+ 1

2

−
ă+
j+ 1

2

ă−
j+ 1

2

ă+
j+ 1

2

− ă−
j+ 1

2

(
ξ+
j+ 1

2

− ξ−
j+ 1

2

)
. (3.49)

For more details on the applied nomenclature refer to Sec. A.2 in the appendix. Following this
expression and the idea of the face-by-face approach, the flux of a general scalar variable ξ in the
FVM can be written as [101]

∑

f

Φfξf =
∑

f

1

ă+
f − ă−f

[
ă+
f Φ+

f ξ
+
f − ă−f Φ−f ξ

−
f − ă+

f ă
−
f

(
ξ+
f − ξ−f

)]
. (3.50)

This formulation can be further simplified by introducing α+, α− and the volumetric flux ωf :

α+
f =

ă+
f

ă+
f − ă−f

, α−f = 1− α+
f = −

ă−f
ă+
f − ă−f

and ωf =
ă+
f ă
−
f

ă+
f − ă−f

. (3.51)

Therefore, Eq. (3.50) can be re-written as:
∑

f

Φfξf =
∑

f

[
α+
f Φ+

f ξ
+
f + α−f Φ−f ξ

−
f − ωf

(
ξ+
f − ξ−f

)]

=
∑

f

[(
α+
f Φ+

f − ωf
)
ξ+
f +

(
α−f Φ−f + ωf

)
ξ−f

]
.

(3.52)

Applying Eq. (3.52) to the general high-speed pressure equation (3.46) yields the hybrid pressure-
based approach suggested by Kraposhin et al. [143]. In a first step, the volumetric fluxes on the
left- and right-hand side of the face are expressed following Eq. (3.36):

Φ+
f = (uP,i)

+
f Sfi =

(
HP,i

aP

)+

f

Sfi −
(

1

aP

∂p

∂xi

)+

f

Sfi , (3.53)

Φ−f = (uP,i)
−
f Sfi =

(
HP,i

aP

)−

f

Sfi −
(

1

aP

∂p

∂xi

)−

f

Sfi . (3.54)

In the next step, these volumetric fluxes are substituted into the KNP flux scheme, see Eq. (3.52),
and ξ is replaced by the density ρ. In the final step, the flux formulation for the density is
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substituted into the mass conservation equation and the densities in the transient, the pseudo-
velocity and the volumetric flux terms are replaced by Eq. (3.43) yielding the final form of the
hyperbolic pressure-equation:

δ (Ψp)

δt
+

1

ΩP

∑

f
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α+
f

(
HP,i

aP

)+

f
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]
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+
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(Ψp)

−
f − α−f

(
ρ

aP

)−

f

(
∂p

∂xi

)−

f

Sfi

}
= 0 .

(3.55)

This pressure equation allows the simulation of trans- and supersonic flows with ideal and real-gas
effects. A thorough validation of this solver can be found in the work of Kraposhin et al. [143].
Further validations were conducted in the PhD thesis of Banholzer [20] and in Sec. F.1 of the
appendix.

To conclude the section on the hybrid pressure-based approach, some final remarks are made
regarding the implementation and handling:

1. In contrast to the subsonic pressure equation, the terms HP,i (aP )
−1 and ρ (aP )

−1 are not
reconstructed using a linear interpolation but rather TVD schemes to stabilize the solver.

2. All five terms in the pressure equation can be handled implicitly thanks to the replacement
of ρ by the product Ψp. As a result, the left- and right-sided pressure-corrected face fluxes
can be calculated straightforwardly in OpenFOAM by evoking the already implemented
flux function. This yields a left- and right-sided face flux for the momentum, energy and
species conservation equations. Note that the direct re-calculation of the face fluxes from the
discretized pressure equation is in contrast to the subsonic approach, where the H by a-term
is treated explicitly and therefore has to be added to the final face flux calculation.

3. Although the flux calculation is stabilized by a TVD-type reconstruction, the divergence
terms in the conservation equations have to be discretized with the blended differencing
schemes to avoid an unboundedness of the solution.

3.4 Density-based solver framework

3.4.1 Spurious pressure oscillations

A major problem in the numerical simulation of transcritical flows with density-based solvers is
the occurrence of spurious pressure oscillations. This issue is closely related to underresolved
gradients in the flow field as a result of the application of the LES. In DNS and RANS, these
problems are not as pronounced because the gradients are either resolved or smeared out. Two
different explanations can be given for the occurrence of nonphysical pressure oscillations under
transcritical flow conditions. These are outlined shortly in the following whereby pure oxygen is
considered as fluid.

Nonlinear fluid behavior

In density-based solvers, the solution of the mass and energy conservation equations yields the
density and internal energy fields which define the thermodynamic state of the fluid. Both ther-
modynamic properties show strong nonlinearities under transcritical conditions. The filtering in
the LES can therefore result in nonlinear responses in the derived properties like, for instance,
the temperature or the pressure. To study this behavior in more detail, the work of Lacaze et
al. [156] is followed and a transcritical state change of oxygen at a supercritical pressure of 150 bar
is considered. A one-dimensional domain of 2 mm length is used which is resolved uniformly with
200 grid points. The temperature varies between 150 K and 300 K. The open-source fluid data
base CoolProp [27] is applied to model the thermophysical behavior of oxygen. The impact of
three different filter widths onto the filtered density and energy fields and the derived temperature
and pressure values is shown in Fig. 3.5. The temperature field is almost unaffected by the filtering
operation. In contrast, with increasing filter width the recalculated pressure shows a strong sensi-
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tivity to the filtering operation and a large decrease of several bars occurs in the gradient region.
This results from the nonlinear fluid behavior in the transcritical region and manifests itself as
spurious pressure oscillations in the numerical simulation. Considering an identical case at larger
temperatures, i.e., 500 K ≤ T ≤ 1000 K, the nonideal fluid behavior is not significant anymore and
therefore spurious pressure oscillations vanish. This fact is shown in Fig. 3.6 for a supercritical
state change of oxygen at again 150 bar.
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Figure 3.5: Influence of the filter width on a
transcritical state change of supercritical oxy-
gen at a pressure of 150 bar and a temperature
range of 150 K ≤ T ≤ 300 K.
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gen at a pressure of 150 bar and a temperature
range of 500 K ≤ T ≤ 1000 K.

Variation of the specific heat ratio and the reference energy

Since the work of Abgrall and Karni [4] it is known that fully-conservative Godunov-type schemes
are not able to maintain the pressure equilibrium across material interfaces and therefore spurious
pressure oscillations occur. The cause for these pressure oscillations can be traced back to a change
of the reference internal energy e0 and the specific heat ratio γ across the material front.

Let us follow the statements of Billet and Abgrall [32] and Ma et al. [177] and consider the
one-dimensional Euler equations for mass, momentum and energy conservation:

∂ρ

∂t
+
∂ (ρu)

∂x
= 0 , (3.56)

∂ (ρu)

∂t
+
∂
(
ρu2
)

∂x
= −∂p

∂x
, (3.57)

∂ (ρet)

∂t
+
∂ (ρht)

∂x
= 0 . (3.58)

Here, the total enthalpy and energy are related by

ht = et +
p

ρ
= e+

u2

2
+
p

ρ
. (3.59)

For the case of constant velocity u (u 6= 0) and pressure p at time level n, the discretized mass and
momentum conservation equation can be further simplified as:

δρ = −∆t

∆x
u∆ρ , (3.60)

δ (ρu) = −∆t

∆x
u2∆ρ . (3.61)

Here, the transient terms have been discretized using the first order Euler scheme [120]. In addition,
the variables δ (•) and ∆ (•) denote a temporal and a spatial variation, i.e., δ (•) = (•)n+1

j − (•)nj
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and ∆ (•) = (•)nj+1/2 − (•)nj−1/2. Substituting Eq. (3.60) into Eq. (3.61) yields

δ (ρu) = u δρ . (3.62)

Using the identity δ(ρu) = ρδu+ uδρ, Eq. (3.62) can be further simplified to

un+1 − un = 0 . (3.63)

Therefore, during a single time step, the velocity equilibrium can be maintained across the material
front. To study the behavior of the pressure, the energy conservation equation together with a
suitable relation between specific internal energy and pressure is used. For a calorically perfect
gas, this relation reads [177]

e = e0 +
p

ρ (γ − 1)
= e0 +

pv

γ − 1
. (3.64)

Here, e0 and γ are constants and denote the reference internal energy and the specific heat ratio,
respectively. In addition, v is the specific volume being the inverse of the density ρ. For general
fluids, the assumption of constant e0 and γ usually does not hold and both can be nonlinear
functions of pressure and temperature. However, Eq. (3.64) can still be applied when e0 and γ are
replaced by their respective nonlinear functions e∗0 and γ∗ [177]:

e = e∗0 +
pv

γ∗ − 1
. (3.65)

Substituting this relationship into the energy conservation equation (3.58) and applying the same
discretization approaches as for Eqs. (3.60) and (3.61) yields:

δ (ρe∗0) +
1

γ∗ − 1
δp+ p δ

(
1

γ∗ − 1

)
= −∆t

∆x
u

[
∆ (ρe∗0) + ∆

(
p

γ∗

γ∗ − 1

)]
. (3.66)

Only in the case of constant e∗0 and γ∗ the pressure equilibrium (δp = 0) can be maintained. In
addition, Eq. (3.66) shows that oscillations in pressure can occur due to a variation of e∗0 and
(γ∗ − 1)

−1 in both space and time. As a result, in most practical simulations spurious pressure
oscillations occur in regions where e∗0 and γ∗ change. Especially under transcritical conditions,
the variation of γ∗ is very pronounced due to the presence of real-gas effects. In Fig. 3.7, the
dependency of γ∗ on the pressure and temperature is shown for supercritical oxygen. Near the
critical temperature of oxygen (Tc,O2

= 154.58 K) the largest variations are found and this is
therefore the region where strong spurious pressure oscillations can occur in fully-conservative
schemes. To prevent such oscillations in the numerical simulation, the double-flux method is used
in the present work.
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Figure 3.7: Variation of γ∗ and 1/ (γ∗ − 1) for supercritical oxygen.

3.4.2 Double-flux method

The main idea of the double-flux approach is based on the findings of Eq. (3.66). To maintain
the pressure equilibrium (δp = 0) across regions of varying ρe∗0 and γ∗ both quantities have to be
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frozen in the rectangular domain
[
xj−1/2, xj+1/2

]
×
[
tn, tn+1

]
. This approach was first proposed in

2001 by Abgrall and Karni [4]. In 2003, Billet and Abgrall [32] generalized the double-flux method
for temperature-dependent heat capacities. More recently, the double-flux method was extended
to real-gas fluids by Ma et al. [177]. This extension is used in the present work to prevent spurious
pressure oscillations under transcritical conditions.

As the double-flux method is implemented in a density-based solver framework, the governing
equations are solved in an unmodified manner compared to the pressure-based approach introduced
in Sec. 3.3. Applying the FVM for the discretization of the governing equations results in the
following set of equations:

Ω
∂U

∂t
+
∑

f

(
He
f −Hv

f

)
· ~Sf = 0 with U =

[
ρ, (ρu)

T
, ρet, (ρY)

T
]
. (3.67)

The vector He
f represents the convective part of the numerical fluxes, i.e., the Euler system. The

viscous numerical fluxes are denoted as Hv
f . An important point in the implementation of the

double-flux method is the choice of the scheme for the computation of the Euler fluxes. For the
double-flux method, flux-vector splitting (FVS) schemes are generally applied which belong to
the class of upwind schemes, see appendix A. In the present work, the suggestions of Billet and
Abgrall [32] and Billet and Ryan [33] are followed and the AUSM+-up scheme [171] is employed.
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Figure 3.8: Flowchart of the double-flux method.

Figure 3.8 shows the calculation procedure
of the double-flux method. After the initial-
ization, the time integration is started which
is realized in the present work using the low-
storage, four-stage RK scheme introduced in
Sec. 3.1.3. Following the main idea of the
double-flux method, the evaluation and the
freezing of the isentropic exponent γ∗ and the
reference internal energy e∗0 in the spatial and
temporal domain

[
xj−1/2, xj+1/2

]
×
[
tn, tn+1

]

is done prior to the start of the time march-
ing. Based on the definition of the calorically
perfect gas, γ∗ and e∗0 are defined as [177]:

γ∗ =
ρa2
s

p
, (3.68)

e∗0 = e− p

ρ (γ∗ − 1)
. (3.69)

These two quantities are therefore kept con-
stant throughout a time step, see Fig. 3.8,
which suppresses spurious pressure oscillations.

The second step of the double-flux method
involves the evaluation of the Euler fluxes He

f

at the cell faces. This step can be split into two
substeps:

1. Reconstruction of cell centered values
onto the faces.

2. Evaluation of the Euler fluxes on the cell
faces.

The interpolation of the values at the CV’s cen-
troid onto the faces is done as in the case of the
hybrid pressure-based approach. The blended
differencing scheme is employed as a basis for the interpolation procedure and TVD schemes are
used to ensure boundedness, see Eqs. (3.10) and (3.11) and Sec. 3.3.5. In most flux-vector splitting
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schemes the LHS and RHS face states are denoted by L and R, respectively. This notation is also
adopted in the present case. Therefore, OpenFOAM’s positive and negative directions correspond
to the left- and right-hand sides of the face, respectively. The numerical flux at the cell face j+1/2
can then be computed according to

He
j+ 1

2
:= He(Uj+ 1

2 ,L
,Uj+ 1

2 ,R
) . (3.70)

In appendix A.3, the numerical approach for the determination of the inviscid fluxes based on the
AUSM+-up scheme [171] is presented. Since γ∗ and e∗0 are frozen, the left-hand side and right-hand
side values of these two quantities are different. Therefore, the convective energy fluxes on the LHS
and RHS of a cell face are not identical, see Fig. 3.9. For instance, the total energy on the LHS of
face j + 1/2 is calculated as:

(ρet)
∗
j+1/2,L =

pj+1/2,L

γ∗j − 1
+ ρj+1/2,L e

∗
0,j +

1

2
ρj+1/2,Luj+1/2,L · uj+1/2,L . (3.71)

Note the variables γ∗j and e∗0,j in the first and second term on the right-hand side of the above
equation. These two variables yield different energy fluxes at the shared face which in turn cause the
quasi-conservative character of the double-flux method. Therefore, an energy conservation error
is introduced which reduces with increasing mesh resolution [177]. However, in most practical
simulations this error does not vanish and an erroneous energetic state has to be accepted to
suppress spurious pressure oscillations.
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Figure 3.9: Schematic representation of the Euler fluxes on the LHS and RHS side of the cell face
at j + 1/2 together with a theoretical variation of γ∗.

After the governing equations are solved, the primitive variables p, u and Y are updated. The
velocity and mass fraction fields are obtained from the solution of the momentum equation and the
transport equations of the different species. The pressure is evaluated by utilizing the calorically
perfect gas assumption as [177]

p = (γ∗ − 1) [(ρet)
∗ − ρe∗0 − 0.5 ρu · u] , (3.72)

where ρ, u and (ρet)
∗ are solutions from the current iteration step.

At the end of a RK time step, the thermodynamic and transport properties are evaluated. For
fully consistent thermodynamics, this includes an update of the internal energy from pressure, tem-
perature and compositions, i.e., the pressure and the composition are taken from the double-flux
method and the temperature is recalculated from the applied equation of state.

In contrast to the pressure-based solver, the acoustic CFL number is used to determine the time
step

CFLa =
as∆t

∆x
(3.73)

which relates the time step to a representative cell dimension ∆x and the local speed of propagation,
here denoted as as. In the present work, CFLa numbers between 0.2 and 0.4 are applied. A
validation of the density-based solver can be found in appendix G.





4 Thermodynamics modeling
Classical thermodynamics allows the macroscopic analysis of energetic processes over a wide field
of scientific and engineering problems. In the present work, the general purpose of the applica-
tion of thermodynamics is to close the system of nonlinear conservation equations. In this way,
relations between thermal and caloric properties are provided and different flow phenomena at
engine-relevant conditions can be studied. This requires on the one hand a highly accurate ther-
modynamic framework which contains the most relevant physical effects. On the other hand, the
evaluation of the thermodynamics closure should be as efficient as possible to provide a powerful
numerical tool. This is especially important for LESs as computational meshes usually consist of
several million CVs. The thermodynamic closure has to be evaluated at each time/iteration step
to provide a robust coupling between conserved and derived properties. In the following, a thermo-
dynamic framework is presented which comprises both requirements: accuracy and efficiency. The
framework relies on a rigorous definition of the thermodynamic state based on classical equilib-
rium thermodynamics. This point is highly important to ensure the stability of the CFD simulation
under real-gas conditions. Therefore, the complete thermodynamic framework is derived funda-
mentally in the present work to demonstrate its consistency and to enable the understanding of
the relations between different thermodynamic properties.

This chapter is structured as follows: Starting in Sec. 4.1, the fundamental properties and
equations of classical thermodynamics are introduced. In Sec. 4.2, the Maxwell relations are
presented. The necessary conditions for the thermodynamic equilibrium are derived in Sec. 4.3.
Next, the departure function formalism and the calculation of mass- and mole-related properties
are introduced in Secs. 4.4 and 4.5, respectively. Based on these introductory sections of classical
thermodynamics, the applied ideal- and real-gas models are presented in Secs. 4.6 and 4.7. The
real-gas model is augmented in Sec. 4.8 with a vapor-liquid equilibrium model for multicomponent
mixtures to enable the investigation of single-phase instabilities under high-pressure conditions.
Finally, in Sec. 4.9, characteristics of multicomponent VLEs are discussed and the calculation
procedures for different phase diagrams are introduced. The following discussions and presentations
are based on the textbooks of Michelsen and Mollerup [196], Firoozabadi [77], Elliott and Lira [73],
Poling et al. [237] and Lüdecke and Lüdecke [176]. In addition, the textbooks of Baehr and
Kabelac [18], O’Connell and Haile [213], Tester and Modell [312], Sandler [272], Prausnitz et
al. [241] and Stephan et al. [300, 301] provide supplementary useful information on thermodynamics
for pure and multicomponent fluids.

4.1 Fundamental properties and equations
The foundations of classical thermodynamics are the first and second law of thermodynamics which
state the following:
First law: The total energy of an isolated system is constant. Energy can neither be

created nor destroyed but transferred from one form into another.

Second law: The total entropy of an isolated system is at a maximum under equilibrium
conditions. Natural energy conversion and transfer processes are irreversible
and therefore energy has different qualities.

Neither proofs nor exact mathematical definitions exist for these two laws. Both are postulates
that rely on abundant human observations and can be understood as the summary of scientific
studies over a long period of time that were never disproved. The second law thereby constrains
the possibility of processes based on the first law, i.e., it restricts certain paths of energy conversion
like, for instance, a one-by-one conversion of heat into work.

The second pillar of classical thermodynamics are state functions. These functions are used to
describe the change of a system under equilibrium conditions. State functions have the property
that they give one unique value for a set of state variables and that this value is independent of the
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integration path, i.e., is is not important how we arrive at the state. Thermodynamic state func-
tions can be divided into zero and first order functions [196]. Intensive thermodynamic properties
belong to the class of zero order functions. They are nonadditive and at the equilibrium their values
are uniform throughout the system. Examples for intensive properties are, for instance, pressure,
temperature, chemical potentials or concentrations. In contrast, extensive thermodynamic proper-
ties are first order functions which are additive and depend on the size of the system. Examples are
internal energy, entropy, volume or mole numbers. The basic versions of the first and second law
of thermodynamics are written in terms of extensive properties. Therefore, it is the ultimate goal
in classical thermodynamics to express state changes in terms of intensive properties, e.g., pressure
and temperature, which are measurable and hence accessible. In addition, these properties are
more intuitive to handle and it is easier to prescribe them as boundary conditions in numerical
simulations.

Internal energy

The starting point for the derivation of different state functions is the energy balance of a closed
system, i.e., the first law of thermodynamics, [77]:

dE = dQ+ dW . (4.1)

Here, E, Q and W are the internal energy, the heat absorbed by the system and the work done
across the boundaries of the system, see Fig. 4.1. For a reversible process, work and heat can be
expressed as [176]

dQ = dQrev = T dS (4.2)

based on the second law of thermodynamics and as

dW = dWrev = −p dV . (4.3)

Here, S and V denote the entropy and the volume, respectively. The negative sign in Eq. (4.3)
results from the application of Newton’s law and the fact that work added to the system has a
positive sign per definition, i.e., for a compression (dV < 0) the work (dW ) has to be larger than
zero. Substituting Eqs. (4.2) and (4.3) into Eq. (4.1) yields the Gibbs fundamental equation [176]
for a closed system:

dE = T dS − p dV . (4.4)

Although this expression has been derived using reversible state changes, it is also valid for arbi-
trary (irreversible) processes, as E is a state variable, i.e., changes are independent of the path.
Integrating Eq. (4.4) yields the internal energy as a function of the entropy and volume:

E = E (S, V ) . (4.5)

This formulation corresponds to a fundamental equation as it includes all necessary information of
the thermodynamic system: a caloric equation of state E = E(T, V ), the entropy S = S(T, V ) and
a thermal equation of state p = p(T, V ) [176]. To demonstrate this fact, the fundamental equation
of E is expressed as total differential:

dE =
∂E

∂S

∣∣∣∣
V

dS +
∂E

∂V

∣∣∣∣
S

dV . (4.6)

dEdQ

dW

Figure 4.1: Sketch of a closed system defining the first law of thermodynamics.
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Comparing this equation to Eq. (4.4), the intensive properties temperature and pressure are found
as

T =
∂E

∂S

∣∣∣∣
V

, (4.7)

p = −∂E
∂V

∣∣∣∣
S

. (4.8)

The fundamental equation of E can be extended to multicomponent mixture by representing the
internal energy as a function of entropy, volume and composition

E = E (S, V,n) . (4.9)

Here, n = [n1, ..., nNc ] is the vector of mole numbers which are extensive properties. The corre-
sponding total differential of E therefore is

dE =
∂E

∂S

∣∣∣∣
V,n

dS +
∂E

∂V

∣∣∣∣
S,n

dV +

Nc∑

i=1

∂E

∂ni

∣∣∣∣
S,V,nj 6=i

dni = T dS − p dV +

Nc∑

i=1

µi dni . (4.10)

The third partial derivative of this total differential has been defined as

µi =
∂E

∂ni

∣∣∣∣
S,V,nj 6=i

(4.11)

which is called the chemical potential of component i. The chemical potential has a function
analogous to the temperature and the pressure [77]. All three intensive properties – T , p and µi
– are related to extensive properties – S, V and ni – and vice versa. Whenever a homogeneous
system has gradients in intensive properties, transport of extensive properties occurs to bring the
system into an equilibrium condition [196]. Therefore, a gradient in the intensive properties is a
driving force for the transport processes of the extensive properties. The difference in temperature
causes a heat flux, the difference in pressure results in bulk phase displacement and the difference in
the chemical potential yields diffusion fluxes [77], see Tab. 4.1. Diffusion is therefore not caused by
a composition gradient but by differences in the chemical potential as it was discussed in Sec. 2.1.

Table 4.1: Extensive and related intensive thermodynamic properties of the internal energy.

Extensive properties Related intensive properties

S entropy T temperature
V volume −p pressure
ni composition µi chemical potential

According to Eq. (4.9), in a homogeneous system, the internal energy is solely a function of
the extensive variables S, V and n. Therefore, the system is isotropic and the internal energy
is a homogeneous function of degree one in the extensive variables [196, 77]. This permits the
application of Euler’s theorem to the fundamental definition of the internal energy as

E (ΛS,ΛV,Λn) = ΛE (S, V,n) , (4.12)

where Λ is a multiplication parameter [77]. The differentiation of this equation with respect to Λ
yields

∂E

∂ (ΛS)

∣∣∣∣
ΛV,Λn

d (ΛS)

dΛ
+

∂E

∂ (ΛV )

∣∣∣∣
ΛS,Λn

d (ΛV )

dΛ
+

Nc∑

i=1

∂E

∂ (Λni)

∣∣∣∣
ΛS,ΛV,Λnj 6=i

d (Λni)

dΛ
= E (S, V,n) ,

(4.13)
∂E

∂ (ΛS)

∣∣∣∣
ΛV,Λn

S +
∂E

∂ (ΛV )

∣∣∣∣
ΛS,Λn

V +

Nc∑

i=1

∂E

∂ (Λni)

∣∣∣∣
ΛS,ΛV,Λnj 6=i

ni = E (S, V,n) . (4.14)
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Using Λ = 1 [77, 196] and replacing the remaining partial derivatives by T , −p and µi based on
Eqs. (4.7), (4.8) and (4.11) gives

E = TS − pV +

Nc∑

i=1

µini . (4.15)

The differential form of this equation is

dE = T dS + S dT − p dV − V dp+

Nc∑

i=1

µi dni +

Nc∑

i=1

ni dµi (4.16)

and the comparison with Eq. (4.10) yields the Gibbs-Duhem equation [196]

S dT − V dp+

Nc∑

i=1

ni dµi = 0 (4.17)

which demonstrates the importance of the connection between T , p and µi in multicomponent
systems.

Other state functions

In common engineering problems, the fundamental equation E = E(S, V,n) is undesirable as S
and V might not be available. A different set of thermodynamic variables is usually preferred
for convenience which are partial derivatives of the original variables [25]. This could be, for
instance, the variable set (T, V,n) where the entropy has been replaced by its related intensive
property, i.e., the temperature T . This substitution is known as Legendre transformation which
permits the transformation between different sets of independent variables without a loss of infor-
mation [41]. The mathematical principle of the Legendre transformation is the basic theorem in
line geometry [315, 25]. This principle states that a curve can be described completely by the tan-
gents forming the envelope of the curve. A thorough discussion and introduction of the Legendre
transformation can be found in the works of Beegle et al. [25], Michelsen and Mollerup [196] and
Firoozabadi [77]. According to Beegle et al. [25], the k-th Legendre transform of the fundamental
function y(0) = y(0)(x1, ...,xm) is

y(k) = y(0) −
k∑

i=1

∂y(0)

∂xi
xi . (4.18)

The application of this method to the fundamental equation of the internal energy yields new
fundamental equations with a different set of state properties which is shown in the following for
three different cases. For this demonstration we consider a pure fluid system as starting point

E = E (S, V ) = y(0) (4.19)

and will later extend the analysis to multicomponent systems. The first Legendre transform (k = 1)
of the internal energy E(S, V ) is

y(1) = y(0) − ∂y(0)

∂x1
x1 = E − ∂E

∂S

∣∣∣∣
V

S = E − TS := F . (4.20)

Here, the partial derivative of E with respect to S has been replaced with the temperature T
according to Eq. (4.7). The resulting fundamental equation is known in classical thermodynamics
as Helmholtz free energy F . Writing the differential of this fundamental equation

dF = dE − TdS − SdT (4.21)
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and substituting dE according to the Gibbs fundamental equation (4.4) yields

dF = −S dT − p dV . (4.22)

Therefore, the Helmholtz free energy depends on the temperature T and the volume V , i.e.,

F = F (T, V ) . (4.23)

Hence, the entropy has been replaced with its corresponding intensive property and the Helmholtz
free energy is a partial Legendre transform of the internal energy E from the (S, V )-space to the
(T, V )-space.

In a similar way, other useful fundamental equations can be derived. Rearranging the variables
of the internal energy as E = E(V, S) and applying the first Legendre transformation yields

y(1) = y(0) − ∂y(0)

∂x1
x1 = E − ∂E

∂V

∣∣∣∣
S

V = E + pV := H (4.24)

which is the definition of the enthalpy H. Writing the differential of H and replacing dE according
to Eq. (4.4) it can be shown that the enthalpy is a function of pressure and entropy, i.e.,

H = H (p, S) . (4.25)

Here, the volume has been replaced with its related intensive property – the pressure p.

Finally, a fourth fundamental equation can be derived using E = E(S, V ) and the second
Legendre transformation:

y(2) = y(0)− ∂y
(0)

∂x1
x1−

∂y(0)

∂x2
x2 = E− ∂E

∂S

∣∣∣∣
V

S− ∂E
∂V

∣∣∣∣
S

V = E−TS+pV = H−TS := G . (4.26)

This fundamental equation is called Gibbs energy G. The dependency analysis based on the
differential of G shows that the Gibbs energy is a function of temperature and pressure

G = G (T, p) (4.27)

which is convenient for many engineering applications as both properties – T and p – are accessible
in measurements and their definition is intuitive.

In the next step, we can now apply these new fundamental equations of H, F and G straightfor-
wardly to multicomponent fluids by replacing dE with Eq. (4.10). This yields the following total
differentials for the enthalpy, Helmholtz free energy and Gibbs energy:

dH = T dS + V dp+

Nc∑

i=1

µi dni , (4.28)

dF = −S dT − p dV +

Nc∑

i=1

µi dni , (4.29)

dG = −S dT + V dp+

Nc∑

i=1

µi dni . (4.30)

Comparing these three formulations and Eq. (4.10), four equivalent definitions of the chemical
potential exist

µi =
∂E

∂ni

∣∣∣∣
S,V,nj 6=i

=
∂H

∂ni

∣∣∣∣
S,p,nj 6=i

=
∂F

∂ni

∣∣∣∣
T,V,nj 6=i

=
∂G

∂ni

∣∣∣∣
T,p,nj 6=i

(4.31)
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whereby the latter expression in terms of the Gibbs energy G is the best known one. However,
the third definition based on the Helmholtz free energy F is better applicable in combination with
most thermal equations of state as most are pressure-explicit, i.e., functions of T and V .

4.2 Maxwell relations
Using the first law of thermodynamics and the total differential of the internal energy, it could be
shown that the first partial derivatives of the fundamental properties are related to the intensive
(thermal) properties. Further important thermodynamic relations can be derived based on the sec-
ond partial derivatives of the fundamental properties [176]. These relations are known as Maxwell
relations and rely on the reciprocity relations of the partial derivatives [77].Using Eqs. (4.7) and
(4.8) yields the first Maxwell relation

∂T

∂V

∣∣∣∣
S

= − ∂p
∂S

∣∣∣∣
V

. (4.32)

Based on the enthalpyH, the Gibbs energy G and the Helmholtz free energy F three other Maxwell
relations can be derived in an analogous manner:

∂T

∂p

∣∣∣∣
S

=
∂V

∂S

∣∣∣∣
p

, (4.33)

∂S

∂V

∣∣∣∣
T

=
∂p

∂T

∣∣∣∣
V

, (4.34)

∂S

∂p

∣∣∣∣
T

= −∂V
∂T

∣∣∣∣
p

. (4.35)

Additional helpful Maxwell relations based on the total derivative of the internal energy and
enthalpy are

∂S

∂T

∣∣∣∣
V

=
∂E/∂T

∣∣
V

T
=
Cv
T

(4.36)

and
∂S

∂T

∣∣∣∣
p

=
∂H/∂T

∣∣
p

T
=
Cp
T

. (4.37)

4.3 Thermodynamic equilibrium
Classical thermodynamics relies on the equilibrium assumption of the investigated system. Ac-
cording to the second law of thermodynamics, an isolated system reaches its equilibrium state by
a spontaneous process which maximizes its entropy. At the same time this is a stationary point,
i.e.,

dS = 0 . (4.38)

To analyze the conditions for this equilibrium according to Eq. (4.38), the fundamental equation of
the internal energy, Eq. (4.10), has to be rearranged into an equation for the entropy change [77]:

dS =
dE
T

+
p

T
dV −

Nc∑

i=1

µi
T

dni . (4.39)

Let us now consider an isolated system consisting of two subsystems which are initially separated
by a moving, diathermic and permeable wall, see Fig. 4.2. The properties of these two subsystems
are denoted by (•)I and (•)II , respectively. The application of the conservation principles results
in the following basic relations:

dEI + dEII = 0 , dV I + dV II = 0 and dnIi + dnIIi = 0 with i = 1, ..., Nc .
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wall

EI , V I ,
nI
i i = 1, ..., Nc

EII , V II ,
nII
i i = 1, ..., Nc

Figure 4.2: Schematic of an isolated system consisting of two subsystems.

Substituting these equalities into the maximum entropy principle yields

dS = dSI + dSII =

(
1

T I
− 1

T II

)
dEI +

(
pI

T I
− pII

T II

)
dV I −

Nc∑

i=1

(
µIi
T I
− µIIi
T II

)
dnIi = 0 . (4.40)

As EI , V I and nIi are independent variables, all three coefficients in the brackets must be zero to
fulfill the constraint dS = 0. Therefore, the thermodynamic equilibrium of a system is defined at
equal temperature, pressure and chemical potentials of the different components:

T I = T II , (4.41a)

pI = pII , (4.41b)

µIi = µIIi i = 1, ..., Nc . (4.41c)

Requirements for a spontaneous process

For the independent variables E, V and n, the process towards the equilibrium occurs sponta-
neously when the entropy change δS is larger than the corresponding reversible change, i.e., when
the entropy is maximized. To study the requirements of a spontaneous process for other vari-
able combinations, we focus on a pure fluid system and replace the equality sign in the Gibbs
fundamental equation (4.4) by an inequality and write

δS >
δE

T
+
p

T
δV (4.42)

or more conveniently for the following derivations

δE < T δS − p δV . (4.43)

Note, that the following considerations only hold for sufficiently small departures from the equi-
librium [196].

For small changes, the fundamental equation of the enthalpy can be written as

δH = δE + δ (pV ) = δE + p δV + V δp . (4.44)

Substituting δE according to Eq. (4.43) into this expression yields:

δH < T δS + V δp . (4.45)

For an isentropic and isobaric system, the occurrence of a spontaneous process is therefore bounded
to the condition

(δH)S,p < 0 . (4.46)

Hence, the stationary point in an isentropic, isobaric system is at the global minimum of the
enthalpy.
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In a similar way, we can consider changes in the Helmholtz free energy

δF = δE − δ (TS) = δE − T δS − S δT (4.47)

and replace δE with Eq. (4.43) which yields

δF < −p δV − S δT . (4.48)

Consequently, in an isothermal and isochoric system the equilibrium is reached by a spontaneous
process that minimizes the Helmholtz free energy:

(δF )T,V < 0 . (4.49)

Finally, the Gibbs energy G is applied to derive another spontaneous process. For small changes,
the fundamental equation of G can be written as

δG = δE + δ (pV )− δ (TS) = δE + p δV + V δp− T δS − S δT . (4.50)

Substituting Eq. (4.43) into this expression yields

δG < −S δT + V δp . (4.51)

For a system with constant temperature and pressure, a spontaneous process must therefore pro-
ceed in such a way that

(δG)p,T < 0 . (4.52)

As a result, the equilibrium of an isobaric, isothermal system is defined at the global minimum of the
Gibbs energy. This condition is used to determine phase separation processes in multicomponent
mixtures. However, we will see later that the definition based on the Helmholtz free energy can
also be convenient for pressure-explicit equations of state. In Tab. 4.2, the equilibrium conditions
depending on the state variables are summarized finally.

Table 4.2: Conditions for the equilibrium of a closed system.

Independent variables State function to be minimized

E, V,n −S
S, p,n H
T, V,n F
p, T,n G

4.4 Departure function concept
The previous sections have shown that classical thermodynamics provides relations between differ-
ent extensive and intensive properties. Experimentally, however, only properties like pressure or
temperature are usually accessible. In terms of extensive properties, only changes can be measured
and therefore an arbitrary zero has to be defined [196]. This results from the fact that changes in
state properties do not depend on the path and therefore the selection of the reference zero is a
matter of convenience [196]. A very convenient choice for the reference point is the gas state in the
limit of zero pressure and density at a reference temperature T ref. This concept is widely known
as departure function formalism [196, 73, 237] and combines measurable data with fundamental
equations. The idea of this method is as follows: A state property M at the thermodynamic state
(T, V,n) can be determined by means of a three-step procedure:

1. The gases are mixed at the reference temperature T ref, zero pressure and zero density.

2. The mixture is heated from the reference temperature T ref to the desired temperature T .

3. The heated gas mixture is compressed to the final volume V .
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Mathematically, this procedure can be expressed as

M = ∆M0
mix +

∫ T

T ref

∂M0

∂T

∣∣∣∣
V=∞,n

dT̂ +

∫ V

∞

∂M

∂V

∣∣∣∣
T,n

dV̂ . (4.53)

The terms are arranged according to the description of the three-step procedure and �̂ denotes the
integration variable. The next step is to rearrange the terms such that first the reference gas state
is transferred to the desired T, V,n-state, i.e., M0 (T, V,n), and after that a correction Mr (T, V,n)
is carried out that accounts for the difference between the hypothetical gas state and the final state.
This can be written as follows:

M = M0 (T, V,n) + Mr (T, V,n) . (4.54)

Here, both terms can be expressed as

M0 (T, V,n) = ∆M0
mix +

∫ T

T ref

∂M0

∂T

∣∣∣∣
V=∞,n

dT̂ +

∫ V

∞

∂M0

∂V

∣∣∣∣
T,n

dV̂ (4.55)

and

Mr (T, V,n) =

∫ V

∞

[
∂M

∂V

∣∣∣∣
T,n

− ∂M0

∂V

∣∣∣∣
T,n

]
dV̂ . (4.56)

The latter expression Mr (T, V,n) is called departure function as it accounts for the difference
between the hypothetical gas state and the actual thermodynamic state.

To demonstrate the application of the departure function formalism, the Helmholtz free energy
is considered as state function, i.e., M = F . Splitting F into the hypothetical and correction part
yields

F = F 0 + F r . (4.57)

The hypothetical gas state can be determined according to Eq. (4.20) as

F 0 = E0 − TS0 = H0 − (pV )
0 − TS0 , (4.58)

where only hypothetical gas states are necessary to express F 0. These are accessible based on
measurements and theoretical approaches [237]. In the present work, the hypothetical gas state is
evaluated by the ideal gas model. This model is introduced in Sec. 4.6. The departure contribution
of the Helmholtz free energy reads

F r =

∫ V

∞


∂F
∂V

∣∣∣∣∣
T,n

− ∂F 0

∂V

∣∣∣∣∣
T,n


 dV̂ . (4.59)

For the determination of both partial derivatives, we compare Eq. (4.29) with the total differential
of F (T, V,n)

dF =
∂F

∂T

∣∣∣∣∣
V,n

dT +
∂F

∂V

∣∣∣∣∣
T,n

dV +

Nc∑

i=1

∂F

∂ni

∣∣∣∣∣
T,V,nj 6=i

dni (4.60)

which yields
∂F

∂V

∣∣∣∣∣
T,n

= −p . (4.61)

Consequently, the residual part of F can be written as

F r =

∫ V

∞

(
p0 − p

)
dV̂ . (4.62)
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Both an ideal- and a real-gas pressure-explicit thermal equation of state of the form

p = p (T, V,n) (4.63)

are necessary to evaluate the departure function. It is noteworthy that no caloric real-gas model
is necessary to determine the state function. Only ideal gas properties and a real-gas equation of
state are needed to evaluate the Helmholtz free energy. We will see in the following that this is no
exception but rather a rule which accounts for all other fundamental functions and related/derived
properties.

The residual concept can also be applied to the variable set (T, p,n). In this case, the funda-
mental property M can be determined as

M = M0 (T, p,n) + Mr (T, p,n) . (4.64)

The basic idea of the integration path of M0 and Mr is identical to the (T, V,n)-case, only the
integration is performed from zero pressure instead of zero density:

M0 (T, p,n) = ∆M0
mix +

∫ T

T ref

∂M0

∂T

∣∣∣∣
p=0,n

dT̂ +

∫ p

0

∂M0

∂p

∣∣∣∣
T,n

dp̂ (4.65)

and

Mr (T, p,n) =

∫ p

0

[
∂M

∂p

∣∣∣∣
T,n

− ∂M0

∂p

∣∣∣∣
T,n

]
dp̂ . (4.66)

4.5 Partial molar and specific properties
In multicomponent fluids and mixtures, partial molar and specific properties play an important
role as they describe the variation of an extensive property with respect to a variation in the
mole number or mass. For the following derivations, an isobaric, isothermal single-phase system
composed of various components is considered. Let B be an extensive property that is in turn a
homogeneous function of degree one. The partial molar property bi of B at isobaric, isothermal
conditions can be written as [196, 77]

bi :=
∂B

∂ni

∣∣∣∣
p,T,nj 6=i

. (4.67)

Using Euler’s theorem with Λ = 1 we can therefore write

B =

Nc∑

i=1

ni
∂B

∂ni

∣∣∣∣
p,T,nj 6=i

(4.68)

and recover the extensive property based on the partial molar properties and mole numbers of the
different species. In a similar way, partial mass properties can be defined as

bi :=
∂B

∂mi

∣∣∣∣
p,T,mj 6=i

(4.69)

and the extensive property can be recalculated analogously according to

B =

Nc∑

i=1

mi
∂B

∂mi

∣∣∣∣
p,T,mj 6=i

. (4.70)

Following this approach, intensive mole- and mass-related properties can be defined as

b =
B

nt
=

Nc∑

i=1

zibi , (4.71)
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b =
B

mt
=

Nc∑

i=1

Yibi . (4.72)

4.6 Ideal-gas model
The major characteristic of gases is that they cover an available volume completely since the atoms
and molecules of gases can move freely and have only weak attractive and repulsive forces [176].
Neglecting such forces and assuming that molecules/atoms of such gases are point masses, i.e.,
they do not posses an own volume, results in the ideal-gas model. Additional assumptions of this
fluid model are: The molecules are in a constant random motion without a preferred direction
in space. The collisions between the molecules and the boundaries are perfectly elastic. The
pressure in the occupied volume is therefore only a result of the collisions between the molecules
and the boundaries. Finally, the mean kinetic energy of the molecules is directly proportional to
the temperature of the gas. In general, the ideal gas law is only valid at very low pressures and high
temperatures. However, it has the charm that it can be derived straightforwardly from the kinetic
gas theory. Therefore, it is a good choice to form the basis for the departure function formalism
due to its sound theoretical character.

4.6.1 Thermal and caloric equation of state

In 1834, Clapeyron proposed the ideal gas law [162] by combining the empirical laws of Boyle,
Charles, Avogadro and Gay-Lussac. The pressure-explicit form of this thermal equation of state
(EoS) reads

p =
nRT

V
(4.73)

and links the pressure with the temperature, volume and mole number. Here, n can either be the
mole number of a single component or of the mixture, i.e., n = nt. Using the definition of the
molar property according to Eq. (4.71), the ideal gas law can be written as

pv = RT . (4.74)

The universal gas constant R can be further related to the Avogadro constant NA and the Boltz-
mann constant kB as R = kBNA.

Since the experimental work of Gay-Lussac [176] it is known that the internal energy and the
enthalpy of an ideal gas are sole functions of the temperature. This fact can be also demonstrated
theoretically using the already derived thermodynamic relations and the ideal gas law according to
Eq. (4.73). Let us consider an iso-composition fluid and an isothermal state change. The derivative
of the internal energy and the enthalpy with respect to the volume and the pressure can be written
as

∂E

∂V

∣∣∣∣
T

=
∂E

∂S

∣∣∣∣
V

∂S

∂V

∣∣∣∣
T

+
∂E

∂V

∣∣∣∣
S

and
∂H

∂p

∣∣∣∣
T

=
∂H

∂S

∣∣∣∣
p

∂S

∂p

∣∣∣∣
T

+
∂H

∂p

∣∣∣∣
S

. (4.75)

Using the relations of extensive and intensive properties from the Secs. 4.1 and 4.2 both approaches
can be re-formulated as

∂E

∂V

∣∣∣∣
T

= T
∂p

∂T

∣∣∣∣
V

− p and
∂H

∂p

∣∣∣∣
T

= −T ∂V
∂T

∣∣∣∣
p

+ V . (4.76)

Both remaining partial derivatives can be expressed based on the ideal gas law according to
Eq. (4.73) which yields

∂E

∂V

∣∣∣∣
T

= T
nR

V
− p = p− p = 0 and

∂H

∂p

∣∣∣∣
T

= −T nR
p

+ V = −V + V = 0 . (4.77)

This demonstrates that both the internal energy as well as the enthalpy of an ideal gas are not
a function of the pressure and hence solely functions of the temperature. As a result, the heat
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capacity, the molar enthalpy and the entropy of an ideal gas can be expressed as:

cp
0 = cp

0(T ) , (4.78)

h0 = h0(T ref) +

∫ T

T ref
cp

0(T̂ ) dT̂ , (4.79)

s0 = s0(T ref) +

∫ T

T ref

cp
0(T̂ )

T̂
dT̂ −R

∫ p

pref

dp̂
p̂

= s0(T ref) +

∫ T

T ref

cp
0(T̂ )

T̂
dT̂ −R ln

(
p

pref

)
. (4.80)

Here, h0(T ref) is the molar enthalpy of formation at the reference temperature and s0(T ref) is the
reference molar entropy. The pressure term in the entropy equation results from the application
of Eq. (4.28). In OpenFOAM, the reference temperature and pressure are 298.15 K and 1 bar,
respectively. To model the temperature dependent part of the three quantities, the 7-coefficient
NASA (abbreviation for: National Aeronautics and Space Administration) polynomials [97] are
used in the present work. These polynomials read as follows [97]:

cp
0(T )

R
= a1 + a2T + a3T

2 + a4T
3 + a5T

4 , (4.81)

h0(T )

RT
= a1 +

a2T

2
+

a3T
2

3
+

a4T
3

4
+

a5T
4

5
+

a6

T
, (4.82)

s0(T )

R
= a1 ln(T ) + a2T +

a3T
2

2
+

a4T
3

3
+

a5T
4

4
+ a7 . (4.83)

Here, ai are constant coefficients which depend on the fluid. The set of coefficients in the NASA
polynomials is split into two temperature intervals. The coefficients applied in the present work
are taken from the work of Goos et al. [97]. Based on the concept of molar properties, the NASA
polynomials can be extended to multicomponent mixtures by a molar weighting of the fluid specific
coefficients.

4.6.2 Transport properties

For modeling the viscosity and the thermal conductivity, a large number of different approaches
can be found in the literature. The most general models rely on the kinetic gas theory. Many other
approaches have an empirical or semi-empirical character. A comprehensive overview on different
modeling approaches can be found in the textbook of Poling et al. [237] or in the PhD thesis of
Seidl [283].

In the present work, the viscosity and thermal conductivity of an ideal gas are used in RANS
simulations of convection-dominated high-speed flows. Sutherland’s law [305, 349] is employed to
describe the temperature dependency of the viscosity as

µ = C1
T 3/2

T + C2
. (4.84)

Here, C1 and C2 are species-dependent constants. In the present work, Sutherland’s law is applied
exclusively for the binary n-hexane/nitrogen mixture. Here, the required constants are C1 =
8.6 × 10−7 Pa s and C2 = 400 K for n-hexane and C1 = 1.44 × 10−6 Pa s and C2 = 110 K for
nitrogen.

The thermal conductivity of an ideal gas is modeled using the modified Eucken equation due to
Svehla [307]:

λ = µ c0v

(
1.32 + 1.77

R

c0v

)
. (4.85)

Here, c0v is the isochoric heat capacity of an ideal gas. This property can be derived from the
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definition of the enthalpy, see Eq. (4.24), and the ideal gas law, see Eq. (4.73), as

∂h

∂T
= c0p =

∂e

∂T
+R = c0v +R . (4.86)

This yields a relation between the isochoric and the isobaric heat capacity which reads

c0p − c0v = R . (4.87)

The relation is strictly valid for ideal gases and for real gases the pressure dependency of the
thermodynamic properties has to be taken into account.

