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Abstract

Recent construction practice has seen a rise in the use of structural hollow sections, due to

their appealing aesthetics as well as an increased awareness for the advantages in terms of

strength and stiffness of this type of section. At the same time, in order to meet increasing

demands for more efficient and economic construction typologies and methods, the European

steel industry, and particularly the producers of structural hollow sections, are aiming for a

reduction of weight through the use of more thin-walled sections and/or higher-strength steel

grades (with yield strength fy ≥ 460MPa). These innovations increase the economy and

sustainability of construction projects through the reduction of weld volumes, erection times

and foundation costs. However, the introduction of more slender construction typologies

for hollow sections leads to a number of scientific and engineering challenges. In particu-

lar, higher material, with different constitutive laws (shorter or inexistent plastic plateau,

diminished ultimate strain) combined with thinner plates leads to an increased significance

of instability phenomena, especially of local buckling phenomena and their interaction with

the ”global” instability mode of flexural buckling.

This thesis addresses the strength and stability of slender, mild- and high-strength-steel

hollow sections with flat faces and different cross-sectional geometries and develops a new

methodology to be used in structural design and for performance predictions for such el-

ements. The problem of buckling is treated for local, global and interactive local-global

buckling phenomena. Most of the described results were developed in the framework of the

European (Research Fund for Coal and Steel - RFCS) research project HOLLOSSTAB (grant

Nr. RFCS-2015-709892), using a novel design method, called the Generalised Slenderness-

based Resistance Method (GSRM), which was developed – in its application to square (SHS)

and rectangular (RHS) hollow sections - as part of this thesis work. The new, GSRM design

rules cover the cross-sectional and member design checks of hollow sections with various

shapes and slenderness ratios. This thesis summarises the experimental and numerical cam-

paign carried out within HOLLOSSTAB and describes the development, validation and ap-

plication of the new GSRM for the case of the cross-sectional and member resistance of SHS

and RHS. It furthermore shows some initial work on an extension of the scope of application

of the GSRM. It could be shown that, with the proposed GSRM method, significant gains

in accuracy and economy in the design of flat-faced hollow sections can be achieved.



iv

Kurzfassung

In jüngster Zeit werden in der Baupraxis vermehrt Konstruktionshohlprofile verwendet, da

diese eineseits ästhetisch ansprechend sind und andererseits auch das Bewusstsein für die

Vorteile hinsichtlich Festigkeit und Steifigkeit dieser Art von Profilen gestiegen ist. Gle-

ichzeitig strebt die europäische Stahlindustrie und insbesondere die Hersteller von Kon-

struktionshohlprofilen eine Gewichtsreduzierung durch den Einsatz dünnwandigerer Pro-

file und/oder höherfester Stahlgüten (mit einer Streckgrenze von fy ≥ 460MPa) an, um

den steigenden Anforderungen an effizientere und wirtschaftlichere Bautypologien und -

methoden gerecht zu werden. Diese Innovationen erhöhen die Wirtschaftlichkeit und Nach-

haltigkeit von Bauprojekten durch die Reduzierung von Schweißvolumen, Montagezeiten und

Gründungskosten. Die Einführung schlankerer Bautypologien für Hohlprofile führt jedoch zu

einer Reihe von wissenschaftlichen und ingenieurtechnischen Herausforderungen. Insbeson-

dere führt höherfestes Material mit anderen konstitutiven Gesetzen (kürzeres oder nicht

vorhandenes Kunststoffplateau, verminderte Bruchdehnung) in Verbindung mit dünneren

Platten zu einer erhöhten Bedeutung von Instabilitätsphänomenen, insbesondere von lokalen

Knickphänomenen und deren Wechselwirkung mit dem ”globalen” Instabilitätsmodus des

Biegeknickens.

Diese Arbeit befasst sich mit der Festigkeit und Stabilität von schlanken Stahlhohlpro-

filen aus normal- und hochfestem Stahl mit ebenen Flächen und unterschiedlichen Quer-

schnittsgeometrien und entwickelt eine neue Methodik, die bei der Strukturauslegung und für

Leistungsvorhersagen für solche Elemente verwendet werden kann. Das Problem des Knick-

ens wird für lokale, globale und interaktive lokal-globale Knickphänomene behandelt. Die

meisten der beschriebenen Ergebnisse wurden im Rahmen des europäischen (Research Fund

for Coal and Steel - RFCS) Forschungsprojekts HOLLOSSTAB (Grant-Nr. RFCS-2015-

709892) entwickelt, wobei eine neuartige Bemessungsmethode, die sogenannte Generalised

Slenderness-based Resistance Method (GSRM), verwendet wurde, die - in ihrer Anwendung

auf quadratische (SHS) und rechteckige (RHS) Hohlprofile - im Rahmen dieser Disserta-

tion entwickelt wurde. Die neuen GSRM-Bemessungsregeln decken die Querschnitts- und

Stabnachweise von Hohlprofilen mit verschiedenen Formen und Schlankheitsverhältnissen

ab. Diese Arbeit fasst die im Rahmen von HOLLOSSTAB durchgeführte experimentelle

und numerische Kampagne zusammen und beschreibt die Entwicklung, Validierung und An-
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wendung der neuen GSRM für den Fall des Querschnitts- und Stabnachweises von SHS und

RHS. Darüber hinaus zeigt sie erste Arbeiten zu einer Erweiterung des Anwendungsbereichs

des GSRM auf andere Anwendungsfälle. Es konnte in der Arbeit gezeigt werden, dass mit der

vorgeschlagenen GSRM-Methode signifikante Genauigkeits- und Wirtschaftlichkeitsgewinne

bei der Stabilitätsbemessung von Hohlprofilen erzielt werden können.
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Chapter 1

Introduction

1.1 General remarks

This thesis addresses the strength and stability of slender, mild- and high-strength-steel

hollow sections with flat faces and different cross-sectional geometries and develops a new

methodology to be used in structural design and for performance predictions for such el-

ements. The problem of buckling is treated for local, global and interactive local-global

buckling phenomena. Most of the described results were developed in the framework of the

European (Research Fund for Coal and Steel - RFCS) research project HOLLOSSTAB (grant

Nr. RFCS-2015-709892), using a novel design method, called the Generalised Slenderness-

based Resistance Method (GSRM), which was developed – in its application to square (SHS)

and rectangular (RHS) hollow sections - as part of this thesis work. The new, GSRM design

rules cover the cross-sectional and member design checks of hollow sections with various

shapes and slenderness ratios. This thesis summarises the experimental and numerical cam-

paign carried out within HOLLOSSTAB and describes the development, validation and ap-

plication of the new GSRM for the case of the cross-sectional and member resistance of SHS

and RHS. It furthermore shows some initial work on an extension of the scope of application

of the GSRM. In the thesis, it is demonstrated that the proposed GSRM method allows for

significant gains in accuracy and economy in the design of flat-faced hollow sections.
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1.2 Motivation and Objectives

Recent construction practice has seen a rise in the use of structural hollow sections, due to

the appealing aesthetics as well as better awareness of the advantages in terms of strength

and stiffness of this type of section. In order to meet the increasing demands for more effi-

cient and economic construction typologies and methods, the European steel industry, and

particularly the producers of structural hollow sections, are aiming for a reduction of weight

through the use of more thin-walled sections and/or higher-strength steel grades (with yield

strength fy ≥ 460MPa). These innovations increase the economy and sustainability of con-

struction projects through the reduction of weld volumes, erection times and foundation

costs. Especially the introduction of higher-strength steel grades into standard construction

practice is a relevant industrial goal for the European steel industry, offering chances for

new product development, research and innovation, and thus market advantages. However,

the introduction of more slender construction typologies for hollow sections leads to a num-

ber of scientific and engineering challenges: higher material strength (Re/Rp0,2 or fy;Rm or

fu), with different constitutive laws (shorter or inexistent plastic plateau, diminished ulti-

mate strain) combined with thinner plates leads to an increased significance of instability

phenomena, especially of local buckling phenomena and their interaction with the ”global”

instability mode of flexural buckling. Preliminary studies had shown that the application of

current design codes (e.g. the Eurocodes) is possibly ineffective, uneconomical or – in some

cases - altogether impossible for combined instability phenomena in slender, high-strength

hollow sections:

1. At the level of cross-sectional resistances, by its definition an increase of yield strength

fy leads to an increase of the (local, ”L”) normalized slenderness λL =
√

fy
σcr

. This

means that more sections will fall into the non-compact (class 3) or slender (class 4)

range and are thus more sensitive to local buckling phenomena. The current classifica-

tion system is quite often not suitable for capturing the actual cross-sectional behaviour

in terms of strength: i. it predicts a constant and equal value for both class 1 and

2, and an overly simplified bilinear function for the class 2 to 3 transition, included

only in the latest draft version of the planned re-edition of prEN1993-1-1 [1], ii. the

classification is based on c/t limits and in turn on bifurcation stresses for individual

plates, omitting all mutual supporting effects of adjacent components, iii. plasticity

is completely omitted in the non-compact and slender range, while strain hardening
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is omitted in the compact range, iv. the strength for class 4 sections is usually cal-

culated by separating the load components (axial force and bending moments) and

determining ”effective cross-sections” for these individual load cases, creating an arti-

ficial separation of the real stress state, and v. for non-standard hollow sections, such

as cross-sections with stiffeners and polygonal, point iv is altogether inapplicable, as

no definition of effective areas for those sections is given in current design codes such

as Eurocode 3, EN 1993-1-1 [1]; standard circular or elliptical cross-sections are also

neglected, but are not equally analysed in depth in the following chapters.

2. Beyond the cross-sectional level, instability phenomena become more prevalent also at

a global (”G”) level (flexural buckling) when interacting with the local (”G”) resistance,

leading to an (”L+G”) instability phenomena. These effects are treated in structural

design codes in a manner that is potentially too conservative for the high-strength,

slender hollow sections studied in this project.

3. The peculiarities of high-strength materials (σ−ε) and sections (lower residual stresses

levels relative to strength, different imperfection levels) are only superficially studied

and addressed in design codes.

4. Generally, the treatment of local, global, and interactive ”L+G” instabilities in the

Eurocode and other international design codes is seen as too cumbersome by many

designers and does not take full advantage of already-available numerical computational

methods.

Combined, these drawbacks represent a hindrance to the further development and market

introduction of more slender hollow section members in Europe. In order to overcome them,

innovative design methods must be introduced and the corresponding scientific background

and knowledge must be gathered. Thereby, the new rules should be combined with software

tools ([2]) in order to make the new method simple to use and practical for engineers in

design offices and steel construction companies. These were also objectives of the RFCS

project HOLLOSSTAB, and were obtained through new design methods, based on a large

number of experimental tests and numerical tests. Thereby, the development of a specific

type of design rule for SHS and RHS is proposed in this thesis with the denomination of

the Generalised Slenderness-based Resistance Method (GSRM). This method, similarly to

other recently proposed methods such as the General Method for the design of whole frames

([3, 4]), the Direct Strength Method (DSM, [5, 6, 7, 8, 9, 10, 11, 12]), the Continuous
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Strength Method (CSM, [13, 14, 15, 16, 17, 18, 19]) and – in the most directly related way

- the Overall Interaction Concept / Overall Method (OIC, [20, 21, 22]) makes use of an

”overall” definition of the cross-sectional and member slenderness, generalised to account for

combined load cases and the mutual support provided by the various parts of the studied

cross-section and member. The generalised definitions of slenderness and resistance make

use of load amplification factors to reach a certain defined condition or resistance, and thus

termed ”R”. Thereby, the generalised slenderness is defined as:

λ =

√
Rref

Rcr

(1.1)

while the ultimate (buckling) resistance is defined as:

Rb = χRref (1.2)

with the buckling coefficient χ being a function of λ. In detail, this thesis pursues the

following objectives:

• In-depth analysis of the GSRM methodology for the design of cross-sectional capacity

of slender, innovative mild and high-strength steel (HSS) hollow sections. The GSRM

defines a continuous strength representation throughout slenderness ranges - from com-

pact (class 1) to slender (class 4). The cross-sectional slenderness is calculated for the

”overall” load-case and the complete cross-section, using numerical methods, thus tak-

ing advantage of mutual restraining effects in the different parts of the cross-section

and the real stress state. The GSRM expands to applications in beam-columns (mem-

bers failing in global buckling). This allows the global ”G”, local ”L” and combined

”L+G” buckling phenomena to be treated in a uniform format.

• Proposal of new design formulae for RHS and SHS. The formulae predict the cross-

section capacity as a continuous function of the cross-section slenderness, providing

two different formulations for the stocky range and the elastic range. The obtained

functions result into a χ− λ curve, which substitutes current classification and design

methods of various international standards. Similarly to the cross-section resistance,

the GSRM predicts the member resistance as a function of the global slenderness,

employing a different predictive curve and inputting a previously calculated cross-

section resistance as an fundamental parameter for the determination of the RHS and
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SHS member resistance.

• Derivation and validation of the predictive rules on the basis of the experimental and

numerical tests. A large database of numerical results for SHS and RHS is used for the

validation of the chosen resistance curves for the cross-section capacity. The curves for

the member resistance are derived from existing column buckling curves and validated

by experimental and numerical tests, as well. Furthermore, a detailed description of

the validation of the numerical model (FEM) against the experimental test results is

given, focusing also on the calibration of the FEM input parameters.

• Application of the obtained results for SHS and RHS to new cross-sections and future

applications with machine learning techniques. For new hollow sections the same

methodology and guiding principles of the GSRM are applied, providing promising

early results for the prediction of polygonal cross-section strength. Machine learning

and deep learning techniques are also employed to predict the SHS and RHS cross-

section strength. The results of these techniques are then compared to the GSRM

results in terms of precision and reliability.

This thesis should be reviewed as an effort to describe thoroughly each item of the objective

list and to propose solutions for them.

1.3 Scope

This thesis focuses on the development and application of the Generalised Slenderness-based

Resistance Method (GSRM) for square (SHS) and rectangular (RHS) hollow sections. The

thesis is organized in nine chapters. This introductory Chapter 1 contains the motivation

and scope of the thesis and identifies the publications that already resulted from the work

carried out in the thesis project. It is followed, in Chapter 2, by a review of the current state

of the art in the design of sections against local and global buckling in general, with a focus on

hollow sections respectively on the phenomena that most affect this type of section. Chapter

3 describes the general methodology used in this thesis, in particular with regards to the

considered existing design approaches (used as starting points for own developments), the

experimental tests conducted by the author of this thesis at the laboratory of Bundeswehr

University Munich, the FEM modelling and the used analytical approaches. In Chapter 4,

the experimental campaign and its use as the basis for the validation and verification of
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advanced numerical models is described. The numerical campaign made possible by these

numerical models is then described in detail in Chapter 5. Chapter 6 and 7 contain the

key developments of the thesis: the new GSRM formulations for local and global buckling,

respectively, with their background and validation. Some initial work on the expansion of

the field of application of the GSRM is presented in Chapter 8. Finally, Chapter 9 contains a

summary and conclusions derived from this thesis work. The final pages of the thesis contain

the considered references from literature and an Appendix with key facts and deliverables

of the project, selected test results and sample input file of the numerical software used in

the numerical tests.

1.4 Publication resulting from this thesis

A number of publications already resulted from the work carried out in this thesis. They

are listed in the following.

Peer-reviewed Journal Articles

Toffolon, A. & Taras, A. Development of an OIC-Type local buckling design approach for

cold-formed unstiffened and groove-stiffened hollow sections. Thin-Walled Structures 144,

106266 (2019)

Toffolon, A. et al. The generalized slenderness-based resistance method for the design of

SHS and RHS. Steel Construction 12, 327–341 (2019)

Taras, A. & Toffolon, A. Neuartige Bemessungsmethode fuer Hohlprofilquerschnitte und

-staebe. Stahlbau 89, 570–584 (2020)

Conference Proceedings

Toffolon, A. & Taras, A. Numerical investigation of the local buckling behaviour of high

strength steel circular hollow sections in Proceedings of Eurosteel 2017 1 (2017)

Toffolon, A. & Taras, A. Numerical and Experimental Studies for the Development of

Direct Strength Design Rules for Locally in Proceedings of SSRC Conference 2018 (2018)
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Toffolon, A. & Taras, A. Application of an OIC-type design apporach to the buckling de-

sign of cold-formed, lip-stiffened hollow sections in Proceedings of the International Colloquia

on Stability and Ductility of Steel Structures SDSS 2019 (July 2018)

Toffolon, A. & Taras, A. Proposal of a design curve for the overall resistance of cold

formed RHS and SHS members in Proceedings of Nordic Steel 2019 3 (2019)

Toffolon, A. et al. Experimental and numerical analysis of the local and interactive buck-

ling behaviour of hollow sections in Proceedings of Nordic Steel 2019 3 (Sept. 2019)

Toffolon, A. et al. Experimental and numerical analysis of the local and interactive buck-

ling behaviour of hollow sections in Proceedings of the International Colloquia on Stability

and Ductility of Steel Structures SDSS 2019 (Sept. 2019)

Toffolon, A. & Taras, A. Proposal of a design curve for the overall resistance of cold

formed RHS and SHS members in Proceedings of the International Colloquia on Stability

and Ductility of Steel Structures SDSS 2019 (Sept. 2019)

Toffolon, A. et al. FEM-based design of hollow sections against local, global and interactive
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Chapter 2

State of the art

2.1 Literature review: design models for local and

global buckling

This sections provide a brief historical overview of the design models for local and global

buckling and their background, and describe current models for the prediction of the buckling

resistance. The first section focuses on the review of the experimental studies and modern

design formulae for local buckling of plates. A second section illustrates experimental tests

and design methods for members, thus describing the development design formulae for global

buckling, introduces different representation formats, and finally mentions briefly the role of

the Eurocode in the current design methods. In the last part of the chapter a brief overview

of the current methods for the design of local buckling (CSM, DSM) is given.

2.1.1 Local buckling: critical stresses and design models

Early studies on plate buckling investigated the model of a thin rectangular plate (high width

to thickness ratio) supported on all sides and subjected to a constant in-plane compression

stress σ along two opposite edges. The differential equation governing the state at the

initiation of elastic buckling (small deflections) is as follows:(
∂4w

∂x4
+ 2

∂4w

∂x2∂y2
+
∂4w

∂y4

)
− Nx

D

∂2w

∂x2
= 0 (2.1)

where D =
Et3

12 (1− ν2)
(2.2)
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w(x,y)

σx,cr

σx,cr

a b

t

Fig. 2.1. Definition of the parameters for plate buckling.

D is the flexural rigidity of the plate, with the Poisson’s ratio ν = 0.3 and Young’s

modulus E. Nx is the axial force in x-direction, which is defined in equation (2.3). These

parameters are shown in figure 2.1.

Nx = σx,crbt (2.3)

For the described loading and boundary conditions, the solution of this differential equation

can be determined by using the following assumption in equation (2.4) for w(x, y), which

describes an approximate shape function for a plate under double curvature.

w = f(x, y) = sin
(x
a
mπ
)
sin
(y
b
nπ
)

(2.4)

The solution of equation 2.1 under the assumption shown in (2.4) yields equation 2.5, which

is rewritten for the unknown σx,cr.