4.7 Real-gas model
In general fluids, intermolecular forces and the volume of the molecules cannot be neglected as it is
the case in the ideal gas model. In both liquids and gases, attractive and repulsive forces dictate the
pvT -fluid behavior. Especially at high pressures and large densities, the application of the ideal gas
law yields large inaccuracies which are not acceptable for high fidelity modeling of thermodynamic
properties. Figure 4.3a shows a pv,p - diagram for four different application-relevant fluids together
with the ideal gas law at a constant temperature of 293.15 K. As a result of the isothermal condi-
tion, the ideal gas law yields a fluid-independent straight line showing no pressure dependency. In
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Figure 4.3: Demonstration of the nonideal fluid behavior: a) pv,p - diagram at T = 293.15 K for
four different fluids; b) Variation of the compressibility factor Z of methane with pressure and
temperature. The data for both figures have been taken from CoolProp [27].

contrast, for all four fluids under consideration large deviations from the ideal gas law are found.
Only at zero pressure the lines converge towards the ideal-gas reference value. With larger pressure
the difference between the nonideal (real) and ideal fluid behavior increases demonstrating the ne-
cessity of considering intermolecular forces in the fluid models. Figure 4.3b further emphasizes this
by showing the variation of the compressibility factor Z of methane over a wide temperature and
pressure range. For an ideal gas, the compressibility factor is a constant, i.e., Z0 = 1. In the real
fluid case, Z is generally unequal to unity and can be smaller or larger than one. Only in the zero
pressure case and at a single point at elevated pressure the compressibility factor is equal to one.
The connection of the high-pressure states with Z = 1 is known as Boyle curve [176] and marks the
points where the real fluid behaves like an ideal gas, i.e., the intermolecular forces cancel each other.

For modeling the pvT -behavior of real fluids, a large number of different approaches can be found
in the literature, see, for instance, the textbooks of Poling et al. [237] or Lüdecke and Lüdecke [176]
or the papers of Valderrama [331], Wei and Sadus [345], Anderko [6] or Martin [183]. A review of
different types of EoSs of different complexity and fidelity for both pure fluids and mixtures can
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be found in the book of Sengers et al. [286]. According to Valderrama [331], the available real fluid
EoSs can be put roughly into three different categories:

1. virial-type EoSs,

2. van der Waals EoSs,

3. molecular-based EoSs.

The virial-type EoSs are usually polynomial series of the pressure (Berlin form) or the inverse
volume (Leiden form) [176, 237]. They are derived based on potential functions of the intermolec-
ular interactions using statistical thermodynamics. Therefore, the first term of a virial EoS equals
the ideal gas law and all additional terms account for corrections of the nonideal fluid behavior.
One of the most widely applied and known representatives of the virial-type EoS group is the
thermal EoS due to Benedict, Webb and Rubin [30] which has eight adjustable parameters. This
enables a highly accurate representation of the pure fluid behavior but at the expense of relatively
large computing times compared to simpler EoSs like the van der Waals-type EoSs. In addition,
the adjustable parameters make the extension of virial-type EoSs to arbitrary mixtures and new
fluids cumbersome and difficult. Regarding the difficulty in handling and the amount of required
computational time, similar conclusions can be drawn for the molecular-based EoSs like, e.g., the
PC-SAFT EoS [103]. These facts are especially problematic with respect to the conduction of LESs
as the application of such costly EoSs is in contradiction to the idea of a powerful numerical tool.
A very good compromise between efficiency and accuracy are van der Waals EoSs. This type of
state equation has several advantages [331]: The evaluation of the EoS is relatively simple. Next,
they can correctly predict the pvT -behavior of fluids over the entire range of liquid and gaseous
states. Finally, these EoSs can be extended quite easily to arbitrary mixtures and if necessary
they can be fitted conveniently to available experimental data. For these reasons, especially the
branch of cubic (empirical) EoSs is very popular in LESs at engine-relevant conditions, see, e.g.,
the recent review papers of Bellan [29] or Oefelein [216]. Therefore, cubic empirical EoSs will be
used in the present work to model the pvT -behavior of high-pressure fluids.

4.7.1 Cubic equations of state

Almost 150 years ago, van der Waals [333] (vdW) proposed for the first time ever a cubic EoS that
was able to represent the pvT -behavior of liquids and gases, i.e., predict the coexistence of vapor
and liquid at subcritical conditions, with a single EoS. The epoch-making character of this state
equation is recognized in the fact that a whole group of EoSs is named after van der Waals. The
common feature of this group is that they divide the intermolecular forces into a repulsive and an
attractive term [345]. The pioneering EoS due to van der Waals [333], which accounts for both
forces, reads

p =
RT

v − b −
a

v2
. (4.88)

Here, b is the co-volume of the molecules that reduces the available volume and can therefore be
interpreted as a repulsive force, i.e., it increases the pressure compared to the ideal gas law. The
parameter a accounts for the attractive forces and reduces the pressure compared to the ideal gas
law. Setting a and b equal to zero, the ideal gas law according to Eq. (4.74) can be recovered.

General features

For the determination of the parameters a and b, the inflection point of the critical isotherm T = Tc
at the critical point is used. This characteristic point can be expressed mathematically as:

∂p

∂v

∣∣∣∣
T=Tc

=
∂2p

∂v2

∣∣∣∣
T=Tc

= 0 . (4.89)

As cubic EoSs are two parameter state equations, two of the three critical properties – pressure,
temperature and volume – can be used to finally determine a and b based on the described equality
in Eq. (4.89). Usually, pc and Tc are employed. For the vdW-EoS [333] this yields the following
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fluid specific equations for both parameters [176]:

a = 0.421875
R2T 2

c

pc
, (4.90)

b =
1

8

RTc
pc

. (4.91)

As a result, the critical compressibility Zc is fixed, i.e., Zc is an EoS-dependent constant, and
consequently the critical volume is also an EoS-dependent parameter. For the vdW state equation
the critical compressibility is 0.375. This value is not in good agreement with most application-
relevant fluids which can result in large deviations of the predicted liquid density, see Fig. 4.4a.
In contrast, using Tc and vc to determine a and b gives the correct critical volume at the expense
of a wrong prediction of the critical pressure which is undesirable for the numerical investigation
of high-pressure injection. A possible improvement for the prediction of the liquid density is the
concept of volume translation which was proposed for the first time by Martin [182]. The idea
is to alter the density at constant pressure and temperature by a constant or variable factor to
get better agreement with experimental data. In the present work, this concept is not adopted
as it is not yet well established for multicomponent mixtures [77]. An overview and a critical
discussion of volume-translation methods under engine-relevant conditions can be found in the
work of, for instance, Matheis et al. [186]. Another possibility to overcome the described problem
is the application of a three parameter EoS as it was proposed by Cismondi and Mollerup [53].
This state equation is a blended version of two cubic EoSs in order to combine their advantages
and to arrive at a more universal state equation which is suitable for the representation of a large
number of different fluids. Unfortunately, this type of EoS is also not very well established and not
an alternative in the present work. As a result, standard cubic EoSs are employed and attention
has to be paid to choose the EoS which is best suited for the investigated fluid and/or mixture.
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Figure 4.4: Coexistence region of vapor and liquid for a general pure fluid: a) Influence of the
selected critical parameter set (Tc, pc vs. Tc, vc) in cubic EoSs (adopted from Chou and Praus-
nitz [49]); b) Visualization of the van der Waals isotherm (T < Tc).

A second important fact concerning cubic EoSs is their mathematical character with regard
to the evaluation of the volume from a pressure-temperature pair. All cubic state equations are
functions of third degree in the volume. To demonstrate this, the vdW-EoS [333] can be arranged
into the following form

v3 −
(
RT

p
+ b

)
v2 +

a

p
v − ab

p
= 0 . (4.92)

In general, the calculation of the volume for a given temperature and pressure can be done by
employing, for instance, Cardano’s method for cubic equations, see, e.g., Press et al. [243]. Care
has to be taken under subcritical conditions T < Tc. Here, the cubic EoS forms a loop under
isothermal conditions which is often called van der Waals isotherm/loop, see Fig. 4.4b. Therefore,
the cubic EoS has three real solutions out of which the physically most meaningful solution has to
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be selected. As an isothermal, isobaric system is considered for the evaluation of the volume, the
root with the minimum Gibbs energy is usually the solution of choice.

A third characteristic of cubic EoSs is that they obey the corresponding states principle (CSP).
The CSP states that for the same reduced pressure and temperature all fluids have the same
reduced volume. Figure 4.5 visualizes the CSP for three different fluids – methane, oxygen and
nitrogen – by means of a compressibility factor-reduced pressure plot. The data have been taken
from CoolProp [27] and the spline was manually fitted to the respective normalized temperature Tr.
It can be seen that by normalizing the pressure and temperature to the corresponding critical point
the data collapse to a single curve for the respective reduced temperature. Therefore, generalized
approaches based on the CSP – like the cubic EoSs – can be used to represent the pvT -behavior
of different fluids. Mathematically, this can be demonstrated by re-writing the vdW-EoS [333] in
the following reduced form: (

pr +
3

v2
r

)
(3vr − 1) = 8Tr . (4.93)

Here, the variables have been normalized with the respective critical properties: pr = p/pc, Tr =
T/Tc and vr = v/vc.
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Figure 4.5: Demonstration of the corresponding states principle for three different fluids. The
splines have been fitted through the available data points of the respective reduced temperature.
The data have been taken from CoolProp [27].

Employed cubic EoSs

For the description of the pvT -behavior of most engine-relevant fluids, the vdW-EoS [333] is not
accurate enough as a and b are only fluid-specific constants, see Eqs. (4.90) and (4.91). Historically,
however, this EoS was a starting point for the development of a huge number of different modifi-
cations [331, 286]. The breakthrough for a lot of sophisticated improvements was made by Redlich
and Kwong [251] (RK) in 1949 [240]. Redlich and Kwong [251] added the temperature dependency
to the attractive term and could thereby drastically improve the prediction accuracy compared
to the vdW-EoS [333]. A lot of different groups and researchers followed the idea of Redlich and
Kwong [251] and deduced new improved cubic EoSs. A comprehensive overview on this topic is
given in the work of Martin [183]. The most outstanding and most widely used EoSs resulting
from this new development area are the state functions developed by Soave [296] (SRK-EoS) and
Peng and Robinson [226] (PR-EoS). Based on the work of Redlich and Kwong [251], Soave [296]
suggested to model the attractive term as a general function of the reduced temperature and the
acentric factor ω, i.e., a = a(Tr, ω). The acentric factor was proposed by Pitzer [234] and is a
measure for the difference between the molecular structure of the considered fluid and a perfectly
spherical molecule (ω = 0). The general approach for the determination of the attractive term
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according to Soave [296] reads

a (Tr, ω) = acα (Tr, ω) = C
R2T 2

c

pc

[
1 + κ (ω)

(
1−

√
T

Tc

)]2

. (4.94)

Here, C is a constant which depends on the applied EoS and κ is a function of the acentric factor ω
which is determined using experimental data. Peng and Robinson [226] followed an identical path
to deduce their cubic EoS. As a result, the pressure-explicit form of both EoSs can be written
as [253]:

p =
R T

v − b −
a (Tr, ω)

v2 + ubv + wb2
=

R T

v − b −
ac α (Tr, ω)

v2 + ubv + wb2
. (4.95)

Here, u and w are EoS-dependent model constants. In Tab. 4.3, the definitions and the calculation
of the different parameters for the SRK-EoS [296] and the PR-EoS [226] are summarized. As
different approaches for the attractive term and different experimental vapor pressure data sets
were used to derive these state equations, the model parameters and constants differ from each
other. Consequently, the critical compressibilities are different, see Tab. 4.3. Therefore, both

Table 4.3: Parameters for the general cubic equation of state, see Eq. (4.95).

Parameter SRK-EoS [296] PR-EoS [226]

u 1 2
w 0 -1

ac 0.42748
R2T 2

c

pc
0.45724

R2T 2
c

pc

α (Tr, ω)
[
1 + κ(ω)

(
1−

√
T
Tc

)]2

κ(ω) 0.480 + 1.574 ω − 0.176 ω2 0.37464 + 1.54226 ω − 0.26992 ω2

b 0.08664 RTc
pc

0.07780 RTc
pc

Zc 0.333 0.307

cubic EoSs are best suited for different fluids. In Fig. 4.6, this fact is elaborated in more detail.
Figure 4.6a compares the predicted density for different alkanes from the homologue series at a
fixed reduced temperature and pressure. The reference data have been taken from CoolProp [27].
For short-chain alkanes, the SRK-EoS [296] gives the best agreement. In contrast, with increasing
chain length, the prediction accuracy of the PR-EoS [226] is getting better and surpasses the SRK-
EoS [296]. Especially, for n-hexane, n-heptane and n-octane the PR-EoS [226] performs excellently.
This is further emphasized in Fig. 4.6b where the prediction accuracy of both EoSs is evaluated
for the isotherm T = 300 K and over a wide pressure range. For hydrogen only small differences
between the SRK- and the PR-EoS are visible. The PR-EoS [226] gives a mean deviation from the
reference data [27] of about -3.81% and the SRK-EoS of about -0.13%. In contrast, for n-hexane
the mean deviation of the PR-EoS [226] is -1.38% and for the SRK-EoS [296] it is 10.46%. In
the case of methane, the situation is reversed: The mean deviation of the PR-EoS [226] is 4.12%
and for the SRK-EoS [296] it is -2.37%. Overall, the PR-EoS [226] is better suited for long-chain
molecules whereas the SKR-EoS [296] is the better choice for small molecules.

4.7.2 Multicomponent mixtures

For the description of mixture properties, it is necessary to add the composition dependency to
the thermal EoS, i.e.,

p = p (T, V,n) = p (T, v, z) . (4.96)

This yields additional information about the mixture behavior but also increases the complexity
of the thermodynamic model. In the present work, the one-fluid model is applied to represent
the mixture properties. In this modeling approach the mixture is assumed to behave like a pure
fluid with adjusted parameters [237]. Consequently, the modeling of the mixture reduces to finding
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Figure 4.6: Comparison of the PR-EoS [226] and the SRK-EoS [296] with reference data from
CoolProp [27]: a) Density ρ for different alkanes from the homologue series at pr = p/pc = 1.5 and
Tr = T/Tc = 0.75; b) Compressibility factor Z of methane, hydrogen and n-hexane at T = 300 K.

appropriate expressions for the mixture-dependent attractive and repulsive parameters, i.e., a =
a(z) and b = b(z). In the literature, many different mixture models can be found as up to now
no analytically closed solution is known for the representation of multicomponent fluids. More
information on different mixture models can be found in the textbooks of, for instance, Poling et
al. [237] or Michelsen and Mollerup [196].

The representation of the repulsive force b in a multicomponent mixture is straightforward
compared to the attractive force a. As b represents the finite extent of the different molecules,
the overall co-volume of the mixture can be expressed as the arithmetic average of the individual
components forming the multicomponent fluid

b =

Nc∑

i=1

zibi . (4.97)

Here, zi is the mole fraction of component i which can be the mole fraction in the overall mixture or
in every single phase (liquid or vapor). In the following, liquid and vapor mole fractions are denoted
by x = [x1, ..., xNc ] and y = [y1, ..., yNc ], respectively. The co-volume bi of the i-th component in
the mixture can be calculated according to Tab. 4.3 and using the appropriate critical properties
of the respective species.

The modeling of the attractive term a has to be done more carefully. In multicomponent mixtures
many different contributions can occur simultaneously, for instance, various rotations, different
aspect ratios, hydrogen bonding or size asymmetries [73]. All these different molecular interactions
should be represented by the average attraction parameter a. To explain the idea of the mixing rule
for a applied in this work, let us consider a binary mixture, i.e., a mixture consisting of two species
(1) and (2), and follow the statements of Elliott and Lira [73]. In total, two different interactions
between both molecules can be identified:

1. Interaction with itself (1+1 and 2+2),

2. Interaction with the other molecule (1+2 or 2+1).

The probability of finding the species (1) in the fluid is equal to its mole fraction z1 [73]. Based
on the conditional probability concept, the probability of a 1+1 interaction therefore is z1z1 = z2

1 .
Analogously, the probability of a 2+2 interaction is equal to z2

2 . Consequently, the probabilities
for cross interactions of the types 1+2 and 2+1 are z1z2 and z2z1. Denoting the parameters of the
self-interaction forces with a11 and a22, respectively, and the parameter for the cross-interaction
as a12 = a21 yields the following expression for the average interaction parameter of the multicom-
ponent mixture [73]:

a = z2
1a11 + z2

2a22 + z1z2a12 + z2z1a21 = z2
1a11 + 2z1z2a12 + z2

2a22 =

Nc∑

i=1

Nc∑

j=1

zizjaij . (4.98)
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This type of mixing rule is called quadratic mixing rule [73]. Analogous to the co-volume, the
diagonal elements of aij (i = j) can be determined based on the approaches listed in Tab. 4.3
and the critical properties of the respective pure species. For the determination of the off-diagonal
elements of aij (i 6= j), a suitable modeling approach has to be used. In the present work, the
pseudo-critical combination rules due to Reid et al. [253] are applied:

ωij = 0.5 (ωi + ωj) , vc,ij =
1

8

(
v

1/3
c,i + v

1/3
c,j

)3

,

Zc,ij = 0.5 (Zc,i + Zc,j) , Tc,ij =
√
Tc,iTc,j (1− kij) ,

pc,ij = Zc,ijRTc,ij/vc,ij .

(4.99)

In these equations, the indices i and j refer to the respective pure species and the index ij to the
particular off-diagonal element (i 6= j) for which pseudo-critical parameters are evaluated based
on the pure species. The resulting properties are called pseudo-critical as they do not represent
the real critical point of the binary mixture. We will see later that the determination of the real
critical point/locus of a mixture demands a more rigorous definition of criticality. Nonetheless,
this fact does not render the combination rules inadequate as they include the binary interaction
parameter kij . This parameter can be used to fit the equation of state to available experimental
data and arrive at the desired description of the thermodynamic properties of interest. If not
discussed explicitly, the binary interaction coefficient is set to zero in this work.

4.7.3 Caloric and derived properties

The departure function formalism in combination with the fundamental thermodynamic relations
concludes the thermal and caloric single-phase real-gas closure. As the one-fluid mixture is em-
ployed in this work, the composition information is dropped in the following for the sake of simplic-
ity and readability. The caloric properties are denoted as partial molar and specific properties like
they occur in the governing equations. In the following, the derivations are demonstrated for the
PR-EoS [226] and the respective expressions for the SRK-EoS [296] can be found in appendix C.

The basic difficulty in deriving the analytical expressions of the departure functions is the selec-
tion of the independent variables: (T, p) or (T, v). For both variable sets, the departure function
formalism has been introduced in Sec. 4.4. Due to the difference in the hypothetical gas properties
at (T, v) and (T, p), the residuals in Eqs. (4.56) and (4.66) are not necessarily identical [196, 213]:

Mr (T, p) = Mr (T, v) + M0 (T, v)−M0 (T, p) = Mr (T, v) + ∆M0 . (4.100)

The existence of a difference between the departure functions of both variable sets depends on the
selection of M. Evaluating the above relation for the first law conservation properties e and h
yields

er (T, p) = er (T, v) , (4.101)

hr (T, p) = hr (T, v) . (4.102)

Here, the choice of the independent variables is indiscriminate as e0 and h0 are not a function
of the pressure p or the molar volume v [213]. In contrast, the entropy of an ideal gas is a
function of both temperature and pressure and therefore ∆s0 is unequal to zero. This can be
demonstrated by applying the Maxwell relations according to Eqs. (4.34), (4.35), (4.36) and (4.37)
to the hypothetical part of the departure function of s which yields:

s0 (T, v) = ∆s0
mix +

∫ T

T ref

cv

T
dT + R

∫ v

∞

dv̂
v̂
, (4.103)

s0 (T, p) = ∆s0
mix +

∫ T

T ref

cp

T
dT −R

∫ p

0

dp̂
p̂
. (4.104)

This inequality in turn results in the following difference between both hypothetical gas approaches:

s0 (T, v)− s0 (T, p) = ∆s0 = R ln (Z) . (4.105)
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Consequently, the difference between both departure function formulations of the entropy is

sr (T, p) = sr (T, v) + R ln (Z) . (4.106)

As the molar Helmholtz free energy and the molar Gibbs energy are related to the entropy, ∆f0

and ∆g0 do also not vanish. The difference of the departure functions for the Helmholtz free energy
and the Gibbs energy can be derived based on their fundamental definitions, cf. Eqs. (4.20) and
(4.26), and read:

fr (T, p) = fr (T, v)−RT ln (Z) , (4.107)

gr (T, p) = gr (T, v)−RT ln (Z) . (4.108)

These findings form the basis for the evaluation of the departure function formalism which yields
analytical expressions for the different required thermodynamic properties.

Let us start with the most fundamental property – the internal energy. The departure function
of e is

er (T, p) = er (T, v) =

∫ p

0

∂e

∂p

∣∣∣∣
T

dp̂ =

∫ v

∞

(
T
∂p

∂T

∣∣∣∣
v

− p
)

dv̂ . (4.109)

For an easier integration it is desirable to switch to the molar density ρ instead of the molar volume,
i.e., dv = - dρ/ρ2 which yields

er

RT
=

∫ ρ

0

(
p

ρ̂RT
− 1

ρ̂R

∂p

∂T

∣∣∣∣
ρ

)
dρ̂
ρ̂

= −
∫ ρ

0

T
∂Z

∂T

∣∣∣∣
ρ

dρ̂
ρ̂
. (4.110)

The required compressibility factor explicit version of the PR-EoS [226] is

Z =
1

1− bρ −
aρ

RT
(
1 + 2ρb− ρ2b2

) (4.111)

and its partial derivative with respect to the temperature at constant density is

∂Z

∂T

∣∣∣∣
ρ

= −
ρ

1 + 2ρb− ρ2b2

da
dT − a

T

RT
. (4.112)

Here, the derivative of the attractive term with respect to the temperature reads

da
dT

=

Nc∑

i=1

Nc∑

j=1

zizj
daij
dT

, (4.113)

daij
dT

= 0.45724
R2T 2

c,ij

pc,ij

κij√
Tc,ij

(
κij√
Tc,ij

− 1 + κij√
T

)
. (4.114)

As a result, the analytical expression for the departure function of the internal energy is

er =
a− T da

dT√
8b

ln

[
v + b

(
1−
√

2
)

v + b
(
1 +
√

2
)
]
. (4.115)

The molar enthalpy h can be derived based on its fundamental definition, cf. Eq. (4.24), as

hr = er + pv − (pv)
0

= er + pv −RT

= pv −RT +
a− T da

dT√
8b

ln

[
v + b

(
1−
√

2
)

v + b
(
1 +
√

2
)
]
.

(4.116)

For the derivation of the entropy, identical approaches can be used. Combining Eq. (4.106) with
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the Maxwell relation of Eq. (4.34) and the ideal-gas law according to Eq. (4.74) yields the following
expression

sr (T, p)

R
=
sr (T, v)

R
+ ln (Z)

=

∫ ρ

0

[
−T ∂Z

∂T

∣∣∣∣
ρ

− (Z − 1)

]
dρ̂
ρ̂

+ ln (Z) .
(4.117)

The integration of this equation for the PR-EoS [226] results in the following analytical formula

sr (T, p) = R ln

[
p (v − b)

RT

]
− da

dT
1√
8b

ln

[
v + b

(
1−
√

2
)

v + b
(
1 +
√

2
)
]
. (4.118)

Based on the departure functions of the enthalpy and the entropy and the fundamental definition
of the Gibbs energy according to Eq. (4.26), gr(T, p) can be expressed as

gr (T, p) = hr (T, p)− Tsr (T, p)

= pv −RT −RT ln

[
p (v − b)

RT

]
+

a√
8b

ln

[
v + b

(
1−
√

2
)

v + b
(
1 +
√

2
)
]
.

(4.119)

This departure function is used to determine the physically most stable root of the cubic EoS. An
evaluation of the hypothetical ideal-gas part is not necessary as this part is constant when different
solutions are compared to each other. Analogous to the derivation of gr(T, p), the residual part
of the Helmholtz free energy fr(T, p) can be calculated based on the departure functions of the
internal energy and entropy and the fundamental definition of f , cf. Eq. (4.20), as

fr (T, p) = er (T, p)− Tsr (T, p)

= −RT ln

[
p (v − b)

RT

]
+

a√
8b

ln

[
v + b

(
1−
√

2
)

v + b
(
1 +
√

2
)
]
.

(4.120)

This equation plays a key role in the derivation of the chemical potentials and its related properties.

Finally, five additional thermodynamic properties are necessary to conclude the single-phase
real-gas closure: the partial derivative of the enthalpy with respect to the pressure at isothermal
conditions ∂h/∂p

∣∣
T
, the isobaric and isochoric heat capacity (cp and cv), the speed of sound as and

the partial derivative of the density with respect to the pressure at isenthalpic conditions ∂ρ/∂p
∣∣
h
.

The starting point for the first derived property is the Gibbs fundamental equation in the enthalpy
form

dh = Tds+ vdp . (4.121)

Together with the Maxwell relation of Eq. (4.35) and the thermodynamic chain rule

∂v

∂T

∣∣∣∣
p

∂p

∂v

∣∣∣∣
T

∂T

∂p

∣∣∣∣
v

= −1 (4.122)

the partial derivative of the enthalpy with respect to the pressure can be written as

∂h

∂p

∣∣∣∣
T

= v + T
∂p

∂T

∣∣∣∣
v

/
∂p

∂v

∣∣∣∣
T

. (4.123)

Both partial derivatives on the right-hand side can be derived from any pressure-explicit EoS. For
the PR-EoS [226], these two derivatives read:

∂p

∂T

∣∣∣∣
v

=
R

v − b −
da/dT

v2 + 2vb− b2 , (4.124)
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∂p

∂v

∣∣∣∣
T

= − RT

(v − b)2 +
2a (v + b)

(v2 + 2vb− b2)
2 . (4.125)

The heat capacities at constant pressure and volume can be derived based on the total differential
of the enthalpy

dh =
∂h

∂T

∣∣∣∣
p

dT +
∂h

∂p

∣∣∣∣
T

dp = cpdT +
∂h

∂p

∣∣∣∣
T

dp . (4.126)

Substituting the definition of the enthalpy, cf. Eq. (4.24), and Eq. (4.123) into the above relation,
the heat capacity at constant pressure and volume – cp and cv – can be related as

cp = cv − T
(
∂p

∂T

∣∣∣∣
v

)2/
∂p

∂v

∣∣∣∣
T

. (4.127)

Per definition, cp can be derived by differentiating the enthalpy with respect to the temperature
at constant pressure and hence reads

cp = cp
0 (T, z)−R − T d2a/dT 2

√
8b

ln

[
v + b

(
1−
√

2
)

v + b
(
1 +
√

2
)
]
− T

(
∂p

∂T

∣∣∣∣
v

)2/
∂p

∂v

∣∣∣∣
T

. (4.128)

Here, the second derivative of the attractive term with respect to the temperature is

d2a

dT 2
=

Nc∑

i=1

Nc∑

j=1

zizj
d2aij
dT 2

, (4.129)

d2aij
dT 2

= 0.45724
R2

2T
κij (1 + κij)

Tc,ij
pc,ij

√
Tc,ij
T

. (4.130)

The speed of sound as can be deduced in a similar manner. In general, the thermodynamic sound
velocity describes the speed at which a wave is propagating through a medium and is therefore
defined as [77]

as =

√
∂p

∂ρ

∣∣∣∣
s

, (4.131)

where s denotes the entropy and therefore an isentropic state change. Using the Maxwell relations
according to Eqs. (4.36) and (4.37), the speed of sound can be expressed with already known
thermodynamic quantities as

as = v

√
−cp
cv

∂p

∂v

∣∣∣∣
T

. (4.132)

Finally, the partial derivative of the density with respect to the pressure under isenthalpic condi-
tions can be calculated as

Ψh =
∂ρ

∂p

∣∣∣∣
h

= −ρ2 ∂v

∂p

∣∣∣∣
h

. (4.133)

Using the chain rule
∂v

∂p

∣∣∣∣
h

∂h

∂v

∣∣∣∣
p

∂p

∂h

∣∣∣∣
v

= −1 (4.134)

yields

∂v

∂p

∣∣∣∣
h

= −∂h
∂p

∣∣∣∣
v

/
∂h

∂v

∣∣∣∣
p

= −
[
cp

0 ∂T

∂p

∣∣∣∣
v

+

(
∂h

∂p

∣∣∣∣
v

)r ]/[
cp

0 ∂T

∂v

∣∣∣∣
p

+

(
∂h

∂v

∣∣∣∣
p

)r ]
.

(4.135)
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Here, the required partial derivatives can be determined as follows:
(
∂h

∂p

∣∣∣∣
v

)r
= v − R

∂p
∂T

∣∣
v

−
T d2a

dT 2

/
∂p
∂T

∣∣
v√

8b
ln

[
v + b

(
1−
√

2
)

v + b
(
1 +
√

2
)
]
, (4.136)

(
∂h

∂v

∣∣∣∣
p

)r
= p−R

∂T

∂v

∣∣∣∣
p

−
T d2a

dT 2
∂T
∂v

∣∣
p√

8b
ln

[
v + b

(
1−
√

2
)

v + b
(
1 +
√

2
)
]

+
a− T da

dT
v2 + 2vb− b2 . (4.137)

All partial derivatives in these three final equations are known and therefore the thermodynamic
closure of the real-gas single-phase framework is complete. It remains an appropriate iteration ap-
proach to deduce the temperature from either specific enthalpy and pressure (pressure-based solver)
or from specific internal energy and density (density-based solver). In the present work, Dekker’s
method [243] is used which is a combination of the bisection and the secant method. Dekker’s
method is a first order method (linear convergence) and is constrained due to the application of
the bisection approach. Therefore, it cannot diverge and always finds a solution. Divergence prob-
lems can occur when using Newton’s method (quadratic convergence) in the transcritical case as
the thermodynamic properties show very steep gradients in the region of the Widom line.

4.7.4 Transport properties

For the calculation of the high-pressure viscosity and thermal conductivity the method of Chung
et al. [51, 50] is used. The required constants are taken from Poling et al. [237] as they yield
better predictions under cryogenic conditions. The approach of Chung et al. [51, 50] relies on the
Chapman-Enskog theory for diluted gases and is extended to high-pressure fluids based on empirical
functions of the temperature and the pressure. Using combination rules, the method of Chung
et al. [51, 50] can be applied to multicomponent mixtures. If both negative and positive acentric
factors are present in the mixture, Chung’s method [50] is known to produce oscillations [284]. One
way to solve this problem is a mole-/mass-weighted average calculation based on the transport
properties of each individual species, see, e.g., Ruiz et al. [267]. In the present work, negative
acentric factors are set to zero when the viscosity and the thermal conductivity are evaluated to
remove the anomalies.

4.8 Phase separation modeling in multicomponent fluids
The thermodynamic closure described in the previous Sec. 4.7 is commonly referred to as dense-
gas approach as it assumes a single-phase behavior of the fluid. For a thermodynamically rigorous
consideration of phase separation effects in a multicomponent system three requirements must be
met at the solution of the phase equilibrium [19]:

1. The material balance must be satisfied.

2. The chemical potential of each species must be identical in all phases.

3. At constant temperature and pressure, the Gibbs energy must be at a minimum.

Especially the latter point is highly important which results from the application of the second
law of thermodynamics and must not be intrinsically satisfied at the thermodynamic equilibrium.
This fact is elaborated in more detail in the work of Baker et al. [19]. To check whether the
single-phase state is at its global minimum of the Gibbs energy or not, the tangent-plane distance
(TPD) criterion proposed by Michelsen [194] is used in the present work. If a crossing of the
binodal is detected, a classical flashing approach is conducted which yields the species composition
in the different phases. This modeling approach results in an Eulerian representation of the phase
separation process. Therefore, a multiphase state is not represented by droplets and/or vapor
bubbles but rather by a vapor fraction β which is the ratio between the mass of the vapor and
the total mass in the system, see Fig. 4.7. Consequently, a vapor fraction between zero and one
indicates a multiphase state in the numerical simulation. In the present work, a maximum of two
phases is considered and a flat surface between both phases is assumed. Furthermore, the applied
approach is only applicable for multicomponent mixtures.
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disperse droplets

Representation

in the simulation

vapor
fraction

βm = mv

ml+mv

Eulerian approach

Figure 4.7: Representation of the multiphase state in the numerical simulation.

4.8.1 Derivation of the tangent-plane distance criterion

The starting point for the derivation of the tangent-plane distance criterion is a homogeneous
single-phase system as it is sketched in Fig. 4.8 left. For this system (superscript: I), the Gibbs
energy can be expressed as

GI (p, T,n) =

Nc∑

i=1

niµi (p, T,n) . (4.138)

In the next step, a very small amount of a new phase at the identical temperature and pressure
with a mole number of q is formed due to a spontaneous process. For this new system (superscript:
II), see Fig. 4.8 right, the Gibbs energy can be written as

GII = G (p, T,n− q) +G (p, T, q) . (4.139)

Here, the Gibbs energy of the new phase can be expressed as

G (p, T, q) =

Nc∑

i=1

qiµi (p, T, q) (4.140)

and the Gibbs energy of the initial phase may be approximated using a Taylor series

G (p, T,n− q) ≈ GI (p, T,n)−
Nc∑

i=1

qi
∂G

∂ni

∣∣∣∣
p,T,nj 6=i

= GI (p, T,n)−
Nc∑

i=1

qiµi (p, T,n) . (4.141)

The difference of the Gibbs energy between the systems II and I can therefore be calculated as

∆G = GII −GI =

Nc∑

i=1

qi [µi (p, T, q)− µi (p, T,n)] . (4.142)

ni

i = 1, ..., Nc

System I
single-phase

ni − qi
i = 1, ..., Nc

qi i = 1, ..., Nc

System II
two-phase

Figure 4.8: Schematic of a single- and a two-phase system at the same temperature T and pressure p.
The illustration has been adopted from Firoozabadi [77].
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Dividing this equation by the total mole number of the new phase qt yields the molar formulation
of the change in Gibbs energy

∆g =
∆G

qt
=

Nc∑

i=1

wi [µi (p, T,w)− µi (p, T, z)] , (4.143)

where w = [w1, ..., wNc ] is commonly referred to as trial phase composition as it is used to test
the energetic state of the single-phase system. Based on the minimum Gibbs energy principle
under isothermal, isobaric conditions, system I remains in its single-phase state if ∆g is greater
than zero for any feasible values of the trial phase w. Consequently, for ∆g < 0, system I is not
at its global minimum in Gibbs energy and the separation of a second phase yields a reduction in g.

Equation (4.143) has a geometrical meaning. To demonstrate this, let us consider a binary
mixture in which the molar Gibbs energy is

g (w1) =

2∑

i=1

wiµi (w1) . (4.144)

For the sake of simplicity, the Gibbs energy of mixing ∆gmix is used for the following visual
presentation which shows the same characteristics as the Gibbs energy g and can be expressed as

∆gmix =

Nc∑

i=1

wi [µi (p, T,w)− µpurei (p, T )] . (4.145)

Here, µpurei denotes the chemical potential of the pure component. Therefore, ∆gmix is a measure
of the nonideal mixing behavior and the deviation from the ideal (linear) mixing state. In Fig. 4.9,
a schematic representation of the normalized Gibbs energy of mixing as function of the trial phase
composition w1 is shown. At two different fixed overall compositions (z′1 and z′′1 ) the tangents to the
Gibbs energy curve (t′(w1) and t′′(w1)) are illustrated. Let us first focus on the feed composition
z′1: The tangent intersects the Gibbs energy and the equation of this tangent can be expressed as

t′ (w1) = g (z′1) +
∂g (z′1)

∂w1
[w1 − z′1] . (4.146)

The derivative of Eq. (4.144) with respect to w1 yields the required partial derivative of the molar
Gibbs energy:

∂g

∂w1
= µ1 (w1)− µ2 (w1) + w1

∂µ1

∂w1
+ w2

∂µ2

∂w1
. (4.147)

By applying the Gibbs-Duhem equation (4.17) at isothermal and isobaric conditions, the third and

z′1

t′ (w1)

z′′1

t′′ (w1)

w1 [-]

∆
g m

ix
/(
R
T

)
[-]

Figure 4.9: Schematic representation of the variation of the molar Gibbs energy of mixing of a
binary mixture as function of the trial phase composition w1.



72 4.8 Phase separation modeling in multicomponent fluids

fourth term vanish and therefore the equation of the tangent can be written as

t′ (w1) =

2∑

i=1

wiµi (z′1) . (4.148)

Calculating the difference between the Gibbs energy g(w1) according to Eq. (4.144) and the tangent
to the Gibbs energy at z′1 according to Eq. (4.148) yields the TPD criterion for a binary mixture

TPD (w1) =

2∑

i=1

wi [µi (w1)− µi (z′1)] . (4.149)

Comparing Eqs. (4.143) and (4.149) it becomes obvious that both expressions are identical for
a binary mixture. Therefore, we can write the TPD criterion for an arbitrary multicomponent
mixture as

TPD (w) =

Nc∑

i=1

wi [µi (w)− µi (z)] . (4.150)

This equation was proposed for the first time by Michelsen [194] in 1982 and forms the basis for
the consideration of multicomponent phase separation in this work. Using the TPD criterion it is
possible to check whether the binodal of the VLE is crossed or not. Analogous to the discussion
of ∆g, the evaluation of TPD yields a statement regarding the global minimum of the Gibbs
energy: If TPD is nonnegative for any feasible values of w, the single-phase system persists and
no further reduction of the Gibbs energy is possible, cf. the composition z′′1 in Fig. 4.9. In contrast,
if TPD is negative for any w, a spontaneous process occurs and the system splits up into one or
more additional phases to yield a reduction in the overall Gibbs energy. In this case, the tangent
intersects the Gibbs energy curve. To further illustrate the TPD principle, Fig. 4.10 shows TPD
as a function of the trial phase composition w1 for two different cases. On the left side in Fig. 4.10,
a single-phase solution with TPD ≥ 0 is shown. The mixture is at its minimum Gibbs energy,
as the tangent to the Gibbs energy at the feed composition z = [0.15, 0.85] does not intersect the
solid black curve. On the right side in Fig. 4.10, a single phase solution with a negative TPD is
sketched. Here, the tangent at the overall composition z = [0.65, 0.35] intersects the Gibbs energy
curve. Therefore, a phase separation leads to a reduction in the Gibbs energy. The resulting phase
equilibrium is shown by the common tangent (gray line) and the gray dots which correspond to the
dew- and bubble-point line, respectively. Regarding multicomponent mixtures, i.e., Nc > 2, the
tangent-plane distance concept remains the same. The only difference is, that the Gibbs energy is
forming a surface and the tangent at the overall composition is a hyper plane.
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Figure 4.10: Schematic representation of the TPD criterion of a generic binary mixture for a single-
phase state (left) and a two-phase state (right).
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4.8.2 Fugacity and fugacity coefficient

For a better accessibility of the TPD method and the phase equilibrium evaluation for EoSs it is
convenient to introduce the concept of the fugacity and the fugacity coefficient. First, the concept
is derived for a pure fluid and then for multicomponent mixtures. The derivation closely follows
the introduction in the textbooks of Michelsen and Mollerup [196] and Firoozabadi [77].

Pure fluid

Using the total differential of the Gibbs energy and its isothermal derivative with respect to the
pressure, the difference of the chemical potential of a perfect gas at the pressure p and reference
pressure pref can be expressed as

µ0 (p, T )− µ0
(
pref, T

)
= RT ln

(
p/pref

)
. (4.151)

To generalize this expression for real fluids, the fugacity f which equals the pressure for a perfect
gas is defined:

RT ln

(
f (p, T )

pref

)
:= µ (p, T )− µ0

(
pref, T

)
. (4.152)

Subtracting both equations from each other yields the definition of the fugacity coefficient ϕ

RT lnϕ (p, T ) := RT ln

(
f (p, T )

p

)
= µ (p, T )− µ0 (p, T ) . (4.153)

Therefore, the fugacity coefficient ϕ of a pure fluid can be determined based on the residual property
of the molar Gibbs energy, see Eq. (4.119).

Multicomponent mixture

In perfect gas mixtures, the derivation of the fugacity and the fugacity coefficient relies on the
definition of the Helmholtz free energy:

F 0 (T, V,n) :=

Nc∑

i=1

ni

[
µ0
i

(
pref, T

)
+ RT ln

(
niRT

prefV

)
−RT

]
. (4.154)

Using this formulation, the mixture Gibbs energy of a perfect gas (Z = 1) can be expressed as

G0 (p, T,n) = F 0 (p, T,n) + (pV )
0

= F 0 (T, V,n) + nRT

=

Nc∑

i=1

ni

[
µ0
i

(
pref, T

)
+ RT ln

(
nip

npref

)] (4.155)

which gives the following expression for the chemical potential of the i-th species

µ0
i (p, T,n) = µ0

i

(
pref, T

)
+ RT ln

(
zip

pref

)
. (4.156)

In the next step, this equation is generalized to real fluids by defining the fugacity of the i-th
component fi as:

RT ln

(
fi (p, T,n)

pref

)
:= µi (p, T,n)− µ0

i

(
pref, T

)
. (4.157)

For a perfect gas, fi is equal to the partial pressure zip. Analogous to the pure component approach,
the last two equations are subtracted from each other which yields the definition of the fugacity
coefficient of component i:

RT lnϕi (p, T,n) := RT ln

(
fi (p, T,n)

zip

)
= µi (p, T,n)− µ0

i (p, T,n) = gr
i

(p, T,n) . (4.158)
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As a result, ϕi can be calculated based on the departure function of the molar Gibbs energy of
the i-th species in the mixture. To express lnϕi (p, T,n) using a cubic pressure-explicit EoS it is
convenient to switch to a formulation based on the temperature and the volume. In a first step,
the partial derivative of the hypothetical perfect gas Helmholtz free energy, cf. Eq. (4.154), with
respect to the molar number ni is needed:

µ0
i (T, V,n) =

∂F 0

∂ni

∣∣∣∣
T,V,nj 6=i

= µ0
i

(
pref, T

)
+ RT ln

(
niRT

prefV

)
. (4.159)

Subtracting this expression from the definition of µ0
i (p, T,n), i.e., Eq. (4.156), yields

µ0
i (p, T,n) = µ0

i (T, V,n) + RT ln (Z) (4.160)

and lnϕi (p, T,n) can be calculated as

RT lnϕi (p, T,n) = µi (p, T,n)− µ0
i (p, T,n)

= µi (T, V,n)− µ0
i (T, V,n)−RT ln (Z)

=
∂F r (T, V,n)

∂ni

∣∣∣∣
T,V,nj 6=i

−RT ln (Z) .

(4.161)

The partial derivative of the residual part of the Helmholtz free energy is available by differentiating
Eq. (4.120) with respect to the mole number ni. For the PR-EoS [226] this yields the following
expression for the fugacity coefficient of the i-th component in the mixture:

lnϕi (p, T, z) = − ln

[
p (v − b)

RT

]
+
bi
b

(Z − 1)− a√
8bRT

(
2
∑Nc
j=1 zjaij

a
− bi
b

)
ln

[
v + b

(
1 +
√

2
)

v + b
(
1−
√

2
)
]
.

(4.162)

Dimensionless tangent-plane distance criterion

The chemical potential of the i-th species can be obtained by using the definition of the fugacity
of component i, cf. Eq. (4.157), and the definition of the fugacity coefficient ϕi = fi/(zip):

µi = µ0
i

(
pref, T

)
+ RT

[
ln (zi) + ln

(
p

pref

)
+ lnϕi (z)

]
. (4.163)

Applying this equation to the expression of the TPD criterion, a normalized form can be derived

TPD (w)

RT
=

∑Nc
i=1 wi [µi (w)− µi (z)]

RT

=

Nc∑

i=1

wi [ln(wi) + lnϕi (w)− ln(zi)− lnϕi (z)]

=

Nc∑

i=1

wi [ln(wi) + lnϕi (w)− di] .

(4.164)

This equation is convenient to handle as the required mole fractions and the fugacity coefficients
are directly available. The last two terms on the RHS are aggregated in the variable di as this part
is constant throughout the evaluation of the TPD criterion.

4.8.3 Evaluation of the tangent-plane distance criterion

The most obvious way to check the minimization of the Gibbs energy would be an exhaustive search
in the complete mixture space. This, however, is very time-consuming and therefore Michelsen [194]
suggests to locate the minima of the tangent-plane distance. If the TPD is negative at the minima,
it is also negative at other trial phase compositions, cf. Fig. 4.10 right, and a phase separation
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process leads to a lower Gibbs energy. Conversely, if the TPD is positive at the minima, the values
of the TPD are also positive in the rest of the mixture fraction space, see Fig. 4.10 left. Therefore,
the problem of the Gibbs energy minimization can be restricted to locating the minima of the
TPD. A modified formulation (tm) of the TPD [196]

tm = 1 +

Nc∑

i=1

Wi [ln (Wi) + lnϕi (W)− di − 1] (4.165)

allows an unconstrained minimization [196]. The vector W = [W1, ...,WNc ] is formally treated
as mole numbers. At the minimum of the TPD, the first order derivative vanishes and hence the
stationary points (sp) are found at:

∂tm

∂Wi
= ln (Wi) + lnϕi (W)− di = 0 . (4.166)

The modified tangent-plane distance criterion at the stationary point reads:

tmsp = 1−
Nc∑

i=1

Wi = 1−WT . (4.167)

Hence, the condition for a reduction of the Gibbs energy due to a phase separation process can be
reformulated as:

WT =

Nc∑

i=1

Wi ≥ 1 . (4.168)

A combination of first and second order methods allows for a stable and preferably fast solution
of Eq. (4.166).

Under high-pressure conditions, the feed cannot be easily identified as liquid or vapor, which
makes the initial selection of the trial phase not obvious. In the case of a liquid feed, Michelsen
and Mollerup [196] recommend to search for a ’vapor-like’ trial phase that minimizes tm. For a
vapor phase, a ’liquid-like’ trial phase should be used. In the high-pressure regime, a unique phase
identification is not straightforward and both cases have to be investigated. However, a short-cut
might be possible by utilizing the co-volume b calculated from the cubic EoS. If the specific volume
is smaller than three times the co-volume, i.e., v < 3b, it is advantageous to start on the vapor
side. This approach can save time as the identification of one minimum of tm < 0 is sufficient to
detect the necessity of an equilibrium phase separation process.