D

(
m4π4

a4
+ 2

m2π2

a2
n2π2

b2
+
n4π4

b4

)
= σx,crt

m2π2

a2
(2.5)

σx,cr =
Eπ2

12 (1− ν2)

(
t

b

)2(
mb

a
+ n2 a

mb

)2

(2.6)

with σe =
Eπ2

12 (1− ν2)

(
t

b

)2

(2.7)

kσ =

(
mb

a
+ n2 a

mb

)2

(2.8)
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Where:

• σx,cr is the elastic critical stress in the x-direction; the index x will be omitted in the

following equations.

• kσ is the boundary and applied stress dependent plate buckling coefficient.

• σe = 190000

(
t

b

)2

for steel material.

• t, b are respectively thickness and width of the plate.

This thesis focuses in large part on the behaviour of rectangular and square hollow sections.

These sections produce low constraining moments between the elements of the cross-section

due to their symmetrical nature. Their behaviour therefore is often modelled as a compo-

sition of simply-supported plates ([36]), and e.g. kσ = 4.0 is used in many international

standards (e.g. the Eurocodes) to implement design formulae for the case of pure compres-

sion. However, in RHS greater edge restraint is applied to the more slender sides of the

cross-section by the less slender sides. As a result, values of kσ obtained from this ”hinged

plate” model are generally conservative when applied to each side of the hollow section and

in general may not describe the overall cross-section behaviour with sufficient precision.

In 1930, von Kármán [37] first formulated the theory underlying the so-called effective

width method, based on the assumption that from a certain slenderness level the plate width

contributes only partially to the load carrying capacity, and fails where the plate is deflected

out-of-plane beyond a certain limit, redistributing stresses in the areas around the corners,

which can become higher than σcr. Thus, for a steel plate supported on all edges and under

uniform, monodirectional compression, the following limit compressive force was derived by

von Kármán:

Fult = C

√
E

σ
t2fy (2.9)

where C=1.90 (2.10)

Fult can be rewritten and set equal to beff tfy:

Fult = Ct2

√
E

fy

√
fy
σcr

√
σcr
σ
fy ∼= beff tfy (2.11)
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From which the effective width equation according to von Kármán is obtained:

beff = Ct

√
E

fy

√
fy
σcr

√
σcr
σ

≤ b (2.12)

where beff is the portion of width b that “effectively” collaborates to the plate buckling

resistance, with the remaining portion of the plate width considered to be ineffective and have

zero stress. With this approach, the squash load of the plate btfy is reached up to σ = σcr,

while smaller values are obtained for σ > σcr. Various modifications and adaptations of

this approach were the object of several experimental test campaigns. The most important

results were obtained by G. Winter [38, 39]. Winter calibrated a modification of the beff -

formula on tests with cold-formed steel. According to Winter’s experiments, the effective

width of a supported plate under uniform compression could thus be calculated as follows:

beff = 1.90t

√
E

fy

[
1− 0.574

(
t

b

)√
E

fy

]
(2.13)

The reduction factor ρ and the plate slenderness λp as defined in modern standards such

as EN 1993-1-5 [40] can now be introduced as follows:

ρ =
beff
b

(2.14)

λp =

√
fy
σcr

(2.15)

With these, the above formula (2.13) can be rewritten as

ρ =
1

λp

(
1− 0.3

λp

)
(2.16)

The final version of the Winter formula reads as:

ρ =
1

λp

(
1− 0.22

λp

)
(2.17)

Some further modifications were proposed over time in [38, 39]. The strength predictions

of Winter are naturally more conservative than von Kármán’s and introduce a correction

term proportional to λ
−2

p , following the elastic buckling curve. The Winter’s curve with a
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value of c = 0.22 represents only one example validated against Winter’s experimental tests.

Equation (2.17) may be thus rewritten in a more general form, as in equation (2.18), which

will be analysed in detail in section 3.5.2 and will be designated as the ”Winter format”.

ρ =
1

λp

(
1− c

λp

)
(2.18)

One key aspect of this thesis will thus be the inclusion of more precise values of kσ (or

rather, of σcr), determined for the whole section, into Winter-type design formulae, which

are described in the following.

2.1.2 Column buckling

A short overview of the literature of different analytical approaches used to describe the

ultimate capacity of members in pure compression (”columns”) is here presented, not in

chronological order, but connecting the most important research approaches over the years.

This is done in order to introduce various, often-used methods for the description of buckling

knock-down factors for all kinds of member buckling phenomena. They will be considered in

this thesis for the description of the general behaviour of members failing in global buckling.

Ayrton-Perry-Robertson approach

The original formula to describe the ultimate strength of columns in flexural (global) buckling

was first described by Ayrton and Perry [41] in 1886. This approach – first employed for

a practical case by Robertson [42] – proposes to introduce an equivalent imperfection of

sinusoidal shape and amplitude e0 into a second-order analysis and stress design of a pin-

ended model column, and to use this imperfection amplitude as a calibration factor to

describe the strength of real columns, as observed e.g. in tests. Ayrton and Perry thus derived

their formulation from the elastic buckling amplification factor for a pin-ended column under

pure compression with an initial imperfection e0, leading to the total deflection

w = δ + e0 =
e0

1− Nb

Ncr

(2.19)

where:

• e0 is the initial imperfection.
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• δ is the member deflection due to the applied load from the base state.

• w is the total deflection.

• Nb is the applied load N , which finally leads to column failure at Nb.

• Ncr is the axial force at the first bifurcation point, or “Euler load”.

Crucially, in the Ayrton-Perry approach a linear cross-sectional failure criterion is introduced,

i.e. a linear interaction surface for compression forces and moments is used. The general

equation to the limit-state for the case of compression failure of the outermost fibre of the

cross-section for a pin-ended column under pure compression reads:

N

Afy
+

Nw

Wyfy
= 1.0 (2.20)

At failure, this leads to the following equation:

Nb

Afy
+
Nbe0
Wyfy

· 1

1− Nb

Ncr

= 1.0 (2.21)

where:

• A is the cross-section area.

• Wy the cross-section modulus for bending about the y-axis.

• fy is the yield stress.

• Nbw is the first order bending moment due to the deflection of the pin-ended column

at mid-span.

Ayrton and Perry proceeded with the derivation of the buckling strength in terms of stresses,

whereas current design standards such as the Eurocode use equation 2.21 with a reduction

factor of the cross-sectional plastic resistance in order to define the member strength, and

they plot it as a function of the member slenderness. The elaboration of this approach

will be presented in 3.5 both as analytical formula and a new representation format. In

the following, the final version of the Ayrton-Perry formulation will be presented and the
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calibration made by Robertson will be presented. Equation 2.21 may be rewritten in terms

of stress criterion as follows:

Nb

A
+
Nbe0
Wy

· 1

1− Nb

Ncr

= σmax < fy (2.22)

Introducing the following expressions:

σb =
Nb

A
(2.23)

m =
e0A

Wy

(2.24)

equation 2.22 may be rewritten as follows:

σb

1 +
m

1− σb
σcr

 = fy (2.25)

which results into a quadratic equation with solution

σb =
1

2

[
σcr(1 +m) + fy −

√
(σcr(1 +m) + fy)2 − 4σcrfy

]
(2.26)

The solution in equation (2.26) represents the design solution according to Ayrton-Perry.

According to these authors, a value for m is determined either by fitting the buckling curves

to a number of experimental tests, or imposing the dependence on given variable through

experimental observations. It is nowadays common practice [1] to impose the imperfection

amplitude as a function of the member length; the proposal of Ayrton and Perry implies a

linear dependence between m and λ as follows:

m = αλ (2.27)

In figure 2.2a the curves in equation (2.26) are shown according to the original formu-

lation, in which the maximum allowable stress is seen as a reduction of the yield stress fy.

Different values of m indicate the range of application of this formulation. Figure 2.2b shows

the application of the input parameters on a rectangular cross-section and the assumption on

boundary conditions for the Ayrton-Perry analytical model. A further development of this
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Nb Nb

e0

δ

y

z

L

a) b)

Fig. 2.2. a) shows the Ayrton-Perry design formula 2.26 for various values of m; b) shows schematically
the input parameters, boundary conditions and assumptions of the formulation.

approach was formulated by Robertson [42], who proposed a similar equation for the imper-

fection changing the parameter notation from m into η (see equation 2.28) and calibrating

the values on extensive experimental tests.

η = αλ (2.28)

Merchant-Rankine formulation

In the anglophone world, a different approach to the column-buckling was traditionally

pursued as well, producing so-called ”rational” or ”semi-rational” formulae. These formulae,

mainly sustained in the early days by practitioners, rely on the empirical assumptions for

deformations, critical stresses and thus provide a simplified framework for the application of

simple mathematical functions fitting experimental test results. The well-established design

formula of Rankine-Gordon is one of the fundamental example of these methods, and is still

widely adopted in both research and practice. The formula originates from the beam theory,

where the maximum deflection w and tension σ due to the first order moment of a simply
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supported beam subjected of pure axial compression can be expressed as:

w = c1
L2My,max

Iy
(2.29)

σM = c2
My,max

Iy
z (2.30)

(2.31)

where:

• L, Iy, z are respectively the member length, section inertia and distance to the extreme

section fibre.

• My,max is the mid-span bending moment ought to flexural buckling.

• c1, c2 constant parameters.

By substituting σM in (2.29) and incorporating σM in a new dimensionless constant c, w

results in:

w = c
L2

z
(2.32)

which states the proportionality of w to L2/z for a given elastic stress state defined by σM .

Equation (2.32) represents the fundamental assumption of the Rankine-Gordon formulation.

Thereby, introducing the resulting equation (2.32) for w, the equation at the limit state as

in (2.21) becomes:

Nb

Afy
+
Nbw

Iyfy
z =

Nb

Afy
+
NbcL

2

Iyfy
= 1.0 (2.33)

In figure 2.2b a schematic representation of the geometric characteristics of the mechanical

problem is given. The figure demonstrates the model assumptions (valid for Rankine, as

well as for Ayrton-Perry) of pure compression and lateral support in z-direction and the

geometric properties. The following definitions of buckling reduction factor and slenderness
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are given:

χy =
Nb

Afy
(2.34)

λy =

√
Afy
Ncr,y

(2.35)

The buckling knock-down factor is a reduction function of the cross-section resistance with

domain range of (0, 1], which multiplies the plastic resistance of the section, here represented

by the term Afy, as the considered case is pure compression. The slenderness though is

defined as the squared root of the ratio of the plastic resistance and the elastic critical Euler

load. Following the definition of λy and χy in (2.35) and (2.34), the equation takes the final

normalized format as follows

χy =
1

1 + kλ
2

y

(2.36)

where:

λy =
λy
λ1

(2.37)

λ1 = π

√
E

fy
(2.38)

k = cλ21 (2.39)
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Nb Nb

w

a) b)

y

z

Fig. 2.3. Rankine-Gordon buckling curve in a) the original formulation and b) normalized formulation
varying k value comparing curves to the Euler curve.

In figure 2.3a the original form of the Rankine-Gordon curve is represented in the χ−λy
space. Units and dimensions are provided according to the indication of Timoshenko and

Lessels [43] as fy = 3000 kg/cm2, c = 1/75000 and E = 2.10 · 106. The curve in green colour

reaches the peak of resistance only for very small values of λy and tends asymptotically to the

Euler critical load for large slenderness. Figure 2.3b shows instead different values of k being

explored in the domain of the assumptions of Rankine-Gordon. In this case, a remarkable

property of the curves is that they do not necessarily go below the critical Euler load, and

only for k=1.0 the curve is asymptotic to Euler. This special case is defined as the Ritter’s

semi-rational formula and was broadly used in North America in the first half of the 20th

century. The Rankine-Gordon formula was renewed and rewritten in a different format by

Merchant in 1954 [44]. The equation in (2.36) could be rewritten in the following fashion by

re-writing λy and χy:
Nb

Npl

=
1

1 + k
Npl

Ncr

(2.40)
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with:

χy =
Nb

Npl

(2.41)

λy =

√
Npl

Ncr

(2.42)

Thereby, the equation 2.40 can be re-formulated as follows:

Nb

Npl

+ k
Nb

Ncr

= 1 (2.43)

which is the so-called Merchant-Rankine formula. This change of terms does not imply a new

content from the Rankine-Gordon formulation. A fundamental contribution of Merchant is a

clear visualization of the curve data. In his work the curve corresponding to k = 1 is defined

as the only rational case. This can be seen from the comparison with two different types of

curves, the Euler curve and the Eurocode curve, which were derived from the Ayrton-Perry

formulation.

a)
b)
b)

1.0

Fig. 2.4. a) Different values of the Rankine-Gordon curves in the Merchant format, b) column-buckling
curve from the current Eurocode in the Merchant format of representation.
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In figure 2.4a and b a comparison between these two formulations is made in the Merchant

representation. The k=1.0 curve is shown in 2.4a among other possible values of k and stands

out, since it does not predict values greater than the Euler critical load but at the same time

fits into a prediction range similar to the Ayrton-Perry predictions, represented in 2.4b.

Descending from equation 2.42, the function λy = 1.0 is represented as a linear function

in the Nb/Npl - Nb/Ncr space. Along the λy = 1.0 path the Eurocode curves show the

highest scatter, which is explained by the interaction of the effects of global slenderness and

loss of stiffness of the section with the reserve of plasticity of the cross-section itself. This

mechanism is shown in figure 3.11. Thereby, the Merchant formula was modified to account

for this type effects by adding an exponent n as follows (for more details see [45, 46, 47]):

Nb

Npl

n

+ k
Nb

Ncr

n

= 1 (2.44)

2.1.3 Curve fitting formulae

The representation formats which were analysed in this section show a mechanical back-

ground and results into the commonly utilised design formulae of the international standards.

E.g. the Winter formulation and the Ayrton-Perry’s, determine respectively the currently

adopted strength curve for the effective width method (local buckling) and member buckling

strength in the Eurocode. These design formulations were derived from design formulae

fitting parameters to both experimental and numerical results, by modifying only carefully

chosen coefficients. In this section, though, different options for pure curve fitting are ex-

plored and examples from other standards will be shown. The buckling reduction factor χ

as a function of the slenderness λ is shown in two possible formats: polynomial/hyperbolic

functions and exponential functions.

Polynomial and hyperbolic functions

The general formulation accounting for polynomial and hyperbolic functions reads:

χ =
n∑
i=0

Aiλi +
m∑
j=1

Bjλj (2.45)

In the form of n = 4 and m = 7, the equation corresponds to the proposal of Lindner [45] for

the approximation of the European column buckling curves (see ECCS tabulated curves).
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Another fundamental example of these functions is the purely polynomial function, where

the parameter Bj = 0. These functions may fit with larger accuracy the ECCS curves, and

they are indeed adopted in the North-American standard by considering different ranges of

application, each with a corresponding polynomial. The approach was applied by Bjorhovde

[48] between others (see also Galambos [49] and Ziemian [50] for the most recent publication)

and is currently adopted in the SSRC design curves. An example of this formulation is the

current SSRC curve 2P (an alternative for the AISC LRFD curve [51]), which is expressed

by equations (2.46) to (2.50) using Eurocode notation.

χ = 1.0 for λ ≤ 0.15 (2.46)

χ =
(

1.03− 0.158λ− 0.206λ
2
)

for 0.15 ≤ λ ≤ 1.0 (2.47)

χ =

(
−0.193 +

0.803

λ
+

0.056

λ
2

)
for 1.0 ≤ λ ≤ 1.80 (2.48)

χ =

(
0.018 +

0.815

λ
2

)
for 1.80 ≤ λ ≤ 3.20 (2.49)

χ =

(
1

λ
2

)
for λ ≥ 3.20 (2.50)

The equations are represented in figure 2.5a, and compared with the current Eurocode

column buckling curves derived from the Ayrton-Perry formulation described above. The

buckling strength Nb is normalised by the section plastic resistance in compression and as

a reduction factor for the weak y-axis. The SSRC curve follows a smooth path inside each

range and shows a point of discontinuity at λy = 0.15 and λy = 1.0. The values lie be-

tween the curve a and b of the Eurocode, thus providing consistency with both formulations,

and were calibrated by the authors against experimental and numerical tests, resulting in

the assessment of a level of reliability for each curve. Thereby, the curve fitting approach

by polynomial demonstrates that it may effectively replace other mechanically sound ap-

proaches.

Exponential functions

Another possible function of the curve-fitting approach may be the adoption of the exponen-

tial function. The equation is also utilized in North-America [51] and in the most general
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a) b)

Fig. 2.5. a) comparison of the current EC3 column buckling curves and the SSRC curve 2P; b) evaluation
of the exponential function curve fitting for various values of k.

form it presents a coefficient k multiplying λ as follows.

χ = kλ
n

(2.51)

In the AISC specification presents the equation (2.51) with k = 0.658 and n = 2. Figure 2.5b

shows the exponential function of the slenderness as defined in (2.51). For lower values of k

the function is describes lower, which are monotonically decreasing as any buckling strength

function of the slenderness requires. With values of k larger than 0.7 the curves the values

results larger than the Euler curve, which is mechanically not plausible.

2.2 Eurocode and other standards

In this section, the current design methods in the European Eurocodes [1, 40] will be pre-

sented, focusing on rules for the calculation of cross-section and member resistance.
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2.2.1 Cross-sectional strength and local buckling

For the determination of the cross-sectional strength and the consideration of local buckling,

Eurocode 3 [1] divides sections into 4 classes, and proposes a different strength function

for each class. The ultimate strength of cross-sections in class 1 and 2 corresponds to the

plastic resistance Rpl for an SHS or RHS loaded by a general combination of axial force and

bending. Class 3 sections can be loaded up to their elastic resistance Rel, which corresponds

to the first occurrence of yielding in a fibre of the section. In Class 4 sections, the elastic

resistance cannot be reached because the onset of local buckling phenomena precedes the

reaching of yielding in a nominal stress calculation. In this case, local buckling is accounted

for directly in the design calculations, by the use of either the ”effective width method” or

of the ”reduced stress method”, both of which are to be found e.g. in EN 1993-1-5 [40]. An

overview of the classes and corresponding cross-sectional capacity is given in figure 2.6. In

the following, each class design method is analysed in detail.

The ultimate strength of cross-sections in class 1 and 2 corresponds to Rpl, which is

calculated according to equations (2.52) to (2.56), found in Eurocode 3.(
My,Ed

MN,y,Rd

)α
+

(
Mz,Ed

MN,z,Rd

)β
≤ 1.0 (2.52)

where MN,y,Rd = Mpl,y,Rd
1− n

1− 0.5aw
≤Mpl,y,Rd =

Wpl,yfy
γM0

(2.53)

MN,z,Rd =≤Mpl,z,Rd
1− n

1− 0.5af
≤Mpl,z,Rd =

Wpl,zfy
γM0

(2.54)

n =

(
NEd

Npl,Rd

)
aw =

A− 2bt

A
≤ 0.5 af =

A− 2ht

A
≤ 0.5 (2.55)

α = β =
1.66

1− 1.13n2
≤ 6 (2.56)

where:

• α and β are the parameters introducing the effects of biaxial bending.

• n is the ratio of design normal force to design plastic resistance to normal forces of the

gross cross-section.

• aw and af are respectively the ratio of web and flange area to gross area.
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• MN,y,Rd is the reduced design values of the resistance to bending moments making

allowance for the presence of normal forces.

Figure 2.6 shows the class 3 strength function both of the current version EN1993-1-1:2005

[1] and the new version prEN1993-1-1:2020 [52]. The current Eurocode version assesses a

pure elastic resistance design value Rel for class 3 sections, producing an unrealistic drop

in the class 2 to 3 transition. The project SEMI-COMP [53] introduced a more effective

and realistic linear transition between class 2 and 4, instead of a sudden drop of strength

at the border between class 2 and 3. prEN1993-1-1:2020 took on board these changes and

introduced a new elasto-plastic modulus Wep, a new parameter βep, depending on ε and the

cross-section width-to-thickness ratio, and a new formula for biaxial bending. The equations

for SHS and RHS of this design method are reported in (2.57) to (2.65).

Wep,y = Wpl,y − (Wpl,y −Wel,y) βep,y (2.57)

Wep,z = Wpl,z − (Wpl,z −Wel,z) βep,z (2.58)

where βep,y = max


c

tf
− 34ε

4ε
;

c

tw
− 83ε

38ε
; 0

 ≤ 1.0 (2.59)

βep,z = max


c

tw
− 34ε

4ε
; 0

 ≤ 1.0 (2.60)

(
My,Ed

MN,ep,y,Rd

)αy

+

(
Mz,Ed

MN,ep,z,Rd

)αz

≤ 1.0 (2.61)

where MN,ep,y,Rd =
Wep,yfy
γM0

(1− n) MN,ep,z,Rd =
Wep,zfy
γM0

(1− n) (2.62)

n =

(
NEd

Npl,Rd

)
(2.63)

αy = αz =
1.66

1− 1.33n2
when n ≤ 0.8 (2.64)

αy = αz = 6.0 when n > 0.8 (2.65)
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c
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class 1 class 3 class 4class 2

linear transition
Rpl

Rel

Fig. 2.6. Schematic representation of the EC3 classes in terms of cross-section strength versus c/t ratio.

Class 4 accounts for the effects of local buckling of the plates, thus obtaining a cross-

section strength lower than Rel. The Eurocode provides different options for the calculation

of the strength of class 4 cross-sections. Here the effective width method is presented, since it

originates from the literature presented in section 2.1. The effective width method for plate

buckling applies the findings of Winter and assesses separately ρ for each cross-sectional

plate by introducing the parameter ψ, as the ratio between the stress along each plate centre

line. The reduction factor ρ and the plate slenderness λ are defined as follows:

ρ =
1

λp

(
1− 0.22

3 + ψ

λp

)
(2.66)

λp =

√
beff
b

=

b

t

28.4

√
235

fy

√
kσ

(2.67)

kσ is once again the buckling coefficient and can be obtained from table 4.1 and table 4.2 in

EN1993-1-5 [40], here shown in figure 2.7.
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Fig. 2.7. Table 4.1 and 4.2 from EN1993-1-5
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2.2.2 Eurocode rules for column buckling

In the Eurocode 3, following the Ayrton and Perry’s approach, the general term η is replaced

by a formula that makes this imperfection a function of slenderness, of a plateau value to

account for stocky columns not failing before the squash load, and of a calibration factor α

which accounts for residual stresses and production differences, here denoted as αEC3:

ηimp = αEC3

(
λy − 0.2

)
(2.68)

Thereby, the member slenderness and buckling reduction factor read:

λ =

√
Afy
Ncr

(2.69)

where Ncr =
π2EI

L2
(2.70)

χ =
1

φ+

√
φ2 − λ2

≤ 1.0 (2.71)

with φ = 0.5
[
1 + αEC3

(
λ− 0.2

)
+ λ

2
]

(2.72)

The buckling verification of a pin-ended member subjected to axial compression is finally

written as:

NEd

Nb,Rd

≤ 1.0 (2.73)

where Nb,Rd = χNpl,Rd for class 1,2,3 (2.74)

Nb,Rd =
χAefffy
γM1

for class 4 (2.75)

Aeff is the effective area of the cross-section calculated from the gross area with the effective

width method. The table 2.1 and table 6.2 from EN1993-1-1 [1] summarise the values and

conditions for αEC3.



28

Buckling curve a0 a b c d

Imperfection factor α 0.13 0.21 0.34 0.49 0.76

Table 2.1: EN 1993-1-1. Imperfection factors for the determination of the buckling curve.

Fig. 2.8. Table 6.2 from EN1993-1-1
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2.2.3 Eurocode rules for beam-columns

According to the current Eurocode 3 [1], SHS and RHS members which are subjected to

combined bending and axial compression should satisfy equation (2.76) and (2.77).

NEd

χyNRk

γM1

+ kyy
My,Ed + ∆My,Ed

My,Rk

γM1

+ kyz
Mz,Ed + ∆Mz,Ed

Mz,Rk

γM1

≤ 1.0 (2.76)

NEd

χzNRk

γM1

+ kzy
My,Ed + ∆My,Ed

My,Rk

γM1

+ kzz
Mz,Ed + ∆Mz,Ed

Mz,Rk

γM1

≤ 1.0 (2.77)

where:

• NEd, My,Ed and Mz,Ed are the design values of the compression force and the maximum

moments about the y-y and z-z axis along the member, respectively.

• ∆My,Ed, ∆Mz,Ed are the moments due to the shift of the centroidal axis for class 4

sections.

• kyy, kyy, kzy, kyz are the interaction factors.

Design assumptions

8

Fig. 2.9. Table B.1 from EN1993-1-1 Annex B
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The values for the interaction factors kyy, kyy, kzy, kyz can be taken from figure 2.9. The

Cm,y and Cm,z parameters account for the effects of the different bending moment diagrams

in both y and z direction. In equation 2.78 to 2.81 the Cm,y and Cm,z functions for the case

of linear bending moment along the beam-column length are displayed.

Cmy = 0.6 + 0.4ψM ≥ 0.4 (2.78)

Cmz = 0.6 + 0.4ψM ≥ 0.4 (2.79)

where My,Ed,right−end = ψMMy,Ed,left−end (2.80)

Mz,Ed,right−end = ψMMz,Ed,left−end (2.81)

2.3 Other predictive models

2.3.1 The Continuous Strength Method

The Continuous Strength Method (CSM), developed by the research group of professor L.

Gardner at Imperial College (see [13, 15, 54, 17, 19, 14, 16]), was created with the intent of

obtaining design formulae which define the cross-section strength as a continuous function

of the slenderness of the constituent plate elements of a cross-section. Similarly to currently

developed design methods, the CSM discards the concept of classes (as in the Eurocode

for example), and makes use of the definition of cross-section (or local) slenderness and

the strain-hardening behaviour of the material, in order to predict the buckling strength of

any section. The inclusion of the strain-hardening relationship into the analysis allows to

capture effectively the deformation capacity of the section, both in term of end shortening

δu and rotation capacity φ. The CSM determines a fundamental function, expressing the

deformation capacity of the section both for plates and circular sections, shown in equation

(2.82) and (2.83) in the original form from [13].

εcr
εy

=
1

λp
2 for plates (2.82)

εcr
εy

=
1

λc
for CHS (2.83)

where εcr is the critical buckling strain and εy = fy/E. A more generalised version of these

functions accounts for the effects due to the chosen load case and the section geometry and
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is defined as the CSM base curve, demonstrated in equation (2.84).

εcsm
εy

=
A

λp
n (2.84)

where the parameters A and n are coefficient calibrated against a number of numerical

simulations. In more recent papers [18] [55] Yun et al. proposed the following parameters

for the base curve for plated sections, adapting it both to cold-formed and hot-rolled steel:

εcsm
εy

=
0.25

λp
3.6 ≤ min

(
15,

C1εu
εy

)
for λp ≤ 0.68 (2.85)

(2.86)

where:

• εu is the ultimate strain.

• an upper bound for the
εcsm
εy

ratio was found as constant value 15 or a parameter

depending on εu and C1, a factor changing according to the manufacturing process,

e.g. C1 = 0.4 for cold-formed steels.

• for λ > 0.68 the cross-section enters the slender range and different formulations could

apply, e.g. Winter’s.

These curves define the strain level as a function of the slenderness and well describe non-

slender and stocky sections, since they show large deformation capacity, which can be easily

captured with the CSM. The strain-hardening material model account for the correspondent

maximum stresses in the cross-section. Thereby, the strain hardening material is inserted

into the formulation with fcsm as the maximum allowable stress, which is a function of εcsm

and other material properties shown in equation (2.87).

fcsm = fy + Eshεy

(
εcsm
εy
− 1

)
(2.87)

Figure 2.10a shows the base-curve of the CSM for different values of A and n, corresponding

to equation (2.82), (2.83) and (2.85). In figure 2.10b two diagrams describe advanced formu-

lation for strain-hardening of the CSM according to Yun and Gardner ([56], [57]), fitting an

extensive number of coupon tests. The curve for hot-rolled steels is a bilinear function with
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a)

E

E

0.2

b)

E0.2

HOT-ROLLED STEELS

COLD-FORMED STEELS

Fig. 2.10. a) CSM curve shapes obtained by varying A and n; b) stress-strain model for cold-formed and
hot-rolled sections.

non-linear model from the typical plateau line to the ultimate strain; the stress-strain curve

for the cold-formed steel is built on a two-stage Ramberg-Osgood [58] model. Both repre-

sentations will be analysed in detail for modelling codified steel grades from S235 to S890

and serve as the fundamental material model also for the GSRM design rules of this work,

developed from chapter 6. The Continuous Strength Method already provides examples of

very precise predictive design rules for certain load cases and cross-sections primarily with

a focus on the stocky range. As equation (2.87) predicts the compression resistance for the

case of pure compression, for non-slender (λp ≤ 0.68) cold-formed SHS/RHS the bending

moment resistance on the y-axis (see [55]) reads :

Mcsm,y,Rd =
Wpl,yfy
γM0

[
1 +

Esh
E

Wel,y

Wpl,y

(
εcsm
εy
− 1

)
−
(

1− Wel,y

Wpl,y

)
/

(
εcsm
εy
− 1

)2
]

(2.88)

The complex formulation in equation (2.88) poses - similarly to equation (2.87) - the cross-

section resistance at pure bending Mcsm,y,Rd as a function of the strain parameters and

E-modulus values of the strain-hardening model. Geometrical properties and an exponent

are added to fit the curve to numerical results. This formulation is limited to singular

(and usually simplified) load cases. When there is an interaction of pure compression and
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pure bending, the method follows the approach of the Eurocode interaction formulae for the

cross-section resistance for combined bending moment in both axes and compression; for

members, the Eurocode formulation is chosen again. The CSM still needs further research

for the application to more load cases and other types of stocky sections, but seems an

excellent method for the determination of the resistance of stocky hollow sections.

2.3.2 The Direct Strength Method

The Direct Strength Method (DSM) method was developed by the research group of pro-

fessor B.W. Schafer at John Hopkins University [59, 11, 12], and it is integrated in the

North-American AISI/AISC standard [51] [60]. Similarly to the CSM, the method defines

a strength curve for the overall section, as opposed to the effective width method, which

reduces each section plate contributing to the overall section resistance (described as the

Eurocode approach in section 2.2). While the CSM is focused mainly on stocky hollow sec-

tions and members, the DSM focuses on slender open sections and members, such as channel

sections and Z-shape sections. Thereby, the Winter formulation represents the perfect back-

ground for the development of the DSM design formulae at a local level in the slender range.

The core of the method consists in the definition of the slenderness with a similar approach

to the Winter formulation and Ayrton-Perry shown in sections 2.1 and 3.5. As a starting

point, the DSM defines the slenderness and strength as the member slenderness (i.e. global

slenderness) and then accounts for the cross-section reduction due to local and distortional

buckling. The global slenderness thus reads (for a similar approach see equation (2.42) in

this section under the description of the global buckling approaches):

λdsm,N =

√
Afy
Ncr

(2.89)

λdsm,My =

√
Wel,yfy
Mcr,y

(2.90)

Where Ncr and Mcr,y refer respectively to the Euler elastic critical load and the critical

bending moment for lateral-torsional buckling, which are both cases of global buckling. A

graphic representation of the slenderness and strength curve is given in figure 2.11b. The

global buckling reduction factor of the AISI is plotted against the corresponding slenderness

and compared to the other DSM curves for local buckling and distortional buckling for the

case of pure compression of a lipped C-section. The global buckling strength curve consists
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in a reduction factor of the squash load, the local and the distortional buckling curves

represent a reduction of the global buckling strength. The reduction factor is defined here

as χ continuing to use the European notation, while the DSM uses a different character.

Similarly to global buckling, the elastic critical load for local and distortional buckling is

represented in figure 2.11a.

local

distortional
global

N N

a) b)

Fig. 2.11. a) signature curve of a section under pure compression and a section under pure bending; b)
strength curves for local, distortional and global buckling.

In the figure the signature curves of two cases are displayed: a lipped C-section under

pure compression and a lipped-Z-section under pure bending. A function connecting a large

number of numerical results obtained with the CUFSM software (finite strip method, [61])

is plotted against each half-wave length of the corresponding numerical model. The function

local points of minimum represent the critical loads for both distortional and local buckling

for the case of pure compression and pure bending of the sections. In the y-axis the critical

load is normalised by the elastic resistance and is thus defined as amplification factor R

coherently to the GSRM methodology, described in detail in chapter 3. Each point in

the signature curve defines a corresponding slenderness, and provides the buckling strength

following the curves shown in figure 2.11b. For the exact formulation of the local, distortional

and global buckling curves of the DSM the reader may refer to the Appendix 1 of the AISI

[60] and DSM publications ([59], [11]). Equations (2.91) (2.92) (2.93) describe the buckling
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strength curves for a lipped channel member under pure compression respectively for the case

of global, distortional and local buckling, and they are represented in figure 2.11b. Coherently

with the scope of this work, these DSM design rules are formulated in the GSRM format,

closer to the European parameter definition.

χG = 0.658λG
2

for λG ≤ 1.5 χG =
0.877

λG
2 for λG > 1.5 (2.91)

χD = 1 ≤ 0.561 χD =

(
1− 0.25

λD
1.2

)
1

λD
1.2 for λD > 0.561 (2.92)

χL = 1 ≤ 0.776 χL =

(
1− 0.15

λL
0.8

)
1

λL
0.8 for λL > 0.776 (2.93)

where G, D and L are the indices for global (flexural or lateral torsional buckling for channel

sections), distortional and local.



Chapter 3

Methodology

3.1 Introduction

This chapter provides an overview of the methodology employed for the development of the

GSR-Method. The section then follows a detailed description of the methodology adopted

for the experimental tests, introducing the concepts of validation and calibration of FEM

models against experimental tests. Finally, the last part describes the methodology for

capturing predictive curves and functions according to the GSRM. The aim of this chapter

is to provide GSR based methods for the prediction of the cross-section and beam-column

resistance of SHS and RHS and other compression elements. In the following, the background

for the development of the GSRM rules and predictive models is laid. Section 3.2 presents

the general scientific methodology for the attainment of predictive rules in the following

research areas:

• Conduction of full scale experimental tests for a background of the experimental tools.

• Measurement techniques and auxiliary tests.

• Validation of the numerical model for the extensive parametric study.

• Definition of analytical formulae for the prediction of the section and member resistance

The design formulae are the final outcome of the development of a predictive method. The

formulae are generally mathematical functions fitting a large pool of numerical data. The

numerical model is validated on the experimental test results, calibrating the necessary FEM

model parameters. In the next section this general approach of the GSRM is described, in
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order to clarify the objectives of this predictive methods and make it easy to follow the steps

the methodology in each research areas, which are explained in the next section starting

from 3.3.

3.2 Design approach

The development of a specific type of design rule, termed the Generalised Slenderness-based

Resistance Method (GSRM), represents the main objective of this thesis and of the project

HOLLOSSTAB. This method, similarly to other recently proposed methods such as the

General Method for the design of whole frames ([3, 4]), the Direct Strength Method (DSM,

see section 2.3.2), the Continuous Strength Method (CSM, see section 2.3.1) and – in the

most directly related way - the Overall Interaction Concept / Overall Method (OIC, [20,

21]) makes use of an “overall” definition of the cross-sectional and member slenderness,

generalised to account for combined load cases and the mutual support provided by the

various parts of the studied cross-section and member. This requires the development of

bespoke software tools for a straightforward use.

The generalised definitions of slenderness and resistance make use of load amplification

factors to reach defined condition or resistance, and thus termed R. Thereby, the generalised

slenderness is defined in equation (3.1), and the ultimate (buckling) resistance in equation

(3.2):

λ =

√
Rref

Rcr

(3.1)

Rb = χ ·Rref (3.2)

where the buckling coefficient χ is a function of λ. In the following, the general idea behind

the GSRM will be described in its application to determining the cross-sectional and member

resistance.



38

3.2.1 Cross-section Resistance

ϑ

ϕ

R plastic CS resistancepl,L

ΩRb,L

ΩRcr,L

n=
N

Npl
R critical load from LBAcr,L

R = χ Rb,L L Ref

Mpl

Mel

m= M
Mpl

ΩRPl,L

10

1Pure instability

Step 3

Pure CS resistance

Design curve

Step 1

Step 2

Step 3

Step 4

Step 5

f( )

Step 4

a) b)

Ω applied loading

Ω

R elastic CS resistanceel,L

R linear-plastic CS resistancelin-pl,L

ref

ref

ref

ref

Fig. 3.1. Graphical representation of the GSRM design approach steps and procedures concerning the
determination of the member cross-section resistance: a) strength curves in the χ − λ plane and b) n-m
interaction curves.

The Generalised Slenderness-based Resistance Method (GSRM) belongs to the methods

which associate a slenderness (λ) value depending on cross-section properties and applied

load to the local resistance of the cross-section itself. The CSM and DSM share this general

concept, as shown in section 2.3. Similarly to the Eurocode, the GSRM then introduces

these steps in its own set of formulae for beam-column buckling, based on the Ayrton-

Perry formulation described in detail in the following section 2.1.2. The proposed design

methodology requires the sequential performance of two groups of steps and procedures, the

first associated with the cross-section and the second with the member resistance. The steps

and procedures concerning the determination of the cross-section resistance are shown in

figure 3.1a and 3.1b. At a cross-section level the steps may be summarised as follows:

1. Determination of the cross-section resistance factor, termed Rref , calculated by the

stress resultants stemming from the applied loading under consideration, which is a

combination of axial force and bending defined by an amplitude Ω and an angle ϕ

in the n-m plane (see figure 3.1b - n and m are the axial force and bending moment

normalised with respect to the corresponding plastic resistances). For instance, in

figure 3.1b, the applied loading has the amplitude given by the distance between the

circle and the origin, measured along a direction making an angle ϕ with the n-axis,
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defined by

ϕ = arctan
(m
n

)
(3.3)

2. Calculation of the cross-section (local) critical elastic bifurcation/buckling load fac-

tor, termed Rcr,L, also associated with the same stress resultant profile defined in the

previous item (see figure 3.1b).

3. On the basis of the two values calculated in the two previous items, calculate the

cross-section (local) slenderness, defined as

λL =

√
Rref

Rcr,L

(3.4)

4. Calculation of a reduction factor of the cross-section resistance, termed χL, by means

of a previously developed design curve, thus providing the cross-section (local) buckling

resistance factor Rb,L = χLRref (see 3.1a), which constitutes the output required by

the first of the aforementioned two groups of steps and procedures. Figure 3.1a shows

the interaction curve associated with ΩRb,L, which is the final design value of the

cross-section resistance.