To initialize the trial phase composition the Wilson equation [353, 196] is used:

Ki =
yi
xi

=
pc,i
p

exp

[
5.373 (1 + ωi)

(
1− Tc,i

T

)]
i = 1, ..., Nc . (4.169)

Here, Ki is the so-called K-factor or equilibrium ratio which is the ratio of the vapor to the liquid
mole fraction. Using Eq. (4.169) for an initial guess, a ’vapor-like’ trial phase Wi can be found as

Wi = Kizi i = 1, ..., Nc . (4.170)

In turn, the starting point for a ’liquid-like’ trial phase reads

Wi =
zi
Ki

i = 1, ..., Nc . (4.171)

To find the minimum of tm based on the initial guess we start with some steps of first order
successive substitution

ln
(
W k+1
i

)
= di − lnϕi

(
Wk

)
i = 1, ..., Nc . (4.172)
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The superscript indicates the iteration step denoted by k and k + 1, respectively. The successive
substitution method (SSM) usually converges to the minimum of tm, but the convergence rate is
slow. The dominant eigenvalue method (DEM) is used to extrapolate and accelerate the calcula-
tion. Let Wk be the solution in the k-th iteration step. Two more steps of SSM yield Wk+1 and
Wk+2. We then can compute the differences between the previous solutions as

∆Wk = Wk+1 −Wk and ∆Wk+1 = Wk+2 −Wk+1 . (4.173)

Using these two differences the eigenvalue can be calculated as:

λTPD =

∑Nc
i=1

(
∆W k+1

i

)2
∑Nc
i=1 ∆W k

i ∆W k+1
i

. (4.174)

The extrapolated trial phase composition W∞ can then be determined as:

W∞ = Wk+2 + ∆Wk+1 λTPD

1− λTPD . (4.175)

One possibility to extrapolate is to monitor the eigenvalue λTPD. Another way, and that is what we
prefer, is to execute the DEM after a certain number of SSM steps. The result of the extrapolation
has to be compared to the previous SSM step in order to check the success of the DEM step. If the
DEM converges to the minimum of tm, the new solution from Eq. (4.175) is accepted. Otherwise,
we discard W∞ and go back to the SSM. If the SSM and DEM calculation do not lead to a
fast convergence, it is advisable to switch to Newton’s method (NM) to further accelerate the
calculation. As suggested by Michelsen and Mollerup [196] a variable substitution is performed

αi = 2
√
Wi i = 1, ..., Nc . (4.176)

The associated objective function reads

GTPD
i =

∂tm

∂αi
=
√
Wi [ln (Wi) + lnϕi − di] i = 1, ..., Nc (4.177)

and the i, j-element of the corresponding Hessian matrix of tm can be obtained as

JTPD
ij =

∂2tm

∂αi∂αj
= δij +

√
WiWj

∂ lnϕi
∂Wj

+
1

2

GTPD
i

αi
δij . (4.178)

According to Michelsen and Mollerup [196], the last term in Eq. (4.178) can be neglected without
affecting the convergence as it vanishes at the solution, i.e., the stationary point of tm. The Hessian
is therefore computed according to

JTPD
ij =

∂2tm

∂αi∂αj
≈ δij +

√
WiWj

∂ ln (ϕi)

∂Wj
. (4.179)

Here, ∂ ln(ϕi)
∂Wj

is the partial derivative of the fugacity coefficient with respect to the mole number.
The derivation and calculation of this derivative is shown in appendix D. A new α can be calculated
based on Newton’s method as

JTPD∆α + GTPD = 0 (4.180)

and αk+1 = αk+∆α which gives the new trial phase composition according toWk+1 =
(
αk+1/2

)2.
If the new solution of the NM does not converge towards the stationary point of tm, the Newton
step is discarded and we proceed with the SSM. Finally, when a minimum of the tangent-plane
distance is found, the resulting TPD has to be calculated to evaluate a possible crossing of the
binodal.
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4.8.4 Equilibrium flash

When the TPD analysis gives a negative value at any of the stationary points a flash calculation
has to be performed subsequently which yields the phase composition in the vapor (v) and liquid (l)
phase. In this work, the multicomponent phase separation model is used together with the pressure-
based solver. As a result, the enthalpy, the pressure and the composition define the thermodynamic
state of the mixture. The equilibrium flash is designed as an isenthalpic h = const., isobaric p =
const. and iso-composition n = [n1, ..., nNc ] = const. flash, short hpn-flash.

In classical thermodynamics, the necessary condition for the existence of a phase equilibrium
is the thermodynamic equilibrium, see Sec. 4.3, which includes in the multicomponent case the
thermal equilibrium

T v = T l = T , (4.181)

the mechanical equilibrium
pv = pl = p (4.182)

and the chemical equilibrium. The latter can be expressed in terms of the equality of the chemical
potentials between the liquid and the vapor phase

µli (x, p, T ) = µvi (y, p, T ) i = 1, ..., Nc (4.183)

or, equivalently, by the equality of the fugacities

f li (x, p, T ) = fvi (y, p, T ) i = 1, ..., Nc . (4.184)

In addition, the phase equilibrium in mixtures is characterized by the fulfillment of the mass
conservation

yiβ + xi (1− β) = zi i = 1, ..., Nc (4.185)

and by the constraint that the mole fractions sum up to unity

Nc∑

i=1

(yi − xi) = 0 . (4.186)

This definition of the phase equilibrium results in 2Nc+3 unknowns, namely x = [x1, ..., xNc ],
y = [y1, ..., yNc ], the vapor mole fraction β, T and p. Equations (4.184) - (4.186) give 2Nc+1
relations to solve the flash. Hence, two unknowns have to be fixed to arrive at a solvable system of
equations. Most commonly, the phase equilibrium calculations are conducted at fixed temperature
and pressure, usually called Tpn-flash. This yields the most robust and reliable algorithms [196].
In the present work, the flashing problem is, however, defined by the specific enthalpy h, pressure p
and the composition z = [z1, ..., zNc ]. This problem is solved by an ’overiteration’. The hpn-flash
is implemented as a nested loop whereby in the inner loop a classical Tpn-flash is solved and in
the outer loop the temperature is updated. As convergence criterion for the specific enthalpy we
use: ∣∣hsolver −

[
hl (p, T,x) (1− βm) + hv (p, T,y)βm

]∣∣
hsolver

< 1× 10−6 . (4.187)

Here, βm is the vapor mass fraction. For updating the temperature in the outer loop, the trust-
region algorithm from the Intel® Math Kernel Library (MKL) is used.

To solve the Tpn-flash, the methods and recommendations described in the book of Michelsen
and Mollerup [196] are followed strongly. Therefore, we switch to a formulation in terms of the
equilibrium ratio K = [K1, ...,KNc ] with elements

Ki =
yi
xi

=
ϕli
ϕvi

i = 1, ..., Nc (4.188)

which gives a clean and efficient formulation [77]. Combining Eqs. (4.185), (4.186) and (4.188)
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yields the Rachford-Rice (RR) equation [250]

GRR (β) =

Nc∑

i=1

(yi − xi) =

Nc∑

i=1

zi
Ki − 1

1− β + βKi
= 0 (4.189)

with only one unknown, namely the vapor mole fraction β. Under the assumption of composition
independent fugacity coefficients, i.e., an ideal mixture, the RR-equation can be solved by applying
Newton’s method as the function GRR is monotonically decreasing:

JRR (β) =
dGRR

dβ
= −

Nc∑

i=1

zi
(Ki − 1)

2

(1− β + βKi)
2 < 0 . (4.190)

The liquid and the vapor mole fractions can be obtained at the solution (GRR = 0) as:

xi =
zi

1− β + βKi
i = 1, ..., Nc (4.191)

and
yi =

Kizi
1− β + βKi

i = 1, ..., Nc . (4.192)

Based on these basic ideas, a successive substitution method can be designed giving a robust and
reliable algorithm. As we are executing the flash only after a negative TPD analysis, the results
from the TPD method can be used to initialize the flash calculation. If both sides of the TPD are
tested, the equilibrium ratio is initialized as:

K =
exp

[
lnϕ

(
Wl
)]

exp [lnϕ (Wv)]
. (4.193)

In the case of TPD < 0 at the liquid-like side

K =
exp

[
lnϕ

(
Wl
)]

exp [lnϕ (z)]
(4.194)

and for the gas-like side

K =
exp [lnϕ (z)]

exp [lnϕ (Wv)]
(4.195)

are used as a first estimate for the K-factors. After the initialization, the Rachford-Rice equa-
tion (4.189) is solved to get the vapor fraction β and consequently the liquid and vapor compo-
sition. For a stable evaluation of the RR-equation, the existence of a solution in the interval 0
< β < 1 is checked first:

GRR (0) =

Nc∑

i=1

[zi (Ki − 1)] > 0 (4.196)

and

GRR (1) =

Nc∑

i=1

(
zi
Ki − 1

Ki

)
< 0 . (4.197)

If these two conditions hold, a root can be found in the interval 0 < β < 1. Next, we try to
set better initial estimates for β by improving its bounds. This also increases the reliability and
stability of the algorithm [196], when highly volatile components (Ki >> 1) for β close to 0 and
very heavy components (Ki << 1) at β close to 1 are present. With Eqs. (4.191) and (4.192) the
minimum β-value can be found for Ki > 1 as:

βmin =
Kizi − 1

Ki − 1
. (4.198)
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Contrarily, the maximum β-value can be obtained for Ki < 1 as:

βmax =
1− zi
1−Ki

. (4.199)

With these new bounds βmin and βmax a first initial guess for β can be made as

β =
βmin + βmax

2
(4.200)

and the RR-equation can now be solved by applying Newton’s method

βk+1 = βk − GRR

JRR
. (4.201)

Usually, we set the convergence criterion to 1×10−6 for Eq. (4.189). After solving the RR-equation
the liquid and vapor mole fractions can be obtained according to Eqs. (4.191) and (4.192). Using
these compositions, the fugacity coefficients and the equilibrium factors K are updated and the
fulfillment of Eq. (4.184) is checked. Typically, the convergence criterion for the equality of the
fugacities is set to 1 × 10−12. If this tolerance is not met, the RR-Equation is re-evaluated to
get a new guess for β and, hence, for x and y. This SSM is easy to implement and robust. Its
convergence is good at the beginning but slow at the end. In the critical region, it might not con-
verge. As for the TPD analysis, we switch to extrapolation and higher order methods to improve
its convergence speed and success.

The dominant eigenvalue method is employed to extrapolate to an improved solution based on
the previous iteration steps. We execute the DEM after some steps of SSM (usually every 5th step
and renounce on the monitoring of the eigenvalue like we did it within the TPD analysis). The
eigenvalue λflash used for the extrapolation of the equilibrium factors is computed based on the
last three iteration steps (k, k + 1 and k + 2) as

λflash =

∑Nc
i=1

(
∆Kk+1

i

)2
∑Nc
i=1 ∆Kk

i ∆Kk+1
i

(4.202)

with
∆Kk = Kk+1 −Kk and ∆Kk+1 = Kk+2 −Kk+1 . (4.203)

The extrapolated equilibrium factors K∞ can therefore be calculated as:

K∞ = Kk+2 + ∆Kk+1 λflash

1− λflash . (4.204)

After the extrapolation we check the convergence criterion. If the step was in the right direction,
i.e., the solution has been improved, we accept the result. Otherwise, we discard the DEM step
and proceed with the SSM.

The second order Newton method is applied to further accelerate the calculation. According to
Michelsen and Mollerup [196] the objective function for the NM reads

Gflash
i (v) = ln (fvi )− ln

(
f li
)

= 0 i = 1, ..., Nc (4.205)

with the vapor phase component amounts v = [v1, ..., vNc ] as independent variables. The corre-
sponding liquid amounts l = [l1, ..., lNc ] can be retrieved from the material balance as

li = zi − vi i = 1, ..., Nc . (4.206)

From the liquid and vapor amounts the liquid and vapor mole fractions can be computed as

li = (1 − β)xi and vi = βyi i = 1, ..., Nc . (4.207)



80 4.8 Phase separation modeling in multicomponent fluids

For solving Nc-coupled objective functions, we need the Jacobian matrix of Gflash
i with elements

Jflash
ij =

∂Gflash
i

∂vj
=
∂ ln (fvi )

∂vj
− ∂ ln

(
f li
)

∂vj
. (4.208)

The elements of this Jacobian can be calculated analytically as

Jflash
ij =

1

β (1− β)

[
zi
xiyi

δij − 1 + (1− β) Φvij + βΦlij

]
(4.209)

with

Φij = nt
∂ lnϕi
∂nj

∣∣∣∣∣
p,T,nk 6=j

. (4.210)

The calculation of the partial derivatives of the fugacity coefficient with respect to the mole number
from the applied cubic EoSs can be found in appendix D. Using Newton’s method, the vapor flow
can be corrected by

Jflash∆v + Gflash = 0 . (4.211)

With the new vapor phase component amounts vk+1 = vk + ∆v the new liquid and vapor mole
fractions can be re-calculated according to Eq. (4.207). If the Newton step did not converge towards
the fulfillment of the objective function, the result of the NM is discarded and we start over with
the SSM.

4.8.5 Caloric and transport properties in multiphase fluids

After the successful solution of the flashing problem, the thermodynamic and transport proper-
ties are updated consistently. Mass- and mole-based thermodynamic properties like the specific
enthalpy h or density ρ = 1/v can be calculated based on their liquid and vapor properties and by
weighting these properties with the respective vapor fraction β. The mass specific enthalpy h, for
instance, reads

h = (1− βm)hl (p, T,x) + βmh
v (p, T,y) , (4.212)

where βm is the vapor mass fraction. For the transport properties, i.e., the thermal conductivity
and the viscosity, a weighting of the liquid and vapor properties is also applied. In contrast to the
calculation of the specific thermodynamic properties, this is thermodynamically not rigorous. This
procedure is quite common, see, e.g., the work of Awad and Muzychka [12] for a more detailed
discussion. In terms of compressibilities, however, fully consistent and rigorous properties have to
be used and a weighting is inappropriate, as these thermodynamic quantities strongly affect the
solver stability.

4.8.6 Compressibility and speed of sound in multiphase fluids

Three different definitions for the compressibility can be found in classical thermodynamics: the
isothermal compressibility ψT , the isentropic compressibility ψs and the isenthalpic compressibility
ψh. Their definitions are listed in Tab. 4.4. These three compressibilities can be related to each

Table 4.4: Definitions of the different compressibilities ψ and expansivities α.

Name Symbol Equation

Isothermal compressibility ψT − 1
v
∂v
∂p

∣∣
T

= ψs (1 + Tαpφ)

Isentropic compressibility ψs − 1
v
∂v
∂p

∣∣
s

Isenthalpic compressibility ψh − 1
v
∂v
∂p

∣∣
h

= ψs (1 + φ)

Thermal expansivity αp
1
v
∂v
∂T

∣∣
p
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other by the Grüneisen parameter [9]

φ = v
∂p

∂e

∣∣∣∣∣
v

=
v

cv

∂p

∂T

∣∣∣∣∣
v

=
ρ

T

∂T

∂ρ

∣∣∣∣∣
s

(4.213)

which can also be expressed by other thermodynamic response functions [187] as

φ =
vαp
cvψT

=
αpa

2
s

cp
, (4.214)

where αp is the thermal expansivity. In fluids without hydrogen bondings the Grüneisen parameter
is always greater than zero because this fluid type does not have density anomalies [187]. As a
result, it can be deduced from the equations in Tab. 4.4 that

ψT > ψh > ψs . (4.215)

It is important to distinguish between these three compressibilities and to choose the suitable one
depending on the application and the numerical framework. In the present case, the isenthalpic
compressibility is used in the subsonic pressure equation, compare Eq. (3.40), as the energy conser-
vation equation is solved in an enthalpy form. The second compressibility being highly important
within this study is the isentropic compressibility. The speed of sound as is a function of the
inverse of the isentropic compressibility ψs and the density ρ:

as =

√
∂p

∂ρ

∣∣∣∣
s

=

√
−v2

∂p

∂v

∣∣∣∣
s

=
1√
ρ ψs

. (4.216)

In single phase systems, the calculation of the speed of sound and the isenthalpic compressibil-
ity is straightforward, see Sec. 4.7.3. In multiphase systems, however, the evaluation gets more
complicated. This is also the case for measurements and therefore many researchers focus on the
numerical investigation of the speed of sound in multicomponent, multiphase systems, see, e.g.,
Picard and Bishnoi [231], Firoozabadi and Pan [78], Nichita et al. [210] or Castier [42].

A simplified and very popular method for calculating the speed of sound in two-phase systems
is the correlation of Wood [354]. This correlation is based on a volume-weighted approach of the
bulk modulus respectively its inverse, the isentropic compressibility

ψs = (1− βv) ψls (x, p, T ) + βv ψ
v
s (y, p, T )

=
(1− βv)
ρl (als)

2 +
βv

ρv (avs)
2 ,

(4.217)

where βv denotes the vapor volume fraction. Applying Eq. (4.217) to Eq. (4.216) yields Wood’s
correlation for the speed of sound in a two-phase mixture:

as =

[
ρ

(
(1− βv)
ρl (als)

2 +
βv

ρv (avs)
2

)](−1/2)

. (4.218)

This correlation captures the basic trends of the variation of the speed of sound in the two-
phase region but misses the abrupt/discontinues changes at the phase boundaries, see Nichita et
al. [210] for a more thorough discussion. Different approaches can be found in the literature to
numerically/analytically calculate the thermodynamic speed of sound in two-phase mixtures, see,
e.g., Picard and Bishnoi [231], Firoozabadi and Pan [78], Nichita et al. [210] or Castier [42]. In
this work, the approach devised by Nichita et al. [210] is followed as it is a general and efficient
numerical scheme [42]. Here, it is possible to use the already implemented Tpn-flash as a basis to
determine the thermodynamic speed of sound.
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According to Tab. 4.4 the isothermal and the isentropic compressibility are related by the
Grüneisen parameter. This relation can be re-casted as

ψs =
ψT
γ

, (4.219)

where the ratio of the specific heats is denoted by γ = cp/cv. Applying basic mathematical and
thermodynamic relations, Eq. (4.219) can be rewritten as [210]

ψs = ψT −
α2
p T v

cp
. (4.220)

This basic derivation holds true for two-phase systems if the phase split is taken into account
when evaluating the different properties and partial derivatives, for more details see Nichita et
al. [210]. Equation (4.220) only contains partial derivatives with respect to the temperature T and
the pressure p. Following Nichita et al. [210], these partial derivatives are evaluated numerically
by applying Tpn-flashes at (p,T ± ε) and (p ± ε,T ). These flashes converge very fast within 1-2
Newton iterations, since an excellent initial guess is available from the solved hpn-flash. Typically,
we use a step size of 1× 10−6, i.e., T ± ε = T

(
1± 10−6

)
and p± ε = p

(
1± 10−6

)
.

For calculating the isenthalpic compressibility ψh we follow the same idea and rewrite the basic
definition in such a way that it only contains partial derivatives with respect to temperature
and pressure. This can be done by using the thermodynamic chain rules, the total derivative of
the enthalpy with respect to temperature and pressure, the Gibbs fundamental equation in the
enthalpy form and the Maxwell relations from Secs. 4.2 and 4.7.3. Applying these approaches to
the definition of the isenthalpic compressibility yields

ψh =
1

v

−cp
∂v
∂p

∣∣
T

∂v
∂T

∣∣
p

+ v − T ∂v
∂T

∣∣
p

cp
∂v
∂T

∣∣
p

. (4.221)

This equation contains only partial derivatives with respect to the temperature and the pressure.
As a result, the speed of sound as, the isenthalpic compressibility ψh and the partial derivative of
the enthalpy with respect to the pressure at constant temperature ∂h/∂p

∣∣
T
of a multicomponent,

two-phase system can be calculated numerically by solving the Tpn-flashes at (p,T±ε) and (p±ε,T ).

Different research groups [231, 210, 42] used the Prudhoe Bay gas mixture to study the variation
of the speed of sound inside the two-phase region by means of numerics and by applying the PR-
EoS [226] to model the real-gas behavior. The Prudhoe Bay mixture contains 14 components with
the following mole fractions listed in parentheses [231]: methane (83.3310%), ethane (9.6155%),
propane (3.5998%), iso-butane (0.3417%), n-butane (0.4585%), iso-pentane (0.0403%), n-pentane
(0.0342%), n-hexane (0.0046%), n-heptane (0.0003%), n-octane (0.0001%), toluene (0.0002%), ni-
trogen (1.4992%), oxygen (0.0008%) and carbon-dioxide (1.0738%). In Fig. 4.11a, the VLE of
this 14 component mixture is shown together with the four pressure levels used in the further
discussion. The VLE exhibits the typical pattern of an isopleth, i.e., the VLE of a mixture at
constant overall composition. The sound speeds evaluated at the four different pressure levels are
plotted in Fig. 4.11b. At the bubble-point line (low temperatures) a drastic, discontinuous jump
is observed, which reduces with increasing pressure. For the lowest pressure (10 bar) the speed of
sound is almost dropping by a factor of 30 as the fluid crosses the binodal and first vapor bubbles
are forming. Afterwards, the temperature is increasing steadily. Consequently, the vapor fraction
is rising and the same occurs for the speed of sound. A small discontinuity is also observed at
the dew-point line (high temperatures). This jump gets larger with increasing pressure which is
contrary to the behavior of as at the bubble-point line. Outside of the two-phase region the fluid
behaves liquid-like to the left of the VLE resulting in an increase of as with reducing temperature.
On the right-hand side of the VLE the speed of sound increases with a rising temperature as the
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fluid behaves gas-like. The comparison of Wood’s correlation [354] with the thermodynamic speed
of sound in Fig. 4.11b underlines the statement that the correlation is able to capture the basic
trend within the two-phase region but misses the significant drops of the speed of sound at the
phase boundaries, compare Nichita et al. [210] for similar findings. This observation holds also
for the isentropic compressibility as it behaves indirectly proportional to the speed of sound, see
Fig. 4.11c.
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Figure 4.11: Investigation of the 14 component Prudhoe Bay mixture [231] at four different pres-
sure levels (10 bar, 30 bar, 50 bar and 70 bar): a) Vapor-liquid equilibrium; b) Speed of sound
(solid: thermodynamic calculation, dashed: Wood’s correlation [354]); c) Isentropic compressibil-
ity; d) Isenthalpic compressibility; e) Isothermal compressibility; f) Grüneisen parameter.

To further evaluate the numerical approach described above, the three compressibilities (ψs, ψh
and ψT ) are shown in Figs. 4.11c, d and e. The comparison of these plots indicates that the basic
relation between the three compressibilities ψT > ψh > ψs, see Eq. (4.215), holds. Furthermore,
Figs. 4.11c-e show that the isenthalpic and the isentropic compressibility are very similar within
the VLE. In contrast, the isothermal compressibility ψT is much larger than ψh and ψs (note
the scaling of the ordinate by a factor of two). The Grüneisen parameter in Fig. 4.11f exhibits
a very similar pattern compared to the speed of sound outside as well as inside of the VLE. The
accordance of the patterns of as and φ was also reported by Arp et al. [9], who investigated this
kind of behavior for pure fluids.
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4.8.7 Realization in OpenFOAM

In Fig. 4.12, the general calculation procedure for the consideration of multicomponent phase sep-
aration within the thermodynamic closure in OpenFOAM is shown. The first important step is the
evaluation of the single-phase state based on the enthalpy, pressure and composition returned from

Evaluate ther-
modynamics

0< β <1?

Evaluate
single-phase state

TPD-Analysis

TPD
< 0?

Calculate ther-
modynamic and

transport properties

Equilibrium flash

Short-cut flash

Converged?

no

no

yes

yes

no

yes

Figure 4.12: Flowchart visualizing the general proce-
dure for solving and evaluating the multicomponent
VLE model in OpenFOAM.

the solver. After this, the TPD analysis
is executed to check for a crossing of the
binodal and hence for the necessity of a
phase separation process. Two scenarios
are possible: If TPD is larger than zero,
the single-phase state stays homogeneous
and we proceed with the evaluation of the
thermodynamic and transport properties.
In the case of a negative tangent-plane dis-
tance (TPD < 0), a phase separation is
performed and an equilibrium flash is ex-
ecuted yielding the phase compositions of
the vapor and the liquid phase. As this
evaluation is cumbersome, a short-cut is
introduced by utilizing the history of the
previous iteration/time step. If the cell
was already in a two-phase state, we as-
sume the conservation of this state and
directly proceed to the flashing procedure.
We therefore execute a ’blind’ flash and
try to solve the two-phase problem for a
certain number of iteration steps (usually
10 steps are performed). If we succeed,
we can jump to the final evaluation of the
thermodynamic and transport properties.
In the unsuccessful case, we revert to the
standard procedure, i.e., solving for the
single-phase state and afterwards check-
ing for the crossing of the binodal. The
fast/short-cut flash approach can save a
significant amount of time during the sim-
ulation, as the time steps are usually in
the order of O

(
10−9

)
s to O

(
10−7

)
s and therefore the change of the flow properties is small. On

top, there is an excellent initial guess for the flashing available.

4.9 Characteristics of multicomponent phase equilibria
The thermodynamic closure introduced in the previous Sec. 4.8 enables the consideration of mul-
ticomponent phase separation within the numerical simulation. For the comparison with experi-
mental VLE data and a posteriori analyses of the results, it is indispensable to study the VLE in
different representation forms, i.e., thermodynamic diagrams. This gives knowledge at hand about
the prediction capability of the applied thermodynamic framework and the specific characteris-
tics of the investigated multicomponent VLE. In addition, the knowledge about different stability
states of a thermodynamic system (stable, metastable or unstable) supports the assessment of
the possibility of phase separation processes. Figure 4.13 shows a schematic of a multicomponent
VLE at fixed pressure. The binodals, i.e., the equilibrium lines of vapor and liquid, occur at the
state of equal fugacities in the different phases. The inside of the VLE can be further subdivided
into a metastable and an unstable region. In the first region, the single-phase state can persist
in the absence of large changes and nucleation and initial growth of droplets take place. In the
latter, spinodal decomposition occurs and therefore phase separation is triggered intrinsically. The
spinodal is determined at the critical point. Therefore, thermodynamic stability and criticality are
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closely connected to each other. In the following, different approaches are presented to evaluate
the different regions of the VLE. We will start with the construction of the phase envelope, i.e.,
the binodals, move on to the calculation of the limit of stability and end with a model for the
calculation of binary nucleation.
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Figure 4.13: Schematic of the vapor-liquid equilibrium of a generic multicomponent mixture to-
gether with the shape of the Gibbs energy at a fixed temperature.

4.9.1 Construction of the phase envelope

Studies on multicomponent VLEs are usually carried out using three different diagram types:
pressure-composition, temperature-composition and pressure-temperature diagrams. In Fig. 4.14,
a schematic of the VLE of a binary mixture with a type I critical locus [335] is shown. The VLE
of a multicomponent mixture has a certain extent in the pressure, temperature and composition
space, see Fig. 4.14 left. For type I mixtures the VLE is determined by the vapor pressure curves of
the pure components (solid black lines) and the critical locus (solid gray line) which connects the
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Figure 4.14: Schematic of a binary VLE with a type I critical locus [335].
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critical point of the high volatile and the low volatile component. If the temperature or the pressure
is subcritical for both pure components, the respective pressure-composition and temperature-
composition diagrams show a lens-like shape which starts and ends at the vapor-pressure point of
the HV and LV component. As soon as the critical point of one of the components is exceeded,
the VLE is only unilaterally fixed at the vapor-pressure curve of the other component. Depending
on the components of the mixture, both critical points might be exceeded. Therefore, VLEs occur
which are not fixed at any vapor pressure curve and form an arbitrary shape in a certain region of
the composition space. In addition to the composition diagrams, Fig. 4.14 shows a schematic of a
pressure-temperature diagram including two isopleths (black dotted lines).

Pressure-composition and temperature-composition diagrams

For the calculation of pressure-composition and temperature-composition diagrams, the tools of
the Tpn-flash presented in Sec. 4.8 can be used as a basis. In the present work, these approaches
are combined with a trust region algorithm in MATLAB. The initial composition of the mixture
at the start of the VLE construction has to be guessed and the Tpn-flash yields the composition
of the liquid and the vapor phase. For the next steps, the trust region algorithm can be used as an
excellent initial guess from the solved Tpn-flash is available. It is found to be most convenient to
conduct two separate calculations: One down to the lowest pressure/temperature point of the VLE
and one up to the highest pressure/temperature point. These points can be either critical points
or states lying on the vapor-pressure curve of a pure fluid. The complete VLE can be assembled
by combining both paths to a single phase envelope.

Iso-composition VLEs

The construction of phase envelopes at constant overall composition (isopleths) is a demanding
task as different regions of the VLE are crossed: low and high pressures and temperatures, possible
inflection points and the mixture critical point. According to Michelsen and Mollerup [196] it is
therefore favorable to use a full Newton method as it yields the best convergence behavior. The
only issue which has to be solved is the need for a good initial guess. The best idea is to start
at a low pressure and then make the way around the phase envelope. At low pressures, the
Wilson equation (4.169) yields a very good estimate for the start of the construction procedure.
Subsequently, the solution of the last converged construction point is used to extrapolate a new
initial guess. The resulting method reads as follows:

First we need to choose if we want to start at the bubble- or dew-point line by selecting the
appropriate vapor fraction β. Similar to the discussion of the Tpn-flash we use the equilibrium
ratio Ki to represent the composition and hence the vector of independent variables is

X = [lnKi, T, p] i = 1, ..., Nc . (4.222)

Therefore, Nc + 2 equations are necessary to solve the flashing problem. The most obvious choices
are the equality of fugacities and the satisfaction of the mass conservation:

GPEi = lnKi + lnϕi (p, T,y)− lnϕi (p, T,x) = 0 i = 1, ..., Nc , (4.223)

GPENc+1 =

Nc∑

i=1

(yi − xi) = 0 . (4.224)

Here, the superscript PE is an abbreviation for phase envelope. These objective functions GPE

give Nc + 1 equations. The final equation is called specification equation [196] and is written as

GPENc+2 = Xs − S = 0 . (4.225)

Here, s is the number in the variable set to be specified and S is the objective value. In general,
any variable from the vector of independent variables can be chosen. In the present work, the
selection of the pressure for the specification equation is always sufficient, i.e., Xs = p. For more
complex VLEs, a sensitivity analysis for the specified variable might be necessary [196].
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For the application of Newton’s method, the Jacobian matrix of GPE is calculated analytically.
Let us first focus on the Nc ×Nc part of the Jacobian which generally reads:

JPEij =
∂GPEi
∂ lnKj

=
∂ lnKi

∂ lnKj
+
∂ lnϕvi
∂ lnKj

− ∂ lnϕli
∂ lnKj

. (4.226)

Looking at all three terms separately, the first term is equal to one if i = j and is equal to zero if
i 6= j. For the next term, the application of the chain rule yields

∂ lnϕvi
∂ lnKj

=

Nc∑

k=1

∂ lnϕvi
∂yk

∂yk
∂ lnKj

, (4.227)

where all partial derivatives are zero if k 6= j and therefore the summation can be dropped and
the second term reads

∂ lnϕvi
∂ lnKj

=
∂ lnϕvi
∂yj

∂yj
∂ lnKj

. (4.228)

The partial derivative of ∂yj/∂ lnKj can be calculated as

∂yj
∂ lnKj

= (1− β)
xjyj
zj

. (4.229)

The analytical expression for the third term is analogous:

∂ lnϕli
∂ lnKj

=
∂ lnϕli
∂xj

∂xj
∂ lnKj

, (4.230)

∂xj
∂ lnKj

= −β xjyj
zj

. (4.231)

The temperature derivatives can be calculated from the derivation of the fugacity coefficient with
respect to the temperature:

∂GPEi
∂T

= 0 +
∂ lnϕvi
∂T

− ∂ lnϕli
∂T

. (4.232)

The analytical expressions for these partial derivatives can be found in Sec. D of the appendix.
The same accounts for the required pressure derivatives:

∂GPEi
∂p

= 0 +
∂ lnϕvi
∂p

− ∂ lnϕli
∂p

. (4.233)

For the Nc + 1 objective function, the first Nc partial derivatives are

∂GPENc+1

∂ lnKi
=

∂yi
∂ lnKi

− ∂xi
∂ lnKi

, (4.234)

where both required partial derivatives can be calculated according to Eqs. (4.229) and (4.231).
The partial derivatives with respect to the temperature and pressure are zero. For the final objec-
tive function GPENc+2, the first Nc + 1 derivatives are zero and the last one is equal to one.

With the Jacobian matrix JPE the solution can be updated using Newton’s method:

JPE∆X + GPE = 0 . (4.235)

The convergence criterion for the solution is typically set to
∣∣∣
∑Nc+2
i=1 GPEi

∣∣∣ ≤ 1 × 10−12. Having
the new solution available, the new point on the phase envelope can be estimated as

X (S + ∆S) ≈X (S) +
∂X

∂S
∆S . (4.236)
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Here, the partial derivative ∂X/∂S can be calculated from the differentiation of the objective
function with respect to S

∂GPE

∂X

∂X

∂S
+
∂GPE

∂S
= 0 , (4.237)

where ∂GPE/∂S = [0, 0, ...,−1].

4.9.2 Stability and criticality

Rigorous methods

In his classical work back at 1876, Gibbs [91] introduced the notions "thermodynamic stability"
and "critical state" and hereby opened the gate to a rigorous definition of the critical point of
pure fluids and the critical locus of a multicomponent mixture together with their related stability
regions. Gibbs discovered that at the critical state two specific thermodynamic equations have to
be obeyed. In the literature many different definitions of these two equations can be found and
they all depend upon the thermodynamic variables considered as independent and upon the order
of these variables. A very general way to derive these thermodynamic equations is the application
of the Legendre transformation. According to Beegle et al. [26] and Reid and Beegle [252] the limit
of stability and the criterion for criticality can be expressed as

y
(Nc)
(Nc+1)(Nc+1) = 0 (4.238)

and
y

(Nc)
(Nc+1)(Nc+1)(Nc+1) = 0 , (4.239)

where the sub- and superscripts denote the order of the derivative and the variable. To demonstrate
the effectiveness of this Legendre transformation, let us consider a pure fluid (Nc = 1) where the
fundamental equation in terms of the internal energy reads E = E(S, V ) = y(0). From Eq. (4.20) we
already know that the first Legendre transform yields the Helmholtz free energy y(1) = E−TS = F
which is a function of the volume and the temperature, i.e., F = F (T, V ). Applying Eqs. (4.238)
and (4.239) to this fundamental equation yields the definition of the stability limit and the critical
point of a pure fluid:

y
(1)
(2)(2) =

∂2F

∂V 2

∣∣∣∣
T

= − ∂p
∂V

∣∣∣∣
T

= 0 (4.240)

and

y
(1)
(2)(2)(2) =

∂3F

∂V 3

∣∣∣∣
T

= − ∂
2p

∂V 2

∣∣∣∣
T

= 0 . (4.241)

These expressions could have also been derived by intuition based on Fig. 4.4b. In Sec. 4.7.1, both
equalities have been used without a proof to derive the attractive and repulsive parameters of the
cubic EoSs, cf. Eq. (4.89).

Using the concept of the Legendre transformation, the conditions for the limit of stability and
criticality can also be derived for multicomponent systems. Let us consider a binary thermo-
dynamic system which is described by the thermodynamic properties pressure and temperature.
For this kind of system the Gibbs energy is the fundamental equation which reads y(2) = G =
G(T, p, n1, n2) = H − TS, cf. Eq. (4.26). Therefore, the conditions for the limit of stability and
criticality read:

y
(2)
(3)(3) =

∂2G

∂n2
1

∣∣∣∣
p,T,n2

=
∂µ1

∂n1

∣∣∣∣
p,T,n2

= 0 (4.242)

and

y
(2)
(3)(3)(3) =

∂3G

∂n3
1

∣∣∣∣
p,T,n2

=
∂2µ1

∂n2
1

∣∣∣∣
p,T,n2

= 0 . (4.243)

This approach can be generalized for mixtures with Nc > 2 components. According to Peng and
Robinson [227], the two thermodynamic equations for the limit of stability and the critical point
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in the general case read:

Limit of stability: U =

∣∣∣∣∣∣∣∣∣∣∣∣∣

∂2G
∂n2

1

∣∣∣
T,p

∂2G
∂n1∂n2

∣∣∣
T,p

. . . ∂2G
∂n1∂nNc−1

∣∣∣
T,p

∂2G
∂n2∂n1

∣∣∣
T,p

∂2G
∂n2

2

∣∣∣
T,p

. . . ∂2G
∂n2∂nNc−1

∣∣∣
T,p

...
...

...
∂2G

∂nNc−1∂n1

∣∣∣
T,p

∂2G
∂nNc−1∂n2

∣∣∣
T,p

. . . ∂2G
∂n2

Nc−1

∣∣∣
T,p

∣∣∣∣∣∣∣∣∣∣∣∣∣

= 0 , (4.244)

Critical point:

∣∣∣∣∣∣∣∣∣∣∣∣∣

∂U
∂n1

∣∣∣
T,p

∂U
∂n2

∣∣∣
T,p

. . . ∂U
∂nNc−1

∣∣∣
T,p

∂2G
∂n2∂n1

∣∣∣
T,p

∂2G
∂n2

2

∣∣∣
T,p

. . . ∂2G
∂n2∂nNc−1

∣∣∣
T,p

...
...

...
∂2G

∂nNc−1∂n1

∣∣∣
T,p

∂2G
∂nNc−1∂n2

∣∣∣
T,p

. . . ∂2G
∂n2

Nc−1

∣∣∣
T,p

∣∣∣∣∣∣∣∣∣∣∣∣∣

= 0 . (4.245)

Although the Legendre transformation is mathematically relatively convenient, the resulting gov-
erning equations are not always easily and intuitively to handle. Thankfully, other approaches have
been found for the derivation of the thermodynamic equations which are easier to implement and
specifically designed for pressure-explicit state equations. Another important fact regarding the
limit of stability is the connection to numerical solver instabilities. This fact is further discussed
in appendix E.

A widely used method for calculating the limit of stability and the critical locus is the one
proposed by Heidemann and Khalil [117] (HK). Their mathematical formulation links the stability
of a homogeneous phase and continuous small changes which do not trigger the appearance of a new
phase [68]. To test the stability of the system, Heidemann and Khalil [117] use the temperature,
the volume and the mole numbers as independent variables and therefore the stability conditions
can be expressed in terms of the Helmholtz free energy F . For an isothermal variation in state and
based on the fact that a change in volume does not qualify as a change in phase, the homogeneous
phase is stable if the following criterion applies:

[
F − F0 −

Nc∑

i=1

µi,0 (ni − ni,0)

]
> 0 . (4.246)

Here, the subscript 0 refers to the initial state of interest. To evaluate the response of the system
to allowable virtual processes Heidemann and Khalil [117] expressed the Helmholtz free energy by
a Taylor series

[
F − F0 −

Nc∑

i=1

µi,0∆ni

]
=

1

2!

∑

j

∑

i

∂2F

∂nj∂ni

∣∣∣∣∣
T0,V0

∆ni∆nj

+
1

3!

∑

k

∑

j

∑

i

∂3F

∂nk∂nj∂ni

∣∣∣∣∣
T0,V0

∆ni∆nj∆nk + O
(
∆n4

)
,

(4.247)

where ∆ indicates a variation. The stability of the homogeneous system is assured if the quadratic
form in Eq. (4.247) is positive definite. For a test point to be on the limit of stability, the quadratic
form has to be positive semi-definite. The limit of stability can therefore be found where the Hessian
matrix Q of the Helmholtz free energy with elements

Qij =
∂2F

∂ni∂nj

∣∣∣∣∣
T,V

(4.248)



90 4.9 Characteristics of multicomponent phase equilibria

has a zero determinant, i.e., det (Q) = 0. This is equivalent to solving

Q ·∆n = 0 , (4.249)

where ∆n is a column vector, i.e., ∆n = [∆n1, . . . ,∆nNc ]. Hence, Q has a nullspace given by
N (Q) = Rn. For calculating the critical point lying on the limit of stability the quadratic term
in Eq. (4.247) must be zero and the first nonvanishing term in the Taylor series must be of even
order [117]. This means, that the cubic form in Eq. (4.247)

∑

k

∑

j

∑

i

∂3F

∂nk∂nj∂ni

∣∣∣∣∣
T0,V0

∆ni∆nj∆nk = 0 (4.250)

must vanish for ∆n satisfying Eq. (4.249). Using this definition, the critical locus of a multicom-
ponent mixture can be calculated. The second and the third partial derivatives of the Helmholtz
free energy with respect to the mole numbers can be determined analytically from the cubic EoSs.
Helpful details on the derivation of the equations and implementation of the method can found in
the literature [117, 195, 34].

Rapid estimation method

In the field of reacting flows under rocket-relevant conditions, Lacaze and Oefelein [154], Banuti
et al. [22, 23] and Lapenna et al. [160] investigated hydrogen/oxygen and methane/oxygen flames
and checked if thermodynamic states in these flames fall underneath the critical locus. In their
investigations, a rapid estimate method [237] was used to calculate the mixture critical locus:

TREc =

Nc∑

j=1

zjvc,j∑Nc
i=1 zivc,i

Tc,j , (4.251)

pREc =

∑Nc
j=1

(
zj
pc,jvc,j
Tc,j

)
TREc

∑Nc
j=1 zjvc,j

. (4.252)

Here, vc,i, Tc,i and pc,i are the critical volume, temperature and pressure of the i-th species. This
method is not based on a rigorous definition of the critical point/locus and therefore no good agree-
ment with experimental data can be expected. In Fig. 4.15, the RE method is compared to the HK
method for different binary mixtures. A binary mixture of nitrogen (N2) and methane (CH4) is
shown in Fig. 4.15a which forms a critical locus of type I similar to the sketch in Fig. 4.14. A clear
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Figure 4.15: Comparison of the RE and HK [117] approaches for different binary mixtures. The
experimental data have been taken from the literature [38, 52, 44, 304, 72].



4 Thermodynamics modeling 91

difference can be seen between the two methods in terms of pressure values of the critical locus. As
the HK method has a very good agreement with experimental data, it can be concluded that the
RE method underpredicts the critical locus. This can be substantiated by comparing more different
types of molecules. In Fig. 4.15b, the critical loci of the binary mixtures of various alkanes of the ho-
mologous series (methane C1 to n-pentane C5) are shown. A significant underestimation of the RE
method becomes evident up to a factor of more than three for the binary mixture of methane and n-
pentane. The RE method shows almost no superelevation with respect to the pressure values of the
critical locus and hence the component with the highest critical pressure determines the maximum
of the critical locus. This fact gets even worse if mixtures are investigated which do not form a type
I critical locus. In Fig. 4.15c, a binary mixture of nitrogen (N2) and n-hexane (C6H14) is plotted.
This mixture has a critical locus of type III [335] which is characterized by very large pressure values
for the liquid gas equilibrium (LG-Eq.) and a not complete miscibility of the two components [136].
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Figure 4.16: Sketch of a binary mixture with
a type III critical locus.

Therefore, in type III mixtures a second liquid phase
can appear and lead to a liquid-liquid-gas (LLG)
equilibrium which is illustrated in Fig. 4.16. In addi-
tion, the extension of the state space with phase sep-
aration phenomena is drastically enlarged compared
to the type I mixture, cf. Fig. 4.14. In Fig. 4.15c, the
LG branch of the critical locus emerging from the
low volatile component (C6H14) is plotted and com-
pared to experimental data from the literature [72].
The HK method gives an excellent prediction up to a
pressure of approximately 400 bar. The RE method
completely fails in predicting the critical locus. It
can therefore be concluded that it is highly impor-
tant to use a thermodynamically consistent and rig-
orously derived approach rather than a rapid estima-
tion method to investigate possible phase separation
phenomena.

4.9.3 Homogeneous nucleation in binary mixtures

The spinodal determines the region of intrinsic single-phase instability. However, in engineering
applications phase separation – the relaxation of the metastable state towards the thermodynamic
equilibrium – occurs before the stability limit is reached through the activated process of nucle-
ation. To determine the onset of nucleation and therefore the return towards the thermodynamic
equilibrium, a separate theory has to be applied. In the present work, the classical nucleation
theory (CNT) extended to binary mixtures based on the work of Looijmans et al. [175] is employed.

In general, nucleation describes the situation when a system – single phase fluid/mixture – is put
into a metastable (nonequilibrium) state [134]. Under these conditions, the expansion path does
not follow the thermodynamic equilibrium resulting in a supersaturated/subcooled state. From a
physical point of view, the metastable state corresponds to a local minimum of the free energy and
hence is stable to small perturbations. Under metastable conditions, the chemical potential of the
liquid phase is lower than in the vapor phase. This difference is the driving thermodynamic force
for the occurrence of the phase separation process. The relaxation towards the thermodynamic
equilibrium takes place when the system is able to overcome the energy barrier corresponding to
a local maximum. This requires the stable formation of a small amount of the new phase called
nucleus or embryo. The formation rate of droplets per unit time and space is called nucleation
rate J and can be expressed based on the CNT in the following way [175]:

J = Ke−∆G/(kBT ) . (4.253)

Here, K, ∆G and kB denote the kinetic pre-factor, the free reversible energy of formation for a
critical droplet and the Boltzmann constant. In the present work, we are not concerned with the
absolute value of J but rather with its characteristic shape. Therefore, we restrict ourselves to the
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investigation of the normalized nucleation rate

I = J/K = e−∆G/(kBT ) , (4.254)

as the exponential term determines the characteristic curve shape and the kinetic pre-factor K only
scales it. For a more thorough discussion, the reader is referred to, e.g., Reiss [254]. An identical
approach was followed by Jarczyk [128] to study nucleation phenomena in binary oxygen/hydrogen
mixtures under LRE-like conditions. In Fig. 4.17, an example of the normalized nucleation rate as
function of the subcooling is shown. With increasing subcooling

∆T = T (pv)− T (4.255)

the nucleation rate increases by several orders of magnitude within a small temperature range. In
the present work, three different normalized nucleation rates are used: 10−200, 10−100 and 10−50.
These nucleation rates are indicated in Fig. 4.17 by red dots. In this region, the subcooling is in
the order of O (10) K.
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Figure 4.17: Illustration of the change of the normalized nucleation rate I with the subcooling.

The crucial point of the determination of the normalized nucleation rate I is the modeling
of ∆G which is a function of the number of particles of both species forming the droplet, i.e.,
∆G = ∆G (n1, n2), see Fig. 4.18. Under metastable conditions, ∆G exhibits a saddle point cor-
responding to the lowest passage over the energy barrier. This saddle point is the location which
has to be determined to calculate the composition of the embryo and as a result determines the
nucleation rate based on the supersaturation. In the present work, the pioneering approaches of
Wilemski [352] and Looijmans et al. [175] are followed to model the energy of formation ∆G. The
applied macroscopic model consists of a droplet, its surface and the surrounding vapor. It is as-
sumed that the droplet is incompressible and in a thermodynamic equilibrium with the surface.

Figure 4.18: Schematic of the formation free energy as function of the number of molecules for a
binary mixture. The figures have been taken from Vehkamäki [340]; reprinted by permission from
Springer Nature Customer Service Centre GmbH: Springer Nature, Classical Nucleation Theory in
Multicomponent Systems by Vehkamäki, H. © (2010).