The applied load determining the Ω point in the n−m diagram may be determined by

the interaction of a compressive or tensile axial load and biaxial bending moment, moving

the Rcr,L curve to very large or even infinite values. Both Rref and Rcr,L are calculated by

means of available analytical expressions, for simple loadings, or through numerical analysis,

for general loadings. Moreover, the value of Rcr,L may be obtained for a simply supported

member with a very short length (stub-member) acted by uniform stress resultant diagrams

with the maximum values caused by the loading under consideration - i.e., it is not necessary

to consider the particular end support conditions and stress resultant diagrams. The set of

design curves χL = f(λL) account for all the relevant aspects influencing the cross-section

collapse (e.g., local geometrical imperfections and residual stresses) and cover all possible

stress resultant combinations - currently, such curves are only available for pure compression

or bending in similar methods.
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3.2.2 Member Resistance

Since hollow section members are doubly symmetric and not susceptible to lateral-torsional

buckling, the member (global) resistance involves exclusively flexural buckling, whenever

axial compression is present. Therefore, regardless of the stress resultant combination, the

member (global) critical elastic bifurcation/buckling load factor, termed Rcr,G, has a flexural

nature. The above steps and procedures, simpler than their cross-section counterparts, are

listed as follows.

1. Calculation of the member (global) critical elastic bifurcation/buckling load factor,

termed Rcr,G - in the particular case of hollow section members, it is a flexural bifur-

cation/buckling load factor associated with uniform compression.

2. Using the previously calculated cross-section (local) resistance factor (Rb,L = χLRref )

and the Rcr,G value obtained in the previous step, calculate the member (global) slen-

derness, defined as

λG =

√
Rb,L

Rcr,G

(3.5)

3. Calculation of a cross-section resistance reduction factor, termed χG, by means of the

appropriate existing EC3 column strength curve, thus providing the member/overall

resistance factor Rb,G = χGRb,L, i.e., Rb,G = χGχLRref , which constitutes the final

output required.

4. Lastly, the member safety check merely consists of verifying the condition

Rb,G

γM
≤ 1.0 (3.6)

where γM is the appropriate partial safety factor. This means that the member stress

resultant values at collapse must exceed those stemming from the applied loading.

3.3 Experimental tests

Cold-formed SHS and RHS (in addition to several derived sections such as hexagonal sections

and groove-stiffened SHS) were studied at the structural laboratory of Bundeswehr University

Munich. The section outer dimensions and wall thicknesses were chosen by keeping in mind
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the general objective of the HOLLOSSTAB project, which was to provide design rules that

lead to improvements particularly for more slender sections, i.e. mainly class 3 and 4 sections

according to Eurocode 3. Of the six RHS/SHS tested at the laboratory, four were made of

S355 steel, while two were cold-formed higher strength steel sections with measured values

of the yield stress of above Rp0,2 = 700N/mm2.

3.3.1 Full scale tests

Stub column tests

The full-scale experimental tests on local buckling comprised two test setups: stub-column

tests and short beam-column tests. Figure 3.2 gives an overview of the chosen setup. Part

a) of the figure shows the configuration used for stub-column tests (pure axial compression),

while parts b) to d) show the configuration and stiff lever arm used to introduce the plane

stress field due to compression and bending in eccentrically loaded short beam-columns. The

tests were carried out using an MFL Type UPS 1000V test rig. The actuator used for the

vertical load transfer in this rig is a servo-hydraulic device with a maximum compression

force capacity of 10 MN and a maximum tensile force capacity of 6 MN. The actuator is

controlled by a servo-hydraulic valve of type Moog 508K03DOJNO D101. A hydraulic load

cell is used for measuring the actuator force, using a pressure transducer of type HBM P3MB-

350bar. The load cells also incorporate a linear variable displacement transducer (LVDT). All

experimental tests were displacement controlled, with a given total displacement (accounting

for setup stiffness) ranging from 10.0 mm to 20.0 mm for stub-column tests and from 10.0

mm to 60.0 mm for the beam-column tests. A constant, slow test velocity was applied in

order to simulate a static problem. The velocity varied between 0.01 mm/s to 0.06 mm/s. A

digital image correlation system (DIC) produced by GOM was used to monitor deformations

and rotations of the specimen surfaces and of the test rig itself, see the reference points and

speckle patterns in figure 3.2a and 3.2b for the definition of the angle α. The DIC recording

rate was set to 1 Hz, providing around 1000 pictures and measurements for each specimen

for a complete test.

Strain gauges were attached to the specimen surfaces in order to confirm the DIC mea-

surement system, which showed more reliable and efficient results. A precise measurement

of the overall specimen deformation and the deformation field for the DIC surface were

recorded; thus, an additional LVDT measurement was not necessary. The overall machine

stiffness was taken into account and eliminated from the measurement through a calibration
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Fig. 3.2. a) test setup for the stub-column test, b) eccentricity levels, c) tensional field induced by N+M
and corresponding angle (α) of rotation, d) scheme of the N+M test setup.

test, whereas the rest of the test setup stiffness results in additional 10 MN machine LVDT

deformation than DIC deformation. Due to the large load range, the same test setup was

positively applied for the different cross-sections. The stub-columns load capacity for the

tested specimens ranges from 0.5 to 7 MN. Each specimen was accurately positioned, so that

the specimen axis and the test rig axis coincided using the calibration measurement of the

distance between specimen side and spherical bearing. A once time test on the accuracy

of this procedure was conducted with the DIC measurement of the reference points on the

spherical bearing and its adapter. The results showed precision around 0.1 mm. Failure

of all the tested stub columns featured local buckling, with the failure modes for the stub

column tests shown in figure 3.3. Each cross section is representatively displayed, and in the

Appendix more details of the experimental tests can be found. The ID number of the stub

column tests is composed of a test denomination “T1” and a number from 1 to 12.

Short beam column tests

Short beam column tests were performed to investigate the local buckling behaviour of

cross-sections under the N+M load case. In total, 36 compression plus uniaxial bending

tests with different eccentricity values were carried on. The compression tests on T3-1 to
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a) b) c) d) e)

Fig. 3.3. Failure modes for the stub column tests measured with the DIC system. The scale shows the
maximum displacement in red and the minimum in blue; in the figure a) SHS T1-1, b) RHS T1-6, c) SHS-S
T1-9, d) hexagonal T1-10, e) SHS-T T1-11 cross-sections are shown.

T3-12 and T4-1 to T4-12 were conducted on the same 10 MN servo-hydraulic test rig built

by MFL, where the T1 stub-column tests where conducted. Other important test setup

aspects remained unchanged, such as the speckle pattern and its positioning to the camera,

the use of the DIC system itself, the load and displacement measurement of the test rig load

cell. The most important changes in the test setup regard the introduction of the load. For

T3 and T4 a constant uniaxial bending moment was introduced by adding an eccentricity

to the compression force on both ends of the specimen. A schematic representation of the

test setup is given in figure 3.2d and 3.4a. With three different eccentricity steps, a wide

variety of combinations of pure compression and bending moment were possible. T3 were

always positioned in the first step with eccentricity, e1 in figure 3.2b, and T4 specimens either

in position e2 or e3. The measurement of the deformation remained unchanged, since the

DIC system produced the best results, compared to other options. A determining change

in the measurement and setup was represented by the rotation measurement. The first

direct measurement was given by the measurement of the rotation angles in degree from two

inclinometers, on the top and bottom wedge plates. These values – similarly to the machine

stroke measurement – contain additional deformation due to the test setup stiffness. Thus,

a second option for the evaluation of the inclination was found as the angle α, as defined in

figure 3.2c. While the measurement with the inclinometers can be directly compared to the
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strain gauge

(back) Speckle pattern for DIC

(front)

Reference points for DIC

strain gauge

(back)

end plates

spherical

bearing

Inclinometerswedge plate

adapter plate

for the actuator

actuator / load cell / LVDT

a) b) c)

Fig. 3.4. a) Scheme and representation of a T3 and T4 test measurement systems; b) adaptation of the
DIC measuring system to large deformation fields, a schematic representation of the cameras views is marked
in red; b) large mid-span displacement for T5-7 hexagonal beam-column test.

end rotation of a numerical GMNIA-MEAS simulation, the angle α is grasping the overall

rotation of the specimen and it is valid exclusively in the elastic field. Figure 3.4a represents

a typical test setup for the combined N and M load, T3 and T4.

Long beam column tests

T5 long beam column tests were performed to investigate the interaction between the local

buckling and the global buckling behaviour of hollow sections under the N+M load case.

In total, 7 compression plus uniaxial bending tests with different eccentricity values were

carried on at the laboratory of the chair structural engineering at the University of the Bun-

deswehr Munich. The specimens consisted of a sample of different cross-sections, which were

already tested in other load combinations, but a different specimen length was introduced

to investigate the effects of the global buckling. The compression tests on T5-1 to T5-7

were conducted on the same 10 MN servo-hydraulic test rig, and the test setup remained

mostly unchanged. The main challenge of these experimental tests consisted in the bigger

measuring field for the DIC system. To reach acceptable results, the Aramis GOM system

was adapted to this special task with new calibration sticks and a different setup, but the
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logic of DIC and results remained unchanged. An important result of the use of the DIC is

the measurement of the mid-span deflection in order to estimate accurately the second order

moment at the mid-span level, shown in a tested specimen in figure 3.4c.

3.3.2 Auxiliary tests

While the purpose of a full scale test is the direct determination of the ultimate capacity of

realistically sized specimens, auxiliary tests are used ot obtain certain input parameters for

analytical or numerical models (such as material models, or imperfection models), and help

reduce the scatter in the results of the full-scale tests. These tests give additional information

compared to the full-scale test, thereby enhancing the accuracy in the reproduction of the

full-scale test by numerical models. For each specimen, the experimental campaign included

auxiliary tests such as tensile coupon tests and imperfection measurements. Owing to the

number and the quality of the tests that were carried out, they provided sufficient information

on each test to perform an accurate validation of numerical models, described in the next

section 3.4.

Tensile coupon tests

The tensile coupon tests were taken from both the flat faces and the corners of the SHS and

RHS and tested in a standard hydraulic testing rig produced by Zwick-Röll. The specimens

of the experimental test campaign were chose between mild-steel (S355) and high-strength

steel (up to S890). Special care was given to the cutting process of the high-strength steel by

cutting the steel elements with high-pressure water jet, thus not altering the original material

properties. The results of the coupon tests were load-deformation curves, converted to en-

gineering stress-strain relations, which were then transformed to true stress-strain functions

according to equations 3.7 and 3.8.

σtrue = σengineering (1 + εengineering) (3.7)

εtrue = ln (1 + εengineering) (3.8)

Imperfection measurement

A 3D scanning technique was employed to measure the distribution of local geometric im-

perfections in each test specimen. After cleaning of the specimens’ surfaces, the outer sur-
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face of the specimens was scanned using a Zeiss 3D scanner and recorded as point cloud.

The scanned data was initially processed using the software “Colin3D” [62]; a typical pre-

processed 3D model for a groove-stiffened, cold-formed SHS is displayed in figure 3.2 as

point cloud. The 3D spline curves in figure 3.2b are laid on the measured points of the

cloud and then used in the numerical simulation as the input geometry of the FEM model.

Additionally, the 3D scan data were statistically evaluated with respect to shape deviations

and tolerances from the nominal geometry (figure 3.2c and d).

Section A-A

Section B-B

a)

b) c) d)

Fig. 3.5. a) point cloud of the 3D scan data; b) spline curves approximating the real geometry c) 3D results
of measuring system of a SHS specimen, d) exemplary evaluation of two cross-sections of the specimen in c)
(imperfection values in [mm]).

3.4 FEM modelling

The Finite Element Method (FEM) model is the numerical model used for the simulation

of the mechanical problems within the scope of this work. The principal aim of the ex-

perimental campaign was to provide the basis for the validation of advanced FEM models

that use Geometrically and Materially Non-Linear Analyses with Imperfections (GMNIA)

to realistically and accurately simulate the behaviour of the studied sections loaded in com-
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pression and bending. The proprietary software Simulia ABAQUS (2016) [63] was used for

all numerical simulations.

3.4.1 FEM discretization and input parameters

In this thesis, the numerical analysis of hollow sections was carried out using the Finite

Element Method (FEM) and a shell-element type discretization. Shell elements can be used

advantageously for 3-dimensional bodies with a thickness significantly smaller than the other

dimensions and whose topology allow for a two-dimensional (surfaced based) mathematical

description. The assumption for the stress state of this type of elements is that the stress in

the direction of the thickness are negligible. Linear isoparametric shell elements with reduced

integration (element type S4R) were employed in Abaqus. These shell elements have six

degrees of freedom associated with each node, three translations and three rotations. Each

element presents 5 section points along the thickness in order to calculate the behaviour at

selected points through numerical integration.

3.4.2 Geometrically and Materially Non-linear Analyses

The Finite Element Method (FEM) models were created with the aim of comparing the

numerical results with the experimental tests. Abaqus provides the option of carrying out a

non-linear analysis with both geometrical and material non-linearity. The material is defined

as elastic plastic according to:

εtotal = εel + εpl (3.9)

which postulates the additive strain rate decomposition. The stress-strain relation input

consists of a multi-linear function of σ− ε and is based on the incremental plasticity theory.

The Abaqus FEM model produces small increments of the applied load (in this case meaning

either imposed deformation or force load) typically starting at 5% of the final applied load

and increasing by smaller values. The non-linear problem is history-dependent, so at each

new increment the software finds a new equilibrium point with the Newton’s method as

numerical technique to find convergence. The iteration process used in the FEM models

applies load or displacement control, and the results shown in the next chapter are derived

from this type of analysis, but several tests on different simulation configurations used RIKS

analysis (iteration based on arc-control length), which produced similar results, showing that
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no local minima were missed during the iterations. Example of such problems related to the

buckling analysis are snap-through problems.

The accurate reproduction of an experimental test is defined as reverse engineering pro-

cess, and uses Geometrically and Materially Non-linear Imperfection Analyses (GMNIA)

with the measured geometrical shape of the sections and an accurate material model. This

leads to very small (<3%) deviations to the ultimate load of the buckling tests, if the mesh-

ing and modelling of boundary conditions are accurate. This type of GMNIA, which uses

measured input data and was performed during the reverse engineering and model valida-

tion phase, is denoted by “GMNIA-MEAS” in the following section. In the GMNIA-MEAS

model the true stresses and true strains were introduced for the validation of each full-scale

experimental test. The stress-strain curve was simplified by dividing the true strain range

into 50-100 points and each point of the corresponding stress was utilised in the FEM ma-

terial model. The imperfections were introduced as spline curve and meshed directly in the

Abaqus software. Both real imperfections and real material model improved significantly

the accuracy of the FEM model outcome.

RHS and SHS: mode

shape and imperfection

for compression

e0= B/400

b)

c)

STRESS-STRAIN RELATIONSHIP

(S355 -S700)

a)

RHS

SHS

RHS: LBA result

(e.g. mode shape for

pure compression)

SHS: LBA result

(e.g. mode shape

for interaction

My+Mz+N)

E

ey

fy

fu

HOT-ROLLED STEEL

f /E+0.002y

fy

fu

COLD-FORMED STEEL

d)

e0 =,G L/1000

SHS: LBA result

(e.g. global buckling

mode shape

for pure compression)

Fig. 3.6. a) Material model; b) buckling shape and imperfection amplitude; c) LBA results of two sections
under different applied load; d) first global eigenmode and global imperfection amplitude in a LBA analysis.
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As a result of the GMNIA model validation, a mesh density with a minimum of 60

elements in circumferential and 200 elements in longitudinal direction was found to lead to

converging results of high accuracy. While the purpose of the GMNIA-MEAS is to reproduce

accurately the experimental tests, the aim of a parametric study is to produce a large number

of numerical values for the curve fitting procedure during the development of the design

formulae. This is not practical with a large number of unknowns and degrees of freedom as

in a GMNIA-MEAS, and more importantly, the GMNIA-MEAS may not generalise well, if

nominal geometric or material values from the standards where applied. For these reasons,

an equivalent FEM model was developed, here defined as GMNIA. Thereby, a GMNIA is a

simplified model with equivalent material models and imperfections. These properties are

shown in figure 3.6. Figure 3.6c shows a typical GMNIA mesh, presenting a lower number of

degrees of freedom than a GMNIA-MEAS and showing the buckling shape for the modelling

of the imperfections. The imperfections in the model are given by the shape of the first

eigenmode of a linear buckling analysis (LBA), scaled by a multiplying factor e0, defined as

imperfection amplitude.

The material model provides a stress-strain relation equivalent to the measured stress-

strain values from the tensile coupons. Figure 3.6a shows the two material models from

Yun and Gardner [57] [56]. These material models correspond to the stress-strain function

described in the CSM in section 2.3 figure 2.10 and are adopted in the GMNIA model for

the GSRM in the following cases:

• in the analysis of cold-formed sections, modelled by a linear-elastic range up to the

yield stress and by a Ramberg-Osgood model in the plastic range.

• in the analysis of hot-rolled sections, modelled by a bilinear function up to εsh and a

non-linear function up to fu.

Applying nominal values for the yield stress to both models, the GMNIA obtains a material

model equivalent to the stress-strain relation from the coupon tests in the GMNIA-MEAS.

The residual stresses are not introduced in the model since the stress-strain formulation of

Yun-Gardner is calibrated against a large pool of experimental results to account for the

effects of residual stresses. A more detailed description of the Yun-Gardner curves is found

in section 2.3.
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3.4.3 Validation against experimental tests

b) c)a)

Fig. 3.7. GMNIA-MEAS model vs. test results, specimen deformed shape measured with DIC.

An example of a GMNIA-MEAS model validation is shown in figure 3.7. The RHS specimen

deformed shape in a) was caused by an eccentric compressive load and the deformations were

measured by a GOM (Aramis) Digital Correlation Image (DIC) system. The DIC method

tracks simultaneously images of the on-going experimental test and captures the changes

in the image producing a full-field of displacements of the registered experiment. The DIC

necessitates of a painted stochastic grid of black and white colours, isolates single cells in

the stochastic grid and recognises them during the experiment. Thereby, during the experi-

mental test the single cell displacement may be tracked, and provided that the full external

surface of the specimen is painted in a black-and-white stochastic grid, the DIC recollects

the deformation field of the specimen surface. The evaluation of the DIC deformations in a

colour scale is shown in figure 3.7b and figure 3.7c represents the deformed specimen with

the painted stochastic grid for the DIC. While the comparison of the deformation shape

between the GMNIA-MEAS and the full-scale experimental test shows qualitatively the ac-

curacy of the numerical model, the direct comparison of the peak load in both experimental

measure the accuracy of the GMNIA-MEAS and the experimental test. The comparison is



51 CHAPTER 3. METHODOLOGY

shown in terms of accuracy of the load-deformation and load-rotation plots. In figure 3.8 the

GMNIA-MEAS reproduces both the position and shape of the post-buckling deformations

as well as the peak load itself quite accurately, see figure 3.8. As illustrated in the figure,

the load-shortening and load-rotation paths obtained from the FE models were typically too

stiff up to the peak load and descended more rapidly than in the experimental observation.

For the purposes of the project, these deviations in the load-deformation paths were not of

concern, as the peak value of resistance was the main value against which the models were

validated. In summary, the following statistics of the model validation were obtained for the

experimental tests conducted at Bundeswehr University Munich:

• for the 12 stub-column tests (pure axial compression) considered, the average of the

ratio between the peak load in the validated GMNIA-MEAS models and the experi-

mental tests was Fmax,FEM/Fmax,test = 0.99, with a standard deviation of 3.2%.

• for the total of 48 stub-column and short beam-column tests on RHS/SHS and derived

section shapes, an average value of Fmax,FEM/Fmax,test = 0.99 was obtained, with 4.2%

standard deviation.