4 Thermodynamics modeling 93

The number of molecules in the droplet and the vapor are denoted by the superscripts l and v,
respectively, and the number of surface molecules is an excess number defined as ns = n−nl−nv.
By considering a separate surface molecule number ns, the effect of surface enrichment can be
considered implicitly. According to Wilemski [352], the free formation energy reads:

∆G =
(
p− pl

)
V l + σA+

2∑

i=1

(
µli − µvi

)
nli +

2∑

i=1

(µsi − µvi )nsi . (4.256)

Here, V l and A are the volume and the surface area of the droplet. The surface tension of the
droplet is denoted by σ. Under the assumption of thermodynamic equilibrium between surface and
droplet and the assumption of a constant vapor pressure (p = pv), Eq. (4.256) can be rewritten as

∆G =
(
pv − pl

)
V l + σA+

2∑

i=1

∆µin
t
i , (4.257)

where ∆µi = µli
(
pl, T

)
− µvi (pv, T ) and nti = nli + nsi . Using the definition of the saddle point

∂∆G

∂nti

∣∣∣∣
T,p

= 0 i = 1, 2 , (4.258)

the Gibbs-Duhem relation for the liquid

SldT − V ldpl +

2∑

i=1

nlidµ
l
i = 0 , (4.259)

the Gibbs adsorption equation for the droplet surface

SsdT +Adσ +

2∑

i=1

nsidµ
s
i = 0 , (4.260)

the Laplace relation
pl = pv + 2σ/r (4.261)

and expressions for the volume and the surface area of the spherical droplet

V l =

2∑

i=1

nlivi
l =

4

3
πr3 (4.262)

A = 4πr2 (4.263)

yields the following equation
∆µi = 0 . (4.264)

In Eqs. (4.261) - (4.263), r and vi denote the droplet radius and the partial molar volume of species i,
respectively. Finally, by applying the incompressible fluid assumption for the determination of the
chemical potential

µli
(
pl, T

)
= µli (pv, T ) + vi

l
(
pl − pv

)
(4.265)

the Gibbs-Thomson or Kelvin equation

µli (pv, T )− µvi (pv, T ) +
2σvi

l

r
= ∆∗µi +

2σvi
l

r
= 0 i = 1, 2 (4.266)

can be derived, which is used to determine the composition of the liquid droplet. The energy
of formation of the critical nucleus at the saddle point (subscript: sp) follows from Eqs. (4.257),
(4.261) and (4.264) as

∆Gsp =
1

3
σA . (4.267)
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The remaining parameter to be calculated is the surface tension σ. As the present work is concerned
with injection, mixing and combustion under high-pressure conditions, i.e., supercritical pressure
conditions with respect to the pure components, correlations for the pure fluids are not an option
as surface tension effects vanish beyond the critical point. Therefore, the suggestion of Looijmans
et al. [175] is followed and the Macleod-Sugden correlation [253] is employed to estimate the surface
tension:

σ1/4 =

Nc∑

i=1

Pi
(
ρi
l − ρiv

)
. (4.268)

Here, the parameter Pi is the parachor factor of component i. In the present work, the CNT is
used for the binary n-hexane/nitrogen mixture exclusively. The parachor factors for both fluids
are taken from the literature [237, 255] and are set to PC6H14

= 271 cm3 g0.25/(s0.5 mol) and
PN2

= 60 cm3 g0.25/(s0.5 mol), respectively.

Having all necessary models at hand, the composition of the critical nucleus, the nucleation rates
and the related subcooling/temperature can be determined. As n-hexane is a long-chain alkane,
the PR-EoS [226] is used to describe the required gas and liquid properties. The calculation of the
nucleation rate starts with the determination of the bulk composition of the nucleus. According
to Looijmans et al. [175], a linear combination of the Kelvin equation is used:

v2
l∆∗µ1 − v1

l∆∗µ2 = 0 . (4.269)

The partial molar volume of species i can be determined from the PR-EoS [226] as

vi = − ∂v

∂p

∣∣∣∣
T,z

[
RT

v − b +
RTbi

(v − b)2 −
2
∑Nc
j=1 zjaij

v2 + 2vb− b2 +
2a (v − b) bi

(v2 + 2vb− b2)
2

]
. (4.270)

The other necessary thermodynamic properties and partial derivatives can be found in Sec. 4.7.3.
For a given pressure p, temperature T and vapor composition y, Eq. (4.269) is solely a function
of the nucleus composition and can be solved iteratively. Having the liquid bulk composition
available, the droplet radius can be determined based on component 1 or 2 of the binary mixture
using the Kelvin equation (4.266):

r = −2σvi
l

∆∗µi
i = 1 or 2 . (4.271)

Finally, the free energy of formation and the normalized nucleation rate can be calculated using
Eqs. (4.267) and (4.254).



5 Combustion modeling
For the numerical simulation of reacting flows in the context of LES, models for the determination of
the filtered source term ω̇k in the species transport equation (2.31) are required. As the combustion
is taking place on the sub-grid scale level, the modeling approach has to reflect the complex
turbulence-chemistry interaction (TCI). In general, a huge number of different methods can be
found in the literature. The textbooks of, for instance, Poinsot and Veynante [236], Peters [230],
Kuo [146] and Echekki and Mastorakos [69] give an overview on different combustion modeling
approaches. Combustion models can be categorized into premixed and non-premixed approaches.
In the premixed case, the key chemical reactants of combustion – fuel and oxidizer – are mixed
before they pass through the reaction zone of the flame. In contrast, non-premixed combustion
is characterized by the fact that oxidizer and fuel are injected separately into the combustion
chamber. As a result, mixing and burning take place simultaneously. This is typically the case
in liquid-propellant rocket engines where fuel and oxidizer are injected through co-axial injection
elements into the combustion chamber. A schematic of a single co-axial injection element is shown
in Fig. 5.1a. The oxidizer (here: oxygen) enters the combustor through the central circular pipe
and is denoted by the mixture fraction f = 0. The fuel (here: methane or hydrogen) is injected
through the circular annulus and equals the mixture fraction f = 1. Downstream of this co-
axial injection element a turbulent non-premixed flame forms which position can be described by
the stoichiometric mixture fraction fst. In LOx/H2 flames, the stoichiometric mixture fraction is

f = 1

f = 0

f = 1

f

f = fst

(a) Turbulent diffusion flame.

f = 0

oxidizer

f = 1

fuelr
x

f
1fst0

(b) Counterflow diffusion flame.

Figure 5.1: Schematic of non-premixed combustion: a) Turbulent diffusion flame emanating from
a co-axial injection element; b) Concept of the counterflow diffusion flame approach.

0.1111 and in LOx/CH4 flames fst is equal to 0.2. The stoichiometric mixture is the region where
the maximum temperature occurs in a flame. As the transport of fuel and oxidizer towards the
flame is governed by diffusion, non-premixed flames are often called diffusion flames. In Fig. 5.1b,
the corresponding generic configuration of a laminar counterflow diffusion flame is shown. Fuel
and oxidizer are injected through opposite nozzles and inbetween a stationary flame occurs. This
counterflow diffusion configuration is the basis for the combustion model applied in this work. In
the present case, the model is specifically tailored for real-gas flows and enables an efficient and
thermodynamically consistent treatment of the combustion process. In the following, only the
most important details of this modeling approach are outlined. For a more thorough introduction
and discussion refer to the paper of Zips et al. [368] or the related PhD theses of Zips [367] and
Müller [202]. This chapter is structured as follows: In Sec. 5.1, the real-gas combustion model and
its realization in the LES framework are described briefly. The required reaction and chemical
kinetics are introduced in Sec. 5.2 which are necessary to finally close the applied combustion
model.
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5.1 Real-gas flamelet model
Originally, the flamelet model was proposed by Peters [228, 229, 230] in the 1980s. Recently,
Lacaze and Oefelein [154] demonstrated the applicability of the flamelet approach for the numerical
investigation of high-pressure combustion in LREs. The basic idea of the flamelet concept is that
each element of a turbulent flame can be viewed as a small laminar flame called flamelet. In the
stationary case, this implies that the flame structure is locally one-dimensional and depends on
the mixture fraction coordinate f which is orthogonal to the surface of the stoichiometric mixture,
i.e., the flame front, see Fig. 5.1a. The mixture fraction represents the proportion of fuel in the
mixture and can be viewed as

f =
ṁF

ṁOx + ṁF
, (5.1)

where ṁF and ṁOx denote the mass flow rate of the fuel and oxidizer, respectively. Many other
definitions of the mixture fraction can be found in the literature, see, e.g., Peters [228, 230] or
Poinsot and Veynante [236]. The mixture fraction is a passive scalar and enables the coupling
between the turbulent flow and the combustion process. Consequently, parts of the governing
equations can be replaced by appropriate transport equations for f . In the adiabatic combustion
case, these are the species transport equations and the energy conservation equation. The stretching
of the flame by means of turbulent motion can be described by the scalar dissipation rate χ.
According to Peters [228, 230], χ acts as an inverse diffusion time and is defined as

χ = 2Df

∣∣∣∣
∂f

∂xi

∣∣∣∣ , (5.2)

where Df is the diffusion coefficient of the mixture fraction.

Using the general idea of the stationary flamelet approach, a turbulent non-premixed flame can
be represented by a brush of laminar counterflow diffusion flames which interact with the flow. This
implies that the reactions take place in a thin layer and that the flame is thin compared to other flow
parameters and wrinkling scales. Therefore, it is assumed that the chemical time scales are much
smaller than the turbulent time scales which is equal to the assumption of Damköhler numbers Da
� 1. In an axisymmetric configuration, see Fig. 5.1b, the governing equations reduce to a one-
dimensional problem that can be solved in the mixture fraction space f by employing a coordinate
transformation, see, e.g., Peters [230] or Poinsot and Veynante [236]. Under the assumption of a
unitary Lewis number for all species (Lei = Le = 1), the so-called flamelet equations read [230, 142]:

ρ
∂Yk
∂t

= ρ
χ

2

∂2Yk
∂f2

+ ω̇k k = 1, ..., Nc , (5.3)

ρ
∂h

∂t
= ρ

χ

2

∂2h

∂f2
. (5.4)

Here, isobaric conditions are assumed and therefore the set of the governing equations reduces
to the species transport equations and the conservation equation of the energy in the enthalpy
form. In the real-gas combustion community, many research groups write the energy conservation
equation in the temperature form. This can result in inconsistencies which are thoroughly discussed
in the work of Juanós and Sirignano [133]. In Eqs. (5.3) and (5.4), χ is an external parameter which
correlates in the physical space with the inlet velocities of the fuel and the oxidizer. According
to Peters [228], χ can be represented in the mixture fraction space by the following error function
approach

χ =
χst
π

exp
(
−2
[
erfc−1 (2f)

]2)
, (5.5)

where χst denotes the scalar dissipation rate at the stoichiometric point of the flame. As a result
of this representation, a flamelet can be characterized by the mixture fraction f and the scalar
dissipation rate at the stoichiometry χst. A scalar dissipation rate χ ≈ 0 corresponds to a very slow
inflow of oxidizer and fuel into the configuration. In this case, almost no stretching of the flame
occurs and the amount of time is sufficient for all reactions to take place. By increasing the inlet
velocities or analogous χ, the residence time of the reactants inside the configuration decreases.
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This increase in the scalar dissipation rate can be done until the extinction point χ = χext is
reached. At this point, the convective time scales are too small compared to the chemical time
scales and the flame is extinguished. In high-pressure flames with pure oxygen as oxidizer, this
point is usually found for χ in the order of O

(
105
)
.

To cover the full range of steady state flamelet realizations from χ ≈ 0 up to extinction, the
flamelet equations (5.3) and (5.4) need to be solved for a distinct number of scalar dissipation
rates in the bounds of 0 < χst < χext. Afterwards, the results can be stored in tables of the form
Yk = Yk(f, χst) and h = h (f, χst) which is the basic idea of the classical flamelet approach [203].
In general, several open-source tools are available to solve the flamelet equations together with an
ideal-gas closure, e.g., FlameMaster [233] or Cantera [96]. For the solution with real-gas EoSs, an in-
house implementation in OpenFOAM considering real-gas and multicomponent phase separation
effects is used. This approach enables the thorough thermodynamic investigation of the flame
structure but, unfortunately, these calculations are too expensive for an efficient tabulation as the
pressure has to be considered as an additional tabulation coordinate in the real-gas case. Therefore,
an efficient real-gas flamelet tabulation method suggested by Zips et al. [368, 367] is employed in
the present work. The real-gas flamelet model relies on the following two main assumptions:

1. Weak coupling between real-gas effects and chemical reactions.

2. Small fluctuations in pressure.

These assumptions enable a drastic simplification of the flamelet tabulation method in the real-
gas case. In the first step, the counterflow diffusion flames are solved at the nominal combustion
chamber pressure using the ideal-gas closure. In the next step, a correction of the thermodynamic
state is conducted. Here, we make use of the fact that in the stationary case the enthalpy is a
straight line in the mixture fraction space, i.e.,

h (f) = h (f = 0) + [h (f = 1)− h (f = 0)] f . (5.6)

As a result, the thermodynamic states are completely defined along the mixture fraction coordinate
by means of the pressure p, the specific enthalpy h and the composition Y. The latter are taken
from the already solved ideal-gas flamelets. Using these states, the temperature, compressibilities
etc. can be evaluated thermodynamically consistent.

Turbulence-chemistry interaction

The conduction of the LES yields filtered quantities which are used to access the a priori created
flamelet tables. Therefore, the table values ϑ from the counterflow diffusion flame calculations have
to be filtered using a Favre-filtered joint probability density function (PDF) P̃sgs(f, χst, p) for the
mixture fraction, the scalar dissipation rate and the pressure:

ϑ̃ =

∫ pmax

pmin

∫ χext

0

∫ 1

0

ϑ
(
f̂ , χ̂st, p̂

)
P̃sgs

(
f̂ , χ̂st, p̂

)
df̂ dχ̂st dp̂ . (5.7)

Assuming statistical independence between f , χst and p the joint PDF can be written as

P̃sgs (f, χst, p) = P̃sgs (f) P̃sgs (χst) P̃sgs (p) . (5.8)

Therefore, only the modeling of the individual PDFs is necessary. In the present work, presumed
PDF approaches are used for the Favre-filtering. For the mixture fraction, a β-distribution is
employed which reads

P̃sgs (f) = fα−1 (1− f)
β−1 Γ (α+ β)

Γ (α) Γ (β)
. (5.9)

Here, Γ is the gamma function and α and β define the shape of the PDF and are functions of the
filtered mixture fraction f̃ and its variance f̃ ′′2:

α = f̃



f̃
(

1− f̃
)

f̃ ′′2
− 1


 , (5.10)
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β =
(

1− f̃
)


f̃
(

1− f̃
)

f̃ ′′2
− 1


 . (5.11)

For the PDFs of the scalar dissipation rate and of the pressure, Dirac functions are applied:

P̃sgs (χst) = δ (χst − χ̃st) , (5.12)

P̃sgs (χst) = δ (p− p) . (5.13)

The Dirac function is the simplest PDF and is a noticeable simplification compared to the β-
shaped PDF for the mixture fraction. However, in contrast to the β-PDF it does not increase
the size of the table which is in the present case quite important as the pressure is already an
additional coordinate compared to the standard ideal-gas flamelet approach. In the present case,
the thermo-chemical state which is stored in the tables is therefore defined as ϑ̃ = ϑ̃(f̃ , f̃ ′′2, χ̃st, p).
For a memory-optimized and preferably fast table access the Parallel Memory Abstraction Layers
(PMAL) technique proposed by Weise and Hasse [346] is used. The database itself is stored in the
HDF5-format.

Transport equations in the LES

To retrieve the local species composition and the required thermodynamic properties in the LES,
a transport equation is solved for the filtered mixture fraction

∂(ρ̄f̃)

∂t
+
∂(ρ̄ũif̃)

∂xi
=

∂

∂xi

[(
µ̄

Sc
+
µsgs

Sct

)
∂f̃

∂xi

]
. (5.14)

A transport equation for its variance is used to model the unresolved fluctuations of the mixture
fraction, cf. Kemenov et al. [137]:

∂(ρ̄f̃ ′′2)

∂t
+
∂(ρ̄ũif̃ ′′2)

∂xi
=

∂

∂xi

[(
µ̄

Sc
+
µsgs

Sct

)
∂f̃ ′′2

∂xi

]
− 2ρ̄χ̃+ 2

(
µ̄

Sc
+
µsgs

Sct

)(
∂f̃

∂xi

)2

. (5.15)

The scalar dissipation rate χ̃ is evaluated according to Domingo et al. [66] and is decomposed into
resolved and SGS contributions:

2ρ̄χ̃ = 2
µ̃

Sc

(
∂f̃

∂xi

)2

+ Cχ
µsgs

Sct
f̃ ′′2

∆2
. (5.16)

Here, ∆ is the local filter size and the model constant is set to Cχ = 2 according to Kemenov et
al. [137]. In Eqs. (5.14) and (5.15), the gradient-diffusion hypothesis [238] is employed to describe
the turbulent scalar fluxes. In particular, the molecular and turbulent Schmidt numbers (Sc and
Sct) are introduced to relate the diffusion coefficients to the viscosity. Following the work of
Cabrit and Nicoud [40] and Zips et al. [369, 370], both constants are set to Sc = Sct = 0.7 in the
combustion simulation in this work.

Numerical procedure

In Fig. 5.2, the overall numerical procedure of the real-gas flamelet model is summarized. The
model can be separated into three individual major steps:

1. Calculation of the flamelets at the nominal pressure employing the ideal-gas closure.

2. Application of the thermodynamic correction step to include real-gas effects.

3. Interference of the numerical solver with the generated and filtered tables.

Applying this model, different thermodynamic closures (single- and multi-phase) can be used to
efficiently study the thermodynamic states in high-pressure combustion as these models only need
to be exchanged in the correction step.



5 Combustion modeling 99

Flamelet calculation
Solution of the flamelet equations

using the ideal-gas closure

Correction step

Introduction of real-gas thermodynamics
into the flamelet by means of three steps:

1. Correction of the enthalpy.

2. Evaluation of the real-gas properties.

3. Favre-filtered PDF-integration.

Table

ϑ̃ = ϑ̃(f̃ , f̃ ′′2, χ̃st, p)

Numerical simulation
pressure-based solver
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f̃ ′′2
χ̃st

p

Figure 5.2: Schematic procedure of the real-gas flamelet model.

Stabilization of the numerical solver

High-pressure combustion under transcritical conditions can involve very large density stratifica-
tions. To avoid spurious pressure oscillations in the numerical simulation the pressure-based solver
is stabilized employing a localized artificial dissipation concept µ∗. The approach applied in the
present study is based on the work of Cook and Cabot [54] and reads [202]

µ∗ = Cad ρ̄ ãs ∆2

∣∣∣∣∣
∂Z̃

∂xi

∣∣∣∣∣ . (5.17)

The artificial viscosity is added to the effective viscosity in Eqs. (5.14) and (5.15) in regions of high
density gradients to avoid spurious oscillations. Cad is a user-specified constant which is set to
0.04. The sensor, namely the local gradient of the compressibility factor, ensures that the effect of
the artificial dissipation is limited to the narrow region of strong density gradients due to real-gas
thermodynamics.

5.2 Reaction kinetics
Reaction mechanisms are used to determine the laminar source term ω̇k of the k-th species in
Eq. (5.3). In the present work, the mechanism of O’Connaire et al. [212] is employed in LOx/H2

combustion. The mechanism contains nine species (Nc = 9) and 19 reactions (Nr = 19) and has
been used for the analysis of high-pressure hydrogen flames by Lacaze and Oefelein [154]. In the
case of LOx/CH4 combustion, the detailed mechanism developed at the Gas Research Institute
(GRI) in the version 3.0 (short: GRI-3.0 [102]) is applied. This mechanism involves 53 species
(Nc = 53) and 325 reactions (Nr = 325) and has been employed by Kim et al. [142] for operating
conditions like they are investigated in the present work.
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The process of chemical conversion during a combustion process can be described by elementary
reactions which can be written in the form

Nc∑

i=1

ν′i,rWi

kb,r←−−−−−−−−→
kf,r

Nc∑

i=1

ν′′i,rWi r = 1, ..., Nr . (5.18)

Here, Wi denotes the species i and the reactants and products of the chemical conversion process
are on the LHS and RHS of the above equation, respectively. The stoichiometric coefficients of the
forward and the reverse reactions of species i in the r-th reaction are ν′i,r and ν′′i,r. The associated
rate constants are denoted by kf,r and kb,r, respectively. Both constants are strongly temperature
dependent and kf,r is modeled based on the empirical Arrhenius law [10]:

kf,r = ArT
βr exp

(
−Ea,r

RT

)
. (5.19)

Here, Ar, βr and Ea,r are the pre-exponential factor, the temperature exponent and the activation
energy. All theses values are given by the applied reaction mechanism. The reverse and the forward
rate constants are related to each other by the equilibrium constants Kc,r as

Kc,r =
kf,r
kb,r

=

(
pref

RT

)∑Nc
i=1(ν

′′
i,r−ν′i,r)

exp

(
∆sr

0

R
− ∆hr

0

RT

)
. (5.20)

Here, pref = 101325 Pa is the reference pressure and ∆sr
0 and ∆hr

0 denote the entropy and specific
enthalpy changes during the conversion from reactants to products [147].

Having the rate constants of the reactions available, the reaction rates are expressed as

rr = kf,r

Nc∏

i=1

c
ν′i,r
i − kb,r

Nc∏

i=1

c
ν′′i,r
i , (5.21)

where ci = Yiρ/Mi is the molar concentration of the i-th species. Next, the temporal change of ci
is determined as:

dci
dt

=

Nr∑

r=1

(
ν′′i,r − ν′i,r

)
rr i = 1, ..., Nc . (5.22)

Finally, the source term ω̇i of component i can be calculated according to

ω̇i = Mi
dci
dt

i = 1, ..., Nc . (5.23)

The calculation of the concentration change according to Eq. (5.22) requires the solution of a
system of ordinary differential equations (ODEs) comprising Nc equations and Nr summands. In
the present work, conventional ODE-solvers like the semi-implicit Bulirsch-Stoer algorithm [17] are
used.
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6 Mixing under supersonic flow conditions
The first part of the results is concerned with mixing under GE-like injection conditions. The main
focus is put on the resulting thermodynamic states and in particular on the possible occurrence
of phase separation processes during the high-pressure injection. As supersonic flow conditions
are prevailing in this chapter, the hybrid pressure-based approach is applied exclusively for the
conduction of the numerical simulations. The following investigations are structured in three
different parts which build upon each other. First, the influence of real-gas effects on the injection
and mixing process is studied in Sec. 6.1. Second, the phase separation process in an extremely
underexpanded pure argon jet is investigated in Sec. 6.2. Finally, the possibility of phase separation
processes under GE-like conditions is the focal point in Sec. 6.3.

6.1 Influence of real-gas effects

Large parts of the following results and discussions are part of the journal article [319]:
Traxinger, C. and Pfitzner, M. Effect of nonideal fluid behavior on the jet mixing pro-
cess under high-pressure and supersonic flow conditions. Journal of Supercritical Fluids,
172:105195, 2020.

6.1.1 Experimental setup

At the Institute of Aerospace Thermodynamics (ITLR) at the University of Stuttgart the mixing
process of an initially supercritical jet under real-gas conditions is investigated experimentally. The
jet experiments are performed in a cylindrical constant-volume test chamber where a single-hole

Figure 6.1: Schematic of the test chamber used
at the ITLR for the experimental investigations
of high-pressure mixing processes. The figure has
been taken from Baab et al. [14]; reprinted by per-
mission from Springer Nature Customer Service
Centre GmbH: Springer Nature, Experiments in
Fluids, Baab et al. [14], © (2016).

injector of diameter D = 0.236 mm and length
L of L/D ≈ 4.2 is mounted into the front side
end wall, see Fig. 6.1. The injector is equipped
with two heater cartridges to control the injec-
tion temperature within ±2 K. The chamber
can be pressurized up to approximately 60 bar
and the temperature inside the chamber cor-
responds to ambient conditions. Optical ac-
cess is provided by three quartz windows. Re-
cently, Baab et al. [14] and Förster et al. [80]
used laser-induced thermal acoustics (LITA) to
investigate the mixing process of highly un-
derexpanded jets within this chamber. The
speed of sound can be directly measured by
extracting the frequency of the LITA signal
and post-processing it using, for instance, the
Fast Fourier transformation. From these two
recent measurement campaigns [14, 80] a to-
tal of 14 injection experiments have been re-
ported. The results of these experimental in-
vestigations [14, 80] are summarized in Tab. 6.1
and provide a valuable data base of speed of sound measurements regarding underexpanded jets
under real-gas conditions. Note, that the measurements with a total injection temperature of 554 K
from Baab et al. [14] and 553 K from Förster et al. [80] are aggregated and referred to as 553 K.

In the experiments [14, 80], two different fluids – fluoroketone/Novec 649 (FK) and n-hexane
(C6H14) – have been injected through a single-hole injector into the test chamber filled with pure
nitrogen (N2) at rest. In the present work, the focus is put on the n-hexane cases. Here, nozzle
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Table 6.1: Available experimental data collected from Baab et al. [14] and Förster et al. [80].

Fluid NPR pt [MPa] pch [MPa] Tt [K] Tch [K] x/D [-]

FK 12 6 0.5 500 295 80,110
FK 4 6 1.5 500 295 55,80,110

C6H14 600 30 0.05 553 295 110
C6H14 600 30 0.05 577 295 110,173
C6H14 600 30 0.05 600 295 110
C6H14 600 30 0.05 630 295 110

C6H14 150 30 0.2 553 295 55,80,110
C6H14 150 30 0.2 577 295 55,80,110,173
C6H14 150 30 0.2 600 295 55,110
C6H14 150 30 0.2 630 295 55,80,110

C6H14 60 30 0.5 577 295 173
C6H14 60 30 0.5 600 295 110
C6H14 60 30 0.5 630 295 110

C6H14 30 30 1 577 295 173

pressure ratios between 30 and 600 have been investigated. The total injection pressure pt in
the fuel reservoir equals 30 MPa and four different total injection temperatures Tt have been
used: 553 K, 577 K, 600 K and 630 K. The speed of sound measurements were reported at four
different nozzle exit distances depending on the operating conditions: x/D = [55, 80, 110, 173]. The
chamber temperature Tch corresponds to ambient conditions, i.e., 295 K. The chamber pressure
pch was adjusted to meet the desired NPR.

6.1.2 Numerical setup

Thermodynamics

For describing the real-gas fluid behavior, the cubic EoS due to Peng and Robinson [226] is used.
The required critical data and acentric factors of n-hexane and nitrogen can be found in Tab. B.1
in the appendix. In Fig. 6.2, the thermodynamic framework is validated for n-hexane at three
different pressure levels. The reference data have been taken from CoolProp [27] and the discrete

200

400

600

800

PR-EoS
CoolProp

ρ
[k

g/
m

3
]

2000

3000

4000

5000

c p
[J

/(
kg

K
)]

200 400 600

2

4

6

8

10
300 bar
100 bar
50 bar

T [K]

µ
[×

1
0
−
4

P
a

s]

200 400 600

500

1000

1500

T [K]

a
s

[m
/s

]

Figure 6.2: Comparison of the PR-EoS [226] with reference data taken from CoolProp [27]. The
evaluation is conducted for n-hexane at three different pressures, namely 300, 100 and 50 bar.
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pressures are selected such that they cover a large part of the supercritical pressure range (p > pc)
being present during the initial expansion process of the fuel jet into the chamber. Overall, a
very good agreement with the high-fidelity data is achieved and it can be concluded that the PR-
EoS [226] is a reasonably good choice for the present investigation. The discussion and comparison
of mixture data is excluded for now and a critical and thorough assessment of the modeling error
in the mixture space is conducted in Sec. 6.1.3.

Investigated test cases

Numerical simulations for eight of the twelve n-hexane test cases have been conducted and are listed
in Tab. 6.2. The investigated test cases were selected in the following way: All low temperature
cases (Tt = 553 K) have been excluded as a first a priori analysis showed that the expansion path
of the underexpanded jet up to the Mach disk crosses the two-phase region of pure n-hexane. To
keep the numerical effort at a reasonable level, all test cases with a single measurement point at
x/D = 173 have also been excluded from this study. These are the two test cases at a total reservoir
temperature of 577 K and NPRs of 30 and 60 (short: NPR30-T577 and NPR60-T577). This leaves
us with a total number of eight test cases for which RANS simulations have been conducted and
the focus is put on the measurement points x/D = [55, 80, 110]. Based on a priori evaluations of
the molecular Prandtl number, the turbulent Prandtl and Schmidt numbers were set to 0.7 for
both low NPR cases (60 and 150). For the NPR600 cases, Prt and Sct had to be decreased to a
value of 0.4 to achieve a reasonable agreement with the experimental data. The possible reason
for this decrease will be discussed later.

Table 6.2: Summary of the investigated underexpanded n-hexane test cases.

NPR 60 60 150 150 150 600 600 600
Tt [K] 600 630 577 600 630 577 600 630

Simulation domain

The computational domain consists of a high-pressure reservoir and a low-pressure chamber con-
nected through a circular nozzle with a diameter of 0.236 mm according to the experimental
setup [14, 80]. A sketch of the configuration is shown in Fig. 6.3. Initially, the low- and the high-
pressure parts are separated by a virtual membrane which is removed at simulation start. At the
inlet boundary of the high-pressure reservoir, total temperature and total pressure are prescribed
with values taken from the experiments. Non-slip and adiabatic boundary conditions are employed
at the solid walls. At the outlets of the low-pressure chamber, fixed static pressure boundary con-
ditions are applied. Due to the investigation of different NPRs, the axial and radial extension
(Lx and Lr) of the low-pressure chamber in the simulations are different. The lengths used in
the present investigation are listed in the table in Fig. 6.3. The dimensions were chosen such,
that the far field does not influence the near-nozzle jet structure. Especially in the NPR600 case,
this resulted in an increase of the represented low-pressure chamber dimension by approximately
a factor of two in the x- and y-direction compared to the low NPR cases. RANS simulations have
been conducted which enable the utilization of the rotational symmetry of the flow field. A two
degrees wedge configuration with symmetry boundary conditions on the opposite sides has been
simulated. The solver settings are summarized in Tab. 6.3.

x

y
D/2

Lx

L
r

high-pressure
reservoir

low-pressure
chamber

NPR Lx
D

[-] Lr
D

[-]

60 200 50
150 200 50
600 400 135

Figure 6.3: Schematic of the computational domain together with the major dimensions.
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Table 6.3: Solver setup for the investigation of real-gas effects in underexpanded jets.

Solver TVD-limiter Turbulence closure EoS

pressure-based van Albada [332] RANS with PR-EoS [226](supersonic) k,ω-SST-model [191, 192, 193]

Grid independence study

A grid independence study comprising four different meshes has been conducted for the NPR60-
T600 case. Starting with an initial coarse resolution of 16 cells over the nozzle diameter – i.e., 8
cells in radial direction – for mesh1, the mesh was gradually refined three times with a 1.5 times
higher cell number in each direction resulting in 24 (mesh2), 36 (mesh3) and 54 (mesh4) cells over
the nozzle diameter. To evaluate the mesh convergence behavior in a first step, the mass flow rate
at the nozzle exit ṁ is analyzed. In Tab. 6.4, the mesh resolution and the evaluated mass flow rates
of the four different meshes are listed. While the mass flow rate still changes from mesh1 to mesh2

Table 6.4: Results for the grid independence study for case NPR60-T600.

mesh1 mesh2 mesh3 mesh4

Orifice cells [-] 16 24 36 54
Cell count [-] ≈ 24000 ≈ 53000 ≈ 120000 ≈ 272000

ṁ [g/s] 4.44 4.49 4.50 4.50

and from mesh2 to mesh3, a constant value of 4.50 g/s is achieved for the meshes 3 and 4 with
36 and 54 cells. To further judge the required mesh resolution, Fig. 6.4 shows the variation of the
speed of sound along the chamber center axis for the four different meshes. The mesh dependence
in the near-nozzle region – nozzle exit up to Mach disk position – is plotted in Fig 6.4a. From
mesh1 to mesh2 a clear change in the expansion path for x/D < 1 and in the sharpness of the
shock at the Mach disk is found. With increasing mesh resolution the variation of the speed of
sound converges. For the refinement from mesh3 to mesh4 almost no significant changes become
obvious. Similar findings in terms of the mesh convergence behavior can be found in the far-field,
i.e., at the measurement location, see Fig. 6.4b. With increasing resolution the curves converge
to each other and the changes from mesh3 to mesh4 are not significant. To further underline this
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ã
s
[m

/s
]

(a) Near-nozzle region.

85 105 125 145 165 185
320

330

340

350

360
Evaluation position:

x/D = 110
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Figure 6.4: Mesh convergence study along the centerline for the case NPR60-T600. The near-nozzle
region up to the Mach disk is shown in subfigure a. Far-field results are plotted in subfigure b
including an evaluation of the speed of sound at the measurement position x/D = 110.
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fact, the speed of sound has been evaluated at x/D = 110 which corresponds to the evaluation
position in the experiment of the present case. A negligible change in the evaluated speed of sound
is found from mesh3 to mesh4, see table in Fig. 6.4b. Therefore, grid independence is achieved for
mesh3 and the flow is resolved sufficiently. All RANS simulation results presented in this section
have been computed using mesh3.

6.1.3 Results

Comparison with experimental data

Before the experimental and numerical speed of sound data are compared to each other, the
dependency of the overall flow field on the NPR is studied. In Fig. 6.5, the numerical simula-
tion results for the NPRs 60, 150 and 600 are shown at a total reservoir temperature of 630 K.
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Figure 6.5: Numerical simulation results of the underex-
panded jets at a total reservoir temperature of 630 K.

The NPR increases from top to bot-
tom. Each upper half displays the
temperature field, while the lower
half shows the corresponding n-
hexane mass fraction field. Note that
all plots have the same temperature
and mass fraction ranges. For all
three cases, a highly underexpanded
jet with a single shock barrel occurs.
With increasing nozzle pressure ra-
tio the size of this shock structure in-
creases drastically. This accounts for
both the axial and radial extent. A
detailed investigation of the axial po-
sition of the Mach disk in dependency
of the NPR can be found in Sec. F.3
of the appendix. In terms of the ra-
dial extent, the shock barrel grows by
a factor of 1.75 from NPR 60 to 150
and more than doubles by a factor of
2.4 when going from NPR 150 to 600.
As the Mach disk is the source for
the subsequent mixing process of the
injected fuel with the ambient gas,
the extent of the overall flow field in-
side the chamber increases with in-
creasing NPR. Looking at both the
temperature and the mass fraction
field in more detail, it can be seen,
that the shock barrel prohibits the
entrainment of nitrogen into this pri-
mary expansion structure. This fact
was also reported and discussed re-
cently by, e.g., Baab et al. [15] and
Hamzehloo and Aleiferis [108]. With
respect to the temperature, the bar-
rel is the region of lowest tempera-
ture values in the overall flow field
due to the strong expansion process
after leaving the nozzle. The small-
est temperature is found shortly upstream of the Mach disk. Downstream of the Mach disk the
mass fraction and the temperature gradually decay towards the chamber conditions as a result of
the steady mixing process with the ambient gas. For both the temperature and the mass fraction
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field this decay occurs highly similar and is a first evidence of advection controlled mixing which
will be examined in more detail later. In addition to the visualization of the flow field, Fig. 6.5
shows the measurement/evaluation points for the speed of sound data by means of white dots
along the center axis. In the NPR 60 and 600 cases, only a single evaluation point at x/D = 110
is available. In the NPR60 case, this point lies outside the n-hexane potential core, while in the
NPR600 case the evaluation point is found inside the core. For the NPR150 cases, three different
positions at x/D = [50, 88, 110] are used. The evaluation points are found partly inside and outside
the potential core.

In Fig. 6.6, the comparison of the speed of sound data from the experimental measurements and
the CFD simulations is shown. In accordance with the experiments [14, 80], the speed of sound
was evaluated from the CFD results by using a sphere of diameter 200 µm and taking the aver-
age. Overall, a very good agreement is found and it can be concluded that the CFD framework is
able to capture the mixing process over a wide temperature and NPR range. Almost all points lie
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Figure 6.6: Comparison of the speed of sound measurements [14, 80] with the simulation results.
The dashed lines are linear regressions of the experimental data at identical axial positions.

within the measurement uncertainty of the experiment. For the lowest NPR of 60, both simulations
(Tt = 600 K and 630 K) excellently predict the measured speed of sound values at an axial position
of x/D = 110. For the NPR150 cases a very good overall agreement is found. Data of both most
downstream locations, i.e., x/D = 80 and 110, are predicted excellently for all three injection tem-
peratures. At x/D = 55, small deviations are present for the injection temperatures Tt = 577 K
and 630 K. However, note that at these two positions the measurement uncertainty in the experi-
ment [14] is maximal and both RANS results lie within the uncertainty range. A possible reason
for these large uncertainties and the deviations between CFD and experiment will be discussed
later when the overall decay rate of the fuel jet is analyzed in more detail, see Sec. 6.1.3. For the
NPR600 cases, a systematic underprediction of 2-3% is found for all three injection temperatures.
However, the trend of a rising speed of sound value at x/D = 110 for increasing total reservoir
temperatures is captured perfectly. Keep in mind that the turbulent Prandtl and Schmidt number
had to be changed in the RANS simulations of the NPR600 cases to a value of 0.4 to correctly pre-
dict the sound velocity. Using the same Prandtl and Schmidt numbers (Prt = Sct = 0.7) as for the
cases with NPR 60 and 150 resulted in an underprediction of the speed of sound of approximately
8-10%. To get more insight into this issue, a full 360-degrees Large-Eddy Simulation of the case
NPR600-T577 has been conducted using the WALE sub-grid model [211]. The turbulent Prandtl
and Schmidt numbers were set to one: Prt = Sct = 1. According to the suggestions of Hamzehloo
and Aleiferis [111], the nozzle is resolved with 50 cells over the diameter. Very similar resolutions for
reliable Large-Eddy Simulations of underexpanded jets were reported by, e.g., Vuorinen et al. [343]
or Munday et al. [205]. The extent of the simulated low-pressure chamber equals the dimensions
listed in Fig. 6.3 and yields a total mesh size of 12 million cells. The comparison of the experi-
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mental and numerical speed of sound values at x/D = 110 shows very good agreement. The LES
overpredicts the sound velocity by approximately 2.5% which is approximately the same amount
as the RANS underpredicts it. In Fig. 6.7, the average n-hexane mass fraction fields from the LES
and RANS simulation are compared to each other. Overall, the flow fields look similar in terms of
the radial extent. However, for the axial variation deviations become obvious. In the RANS case,
the decay of n-hexane is very continuous and the jet core gets gradually diluted with nitrogen.
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Figure 6.7: Comparison of the average n-hexane field for
the case NPR600-T577.

In contrast, a large entrainment of ni-
trogen in the LES case is first omit-
ted up to x/D ≈ 40. Farther down-
stream, the jet break-up is very in-
tense and a lot of nitrogen mixes into
the jet core leading to a very rapid
dilution of n-hexane. As a result, the
overall length of the potential core
in the LES is shorter than in the
RANS case and lower n-hexane mass
fractions are present at and around
the evaluation location (x/D = 110).
The longer n-hexane potential core in
the RANS simulations is therefore at-
tributed to the turbulence modeling.
Hence, a more thorough investigation
on this issue would be necessary which is however out of scope of the present study. This will be
kept for future investigations as the focus of the present study lies on the thermodynamic effects
rather than on an in-depth investigation of the turbulence/sub-grid modeling in RANS and LES.

Assessment of the thermodynamic modeling error

In Fig. 6.2, the prediction capability of the PR-EoS [226] for pure n-hexane was compared to
high-fidelity data taken from CoolProp [27]. The validation showed that both density and specific
heat are predicted excellently by the PR-EoS [226] over a wide temperature and pressure range.
Therefore, the representation of the general fluid state, i.e., the energetic state, can be considered
highly accurate. However, for low temperatures notable deviations of the predicted sound velocity
occur, see Fig. 6.2 bottom right. This in turn motivates the further assessment of possible ther-
modynamic modeling errors of as in the mixture space.
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Figure 6.8: Comparison of the speed of sound
taken from the RANS simulations with data a
posteriori evaluated using CoolProp [27].

To quantify possible errors, we extracted
pressure, temperature and composition from all
RANS simulation results at the evaluation po-
sitions for the speed of sound. Based on these
data, the sound velocities are re-evaluated us-
ing CoolProp [27]. For the treatment of alkane
mixtures, the GERG-2008 EoS [144, 145] is
used in CoolProp [27]. In Fig. 6.8, the sound
velocity extracted from the RANS simulations
as,RANS – same as shown in Fig. 6.6 – and the a
posteriori evaluated sound speed as,CoolProp are
compared to each other. Excellent agreement
is found and the minimum and maximum error
lie well below 1%. This is not unexpected as the
mixing process occurs under almost ideal con-
ditions. Therefore, modeling errors resulting
from the thermodynamic framework should be
minimal. Hence, the data can be used without
hesitation for further studies that go beyond
the mere comparison with experimental data.
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Concentration decay along the centerline

Turbulent jets released into a gaseous environment become self-similar at a sufficiently large dis-
tance from the source. In the present case, the source corresponds to the Mach disk as downstream
of this shock structure the mixing process with the ambient gas takes place. As this process oc-
curs under almost isobaric conditions, i.e., respective chamber pressure conditions, the jet growth
and the axial decay rates of different properties correspond to ordinary compressible turbulent
jets [366]. Experimental work of Birch et al. [35, 36] showed that for sufficiently large axial dis-
tances the centerline concentration and velocity are inversely proportional to the distance from the
source. In Fig. 6.9, the decay of the n-hexane concentration and the velocity along the chamber axis
are shown for the three different NPR150 cases. All three jets exhibit self-similarity for x/D & 90.
This is approximately the position of the second measurement point in the experiment and could
be an explanation for the excellent agreement between experiment and simulations at x/D = 80
and x/D = 110, cf. Fig. 6.6. Upstream of x/D ≈ 90, the values deviate from the dashed line as
the jet structure is developing in this region and therefore self-similarity is not achieved yet. This
in turn could be the reason for the large experimental uncertainty and the deviation between the
experimental data and the CFD results.
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Figure 6.9: Concentration and velocity decay along the centerline for the three NPR150 cases. The
curve fit was done manually to underline the self-similarity of the jets for sufficiently large distances
from the source. Only every 5th point from the simulation results is shown and data points below
x/D ≈ 45 are excluded.

In addition to the speed of sound measurements, Baab et al. [14] and Förster et al. [80] reported
mass fraction data which they recalculated from their measured sound speeds along the centerline.
For the post-processing of the experimental data, Baab et al. [14] and Förster et al. [80] used
thermodynamic data from NIST Refprop [165] together with the adiabatic mixture approach.
This evaluation procedure and possible improvements are discussed in detail in the next section. In
Fig. 6.10, the CFD and the experimental results are compared to each other. The data is grouped
according to the axial measurement/evaluation positions (x/D = [50, 80, 110]). A systematic
offset between the RANS results and the post-processed experimental data becomes obvious. The
discrepancy increases with larger axial distance. In fact, the deviations can be traced back to
real-gas effects which have to be considered in a consistent and thermodynamically rigorous way
when mass fractions are deduced from, for instance, single-point speed of sound measurements.

6.1.4 Thermodynamic analysis

Nonideal fluid behavior

The mixing process downstream of the Mach disk leads to a gradual change of the energetic state
and the composition. This in turn results in a variation of the speed of sound which is in general
a function of pressure, temperature and composition. To better understand the mixing process
and the influence of the nonideal fluid behavior, Fig. 6.11 shows the variation of the pressure
and the compressibility factor along the centerline of the chamber. The data are taken from the
case NPR150-T577. Up to the Mach disk position, a rapid expansion process occurs leading to a
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Figure 6.10: Comparison of the centerline concentration for the investigated n-hexane jets. Exper-
imental data have been taken from the work of Baab et al. [14] and Förster et al. [80].

minimum pressure of ≈ 0.2 bar. Due to the strong shock, the flow is brought back to chamber
conditions and therefore the pressure is almost constant downstream of the Mach disk. Therefore,
the dilution of the jet takes place under almost isobaric conditions and hence the variation of the
speed of sound is governed by the change in temperature and composition along the chamber axis.
Due to the low pressure, mixing occurs under almost ideal gas conditions (Z ≈ 1). However,
upstream of the Mach disk the consideration of real-gas effects is mandatory as the compressibility
factor is unequal to unity. Note that the minima of the compressibility factor and the pressure
do not occur at an identical axial position. The minimum pressure value is found shortly up-
stream of the Mach disk location. In contrast, the minimum value of the compressibility factor
(Z ≈ 0.4) is located shortly downstream of the nozzle exit. To better understand this observation
from a thermodynamic point of view, Fig. 6.12 shows the expansion path along the center axis
in the pressure-temperature diagram of n-hexane. Every 5th point of the simulation data is plot-
ted and colored with the respective compressibility factor. In addition, the vapor-pressure curve
(solid black line) together with the Widom line (dash-dotted black line) of n-hexane are shown.
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Figure 6.11: Change of the pressure and the compressibility factor along the center axis for the
test case NPR150-T577.
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Figure 6.12: Expansion path along the chamber centerline
for the case NPR150-T577. Every 5th data point of the
RANS simulation result is plotted and colored with the
respective compressibility factor Z.

For the determination of the Widom
line the peak of the specific heat was
used. Shortly upstream and down-
stream of the nozzle-exit the small-
est compressibility factors are found.
These scatter points with Z < 1
are all in the vicinity of the Widom
line. As soon as the temperature
and pressure in the expansion process
are well below the critical point of
n-hexane, the compressibility factor
becomes close to unity and the non-
ideal fluid behavior vanishes. How-
ever, this fact does not justify the
application of the ideal-gas closure.
The neglect of the real-gas effects on
the simulation results will be exam-
ined in more detail in the following.
Here, we will start with the determi-
nation of the post-shock state, as it is
the source for the subsequent mixing
process of the injected fuel and the
ambient gas.

Post-shock state

In many investigations in the literature, the post-shock state is assumed to be at the chamber
pressure and at a temperature being equivalent to the reservoir conditions, see, e.g., Harstad and
Bellan [114], Baab et al. [15] or Förster et al. [80]. This is a valid assumption as long as the
post-shock Mach number is below 0.4 (incompressible) and the fluid behaves like an ideal gas
(enthalpy is only a function of the temperature, i.e., h = h (T )). In the present investigation,
however, the latter assumption does not hold, as the injection conditions induce strong real-gas
effects. Therefore, the thermodynamic state variables have both a temperature and a pressure
dependency, i.e., h = h (p, T ).