N

e

N

F = 1309,9 kNmax, Exp

F = 1268,0 kNmax, FEM

RHS 300/150/6

S355 - EN 10219

f = 429 Mpay,meas

e = 57 mm

Fig. 3.8. Load-deformation and load-rotation plots.
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3.4.4 Calibration of the GMNIA parameters

As was shown in chapter 2, most the formulation of a design rule undergoes a ”calibration”

phase, which consists in a process of fine-tuning arbitrary input parameters of the model.

For both the Winter approach and Ayrton-Perry approach a determining parameter is the

shape and amplitude of the imperfections. The imperfection shape relies on the mechanical

analysis of the structural element, and in the scope of this work the imperfection model

requires an approach at a local level, where the Winter formulation is chosen, and a different

approach at a global level, where the Ayrton-Perry formulation is chosen. The work of

Winter on local buckling represents an extensive source of experimental data and provides

design curves for the prediction of the buckling strength, that are mechanically sound and

are applied in chapter 6 for the development of GSRM curves. The imperfection in the

literature of plate buckling [38, 39] is commonly referred to as:

e0,L = B/400 (3.10)

where e0,L is the imperfection amplitude, B the plate width and 400 is a value calibrated

from experimental and numerical tests. The Eurocode 3 [1] provides a similar approach for

the imperfection amplitude and utilises the value of 200. In chapter 5 the calibration of the

imperfection amplitude against the HOLLOSSTAB experimental test results is described

and analysed in detail.

The approach for imperfections for the global buckling is derived from the Ayrton-Perry

formulation. Global imperfections of the whole member determine a second order bending

moment and influence the behaviour for global buckling. The shape of the imperfection is

given by the first global eigenmode of the LBA and is scaled by the imperfection amplitude

calculated with equation (3.11).

e0,G = L/1000 (3.11)

where L is the member length and 1000 a calibrated parameter found in the literature for

column buckling (see [48] and [50]) and code provisions. More details on the model validation

and calibration may be found in chapter 5 and in [64, 22, 29].
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3.5 Analytical formulae

Whether at a local level or at a global level, a buckling curve is defined as any kind of

representation of buckling strength Rb as a function of its cross section resistance RCS and

critical bifurcation load Rcr:

Rb = f(RCS;Rcr) (3.12)

With:

• Rb buckling resistance, i.e. the load level at which the peak of a load-deformation (F-u)

curve would be measured in tests, see figure 3.9.

• RCS resistance at a cross-sectional level. This can for instance be the plastic or elastic

capacity, or a reduced elastic capacity owing to local buckling effects.

• Rcr elastic bifurcation load from analytical formulae (e.g. Euler load) or an LBA.

This function f is defined by an analytical formula developed for the prediction of the

buckling strength, and this section reports the most common formats for the development

of analytical formulae within the scope of this thesis.

In figure 3.9 the elastic bifurcation load is represented as a constant load-value inde-

pendent from the deformation of the member. The real resistance value in case of member

buckling is always lower and is defined as the buckling resistance Rb in 3.9 at the peak

level of each load-deformation curve. The imperfection amplitude e0 is applied to local and

global imperfection shapes. With increasing e0, member length L and effects due to the

material non-linearity, the peak loads are progressively reduced, but these effects are not

clearly visible in this type of representation. The formulation of the design function and

parameters inherently depends on the chosen representation format, since same numerical

results could assume different shapes and tendency according to the chosen representation.

A basic representation of the single numerical or experimental results is the load-deformation

curve, which was here analysed as an introduction to the different formats for the analytical

formulae both for plate and member buckling.

A common representation format for the cross-section resistance is the normalised my−n
plot. This plot shows the applied normalised pure compression n and the applied normalised

bending moment my, defined as follows:

n =
N

Npl

my =
My

My,pl

(3.13)
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Fig. 3.9. Load-deformation curve comparing the beam-column resistance with increasing imperfection am-
plitude, member length and with real material models.

Similarly to my, mz may be added if the cross-section is not bi-symmetrical. Figure 3.10

serves to illustrate the concept with example. The n−my−mz diagram shows the numerical

results of the plastic resistance on a RHS section with an H/B ratio of 2. The continuous

surface shown in the figure is a reference load, which was given in the n−my −mz space by

the equation of a sphere:

n2 +m2
y +m2

z = 1 (3.14)

The dots in the plot show the points corresponding to the full plastic resistance of the section,

which is asymmetrical with respect to the origin and thus has a markedly varying distance

from the reference load surface. Generally speaking for SHS and RHS cross-sections, the

Rpl points are found mostly inside the reference load surface, in some cases exactly on the

surface, and sometimes somewhat outside the reference load surface, as is shown in figure

3.10.

In the following part of the section several design formats corresponding to analytical

formulae for the development of a design curve are presented: the Ayrton-Perry and the

Winter format methodologies will be presented in detail.



55 CHAPTER 3. METHODOLOGY

a) b)

Fig. 3.10. normalised pure compression and biaxial bending moment diagram shown in two different views
a) and b).

3.5.1 Ayrton-Perry format

Starting from the approach of Ayrton and Perry defined in section 2.1.2, the equation to

the limit state and a formulation for the imperfections were was introduced. Current design

standards such as the Eurocode use equation (2.21) to the limit state with a reduction factor

of the cross-sectional plastic resistance in order to define the member strength, and they plot

it as a function of the member slenderness, obtaining:

χy +
Ae0
Ncr

· χy

1− χyλy
2 = 1.0 (3.15)

where χy and λy are, respectively, the knock-down factor and normalized slenderness for

buckling about the y-axis. In this section, the y-axis will be use as a reference for a simplified

explanation of the Ayrton-Perry model, but the formulae and formats may be extended to

3D models including buckling along the z-axis. Thereby, the following variable may be

introduced:

ηimp =
Ae0
Ncr

(3.16)

where ηimp is a normalization of e0 by the section core width. The ηimp value is the cor-

respondent parameter for the imperfection derived by Robertson and shown in section 2.1.
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Introducing this definition in the equation (3.15) results in:

χy + ηimp ·
χy

1− χyλy
2 = 1.0 (3.17)

The quadratic equation may be rewritten in the reduced quadratic form as follows:

χ2
y −

χy

λ
2

y

(
1 + ηimp + λ

2

y

)
+

1

λ
2

y

= 0 (3.18)

The solution for equation (3.18) reads:

χy =
ϕy

λ
2

y

−
√
ϕ2
y

λ
4

y

− 1

λ
2

y

=
1

λ
2

y

(
ϕy −

√
ϕ2
y − λ

2

y

)
(3.19)

with ϕy =
1

2

(
1 + ηimp + λ

2

y

)
(3.20)

The expression (3.19) leads to the well-known solution:

χy =
1

ϕy +
√
ϕ2
y − λ

2

y

(3.21)

Figure 3.11 shows possible buckling curves applying different values of a constant value of

ηimp. Still, this equation does not predict accurately any real cross-section, since the ηimp is

not defined in a practical manner. Rondal and Maqui in 1979 [65] proposed a formulation

for this parameter, which later would be used by the Eurocode and it is still the current

version in use:

ηimp = α
(
λy − λ0

)
(3.22)

where ηimp is a linear function of the relative slenderness in the y-axis λy and α a newly

introduced constant value accounting for manufacturing process and cross-section type, and

λ0 is a constant value equal to 0.2 and representing the end of the plateau of χy = 1.0.

In figure 3.11b the curves for column-buckling are represented from curve a0 to d. The

corresponding values of α are shown in table 3.1, corresponding to the values calibrated by

Rondal and Maquoi against experimental tests. These values are still adopted in the current

version of the European standard.
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a) b)

Fig. 3.11. a) different buckling curves varying ηimp; b) EC3 buckling curves.

Buckling curve a0 a b c d

Imperfection factor α 0.13 0.21 0.34 0.49 0.76

Table 3.1: EN 1993-1-1. Imperfection factors for the determination of the buckling curve.

3.5.2 Winter format

The description of the formulations for local buckling by Winter ended in section 2.1 with

equation 2.18. This formula predicts values on precise assumptions on load and boundary

conditions. This formulation may though be extended to a general case by introducing

calibration factors. Following existing proposals and currently developed design methods

([11], [66], [60]), equation (2.17) may be rewritten as follows:

ρ =
1

λ
n1

L

(
1− A

λ
n2

L

)
(3.23)

where:

• n1 and n2 are the exponent of λL.

• A is generally a constant value.
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In general, n1 = n2 is often the chosen as it is consistent with the Winter formulation. The

Winter format is currently in use to predict very different effects of buckling not only related

to local buckling, but distortional and global buckling, too.

ρ =
1

λ
0.6

L

(
1− 0.25

λ
0.6

L

)
(3.24)

ρ =
1

λ
0.8

LG

(
1− 0.15

λ
0.8

LG

)
(3.25)

Equations (3.24) and (3.25) are two powerful examples of the Winter format. Equation (3.24)

represents the formula for the prediction of buckling strength for open channel sections found

in the current version of the AISI [60] with calibration values n1 = n2 = 0.6 and A = 0.25,

derived from numerical and experimental results. In equation (3.25) the predictive formula

for the interaction of local and global buckling of open channel members from the same

design provisions is shown. The member strength is calculated as a reduction factor of the

cross-section resistance. In order for the GSRM to benefit from the Winter formula and

design approach the effects on the parameter A are studied, whereas the choice of different

values than n1 = n2 = 1 is neglected, since it is not consistent with Winter plate buckling and

does not show substantial improvement in result accuracy. In fact, this same approach for

plate buckling is adopted in the Eurocode [40] and described in 2.2. Figure 3.12a shows the

domain of the Winter curve with values of A ranging from A = 0.11 to A = 0.22; consistently

with the Eurocode approach A = 0.22 corresponds to the buckling curve for the case of pure

compression, resulting in the same equation as in (3.23). A = 0.11 results into the load case

of pure bending. A graphic representation of a general stress distribution is shown in figure

3.12b. The Eurocode approach is to consider each plate singularly in case of a cross-section,

and as is shown in 3.12b, each of the 4 plates of the RHS applies a different A value. The

parameter ψ, defined as the ratio of the stress at both plate ends, follows directly the stress

state of the plate. For the case of a hollow section A may become a function of each plate

ψ value as follows:

A = f(ψ1, ψ2) with ψ1 ≥ ψ2 (3.26)

where only two sides of the represented section govern the value of the parameter A, which

are the most 2 compressed sides of the cross-section. This relationship is applied to a single
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type of cross-section such as the RHS and SHS, and it is proven to be effective, as will be

demonstrated in the verification of the GSRM design curves in chapter 6.

y

z

a) b)

Fig. 3.12. a) range of application for the parameter A in the Winter format of representation, compared
with the curve b for column-buckling and the Euler curve; b) graphic representation of ψ1 and ψ2.



Chapter 4

Experimental campaign

4.1 Introduction

A comprehensive experimental programme was conducted in the Structural Laboratory at

Bundeswehr University Munich to investigate the cross-sectional behaviour of cold formed

square and rectangular hollow sections (SHS and RHS), of stiffened RHS and hot-rolled

hexagonal cross-sections. Two grades of mild and high strength steel – S355 and S500 - and

twelve section sizes – four SHS, two RHS, covering all four cross-section classes according to

the slenderness limits in the Eurocode [1], were examined. The cross-section sizes, material

grades, and classes are represented in figure 4.1. This experimental investigation consisted of

twelve tensile coupon tests, twelve stub column tests, twenty-four short beam-column tests,

along with measurement of geometric imperfections for each specimen. This chapter presents

a summary of the results of this experimental test campaign and a detailed description of

each experimental test category. A comprehensive and detailed overview of the results of the

experimental test campaign conducted during the HOLLOSSTAB project is given in [64].

The full scale tests were divided in 5 categories according to load case and length. In the

first 4 categories local buckling was analysed, the categories are numbered from 1 to 4 (T1,

T2, T3, T4) with increasing eccentricity of the test. T1 includes solely pure compression

stub column tests; T2 category presents a small eccentricity at the top and a gradient that

brings the eccentricity equal to zero at the bottom, showing mostly compression on the

specimen; T3 has a medium eccentricity, which models N+M interaction; T4 shows high

eccentricity that brings the specimen almost no compression and simulates a load case very

closely to pure bending. The T5 is equivalent to T3 but the chosen length of 2000 mm for
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Cross-section dimen-
sions

Grade
EC3
Class

Standard

SHS 140×140×4 S355 3 EN10219
SHS 200×200×5 S355 4 EN10219
SHS 200×200×8 S355 1 EN10219
SHS 200×200×4 S500 4 EN10219
SHS 200×200×5 S500 4 EN10219
RHS 300×150×6 S355 1-4 EN10219.
RHS 300×150×8 S355 1-4 EN10219
SHS-S 140×140×2.5 S355GD - -
SHS-S 140×140×3.5 S355GD - -
SHS-T 140×140×2.5 HX460 - -
SHS-T 140×140×4.0 HX460 - -
HEX250×8.5 S355 - EN10210

Table 4.1: Overview of the tested cross-sections.

the specimens decreased the specimen resistance and displayed global phenomena during the

test. Table 4.2 offers an overview of the test specimen properties.

Test
denomination

Top
eccentricity

Bottom
eccentricity

Length

- [mm] [mm] [mm]

T1 0 0 800
T2 9-64 0 800
T3 57-196 equal to top 800
T4 232-457 equal to top 800
T5 57-196 equal to top 2000

Table 4.2: Overview of test type and corresponding test properties.
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The ID test number is composed of the test type denomination and an increasing number

(e.g. T1-1, T1-2 etc.). For the stub-column tests, the ID number goes from T1-1 to T1-

12, for the short beam-column test with constant moment, it ranges from T3-1 until T3-12,

from T4-1 until T4-12. The short beam-columns with compression on all sides and a bending

moment gradient (see T2 special section for more details) span from T2-1 to T2-12 as well.

Long beam-columns are 7 in total, from T5-1 to T5-7. Figure 4.1 displays an overview of

the cross sections and a 3D representation.

e)

2
5

0

140

140

140

140

a) b)

30

9
42

7

30

10

B

c)

H

B

B

d)

Fig. 4.1. Tested sections: a) square hollow section with stiffeners (SHS-S); b) square hollow section with
stiffeners and T-shape (SHS-T); c) rectangular hollow section (RHS); d) square hollow section (SHS); e)
hexagonal hollow section (HEX).

4.2 Auxiliary tests

Auxiliary tests provide information to the main experimental test, which are not measurable

during the test.
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4.2.1 Tensile tests

Tensile coupon tests were initially conducted to obtain the key mechanical properties and full

stress-strain responses of the test materials. In total, more than twelve flat tensile coupon

tests were conducted, and here one test sample for each cross sections is represented. In case

of more tensile tests for cross-section the more representative coupon and test was chosen.

The coupon specimens were dimensioned and tested in accordance with EN ISO 6892 [67]

and machined longitudinally from adjacent faces of the section. The extracted coupons were

in some cases sand blasted prior to dimension measurements being taken to remove the

mill scale from their surfaces. The tensile tests were conducted at room temperature using

a Zwick und Röll 400 kN hydraulic testing machine, and for the high strength specimens

a Doli 600 kN testing rig. The tensile tests were displacement controlled with different

velocities according to the specimen dimensions, while the deformation was measured with

extensometer attachments on both specimen sides and the tension was measured with an

internal load cell, connected to the hydraulic grips.

Fig. 4.2. Overview of the engineering stress-strain curves obtained from tensile coupon tests.

An overview of the engineering stress-strain curves obtained from the tensile tests is

plotted in figure 4.2, and the material properties for each section, including the yield strength

fy, ultimate tensile strength fu and ultimate strain at the ultimate tensile strength εu are

summarised in table 4.3. The majority of the obtained test stress-strain curves displayed

the typical characteristics of cold-formed steels, with a non-defined shift from the elastic

range to the strain-hardening range similar to the Ramberg-Osgood model; SHS-S showed
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a behaviour similar to the cold-formed tests and SHS-T a different behaviour, in one case

with a sharply defined yield point and a yield plateau, followed by strain hardening until

fracture.

Cross-section fy fu εu fu/fy

SHS 140×140×4 430 517 10.8 1.20
SHS 200×200×5 401 506 16.0 1.26
SHS 200×200×8 475 582 13.2 1.22
SHS 200×200×4 563 647 9.6 1.15
SHS 200×200×5 557 625 7.0 1.12
RHS 300×150×6 429 516 14.3 1.20
RHS 300×150×8 451 548 13.9 1.21
SHS-S 140×140×2.5 409 548 9.6 1.34
SHS-S 140×140×3.5 463 551 12.8 1.19
SHS-T 140×140×2.5 420 500 14.0 1.19
SHS-T 140×140×4.0 480 533 13.6 1.11
HEX250×8.5 395 507 13.0 1.28

Table 4.3: Average measured material properties of tested cross-sections from tensile coupon tests.

4.3 Imperfection measurement and evaluation

Cold steel manufacturing introduces geometric imperfections and residual stresses by bending

the steel coils and welding the cross-section parts into the final shape. An additional source

of imperfections is the preparation of the specimens by cutting and welding the steel tubes

for the experimental test. This can significantly influence the structural responses including

the onset of buckling, initiation of plasticity and ultimate load-carrying capacity [68]. An

investigation of the local geometric imperfections in cold-formed steel SHS, RHS, SHS-T and

SHS-S and hot-rolled hexagonal cross-sections is described in this subsection. A 3D laser-

scanning technique was employed to measure the distribution of local geometric imperfections

in each test specimen. Firstly, the specimens were cleaned, the outer surface of the specimens

was then scanned using a Zeiss 3D scanner and recorded as point clouds. The scanned

data was initially processed in the software Colin3D [62], whereby a typical pre-processed
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3D model is displayed in 4.3a as point cloud. Then, 3D spline curves were laid over the

point cloud with a with Geomagic [69], a Computer-Aided Deseign software which sets the

sensitivity and roughness of the spline mesh. The spline surface may be imported without

further process in the Abaqus FEM Software (figure 4.3c), since it disposes of CAD interface,

and then converted into a precise mesh (figure 4.3d). The mesh is composed of shell elements,

described in 3.4, and the target mesh size for the numerical model originated from the spline

curves (GMNIA-MEAS) is 5 mm.

a) b) c) d)

Fig. 4.3. a) point cloud of the 3D scan data; b) spline curves approximating the real geometry; c) spline
surface directly imported into the Abaqus FEM Software; d) shell element mesh discretization in Abaqus.
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SECTION A-A

SHS 200/200/5 T1-2

SECTION B-B

SECTION C-C SECTION D-D SECTION E-E

Fig. 4.4. Example of imperfection measurement in mm for an SHS, displaying imperfection data at various
sections (A to E).
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The imperfection amplitude represents a fundamental parameter and input for the FE

model. The local imperfection distribution of a sample of specimens, as obtained from the

local imperfection scanning and analysis described above, is provided in the Appendix. The

primary finding of the imperfection analysis is that the highest values of imperfections are

consistently observed at the specimen ends. This is due to the cutting process or welding

in order to fabricate the specimen. Thus, in the Appendix the values at the specimen ends

near the cover plate or near the cut edge are neglected. In figure 4.4 a full imperfection

analysis of a case study showing sample values of 5 different specimen sections is shown.

The chosen specimen is a SHS with 200 mm width and 5 mm plate thickness, 800 mm

length and had a cold-formed manufacturing process. The study of the imperfections locates

the largest imperfection at the ends where the specimen was machined and welded, and

at the mid-span plate centre, where the cold-formed process caused both corner bends and

mid-plate imperfections. This thorough analysis of the real geometry of the specimens for

the experimental tests is one of the broadest in the literature for local buckling for number of

tested specimens and accuracy of the collected data. The statistics of these data is collated in

table 4.4, showing test ID and ideal geometrical properties and the mean value and standard

deviation of the imperfection data points compared to the ideal geometry.

ID Cross-Section Mean

Imperfection

Standard

Deviation

- - [mm] [mm]

T1-1 SHS 140X140X4 0.18 0.164

T2-1 SHS 140X140X4 0.18 0.152

T1-8 SHS-S 140X140X2.5 1.544 1.13

T2-8 SHS-S 140X140X2.5 1.536 1.176

T1-9 SHS-S 140X140X3.5 0.841 0.362

T2-9 SHS-S 140X140X3.5 0.844 0.45

T1-12 SHS-T 140X140X4 0.662 0.438

T2-12 SHS-T 140X140X4 0.668 0.444

T1-11 SHS-T 140X140X2.5 0.865 0.669
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ID Cross-Section Mean

Imperfection

Standard

Deviation

- - [mm] [mm]

T2-11 SHS-T 140X140X2.5 0.797 0.561

T4-8 SHS-S 140X140X2.5 1.727 1.239

T3-9 SHS-S 140X140X3.5 0.803 0.457

T4-9 SHS-S 140X140X3 0.785 0.433

T3-11 SHS-T 140X140X2.5 0.89 0.575

T4-12 SHS-T 140X140X2.5 0.87 0.585

T3-1 SHS 140X140X4 0.168 0.186

T4-1 SHS 140X140X4 0.187 0.19

T3-12 SHS-T 140X140X4 0.69 0.45

T4-12 SHS-T 140X140X4 0.685 0.404

T1-6 RHS 300X150X6 0.273 0.294

T1-7 RHS 300X150X8 0.633 0.585

T2-7 RHS 300X150X8 0.659 0.589

T1-2 SHS 200X200X5 0.199 0.156

T2-2 SHS 200X200X5 0.208 0.159

T1-3 SHS 200X200X8 0.432 0.433

T3-6 RHS 300X150X6XT3 0.385 0.478

T4-6 RHS 300X150X6XT4 0.339 0.429

T5-1 SHS 140X140X4 0.173 0.187

T5-5 SHS-S 140X140X2.5 1.696 1.269

T5-7 SHS-T 140X140X2.5 0.797 0.561

T5-4 RHS 300X150X6 0.246 0.261

T3-7 RHS 300X150X8 0.814 0.67

T4-7 RHS 300X150X8 0.836 0.691

T3-2 SHS 200X200X5 0.192 0.168

T4-2 SHS 200X200X5 0.206 0.24
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ID Cross-Section Mean

Imperfection

Standard

Deviation

- - [mm] [mm]

T3-3 SHS 200X200X8 0.503 0.493

T4-3 SHS 200X200X8 0.499 0.481

T5-6 HEX 250X8.5 0.552 0.474

T3-10 HEX 250X8.5 0.48 0.436

T4-10 HEX 250X8.5 0.511 0.462

T1-10 HEX 250X8.5 0.518 0.474

T2-10 HEX 250X8.5 0.557 0.478

T1-4 SHS 200X200X4 0.301 0.247

T2-4 SHS 200X200X4 0.32 0.242

T3-4 SHS 200X200X4 0.369 0.337

T4-4 SHS 200X200X4 0.323 0.279

T5-2 SHS 200X200X4 0.335 0.278

T1-5 SHS 200X200X5 0.186 0.151

T2-5 SHS 200X200X5 0.196 0.165

T3-5 SHS 200X200X5 0.257 0.214

T4-5 SHS 200X200X5 0.217 0.191

T5-3 SHS 200X200X5 0.217 0.191

Table 4.4: Statistics of the imperfection measurement.
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4.4 Full-scale tests and validation of the numerical

model

4.4.1 Stub column tests T1

As was described in section 3.3 and 3.4, the reverse engineering process consists in replicating

the experimental test in a GMNIA-MEAS with the highest possible accuracy, since the

overarching objective of the experimental test campaign is the validation of such a numerical

model. A FEM model of the stub-column test with the measured geometrical shape of the

sections and real strain-stress relation gathered in the auxiliary tests led to minimum (3%)

deviations to the ultimate load of the buckling tests if the meshing and modelling of boundary

conditions is accurate and representative.

a) b) c)

Fig. 4.5. a) deformed shape of the T1-6 RHS stub-column test of a GMNIA-MEAS numerical analysis with
Abaqus; b) specimen deformed shape of the corresponding experimental test measured by the DIC system.

A thorough validation of the GMNIA-MEAS numerical model defined and explained is

given in the Appendix. Each experimental test displays a load deformation curve plotted

against the GMNIA-MEAS corresponding outcome. The estimated numerical load capacity

values reproduce fairly well the experiment ultimate load, and in most cases follow quite

precisely the shape of the load-deformation curve. Figure 4.5 shows a comparison between
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the experimental test on the T1-6 experimental test (RHS 300/150/6 S355) and the numerical

model buckling shape. Both tests showed similar buckling shapes, validating the GMNIA-

MEAS model, which predicts with large accuracy the location and the amplitude of the

buckling shape.

F = 861,3 kNmax, Exp

F = 906,8 kNmax, FEM

N NN N

F = 1002,4 kNmax, Exp

F = 955,1 kNmax, FEM

N NN N

F = 584.5 kNmax, Exp

F = 588,4 kNmax, FEM

N N

F = kNmax, Exp 2925,8

F = kNmax, FEM 2875,3

N NN N

a) b)

c) d)

Fig. 4.6. Exemplary results for all different cross-section shapes; a) SHS T1-1, b) hexagonal T1-10, c)
SHS-S T1-9, d) SHS-T T1-11 cross-sections are shown.

Figure 4.6 shows a sample of the validation results for the stub-column tests of 4 different

cross-sections, where the validation is conducted by comparing the peak load and shape of

the load-deformation curve of the experimental tests and the GMNIA-MEAS. A summary

of all results for stub-column tests is give in table 4.5.
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Cross-section Steel
grade

Specimen
ID

Nu,Exp Nu,Exp/Nu,FEM

- - - [kN] -

SHS 140×140×4 S355 T1-1 861.3 0.950
SHS 200×200×5 S355 T1-2 1227.9 0.943
SHS 200×200×8 S355 T1-3 2917.9 0.967
SHS 200×200×4 S500 T1-4 1111.2 0.971
SHS 200×200×5 S500 T1-5 1736.1 0.977
RHS 300×150×6 S355 T1-6 1582.0 0.962
RHS 300×150×8 S355 T1-7 2806.8 1.001
SHS-S 140×140×2.5 S350GD T1-8 623.1 0.988
SHS-S 140×140×3.5 S350GD T1-9 1002.4 1.050
HEX250×8.5 S355 T1-10 2925.8 1.018
SHS-T 140×140×2.5 HX460 T1-11 584.5 0.993
SHS-T 140×140×4.0 HX460T1-

12
1098.1 1.034

Table 4.5: Summary of stub column test results. Nu,Exp is the experimental test load capacity, and
Nu,Exp/Nu,FEM is experimental load capacity vs the expected value from the numerical simulation.

4.4.2 Short beam-column tests T3 and T4

For the short-beam column tests another simplified GMNIA-MEAS model was developed.

From the basis of the reverse engineering process, a model with simplified boundary con-

ditions (such as pinned connectors at both end plates) was developed. The underlying

numerical model corresponds to the one developed for the stub column case (3.3), where

isoparametric SR4 elements and real imperfections from 3D spline curves are used in Abaqus

and the strain-stress relation comes from the tensile tests. Different conditions apply here

for the boundary as well as for the load. The axial force is applied with a fixed eccentricity,

which combined with second-order effects results in a slightly non-constant bending moment

over the specimen length.
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a)
b)

Fig. 4.7. Exemplary result for the T3-T4 numerical model validation a) deformed shape of a SHS
200×200×4 S500 T3-4 test of a GMNIA-MEAS numerical analysis with Abaqus; b) specimen deformed
shape of the corresponding experimental test measured by the DIC system.

Models with simplified boundary conditions generally explain with sufficient accuracy the

load-deformation path for specimens with large eccentricity tests (T4), as well as some of

the tests with smaller eccentricity (T3). When the load capacity outcome of the numerical

simulation did not provide satisfying results, a more precise numerical model was devel-

oped. The objective of this more refined model was to reproduce with more accuracy the

interaction between the test setup parts and the specimen, simulating the reciprocal effect

of the spherical bearing on the specimen and vice-versa. Thus, a model with a simulation

of the contact behaviour between the two elements of the spherical bearing was created.

The upper part of the bearing consists of a perfectly rigid element, which models the axial

load introduction from the 10 MN machine actuator, and a contact interaction with a fairly

rigid part, representing the bottom part of the spherical bearing, assumed to show a stiffer

behaviour than the specimen by being modelled by shell elements with thickness of 100 mm.

This simulates the spherical bearing surface contact, where the bottom surface is connected

through perfectly rigid elements to the specimen. The simulation of the wedge plate was

neglected. This model will be called hereinafter GMNIA-CONTACT, and solely represents

a more precise evaluation of the load capacity in terms of load-deformation curves.
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specimen

perfectly rigid load

introduction plate

rigid bottom part

of spherical bearingperfectly rigid MPC

a) b)

Fig. 4.8. a) Input model of the real geometry of SHS 200×200×4 S500 in Abaqus, consisting of 3D spline
curves and 3D surface for the spherical bearing; b) deformed shape and stress results of the same model with
displacement control.

For all models, considering that the deflection at specimen mid-height increases the test

eccentricity, a second order moment was calculated to compare cross-sectional resistance in

the OIC-format, as in:

M II
u = M I +Nue

II (4.1)

An overview of the validation of a sample of experiments is given in figure 4.9, and an

overview of the result values for the load capacity is given in table 4.6.
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F = 98,8 kNmax, Exp

F = 96,2 kNmax, FEM

N

e
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F = kNmax, FEM 1684,3
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N

e

N

F = kNmax, Exp 1441,6

F = kNmax, FEM 1457,2
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e
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a) b)

c) d)

e) f)

Fig. 4.9. Exemplary result for the T3-T4 numerical model validation with the comparison of the load-
deformation curve and peak loads in a) , c) and e), and the load-end plate rotation in b), d), and f). The
analysed experimental tests are a) b) SHS 200×200×8 S355 T3; c) d) SHS-S 140×140×2.5 S350GD T4; e)
f) HEX 250×8.5 S355 T3.



76

Cross-section Steel
grade

Specimen
ID

Nu,Exp Nu,Exp/Nu,FEM

- - - [kN] -

SHS 140×140×4 S355 T3-1 291.7 1.032
SHS 200×200×5 S355 T3-2 615.4 1.004
SHS 200×200×8 S355 T3-3 1441.6 0.989
SHS 200×200×4 S500 T3-4 622.6 0.887
SHS 200×200×5 S500 T3-5 895.8 0.926
RHS 300×150×6 S355 T3-6 1309.9 1.033
RHS 300×150×8 S355 T3-7 2119.0 0.973
SHS-S 140×140×2.5 S350GD T3-8 205.4 1.020
SHS-S 140×140×3.5 S350GD T3-9 309.8 0.944
HEX 250×8.5 S355 T3-10 1638.3 0.973
SHS-T 140×140×2.5 HX460 T3-11 63.2 1.055
SHS-T 140×140×4.0 HX460 T3-12 225.0 0.955
SHS 140×140×4 S355 T4-1 141.3 1.027
SHS 200×200×5 S355 T4-2 194.3 1.023
SHS 200×200×8 S355 T4-3 453.8 1.017
SHS 200×200×4 S500 T4-4 212.1 1.017
SHS 200×200×5 S500 T4-5 294.5 0.967
RHS 300×150×6 S355 T4-6 584.7 1.047
RHS 300×150×8 S355 T4-7 1080.4 0.995
SHS-S 140×140×2.5 S350GD T4-8 98.8 1.027
SHS-S 140×140×3.5 S350GD T4-9 155.5 1.002
HEX 250×8.5 S355 T4-10 457.1 0.972
SHS-T 140×140×2.5 HX460 T4-11 63.2 1.055
SHS-T 140×140×4.0 HX460 T4-12 118.1 1.050

Table 4.6: Summary of short beam-column test results. Nu,Exp is the experimental test load
capacity, and Nu,Exp/Nu,FEM is experimental load capacity vs the expected value from the numerical
simulation.
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4.4.3 Short beam-column tests T2

Short beam column tests with one-sided were performed to investigate the effect of a linear

bending moment over the member length for local buckling. The numerical model presents

an eccentric load on the top and shows fix connection on the bottom. For this reason, T2

numerical model can be derived from the GMNIA-MEAS or GMNIA-CONTACT, applying

a fixed connection on the bottom. Table 4.7 summarises the validation results for the T2

test. A detailed description of the general model is given in 3.4, and a detailed description

of each experimental test may be found in the Appendix.

Cross-section Steel
grade

Specimen
ID

Nu,Exp Nu,Exp/Nu,FEM

- - - [kN] -

SHS 140×140×4 S355 T2-1 868.3 1.010
SHS 200×200×5 S355 T2-2 1224.8 0.969
SHS 200×200×8 S355 T2-3 2800.2 0.956
SHS 200×200×4 S500 T2-4 865.1 0.967
SHS 200×200×5 S500 T2-5 1334.6 0.957
RHS 300×150×6 S355 T2-6 1507.7 0.921
RHS 300×150×8 S355 T2-7 2533.4 0.933
SHS-S 140×140×2.5 S350GD T2-8 614.8 1.016
SHS-S 140×140×3.5 S350GD T2-9 995.5 1.013
HEX250×8.5 S355 T2-10 2117.7 0.997
SHS-T 140×140×2.5 HX460 T2-11 591.4 1.048
SHS-T 140×140×4.0 HX460 T2-12 1098.1 1.027

Table 4.7: Summary of the resulting load capacity values for T2 short beam-column tests with
linear bending moment distribution.

4.4.4 Long beam-column tests T5

Long beam-column experimental tests investigate the interaction of the local+global buckling

effects. The chosen numerical model for the validation is a particular case of the T3-T4

model, described in this section. Table 4.8 summarises the results of the experimental test
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campaign. A fundamental remark is that - from the perspective of the GSRM formulation

for cross-sectional capacities - long beam-columns may be considered as a special case of the

short beam-column cases. The necessary requirement is that the second order eccentricity is

available and the applied second order moment can be calculated. A short specimen (stub-

column wise) is then extracted from the real geometry 2000 mm long beam-column specimen;

by doing so, all global effects are excluded. As a result, a local buckling short model problem

with the applied second order moment is equivalent to the GMNIA-MEAS model of the long

beam-column tests. All results shown in the GSRM format for the experimental test results

are obtained following this method and are shown in the Appendix.

Cross-section Steel
grade

Specimen
ID

δu Nu,Exp Nu,Exp/Nu,FEM

- - - - [kN] -

SHS 140×140×4 S355 T5-1 25 262 1.009
SHS 200×200×4 S355 T5-2 13 569.6 1.056
SHS 200×200×5 S355 T5-3 16 852.7 0.966
RHS 300×150×6 S500 T5-4 8 1289.8 1.013
SHS-S 140×140×2.5 S350GD T5-5 25 199.6 1.024
HEX 250×8.5 S355 T5-6 14 1484.8 1.029
SHS-T 140×140×2.5 S350GD T5-7 36 109.7 1.065

Table 4.8: Summary of short beam-column test results. δu is the mid-span Nu,Exp is the exper-
imental test load capacity, and Nu,Exp/Nu,FEM is the experimental load capacity vs the expected
value from the numerical simulation.





Chapter 5

Numerical investigation

5.1 Introduction

In the previous chapter, physical tests (full-scale and auxiliary) were used as the basis for

the validation and verification of advanced (GMNIA) numerical models. These models need

to be further simplified in order to carry out an extensive numerical investigation of the

behaviour of hollow sections under the full range of possible compression and biaxial bending

loading configurations, both for local and global buckling. The calibration of imperfection

and material input parameters for this purpose is carried out in section 5.2. Subsequently,

these scope of the parametric studied performed in the context of this thesis is described in

section 5.3.

5.2 Calibration of the numerical model used for

parametric studies

This section investigates the possible values for the imperfection amplitudes. In order to

carry out an extensive parametric study, it was decided to further simplify the validated and

verified numerical models used in chapter 4. Thereby, nominal geometric and material Input

Parameters were used in combination with a calibrated value of geometric imperfections.

Thereby, the first eigenmode shape for local and global buckling was chosen as reference

and scaled. Additionally, a standardized strain-stress relation for hot-rolled and cold-formed

profiles developed by Yun-Gardner [57, 56] was applied, as mentioned in section 3.4, using
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input values of fy and fu.

N N

GMNIA MEAS.
σ-ε, imp.
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GMNIA MEAS.
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N N
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e =B/2500

e =B/2000
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e =B/3500

e =B/3000

e =B/2500

e =B/2000

GMNIA MEAS.
σ-ε, imp.

GMNIA MEAS.
σ-ε, imp.

Fig. 5.1. Calibration of the imperfection amplitude for a a) RHS 300×150×8 S355 T1-6, for b) RHS
300×150×8 S355 T2-6, for c) RHS 300×150×8 S355 T3-6 and for d) RHS 300×150×8 S355 T4-6.

With the chosen FEM modelling technique and discretization, described in section 3.4,

the GMNIA-MEAS model approximate the resulting maximum force of the experimental

test with an average error of less than 3% in terms of ultimate load. In most observed cases,

the deformation curve follows the test curve very closely. For the purpose of calibrating

numerical models for the extensive parametric study, these same GMNIA-MEAS models

were compared to GMNIA-models with nominal geometry, eigenmode-based imperfections

and the Yun-Gardner material model with the input of fy and fu from the tensile coupon test.
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The GMNIA-MEAS load-deformation curve is thus compared in the following to different

GMNIA calculations with varying equivalent imperfection amplitudes, see figure 5.1 and 5.2.

N N

GMNIA MEAS.
σ-ε, imp.

a)

GMNIA

e =B/4000

e =B/3500

e =B/3000

e =B/2500

e =B/2000

GMNIA MEAS.
σ-ε, imp.

b)

GMNIA

e =B/4000

e =B/3500

e =B/3000

e =B/2500

e =B/2000

M M

N N

d)

M M

N N

c)

M M

N N

GMNIA

e =B/4000

e =B/3500

e =B/3000

e =B/2500

e =B/2000

GMNIA

e =B/4000

e =B/3500

e =B/3000

e =B/2500

e =B/2000

GMNIA MEAS.
σ-ε, imp.

GMNIA MEAS.
σ-ε, imp.

Fig. 5.2. Calibration of the imperfection amplitude for a a) SHS 200×200×5 S355 T1-5, for b) SHS
200×200×8 S355 T2-3, for c) SHS 200×200×5 S355 T3-3 and for d) SHS 200×200×5 S355 T4-3.

The imperfection amplitudes range from B/400 up to B/200, where B is the largest cross-

section part subjected to compression. Finally, a value of B/400 was chosen, matching what

is mentioned in various literature references as an accurate description for the Winter-type

buckling, see e.g. [38, 39, 70].