To further elaborate this fact, Fig. 6.13 shows RANS results along the centerline for the case
NPR150-T577. Both an ideal-gas and a real-gas equation of state have been employed to investigate
the differences in the results induced solely by the thermodynamic closure. Overall, both expansion
paths exhibit a kind of loop-like pattern in the pressure-temperature space with the maximum
values at reservoir conditions and the minimum values at the Mach disk. The plot of the ideal-gas
solution – marked with green dots – shows an almost straight line in the semi-log space ranging
from the reservoir up to the Mach disk. This behavior can be attributed to two facts: First,
because of the axial and radial shock structure, no mixing takes place and therefore only the pure
fluid thermodynamic properties – here: n-hexane – govern the considered expansion path. Second,
the expansion is rapid and almost adiabatic and therefore can be approximated as isentropic, i.e.,
the entropy s is constant. Assuming a perfect gas (constant heat capacity), the temperature and
the pressure can be related in such an expansion process as

p/pt = (T/Tt)
γ
γ−1 . (6.1)

Here, the reservoir condition is denoted by the index t and γ = cp/cv is the isentropic exponent
(here: γ = 1.04 for C6H14). The result of Eq. (6.1) is plotted in Fig. 6.13 as dotted line and
underlines the assumption of an isentropic expansion process without mixing up to the Mach disk
position. The strong normal shock brings the flow back to chamber pressure conditions (here:
pch = 2 bar). Due to the application of the ideal-gas law, i.e., the enthalpy is solely a function of
the temperature neglecting mixing processes, the post-shock temperature Tps equals the reservoir
condition (for an ideal gas: Tps = Tt = 577 K), see Fig. 6.13.
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Figure 6.13: Comparison of ideal and real gas RANS results for the case NPR150-T577. Only every
5th point from the simulations along the chamber centerline is shown.

Looking at the real-gas results – shown as red dots in Fig. 6.13 – deviations with respect to the
ideal gas solution are obvious. Due to the nonideal fluid behavior, the nozzle exit states are already
different and the temperature and pressure in the real-gas case are lower compared to the ideal-gas
solution. This fact gets more pronounced downstream of the nozzle: Here, the real-gas results show
an s-shaped curve in the semi-log p, T -space resulting in overall smaller temperatures compared
to the ideal-gas case throughout the whole expansion process from reservoir conditions up to the
Mach disk. Comparing this curve shape to the ideal gas solution it can be concluded that the
high-pressure and low-pressure branch of the expansion process are approximately governed by the
ideal-gas behavior (compressibility factor Z = pv (RT )

−1 ≈ 1) as these branches are almost linear
in the semi-log p, T -space. Identical conclusions have been drawn based on Fig. 6.12. With respect
to the minimum expansion pressure, it is noteworthy that these pressure values are almost identical
when comparing the ideal and the real gas results. The strong shock at the Mach disk brings the
flow back to the chamber pressure. Due to the nonideal fluid behavior, the post-shock temperature
is approximately 75 K lower compared to the ideal-gas solution. Hence, the assumption of an
isothermal relation between the reservoir condition and the post-shock state does not hold in the
real-gas case.
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Figure 6.14: Comparison of ideal and real gas RANS results
for the case NPR150-T577 in terms of the speed of sound
and the temperature along the centerline of the chamber.

The consideration of real-gas ef-
fects within the simulation does not
only alter the initial expansion pro-
cess and the post-shock state but
also changes the whole thermody-
namic states along the nozzle and
chamber axis. This can be seen in
more detail in Fig. 6.14 where the
speed of sound and the temperature
are plotted along the chamber cen-
terline. The comparison shows that
the temperature level is reduced due
to the consideration of real-gas effects
which in turn results in lower values
of the speed of sound. Overall, it can
be concluded that the consideration
of real-gas effects is mandatory for
the prediction of the correct mixture
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state and that the application of the ideal-gas law leads to severe deviations which are not accept-
able for high-fidelity investigations and predictions of the disintegration process of fuel jets into a
gaseous environment.

To correctly predict the post-shock state in underexpanded real-gas jets a priori, i.e., without
using expensive and complex simulations, it is essential to start from the first law of thermody-
namics. Considering an open system and under the assumption of a stationary process the first
law of thermodynamics reads:

0 =
∑

Q̇+
∑

Ẇ +
∑

(ṁht) . (6.2)

Here, Q̇ is the heat flux, Ẇ is the power and ṁht is the transport of total specific enthalpy due to
mass fluxes across the system boundaries. Assuming an adiabatic expansion (the expansion process
is very fast and hence no significant heat flux is present) and combining it with the fact that no
technical device is connected to the investigated flow system, we arrive at a flow with constant total
specific enthalpy (ht = const.). This resulting process is illustrated in Fig. 6.15. As our primary
interest lies in the post-shock state, i.e., state 1 in Fig. 6.15, we apply the first law to the expansion
structure upstream of the Mach disk (highlighted in gray). Therefore, the state change from point
0 to 1 in Fig. 6.15 is considered. Due to the fact that the velocity change is negligible between
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Figure 6.15: Expansion of an underexpanded jet with the corresponding total enthalpy and static
enthalpy characteristics. At the nozzle exit, the Mach number equals unity and hence the velocity
is equal to the local speed of sound, i.e., the flow is choked.

the reservoir and post-shock state, see Fig. 6.15, we arrive at a flow with constant enthalpy when
looking at the inlet and outlet of our imaginary thermodynamic system between state 0 and 1 in
Fig. 6.15, i.e., ht = h0 = h1. As a result, the post-shock static temperature Tps can be estimated
from the total enthalpy at reservoir conditions and the chamber pressure as:

Tps = T (ht, pch) . (6.3)

Here, it is of course important to apply a thermodynamic closure considering real-gas effects, i.e.,
h = h (p, T ). A comparison between the analytical results from Eq. (6.3) and the CFD results
is shown in Tab. 6.5. The discrepancy between both results is well below 1%. In addition, the
comparison between the reservoir temperature Tt and the post-shock temperature Tps shows the
influence of the real-gas effects on the post-shock temperature.

Table 6.5: Comparison of the post-shock temperature Tps according to Eq. (6.3) and the RANS
simulation results. The analytical post-shock temperature has been evaluated using CoolProp [27].

NPR 60 150 600
Tt [K] 600 630 577 600 630 577 600 630

Tps Eq. (6.3) [K] 533.57 569.94 502.68 531.49 568.27 501.46 530.48 567.45
Tps RANS [K] 531.17 567.63 499.94 528.93 566.32 499.02 528.52 563.61
Difference [K] 2.40 2.31 2.74 2.56 1.95 2.44 1.96 3.84
Difference [%] 0.45 0.40 0.54 0.48 0.34 0.49 0.37 0.68

Tt − Tps [K] 66.43 60.06 74.32 68.51 61.73 75.54 69.52 62.55
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To conclude the thermodynamic discussion of the post-shock state, Fig. 6.16 shows the enthalpy-
pressure diagram of n-hexane. High-fidelity data from CoolProp [27] have been used for the
presentation of this diagram. The two-phase region is defined by the two binodals – dew- and
bubble-point line – and is determined by the critical point from where the Widom line (dash-
dotted line) extends into the supercritical pressure regime. Eight isotherms are shown including
three subcritical, the critical and four supercritical temperatures. The arrow on the top right of
Fig. 6.16 shows the expansion direction for the pure n-hexane up to the Mach disk. The four
total injection conditions are marked by the colored dots. Each colored horizontal line indicates
an isenthalp, i.e., h = ht (pt, Tt). By comparing the post-shock states at constant enthalpy with
the isotherms at the corresponding reservoir conditions a clear difference is visible. While the
isenthalps form a straight line in the h, p-diagram, the isotherms exhibit an s-like curve shape. For
all reservoir and back-pressure conditions, an average deviation of approximately 70 K is found
when comparing the isothermal with the isenthalpic approach. This is a result of the real-gas
effects and in turn of the pressure dependency of the thermodynamic properties in this regime.
Similar conclusions have been drawn from the detailed investigation of case NPR150-T577 based
on Figs. 6.13 and 6.14.
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Figure 6.16: Enthalpy-pressure diagram of n-hexane. The black lines show the two-phase region, the
Widom line and eight isotherms. The colored lines highlight isenthalpic and isentropic state changes
originating from the respective reservoir conditions (filled circle). The choked flow conditions and
the post-shock states are marked by the white-filled dashed and bold circles, respectively.

In addition to the discussion of the post-shock state, the exclusion of the low temperature
cases (Tt = 553 K) from the present numerical investigation can be understood from Fig. 6.16.
The dashed line emerging from the respective reservoir condition corresponds to the isentropic
expansion path and the colored dot on this line marks the choked flow condition. The red dashed
line clearly crosses the two-phase region and therefore a more sophisticated thermodynamic closure
would be necessary to conduct the simulations. This topic will be addressed in Sec. 6.2 in more
detail for a different test case.

Thermodynamically rigorous mixing approach

Building on the findings in the last section, a thermodynamically consistent 1D mixing approach
is outlined in the following. This method enables the thermodynamically rigorous evaluation
of thermodynamic properties from, e.g., measured speed of sound data in convection dominated
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Figure 6.17: Sketch of the adiabatic mixture concept for advection-controlled mixing.

mixing. The basic concept is sketched in Fig. 6.17. The mixing approach spans from shortly
downstream of the Mach disk up to a virtual point in the far field where the flow is fully mixed
out and solely pure ambient gas is present. Therefore, the complete mixture space is covered.
In the present high-speed cases, the mixing is advection-controlled. As a result, the transport of
species and energy is controlled by means of convection and turbulent diffusion and hence both
conservation properties are transported at the same rate. This fact allows the application of
the adiabatic mixture concept which relies on the unitary Lewis number assumption which again
implies the equality of species and energy transport. The big difference to previous investigations
is not the introduction of this adiabatic mixture approach but the thermodynamically rigorous
description of the post-shock state, which the mixture model relies on.

In general, the adiabatic mixture model for a binary mixture reads as follows

ṁmix = ṁ1 + ṁ2 , (6.4a)
ṁmixhmix = ṁ1h1 + ṁ2h2 , (6.4b)

which can be deduced from the conservation of mass and energy under stationary conditions. In
Eq. (6.4), the indexing of the pure fluid is chosen in accordance with Fig. 6.17 and the mixture
is denoted by the index mix. Using Eq. (6.4), the mass fraction of the mixture along the mixing
path can be expressed as

Ymix =
ṁ1

ṁ1 + ṁ2
(6.5)

and therefore the mixture specific enthalpy reads

hmix = Ymixh1 + (1− Ymix)h2 . (6.6)
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Figure 6.18: Specific enthalpy and speed of sound
along the adiabatic mixture path for the case
NPR150-T577.

Using this approach, the mass fraction at any
axial position along the centerline can be de-
duced from the measured speed of sound data
applying an iterative process. This can be done
in the following way: The mixture space is com-
pletely defined by the mixing pressure, i.e., the
chamber pressure, and the specific enthalpy in
the mixture space, see Fig. 6.18. According to
Eq. (6.6) and Fig. 6.18, the enthalpy forms a
straight line which is defined by the chamber
(YN2

= 1) and the reservoir/post-shock condi-
tions (YN2 = 0). Therefore, the correct post-
shock temperature including real-gas effects is
inherently included. Under the assumption of a
single-phase mixing process downstream of the
Mach disk – as it is the case here – the thermo-
dynamic state at every mixture location is fully
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defined by the enthalpy, pressure and mass fractions. Hence, every other thermodynamic property
can be derived straightforwardly. It is just necessary to perform a line search along the mixture
fraction and look for the appropriate speed of sound value. From Fig. 6.18 it becomes obvious
that for most parts of the present study, there are unique values available. Only for nitrogen mass
fractions larger than 90% the distribution is nonmonotonic and the mixture approach might fail.
This, however, is of no concern in the present study as the n-hexane mass fractions are always
greater than 20%.

In the final step, the described adiabatic mixing model is applied to evaluate the mass fractions
a posteriori from the measured speed of sound data. The results of the post-shock corrected
experimental data of Baab et al. [14] and Förster et al. [80] are shown in Fig. 6.19 in comparison to
the RANS results. By rigorously considering real-gas effects for the determination of the post-shock
state the newly post-processed mass fractions from the experimental data correspond very well to
the RANS results. Comparing Figs. 6.10 and 6.19, a clear shift of the newly post-processed mass
fractions towards lower values and therefore towards the CFD results occurs. In future studies, this
agreement can be improved by several aspects: First, the current adiabatic mixing model neglects
the kinetic energy of the flow. Second, the investigation of other fluids, e.g., fluoroketone, and lower
NPRs can extend the data base for the analysis and show possible additional sensitivities apart
from the sole thermodynamic aspects. When taking additional fluids into account, it is advisable
to switch from mass to mole fractions following the work of Ewan and Moodie [74].
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Figure 6.19: Comparison of the centerline concentration for the investigated n-hexane jets. Exper-
imental speed of sound data were taken from Baab et al. [14] and Förster et al. [80] and have been
post-processed using the adiabatic mixture concept.

6.1.5 Summary

In this section, numerical simulations have been conducted to study the mixing of highly underex-
panded jets under engine-relevant conditions. Recent experimental data from Baab et al. [14] and
Förster et al. [80] in terms of speed of sound measurements along the chamber center axis have been
used to validate the CFD tool and study the jet mixing process. In total, eight different cases have
been investigated where n-hexane has been injected through a single-hole injector into a chamber
filled with nitrogen at rest. The cases selected for the present study cover a wide range of injection
conditions: The reservoir temperatures comprise values from 577 K to 630 K and the NPRs vary
between 60 and 600. Overall, very good agreement between the CFD results and the experimental
data has been found. Especially in the regions of the fully developed jet, the prediction capability
of the numerical framework is excellent.

Based on the successful validation of the CFD framework, a thorough analysis of the influ-
ence of the thermodynamic closure on the jet mixing process has been conducted. Neglecting the



6 Mixing under supersonic flow conditions 117

pressure-dependency of the thermodynamic properties, i.e., real-gas effects, results in incorrect
thermodynamic states throughout the complete jet mixing process from reservoir to chamber con-
ditions. Most obvious, an average overprediction of the post-shock temperature of 70 K occurs
for the present cases. This is caused by the erroneous energetic state when the ideal-gas law is
applied as thermodynamic closure. This error further manifests in an overprediction of the tem-
perature and consequently of the speed of sound along the chamber center axis. To evaluate and
post-process thermodynamic properties in the mixing region downstream of the Mach disk from,
e.g., measured speed of sound data, a thermodynamically rigorous determination of the post-shock
state is necessary. Based on the present simulation results, an adiabatic mixture model has been
deduced which enables a correct consideration of the energetic state. This in turn leads to a reliable
prediction of additional thermodynamic data along the mixing path without applying costly and
possibly complex numerical simulations. Using this new modeling approach, fuel mass fractions
have been re-calculated from the measured speed of sound data from Baab et al. [14] and Förster
et al. [80]. The post-shock corrected results nicely collapse to the simulation results and show the
validity of the suggested mixture model.

6.2 Phase separation in pure fluids

Large parts of the following results and discussions are published in the journal article [321]:
Traxinger, C., Zips, J., Banholzer, M., and Pfitzner, M. A pressure-based solution framework
for sub- and supersonic flows considering real-gas effects and phase separation under engine-
relevant conditions. Computers & Fluids, 202:104452, 2020.

6.2.1 Experimental setup

Recently, Fond et al. [79] and Xiao et al. [360] investigated underexpanded argon jets by means
of experiments and numerical simulations. The main focus of both works [79, 360] was on the
fluid-wall interaction in the confined channel and the velocity field in terms of first and second
order moments. In their investigations [79, 360], argon Ar was injected into its own gas phase
through a single-hole nozzle of diameter D = 1.54 mm. The low-pressure chamber is a square duct
of 50 mm × 50 mm. The nozzle-pressure ratio between the fluid reservoir upstream of the nozzle
and the chamber is given as 120. The back-pressure in the chamber was set to 1 bar which yields a
total reservoir pressure of 120 bar. Moderate temperatures were chosen for both the fluid reservoir
(T = 274 K) and the chamber (T = 285 K) resulting in the presence of real-gas effects [360]. In
addition, Fond et al. [79] reported the possibility of phase separation processes, as their single-shot
images of the Mie scattering intensity showed bright regions upstream of the Mach disk. However,
this was not numerically investigated by Xiao et al. [360] and therefore is one of the focal points
of the following investigations.

6.2.2 Numerical setup

General settings

For the numerical investigation of the described argon jet, an LES has been conducted and the
turbulence closure was achieved using the WALE [211] sub-grid model. For the temporal and
spatial integration, second order accurate schemes were employed. According to the work of Xiao
et al. [360], the Minmod limiter [264] is used to prevent an unboundedness of the solution. Following
recent investigations of Hamzehloo and Aleiferis [111] the injector is resolved with 50 cells over the
diameter resulting in a minimum cell size of ≈ 30 µm. The length of the square duct chamber was
chosen as 100 mm to accurately capture the near-nozzle region up to approximately 60 mm. The
length of the nozzle was set to ten times the injector diameter D, i.e., 15.4 mm, followed by an
upstream reservoir supplying the high-pressure fluid to the nozzle. In total, the mesh comprises
approximately 3.2 million cells. For the initialization of the simulation, the domain was separated
into a high-pressure part (reservoir conditions: p = 120 bar and T = 274 K) and into a low-pressure
part (chamber conditions: p = 1 bar and T = 285 K) left and right of the nozzle exit (x = 0 mm).
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The thermodynamic closure has been achieved based on the Peng-Robinson [226] equation of state.
As argon is a noble gas, this choice is not crucial for the present investigation. The required critical
properties together with the acentric factor can be found in Tab. B.1 in the appendix. The solver
settings are summarized in Tab. 6.6.

Table 6.6: Numerical solver setup for the investigation of phase separation processes in pure fluids.

Solver TVD-limiter Turbulence closure EoS

pressure-based (supersonic) Minmod [264] LES with WALE [211] PR-EoS [226]

Thermodynamics

In Fig. 6.20, the vapor pressure curve of argon (solid black line) from the triple point up to the crit-
ical point is shown. The triple point of a fluid marks the temperature and the pressure where three
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Figure 6.20: Pressure-temperature diagram of ar-
gon together with an approximated isentropic ex-
pansion path for a perfect gas (Ar: γ = 1.67) from
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Figure 6.21: Two-phase dome of argon calculated
with the PR-EoS [226] for the pure fluid and for
the binary mixture of argon and nitrogen z =
[0.985, 0.015]. The reference data have been taken
from CoolProp [27] for pure argon.

phases (solid, liquid and vapor) coexist in ther-
modynamic equilibrium. It therefore deter-
mines the lower end of the VLE. Based on
Eq. (6.1), the approximated isentropic expan-
sion path of a perfect gas (Ar: γ = 1.67) from
reservoir conditions towards the chamber pres-
sure is shown in the p,T - diagram. At a tem-
perature of approximately 125 K the ideal ex-
pansion path crosses the VLE and consequently
the two-phase region is entered across the dew-
point line. As a result, a condensation process
can be expected which has to be taken into ac-
count to investigate the actual thermodynamic
expansion trajectory and to avoid solver insta-
bilities caused by an erroneous (single-phase)
treatment of the fluid in the numerical simu-
lation. To enable the application of the VLE-
model introduced in Sec. 4.8 for the present
case, argon has been diluted with one mass
percentage of nitrogen N2 corresponding to a
binary mixture with overall mole fractions of
z = [0.985, 0.015]. In Fig. 6.21, this assump-
tion is evaluated in terms of the two-phase
dome and the critical point. The reference data
from CoolProp [27] and the PR-EoS [226] show
the VLE of the pure fluid (argon). Compar-
ing these two data sets, the binodal and the
critical point are described very well by the
PR-EoS [226], despite some small deviations at
the bubble-point line. This could be expected,
as argon is a noble gas. The comparison of
the defined binary mixture to these two data
sets yields very similar conclusions. The shape
of the binary two-phase dome almost collapses
with the prediction of the pure PR-EoS [226]
in terms of both the binodal and the critical
point. Therefore, it is concluded, that the ap-
plication of the diluted binary mixture instead
of the pure fluid is a reasonable approximation
for the present investigation.
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6.2.3 Results

Flow structure

In Fig. 6.22, the flow structure of the underexpanded jet forming downstream of the nozzle exit up
to x ≤ 16 mm is shown by means of instantaneous snapshots. The Schlieren image obtained from
the experiments [360] is shown on the left-hand side and the right image depicts the simulation
result. As a vertical knife edge is used in the experiments, the magnitude of the streamwise gradient
of the density, i.e., |∂ρ/∂x|, is evaluated for the visualization of the jet structure [287]. In addition,
a line-of-sight integration has been conducted and the obtained intensity I has been stretched via
the relation exp (−2.5I/Imax) following Xiao et al. [360]. Both the experiment and the numerical
simulation show an extremely underexpanded jet. The shock structure forming downstream of the
nozzle exit is determined by the Mach disk separating the flow into the supersonic (upstream) and
the subsonic (downstream) regime. The numerical simulation is able to capture the radial extent
of the structure and the axial position of the Mach disk. According to Fond et al. [79], the Mach
disk is located between 11.5 mm and 12.5 mm and hence no stationary behavior was reported
which is in good agreement with the present LES.

5 10 15

−5

0

5

x [mm]

y
[m

m
]

5 10 15

x [mm]

Experiment Simulation

Figure 6.22: Comparison of the near-nozzle flow structure by means of single-shot images. The
experimental image (left) has been taken from Xiao et al. [360] who applied Schlieren measurements
for the visualization. In the numerical simulation (right), the line-of-sight integrated magnitude
of the streamwise density gradient |∂ρ/∂x| is used to show the underexpanded flow structure.
Reprinted by permission from Springer Nature Customer Service Centre GmbH: Springer Nature,
Flow, Turbulence and Combustion, Xiao et al. [360], © (2019).

In Fig. 6.23, the velocity field downstream of the Mach disk is shown for 15 mm ≤ x ≤ 60 mm
by means of the averaged velocity field. The left image shows the experimental result reported
by Xiao et al. [360] which was obtained by means of Particle Image Velocimetry measurements
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Figure 6.23: Visualization of the flow field downstream of the Mach disk by means of the averaged
velocity. The experimental image has been taken from Xiao et al. [360]. Reprinted by permission
from Springer Nature Customer Service Centre GmbH: Springer Nature, Flow, Turbulence and
Combustion, Xiao et al. [360], © (2019).
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and averaging 50 instantaneous shots. The numerical simulation result is depicted in the right
image of Fig. 6.23. The value range and color-map are applied according to Xiao et al. [360].
In general, a good agreement between the experiment and the simulation is found. The width
of the jet and high velocity regions are predicted well by the LES. However, the jet break-up in
the LES is not as intense as in the experiments. This fact and the overall prediction quality of
the numerical simulation can be further investigated based on averaged axial velocity profiles at
different axial positions. In Fig. 6.24, experimental and numerical results at four different axial
positions are shown downstream of the Mach disk. Overall, the comparison of the experiment
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Figure 6.24: Comparison of the mean axial velocity at four different axial positions in the cross-
stream direction. The experimental data have been taken from Xiao et al. [360].

and the simulation further underlines the good prediction capability of the LES. Particularly the
width of the jet is captured very well throughout all four axial positions. In terms of the velocity
distribution away from the center line, especially the first axial position (x = 25 mm) shows a
very good agreement. For the three positions following downstream a reasonably good agreement
is found. While the LES still features a pronounced slip line, this flow element is not visible in
the experiments. In addition to the averaged axial velocities, Xiao et al. [360] also evaluated root
mean square (RMS) values at the four axial positions. The comparison of the experimental RMS
values and the second order moments extracted from the LES are shown in Fig. 6.25. Overall, a
satisfactory agreement between the experiment and the simulation is found. Again, the agreement
at the first axial position (x = 25 mm) is very good. Farther downstream, the general pattern is
predicted quite well and the same accounts for the value range. In summary, for the comparison
of the flow field it can be concluded that the agreement between experiment and simulation is
good. The LES is able to capture the relevant flow characteristics from a fluid dynamics point of
view especially in the near-nozzle region and therefore enables the investigation of possible phase
separation processes.

Phase separation processes

In Fig. 6.26, experimental and numerical single-shot images are compared to each other. In both
images, "bright" regions are found indicating a phase separation process upstream of the Mach
disk. As two different properties are compared to each other, the application of a quantitative
colormap is forgone and only a qualitative comparison is carried out. In terms of the experiment,
the image on the left side of Fig. 6.26 shows the Mie scattering intensity taken from the work
of Fond et al. [79]. As the edge of the laser sheet is starting at x = 7.5 mm, Mie scattering
measurements have only been carried out by Fond et al. [79] downstream of this axial position.
Furthermore, it has to be mentioned that the measurements have been conducted at a reservoir
pressure of 125 bar. According to Crist et al. [55], this pressure difference results in an axial
displacement of the Mach disk by ≈ 0.2 mm downstream. This is not of any concern in the
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Figure 6.25: Comparison of the RMS velocity at four different axial positions in the cross-stream
direction. The experimental data have been taken from Xiao et al. [360].

present study, as the Mach disk position anyway varies between an axial position of 11.5 mm
and 12.5 mm in the experiment [79]. For the visualization of the phase separation process in
the LES, the vapor fraction directly resulting from the hpn-flash was selected. The gray regions
in Fig. 6.26 right indicate a vapor fraction less than one and hence areas of phase separation.
In turn, black areas denote regions of single phase stability, i.e., areas of no phase separation.
For a better comparability, a three-stage color-map was chosen for the visualization of the LES
results. Comparing the single-shot images of the experiment and the LES, a very good agreement
in terms of the phase separation process is found which is far better in terms of the radial and
axial extent than the comparison shown in Fig. 6.22. As assumed by Fond et al. [79], single-phase
instabilities are present upstream of the Mach disk and in the region of the reflected shocks, i.e.,
in the bright regions deduced from the Mie scattering measurements. Downstream of the Mach
disk, no phase separation is present anymore, as the normal shock results in a large pressure and
temperature recovery bringing the jet back into a single-phase state. In Fig. 6.27, scatter data from
the present LES are shown in a pressure-temperature diagram of argon to further highlight the
phase separation process. The data have been taken along the center axis and show the expansion
path up to the Mach disk and downstream of it. Slightly upstream of the Mach disk the minimum
pressure and temperature occur which are in this case approximately 3000 Pa and 62 K. When
comparing this to the triple point of argon (6889.25 Pa and 83.81 K) it becomes obvious that the
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Figure 6.26: Visualization of the phase separation process upstream of the Mach disk. In the
left figure, a single shot image of the Mie scattering is shown which has been taken from Fond
et al. [79]. The right image shows an instantaneous snapshot from the present LES where the
vapor mole fraction is used to highlight regions of phase separation (gray) and regions without
phase separation (black). Reprinted by permission from Springer Nature Customer Service Centre
GmbH: Springer Nature, Experiments in Fluids, Fond et al. [79], © (2018).
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expansion path crosses the triple line and hence the occurrence of a solid phase might be possible.
As the applied cubic EoS is only capable of representing vapor and liquid states and their equilibria,
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Figure 6.27: Pressure-temperature diagram of
pure argon visualizing the expansion path of the
underexpanded jet. The scatter data from the
LES have been taken along the centerline.

no statement can be made regarding the oc-
currence of ice and solid phases, respectively.
Downstream of the Mach disk a large temper-
ature increase is visible and the temperature
rises from ≈ 62 K to over 200 K instanta-
neously due to the compression of the fluid. Fi-
nally, Fig. 6.28 shows a three dimensional view
of the phase separation region downstream of
the nozzle exit. As already discussed based on
Fig. 6.26, the two-phase region is confined by
the Mach disk and the area of reflected shock
waves at the boundaries and slightly reaches
into the beginning of the slip line. In the back
and the bottom planes of Fig. 6.28, the mid-
plane values of the averaged velocity and tem-
perature fields are shown. The comparison of
the iso-contour and these two flow fields under-
lines that phase separation occurs in the region
of high velocity and low temperatures.
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Figure 6.28: Three dimensional view of the square duct chamber. The instantaneous iso-contour
encloses the region of phase separation downstream of the nozzle exit. The back and the bottom
planes show the averaged velocity and temperature fields, respectively.

6.2.4 Summary

In this section, the phase separation process in an extremely underexpanded jet has been studied.
Following the experiments of Fond et al. [79] and Xiao et al. [360], argon was injected into its own
gas phase. The nozzle pressure ratio has been set to 120 and moderate injection and chamber tem-
peratures have been chosen resulting in the presence of real-gas effects. To enable the application
of the VLE model in the LES, argon has been diluted with one mass percentage of nitrogen. The
comparison of this binary mixture with the VLE of pure argon shows very good agreement and
justifies the approach for the present investigation.

In the first step, the fluid dynamics aspects of the supersonic jet have been studied: The com-
parison of the near-nozzle flow and shock structure by means of instantaneous snapshots showed a
good agreement in terms of the radial and axial extent of the Mach disk. Additional comparisons
of the flow field downstream of the Mach disk using axial mean and RMS velocity profiles further
underlined the finding of the good prediction capability of the numerical framework. Especially the
near-nozzle flow field is captured very accurately which is of major importance for the investigation
of the phase separation phenomenon in the present study.



6 Mixing under supersonic flow conditions 123

To study the single-phase instability downstream of the nozzle exit, single-shot images of the
experimental Mie scattering intensity and the calculated vapor fraction field have been compared
to each other. Excellent agreement is found and the LES is able to reproduce the phase separation
process. Two-phase states occur upstream of the Mach disk and in the region of the reflected shock,
i.e., in the characteristic shock barrel of the extremely underexpanded jet. This corresponds to the
region of highest velocity and lowest temperature which is of course complementary. The scattering
of the LES results into a pressure-temperature diagram of argon showed that the expansion is even
such strong that it crosses the triple point and therefore the occurrence of a solid phase might be
possible. Unfortunately, this phenomenon cannot be represented by the present thermodynamic
framework and has to be postponed to future investigations.

6.3 Phase separation in multicomponent fuels

Large parts of the following results and discussions are published in the conference ar-
ticle [318]: Traxinger, C., Banholzer, M., and Pfitzner, M. Real-gas effects and phase
separation in underexpanded jets at engine-relevant conditions. In 2018 AIAA Aerospace
Sciences Meeting, 2018.

6.3.1 Introduction

For the injection of gaseous fuels at GE-relevant conditions, detailed experiments and numerical
simulations are lacking in the literature particularly with focus on possible phase separation pro-
cesses. Based on the successful validation of the numerical framework in the last two Secs. 6.1 and
6.2, the CFD tool is now used in a predictive manner to investigate the possibility of phase separa-
tion processes under GE-like injection and operating conditions. In particular, the thermodynamic
behavior of two application-relevant fuels is the focal point of the following study.

6.3.2 Numerical setup

Test cases

Two different GE-typical fuels are considered in the following study: a hydrogen-based and a
methane-based fuel. In recent years, methane-based fuels have gained increasing popularity as
many natural resources are still available. In addition, methane is the hydrocarbon with the least
number of carbon atoms and hence the production of carbon dioxide is reduced compared to other
fuels [90]. Following this argumentation, hydrogen is another interesting fuel for combustion engines
as its combustion product is water vapor. Usually, the purity of hydrogen is not given for industrial
applications like GEs. Therefore, nitrogen with a volume fraction of 0.1% is mixed with 99.9%
hydrogen and defined as compressed hydrogen gas (CHG) in the present study. Methane-based
fuels in internal combustion engines (ICEs) are usually termed compressed natural gas (CNG). A
literature survey [198, 141, 64] showed that most of the CNG available in the industry consists of
three main components: methane (CH4), ethane (C2H6) and nitrogen (N2). Concluding the CNG
compositions available in these publications [198, 141, 64] a generic fuel mixture is defined and its
composition is listed in Tab. 6.7 together with the composition of the CHG. The thermophysical
properties of the pure components of the gas mixtures can be found in Tab. B.1 in the appendix.

Table 6.7: Volume fractions [%] of the hydrogen- and methane-based generic fuels CHG and CNG.

Fuel Methane (CH4) Hydrogen (H2) Ethane (C2H6) Nitrogen (N2)

CHG 0.0 99.9 0.0 0.1
CNG 95.8 0.0 2.6 1.6

In ICEs, typical chamber pressures range from 5 to 80 bar, depending on the ICE-type and the
start of injection. For the present investigation, an intermediate chamber pressure of 50 bar is
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selected. Similar considerations lead to a maximum total fuel pressure of 600 bar [31, 324, 325,
123, 290]. In addition, a total fuel pressure of 300 bar is chosen to study the influence of the
reservoir pressure onto the fuel injection process. This results in effective pressure ratios of 12
and 6, respectively. For the sake of simplicity, the injection and the chamber temperature are set
to 300 K. Consequently, a total of three different numerical simulations are carried out and the
boundary conditions for these test cases are summarized in Tab. 6.8. The cases CNG-p600 and
CNG-p300 are used to study the effect of the pressure change. Both low-pressure cases (CNG-p300
and CHG-p300) are applied to investigate the effect of the fuel change.

Table 6.8: Overview of the boundary conditions for the three GE-like test cases.

Case Reservoir Chamber pt [bar] pch [bar] NPR [-] Tt [K] Tch [K]

CNG-p600 CNG Nitrogen (N2)
600 50 12 300 300CNG-p300 300 50 6

CHG-p300 CHG Nitrogen (N2) 300 50 6 300 300

Solver settings

Following the investigations in Sec. 6.1, RANS simulations have been conducted using the k,ω-
SST model [191, 192, 193]. Therefore, the rotational symmetry of the injection configuration has
been used and only a two degrees wedge configuration with symmetry boundary conditions on the
opposite sides has been simulated. The schematic of the numerical domain is shown in Fig. 6.29.
According to the work of Banholzer et al. [21], the nozzle diameter D is set to 1.5 mm. The dimen-
sions of the chamber in the axial and radial directions are Lx/D = 80 and Lr/D = 70, respectively.
The computational setup of Hamzehloo and Aleiferis [108, 109] and a grid independence study per-
formed by Banholzer et al. [21] lead to a required resolution of ∆x = ∆r = D/40 = 0.0375 mm
which is very similar to the mesh topology used in Sec. 6.1. Therefore, a separate grid indepen-
dence study is forgone for this investigation and the injector is resolved with 20 cells in radial
direction. The thermodynamic closure has been achieved based on the SRK-EoS [296] as this
state equation is very well suited for the reliable prediction of both short-chain hydrocarbons and
hydrogen. Further important solver settings are listed in Tab. 6.9.
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Figure 6.29: Schematic of the numerical domain used to study possible phase separation processes
under GE-like operating conditions.

6.3.3 Probability of phase separation

At their reservoir conditions both fuels are in a single-phase state. As highly underexpanded jets
can be expected due to the large prescribed pressure ratios, two different ways are feasible how the
vapor-liquid equilibrium could be entered: First, by a strong expansion lowering the pressure and
the temperature at constant overall feed composition. Second, by a nitrogen dilution of the fuel
and a simultaneous expansion process.

In the CHG case, two fluids are forming the multicomponent mixture: hydrogen and nitrogen.
Here, hydrogen is the high volatile and nitrogen is the low volatile component. Hence, nitrogen
is defining the upper bound of the multicomponent critical locus in terms of the temperature at
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Table 6.9: Numerical solver setup for the investigation of phase separation processes in multicom-
ponent fuels under GE-like operating conditions.

Solver TVD-limiter Turbulence closure EoS

pressure-based van Albada [332] RANS with SRK-EoS [296](supersonic) k,ω-SST model [191, 192, 193]

its critical temperature of 126.19 K, see Fig. 6.30a. Above this temperature no phase separation
is expected and therefore a strong expansion and simultaneous reduction of the temperature is
necessary to enter the multicomponent VLE. In Fig. 6.30b, some selected vapor-liquid equilibria
at relevant temperatures (100.0 K, 107.7 K and 113.0 K) are shown. The comparison between
the experimental data [303, 361, 288] and the SRK-EoS [296] shows a reasonably good agreement,
especially in the low pressure region up to the chamber pressure of 50 bar. Above this pressure the
prediction capability of the SRK-EoS [296] is getting worse with increasing pressure and decreasing
temperature and the cubic EoS is overestimating the extension of the VLE in terms of pressure.
As CHG is almost pure hydrogen, a phase separation at the overall feed composition of CHG can
be excluded. To enter the VLE by means of a nitrogen dilution at the chamber pressure of 50 bar,
the mixture must contain more than 30 mole-% of nitrogen at a temperature of 100 K. At the
other two temperatures, a minimum of approximately 40 mole-% and 50 mole-% N2, respectively,
has to mix into the CHG to enter the VLE. Hence, the probability of phase separation for the
CHG case can be considered low.
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Figure 6.30: VLEs of the binary nitrogen/hydrogen mixture. The dots in subfigure b are repre-
senting experimental data taken from the literature [303, 361, 288].

For the CNG cases, the VLE and the probability of phase separation is significantly different.
First, CNG is a ternary mixture and therefore the mixture space is increased by one dimension
compared to the CHG. Second, nitrogen is now the high volatile component because methane and
ethane have significantly higher critical temperatures, see Tab. B.1 in the appendix. Therefore,
in the case of the CNG the critical locus has an upper bound at 305.32 K which is the critical
temperature of ethane. This temperature in turn is almost three times larger than the critical
temperature of nitrogen. The higher maximum critical temperature makes phase separation dur-
ing the CNG injection significantly more probable than in the CHG case because the injection
temperature and the critical temperature of ethane are almost identical. Figure 6.31 shows VLEs
of the ternary methane/ethane/nitrogen mixture at two different pressures (40 bar and 20 bar)
and two different temperatures (200 K and 160 K). The dew-point lines are shown in red and
the bubble-point lines in blue while the experiments are represented by dots. The feed composi-
tion of CNG is marked by the white dot in each plot. To give a more detailed glance into these



126 6.3 Phase separation in multicomponent fuels

0

20

40

60

80

100

0 20 40 60 80 100
0

20

40

60

80

100

de
w-

po
in

t l
in

e

bubble-point lineCNG

x
N

2 ,
y
N

2 ,
z
N

2 [%
]

x C
H
4
, y

C
H
4
, z

C
H
4

[%
]

xC2H6
, yC2H6

, zC2H6
[%]

(a) p = 40 bar, T = 200 K.
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(b) p = 40 bar, T = 160 K.
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(c) p = 20 bar, T = 200 K.

0

20

40

60

80

100

0 20 40 60 80 100
0

20

40

60

80

100

de
w-

po
in

t l
in

e

bubble-point lineCNG

x
N

2 ,
y
N

2 ,
z
N

2 [%
]

x C
H
4
, y

C
H
4
, z

C
H
4

[%
]

xC2H6
, yC2H6

, zC2H6
[%]

(d) p = 20 bar, T = 160 K.

Figure 6.31: VLEs of the ternary methane/ethane/nitrogen mixture at two different temperatures
(200 K and 160 K) and two different pressures (40 bar and 20 bar). The CNG composition is marked
with a white dot. The colored dots represent experimental data taken from the literature [317].

ternary VLE-diagrams, the related binary mixtures are shown in pressure-composition diagrams
in Fig. 6.32a for methane and nitrogen, Fig. 6.32c for ethane and nitrogen and Fig. 6.32d for
ethane and methane. In the respective diagrams the two pressure levels (20 bar and 40 bar) are
marked with dashed lines and the chamber pressure of 50 bar is indicated with a dash-dotted line.
Especially in Fig. 6.32c, the deviations between the experimental data and the cubic EoS become
very obvious. With decreasing temperature the prediction error is rising steadily. Similar findings
can be made for the methane/nitrogen mixture, but compared to the ethane/nitrogen mixture the
overall prediction accuracy is acceptable over the investigated pressure and temperature range.
This latter finding can be further underlined based on Fig. 6.32b. Here the critical locus of the
binary methane/nitrogen mixture is shown and the prediction of the SRK-EoS [296] with respect
to the experimental data is excellent. Identical conclusions can be drawn for the ethane/methane
mixture over the relevant pressure and temperature range, see Fig. 6.32d. These findings for the
different binary mixtures transfer directly to the VLEs of the ternary CNG mixture. Apart from
the 40 bar and 160 K diagram, see Fig. 6.31b, the comparison to the experimental data is very
good, see Figs. 6.31a, c and d. Especially the dew-point line is predicted excellently by the SRK-
EoS [296] and the already mentioned problems in terms of the prediction accuracy are obvious
at the bubble-point line. In the present investigation, this issue is not of any concern as most of
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the two-phase states will occupy the left bottom corner of the ternary VLE-diagram, where the
prediction of the SRK-EoS [296] is very good. As the phase separation process is induced by con-
densation processes, the VLE will be entered across the dew-point line. Consequently, an excellent
prediction concerning the onset of phase separation can be expected.
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Figure 6.32: VLEs of different binary mixtures of methane, ethane and nitrogen. The dots represent
experimental data taken from the literature [304, 350, 140, 44, 38, 304, 52].

6.3.4 Results

Detailed discussion of the CNG-p600 case

Figure 6.33 shows snapshots of the temporal evolution of the CNG-p600 case. Only the first ≈ 20%
of the chamber are shown which is sufficient to discuss the main fluid dynamics and thermodynamics
effects happening during the transient part of the injection process. The left column shows the
temperature distribution superimposed by the vapor fraction. In the right column, the pressure
field is superimposed by the Mach number in which regions with Ma < 1 are excluded.

Looking at the overall flow field in the different snapshots a typical underexpanded jet can be
seen. The static temperature as well as the static pressure are covering a wide range. The large
values are caused by the compression process downstream of the tip of the jet and the low values
are related to the strong expansion within the jet downstream of the nozzle exit. For a better
visualization, the pressure is bounded to the upper limit of 50 bar. After the start of injection
(5 µs), the fluid enters the mixing chamber and a Prandtl-Meyer expansion fan forms at the nozzle
edge. The flow accelerates across the expansion fan and therefore the Mach number increases
while the static pressure and temperature drop inside the jet. As the fuel penetrates further into
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Figure 6.33: Snapshots of the temporal evolution of the underexpanded jet for the test case CNG-
p600. In the left column, the fields of the temperature and the vapor fraction are superimposed.
In the right column, a superposition of the pressure and the Mach number is shown.

the chamber, a traveling spherical vortex occurs in front of the jet. This vortical structure is
growing continuously and breaks up at approximately 60 µs. The fluid inside this vortex gets
pushed into the mixing chamber by the subsequent steady-state jet region which is apparent in the
Mach number plots at t = 60 µs and t = 80 µs. Apart from this dominant vortex structure, shock
phenomena inside the fuel jet can be observed during the injection process. These structures can
be seen for the first time at 40 µs. The expansion fans being present at the outer part of the jet
interact with the free jet boundary leading to weak compression waves and an intercepting shock.
This intercepting shock is – in the present case – reflected at the centerline resulting in a reflected
shock. This shock is rather weak/oblique and therefore the flow remains at transonic/supersonic
conditions. Downstream, the flow again accelerates quickly due to the large pressure ratios being
present in the underexpanded jet until another shock structure forms. As time moves on and the
fuel jet penetrates further through the chamber, several of these shock barrels arise along the jet.
The last row in Fig. 6.33 shows the quasi-stationary jet after 250 µs. Here, a total of four shock
barrels are visible.
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From the left column in Fig. 6.33 it is obvious that larger parts of the jet have entered the VLE
which can be identified by the vapor fraction β ranging from 0.5 to 1. At 5 µs a first small region of
single-phase instability forms near the nozzle trailing edge. This region results from the decrease
of the static pressure and temperature inside the Prandtl-Meyer expansion fan. Related to this is a
discontinuous drop in the speed of sound and in turn a nonlinear increase in the Mach number from
approximately unity to Mach numbers ranging from two up to three. The subsequent expansion
leads to a further decrease of pressure and temperature and at 10 µs a large part of the jet has
entered the VLE. This trend continues until the formation of a first shock barrel takes place. The
start of the formation of this shock structure can be seen in terms of a small single-phase region
close to the centerline at t = 20 µs. At t = 40 µs the first shock barrel is already fully developed
and can be found at x/D . 4. Due to the shock and the accompanying increase in temperature
and pressure, the jet gets back to a single-phase state downstream of the shock barrel. As the flow
is accelerated after this shock, the continuous expansion again leads to a phase separation process.
In the present case, this phenomenon appears several times during the propagation of the jet into
the chamber and results in four distinct shock barrels containing one large region of two-phase flow
each, see snapshots in Fig. 6.33 at t = 250 µs. Outside of this region with strong expansion, large
areas of phase separation are also visible in the traveling spherical vortex. Compared to the jet
center, the vapor fraction is larger and covers a wider range. This can be explained by taking a
deeper look into the phase separation process itself and how it is triggered in these two different
regions of the jet. This is done with results from the snapshot at t = 40 µs. Here, the focus is put
on a small region at the jet tip marked by the red box in Fig. 6.33.

The detailed view of the red box in Fig. 6.33 is depicted in Fig. 6.34 in terms of six different
properties. Beginning on the top left, the first snapshot reveals the large pressure gradient being
present at the tip of the underexpanded jet. The minimum pressure of the first expansion wave is
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β̃ [-] 0.5 0.75 1.0 ãs [m/s] 175 292.5 410 M̃a [-] 0 2 4

Figure 6.34: Detailed view of different flow properties for the CNG-p600 test case at 40 µs after
injection. The snapshots have been taken at the tip of the jet and the view corresponds to the red
box in Fig. 6.33. The yellow and orange boxes mark the sampling areas for Fig. 6.35.

approximately 8 bar while the compression process in front of the jet increases the fluid’s pressure
up to 80 bar being 1.6 times larger than the prescribed chamber pressure. Due to this strong
expansion and compression, the static temperature (second frame) ranges approximately from
150 K to 350 K and shows a pattern which is similar to the static pressure. In the third frame, the
mass fraction of methane is depicted. Due to the shock structures inside the core of the fuel jet
virtually no nitrogen has mixed into this region which is therefore almost at the feed composition.
In the region of the traveling spherical vortex, the opposite is true as the convection inside of this
vortex is forcing the dilution of CNG with the surrounding chamber gas. Consequently, two regions
with different phase separation mechanisms can be distinguished during the CNG injection process:
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A phase separation solely caused by expansion and a phase separation triggered by expansion and
nitrogen dilution. To emphasize these findings instantaneous results are extracted at the relevant
positions marked by the yellow and orange boxes in Fig. 6.34 top left. The data are scattered in two
ternary mixture diagrams in Fig. 6.35. The constant temperatures and pressures in these diagrams
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Figure 6.35: Ternary phase diagrams for the CNG test-case CNG-p600. The colored points mark
the sampling data highlighted in Fig. 6.34 by the appropriate colored boxes.

were chosen such that the largest possible number of data points can be plotted. In Fig. 6.35a, the
scattering data of the expansion induced phase separation (yellow) are shown. All data points are
grouping around the feed composition as a result of the prevention of the mixing process by the
pronounced shock structures. Due to the low temperature and pressure, the VLE covers almost the
complete mixture space and all scatter points have entered the region of single-phase instability.
Looking at Fig. 6.35b, the sole expansion would not have been sufficient to cross the binodal at
this temperature and pressure. A dilution of the CNG with the surrounding nitrogen is necessary
to enter the VLE. Due to the convective mixing inside the vortex, the individual mixtures contain
more than 20 mole-% nitrogen and therefore single-phase instability is triggered by a combined
expansion and mixing process. Going back to Fig. 6.34 the snapshot for the vapor fraction β in
the bottom left corner can now be reconstructed. In the jet center, the variation of temperature,
pressure and composition is low and therefore an almost constant β-value can be observed. Inside
the vortex a wider range of β-values occurs due to the steady mixing with the surrounding nitrogen
and also the wider pressure and temperature range. As already discussed earlier, the speed of sound
and the Mach number exhibit a discontinuous jump as the mixture enters the VLE. The speed of
sound drops significantly and the Mach number increases to values up to four.