For the calibration of the numerical model for the global analysis a different approach

was chosen. Similarly to the local buckling, the equivalent imperfection shape derive from
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the first non-global eigenmode of a LBA analysis. The difference lies in the calibration

of the amplitude. Figure 5.3 compares the well-established buckling curve “a” (for hot-

rolled sections) and “c” (for cold-formed sections) from EC3-1-1 [1] with the results of the

GMNIA model with different imperfection amplitudes. At each level of global slenderness

λG =

√
Rpl,G

Rcr,G

several GMNIA models of a SHS 200/200/10 S355 section were calculated

varying only the global imperfection amplitude. The value of L/850 for the amplitude

minimizes the distance of the GMNIA result points to EC curve pattern.

a) b)

Fig. 5.3. Calibration of the imperfection for global buckling model. In a) the results for the hot-rolled
EN10210 cross-sections are shown, and similarly for cold-formed according to EN10219 in b).

Finally, the value of L/1000 was chosen as equivalent global imperfection. This imperfection

amplitude accounts for the safety factors implied by the Eurocode and corresponds to various

proposals in the scientific literature and in the international codes [48, 10, 56], and as is shown

in figure 5.3, L/1000 does not produce significantly higher results than L/850 or L/800. In

fact, this study of the global imperfection amplitude may be seen as a sensitivity analysis of

the desired GMNIA outcome (output variable) with respect to the parameter imperfection

amplitude (input variable), and it corroborates the use of value of L/1000 as equivalent

imperfection for the GSRM as well, confirmed by the review of the literature on global

buckling.
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5.3 Scope of the parametric study

The numerical test campaign consisted of around 43000 individual numerical tests. As a

first step, around 30000 numerical tests (LBA+GMNIA) were conducted for the study of

local buckling, the parameters of which are shown in table 5.1 in form of a numerical test

matrix. All shown parameters were combined with all other given parameters.

Thickness L/Lcr Steel grade e0,L φy φz h/b Manufacturing
standard

[mm] [−] [mm] [°] [°] [−]

2.0 0.1 S355 B/400 0 0 1 EN10219
2.5 0.15 S460 15 15 1.5 EN10210
3.0 0.2 S550 30 30 2
3.5 S700 45 45
4.0 60 60
5.0 75 75
6.3 90 90
8.0
10.0
12.0

Table 5.1: Parameters for the SHS and RHS local buckling numerical campaign.

The following parameters

e0,L φy φz n my mz (5.1)

were defined in section 3.2 as the GSRM incorporates them in the design methodology. The

values of the applied loads in the φy−φz space is given by the sphere points of equation 3.14

in section 3.5 and bending moments were applied at both specimen ends, defining a constant

bending diagram along the length. The sole new parameter to be defined here is the length
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of the specimen L, defined by equation (5.2).

L

Lcr
= min

(
Iy
A

;
Iz
A

)
π

√
E

fy
(5.2)

The aim of an extensive parametric study on the local buckling behaviour of slender and non-

slender cross-sections is the precise determination of the cross-section capacity under different

load combinations. For this reason, a large number of thicknesses and load combinations

was employed in order to evaluate with accuracy the effects of plate buckling.

In the study of global buckling the number and type of chosen parameters is different.

In figure 5.4 the different load combinations for global buckling are shown. Around 13000

numerical calculations were conducted for the study of global buckling, the parameters of

which are shown in table 5.2. Figure 5.4a represents the constant bending moment case, 5.4b

and 5.4c a linear distribution of the bending moment, 5.4c and 5.4e illustrate the distribution

corresponding to uniformly distributed load and mid-span concentrated load.

N N

N NN N

N N

N N

My,E My,E My,E

My,E
ΨMMy,E

ΨM=-0.5

ΨMMy,E

ΨM=0

qZ,E

My

FZ,E

My

a) b)

c)

d) e)

Fig. 5.4. Different bending moment diagrams for the parametric study on global buckling.

The new variables ηy and ηz are defined in equations (5.3) and (5.4).

ηy =
my

n
(5.3)

ηz =
mz

n
(5.4)



85

λp L/Lcr Steel
grade

e0,L ηy ηz h/b Manufacturing
standard

Load case

[−] [−] [mm] [−] [−] [−]

0.3 0.2 S355 B/400 0 0 1 EN10219 ψM = 0
0.6 0.4 S700 L/1000 0.5 0.5 1.5 EN10210 ψM = −0.5
0.9 0.6 1.0 1.0 2 ψM = 1
1.2 0.8 2.0 Fy − Fz

1.0 60 qy − qz
1.2
1.4
1.6
1.8
2.0

Table 5.2: Parameters for the SHS and RHS local buckling numerical campaign.

The remaining new variables in table 5.2 are defined as follows:

• λp is defined following equation 2.67 in section 2.2 in accordance with the definition of

EN 1993-1-5 [40].

• ψM is the coefficient applied to one end of the member to the applied bending moment,

as in (5.5)

My,E,right−end = ψMMy,E,left−end (5.5)

• Fy − Fz indicates a mid-span concentrated load in y and/or z direction.

• qy − qz indicates a distributed load along the member length.

In the parametric study for global buckling, the SHS and RHS thickness was defined by the

choice of a certain λp for the section. For the case of global (and combined global+local)

buckling, a large number of member lengths was considered. The probability of the si-

multaneous occurrence of the maximum values of both the local and global imperfection

is much lower than the probability of occurrence of an individual maximum. This is also
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reflected in standardized procedures for FEM-based design of steel structures, such as the

one found in Annex C of EN 1993-1-5. Following the basic concepts described therein, in the

present parametric study two different imperfection models were adopted for each GMNIA

calculation:

1. A model with an amplitude of 100% of L/1000 for the global buckling shape and 70%

of B/400 for the local (plate) imperfection.

2. A model with an amplitude of 70% of L/1000 for the global buckling shape and 100%

of B/400 for the imperfection at a local level.

In order to consistently apply the imperfection at a global and local level, the corresponding

shapes for local and global buckling were chosen as scaled buckling modes derived from an

LBA analysis, described in section 3.2. Since the global buckling can affect both axes, the

imperfections were applied in both directions simultaneously, and were additionally reduced

to equations (5.6) (5.7) when applied simultaneously.

e0,G,y =
L

1000
cos

π

4
≈ 0.7

L

1000
(5.6)

e0,G,z =
L

1000
sin

π

4
≈ 0.7

L

1000
(5.7)



Chapter 6

GSRM Design Formulations - Local

Buckling

6.1 Introduction

The chosen approach for the GSR Method as applied to describing local buckling makes use

of Winter’s formula, generalising it to describe the behaviour of the entire cross-section as

observed in the physical and numerical tests. The slenderness and the reduction factors refer

to the cross-section properties (geometry and steel grade) and to the applied load and derive

from simple analytical formulae (cross-section resistance) and from a linear buckling analysis

(elastic bifurcation load). The chosen representation format was developed by comparing

different definitions of the cross-section resistance and is presented in section 6.2, then the

Winter format for the development of a design curve is applied and calibrated against the

database of numerical results (section 6.3). Section 6.4 compares the GSRM prediction with

the current international standards.

6.2 Choice of the GSRM representation format

The discussion on the most suitable representation format started in section 3.2 and 3.5,

where design approach, representation in 2D or 3D diagrams and analytical formulae were

described. In figure 6.1 a sample of numerical results is shown in the n−my plot, as the first

type of traditional representation for the local buckling resistance of sections. The figure

illustrates the resistance of SHS-S sections as observed for some representative examples and
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parameter variations. The GMNIA results are represented by the dots, while the continuous

lines represent reference resistances. The (ideal) plastic and elastic cross-sectional resistances

are independent of code provisions, while the N-M-EC3 lines represent the simplified rules for

plastic cross-sectional resistances of rectangular and square hollow sections found in Eurocode

3 [1]. Figure 6.1a shows the influence of the (constant) wall thickness, with otherwise equal

member length (L=800 mm), steel grade (S355) and imperfection amplitude e0,L = B/400.

As could be expected, the resistances lie between the elastic and plastic cross-sectional

capacities, with the thinner cross-section getting closer to the elastic (class 3) cross-section

capacity line. Figure 6.1b shows the influence of the steel grade. A higher-strength steel grade

(S460) leads to a relative (but obviously not absolute) reduction of strength in comparison

to the plastic cross-sectional resistance.

a) b)

ϕ

plastic plastic

Fig. 6.1. a) GMNIA results in the n−my diagram of a SHS-S specimen with a) two thickness values and
b) two steel grades.

The n−my diagram seems to be a powerful tool for the understanding of the effects of

parameters on the resistance, for standard SHS/RHS and even for a non-standard section as

the SHS-S. This format, though, is not suited to determine a general design concept, which

may capture the GMNIA results varying the section slenderness. For this, the λL − χL

diagram is a better representation format: it plots the buckling resistance Rb,L as a function

of the overall cross-section slenderness. As was stated in section 3.2, the slenderness and the
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buckling resistance (as multiplier of a reference load) are defined as follows:

λL =

√
Rref

Rcr,L

(6.1)

Rb,L = χLRref (6.2)

c)

c) d)
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a) b)

Fig. 6.2. a) a H/B=2 CS with a few φy φz combinations in the GSRM Rpl method for cold-formed RHS;
b) results of a) for φz = 0, φz = 30, φz = 60 and n = 0; c) results of b) with CS resistance RLIN−pl; d)
results of b) with CS resistance Rel.



90 CHAPTER 6. GSRM DESIGN FORMULATIONS - LOCAL BUCKLING

In equation (6.1) and (6.2) Rref is a reference resistance measure defined by analytical

formulae from the geometry and material. Rel and Rpl are respectively the well-known elastic

resistance and plastic resistance. Another possible definition of Rref is RLIN,pl, consisting

in a linear function in the n − my plot passing through the points (n = 1,my = 0) and

(n = 0,my = 1). The following figure 6.2 shows results of the numerical study for an

individual section, an RHS with H=200, B=100 mm, wall thickness of t=5mm and steel

grade S355, loaded by variable combinations of axial compression and biaxial bending. In

the various sub-figures, the results based on the different reference cross-sectional resistances

(full non-linear plastic Rpl, linear plastic RLIN,pl, elastic Rel) are illustrated. It should be

noted that, as is indicated in the figure, a non-linear stress-strain curve was employed in

these calculations in accordance with the recommendations in the methodology section 3.

Figure 6.2a shows the totality of the obtained results for all considered combinations of n,

my and mz, while figure 6.2b shows a selection with only 3 “angles” φz (and all combinations

of n and my) as well as the case with pure bending (n=0) with various degrees of double-

axiality. In this latter plot, a characteristic, “U-shaped” distribution of the results for each

the four considered cases is obtained. The mentioned “U-shape” is thereby given by the

distribution of the values of χL plotted over the slenderness, since these start and end at

a higher value at each end of the considered spectrum of loading parameters than many

values that are obtained from intermediate combinations of parameters. In all cases, loading

scenarios with more eccentricity and biaxiality lead to lower values of χL. It may thereby

be noted that this behaviour is only typical, if a representation based on the full non-linear

plastic cross-sectional resistance is chosen. This can further be seen in figure 6.2c and d,

where the same results as in 6.2b are plotted on the bases of the linear-plastic and the

elastic cross-sectional resistances. In this case, the resistances first increase (in terms of

χL) with increasing eccentricity ez (i.e. causing bending about the y-axis), only to later

decrease after a peak value is achieved. The scatter of these results is fairly large, both in

terms of slenderness and values of the buckling resistance. In order to be able to develop

design equations that conservatively, yet sufficiently accurately cover the full range of possible

combinations of loading for all RHS and SHS sections in the context of the GSRM design

philosophy, it is useful to plot the entirety of the results of the numerical test campaign. In

figure 6.3 both Rref = Rel and Rref = Rpl are adopted. The plots clearly illustrate that quite

different values of χL are obtained depending on the definition of Rref . At first glance, figure

6.3 seems to indicate a relatively compact scatter band in the Rpl-based representation.

However, the differences between various χL values for a particular slenderness are still
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pronounced, and a simple lower-bound curve would underestimate many capacities by up

to 50%. The most common load cases, such as pure compression or bending moments, are

positioned in the higher range of the scatter band for this type of representation, with the

pure compression case exhibiting a similar pattern to that of the pure bending case. This

implies that conservative design rules based on Rpl would mostly be governed by less common

cases with high load eccentricities. Different results are obtained if the cross-section reference

resistance is given by Rel, with the corresponding changes in the definitions of slenderness

and knock-down factor. At first, the scatter in the corresponding figure 6.3b appears wider,

since very high χL values are reached, mainly due to the large difference between Rel and

Rpl in biaxially bent sections. However, as was observed during the development of GSRM

design rules, much clearer patterns emerge if Rel is chosen as the reference resistance. Very

advantageously for the development of practical design curves, a description with “Winter-

type formulae” is made possible, since most of the results follow the general pattern of the

Winter curve. Conveniently, the standard cases of pure compression and pure bending are

near the lower bound of resistances. For this reason, among others, Rref = Rel was finally

chosen in the GSRM to represent the results of the numerical parametric study and the

design rules developed from it.

a)

N

e

N

n

m

b)

n

m

pl el

e
l

p
l

Fig. 6.3. Overview of all results from the parametric study of the cross-sectional (local buckling) strength
of cold-formed SHS and RHS; a) representation of GSRM buckling knock-down factor using Rpl as reference
resistance, and b) representation using Rel.
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6.3 Calibration of the design equations

The Winter formulation is the format chosen format for the development of local buckling

reduction curves for flat-faced hollow sections, as it naturally provides a shape that is suited

to this task, by its very background. The steps for the development of the Winter design

curves and a final format of representation of the resistance were described in section 2.1,

while in 3.5 equation (3.23) describes the general format of the Winter curve. The GSRM

defines a section-based χL = f
(
λL
)

function, which assumes the form of the generalised

Winter-curve of equation (3.23). Thus, in order to use the Winter formulation and fit it

to the results of the parametric study, the results in the GSRM format can be rewritten in

equation (6.3), where n1 and n2 are set to 1.0.

ρ =
1

λL

(
1− A

λL

)
(6.3)

In doing so, the parameter A was calibrated to the results of the extensive numerical para-

metric study of local buckling. In this calibration it was seen to be conducive to good results

to define A as a function of ψ1 and ψ2, in partial reference to the EN1993-1-5 [40] Table 4.1

and 4.2 approach, shown in figure 2.7 in section 3.5.2.

A = f(ψ1;ψ2) (6.4)

ψ1 and ψ2 are the stress ratios in the two plates adjacent to the corner with the highest

compressive stress in the section, see figure 3.12. They may be determined in a simplified

manner, discounting the presence of the typical rounding at the edges of SHS and RHS, or

more precisely, without significantly changing the accuracy of the method. This is justified by

the small difference in the actual stress state and the increased ease of use of the formulations.
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Equation (6.5) defines the parameters with analytical formulae.

ψ1 = MAX


N

A
+
My

Wy

− Mz

Wz

N

A
+
My

Wy

+
Mz

Wz

;

N

A
− My

Wy

+
Mz

Wz

N

A
+
My

Wy

+
Mz

Wz

 (6.5)

ψ2 = MIN


N

A
+
My

Wy

− Mz

Wz

N

A
+
My

Wy

+
Mz

Wz

;

N

A
− My

Wy

+
Mz

Wz

N

A
+
My

Wy

+
Mz

Wz

 (6.6)

6.3.1 Rules in the elastic range

In an initial step, a formulation for the parameter A was sought which describes the cases with

compression and mono-axial (or “in-plane”) bending about either axis. This corresponds to

all cases where the stress ratio ψ1 = 1.0 (pure compression in one of the plates). For cold-

formed (EN 10219, [71]) and hot-finished (EN 10210, [72]) sections, the linear functions

in equations (6.7) and (6.8) were determined through calibration and the final choice of

practical, easy-to-use functions and coefficients.

A = 0.225 + 0.025ψ2 cold-formed sections (6.7)

A = 0.20 + 0.02ψ2 hot-finished sections (6.8)

A general overview of some of the calibrated curves is given in figure 6.4, for cases with

in-plane bending only. The pure compression case for cold-formed sections was accepted as

being less conservative than other cases, thus allowing continuity of the chosen formulation,

while diverging as little as appeared to be acceptable from the current Eurocode 3 levels

of accuracy and safety. The results of this curve fitting is shown in figure 6.5a e.g. for

cold-formed sections. In the figure, the horizontal segments represent GMNIA results of the

single load cases of the numerical campaign, which lie at different levels of ψ2. Each load

case corresponds to a value of A, adopted in the Winter curve to fit the GMNIA results, as

is shown in each load case of figure 6.4. The resulting range of possible design curves for

cold-formed sections loaded in compression and with any level of in-plane bending is shown

in figure 6.5b; the pure compression case ψ2 = ψ1 = +1 and the pure in-plane bending

case ψ2 = −1 ψ1 = +1 are displayed in different colours, and the area between the lines

corresponds to the various N +My combinations.
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Fig. 6.4. Calibration of the Winter-type curve varying ψ2 for the following cases: a) pure compression of
cold-formed sections; b) pure compression of hot-finished sections; c) pure bending on the minor axis of cold-
sections and d) hot-finished sections; pure bending on the major axis for e) cold-formed and f) hot-finished
sections.
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1
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EN 10219

a) b)

ψ2= -1

λ0=0.72
λ =0.50

N

e

N

Fig. 6.5. a) overview of the fitted values of A plotted against ψ2, and b) overview of GSRM design curve
(mono-axial case) for cold-formed sections.

An additional multiplier f(ψ1) for the ψ1dependency covers the biaxial load case and is

formulated in equation (6.9) as a generalised equation of the one found in EN 1993-1-5 for

linear stress fields in an individual plate.

f(ψ1) =
c+ ψ1

c+ 1
(6.9)

In the Eurocode the value c = 3 is applied. Multiple integer values of c where attempted

during the calibration of the Winter formula coefficient A to the numerical test data. Finally,

a value of c = 1 was found to best fit the data, while maintaining ease of use (non-integer

values were avoided) and a relation to the EC3 practice. Thus, in summary, for the general

(biaxial) case, A is defined in equations

A = 0.225 + 0.025ψ2
1 + ψ1

2
cold-formed sections (6.10)

A = 0.20 + 0.02ψ2
1 + ψ1

2
hot-finished sections (6.11)

If ψ1 = 1 the formula results equal to the in-plane banding cases.
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Fig. 6.6. Overview of the calibration of cold formed sections. In a) the in-plane case. In b) c) and d)
different values of ψ1 are illustrated.

The point where the slender range ends is denoted as the elastic limit slenderness λ0 and

reads

λ0 = 0.5 +
√

0.25− A (6.12)

In figure 6.6 an overview of the numerical results for cold-formed sections in the Winter-type

formulation is shown. The GMNIA results divided by the GSRM prediction are plotted

against the local slenderness. Figure 6.6a represents the in-plane case, and in Figure 6.6b,
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c and d the level of biaxial load increases as ψ1 decreases. The plots demonstrate the

accuracy of the chosen formulation for A in the elastic range, and show a fairly low scatter

of the results, positioning the average GMNIA results between 10% and 22% higher than

the predictions with different levels of biaxial bending. The scatter is also fairly homogenous

along the slenderness with a slight tendency of increasing with larger values of the local

slenderness, approximately from λL ≈ 1.5− 2, which is a range of very slender cross-sections

(� t or � fy), which are not common.