Effects of the pressure change

In Fig. 6.36, the near-nozzle flow structures of both CNG cases (600 bar and 300 bar) are compared
to each other in terms of snapshots at different times after injection. The single-shot images are a
superposition of the temperature field with the corresponding vapor fraction field. Overall, the flow
structures are very similar for both cases concerning fluid dynamics and thermodynamics aspects.
For the case CNG-p300 a weaker expansion due to the lower pressure ratio of NPR = 6 can be seen
compared to the case CNG-p600. Nevertheless, the expansion process is still sufficient to enter
the VLE. The weaker expansion directly manifests itself in a larger vapor fraction in the jet core
compared to the CNG-p600 case. In addition, the expansion is still strong enough to cause phase
separation effects in the region of the traveling spherical vortex. In contrast to the 600 bar jet, the
break-up of this vortical structure is weakened in its intensity and spatial extension. Due to the
lower total fuel pressure and therefore a lower density and speed of sound at the nozzle exit, the
penetration of the CNG-p300 jet is slower. Furthermore, the length of the stationary shock barrels
is smaller by a factor of almost two.
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Figure 6.36: Comparison of the near-nozzle flow structures between the two CNG test cases CNG-
p600 (upper half) and CNG-p300 (lower half).

Effects of the fuel change

Figure 6.37 shows the effects of the fuel change from CNG to CHG for a total pressure of 300 bar in
terms of the temperature field superimposed by the vapor fraction field. For the ease of presentation
the temperature range is clipped to a minimum of 150 K. In the CHG case, however, temperatures
down to 100 K in the region of the shock barrels occur. The shock and vortex structures are
slightly more pronounced in the hydrogen case and cover a larger spatial extent compared to the
CNG case. In contrast, the length of the shock barrels is a little bit shorter in the CHG case
compared to the CNG case. Although the expansion of the CHG is much stronger (manifesting in
a lower static temperature), the mixture remains in a single-phase state throughout the complete
jet. As discussed based on Fig. 6.30, an expansion to 100 K in the undiluted CHG jet is by far not
sufficient to enter the VLE of the binary mixture. In the region of the traveling spherical vortex,
however, the dilution of the fuel with the surrounding nitrogen would be sufficient but here in turn
the expansion is too weak to enter the VLE.

Another interesting aspect related to the change in fuel is the temporal evolution of the jet
penetration depth. The knowledge of this process is of paramount interest for the transient mixing
process of the jet and is, for instance, necessary to avoid the impingement of the jet onto the com-
bustion chamber wall in piston engines. In the literature, different correlations for the evaluation
of the axial jet penetration depth xtip can be found. Gerold et al. [90] give a detailed introduction
and an overview on the analytical derivation of the jet penetration depth and point out three
different correlations including an own modification:

Abraham [5]: xtip =

√
3Cf
4πCt

(
Ṁe

ρch

) 1
4 √

t , (6.7)

Hill and Ouellette [119]: xtip = Γ

(
Ṁe

ρch

) 1
4 √

t , (6.8)
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Figure 6.37: Comparison of the near-nozzle flow structures for CNG (upper half) and CHG (lower
half) at a total fuel pressure of 300 bar.

Gerold et al. [90]: xtip = Γ
(ṀeCD)

1
4 ρ

1
12
e

ρ
1
3

ch

√
t . (6.9)

In these equations, Cf and Ct are scaling constants which according to Abraham [5] take the
values of 0.7 and 0.0161, respectively. The discharge coefficient is denoted as CD and is set to
1.0 in the present work corresponding to ideal flow conditions. Following the work of Gerold et
al. [90], the model constant Γ in Eqs. (6.8) and (6.9) is 3.0 ± 0.1. In the present work, the mean
value Γ = 3.0 is used exclusively. The main influencing parameter of the penetration depth of the
jet is the momentum flux Ṁe being present at the nozzle exit. The momentum flux in a choked
flow is defined as

Ṁe = ρea
2
s,eA , (6.10)

where A is the cross section of the nozzle and the choked flow conditions are denoted by the sub-
script e. The choked flow properties of the two fuels can be determined according to appendix F.2
and are summarized for the different operating conditions in Tab. 6.10.

Table 6.10: Choked nozzle flow properties for the CNG and CHG test cases.

Fuel pt [bar] pe [bar] ρe [kg/m3] as,e [m/s] Ṁe [kg m/s2]

CNG 600 191.37 220.55 556.42 120.67
300 124.66 148.87 439.36 50.78

CHG 300 148.09 13.65 1330.11 42.68

The normalized jet penetration depth xtip/D tracked with a fuel mass fraction of 1% at the
centerline is shown in Fig. 6.38 for the two low-pressure test cases CNG-p300 and CHG-p300.
Up to ≈ 0.2 ms the CHG-p300-jet penetrates faster than the CNG-p300-jet with the same total
pressure. In the beginning of the injection, the penetration curve of the CHG-jet shows a linear
incline up to ≈ 0.1 ms. The reason for this behavior is the detachment of the jet from the centerline.
A blocking cone is formed in front of the jet consisting of a higher pressure and therefore higher
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density region which redirects the main flow away from the centerline towards the sides. This effect
was also noticed for high pressure gas injections by other researchers, see, e.g., Hamzehloo and
Aleiferis [109]. After the cone vanishes, the jet reattaches to the centerline. The penetration rate
slows down considerably and is now proportional to the square root in time. The comparison of
the injection profile of the numerical simulation with the analytical correlations shows an overall
good agreement. The best agreement is found with the correlation of Hill and Ouellette [119].
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Figure 6.38: Evolution of the normalized jet penetration depth for both 300 bar cases. The colored
lines show the analytical correlations of Abraham [5], Hill and Ouellette [119] and Gerold et al. [90].

The results for the injection profile of the CNG-p300 case are completely different. Not only in
the beginning, but almost throughout the whole computational domain the linear incline remains.
Shortly before 0.5 ms it can be seen that the linear incline changes to the typical curvature. One
of the major reasons for this extraordinary behavior is the traveling spherical vortex. Figures 6.36
and 6.37 show large two-phase regions in this first vortical structure which remain present even for
longer simulation times. Later, increasing temperatures and pressures lead to the disappearance of
those, momentum gets lost and the jet slows down. The time of vanishing of the two-phase region
and the time where the slope changes its characteristic is identical. As a result, the penetration
behavior of an underexpanded jet with embedded two-phase regions differs significantly from the
behavior and characteristics of a single-phase jet. Therefore, the analytical correlations available
in the literature are not applicable under such conditions.

6.3.5 Summary

Three different engine-relevant test cases have been defined in the present section to study the
thermodynamic behavior of typical GE-fuels during the high-pressure injection process. Two dif-
ferent fuels have been considered namely a compressed hydrogen gas (hydrogen + nitrogen) and
a compressed natural gas (methane + ethane + nitrogen). Both fuels have been injected through
a single-hole injector into a chamber pressurized with nitrogen at 50 bar. Two different nozzle
pressure ratios have been chosen: 6 and 12. The initial temperatures in the fuel reservoir and the
high-pressure chamber have been set to 300 K.

In a first step, the probability of phase separation processes has been assessed using thermody-
namic phase diagrams. By comparing experimental VLE data from the literature to the predictions
of the SRK-EoS [296], it was demonstrated that this state equation is well suited for the numer-
ical investigation of phase separation processes under GE-like conditions. The a priori analysis
indicated the large influence of the fuel composition on the possibility of single-phase instabilities
during the injection process. In general, the higher the critical temperature of the low volatile
component, the more likely it is that a phase separation process might occur. In the present case,
this leads to the conclusion that hydrogen fuels will exclusively exhibit a single-phase behavior as
nitrogen is the LV component in the mixture. In contrast, in CNGs larger molecules like methane
and ethane are present which drastically increase the maximum critical temperature. Hence, phase
separation processes are much more probable in GEs fired with CNGs.
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The a priori findings could be confirmed based on RANS simulations. The detailed study of the
600 bar CNG case showed that phase separation is triggered as soon as the jet enters the chamber,
namely in the region of the Prandtl-Meyer expansion fan. In the following, single-phase instabilities
are found inside the shock barrels and within the traveling spherical vortex close to the jet tip. For
the former, the VLE is entered due to the strong expansion solely. In the latter case, the phase
separation phenomenon is triggered by a combined expansion and mixing process. Changing the
injection pressure from 600 bar to 300 bar the reasons for the entrainment into the VLE remain
identical. However, by decreasing the injection pressure the intensity of the phase separation effects
is reduced. Switching from CNG to CHG, the single-phase instabilities completely vanished and a
pure single-phase behavior was found. An analysis of the jet penetration depth as function of the
time showed that correlations from the literature are applicable for the single-phase CHG cases.
For the CNG case, large differences between the correlations and the CFD simulation occurred as
the break-up of the spherical vortex and the reattachment of the jet to the centerline are drastically
delayed by the presence of the two-phase phenomena. Therefore, classical correlations as suggested
by, e.g., Abraham [5], Hill and Ouellette [119] or Gerold et al. [90] are not applicable under such
injection conditions.
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In the second part of the results, the mixing under LRE-typical conditions is studied. As a
result, the pressure conditions are initially supercritical with respect to the pure components and
possible single-phase instabilities can therefore be triggered exclusively due to a mixing of the
different components. The investigation is split into two different parts: In Sec. 7.1, the results of
a combined experimental and numerical study are presented. Based on three different test cases,
the transition from a dense-gas to a spray-like jet with embedded two phase regions is studied.
Building on these findings, the thermodynamic mixing trajectories predicted by different numerical
solver approaches (fully-conservative and quasi-conservative) are assessed in Sec. 7.2. This includes
the investigation and discussion of both single-phase and two-phase cases.

7.1 Phase separation due to multicomponent mixing

Large parts of the following results and discussions are published in the journal article [320]:
Traxinger, C., Pfitzner, M., Baab, S., Lamanna, G., and Weigand, B. Experimental and
numerical investigation of phase separation due to multi-component mixing at high-pressure
conditions. Physical Review Fluids, 4(7):074303, 2019.

7.1.1 Experimental setup

The injection experiments presented in this section have been conducted at the ITLR (University
of Stuttgart) by Steffen Baab by using the same experimental test facility and fluids as described
in Sec. 6.1. Consequently, n-hexane has been injected into a chamber filled with nitrogen. The
chamber pressure was set to 50 bar which is supercritical with respect to both pure fluids (pc,C6H14

=
3.0 MPa and pc,N2

= 3.4 MPa). As the chamber cannot be heated, the temperature of the chamber
gas corresponds to ambient conditions (T = 293 K). A sketch of the experimental and optical setup
used in the present study is shown in Fig. 7.1. In the following, only the most relevant details
regarding the measurement equipment are discussed. An exhaustive introduction and discussion
of the experimental facility regarding its design and qualification can be found in the work of Stotz
et al. [302] and Baab et al. [13, 14]. Optical measurements have been carried out instead of speed
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of sound measurements as the evaluation of the sound velocity under multiphase conditions is not
feasible. Three quartz windows (two at the side walls, one at the bottom) enable optical access into
the chamber. Parallel-light direct shadowgraphy in combination with planar 90 degree-elastic light
scattering (ELS) have been used for the experimental jet analysis. In several recent studies, this
choice has been shown suitable to assess both the geometric jet topology as well as the occurrence
of two-phase regions embedded within the dense core region, see, e.g., Lamanna et al. [158] or Baab
et al. [13]. The suitability of the ELS technique to capture phase separation at mesoscopic scale
was discussed in detail in Baab et al. [16]. Therefore, only a short summary is given here. Basically,
scattered intensities from a fluid jet illuminated by a light source are very sensitive to the size of
the scattering particle/drop. Thus, signal magnitudes vary by several orders of magnitude among
single-phase flow (molecular Rayleigh scattering) and two-phase flows with embedded – potentially
very small – droplets, scattering in the Rayleigh or Mie regime [197]. As a matter of fact, molecular
scattering intensities from single-phase flow are below the detection sensitivity of non-intensified
cameras [197]. Observation of signals significantly above the detection limit therefore becomes an
indicator for two-phase regions embedded in the flow. The above considerations also highlight the
limitations of the ELS technique. The onset of nucleation, characterized by critical cluster sizes of
the order of 20−30 Å, will not be detected with the ELS method, which detection limit lies on the
mesoscopic scale and hence in the size range of the order of 30 − 50 nm. From a practical point
of view, this implies that the detection of phase separation with the ELS technique has a spatial
and temporal offset compared to the onset of homogeneous/heterogeneous nucleation. Since non-
equilibrium processes relax very rapidly to a quasi-equilibrium state, it must be expected that the
inception of phase separation detected by the ELS technique will not differ substantially from the
prediction of a vapor-liquid equilibrium model as it is applied in the numerical simulations.

7.1.2 Numerical setup

Thermodynamics

In the numerical simulations, the thermodynamics closure has been achieved based on the EoS
due to Peng and Robinson [226]. The critical properties and acentric factors of n-hexane and
nitrogen are listed in Tab. B.1 in the appendix. In Fig. 7.2, the prediction capability of the
thermodynamic framework is evaluated for pure n-hexane at the chamber pressure of 50 bar and
over a relevant temperature range. An excellent agreement is found with the reference data taken
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Figure 7.2: Comparison of the thermodynamic framework for n-hexane at a pressure of 50 bar
with reference data obtained from CoolProp [27]. The thermal state equation due to Peng and
Robinson [226] is used. The viscosity is calculated based on the method of Chung et al. [51].

from CoolProp [27] in terms of the density, the specific heat at constant pressure and the dynamic
viscosity. The transition from the liquid-like to the gas-like state is captured very accurately.
Therefore, an excellent prediction of the injection conditions can be expected. However, the crucial
fact of this study is the prediction capability of the VLE of the binary n-hexane/nitrogen mixture.
In Fig. 7.3, VLEs at relevant temperatures are shown in a pressure-composition diagram. The
comparison with experimental data from the literature [72, 239] shows good agreement for the
investigated pressure around 5 MPa. Especially the dew-point line shows very good agreement,
which is of essential importance in this study.
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Test cases

The focal point of this study is the investigation of the phase separation process under initially
supercritical injection conditions. To define appropriate n-hexane injection temperatures, a priori
studies of the expected thermodynamic mixing trajectories were conducted. In Fig. 7.4a, the VLE
of the binary n-hexane/nitrogen mixture at the chamber pressure of 50 bar is shown. Based on
a priori calculations of the adiabatic mixture considering phase separation three different injec-
tion temperatures have been selected for the present study. The corresponding theoretical mixing
trajectories are shown in Fig. 7.4a as solid black lines. Small deviations from the estimated tem-
perature profiles can, of course, occur due to heat transfer or viscous dissipation effects. As long as
the temperature curve intersects the binodal, the onset of phase separation should not be affected.
The validity of this assumption is verified in the result section. The temperatures selected as case
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Figure 7.4: Adiabatic mixtures of n-hexane and nitrogen for three different n-hexane temperatures
at a pressure of 50 bar.

names (T600, T560 and T480) correspond to the total temperature in the injector reservoir Tt.
The static temperature Te as well as the mean velocity at the nozzle exit ue have been calculated
based on the assumption of an isentropic nozzle flow. The conditions for the three selected test
cases are summarized in Tab. 7.1. Reverting back to Fig. 7.4, case T480 shows strong two-phase
effects and the adiabatic mixture fully penetrates the VLE. Both binodals – the bubble- and the
dew-point line – are crossed. For the case T560, only minor two-phase effects can be expected. At
very large nitrogen concentrations the adiabatic mixture intersects the VLE, see Fig. 7.4b. The
adiabatic mixture of the T600 case does not cross the VLE and therefore a single-phase dense-gas
jet should result.
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Table 7.1: Operating conditions of the three different test cases for the investigation of multicom-
ponent phase separation under high-pressure conditions.

Case pch [bar] Tch [K] Tt [K] Te [K] ue [m/s] ReC6H14
[-]

T480 50 293.0 480.0 479.3 51.0 8.23× 104

T560 50 293.0 560.0 554.8 72.1 1.39× 105

T600 50 293.0 600.0 595.0 90.3 1.45× 105

Solver setup

For the detailed numerical investigation of the three different test cases, LESs have been conducted.
As the injection cases are almost isobaric, the inlet boundary conditions were directly prescribed at
the nozzle exit and the upstream fluid reservoir is not resolved as it was the case in the numerical
investigation of the supersonic jets. Realistic inflow boundary conditions are necessary to accurately
capture the jet breakup and mixing with the environmental gas. Based on the nozzle exit velocities
ue listed in Tab. 7.1, separate incompressible channel flow LESs were conducted and the velocity
fields have been extracted and interpolated in time and space onto the inlet. Dirichlet boundary
conditions were applied to prescribe the static temperature at the inlet according to Tab. 7.1 and
the static pressure at the outlet, i.e., p = 5 MPa. The turbulence closure is achieved using the
Smagorinsky [295] sub-grid model. The solver settings are summarized in Tab. 7.2.

Table 7.2: Numerical solver setup for the investigation of multicomponent phase separation.

Solver TVD-limiter Turbulence closure EoS

pressure-based limitedLinear LES with PR-EoS [226](subsonic) Smagorinsky [295]

Grid convergence study

For a proper selection of the mesh resolution a grid convergence study for the case T600 has
been conducted. Five different refinement levels were evaluated. The mesh topology in terms of
the injector resolution is summarized in Tab. 7.3. A minimum number of 15 and a maximum

Table 7.3: Different meshes used for the grid convergence study with respect to the resolution of
the injector (∆r = D/ncells).

very coarse coarse medium fine very fine

ncells 15 21 30 45 60
∆r [µm] 15.73 11.24 7.87 5.24 3.93

number of 60 cells were used to resolve the injector in the radial direction corresponding to an
approximate discretization of 16 µm and 4 µm, respectively. In Fig. 7.5, the results of the gradual
mesh refinement in terms of the mean density and its corresponding root mean square along the
chamber axis for x/D ≤ 30 are shown. From the coarsest mesh to the medium mesh a gradual
shortening of the density potential core can be observed, see Fig. 7.5a. Between the three finest
mesh versions, the increase in resolution mainly has an influence on the RMS values, see Fig. 7.5b.
Based on this study, it was decided to use the medium mesh with a resolution of 30 cells as the
consideration of the multicomponent phase separation is already very costly. In addition, the
resolution is sufficient for the present test case to properly resolve the large Reynolds number flow
field and to investigate the mixture-induced phase separation process.
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Figure 7.5: Results of the mesh convergence study in terms of the mean density 〈ρ〉 and the
corresponding root mean square

√
〈ρ′ρ′〉 along the centerline of the chamber.

7.1.3 Results

Evaluation of the jet topology

In advance to the detailed thermodynamic analysis, the prediction capability of the numerical
solver with respect to the fluid dynamics aspects is evaluated. Both experimental and numerical
shadowgraphs of the high-temperature case T600 are used to compare the jet topology with each
other. The shadowgraphy image in the LES has been obtained by performing a line-of-sight
integration of the Laplacian of the density, i.e., |∇ · ∇ρ|, in accordance to the experiments [287].
In Fig. 7.6, the experimental and numerical results of the fully developed jet are shown up to an
axial distance of x/D = 45. A highly turbulent jet is visible which gradually dissolves into the
environment. In the experiment, almost no dark areas are present for x/D & 30 which can be
observed similarly in the LES. The dark core length extracted from the experimental data by means
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Figure 7.6: Fully developed jet structure of the T600 test case. Left: Experimental shadowgraphy
image; Right: Line-of-sight integrated Laplacian of the density obtained from the LES result.

of a binarized image compares very well to the result of the numerical simulation. From a fluid
dynamics point of view, both jets feature a similar opening angle of approximately eight degrees
highlighted by the dashed line. This line was fitted to the shadowgraphy of the experiment and has
been superimposed onto the LES results. Looking deeper into the jet topology, finger-like structures
can be seen on the outer surface for x/D . 15. These are typical phenomena in supercritical jets
and indicate a possible single-phase character of the jet mixing process. However, the assessment
of the actual thermodynamic state based on sole shadowgraphy images is not sufficient [158] and
therefore additional measurement techniques are necessary.

Investigation of phase separation phenomena

The discussion and investigation of mixture-induced phase separation processes is carried out based
on experimental single-shot measurements and instantaneous LES results. Snapshots have been
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taken at a time sufficiently large such that the jets are fully developed and can be considered as
quasi-stationary. In the following figures, experimental results are always shown in the left column
and LES results in the right column, respectively. In the experiment, the shadowgram and the
simultaneously taken ELS image superimposed onto the corresponding shadowgram visualize both
the flow structure as well as the thermodynamic state. The intensity from the ELS measurements
is shown on a logarithmic scale comprising almost three orders of magnitude. Focus shall hence be
put on the overall scattering characteristics rather than the quantitative evaluation of the measured
signals. Values outside the color scale range have been cut off to emphasize the distinction between
regions of negligible intensity I and two-phase regions within the jet, indicated by high scattering
intensities. In the LES, flow structures are visualized by the instantaneous temperature field. To
study the phase separation behavior, the vapor fraction is superimposed onto the temperature field
to indicate regions of two-phase flow. By doing so, a direct (qualitative) comparison of the phase
formation phenomena in the experiment and LES is provided.

The results of the case T600 are shown in Fig. 7.7. According to the discussion of Fig. 7.6, the
experimental results show a jet being dissolved in the environment and finger-like structures emerg-
ing from the surface of the dark core. No significant (stable) ELS signal has been measured and as
a result a single-phase state can be deduced. This finding agrees well with the LES results. The
simulation does not predict any thermodynamically unstable mixture states which is underlined
by the scatter plot shown in Fig. 7.8. Due to the assumption of an equal turbulent Prandtl and
Schmidt number in the turbulence closure, the turbulent Lewis number is equal to one and hence
all conditions in the LES strictly follow the adiabatic mixture line. As the experiment shows only
very minor phase formation effects, it can be deduced that for the present test cases the mixture
states in the experiment can also be found close to the adiabatic mixture line. Nevertheless, it has
to be pointed out that this has not to be the case in every jet mixing process and the assumption
of an adiabatic mixture can possibly lead to severe deviations from the actual mixture states.
Another important aspect for these jets is that they are almost isobaric and are therefore not sub-
jected to large fluctuations in pressure. Furthermore, the dew-point line does not show a strong
dependency on the pressure close to the investigated pressure of 5 MPa, see Fig. 7.3, underlining
the LES result (no phase separation process) and the experimental observation of the absence of
a pronounced two-phase region within the jet. The minor signals determined in the experiment
might result from spatial fluctuations of thermodynamic properties, heterogeneous nucleation or
the local deviation from the adiabatic mixture concept. Downstream of x/D & 10, these regions
form in the outer shear layer but they are highly unstable and collapse instantaneously.
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Figure 7.7: Comparison of experimental and numerical snapshots for the test case T600. Ĭ is the
noise-corrected camera intensity Icam normalized by the measured excitation intensity I0.
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Figure 7.8: Comparison of LES scatter data with the adiabatic mixture concept, see Fig. 7.4.

A totally different picture results for the case T560, see Fig. 7.9. While the shadowgram resembles
that for T600 in the near-nozzle region, a strong difference becomes apparent for x/D & 20. Here,
a dark region forms over the entire extension of the jet, which indicates the formation of a dense
droplet cloud. This fact is clearly corroborated by a steep increase in the scattering intensity,
which is initiated by droplet generation in the mixing layer for x/D & 10. Further downstream,
this flow mixes into the jet core, leading to a pronounced two-phase characteristic throughout the
entire jet domain. In fact, this is proven by the LES result of case T560, where a large spatial area
of the jet shows two-phase behavior. In agreement with the experimental observation, the LES
regions showing two-phase flow are located in the outer shear layer, which merge towards the jet
centerline downstream of x/D & 60. Due to the only minor penetration of the VLE, the vapor
fraction in the regions with phase separation is very close to unity. The minor penetration of the
VLE can be understood in more detail in the scatter diagram shown in Fig. 7.8.
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Figure 7.9: Comparison of experimental and numerical snapshots for the test case T560. Ĭ is the
noise-corrected camera intensity Icam normalized by the measured excitation intensity I0.

For case T480, a drastic change in terms of flow phenomena occurs. A spray-like behavior
similar to atomized jets can be seen in the experimental snapshots in Fig. 7.10. The corresponding
shadowgram shows a constant dark core with distinct droplets visible in the outer jet region for
x/D & 15. This pronounced two-phase characteristic directly reflects in the strong scattering
throughout virtually the entire jet domain. As in case T560, the presence of this strong phase
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Figure 7.10: Comparison of experimental and numerical snapshots for the test case T480. Ĭ is the
noise-corrected camera intensity Icam normalized by the measured excitation intensity I0.

separation is confirmed by the LES where nearly the complete jet has entered the VLE, see Fig. 7.8.
In contrast to the cases T560 and T600, the lowering of the injection temperature to 480 K leads to
the fact that both binodals are crossed and the corresponding shadowgram shows a jet exhibiting
spray-like behavior. Due to the Eulerian approach used in the LES, no individual droplets are
resolved. Therefore, the spray-like character is represented in terms of the vapor fraction covering
the whole range from zero to one whereby the lowest values are found in the core of the jet. A
single-phase state is predicted only in the "dark" core close to the injector inlet and in a thin area
at the outermost region of the jet.

7.1.4 Summary

Well synchronized experiments and numerical simulations of jet mixing at high-pressure conditions
have been carried out to investigate mixture-induced phase separation processes in initially super-
critical fluids. A multicomponent system consisting of n-hexane and nitrogen was chosen and a
systematic study has been conducted at supercritical pressure with respect to the pure components.
N-hexane has been injected into a chamber filled with pure nitrogen at (cold) ambient tempera-
ture. The test case conditions were defined by applying the adiabatic mixture concept considering
phase separation. The injection temperatures were selected such that they lead to regimes in which
the occurrence of phase separation is possible and triggered gradually by lowering the injection
temperature. Three different test cases have been presented and discussed. Simultaneous shad-
owgraphy and elastic light scattering experiments have been conducted at the ITLR (University of
Stuttgart) to capture both the flow structure as well as the phase separation. In addition, numer-
ical simulations have been carried out by means of Large-Eddy Simulations with a VLE model.
Experimental and numerical results show phase separation and the transition from a dense-gas
to a spray-like jet. Characteristics of the formation process agree well between experiments and
numerical simulations. The formation of a two-phase flow is initiated in the mixing layer some
distance downstream of the nozzle and eventually mixes into the jet core at large distances.

7.2 Comparison of fully- and quasi-conservative solvers

7.2.1 Introduction

Recently, Ma et al. [178] investigated the mixing behavior of both FC and QC schemes. In accor-
dance with other investigations, e.g, Lacaze et al. [153, 156] or Matheis and Hickel [185], the FC
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results closely follow the adiabatic mixture assumption. An identical behavior has been found in
the last Sec. 7.1 for the results of the three n-hexane test cases, cf. Fig. 7.8. For the QC double-
flux scheme, Ma et al. [178] showed that the results of their investigated cases closely resemble an
isochoric mixing approach where a linear behavior of the specific volume in mixture fraction space
is assumed. Therefore, the isochoric mixture model is governed by:

ṁmix = ṁ1 + ṁ2 , (7.1)

ṁmixvmix = ṁ1v1 + ṁ2v2 . (7.2)

In addition, an isobaric process is assumed to arrive at a fully defined thermodynamic state.
Applying the adiabatic and isochoric mixture model, Ma et al. [178] studied the experiments
of Roy et al. [265] and Manin et al. [179]. Based on the comparison of the numerical and the
experimental findings, Ma et al. [178] concluded that the adiabatic mixture model is unable to
correctly predict the phase separation behavior under these high-pressure conditions. In contrast,
very good agreement between the isochoric approach and the experimental findings was reported in
this work [178]. Building on the good agreement between experimental and numerical investigations
in the last Sec. 7.1, the findings of Ma et al. [178] are checked for these n-hexane test cases. An
additional single-phase test case from the work of Baab et al. [16] is used to extend the basis of
this investigation and add quantitative measurement data to it.

7.2.2 Single-phase test case

Recently, Baab et al. [16] carried out LITA measurements in subsonic jets under high-pressure
conditions. The applied experimental setup is identical to the one used by Baab et al. [14] for
the experimental investigation of the supersonic n-hexane jets, cf. Sec. 6.1. In total, five different
cases have been reported by Baab et al. [16]. Here, the n-hexane case which corresponds to "Case
1" in Baab et al. [16] is used. The experimental conditions are listed in Tab. 7.4 and are very
similar to the T600 case in Sec. 7.1. This test case was selected for two reasons: First of all, the
same validated thermodynamic framework as in the previous Sec. 7.1 can be applied. Second, the
measurement data are available for a wide range of axial positions from x/D = 17 up to x/D = 80.
In addition, at x/D = 35 radial profiles of the measured speed of sound are also available for a
range of y/D ≈ ±6.

Table 7.4: Experimental conditions for the single-phase test case taken from Baab et al. [16]. The
nozzle exit temperature Te and velocity ue were estimated based on the assumption of an isentropic
flow inside the injector.

Injectant Chamber Tt [K] pt [MPa] Tch [K] pch [MPa] Te [K] ue [m/s]

C6H14 N2 630 5.49± 0.03 296 4.99± 0.04 627 91

7.2.3 Numerical setup

Thermodynamics

Following Secs. 6.1 and 7.1, the cubic EoS of Peng and Robinson [226] is applied to achieve the
thermodynamic closure for the present test cases. The prediction quality of this state equation
with respect to pure n-hexane and binary VLEs has been already studied in detail in Sec. 7.1, see
Figs. 7.2 and 7.3. For the single-phase test case, the predictability of the mixture speed of sound is
of major interest. In Fig. 7.11, high-fidelity data from NIST Refprop [164] are compared to the PR-
EoS [226]. Here, the adiabatic mixture concept is employed to define the thermodynamic mixing
states according to the experimental boundary conditions in Tab. 7.4. In NIST Refprop [164], the
GERG-2008 EoS due to Kunz and Wagner [145] is used to describe the binary n-hexane/nitrogen
mixture. A very good agreement between both thermodynamic models is achieved especially close
to pure n-hexane. With increasing dilution of n-hexane with nitrogen, the PR-EoS [226] tends to
slightly underpredict the speed of sound.
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Figure 7.11: Comparison of mixture speed of sound data for the binary n-hexane/nitrogen mixture.
The reference data have been taken from NIST Refprop [164].

Solvers

The settings applied in the FC pressure-based solver are identical to the ones in Sec. 7.1 and are
summarized in Tab. 7.5.

Table 7.5: Setup of the pressure-based solver for the comparison of FC and QC schemes.

Solver TVD-limiter Turbulence closure EoS

pressure-based limitedLinear LES with PR-EoS [226](subsonic) Smagorinsky [295]

The density-based double-flux solver is not employed for 3D simulations. Therefore, 2D planar
jets are investigated in accordance to the works of Ma et al. [177, 178] and Lacaze et al. [156] to
study the mixing behavior. Consequently, no sub-grid model is applied and laminar simulations
have been conducted. The solver settings for the density-based solver are summarized in Tab. 7.6.

Table 7.6: Setup of the density-based solver for the comparison of FC and QC schemes.

Solver TVD-limiter Turbulence closure EoS

density-based limitedCubic laminar PR-EoS [226]

7.2.4 Results

Single-phase case - FC solver

In the first step, a 3D-LES of the single-phase speed of sound case has been conducted using the
FC pressure-based approach. Following the mesh convergence study in Sec. 7.1, the injector is
resolved with 30 cells over the diameter corresponding to a minimum cell size of 7.87 µm. For
proper inflow boundary conditions, a separate incompressible channel flow LES was conducted in
advance. From this simulation, the velocity field has been extracted over a sufficient amount of
time and has been interpolated in time and space onto the inlet. A constant temperature of 627 K
has been set at the n-hexane inlet. At the outlet, a pressure of 5 MPa has been prescribed.

In Fig. 7.12, instantaneous CFD results of the fully developed n-hexane jet are shown. Fo-
cusing on the temperature and mass fraction plots first, a highly turbulent mixing process of
n-hexane with the gaseous nitrogen environment becomes visible. As soon as the fuel jet en-
ters the chamber, it starts to break up and dissolves gradually into the environment. At the
beginning only small vortical structures are visible at the jet boundary. Further downstream,
the structures grow rapidly in size and spatial extent. Therefore, more and more ambient gas is
entrained into the jet leading to a gradual reduction of the n-hexane mass fraction and the tem-
perature. As species and energy are transported at the same rate in the present fully-conservative
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Figure 7.12: Instantaneous flow field of the fully developed jet. For the conduction of the LES, the
FC pressure-based solver has been used.

framework, both fields appear similar. The decay of the temperature field towards the ambient
conditions is somewhat smaller compared to the mass fraction field. Keep this in mind when we
later examine the behavior of the QC solver. The variation of the density is shown in Fig. 7.12
bottom left. At the inlet, the largest density values are found and up to x/D ≈ 10 a dark
core – almost pure fluid – is present. Downstream of this dark core, most of the mixing pro-
cess takes place and a lot of nitrogen is entrained into the jet. Therefore, a strong decay of the
density is found. This can be understood in more detail in Fig. 7.13 where the variation of the
mean density and its root mean square are plotted along the center axis of the chamber. Up to
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Figure 7.13: Variation of the mean density and its fluctua-
tion along the center axis.

x/D ≈ 20 a strong reduction of
the density occurs which comes along
with large fluctuations. At x/D ≈
30, the mean density begins to rise
steadily. However, the values of the
density lie well below the respec-
tive pure nitrogen reference value at
chamber conditions highlighting the
presence of real-gas effects. This de-
crease can also be seen in the instan-
taneous density field in Fig. 7.12 bot-
tom left. In hydrogen/nitrogen mix-
tures under rocket-engine relevant
conditions, it was reported by Müller
et al. [204] that the real-gas mixing
effects can also lead to a subcooling
with respect to the injection temper-
atures. Finally, in Fig. 7.12 bottom
right, the instantaneous pressure field is shown. The injection is almost isobaric and only at the
periphery of the jet, pressure fluctuations resulting from the jet break-up process occur. There-
fore, the change in the thermodynamic state is governed by changes in composition and energy
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exclusively. In addition to the presentation of the flow field by means of snapshots, the contour
plots of the density and the pressure in Fig. 7.12 show the axial and radial evaluation positions for
the speed of sound data by means of white dots which are used in the following for a comparison
between experimental measurements and numerical simulation results.

In Fig. 7.14, the time-averaged speed of sound results extracted from the LES are compared to
the experimental data of Baab et al. [16]. Overall, a very good agreement is found demonstrating
that the FC pressure-based solver is able to predict the mixing process of n-hexane into nitrogen.
Focusing on the axial variation of the speed of sound, see Fig. 7.14a, small deviations are found
for x/D ≤ 20 whereby the first point lies within the measurement uncertainty and the second
evaluation point underpredicts the measured speed of sound by roughly 3%. Downstream of
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Figure 7.14: Comparison of the measured speed of sound data with the LES results along the axial
centerline and in radial direction. The experimental data have been taken from Baab et al. [16].

x/D = 20, the agreement between CFD and experimental data is almost perfect. Only the
comparison at x/D = 80 shows a small underprediction. However, this issue might be attributed to
the PR-EoS [226]. The comparison of the applied thermodynamic framework with reference data
from NIST Refprop [164] in Fig. 7.11 reveals that the PR-EoS [226] tends to slightly underestimate
the speed of sound for large nitrogen mass fractions. In addition, nonideal mixing processes caused
by diffusion might also play a role at this large distance. Unfortunately, the investigation of such
processes using a fully resolved 3D simulation is out of scope for the present work as it would
require much more computational power. In contrast to this issue, the explanation for the slight
underestimation at x/D ≤ 20 can be found with the help of the available data. The decay of the n-
hexane mass fraction and the velocity along the center axis are plotted in Fig. 7.15. Downstream of
x/D ≈ 25 both profiles achieve self-similarity and follow the dashed-line which was manually fitted
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Figure 7.15: Concentration and velocity decay along the centerline. The dashed line was fitted
manually to the available LES data to study the self-similarity and to approximately mark the
development region.
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to the LES data. Here, the centerline concentration and velocity are inversely proportional to the
distance from the injector exit. This behavior in turn demonstrates that the first two measurement
points (x/D = 17 and 20) lie within the development region where the average speed of sound
values are more sensitive to the predicted turbulent flow field and the initial break-up process. It
is assumed that this is the reason for the slight deviation between experiments and CFD.

Finally, in Fig. 7.14b the radial distribution of the speed of sound is compared. Overall, the
trend is captured accurately by the LES. However, close to the centerline the CFD overpredicts the
speed of sound. In contrast, for y/D > 2, the measurement data are slightly underpredicted. This
fact can be attributed to the thermodynamic closure similar to the discussion at the axial position
x/D = 80. Unfortunately, no statement is found in Baab et al. [16] concerning the measurement
points at y/D < −2. Based on the current simulation results it is suspected that these points are
not representative for the average jet break-up process. This assumption is further underlined by
the slightly asymmetric behavior of the experimental data.

Single-phase case - FC vs. QC solver

In the following, a comparison between the FC pressure-based solver and the QC double-flux solver
is carried out based on the single-phase test case. A 2D planar jet simulation has been conducted
with the QC density-based solver. The configuration corresponds to Fig. 7.16 and the thermal
boundary conditions are applied in accordance with Tab. 7.4. The inlet velocity was set to 100 m/s

30h
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h

h
uC6H14 = 100 m/s
TC6H14 = 627 K

pch = 50 bar
TN2 = 296 K

Figure 7.16: Schematic of the computational domain
used for the simulation of the 2D planar jet config-
uration. The inlet height h is 1 mm.

based on the work of Terashima and
Koshi [311]. Following the work of Ma et
al. [178], a uniform grid spacing is employed
and the inlet is resolved with 50 cells. An
identical configuration has been used for
the validation of the density-based solver
in Sec. G in the appendix. The instanta-
neous n-hexane mass fraction and tempera-
ture fields 0.5 ms after injection are shown in
Fig. 7.17. A typical flow field of a 2D planar
jet with large vortical structures can be seen.
Due to the mixing of the injectant with the
ambient gas, the mass fraction and temper-
ature gradually decay towards the ambient
conditions. However, in comparison to the
FC temperature and mass fraction fields in Fig. 7.12, both flow fields from the QC solver occur
highly different with respect to their decay rate. Especially, the temperature field tends very
quickly towards the ambient temperature of 296 K giving rise to the expectation that the mixing
behavior of the QC solver is quite different from the FC solver.
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Figure 7.17: Instantaneous flow field of the planar n-hexane jet injected into a quiescent nitrogen
atmosphere simulated with the QC solver. The results are shown 0.5 ms after start of injection.
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To study this issue in more detail, the work of Ma et al. [178] and Lacaze et al. [156] is followed
and the results of both solvers are scattered in a temperature-composition diagram in Fig. 7.18.
A large deviation between both approaches becomes visible. The stronger temperature reduction
in the QC case is apparent. An almost straight line between the injection conditions of pure
nitrogen and n-hexane in the temperature-composition space results and the scatter data of the
QC solver mimics the trend of an isochoric mixture. In contrast, the data of the FC solver taken
from the present LES follow the adiabatic mixture concept closely. Both results are superimposed
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Figure 7.18: Temperature-composition diagram
showing the results of the FC and QC solver for the
single-phase speed of sound test case.

onto the VLE of the binary mixture at the
corresponding chamber pressure of 50 bar.
The results of the QC solver clearly pene-
trate the VLE region. This in turn yields
a strong two-phase characteristic of the
jet which would make the measurement of
speed of sound impossible. In contrast, the
scatter data of the FC solver do not cross the
binodal and therefore a pure single-phase
mixing behavior can be deduced which is
in excellent agreement with the experi-
ments [16]. This in turn underlines the ap-
plicability of the adiabatic mixture concept
to study the overall mixing process under
high-pressure conditions for the present n-
hexane test cases. This fact, is elaborated
in more detail in the next section using the
multi-phase test cases from Sec. 7.1.

Multi-phase cases - FC vs. QC solver

In the following, the focus is put on both high temperature cases, i.e., T600 and T560, and the T480
case is excluded as the shadowgram in Fig. 7.10 clearly indicates a two-phase behavior. As a starting
point for a thorough investigation, Fig. 7.19 shows the VLE of the binary n-hexane/nitrogen
mixture at 50 bar. Unlike before, not only the equilibrium binodals are plotted but also the
spinodal region and lines of constant nucleation rate are shown. The two spinodal curves (dashed
lines) mark the region of intrinsic single-phase instability. However, this region will never be
entered in engineering practice as the activated process of nucleation will trigger the formation of
a stable phase a lot earlier. This is shown by the three red dash-dotted lines which correspond to
the increasing nucleation rates I =

[
10−200, 10−100, 10−50

]
based on the discussion in Fig. 4.17. In

practice, the mixing process crosses the dew-point line but due to a too high activation energy the
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Figure 7.19: Vapor-liquid equilibrium of the binary n-hexane/nitrogen mixture at 50 bar together
with the mixture critical point and the spinodal lines marking the region of intrinsic phase sepa-
ration. The dash-dotted lines are lines of constant nucleation rate according to Fig. 4.17.
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barrier to form a stable nucleus cannot be crossed. The mixing process continues in a single-phase
state and the fluid becomes subcooled with respect to the equilibrium temperature. Therefore, the
fluid exists in a metastable/nonequilibrium state. This process proceeds until the nucleation rate
is high enough to overcome the energy barrier and to form a stable nucleus where the formation
of a liquid phase can take place. After that, the nonequilibrium state quickly reverts back to
equilibrium conditions governed by the typical macroscopic thermodynamics. This process takes
place close to the dew-point line as it is indicated by the three dash-dotted red lines in Fig. 7.19.

2D planar jet simulations for both multi-phase test cases have been conducted with both solvers.
In the following, no snapshots of the flow field are shown as they are similar to Fig. 7.17 and do
not provide additional information apart from the already discussed facts. Therefore, the focus
is put solely on the scattering of data into temperature-composition diagrams. In Fig. 7.20a,
the results for the T600 case are shown. It is not surprising that the pattern of the scatter
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(a) FC vs. QC solver.
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Figure 7.20: Temperature-composition diagrams of the T600 case. In subfigure a, the results of the
FC and QC solver are shown. The result of a 1D diffusion problem employing the high-pressure
diffusion coefficients due to Riazi and Whitson [258] is shown in subfigure b.

data looks very similar to the one discussed in Fig. 7.18. Compared to the single-phase speed
of sound test case, the n-hexane reservoir temperature was lowered by 30 K and the ambient
temperature is 293 K instead of 296 K. Therefore, the findings are identical but now it becomes
obvious that the trajectory of the QC solver not only crosses the binodal but also gets inside
the spinodal area which is in strong contradiction to the findings in the experiment where only
a single-phase mixing process has been found. Depending on the combined shadowgraph/ELS
image in Fig. 7.7 one might now argue that there are small signals at the jet periphery. From
the experiments it is known that these regions are highly unstable and collapse instantaneously.
Therefore, one reason could be small particles which would cause heterogeneous nucleation. An-
other possible reason could be nonideal transport phenomena. To further elaborate on this latter
fact, a 1D diffusion problem was defined and the high-pressure diffusion coefficients due to Ri-
azi and Whitson [258] are used, i.e., the unitary Lewis number assumption has been dropped.
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Figure 7.21: Schematic of the 1D diffusion
problem together with the initial conditions.

In Sec. B.2 of the appendix the diffusion model of
Riazi and Whitson [258] is described in detail. A
sketch of the 1D diffusion problem including the ini-
tial conditions is shown in Fig. 7.21. The domain
has a length of 100 µm and is discretized with 1000
grid points. The result of the diffusion problem af-
ter 4.4 µs is shown in Fig. 7.20b. At this time, the
temperature profile was found quasi-stationary. The
comparison of the scatter data with the VLE demon-
strates that diffusion can cause the unstable regions
at the jet boundary as the path runs through the re-
gion of sufficiently large nucleation rates where the
formation of a stable nucleus would be possible.
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Finally, Fig. 7.22 compares the results for the T560 case. Here, scatter data from both solvers
indicate a penetration of the VLE whereby – from the fuel’s point of view – the trajectory generated
by the QC solver enters the VLE approximately across the mixture critical point and leaves it across
the dew-point line. The one generated by the FC solver, in contrast, enters and leaves the two-phase
region across the dew-point line resulting in a kind of retrograde condensation behavior, i.e., the
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Figure 7.22: Temperature-composition diagram of
the T560 case with scatter data from FC and QC
2D planar jet simulations.

liquid mass fraction is increased and lowered
but never reaches full saturation. Compar-
ing these observations of the FC and QC
solver, things are not as clear as in the T600
case. Looking at the experimental results, cf.
Fig. 7.9, a dark shadowgram can be seen and
the ELS signal covers wide regions of the jet.
However, no droplets or similar structures are
visible and therefore, a deep entry into the
VLE as predicted by the QC solver is unlikely.
Therefore, it is believed that the resulting ther-
modynamic mixing trajectory of the FC solver
– i.e., an adiabatic mixture assumption – is
much closer to the real mixing path than the
trajectory described by the results of the QC
solver. Especially when considering possible
local nonideal diffusion processes which might
help to activate the phase separation process in
the conservative/adiabatic case.

7.2.5 Summary

In this section, the focus has been put on the investigation of the thermodynamic mixing trajec-
tories predicted by different solver types under high-pressure real-gas conditions. Two different
numerical solver approaches have been applied and compared to each other: A fully-conservative
pressure-based approach and a quasi-conservative double-flux method. The latter type is quite
popular in density-based real-gas solver frameworks as such schemes suppress spurious pressure
oscillations caused by material interfaces. This property makes the solver robust in the application,
which is desirable for the successful conduction of numerical simulations. However, the predicted
thermodynamic mixing trajectory of the QC solver differs from a fully-conservative approach.

Overall, three different test cases have been used in this study where initially supercritical n-
hexane was injected into a high-pressure chamber filled with nitrogen at rest. For the single-phase
test case, speed of sound measurements are available in the literature [16]. The comparison with
the LES results of the pressure-based framework showed a very good agreement. In contrast, the
scatter plots of the QC solver strongly deviated from the FC results. The generated thermodynamic
mixing trajectory of the QC solver penetrates the two-phase region of the binary mixture making
speed of sound evaluations impossible. Using two experimental test cases (T600 and T560) on
high-pressure mixture-induced phase separation from Sec. 7.1, the possibly nonphysical prediction
of the QC scheme could be further confirmed. Overall, it has been found that a fully-conservative
solver and the adiabatic mixture model are most suitable for an estimation of the thermodynamic
mixing trajectory of the jet mixing process in the present cases.



8 Single-phase instability in high-pressure
combustion

This final result section is concerned with the investigation of single-phase instabilities in diffu-
sion flames under LRE-like conditions. In the literature, little is known about the possibility of
such processes and thus no experimental investigations focusing on this particular thermodynamic
phenomenon are available for comparison. Consequently, the focal point is to clarify whether
phase separation can occur and, if so, what the major effects are. In the following, reacting cases
for both LOx/H2 and LOx/CH4 flames at representative conditions taken from two well-known
experiments are studied. First, fundamental investigations are performed using one-dimensional
counterflow diffusion flames. Second, the results of the LOx/CH4 flame are tabulated and applied
in a Large-Eddy Simulation and compared to experiments in terms of OH∗ emission.

Large parts of the following results and discussions are published in the journal article [322]:
Traxinger, C., Zips, J., and Pfitzner, M. Single-phase instability in non-premixed flames
under liquid rocket engine relevant conditions. Journal of Propulsion and Power, 35(4):675–
689, 2019.

8.1 Thermodynamic closure
For the thermodynamic representation of high-pressure hydrogen and methane flames, the SRK-
EoS [296] is employed. In Fig. 8.1, the prediction capability is evaluated for the density of the pure
fuels (H2 and CH4) and the pure oxidizer (O2) at pressure and temperature conditions which are
relevant for the present study. For all three fluids, a very good agreement between the prediction
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Figure 8.1: Comparison of the SRK-EoS [296] with reference data taken from NIST Refprop [164]
for three different fluids (methane CH4, oxygen O2 and hydrogen H2).

and the reference data from NIST Refprop [164] is found. Apart from the prediction of the thermo-
dynamic single-phase properties, the accurate representation of the VLEs is of major importance in
this study. In the pressure-composition diagrams in Figs. 6.30b, 6.32a and b, VLEs for the binary
mixture of the two different fuels (hydrogen and methane) with nitrogen are shown. For both mix-
tures, the binary interaction parameter kij has been set to zero and the SRK-EoS [296] gives good
results in the relevant pressure range (p . 60 bar). The third binary mixture, which is important
for the present investigation, is oxygen/water (H2O). This mixture occurs in the core of the flame
where the cryogenic oxygen mixes with the combustion products. Water is a main combustion prod-
uct and has a high critical temperature and pressure (Tc = 647.1 K and pc = 217.7 bar) as well as
strong hydrogen bondings. Due to the strongly associating character of water, cubic EoSs are usu-
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152 8.2 Test cases

ally not the optimal choice for a good prediction of its thermodynamic behavior [8]. However, the
cubic EoSs are state of the art in the LRE community because of their relatively good accuracy for
many fluids and mixtures and due to their efficiency. In Fig. 8.2, predicted and experimental data
are compared for four different isopleths and the critical locus of the binary water/oxygen mixture.
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Figure 8.2: Validation of the binary water/oxygen
mixture with experimental data [127] (solid:
kij = 0; dash-dotted: kij = 0.3).

The solid lines correspond to kij = 0 and the
dash-dotted lines to kij = 0.3. The binary wa-
ter/oxygen mixture exhibits a critical locus of
type III [335]. The comparison of the differ-
ent binary interaction coefficients shows that
a perfect fit of the experimental data with a
single kij-value is not feasible. Using kij = 0
the critical locus can be predicted very well.
By applying kij = 0.3 the predictions of the
isopleths become more accurate but the calcu-
lated critical locus shows larger deviations from
the experimental data. Furthermore, it has to
be noticed that all the experimental data avail-
able in the literature [127] are for very large
pressures (p > 220 bar). The operating con-
ditions in the present test cases are however
approximately 60 bar. Therefore, a sensitivity
analysis for the binary interaction coefficient of
water/oxygen within the flamelet calculation has been performed to assess its influence on the
results. Four different binary interaction coefficients kij = [0.0, 0.1, 0.2, 0.3] have been used for this
analysis and no significant changes in the results were found. Therefore, kij = 0.3 is employed
as binary interaction coefficient between water and oxygen as it fits the curve for zH2O = 0.08 in
Fig. 8.2 very well and phase separation can only be expected at moderate temperature and hence
low water mole fractions.

8.2 Test cases
The reference conditions investigated within this study are taken from two well-known combustion
experiments. One is the experiment of Singla et al. [292] at the Mascotte test bench where methane
is used as fuel. The other one is a model combustor named BKH [113] operated at the German
Aerospace Center (DLR) Lampoldshausen which is fired with hydrogen. Both combustors are
operated under rocket-relevant conditions. This implies that the pressure is supercritical with
respect to the propellants’ critical point and that the oxidizer is injected at a liquid-like state. The
operating conditions of both test cases are listed in Tab. 8.1.

Table 8.1: Operating conditions of the considered LRE-like flames.
LOx/H2 flame

p [MPa] TO2
[K] TH2

[K] uO2
[m/s] uH2

[m/s] ρO2
[kg/m3] ρH2

[kg/m3]
6.07 127 279 12.3 410 926.27 5.10

LOx/CH4 flame
p [MPa] TO2 [K] TCH4 [K] uO2 [m/s] uCH4 [m/s] ρO2 [kg/m3] ρCH4 [kg/m3]

5.61 85 288 2.48 63.20 1180.08 41.79

8.3 Counterflow diffusion flames

8.3.1 General discussion

For both nominal operating conditions listed in Tab. 8.1 laminar flamelet calculations have been
performed with a scalar dissipation rate χst = 1 s−1. In Fig. 8.3a, the temperature profiles of
the two flames are plotted over the mixture fraction f . Two typical counterflow diffusion flame
structures can be seen with a steep temperature gradient towards the oxidizer-rich side. The
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maximum temperature is similar for both flames with different stoichiometric mixture fractions
fst,LOx/H2

= 0.1111 and fst,LOx/CH4
= 0.2, respectively. Figure 8.3b shows the profiles of the

density ρ and the compressibility factor Z of both counterflow diffusion flames. Especially for f <
0.01 (at the oxdizer-rich side) significant changes for both properties occur and the compressibility
factor is unequal to unity. This can also be seen in the density profile which shows a strong decline
over a small band in the mixture fraction space. At the fuel-rich side, real-gas effects (Z 6= 1)
are also present. Looking at the pure fuels, methane has a compressibility factor of approximately
0.9 and hydrogen of 1.04 in the present test cases. Due to the steady temperature increase for
1 > f > fst the real-gas feature gets lost gradually and therefore Z is close to one over a wide
part of the mixture fraction space. Most of the mixing and combustion takes therefore place under
almost ideal-gas conditions.
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Figure 8.3: Results of the H2 and CH4 flames at a scalar dissipation rate χst = 1 s−1.

8.3.2 Phase separation

Figure 8.4 shows the detailed analysis of the methane flame regarding phase separation. At both
sides of the flamelet (oxidizer and fuel) the TPD analysis yields a negative value and therefore a
phase separation was performed during the calculation of the flamelet. The separation of a second
phase can be attributed to moderate temperatures and the presence of water in these two regions.
On both sides the presence of H2O is caused by diffusion as the reaction rate of water is almost
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Figure 8.4: Thermodynamic analysis of the methane flamelet: a) Detailed view of the oxidizer-rich
side; b) Detailed view of the fuel-rich side.
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zero in these regions. Figure 8.4a shows a detailed view for T < 450 K and f < 0.01 by means
of a scatter plot. Black dots indicate a homogeneous mixture and colored dots a two-phase state
whereby the color corresponds to the vapor fraction β. As H2O is the low volatile component in
the mixture of the combustion products and only a small amount of it is present in the mixture, β
is close to unity and ranges between 97% and 100%. Only three distinct points at the oxidizer side
are in the single-phase state, namely f = 0 (pure oxygen, not shown in Fig. 8.4a), f = 1 × 10−4

and f = 2 × 10−4. All other points up to f ≈ 1 × 10−2 have entered the VLE. Following the
colored dots from left to right a continuous variation of β can be seen although the composition
of the mixture varies due to diffusion and reaction. At f = 3× 10−4 the dew-point line is crossed.
Afterwards, the vapor fraction is reducing continuously until the minimum of approximately 0.97
is reached at f ≈ 8× 10−3. After the minimum is passed, β rises and the dew-point line is crossed
again at f ≈ 1 × 10−2. A similar behavior regarding the vapor fraction and the corresponding
two-phase phenomena was found in Sec. 7.1 for the case T560 of the binary n-hexane/nitrogen
mixture. On the fuel-rich side a very similar pattern occurs but here the vapor fraction drops only
to a minimum of about 0.998 at f ≈ 0.99, see Fig. 8.4b.

In both detailed views of Fig. 8.4 the real-gas reference case, i.e., without considering phase
separation, is plotted as dashed line. The maximum difference in temperature occurs at the
oxidizer-rich side and is approximately 50 K corresponding to a relative deviation of approximately
15%. For comparison, the maximum difference at the fuel-rich side is almost zero and hence
negligible. Due to the consideration of the phase separation and hence the condensation of the
fluid, the temperature of the two-phase case is larger. The entrainment into the VLE region has also
an effect onto other thermodynamic properties. In Fig. 8.5, the real-gas and the two-phase solution
are compared to each other for f < 0.01, where the largest deviations between both thermodynamic
closures occur. The overall comparison reveals that the curve shapes are very similar but in the
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Figure 8.5: Comparison of the real-gas and the two-phase solution for the methane flamelet.

two-phase case they are shifted to lower mixture fractions. The shift leads to deviations up to
approximately 20%. The main reason is the slightly higher temperature in the two-phase flamelet
which is caused by the condensation of a small portion of gas indicated by β-values smaller than
one. For derived properties like the compressibility and the speed of sound some additional features
occur. As soon as the binodal is crossed, these properties can be subject to large changes as the
fluid is not homogeneous anymore. In the present case, the speed of sound shows a slight drop
when the VLE is entered. At the same position the compressibility has a discontinuity. Compared
to the example of the Prudhoe Bay mixture (cf. Fig. 4.11) the drop in the sound velocity is minor
and almost negligible for the methane flame. Therefore, the consideration of the phase equilibrium
leads to higher temperatures in the region with phase separation and therefore to the shift in the
characteristic values which can be attributed to the pseudo-boiling process in the real-gas case.
Therefore, the solver stability is not significantly enhanced by considering the phase separation
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process as it applies for inert injection cases. The reason for that is shown in Fig. 8.6a. Here, the
results from the flamelet calculation are superimposed onto the VLE of the binary water/oxygen
mixture. Note the logarithmic scale on the abscissa. The solid black line is the dew-point line and
the dashed line the limit of stability. The metastable region is shown as a gray area. All of the
scatter points lie within the metastable region. We therefore conclude that the homogeneity of the
single-phase might continue although the VLE is entered as the phase separation process in this
area is not triggered intrinsically. This agrees well with the only slight variation in thermodynamic
properties, the stability of the solver and the general assumption of a supercritical combustion
process. Similar results have been reported by Gaillard et al. [86] for a hydrogen/oxygen flame.
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Figure 8.6: The flamelet results of the oxidizer-rich side superimposed onto the VLE of the binary
mixture of water/oxygen at the appropriate pressure.

In Figs. 8.6b, 8.7 and 8.8, the phase separation effects occurring in the hydrogen counterflow
diffusion flame of the LOx/H2 test case are presented. The solution of the hydrogen flamelet leads
to similar findings as the thoroughly discussed methane flamelet. Phase separation processes occur
on both sides of the mixture fraction space and have similar effects on the solution and the derived
thermodynamic properties.

10−4 10−3 10−2

200

400

600

real-gas
reference

Detailed view: f < 0.01

black dots: single-phase
colored dots: two-phase

f [-]

T
[K

]

0.970 0.980 0.990

β [-]

0.9 0.92 0.94 0.96 0.98 1

200

400

600

real-gas
reference

Detailed view 0.9 < f < 1.0

black dots: single-phase
colored dots: two-phase

f [-]

T
[K

]

0.997 0.997 0.998 0.998 0.999

β [-]

a) b)

Figure 8.7: Thermodynamic analysis of the hydrogen flamelet: a) Detailed view of the oxidizer-rich
side; b) Detailed view of the fuel-rich side.
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Figure 8.8: Comparison of the real-gas and the two-phase solution for the hydrogen flamelet.

8.4 Large-Eddy Simulation

8.4.1 Test case and numerical setup

For the evaluation of the role of real-gas and two-phase phenomena under rocket-like conditions,
the combustion experiment of Singla et al. [292] conducted at the Mascotte test bench is chosen
as a reference. This test case has previously been used by many other groups as validation case
for numerical combustion simulations, see, e.g., Schmitt et al. [280, 279]. At an operating pressure
of 56.1 bar, oxygen is injected in a liquid-like state at 85 K and the injection temperature of
methane is 288 K, see Tab. 8.1. The combustion chamber is a 50 mm × 50 mm square duct
with a length of 400 mm and a convergent-divergent nozzle at the outflow. Being a single-element
test case, the propellants are supplied by one coaxial injection element with a 3.4 mm LOx pipe
diameter, a CH4 annulus height of 2.2 mm and a posttip width of 0.6 mm. As windows allow
for optical access, Singla et al. [292] measured spontaneous emission of OH∗ and reported line-
of-sight integrated results. The computational domain, see Fig. 8.9, is truncated after 150 mm.

L
= 150mm

50 mm×50 mm

Figure 8.9: Computational domain of the
LOx/CH4 test case.

This length is sufficient to accommodate the
flame and to avoid interactions with the out-
let boundary. All walls are considered as adi-
abatic no-slip boundary conditions. Realistic
turbulent inflow boundary conditions for LOx
and CH4 jets are generated using a separate
incompressible LES at corresponding operat-
ing conditions with cyclic boundaries in axial
direction. The turbulent velocity field of this
precursor LES is extracted and interpolated in
space and time onto the grid of the actual sim-
ulation. The grid consists of ≈ 16 × 106 cells
with a minimum resolution at the injector of
0.2 mm in axial and 0.025 mm in radial di-
rection. For more details on the grid and its
resolution see the work of Zips et al. [368]. Fig-
ure 8.9 schematically shows the domain and the
qualitative mesh resolution with reduced grid
density. In Tab. 8.2, the numerical settings for the LES are summarized. The transcritical com-
bustion model presented in Sec. 5 is employed. The table dimensions are 1011× 11× 7× 15 in f̃ ,
f̃ ′′2, χ̃st and p.
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Table 8.2: Numerical solver setup for the investigation of the high-pressure combustion case.

Solver TVD-limiter Turbulence closure EoS

pressure-based van Leer [336] LES with SRK-EoS [296](subsonic) Vreman [341]

8.4.2 General flame features

Figure 8.10 shows various instantaneous fields of the LOx/CH4 flame using a central cut through
the flame to provide a qualitative impression of the flame shape. The instantaneous temperature
field, see Fig. 8.10a, shows that a thin diffusion flame emanates from the injector which is anchored
at the posttip. The white line in Fig. 8.10a indicates the mixture fraction f = 2 × 10−4 and
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(a) Instantaneous temperature field. (b) Instantaneous density field.

(c) Instantaneous compressibility factor field. (d) Instantaneous vapor fraction field.
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Figure 8.10: Instantaneous view of the LOx/CH4 flame: The white line in (a) encloses the region
of f ≤ 2 × 10−4 and in (b) it represents the stoichiometric mixture fraction fst = 0.2. In (c) the
white line is drawn for Z = 0.99. In (d) the β-field is superimposed onto the mixture fraction field.

therefore encloses the region of (almost) pure oxygen. In Fig. 8.10b, the instantaneous density
field is shown. Disintegration of the stable cold oxygen core starts at approximately 40 mm, where
pockets of high-density fluid detach from the core and are transported downstream. There, they
react with the surrounding fuel leading to the region of strongest chemical reactions. The white
line in Fig. 8.10b denotes the stoichiometric mixture fraction fst = 0.2 highlighting the position of
the flame. In order to emphasize the real-gas character of the investigated flame, Fig. 8.10c shows
the compressibility factor Z. The scale is truncated at unity and the region of real-gas behavior
is highlighted by the white iso-line drawn for Z = 0.99. As already discussed based on Fig. 8.4,
both the oxidizer as well as the fuel feature real-gas effects whereby the strongest deviation from
the ideal gas state are present on the oxygen side.
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8.4.3 Phase separation effects

Figure 8.10d shows the instantaneous vapor fraction field β superimposed onto the mixture fraction
field f which is used to indicate the general flame structure and shape. In accordance to Fig. 8.4,
β ranges between 97% and 100%. The largest region with phase separation is present within the
LOx-core where combustion products and especially water mixes with the pure oxygen. Only for
pure oxygen no phase separation was found as the injection and combustion is almost isobaric and
therefore supercritical with respect to the critical point of oxygen. Minor areas of phase separation
are also present around the pure fuel. In Fig. 8.10d, these regions are almost not visible, but
Fig. 8.4b proves their presence as the counter-flow diffusion flame concept was used to build the
thermo-chemical library accessed in the LES.

By comparing Figs. 8.10a, c and d it becomes obvious that the largest region of phase separation
is enclosed by the iso-lines for f = 2×10−4 and for Z = 0.99. The resulting region is characterized
by real-gas effects, moderate temperatures and the presence of water. In Fig. 8.11, these facts
are further emphasized by means of scatter data extracted at five independent time steps in the
mid-plane. Figure 8.11a shows the temperature T plotted over the H2O mass fraction colored
by the vapor fraction β. The scatter data form a kind of loop and the intersection separates the
area of phase separation (left of the intersection) from the area with a homogeneous mixture. A
very similar shape results for the scattering of the compressibility factor Z, see Fig. 8.11b. In this
plot, the determination of the phase separation region for Z ≈ 1 can be retraced in detail which is
especially true for the oxidizer-rich side.
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Figure 8.11: Scattered data from five independent time steps. States with phase separation are
colored by the vapor mole fraction β. Black dots indicate a single-phase mixture or pure fluids.

8.4.4 Comparison with the experiment and the single-phase closure

For the present test case, experimental data is available from Singla et al. [292] in terms of OH∗
emission images. In order to evaluate the numerical results the model of Fiala and Sattelmayer [76]
is used to extract the OH∗ emission from the simulation. Figure 8.12 compares the line-of-sight
integrated OH∗ radiation with the computational results. The characteristic flame shape is visible
in both the simulations and the experiments. In the latter, a constant spreading angle is observed
in the front part of the flame. Further downstream, expansion due to chemical conversion takes
place and subsequently, an abrupt end of the reaction zone can be seen. The LES results properly
reflect this behavior and a more detailed discussion on the characteristics of the flame shape can
be found in the work of, for instance, Schmitt et al. [280, 279]. However, Singla et al. [292] did not
publish the exact dimensions of the experimental field of view such that a more detailed validation
is not possible. Nevertheless, the proportions of the flame in the LES in terms of shape and length
indicate good agreement with the experiment.
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Figure 8.12: Line-of-sight integrated OH∗ emission in comparison with the averaged experimental
OH∗ radiation of Singla et al. [292]; reprinted from Proceedings of the Combustion Institute,
volume 30, Singla, G., Scouflaire, P., Rolon, C. and Candel, S., Transcritical Oxygen/Transcritical
or Supercritical Methane Combustion, pp. 2921–2928, © (2005) with permission from Elsevier.

In comparison to the recent work of Zips et al. [368], where the same solver setup and the
dense-gas approach is applied as thermodynamic closure, the flame shape and the overall results
are almost identical. This is quite reasonable, as the a posteriori analysis of the flamelet results
showed, that all thermodynamic states can be found in the stable or metastable region. Hence, the
single-phase approach is applicable, as the physically forbidden (unstable) region of the VLE is not
entered. Furthermore, the density was only marginally affected by the phase separation process
and therefore the fluxes in the finite volume method remain almost identical.

8.5 Summary
In this final result section, the possibility of mixture-induced phase separation during high-pressure
combustion in LOx/CH4 and LOx/H2 counterflow diffusion flames has been investigated. Pressure
and propellant inlet temperatures have been set according to two well-known experiments featuring
upper stage relevant conditions. General real-gas effects of the one-dimensional flames have been
discussed for both propellant combinations. The phase separation analysis showed single-phase
instabilities on both the oxidizer and the fuel side of the flamelets at moderate temperatures below
T . 400 K. Stronger effects are observed at the oxidizer-rich side indicated by a minimum vapor
fraction of approximately 0.97 compared to 0.998 at the fuel side in the case of LOx/CH4. For the
LOx/H2 case, similar results have been found.

By comparing the reference solution without phase separation to the result incorporating conden-
sation effects, the following findings have been obtained: Deviations up to 40% between different
thermodynamic properties have been found. However, the general profiles of the properties in
mixture fraction space are not significantly affected by the phase separation process and therefore
the deviations are mostly caused by a shift to lower mixture fraction values. The shift occurs due
to the higher temperatures in the two-phase solution. These higher temperatures result from the
gas condensation and the maximum difference in terms of the temperature is approximately 50 K.
A comparison of the flamelet results with the vapor-liquid equilibrium of the binary water/oxygen
mixture showed that the possible phase separation process is occurring within the metastable re-
gion. Therefore, phase separation is not triggered intrinsically. This in turn suggests that the
widely applied dense-gas approach can be used as the physically forbidden (unstable) region of
the VLE is not entered. In this area, the consideration of phase separation is essential as the
homogeneity of the single phase is not given anymore.
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The results of the one-dimensional LOx/CH4 flames have been tabulated and used for the Large-
Eddy Simulation of a single-element test case. The spatial extent of the phase separation phenom-
ena is mostly restricted to a region around the LOx-core. This region is enclosed by the iso-line of
almost pure oxygen and the transition to an ideal gas state. Line-of-sight integrated OH∗ emission
images indicate that both flame length and shape are in good agreement with the experimental
results. As expected from the one-dimensional analysis, the consideration of phase separation has
no significant effect on the results and yields almost identical results compared to the dense-gas
approach without phase separation.



Part IV
Summary and outlook
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9 Summary
The focal point of this work is put on the numerical investigation of real-gas effects and phase
separation phenomena during the injection, mixing and combustion process under high-pressure
conditions. In particular, operating conditions like they occur in liquid-propellant rocket engines
and gas engines are focused. In such energy conversion machines elevated pressure conditions are
preferred to extract the maximum technical useful energy from the applied fuel and convert it
to thrust or mechanical power. Usually, the operating pressure easily exceeds the critical point
of the pure fluids, i.e., fuel and oxidizer. Therefore, injection, mixing and combustion take place
under conditions which are initially supercritical with respect to the pure fluids. At such pressure
conditions, the application of the ideal gas model is invalid. Real-gas effects are present and the
fluid properties depend on both temperature and pressure. As a result of the initially supercritical
pressure conditions, the dense-gas model is widely applied to model the thermodynamic behavior of
both the pure fluids and the mixtures. This modeling approach takes into account real-gas effects
but assumes a single-phase state. Recent experimental and numerical investigations, however,
suggest that this assumption has to be questioned and further careful studies are necessary to
better understand the possible occurrence of phase separation processes under initially supercritical
pressure conditions.

Challenges

Three major challenges had to be tackled in this work to investigate the thermodynamic behavior
of the fluids and the mixtures under LRE- and GE-like operating conditions:

1. Depending on the pressure ratio between fuel reservoir and mixing/combustion chamber,
different fluid dynamic injection characteristics arise which have to be handled by the nu-
merical solver. In LREs, subsonic – low Mach number – flow conditions are present yielding
challenges with respect to the pressure-velocity coupling. Under GE-like injection conditions,
high nozzle pressure ratios are present resulting in underexpanded – high Mach number –
jets which are accompanied by strong expansion and shock structures. A pressure-based
solver framework is presented in this work which enables the simulation of both flow prob-
lems. In the subsonic approach, real-gas thermodynamics is taken into account within the
solver formulation to stabilize the CFD tool. For the simulation of high-speed jets, a hybrid
pressure-based approach is applied. Here, the hyperbolic pressure equation is augmented
with a central-upwind scheme to increase the robustness of the flow solver. In addition to
these pressure-based solvers, a density-based double flux method is employed. Under real-gas
and multicomponent conditions, such approaches are quite popular as they suppress spurious
pressure oscillations. A flux-vector splitting scheme is applied which allows the simulation of
low and high Mach number flows.

2. The operating conditions in LREs and GEs cover a wide range of thermodynamic states. In
LREs, the oxidizer is injected at cryogenic temperatures and initially supercritical pressure
conditions, i.e., in a liquid-like state. Afterwards a transcritical process takes place in which
the fluid transitions from this high density state towards a gas-like (low density) state by
interacting with its surrounding (mixing and heating). In GEs, underexpanded fluid jets are
a common feature yielding strong variations in pressure and temperature. Phase separation
processes can occur under both LRE- and GE-like operating conditions. To represent and
cover all these possible scenarios in a single thermodynamic closure, a framework is presented
in this work which relies on a rigorous and fully conservative description of the thermodynamic
state. This is highly important for the stability of the numerical solver and enables at the
same time a sound investigation of the thermodynamic states within high-pressure injection,
mixing and combustion processes. The thermal and caloric closure are based on the cubic
equations of state and the departure function formalism. This thermodynamic framework
enables an accurate but also efficient description of the fluid state. The occurrence of a
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possible multicomponent phase separation process is evaluated rigorously by means of a
minimization of the Gibbs energy. This includes two separate evaluation procedures: a
detection of the crossing of the binodal and a flashing approach yielding the composition of
the liquid and the vapor phase.

3. Many LREs are operated with liquid-like oxygen and hydrogen. Recently, a lot of research
effort is put into the better understanding of LOx/methane combustion. This propellant
combination is a promising candidate for the reusability of LREs associated with significantly
lower costs for space cargo transportation. However, LOx/CH4 combustion involves a large
number of species and reactions. This, in turn, results in a huge numerical effort making
tabulated combustion models a promising candidate for the efficient numerical simulation
and investigation of high-pressure combustion. Under LRE-typical conditions, i.e., non-
premixed combustion, tabulation approaches based on the flamelet concept are widely used.
In this work, a flamelet tabulation method specifically tailored for real-gas and high-pressure
conditions is employed and coupled with the developed thermodynamic framework. The
resulting combustion model facilitates the investigation of the possibility of single-phase
instabilities during the combustion process under LRE-like operating conditions.

Using the developed CFD tools, real-gas effects and phase separation processes under GE- and
LRE-like operating conditions are investigated in this work by means of numerical simulations.
Overall, five different experimental test campaigns from the literature are employed to validate the
numerical framework and lay a solid basis for more thorough and further investigations. For most
of the simulations, the pressure-based solver framework is applied. Both Large-Eddy Simulations
and Reynolds-Averaged Navier-Stokes simulations are performed.

Mixing under supersonic flow conditions

The first part of the results focuses on injection and mixing processes in extremely underexpanded
jets. The applied reference experiments are taken from the literature and have been conducted at
the Institute of Aerospace Thermodynamics at the University of Stuttgart. Here, a high fidelity
test bench featuring a cylindrical constant-volume test chamber is available. A single-hole injector
is mounted into the front side end wall. Temperature, pressure and purity of the fluids (injectant
and chamber) can be controlled accurately and three quartz windows provide optical access into the
test chamber. Eight different test cases are used in this work where speed of sound measurements
along the centerline of the chamber are available in the literature. In all applied test cases, n-hexane
is injected into a quiescent nitrogen atmosphere. RANS simulations of these cases are conducted
in this work. A very good agreement is found between the experimental data and the simulation
results. Especially in the region of the fully developed jet, the agreement is excellent. Using the
available numerical data base, the influence of real-gas effects on the jet mixing process is studied
in detail. The most important finding is that the reservoir and the post-shock temperature are not
identical as it is the case under ideal gas conditions. For the present case, an average difference of
approximately 70 K is found. This, in turn, results in highly different temperatures and speed of
sound values downstream of the Mach disk when comparing the ideal and real gas closure to each
other. Therefore, real-gas effects have to be taken into account fully consistently to accurately
predict the mixing process. In this context, it is important to define the thermodynamic states
rigorously when recalculating thermodynamic properties from, for instance, single-point speed of
sound measurements. Based on these findings, an adiabatic mixing model is outlined. The mass
fractions evaluated a posteriori from the measured sound velocities based on this mixing model
collapse nicely to the present simulation results.

In the next part, the phase separation process in an extremely underexpanded jet is studied.
Recent experimental investigations from the literature are employed where argon is injected through
a single-hole injector into its own gas phase. From these experimental investigations, flow field and
Mie scattering measurements are available. A Large-Eddy Simulation of this test case is conducted
within this work. With regard to the flow field, the CFD results and the experiments agree well.
Especially the near-nozzle flow field is captured accurately. In terms of the phase separation
processes, an excellent agreement with the experimental measurements is found. Within the fully
developed jet, the single-phase instabilities occur downstream of the nozzle exit and upstream of
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the Mach disk. Hence, the region of two-phase states is confined by the characteristic shock barrel.
Downstream of the Mach disk, no phase separation is present anymore, as the normal shock results
in a large pressure and temperature recovery bringing the jet back into a single-phase (pure gas)
state. The further evaluation of the numerical results shows that the underexpansion is even such
strong that it crosses the triple point of argon. Therefore, the occurrence of a solid phase is possible
but cannot be represented by the applied cubic equation of state.

Based on the thorough validation of the CFD tool within the first two parts, phase separation
processes under GE-relevant operating conditions are investigated in the third part of the results.
Two GE-typical fuels are considered: a hydrogen-based and a methane-based fuel. Three different
test cases are defined to study the influence of the pressure ratio and of the fuel on the possibility
of phase separation processes. For both methane-based test cases strong phase separation effects
across large parts of the jet structure are found. A thorough analysis indicates that the single-phase
instability is triggered by two mechanisms: In the jet center, the large underexpansion results in
the crossing of the binodal similar to the pure argon jet. In the traveling spherical vortex at the jet
tip, ambient gas mixes into the fuel and a combined expansion and dilution process yields an entry
into the vapor-liquid equilibrium region. Reducing the nozzle pressure ratio in the methane-based
fuel yields weaker two phase effects. Changing the injected fuel from methane- to hydrogen-
based, the phase separation processes vanish. The reason for this disappearance is the drastically
decreased critical temperature of the low volatile component of the mixture. In the hydrogen-based
fuel, temperatures far below 100 K are necessary to trigger single-phase instabilities. Finally, the
temporal development of the jet penetration depth is studied. The hydrogen-based fuel jet follows
common theoretical approaches in the literature. In contrast, the methane-based jets strongly
deviate from the common theory due to the permanent presence of two-phase effects within the
jet. Here, an almost linear increase of the jet penetration depth in time is found. This is in contrast
to ordinary single-phase jets which show a dependency on the square root of time.

Mixing under subsonic flow conditions

In a combined experimental and numerical study in close cooperation with the ITLR at the Univer-
sity of Stuttgart, mixture-induced phase separation processes under initially supercritical injection
conditions are investigated. Using the identical experimental test facility as for the underexpanded
n-hexane jets, the same fuel is injected at subsonic and almost isobaric flow conditions into the
test chamber filled with nitrogen at rest. In the experiments, simultaneous shadowgraphy and
elastic light scattering measurements are conducted to assess both the flow structure as well as the
phase separation. Numerical investigations are performed by means of Large-Eddy Simulations.
Three different test cases are defined based on the adiabatic mixing concept considering phase
separation processes. The injection temperatures of n-hexane are selected such that they lead to
regimes in which the occurrence of phase separation is possible and triggered gradually by lowering
the injection temperature. The characteristics of the phase formation process agree well between
experiments and numerical simulations. Both show phase separation phenomena for the identical
injection conditions. Consequently, the transition from a dense-gas to a spray-like jet is captured
by both the experiment and the numerical simulations.

Based on the good agreement of the previous investigation, the prediction capability of the QC
density-based solver is assessed. The focal point is put on the predicted thermodynamic mixing
trajectories of the density- and the pressure-based solvers. In the first step, a single-phase subsonic
test case is used where a large number of experimental speed of sound measurements are available
in the literature. Again, the experiments have been conducted at the ITLR and n-hexane is injected
into nitrogen at rest. The numerical results of an LES using the FC pressure-based solver show a
very good agreement with the experimental sound velocities. In contrast, the results generated with
the density-based solver by means of a 2D planar simulation clearly deviate from the FC results.
Large parts of the scatter data are located in the vapor-liquid equilibrium region of the binary
mixture so that the speed of sound evaluation is not feasible. Using both high temperature test
cases from the combined experimental and numerical study, the possibly nonphysical prediction of
the QC scheme can be further confirmed. In conclusion, it is found that a fully-conservative solver
and the adiabatic mixture model are most suitable for an estimation of the thermodynamic mixing
trajectory of the jet mixing process in the present cases.
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Single-phase instability in high-pressure combustion

In the final result part of this work, the possibility of phase separation processes during the high-
pressure combustion under LRE-like operating conditions is assessed. The reference conditions
are taken from two well-known experiments for LOx/hydrogen and LOx/methane combustion.
First, nominal flamelet results are considered. Single-phase instabilities are found on both the
oxidizer-rich and the fuel-rich side of the flamelet whereby the more pronounced effects occur on
the oxygen side. The phase separation process can be attributed to the moderate temperatures and
the presence of water. The a posteriori analysis of the phase separation processes shows that the
thermodynamic states lie in the metastable region of the binary water/oxygen mixture. Therefore,
the occurrence of a second phase is not triggered intrinsically. The results of the methane flame
are tabulated and applied in a single element test case. An LES is conducted and the results
show that the spatial extent of the phase separation phenomena are mostly restricted to the region
around the LOx-core. Finally, line-of-sight integrated OH∗ emission images indicate that both
flame length and shape are in good agreement with the experimental results.
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Based on the results of this work starting points for future investigations can be derived. Some
ideas and potentially new fields of research are outlined below:

• More thorough investigations on the mixing process under LRE-like conditions using both
the FC and QC solvers are necessary. Although very good agreement for the FC pressure-
based solver is found in the present work with many experimental investigations, it is not
clear if these findings hold when different fluids and operating conditions are considered. In
this context, the influence and effect of more sophisticated transport models might be a key
to new findings and a better understanding of the mixing process.

• The LES sub-grid models applied in this work and by many other researchers in the LRE
and GE community have been derived originally for atmospheric flows. First a priori DNS
studies of, for instance, Unnikrishnan et al. [329, 328] showed that the interaction between
turbulence and real-gas thermodynamics yields not negligible contributions which should be
reflected by the applied SGS model.

• The implementation of the applied thermodynamic framework is quite cumbersome and prone
to errors. In addition, the evaluation of the TPD method and the subsequent flash is very
costly. Therefore, the VLE model is currently limited to academic research. The application
of tabulation methods or artificial neural networks are promising candidates to speed up the
evaluation of the thermodynamic state and to give access to these approaches to a broader
community and group of interest. In this context, preliminary investigations of Ge et al. [89]
showed first promising results in the field of real-gas thermodynamics.

• The presence of phase separation processes motivates the consideration of surface tension
effects within the numerical framework. In this context, some researchers [86, 275] recently
focused on diffuse interface models based on the second gradient theory. On the one hand,
these models enable the resolution of the gas/liquid interface. On the other hand, the addi-
tional terms introduced by the second gradient theory might help to further stabilize the flow
solver under real-gas conditions, see, e.g., Gaillard et al. [86]. By introducing the Korteweg
tensor into the momentum and energy equation, a universal tool for the simulation of sub-
and supercritical injection and combustion processes might be formulated.

• The application of the VLE model in cavitating flows is another interesting field of research.
Up to now, many investigations rely on simplified thermodynamic models like, for instance,
the Tait equation [278, 277] or stiffened gas EoSs [275]. Using the thermodynamic VLE model
presented in this work, a fully consistent framework could be applied to this flow problems
which at its best is able to account for non-condensable gases. First own investigations showed
that the newly implemented density-based solver is able to handle such flow problems. Here,
the double-flux method can be dropped as the AUSM+-up scheme for all speeds is already
suited well for cavitating flows, see, e.g., Edwards et al. [70].

• With regard to the underexpanded jet test cases, it would be interesting to test the capability
of density-based solvers. On the one hand, density-based solvers employing the KNP and
KT flux schemes are already available in the standard OpenFOAM libraries. To enable the
simulation of the present test cases, these solvers have to be extended to multicomponent
flows and real-gases. On the other hand, the newly implemented density-based solver can
be tested and further developed in this context. Here, the application of the double-flux
formulation should not be necessary and a fully conservative formulation can be used.

• The pressure-based solver could be further stabilized by applying a Newton linearization of
the mass flux. For supersonic flows, this was recently demonstrated by, for instance, Xiao et
al. [359] or Hanimann et al. [112]. Also the application of a fully coupled algorithm instead of
the current segregated approach could further increase the stability. First implementations
of a coupled pressure-based algorithm have been demonstrated recently by Uroic [330].
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• The implementation of more general and sophisticated EoSs might be necessary to extend
the present investigations to other fluids, e.g., fluoroketone. Here, the three parameter EoS
due to Cismondi and Mollerup [53] is a first good step which is basically a blend between the
SRK-EoS [296] and PR-EoS [226].

• In the field of combustion, two different topics could be tackled in the future: First, doubly
transcritical combustion cases can be investigated with the current framework. Own a priori
studies showed strong two-phase effects on both sides of the flame. A thorough numerical in-
vestigation might help to better understand the resulting flame shape and combustion process.
Second, the implemented VLE model can be coupled with a tabulated non-adiabatic com-
bustion model. Non-adiabatic flamelet models have been recently implemented and validated
in OpenFOAM by Zips et al. [367, 369, 370] for ideal-gas flows. Combining this approach
with the current thermodynamic framework, real-gas effects and condensation processes in,
for instance, the wall-near region can be investigated.
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A Numerical flux schemes

A.1 Short overview
The application of the FVM yields a grid with piecewise constant initial data in every cell. There-
fore, the variation of the properties are continuous within every control volume but at the cell
faces discontinuities may arise. To advance the flow field to the new time level, fluxes have to be
calculated at every cell face to evaluate the Gauss integral of the convection term. In the subsonic
pressure-based approach, a linear face flux calculation is combined with the blended differencing
scheme to assure boundedness of the solution. In the supersonic case, i.e., hyperbolic problems,
flow induced discontinuities like, e.g., shocks, can occur yielding additional demands for the numer-
ical solver and the flux formulation. The resulting problem is commonly referred to as Riemann
problem which has to be solved at every cell face to calculate the representative fluxes. Therefore,
numerical schemes for hyperbolic problems are often called Riemann solvers. In the literature, a
large number of different schemes can be found which are tailored for specific problems. In general,
these approaches can be divided roughly into two categories [37]:

1. Upwind schemes,

2. Central schemes.

The major feature of upwind schemes is that the discretization of the equations is performed
according to propagation direction of the information on the grid [316]. In 1959, Godunov [95]
proposed a first order upwind scheme and hereby provided an exact solution to the Riemann
problem of the Euler equations. The epoch-making character of Godunov’s work [95] is recognized
by the fact that FVM schemes are often referred to as Godunov-type schemes [148]. The exact
solution of the Riemann problem can be both computationally very expensive and analytically
very difficult or even not existing [172]. As a result, many different approximate Riemann solvers
have been proposed since the 1960s. Some of the most outstanding and best known schemes are:

• 1961: Rusanov scheme [268],

• 1981: Roe scheme [263],

• 1982: van Leer scheme [338],

• 1983: Harten-Lax-van Leer (HLL) scheme [116].

The main difference between these schemes is the approximate representation of the wave structure
induced by the discontinuities. In addition, the class of upwind schemes can be subdivided into
flux difference splitting (FDS) and flux vector splitting (FVS) approaches [316, 172]. For a more
detailed introduction of these and other approximate Riemann solvers it is referred to the textbooks
of LeVeque [167] and Toro [316].

The category of central schemes can be considered a simple, efficient and universal Riemann-
problem-solver-free alternative to upwind schemes [148]. The first numerically stable central scheme
was proposed in 1954 by Lax [163] and Friedrichs [82] – the widely-known Lax-Friedrichs (LxF)
scheme. The LxF scheme introduces a large numerical viscosity of order O

(
∆x2/∆t

)
which re-

sults in a strong smearing of the solution. This is a general drawback of first-order schemes
as demonstrated by Godunov [95]. However, the extension to high-order approximations is not
straightforward as spurious oscillations can occur at discontinuities.

In 1979, van Leer [337] proposed the first second-order Godunov-type scheme called Monotonic
Upstream-centered Scheme for Conservation Laws (MUSCL). In the MUSCL approach, piecewise
linear functions are reconstructed from the constant initial data. To prevent oscillations at the cell
interfaces, the gradients used in the reconstruction procedure have to be limited. In the literature,
a huge number of limiters can be found, see the textbooks of, for instance, LeVeque [167] or
Godlewski and Raviart [94]. In general, this idea can be combined with any approach to determine
non-oscillatory (high-order) fluxes at cell interfaces in the FVM. This approach is also often referred
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to as TVD method which was originally introduced by Harten [115]. The idea of TVD is similar
to MUSCL and aims to prevent the generation of new extrema in the solution [37].

In 1990, Nessyahu and Tadmor [208] (NT) employed the concept of the piecewise linear recon-
struction with slope limiter to central schemes and derived a second order generalization of the
LxF scheme. With this step, Nessyahu and Tadmor [208] drastically decreased the numerical vis-
cosity compared to the original LxF scheme, i.e., O

(
∆x2/∆t

)
to O

(
∆x4/∆t

)
. However, the NT

approach has two disadvantages:

1. The application of a staggered grid is necessary.

2. The numerical dissipation depends on the time step and therefore increases with a decrease
in ∆t.

In 2000, Kurganov and Tadmor [152] (KT) presented an improved second-order central scheme
where both drawbacks have been removed, i.e., the numerical viscosity is only proportional to
the spatial resolution, i.e., O

(
∆x4

)
, and a semi-discrete formulation for non-staggered grids can

be derived. This was achieved by considering the local speeds of propagation and an integration
over variable sized Riemann fans [149] for the derivation of the KT scheme. This approach was
further improved by Kurganov, Noelle and Petrova [149] (KNP) by employing the one-sided local
speeds of propagation. In this way, more precise estimates of the Riemann fan structure are
incorporated making the KNP scheme [149] less dissipative compared to the KT scheme [152].
The KNP scheme [149] is deemed a central-upwind scheme as one-sided speeds of propagation
are used and therefore advanced information about the direction of propagation are employed
compared to standard central schemes. In the present work, a semi-discrete version of the KNP
flux approach [149] is used and its derivation is shown in the following.

A.2 Derivation of the central-upwind scheme
For the derivation of the semi-discrete version of the KNP central-upwind scheme [149] the 1D
hyperbolic conservation law

∂u

∂t
+

∂

∂x
F (u (x, t)) = 0 (A.1)

is considered, where F denotes the flux of the property u. An equidistant mesh is applied where
the cell width is denoted by ∆x. In addition, the introduction of the following definitions is
helpful [152, 181]:

• u: continuous function being integrated in space and time,

• ¯̄u: piecewise constant approximation,

• ˜̃u: piecewise polynomial reconstruction.

Mathematically, ¯̄u and ˜̃u can be expressed as [152]:

¯̄u (x, tn) :=
1

|Ix|

∫

Ix

u (ζ, t)dζ with Ix :=

{
ζ : |ζ − x| ≤ ∆x

2

}
(A.2)

and

˜̃u (x, tn) :=
∑

j

[
¯̄unj + (ux)

n
j (x− xj)

]
1[xj−1/2,xj+1/2] with xj±1/2 = xj ±

∆x

2
. (A.3)

Here, 1[xj−1/2,xj+1/2] is an indicator function having the value one inside the interval and zero
otherwise. In addition, (ux)

n
j denotes the operator used for the piecewise reconstruction, i.e., an

approximation to the exact derivative of u into the x-direction at position j. To avoid oscillations in
the solutions process, the determination of (ux)

n
j relies on TVD approaches. Applying Eq. (A.3) at

the interval limits yields the piecewise reconstruction of cell values onto the faces. In Fig. A.1, the
resulting left- (− - direction) and right-sided (+ - direction) reconstructions onto the cell interfaces
from the cell centroids are sketched. The reconstruction locations x−j+1/2 and x+

j+1/2 are identical
to the position of the cell interface, i.e., xj+1/2 = x−j+1/2 = x+

j+1/2. These interpolation directions
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are identical to the definitions in the underlying literature [152, 149, 148]. In OpenFOAM, the
directions are defined differently and both the reconstruction and the flux formulation have to be
translated into the "OpenFOAM language" which is addressed in Sec. 3.3.5. Here, the notation
according to Fig. A.1 is applied.

x−
j+1/2

f

x+
j+1/2

Interpolation
in – - direction

Interpolation
in + - direction

xxj xj+1xj+1/2 x

u

xj xj+1/2 xj+1

discontinuity

(ux)
n
j

(ux)
n
j+1

Figure A.1: Sketch of the piecewise reconstruction from cell to face values in centrals schemes.

The discontinuities at the cell interfaces resulting from the reconstruction process travel with
left- and right-sided speeds of propagation which can be estimated as [149]:

a−
j+ 1

2

:= min
Π∈C(u−

j+1
2

,u+

j+1
2

)

[
λ1

(
∂F

∂u
(Π)

)
, 0

]
(A.4)

and
a+
j+ 1

2

:= max
Π∈C(u−

j+1
2

,u+

j+1
2

)

[
λN

(
∂F

∂u
(Π)

)
, 0

]
. (A.5)

Here, λ1 and λN denote the smallest and the largest eigenvalues of the flux Jacobian ∂F/∂u,
respectively. In addition, C(u−j+1/2,u

+
j+1/2) is the curve in the state space that connects u−j+1/2

and u+
j+1/2. In most practical applications, the propagation speeds can be deduced as [149]:

a−
j+ 1

2

:= min

[
λ1

(
∂F

∂u

(
u−
j+ 1

2

))
, λ1

(
∂F

∂u

(
u+
j+ 1

2

))
, 0

]
, (A.6)

a+
j+ 1

2

:= max

[
λN

(
∂F

∂u

(
u−
j+ 1

2

))
, λN

(
∂F

∂u

(
u+
j+ 1

2

))
, 0

]
. (A.7)

In the KNP scheme, these one-sided local speeds are used to estimate the width of the Riemann
fan and sub-divide the solution domain into nonsmooth and smooth parts, see Fig. A.2 left. The

t
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Figure A.2: Schematic of the KNP central-upwind scheme [149]. Left: Idea of the selection of the
space-time control volumes. Right: Steps to evolve the numerical solution.
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left and right-hand sided extent of the Riemann fan, xn
j+ 1

2 ,l
and xn

j+ 1
2 ,r

, depend on the time step
∆t = tn+1 − tn and the minimum and maximum propagation speeds:

xnj+ 1
2 ,l

:= xj+ 1
2

+ a−
j+ 1

2

∆t , (A.8)

xnj+ 1
2 ,r

:= xj+ 1
2

+ a+
j+ 1

2

∆t . (A.9)

Therefore, the smooth and nonsmooth rectangular integration domains are [xn
j− 1

2 ,r
, xn
j+ 1

2 ,l
] ×

[tn, tn+1] and [xn
j+ 1

2 ,l
, xn
j+ 1

2 ,r
] × [tn, tn+1], respectively. Integrating over these two intervals yields

the new cell averages ¯̄wn+1
j and ¯̄wn+1

j+1/2 [149]:

¯̄wn+1
j =

1

xn
j+ 1

2 ,l
− xn

j− 1
2 ,r

∫ xn
j+1

2
,l

xn
j− 1

2
,r

˜̃u (ζ, tn) dζ

− 1

xn
j+ 1

2 ,l
− xn

j− 1
2 ,r

∫ tn+1

tn

[
F
(
u
(
xnj+ 1

2 ,l
,T
))
−F

(
u
(
xnj− 1

2 ,r
,T
))]

dT ,

(A.10)

¯̄wn+1
j+1/2 =

1

xn
j+ 1

2 ,r
− xn

j+ 1
2 ,l



∫ xn

j+1
2

xn
j+1

2
,l

˜̃u (ζ, tn) dζ +

∫ xn
j+1

2
,r

xn
j+1

2

˜̃u (ζ, tn) dζ




− 1

xn
j+ 1

2 ,r
− xn

j+ 1
2 ,l

∫ tn+1

tn

[
F
(
u
(
xnj+ 1

2 ,r
,T
))
−F

(
u
(
xnj+ 1

2 ,l
,T
))]

dT .

(A.11)

These averages are defined in a staggered grid arrangement and therefore have to be projected
back onto the original – collocated – mesh. In the work of Kurganov et al. [149] this is done by
defining a piecewise polynomial interpolant ˜̃wn+1

j from the cell averages ¯̄wn+1
j and ¯̄wn+1

j+1/2. The
projection of this interpolant onto the collocated mesh yields the average solution ¯̄un+1

j at the new
time level, see Fig. A.2 right. This procedure results in an explicit, fully discrete Godunov-type
central-upwind scheme. On collocated meshes, the application of this kind of scheme is very in-
convenient. Therefore, semi-discrete versions of the scheme are preferred.

To arrive at a semi-discrete formulation of the KNP scheme, the limit of ∆t → 0 has to be
considered. Using the piecewise polynomial interpolant ˜̃wn+1

the temporal derivative of ¯̄uj can be
expressed as [149]

d
dt

¯̄uj (t) = lim
∆t→0

¯̄un+1
j − ¯̄unj

∆t

= lim
∆t→0

1

∆t


 1

∆x

∫ x
j+1

2

x
j− 1

2

˜̃wn+1
(ζ)dζ − ¯̄unj


 .

(A.12)

Based on the conservation assumption, the integral of the interpolant can be further simplified
applying the appropriate cell averages according to Fig. A.2 right:

∫ x
j+1

2

x
j− 1

2

˜̃wn+1
(ζ)dζ =

∫ x
j− 1

2
,r

x
j− 1

2

¯̄wn+1
j− 1

2

dζ +

∫ x
j+1

2
,l

x
j− 1

2
,r

¯̄wn+1
j dζ +

∫ x
j+1

2

x
j+1

2
,l

¯̄wn+1
j+ 1

2

dζ . (A.13)

Using the estimations of the widths of the Riemann fan according to Eqs. (A.8) and (A.9), i.e.,
xnj−1/2,r − xj−1/2 = a+

j−1/2∆t and xj+1/2 − xnj+1/2,l = −a−j+1/2∆t, yields:

∫ x
j+1

2

x
j− 1

2

˜̃wn+1
(ζ) dζ = a+

j− 1
2

∆t ¯̄wn+1
j− 1

2

+
(
xnj+ 1

2 ,l
− xnj− 1

2 ,r

)
¯̄wn+1
j − a−

j+ 1
2

∆t ¯̄wn+1
j+ 1

2

. (A.14)
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Substituting this expression into Eq. (A.12) gives

d
dt

¯̄uj (t) =
a+
j− 1

2

∆x
lim

∆t→0
¯̄wn+1
j− 1

2

+ lim
∆t→0

1

∆t

(
xn
j+ 1

2 ,l
− xn

j− 1
2 ,r

∆x
¯̄wn+1
j − ¯̄unj

)
−
a−
j+ 1

2

∆x
lim

∆t→0
¯̄wn+1
j+ 1

2

. (A.15)

The three different terms on the right-hand side can be calculated separately. Using Eq. (A.10),
the midpoint integration rule [249]

∫ b

a

f (ζ) dζ ≈ (b− a) f

(
a+ b

2

)
(A.16)

and the identities

u−
j+ 1

2

= ¯̄unj +
∆x

2
(ux)

n
j and u+

j− 1
2

= ¯̄unj −
∆x

2
(ux)

n
j , (A.17)

¯̄wn+1
j can be determined as

¯̄wn+1
j =

1

xn
j+ 1

2 ,l
− xn

j− 1
2 ,r

{
¯̄unj ∆x+ ∆t
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2
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2
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∆t
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(
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2

∆t
)2
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−∆t
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F
(
u
n+ 1

2

j+ 1
2 ,l

)
−F

(
u
n+ 1

2

j− 1
2 ,r

)]}
.

(A.18)

For ∆t→ 0, the third term on the right-hand side vanishes and the fluxes F can be approximated
using the left and right-sided reconstructions. Therefore, the second term on the right-hand side
of Eq. (A.15) can obtained as

lim
∆t→0

1

∆t

(
xn
j+ 1

2 ,l
− xn

j− 1
2 ,r

∆x
¯̄wn+1
j − ¯̄unj

)
=
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2

u−
j+ 1

2

− a+
j− 1

2

u+
j− 1

2

∆x
−

F
(
u−
j+ 1

2

)
−F

(
u+
j− 1

2

)

∆x
.

(A.19)
Applying similar mathematical relationships and using Eq. (A.11) as a basis yields the following
expression for ¯̄wn+1

j+ 1
2

:

¯̄wn+1
j+ 1

2

=
1

∆t(a+
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2
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2
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(A.20)

In the limit of ∆t→ 0, this equation can be further simplified to

lim
∆t→0

¯̄wn+1
j+ 1

2

=
a+
j+ 1

2

u+
j+ 1

2

− a−
j+ 1

2

u−
j+ 1

2

a+
j+ 1

2

− a−
j+ 1

2

−
F(u+

j+ 1
2

)−F(u−
j+ 1

2

)

a+
j+ 1

2

− a−
j+ 1

2

. (A.21)

Analogous, the semi-discrete version of ¯̄wn+1
j− 1

2

reads:

lim
∆t→0

¯̄wn+1
j− 1

2

=
a+
j− 1

2
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2
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2

)−F(u−
j− 1

2

)

a+
j− 1

2

− a−
j− 1

2

. (A.22)
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Substituting Eqs. (A.19), (A.21) and (A.22) into Eq. (A.15) yields the semi-discrete KNP scheme
in the following conservative form

d
dt

¯̄uj (t) = −
Hj+ 1

2
(t)−Hj− 1

2
(t)

∆x
, (A.23)

where H denotes the numerical flux at the cell face. For the interface at xj+1/2 the numerical flux
reads:

Hj+ 1
2

(t) :=
a+
j+ 1

2

F(u−
j+ 1

2

)− a−
j+ 1

2

F(u+
j+ 1

2

)

a+
j+ 1

2

− a−
j+ 1

2

−
a+
j+ 1

2

a−
j+ 1

2

a+
j+ 1

2

− a−
j+ 1

2

(
u−
j+ 1

2

− u+
j+ 1

2

)
. (A.24)

This flux formulation and the related reconstruction procedures form the basis for the hybrid
pressure-based approach introduced in Sec. 3.3.5.

A.3 Flux-vector splitting approach
Following the suggestions of Billet and Abgrall [32] and Billet and Ryan [33], the flux-vector split-
ting scheme AUSM+-up for all speeds [171] is employed in the density-based double-flux solver.
The FVS method belongs to the class of upwind schemes and incorporates the direction of propa-
gation of information into the flux formulation [316]. First FVS approaches were proposed in the
1970s/80s by Sanders and Pendergast [271], Steger and Warming [299] and van Leer [338, 339]
which were followed by many other groups, see, e.g., Drikakis and Tsangaris [67] and Weatherill
et al. [344]. In FVS methods, the inviscid flux vector is decomposed into two parts. The following
two approaches are found in the literature [37]:

1. Decomposition according to the sign of certain characteristic variables.

2. Decomposition into a convective and a pressure part.

The latter decomposition method was proposed by Liou and Steffen [173] in 1993 together with
the introduction of the AUSM-family of schemes and is employed in the present work to determine
the Euler fluxes in the double-flux method.

The common basis and key feature of the AUSM-family of schemes is the definition of the face
Mach number based on left- and right-sided face states. An overview of the evolution of the AUSM
family throughout the years and a discussion of the specific features can be found in the recent
work of Liou [172]. In the present work, the AUSM+-up for all speeds scheme [171] together with
the real-gas extension proposed by Edwards et al. [70] is employed. In the following, the AUSM+-
up scheme is introduced for a pure fluid flow without viscous effects. The one-dimensional Euler
equations with mass, momentum and energy conservation are considered:

∂U

∂t
+
∂F (U)

∂x
= 0 . (A.25)

Here, U and F (U) denote the vector of the conserved variables and the flux vector, respectively.
Both are given as

U =



ρ
ρu
ρet


 , F (U) =




ρu
ρu2 + p

u (ρet + p)


 =




ρu
ρu2 + p
ρuht


 . (A.26)

Employing an explicit time integration and the FVM to Eq. (A.25) yields the following linearized
system of equations:

Un+1
j = Un

j −
∆t

∆x

[
H
(
xj+ 1

2
, tn
)
−H

(
xj− 1

2
, tn
)]

. (A.27)

According to the concept of upwinding schemes, the numerical flux H at the cell face incorporates
contributions from the left- and right-hand cells. Hence, the face flux at, for instance, xj+1/2 can



A Numerical flux schemes 195

be defined as [172]
H
(
xj+ 1

2
, tn
)

:= H
(
Un
j ,U

n
j+1

)
= H (UL,UR) , (A.28)

where the subscripts refer to the respective reconstructions of the left (L) and the right (R) cell
values onto the interface. In the following, the spatial indexing (j + 1/2 and j − 1/2) is omitted
for the sake of simplicity and the subscript 1/2 will be used to denote face values.

The core idea of the AUSM scheme is to split the flux into two distinct physical processes [173]:
convection and acoustic waves. As a result, the Euler flux H is expressed as the sum of a convective
and a pressure term [172]:

H (UL,UR) = H(c) (UL,UR) + H(p) (UL,UR) . (A.29)

These flux vectors (H(c) and H(p)) read in the one-dimensional case

H(c) (UL,UR) =



ρu
ρu2

ρuht


 = ρu




1
u
ht


 (A.30)

and

H(p) (UL,UR) =




0
p
0


 . (A.31)

Applying the concept of the common interface Mach number Ma1/2 and the common interface
pressure p1/2 to the convective and pressure parts yields

H(c) (UL,UR) = Ma1/2




ρL/R as,1/2
ρL/R as,1/2 uL/R
ρL/R as,1/2 ht,L/R


 = Ma1/2 as,1/2 ρL/R




1
uL/R
ht,L/R


 (A.32)

and

H(p) (UL,UR) =




0
p1/2

0


 . (A.33)

Here, as,1/2 is the interface speed of sound. In the present work, the real-gas approach due to
Edwards et al. [70] is applied to determine as,1/2 as

as,1/2 =

√
ρLa2

s,L + ρRa2
s,R

ρL + ρR
. (A.34)

The upwinding sources – denoted by the subscript L/R in Eq. (A.32) – depend on the interface
Mach number:

(•)L/R =





(•)L if Ma1/2 ≥ 0

(•)R if Ma1/2 < 0
. (A.35)

Here, (•)L and (•)R denote the left- and right-hand reconstruction of cell values onto the faces.
According to Fig. 3.4, these values correspond to (•)+ and (•)− in OpenFOAM, respectively.

The crucial step of the AUSM schemes is the evaluation of the split Mach number and interface
pressure. The interface Mach number Ma1/2 is determined in the AUSM+-up scheme for all
speeds [171] by means of a splitting based on two fourth-order polynomials M(4) and a contribution
for low Mach number flows Map [171]:

Ma1/2 = M+
(4) (MaL) + M−(4) (MaR) + Map . (A.36)
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In general, the polynomials are functions of the reconstructed Mach number Ma (left- or right-
sided) and their structure depends on whether the flow is subsonic (|Ma| < 1) or supersonic
(|Ma| ≥ 1) [171]:

M±(4) (Ma) =





M±(1) (Ma) if |Ma| ≥ 1

M±(2) (Ma)
[
1∓ 16βAUSMM∓(2) (Ma)

]
if |Ma| < 1

. (A.37)

Here, βAUSM is a constant and M±(1) and M±(2) are expressed as [171]:

M±(1) (Ma) =
1

2
(Ma± |Ma|) , (A.38)

M±(2) (Ma) = ±1

4
(Ma± 1)

2
. (A.39)

The third term on the right-hand side of Eq. (A.36) – Map – accounts for low Mach number
effects [172], i.e., u� as. When the velocity tends towards zero an excessive amount of dissipation
is introduced into compressible schemes employed in density-based solvers. The result is a slow/bad
convergence behavior and the problem becomes numerically ill-conditioned. This problem can be
avoided by re-scaling the speed of sound and the velocity to the same order. The most popular
approach is pre-conditioning in combination with a dual time-stepping technique, see, e.g., Weiss
and Smith [347]. In the applied AUSM scheme, additional coupling terms between the pressure
and velocity fields are introduced to circumvent the scaling problem. According to Liou [171] the
low Mach number term for the split Mach number is expressed as:

Map = −Kp

fa
max

(
1− σAUSMMa2

m, 0
) pR − pL
ρ1/2a

2
s,1/2

. (A.40)

Here, Kp and σAUSM are constants. Furthermore, the function fa, the reference Mach number
Ma0 and Mam are defined as:

fa = Ma0 (2−Ma0) , (A.41)

Ma0 = min (1.0,max (Mam,Ma∞)) , (A.42)

Mam =

√
u2
L + u2

R

2a2
s,1/2

. (A.43)

Here, Ma∞ is the cut-off Mach number, which was set to 0.3. The interface density is expressed
as arithmetic average of the LHS and RHS face values:

ρ1/2 =
ρL + ρR

2
. (A.44)

Similarly to the interface Mach number, the split pressure p1/2 is evaluated by means of two
fifth-order polynomials and an additional low Mach number term pu [171]:

p1/2 = P+
(5) (MaL) pL + P−(5) (MaR) pR + pu . (A.45)

The fifth-order pressure polynomials are again functions of the Mach number and can be determined
as [171]

P±(5) (Ma) =





1
MaM

±
(1) (Ma) if |Ma| ≥ 1

M±(2) (Ma)
[
(±2−Ma)∓ 16αAUSMMaM∓(2) (Ma)

]
if |Ma| < 1

(A.46)

where
αAUSM =

3

16

(
−4 + 5f2

a

)
. (A.47)
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Finally, the low Mach number contribution to the split pressure reads

pu = −KuP
+
(5) (MaL)P−(5) (MaR) (ρL + ρR) faas,1/2 (uR − uL) , (A.48)

where Ku is a constant. The constants required in the AUSM+-up scheme for all speeds [171] –
βAUSM, KP , σAUSM and Ku – are listed in Tab. A.1. These constants are not fixed and can be
adjusted to the respective flow problem. However, physical constraints have to be considered when
the constants are parameterized. For more information, see the work of Liou [171]. In the present
work, the original constants as proposed by Liou [171] are applied.

Table A.1: Constants used in the AUSM+-up scheme for all speeds [171].

βAUSM KP σAUSM Ku

0.125 0.25 1.0 0.75





B Thermophysical properties

B.1 Critical properties, acentric factor and molar weight
In Tab. B.1, the critical properties, the acentric factor and the molar weight for the different fluids
considered within this work are listed. The reference values are taken from CoolProp [27] and
Zips [367].

Table B.1: Critical properties, acentric factor and molar weight of the applied fluids.

Fluid pc [bar] Tc [K] vc [cm3 mol−1] Zc [-] ω [-] M [g mol−1]

C6H14 30.34 507.82 369.57 0.2656 0.2990 86.18
N2 33.96 126.19 89.41 0.2894 0.0372 28.00
Ar 48.63 150.69 74.59 0.2895 -0.0022 39.95
H2 12.93 32.98 64.20 0.3030 -0.2170 2.00
CH4 45.99 190.56 98.63 0.2860 0.0114 16.04
C2H6 48.72 305.32 145.84 0.2799 0.0990 30.07
C12H26 18.17 658.10 751.88 0.2497 0.5742 170.33
O2 50.43 154.58 73.37 0.2879 0.0222 32.00
H2O 221.20 647.30 55.95 0.2299 0.3443 18.02
CO 34.94 132.85 93.10 0.2920 0.0450 28.01
CO2 73.74 304.12 94.07 0.2740 0.2250 44.01
H 88.20 404.30 118.59 0.3112 0.0 1.01
O 76.00 367.40 125.07 0.3112 0.0 16.00
OH 85.40 443.70 134.41 0.3112 0.3290 17.01
HO2 33.96 126.19 89.41 0.2894 0.0372 33.01
H2O2 33.96 126.19 89.41 0.2894 0.0372 34.01
C 33.96 126.19 89.41 0.2894 0.0372 12.01
CH 33.96 126.19 89.41 0.2894 0.0372 13.02
CH2 33.96 126.19 89.41 0.2894 0.0372 14.03
CH3 33.96 126.19 89.41 0.2894 0.0372 15.04
HCO 33.96 126.19 89.41 0.2894 0.0372 29.02
CH2O 33.96 126.19 89.41 0.2894 0.0372 30.03
CH2OH 33.96 126.19 89.41 0.2894 0.0372 31.03
CH3O 33.96 126.19 89.41 0.2894 0.0372 31.03
CH3OH 33.96 126.19 89.41 0.2894 0.0372 32.04
C2H2 33.96 126.19 89.41 0.2894 0.0372 26.04
C2H3 33.96 126.19 89.41 0.2894 0.0372 27.05
C2H4 33.96 126.19 89.41 0.2894 0.0372 28.05
C2H5 33.96 126.19 89.41 0.2894 0.0372 29.06
HCCO 33.96 126.19 89.41 0.2894 0.0372 41.03
CH2CO 33.96 126.19 89.41 0.2894 0.0372 42.04
CH2CHO 33.96 126.19 89.41 0.2894 0.0372 43.05

B.2 High-pressure diffusion coefficients
For the calculation of high-pressure diffusion coefficients, two different approaches are often used in
the LRE community: a generalized chart due to Takahashi [309] and an analytical approach pro-
posed by Riazi and Whitson [258]. In the present work, the latter is employed in the investigation
of the binary n-hexane/nitrogen thermodynamic mixing trajectories. The equation to determine

199
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the diffusion coefficient between species A and B according to Riazi and Whitson [258] reads:

DAB =
aRiazi (DAB p)

0

ρRT

(
µ

µ0

)bRiazi+cRiazipr,Riazi

. (B.1)

Here, aRiazi = 1.07 and the variables bRiazi and cRiazi can be determined as:

bRiazi = −0.27− 0.38ωRiazi , (B.2)

cRiazi = −0.05 + 0.1ωRiazi . (B.3)

The pseudo-critical critical pressure pc,Riazi and the acentric factor of the binary mixture are
calculated as molar weighted properties:

pc,Riazi = zApc,A + zBpc,B , (B.4)

ωRiazi = zAωA + zBωB . (B.5)

The ideal gas references of the viscosity µ0 and the diffusion coefficient (DAB p)
0 are estimated

based on Sutherland’s law, see Eq. (4.84), and the model due to Fuller et al. [85]

(DAB p)
0

= 3.1209254× 10−8
T 1.75

√
1
MA

+ 1
MB(∑

A v
1/3
i +

∑
B v

1/3
i

)2 . (B.6)

Here,
∑
A vi and

∑
B vi are the diffusion volumes of the species A and B, respectively. According

to Fuller et al. [84], theses volumes are 1.2774 × 10−4 m3 for n-hexane and 1.85 × 10−5 m3 for
nitrogen.



C Departure functions for the state equa-
tion due to Soave, Redlich and Kwong

In the following the departure functions for the SRK-EoS [296] are briefly summarized. The best
starting point is the departure function of the molar internal energy:

er =
a− T da

dT
b

ln

(
v

v + b

)
. (C.1)

Here, the derivative of the attractive term with respect to the temperature reads:

da
dT

=

Nc∑

i=1

Nc∑

j=1

zizj
daij
dT

, (C.2)

daij
dT

= 0.42748
R2T 2

c,ij

pc,ij

κij√
Tc,ij

(
κij√
Tc,ij

− 1 + κij√
T

)
. (C.3)

Based on the definition of the enthalpy, the real-gas contribution of h can be expressed as:

hr = er + pv −RT = pv −RT +
a− T da

dT
b

ln

(
v

v + b

)
. (C.4)

The departure function of the entropy for the SRK-EoS [296] is:

sr = R ln

[
p (v − b)

RT

]
− da

dT
1

b
ln

(
v

v + b

)
. (C.5)

Using the analytical expressions for the internal energy, enthalpy and entropy, the departure func-
tions of the Gibbs energy and the Helmholtz free energy can be written as:

gr = hr − Tsr = pv −RT −RT ln

[
p (v − b)

RT

]
+
a

b
ln

(
v

v + b

)
, (C.6)

fr = er − Tsr = −RT ln

[
p (v − b)

RT

]
+
a

b
ln

(
v

v + b

)
. (C.7)

The heat capacity at isobaric conditions can be calculated according to:

cp = c0p (T, z)−R − T d2a
dT 2

b

(
v

v + b

)
− T

(
∂p
∂T

∣∣
v

)2

∂p
∂v

∣∣
T

. (C.8)

Here, the second derivative of the attractive term with respect to the temperature is

d2a

dT 2
=

Nc∑

i=1

Nc∑

j=1

zizj
d2aij
dT 2

, (C.9)

d2aij
dT 2

= 0.42748
R2

2T
κij (1 + κij)

Tc,ij
pc,ij

√
Tc,ij
T

. (C.10)

The derivatives of the pressure with respect to the temperature and volume are:

∂p

∂T

∣∣∣∣
v

=
R

v − b −
da
dT

v2 + bv
, (C.11)
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∂p

∂v

∣∣∣∣
T

= − RT

(v − b)2 +
a (2v + b)

(v2 + bv)
2 . (C.12)

To calculate the partial derivative of the density with respect to the pressure at isenthalpic condi-
tions, the following two partial derivatives are necessary:

(
∂h

∂p

∣∣∣∣
v

)r
= v − R

∂p
∂T

∣∣
v

−
T d2a

dT 2

/
∂p
∂T

∣∣
v

b
ln

[
v

v + b

]
, (C.13)

(
∂h

∂v

∣∣∣∣
p

)r
= p−R

∂T

∂v

∣∣∣∣
p

−
T d2a

dT 2
∂T
∂v

∣∣
p

b
ln

[
v

v + b

]
+
a− T da

dT
v2 + vb

. (C.14)

Finally, the fugacity coefficient of the i-th component can be determined as:

lnϕi = − ln

[
p (v − b)

RT

]
+
bi
b

(Z − 1)− a

bRT

(
2
∑Nc
j=1 zjaij

a
− bi
b

)
ln

(
v + b

v

)
. (C.15)



D Partial derivatives of the fugacity coeffi-
cient

For the flashing approaches and the construction of the phase envelopes, the partial derivatives of
the fugacity coefficient with respect to the pressure, temperature and mole numbers are required.
The derivation with respect to the mole numbers has advantages compared to the derivation with
respect to the mole fractions. First of all, the resulting Jacobian matrix is symmetric

∂ lnϕi
∂nj

∣∣∣∣
p,T,nk 6=j

=
∂ lnϕj
∂ni

∣∣∣∣
p,T,nk 6=i

(D.1)

which is not necessarily the case when the partial derivative is formulated with respect to the mole
fractions [196]. Second, the derivatives can be used for both mole numbers as well as mole fractions,
since mole fractions can be treated as mole numbers summing up to unity. When implementing
the partial derivatives into the numerical code, consistency checks as described in the textbook of
Michelsen and Mollerup [196] are recommended.

D.1 Equation of state due to Peng and Robinson
Applying the Peng-Robinson [226] EoS for deriving the natural logarithm of the fugacity coefficient
of component i yields the following analytical expression:

lnϕi = ln

(
1

Z −B

)
+
bi
b

(Z − 1)− A√
8B

(
2
∑Nc
j=1 zjaij

a
− bi
b

)
ln

[
Z +B

(
1 +
√

2
)

Z +B
(
1−
√

2
)
]

= ln (α) + β + γ ln (δ) .

(D.2)

Here, A = pa (RT )
−2 and B = pb (RT )

−1 are the dimensionless attractive and repulsive forces,
respectively. The cubic form of the PR-EoS [226] in terms of the compressibility factor Z is:

Z3 − (1−B)Z2 +
(
A− 3B2 − 2B

)
Z −

(
AB −B2 −B3

)
= 0 . (D.3)

Splitting up Eq. (D.2) into four different parts, namely α, β, γ and δ, makes it easier to derive the
analytical equations for the partial derivatives of lnϕi.

Derivation with respect to the pressure

The derivative of lnϕi with respect to the pressure can be split up in

∂ lnϕi
∂p

∣∣∣∣
T,n

=
∂ ln (α)

∂p
+
∂β

∂p
+ ln (δ)

∂γ

∂p
+ γ

∂ ln (δ)
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=
1

α

∂α

∂p
+
∂β

∂p
+ ln (δ)

∂γ

∂p
+
γ

δ

∂δ

∂p
.

(D.4)

The required partial derivatives read as follows:

∂α

∂p
=
−
(
∂Z
∂p − ∂B

∂p

)

(Z −B)
2 , (D.5)

∂Z

∂p
=

1

p

(B − Z)A+
[
−Z2 + Z (6B + 2) +A− 2B − 3B2

]
B

3Z2 − 2Z (1−B) +A− 3B2 − 2B
, (D.6)
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∂γ
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= 0 , (D.9)
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Derivation with respect to the temperature

A very similar path has to be taken for the derivation of the partial derivative of the fugacity
coefficient with respect to the temperature:

∂ lnϕi
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p,n

=
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(D.11)

The required partial derivatives can be calculated analytically as follows:

∂α

∂T
=
−
(
∂Z
∂T − ∂B

∂T

)

(Z −B)
2 , (D.12)
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Derivation with respect to the mole number

The derivative of Eq. (D.2) with respect to the mole number of the j-th species is:

∂ lnϕi
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The derivative of α with respect to the mole number nj reads:

∂α

∂nj
=
−
(
∂Z
∂nj
− ∂B

∂nj

)

(Z −B)
2 . (D.20)
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This includes the partial derivative of the compressibility factor

∂Z

∂nj
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(B − Z) ∂A
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−Z2 + Z (6B + 2) +A− 2B − 3B2

]
∂B
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and the partial derivative of the normalized attractive force A = pa
(
R2T 2

)−1:
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In addition, the partial derivative of the normalized co-volume B is required
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The partial derivative of β can be obtained with no additional derivatives necessary:

∂β
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=
bi
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. (D.26)

For deriving the partial derivative of γ we split up the derivative into two parts χ and ζ
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with

∂χ

∂nj
=

2aijntb− 2
∑Nc
k=1 nkaik

(
b+ nt

∂b
∂nj

)

(ntb)
2 (D.28)
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The derivative of δ can be obtained as:
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D.2 Equation of state due to Soave, Redlich and Kwong
In the following, the partial derivatives of the fugacity coefficient with respect to the pressure, tem-
perature and mole numbers are shown for the cubic EoS of Soave-Redlich-Kwong [296]. Analogous
to the derivation of the PR-EoS [226], the fugacity coefficient of component i is split up into four
different terms:

lnϕi = ln

(
1

Z −B

)
+
bi
b

(Z − 1)− A

B

(
2
∑Nc
j=1 zjaij

a
− bi
b

)
ln
[
Z +B

Z

]

= ln (α) + β + γ ln (δ) .

(D.31)
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To shorten the demonstration of the derivation only the derivatives which differ from the ones of
the PR-EoS [226] are explicitly shown in the following. The cubic form of the SRK-EoS [296] in
terms of the compressibility factor Z is:

Z3 − Z2 +
(
A−B −B2

)
Z −AB = 0 . (D.32)

Derivation with respect to the pressure

The derivative of lnϕi with respect to the pressure can be split up in
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The following partial derivatives differ from the PR-EoS [226]:

∂Z
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Derivation with respect to the temperature

The basic expression for the derivation of the partial derivative of the fugacity coefficient with
respect to the temperature is
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The required partial derivatives being different from the approaches in the PR-EoS [226] case read:
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Derivation with respect to the mole number

The basic derivation for calculating the partial derivative of the fugacity coefficient with respect
to the mole numbers is

∂ lnϕi
∂nj

∣∣∣∣
p,T,nk 6=j

=
∂ ln (α)

∂nj
+

∂β

∂nj
+ ln (δ)

∂γ

∂nj
+ γ

∂ ln (δ)

∂nj

=
1

α

∂α

∂nj
+

∂β

∂nj
+ ln (δ)

∂γ

∂nj
+
γ

δ

∂δ

∂nj
.

(D.40)

The only two derivatives that are different due to the change of the EoS are the derivative of the
compressibility factor
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and of δ
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E Solver instabilities due to real-gas ther-
modynamics

The thermodynamic stability of a multicomponent system relies on three different mechanisms [77]:
thermal stability, mechanical stability and chemical stability. According to Sec. 4.3, the thermody-
namic equilibrium of a system can be defined by the equality of the temperature T , the pressure p
and the chemical potentials µi:

T I = T II , (E.1)

pI = pII , (E.2)

µIi = µIIi i = 1, ..., Nc . (E.3)

Within these equations, the superscripts indicate the different phases (here: two phases are con-
sidered denoted by I and II).

The first stability criterion which can be violated is the thermal one. In a closed system – molar
volume v and composition are constant – the thermal stability is satisfied when an isochoric heat
supply, i.e., a rise in entropy s, leads to a temperature increase. Therefore, the thermal stability
criterion reads

∂T

∂s

∣∣∣∣∣
v,z

> 0 . (E.4)

Applying the Maxwell Eq. (4.36) and using the fact that T is strictly positive, the thermal stability
criterion can be expressed in terms of the specific heat at constant volume cv as

cv =
∂e

∂T

∣∣∣∣∣
v,z

> 0 . (E.5)

Due to the application of cubic equations of state in this work, cv is always larger than zero.
Therefore, the thermal stability is ensured and of no concern [86].

The second thermodynamic stability criterion is the mechanical one. This condition can be
violated whenever the pressure is below the critical pressure of the pure components. In the
present work, such low pressure values occur during the high-speed fuel injection under GE-like
operating conditions. In LREs, pressure conditions below the critical point of the fuel and oxidizer
can be found during the start-up of an LRE [225]. In general, the mechanical stability criterion
states that a decrease in volume must result in a pressure increase under isothermal conditions.
Hence,

∂p

∂v

∣∣∣∣∣
T,z

< 0 (E.6)

must be fulfilled for ensuring the mechanical stability of the system. Equation (E.6) is related to
phase separation in pure fluids, where it defines the spinodal region corresponding to the locus of
intrinsic single-phase instability, i.e., the existence limit of metastable states [62], see Fig. E.1. The
spinodal region cannot be entered and therefore a single phase (metastable) state instantaneously
separates into a vapor and a liquid phase. For a pressure-based solver1 an inadvertent crossing of
the binodal can result in stability problems and usually in a crashing of the solver when real-gas
equations of state are applied for the thermodynamic closure. This results from the fact that under
subcritical conditions the cubic equation of state yields three real roots, see Fig. E.1. Focusing on
the approximated isentropic expansion path shown in Fig. E.1, two possible scenarios can occur

1Similar considerations can be made for a density-based solver. However, the main part of this work was conducted
with a pressure-based solver and therefore the following statements are made with respect to this solver type.
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Figure E.1: Reduced p,v-diagram of a pure fluid together with an approximated expansion path as
it can occur during the direct injection in gas engines.

during the simulation of high-pressure injection after crossing of the binodal: Either the root with
the smallest Gibbs energy is chosen or the largest root, i.e., the gas root, is selected as solution.
The latter results in an extrapolation of the gas state into the two phase region. This, in turn,
yields large subcoolings in terms of temperature as the condensation process is suppressed, but
stable results can be achieved until the spinodal is crossed. After the crossing of the spinodal, the
solver crashes as, for instance, the speed of sound is proportional to

√
−∂p/∂v|T which has then

no real solution anymore or in other words the square of the speed of sound gets negative [87].
If the Gibbs criterion is applied for the selection of the appropriate root [73], the equilibrium
isotherm is obtained resulting in a discontinuous jump across the two-phase region highlighted
by the saturation pressure in Fig. E.1. Depending on the iteration setup of the thermodynamic
framework, i.e., the recalculation of the temperature from the transported energy and pressure,
this can lead to the fact that no solution will be found or that the liquid root is selected which in
turn results in a crash of the solver due to negative (here: nonphysical) pressures. The solution for
these different problems is the consideration of the phase separation process after the crossing of
the binodal within the thermodynamic framework which solves the convexity issue of the EoS [274,
273, 275].

The third and last stability criterion is the chemical instability which can occur during high-
pressure injection when multicomponent mixtures are present. Similar to the mechanical stability
limit, the chemical stability limit is associated with phase separation processes as it defines the
limit of stability in mixtures. For a binary mixture at isothermal and isobaric conditions, the
chemical stability limit can be defined by means of the partial derivative of the chemical potential
with respect to the mole number as

∂µ1

∂n1

∣∣∣∣∣
T,p,n2

= 0 . (E.7)

For a mixture of constant composition, Fig. E.2a shows a sketch of the binodal, often called
isopleth, as well as the spinodal. A typical loop-like pattern can be seen for the mixture spinodal
lying inside the two phase dome marking the limit of metastable states and hence the region of
intrinsic phase separation. The chemical stability limit is reached before the mechanical one which
lies inside the mixture spinodal. This fact gets highlighted in Fig. E.2b where the complete VLE
of a binary mixture with a type-I critical locus is shown. Due to the location of the two different
spinodals – the mechanical one lies inside the chemical one – the phase separation process will
always be triggered by chemical instabilities in the case of multicomponent mixtures. Similar to
the discussion of the pure fluid, the application of the single-phase treatment can also result in
problems during numerical simulations. The main reason is that nonideal diffusion implies the
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Figure E.2: Sketch of a vapor-liquid equilibrium of a binary mixture with a type-I critical locus
according to van Konynenburg and Scott [335].

proportionality of the diffusion flux to the gradient of the chemical potential, cf. Sec. 2.1 and the
work of Gaillard et al. [87]. This is usually of no concern in many solvers used in the LRE and GE
community, as most of the numerical frameworks apply Fickian diffusion. However, depending on
the fluids forming the mixture and the injection and combustion conditions, the chemical and the
mechanical instability limit might not be far apart and hence might cause solver crashes, see, for
instance, the area around the critical point of the LV component in Fig. E.2b.





F Additional material: Underexpanded jets

F.1 Validation of the hybrid pressure-based approach
For demonstrating the performance and shock capturing capability of the hybrid scheme described
in Sec. 3.3.5, a 1D shock tube test case is used, see Fig. F.1. A fictional membrane initially
separates a high pressure/high density (left) and a low pressure/low density (right) part. The

high pressure

p = 300 bar
T = 294 K

membrane low pressure

p = 20 bar
T = 294 K

Figure F.1: Initial conditions of the 1D shock tube problem. Methane (CH4) is considered as fuel
and a pressure ratio of 15 is investigated.

membrane is placed in the middle of a one meter long 1D tube. Methane CH4 is selected as a fluid
due to its relevance for GEs. Both the ideal gas equation as well as the SRK-EoS [296] are used
for the thermodynamic closure. The critical data and the acentric factor of methane are listed in
Tab. B.1. By using two different EoSs, the influence of the neglect of intermolecular forces in the
ideal gas EoS can be demonstrated and discussed. In the present test case, the initial temperature
profile is assumed isothermal and the temperatures are therefore set to 294 K on both sides. At
t = 0 s we let the membrane burst and study the temporal evolution of the fluid properties in
the 1D tube. For the temporal and the spatial discretization second order schemes are used. The
boundedness of the solution is achieved by means of the Minmod limiter [264]. The solver settings
are listed in Tab. F.1

Table F.1: Numerical solver setup for the validation of the hybrid pressure-based approach.

Solver TVD-limiter EoS

pressure-based (supersonic) Minmod [264] SRK-EoS [296]

In Fig. F.2, the results of the 1D shock tube problem after 0.5 ms are shown. The numerical
results obtained with the hybrid pressure-based scheme are compared to an exact solution cal-
culated with a Riemann solver. For more information on the Riemann solver refer to the PhD
thesis of Banholzer [20]. Three different mesh resolutions – coarse (100 cells), medium (400 cells)
and fine (1600 cells) – are compared. On the left side the ideal gas and on the right side the
real-gas results are shown. By comparing the two thermodynamic closures, not negligible differ-
ences arise: In the high-pressure part, the ideal-gas EoS predicts a 5.7% lower density compared
to the SRK-EoS [296]. On the low-pressure side, the error of the ideal gas EoS is slightly reduced
to -3.5%. As a consequence of the different thermodynamic closures, the rarefaction wave and
shock discontinuity travel at different speeds and also the contact discontinuity can be found at a
different axial position. Looking at the comparison of the exact Riemann solution and the results
of the numerical simulations a very good agreement can be seen for the fine mesh (1600 cells).
With coarser meshes, the solution gets gradually smeared out and is very diffusive for the coarsest
version with 100 cells. In conclusion, the hybrid solver is able to capture the specific characteristics
of the 1D shock tube problem for both thermodynamic closures.
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Figure F.2: Results of the 1D shock tube problem after 0.5 ms.

F.2 Determination of the choked flow conditions
For the calculation of the thermodynamic conditions of a choked pipe flow, a one-dimensional,
steady and inviscid flow is considered. Under mass and energy conservation conditions, the gov-
erning equations read

dρ
ρ

+
du
u

+
dA
A

= 0 , (F.1a)

dht = dh+ u du = 0 , (F.1b)

where A is the cross-section area of the nozzle. Applying the Gibbs equation (4.121) together with
the assumption of an isentropic flow, i.e., constant entropy s, yields a relation between caloric and
thermal properties:

dh = v dp . (F.2)

In addition, the change in density and velocity u can be related using the definition of the speed
of sound, see Eq. (4.131), as:

a2
s dρ = −ρudu . (F.3)
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Rearranging these equations yields

dA
A

= −
(

1− u2

a2
s

)
du
u

= −
(
1−Ma2

) du
u

(F.4)

and demonstrates the equality of the Mach number Ma to one in the narrowest cross section of the
nozzle under choked flow conditions. This fact is independent of the equation of state and hence
applies for both ideal and nonideal fluids. Therefore, under choked flow conditions, the velocity u
is equal to the speed of sound. Consequently, the solution of the choked nozzle flow (index: e) has
to satisfy the following two relations, which are independent of the cross-section A:

ht (pt, Tt) = he (pe, Te) +
as (pe, Te)

2

2
, (F.5a)

st (pt, Tt) = se (pe, Te) . (F.5b)

For a more thorough discussion on choked flow conditions under both ideal and nonideal thermo-
dynamic conditions it is referred to the work of Sirignano [293]. In the real-gas case, Eq. (F.5)
can be solved by iteration. In this process, care has to be taken when the binodal is crossed. This
region should be either avoided or a rigorous treatment of the thermodynamic states is necessary.

F.3 Assessment of the axial Mach disk position
Using the data from the simulations in Sec. 6.1, the axial position of the Mach disk can be assessed
and compared to data being available in the literature. The axial position of the Mach disk is
mainly governed by the nozzle pressure ratio, see, e.g., Franquet et al. [81]. According to Crist et
al. [55] and Ashkenas and Sherman [11], the axial location of the Mach disk xmd can be calculated
for 15 < NPR < 17000 as:

xmd

D
= 0.67

√
pt
pch

. (F.6)

Here, the axial position is normalized by the nozzle diameter D which is 0.236 mm in the present
study. The constant of 0.67 has been proposed by Ashkenas and Sherman [11] by fitting Eq. (F.6)
to experimental data. In Fig. F.3, the Mach disk positions evaluated from the RANS simulations
of Sec. 6.1 are compared to Eq. (F.6). The simulation results clearly reproduce the trend of a larger
axial Mach disk position with increasing NPR. However, an almost constant shift in the log-log
plot between the correlation and the RANS results becomes obvious. To further investigate this
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Figure F.3: Comparison of the axial position of the Mach disk in dependence of the NPR. The
dashed line shows the correlation proposed by Crist et al. [55] and Ashkenas and Sherman [11].
The ideal-gas closure was used for case NPR150-T577.
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issue, a RANS simulation has been conducted for the case NPR150-T577 employing the ideal gas
closure. The result is shown as green dot in Fig. F.3. The shift of the ideal-gas result towards the
correlation of Eq. (F.6) can bee seen. Therefore, the deviation between the RANS results and the
correlation of Eq. (F.6) is traced back to the strong real-gas effects being mainly present upstream
of the Mach disk. Therefore, we slightly adjusted the correlation equation to better fit the present
results:

xmd

D
= 0.80

√
pt
pch

. (F.7)

Changing the constant from 0.67 to 0.8 is a clear improvement for the present investigation and
the result of the new fit is shown as a dash-dotted line in Fig. F.3.



G Validation of the density-based solver
In this section, the density-based solver is validated and its capability is demonstrated by means
of both 1D and 2D test cases. The test cases are taken from the work of Ma et al. [177] and
from appendix F.1. Nitrogen (N2), methane (CH4) and n-dodecane (C12H26) are considered as
fluids and their critical properties together with their acentric factors are listed in Tab. B.1 in the
appendix. The solver settings used for the validation are listed in Tab. G.1.

Table G.1: Numerical solver setup for the validation of the density-based solver.

Solver TVD-limiter EoS

density-based limitedCubic PR-EoS [226]

G.1 One-dimensional advection problem
The first test case is a 1D advection problem with periodic boundary conditions. A domain length
of 1 m is selected and resolved with 150 grid points. Nitrogen is used as fluid and the pressure is
set to 50 bar corresponding to a reduced critical pressure p/pc of 1.47. A sharp density jump is
introduced by means of a transcritical temperature jump (Tc,N2 = 126.19 K)

T =

{
100 K, 0.25 m < x < 0.75 m
300 K otherwise

(G.1)

resulting in a maximum density of 792.66 kg/m3 and in a minimum density of 56.89 kg/m3 which
corresponds to a density ratio of approximately 14. The resulting density profile is convected with
a velocity of 100 m/s. The Euler equations are solved, i.e., viscous effects are neglected, enabling
the comparison with an exact solution. A physical time of 0.01 s is simulated corresponding to one
flow through period.

In Fig. G.1, the results of the 1D advection case are shown. The exact solution corresponds to
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Figure G.1: Results of the 1D advection case after one flow through period.
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the initial condition and is shown in black. First and high order reconstruction are compared to
the exact solution. In the case of the density, temperature and energy fields, the upwind solution
is heavily smeared out. With high order reconstruction, we achieve results which are very similar
to the results of Ma et al. [177]. Due to the application of the double-flux method, the pressure
and velocity equilibrium are conserved and no spurious pressure oscillations are induced across the
sharp density interface. Ma et al. [177] reported that a fully conservative approach fails in this test
case due to the large variation/discontinuity in γ∗ and e∗0 across the interface.

G.2 Real-gas shock tube problem
As a second test case, the real-gas shock tube problem from Sec. F.1 is used. To accurately pre-
dict the fluid behavior of methane, the SRK-EoS [296] is employed. The Euler system is solved.
Figure F.1 shows a schematic of the investigated shock tube problem. Initially, a high pressure
section is separated from a low pressure section by an imaginary membrane which is removed at
simulation start. Isothermal conditions (T = 294 K) are considered and a pressure ratio of 15 is
imposed.

In Fig. G.2, the distributions of density, pressure, velocity and temperature after a time of 0.5 ms
are shown. In addition, an exact solution to the Riemann problem is plotted. The comparison
shows that the double-flux method in combination with the AUSM+-up flux-vector splitting scheme
is able to capture the features of the shock tube problem. Three different mesh resolutions have
been investigated. With increasing mesh resolution the contact discontinuity gets sharper. The
same accounts for the traveling shock wave.
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Figure G.2: Results of the real-gas shock tube problem at t = 0.5 ms in terms of density, pressure,
velocity and temperature.
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G.3 Transcritical planar jet - pure fluid
The third test case is a 2D transcritical planar jet where cryogenic nitrogen is injected into warm
nitrogen gas. In Fig. G.3, the computational setup including the injection and chamber conditions
is shown. According to Terashima and Koshi [311] and Ma et al. [177], the inlet height h is 1 mm
and the inlet velocity was set to 100 m/s. A uniform grid spacing has been employed and the
inlet is resolved with 50 cells. The full set of compressible conservation equations is used and no
sub-grid turbulence model is applied.

30h

16
h

h
uN2 = 100 m/s
TN2 = 80 K

pch = 40 bar
TN2 = 300 K

Figure G.3: Schematic of the computational domain for the 2D cryogenic planar jet configuration.
The inlet height h is 1 mm.

In Fig. G.4, distributions of density, temperature, speed of sound and pressure after 0.35 ms are
shown. The time was chosen such that the jet has not yet reached the end of the domain. A typical
2D cryogenic mixing process becomes obvious where the jet gradually dilutes into the environment
and shows unphysical large-scale 2D vortical structures. The most important observation is that no
spurious pressure oscillations occur. This is the main purpose for the implementation of the double-
flux method and enables the investigation of the mixing behavior under high-pressure conditions.
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Figure G.4: Density, temperature, speed of sound and pressure distributions of the 2D planar
nitrogen jet configuration after 0.35 ms.
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G.4 Transcritical planar jet - binary mixture
Applying the configuration of the planar nitrogen jet, see Fig. G.3, the mixing process of a liquid-
like fuel into a gaseous environment is studied as a final validation case. N-dodecane (C12H26) is
injected into a quiescent nitrogen atmosphere. The conditions correspond to the ECN Spray A
test case [232]: TC12H26

= 363 K, TN2
= 900 K and p = 60 bar. As for the planar nitrogen jet, the

injection velocity was selected as 100 m/s.

The instantaneous results (t = 0.35 ms) of the n-dodecane mass fraction, the density, the temper-
ature and the pressure are shown in Fig. G.5. A typical 2D disintegration process with large-scale
vortical structures is visible causing a steady mixing of n-dodecane with nitrogen. Therefore, only
the jet core and regions of almost pure fuel have a large density or low temperature. The mixing
process leads to a strong change in temperature and density which usually results in the occur-
rence of spurious pressure oscillations. As it can be seen from the instantaneous pressure field in
Fig. G.5, this is not the case when the double-flux scheme is applied. A smooth pressure field
results and both low and high pressure values are only present in regions where the jet break-up
or large vortical structures occur.
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Figure G.5: Results of the 2D planar jet break-up of n-dodecane into a nitrogen environment. The
instantaneous fields of n-dodecane mass fraction, density, temperature and pressure are shown at
t = 0.35 ms.
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