6.3.2 Rules in the stocky range

For the plastic (stocky) range, a simplified bilinear function is used for the modelling of

the cross-section resistance in the GSRM. A more complex and precise method based on the

CSM was developed by Meng et al. [54]. The GSRM function is based on a simple expansion

of the stress-based design to the stocky range used in the elastic range, while the CSM is a

strain-based approach.

In the GSRM, the bilinear relation is chosen to represent the resistance in the stocky

range, where the cross-sectional capacity exceeds Rel. A linear function which intersects two

points is unique, thereby two anchor points are necessary for the definition of the bilinear

function in the λL − χL plot, defined in equation 6.13 and 6.14.

χL = 1 at λ0 (6.13)

αpl at λL = λpl = 0.3 (6.14)

The proposed formulation for predicting the cross-sectional capacity for the stocky range is

as follows, with the values for λpl and the maximum value αpl, see (6.14), taken to represent

the data with acceptable safety and accuracy. Equations (6.15) and (6.16) summarise the

GSRM design proposal for the stocky range.

λL ≤ λ0 : χL = 1 + (αpl − 1)

(
λ0 − λL
λ0 − λpl

≤ αpl

)
(6.15)

where: λpl = 0.3 αpl =
Rpl

Rel

≤ 1.5 (6.16)

Figure 6.7 illustrates the method and the resulting location of the design values for the cross-

sectional (local buckling) strength Rb,L,GSRM for all cross-sections and load combinations
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studied in the numerical campaign described in chapter 4.

a) b)
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M

Fig. 6.7. a) Representation of the simplified bilinear relation in the stocky range and Winter formulation
in the slender range, and b) evaluation of the hot-finished and cold-formed sections dataset for the uniaxial
bending case (ψ1 = 1, ψ2 varies from –1 to 1).

6.4 Comparison with current standards

In figure 6.8, an overview of the results of the parametric study are plotted over the GSRM

slenderness and knock-down factor definition. The figure shows the results of the parametric

study – in terms of GMNIA resistance divided by the reference resistanceRel – plotted against

the GSRM slenderness and definition. The same is also done for the predictions of the GSRM

in figure 6.8c and 6.8d. The figures show that the method captures the general position of

the GMNIA results in the λL−χL plot, particularly in the slender range. The GSRM results

appear to be positioned somewhat lower than the GMNIA results throughout all slenderness

ranges, indicating a degree of conservatism, although the degree of conservatism is not easily

assessed in this type of representation. Thus, in order to achieve a better overview of the

accuracy and safety of the new GSRM design rules, the resistance values from GMNIA

calculations are normalized in figure 6.9 by the predicted value of the GSRM (see figure

6.9a). For the validation of the design rule in the GSRM, the results of the design method

are compared with the GMNIA results and then compared with the EC3 design method.
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Fig. 6.8. Representation of the GMNIA results for a) cold-formed sections and b) hot-finished sections in
the case of biaxial bending, where each colour represents a different ψ1 and ψ2 combination; in c) and d) the
corresponding values according to the GRSM proposal are represented.

The results of the GMNIA calculations are in most of the cases higher than the GSRM

results, but fall in a range fairly close to the design values, providing generally low values

of scatter, see figure 6.9. The scatter is represented in the plots by the horizontal lines for

each class of cross-section (classes 1+2, class 3 and class 4 in the figures) by indicating the

mean value (upper line) and the m−2s value, whereby s is the calculated standard deviation

for the considered cross-sectional class. Thereby, as can be seen in figure 6.9, the proposed

formulation leads to a relatively stable degree of scatter and thus a fairly homogenous (and



100 CHAPTER 6. GSRM DESIGN FORMULATIONS - LOCAL BUCKLING

low) level of average conservatism throughout slenderness classes, for all load cases and cross-

sectional shapes. In figure 6.9a and b the load cases of uniaxial bending and compression are

shown and marked with different colours, identifying possible paths for load cases, but in the

figure the different cases are homogeneously distributed in slenderness and resistance, and

the statistical evaluation of the data in terms of mean value and variance is largely unchanged

from cold-formed steels to hot-finished. Similarly, figures 6.9c and d show a similar analysis

for the parametric study including biaxial bending.

a) b)

c) d)

class 1 and 2

class 3

class 4

class 1 and 2

class 3

class 4

Fig. 6.9. Graphical validation of uniaxial bending + compression cases for a) cold-formed and b) hot-finished
sections; c) and d): cases with compression and biaxial bending, categorized by EC3 classes.
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Colours of sub-figure c and d refer to the Eurocode 3 classes, the same m and s value are

shown and cold-formed and hot-finished steels are treated separately. While the average

value of the GMNIA results falls between is 5-10% higher than the design results for the

uniaxial case, in the biaxial case 7% up to 15% higher (on average) are found. This produces

a satisfactory initial safety assessment. The standard deviation of the result cloud in this

format is also fairly low. A minimum of 3% for the uniaxial bending case of cold-formed

sections is found, and 4% for hot-finished sections, showing the highest effectiveness of the

method in the class 3 section range. The scatter of the results is also low in the more stocky

and more slender range, reaching values between 6% to 9%. This outcome is an initial vali-

dation of the GSRM predictive formulae and leads to the comparison with the current design

formulae. In order to visualize the improvement of accuracy and safety obtained through

the GSRM, a comparison with the EC3 predictions is shown in figure 6.10. The current EC3

version includes some changes in the cross-sectional classification for SHS/RHS sections, as

well as specific design rules for the cross-sectional strength of class 3 cross-sections with

double-symmetric section, developed during the RFCS project SEMICOMP. As the plots

in the figure 6.10 show, while the GSRM design shows consistent accuracy and comparable

average distance from
”
real“ (GMNIA) resistance across slenderness ranges and EC3 classes,

the Eurocode design rule shows much larger inconsistencies and larger scatter in the results

for classes 1 to 4. Gains in strength through the use of the GSRM are noticeable, compared

to EC3, particularly for class 4 sections and in cases with a pronounced level of biaxial bend-

ing, the gains are even higher. A consciously accepted lower resistance is found for class 1

and 2 sections, in order to compensate for an apparent lack of conservatism of the Eurocode

rules in this range. For class 3 sections, the methods are on average equivalent in their

strength predictions. In all cases, particularly those that involve load cases with combined

compression and bending, the GSRM design method employs a much more straightforward

procedure and avoids the cumbersome determination of effective cross-sections (class 4 sec-

tions) or multi-step design strengths for combined loading (classes 1 to 3). The statistics of

these data, which are also represented in figure 6.10, are summarized in table 6.1.
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a) b)

c) d)

class 1 and 2

class 3

class 4
class 1 and 2

class 3

class 4

class 1 and 2

class 3

class 4
class 1 and 2

class 3

class 4

Fig. 6.10. a) and b): GMNIA results divided by the EC3 resistance prediction, plotted against the cross-
section slenderness; a) cold-formed and b) hot-finished sections; c) and d): direct comparison of the proposed
GSRM formulation results with EC3 [1].
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Class
1 and 2

Class 3 Class 4

Rb,L,GMNIA

Rb,L,GSRM
EN10219

m 1.15 1.13 1.16
s 0.09 0.05 0.08

Rb,L,GMNIA

Rb,L,GSRM
EN10210

m 1.07 1.09 1.15
s 0.06 0.05 0.07

Rb,L,GMNIA

Rb,L,EC3
EN10219

m 1.08 1.11 1.22
s 0.09 0.06 0.14

Rb,L,GMNIA

Rb,L,EC3
EN10210

m 0.98 1.10 1.23
s 0.05 0.07 0.11

Rb,L,GSRM

Rb,L,EC3
EN10219

m 0.94 0.99 1.06
s 0.07 0.05 0.10

Rb,L,GSRM

Rb,L,EC3
EN10210

m 0.92 1.00 1.07
s 0.06 0.05 0.10

Table 6.1: Summary of average values m and standard deviations s of the results.

6.5 Reliability aspects, partial factors

While questions of reliability and the necessary values of the partial factors of safety (γMi

in Eurocode terminology) was not the focus of this thesis, this topic was treated in the

HOLLOSSTAB project, see [73]. For the purposes of this thesis, it shall only be mentioned

that the derived formulations for the GSRM for local buckling were shown to have a very

consistent level of reliability and to require a partial factor of γM0 = 1.0.
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6.6 Summary of the GSRM design rules for local

buckling

In chapter 6 the GSRM design formulations for local buckling was described. Section 6.2

introduced the GSRM representation format, which employs the λL − χ diagram and the

Winter curve. In section 6.3 the calibration of the parameters for the Winter curve were

determined, defining two different design rules for the stocky range and the elastic range of

the curve. In section 6.4 the newly developed design rules for the cross-sectional strength were

compared with the current Eurocodes design rules, evaluating advantages and improvements

of the method. Figure 6.11 represents schematically the developed design rules for SHS and

RHS.
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Fig. 6.11. GSRM design rules for local buckling.





Chapter 7

GSRM Design Formulations - Global

Buckling

7.1 Introduction

The following sections present predictive methods for the design of members against global

buckling in the GSRM format. The formulation developed in the GSR method is based

entirely on second order theory and basic mechanics, thereby using the basic principles of

the Ayrton-Perry concept but expanding it to include external bending moments. In a final

step, some calibration factors are introduced, which help to adapt the mechanically derived

formulation to better describe the real, elasto-plastic non-linear behaviour as observed in

physical and numerical tests.

7.2 Ayrton-Perry formulation and EC3

As discussed in detail in section 2.1.2, a widely used formula to describe the behaviour of

columns in flexural (global) buckling was first described by Ayrton and Perry in 1886 (see

[41]). This approach uses an equivalent imperfection of sinusoidal shape and amplitude e0 in

combination with a second-order analysis and stress design of a pin-ended model column, to

calibrate a buckling reduction factor χy describing the strength of real columns, as observed

e.g. in tests. The following variables are used in the Ayrton-Perry formulation found in the
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Eurocode (flexural buckling about y-y):

χy =
Nb

Afy
(7.1)

λy =

√
Afy
Ncr,y

(7.2)

ηimp =
Ae0
Wy

(7.3)

Where Nb is the applied load, which finally leads to column failure, Ncr is the axial force

at the first bifurcation point, or ”Euler load”, A is the cross-section area, Wy the cross-

section modulus for bending about the y-axis, fy is the yield stress. By introducing the

aforementioned variables (see section 3.5.1 for the complete derivation) and applying the

findings of Ayrton-Perry, the limit state equation (3.17) may be solved, leading to the well-

known equation found e.g. in EN1993-1-1:

χy =
1

φy +
√
φ2
y − λ

2

y

(7.4)

with φy = 0.5
(

1 + ηimp + λ
2

y

)
(7.5)

In Eurocode 3, following Ayrton and Perry’s original idea, the still-general term ηimp is

replaced by a formula that makes this imperfection a function of:

• slenderness λy.

• a plateau value 0.2, accounting for stocky columns not failing before the squash load.

• calibration factor α which accounts for residual stresses and production differences,

here denoted as αEC3.

Thereby, ηimp reads as follows:

ηimp = αEC3

(
λy − 0.2

)
(7.6)

This solution is valid for the case of pure flexural column buckling without any applied

bending moment. In figure 7.1b the different values of αEC3 and the corresponding Eurocode

buckling curves are shown.
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The GSRM formulation developed in this thesis and in the RFCS project HOLLOSSTAB

derives the rules for global-buckling from the same principles as the Ayrton-Perry and the

Eurocode method, accounting for applied bending moments and global buckling in both y-

and z-axis. Column buckling curves are represented in a slightly different format, shown in

figure 7.1a. The member capacity is illustrated by the χG − λG plot, defined in equation

(7.7) and (7.8).

λG =

√
Rb,L

Rcr,G

(7.7)

χG =
Rb,G

RL

(7.8)

where:

• χG is the global buckling resistance defined as a reduction factor of the local, cross-

sectional resistance RL.

• λG is defined in terms of cross-sectional resistance and critical bifurcation load of the

first global buckling mode Rcr,G.

M M

N N

a) b)

Fig. 7.1. a) GMNIA results of pure compression with uniaxial bending on a SHS; b) EC3 buckling curves.

Figure 7.1a shows some relevant GMNIA results from the numerical study on SHS and

RHS member with different level of applied bending moment and compression on the same
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column. The GMNIA points confirm the Ayrton-Perry approach and curve formulation.

The numerical results with equal level of bending moment ηy lie in the same ideal curve,

which appears to be very similar to the Ayrton-Perry curves. This intuitive fact will be

demonstrated in the next section with a formal derivation of the Ayrton-Perry curves for

global buckling.

7.3 Derivation of the GSRM design formulae for

global buckling of beam-columns

The following derivation for beam-columns is based on and makes use of the the Ayrton-

Perry derivation for the column described in 3.5. A linear cross-sectional failure criterion is

used, in combination with a normalized representation of the global imperfections of the load

eccentricity represented by the bending moment. Initially discounting the imperfection effect

(which will be reintroduced later), the bending moment eccentricity My/N can be normalized

by the section core width, as is defined in equation (7.6). This is similar to equation (3.16)

in section 3.5.1, where ηimp is a normalization of e0 by the section core width. Taking into

account also the preceding step of the determination of the cross-sectional capacity, and

introducing the assumption that the linear failure surface of any surface can be described

with sufficient accuracy (for the intended purpose) as being parallel to the elastic, first-yield

failure surface in the my − mz − n diagram), the compression resistance and the bending

moment resistance in y (in-plane bending) are a function of χL (7.9) (7.10).

NL = χLAfy (7.9)

My,L = χLWy,elfy (7.10)

Thereby, ηy may be rewritten in equation (7.11).

ηy =

My

My,L

N

N L

(7.11)

Figure 7.2 shows that the behaviour of a beam-column member on global buckling without

imperfection is comparable to the column buckling behaviour with imperfections by using
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the relative eccentricity ηy.
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Fig. 7.2. Equivalence of an imperfection effect in a column a) and bending effect in a beam-column b).

In figure 7.2 the beam-column behaviour for in-plane bending is represented in terms of

normalized bending moment my and normalised compression n, as was seen in the analysis

of the representation formats in section 3.5. Introducing equation (7.9) and (7.10), the

normalised applied loads read:

my,E =
My,E

My,L

(7.12)

nE =
NE

NL

(7.13)

The my,el−n format is introduced, similarly to the normalised my,pl−n, by dividing the ap-

plied bending moment My,E by My,el. Equation (7.14) shows the function of elastic resistance

in this format.

nel = 1−my,el (7.14)

Under the assumption described for equations (7.9) and (7.10), in the my,E − nE diagram

equation (7.14) yields:

RLnE = 1−RLmy,E (7.15)
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Moving terms and introducing ηy results in (7.16)

RL =
1

nE

(
1 +

my,E

nE

) =
1

nE (1 + ηy)
(7.16)

RL may be rewritten as

RL =
1

nEc0
(7.17)

where c0 = (1 + ηy) (7.18)

Since the formulation of the critical load Rcr of a SHS/RHS member subjected to flexural

buckling the effects of lateral torsional buckling can be neglected, it follows:

RL =
Ncr

NE

(7.19)

A new definition of relative slenderness λ
∗
y is introduced in (7.21) as opposed to the classic

(7.20).

λy =

√
Afy
Ncr,y

(7.20)

λ
∗
y =

√
NL

Ncr,y

=

√
χLAfy
Ncr,y

(7.21)

λG =

√
Rb,L

Rcr,G

(7.22)

Equation (7.22) rewrites the slenderness in a more generalised format. Rb,L is the cross-

section capacity and Rcr,G is the critical load for flexural buckling. Rcr,G includes more than

one global buckling mode in y and z direction, but the rules for global buckling are here

derived for the in-plane bending case around the y-axis, i.e. the mode referred to as FBy−y.

Thus, Rcr,G is rewritten in equation (7.23). By introducing λ
∗
y in the λG definition and after
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few algebraic steps equation (7.24)n is obtained.

Rcr,G =
Ncr

NE

=
Ncr

NL

NE

NL

=
1

nEλ
∗2
y

(7.23)

λG =
λ
∗
y√
c0

(7.24)

Similarly to the slenderness, the definition of the global buckling resistance Rb,G in the

GSRM is given in equation (7.25), where Rb,G is the global buckling resistance and RL is

the cross-section resistance. χy,ηy in (7.26) is the buckling reduction factor for the axial

force (compression) component of the cross-sectional strength obtained by the Ayrton-Perry

formulation, which considers again the non-linear elastic second-order load path displayed

in figure 2.2. Equation (7.27) follows from (7.25) and (7.26).

χG =
Rb,G

RL

(7.25)

χy,ηy =
Nb

NL

(7.26)

χG =
Rb,G

RL

= χy,ηyc0 (7.27)

The derivation of the global buckling formulae for the GSRM starts with the derivation

of χy,ηy , and is similar to the derivation of χy,EC3 in section 3.5.1, adding however terms to

account for the effect of the external (first-order) bending moments. The limit-state equation

(2.21) in the quadratic format can be transformed into the formula in (7.28) by introducing

NL and differentiating the applied first order bending moment M I
b from the bending moment

caused by the imperfection eccentricity Nbe0. After few algebraic steps and by introducing

λ
∗
y and ηimp, equation (7.30) to the limit-state is obtained in the final form.

Nb

NL

+
M I

y,b +Nbe0

Wyfy
· 1

1− Nb

Ncr

= 1.0 (7.28)

where M I
y,b = Nbηy (7.29)

χy,ηy + (ηy + ηimp) ·
χy,ηy

1− χy,ηyλ
∗2
y

= 1.0 (7.30)

where ηimp =
NLe0
My,L

(7.31)
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Equation (7.30) leads to the well-known solution shown in (7.32) and (7.33).

χy,ηy =
1

φy +
√
φ2
y − λ

∗2
y

(7.32)

with φy =
1

2

(
1 + ηimp + ηy + λ

∗2
y

)
(7.33)

The format of the GSR method uses global slenderness λG and global resistance χG. Applying

the results in (7.22) and (7.25) equation (7.32) is thus rewritten as

χG =
1

φG +

√
φ2
G − βLGλ

2

G

(7.34)

φG =
1

2

(
βLG (1 + ηimp + ηy) + λ

2

G

)
(7.35)

with βLG =
1

c0
(7.36)

The approach of Rondal and Maquoi [65] is also utilised for the calibration of ηimp (7.37)

in the column buckling curves, introducing the same parameters αEC3 from the Eurocode

formulation and λG.

ηimp = αEC3

(
λG
√
c0 − 0.2

)
(7.37)

7.4 Calibration of the parameters of the

Ayrton-Perry formula

In the last section the effects of global buckling were presented accounting only for the elastic

behaviour of the SHS and RHS members. As was conducted in other recent studies (see [74,

75]), in this section the interaction between local and global buckling will be analysed in

detail, expanding the formulation obtained so far. In the elastic analysis of the previous

section the geometric non-linearities are accounted for only as long as they are small, and

material non-linearities are included only partially and with unreliable accuracy, through

the chosen cross-sectional resistance surface. In particular, the derivation does not include

effects caused by the deterioration of stiffness once yielding sets on in the outermost fibres.

Accordingly, in order to account for the typical effects of the SHS and RHS cross-sections,
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additional parameters were added in the GSRM framework. This is relevant and necessary

for all sections that reach a higher cross-sectional capacity than the one given by a first-yield

criterion, i.e. for all cases where χL > 1. Thus, a new term ξLG was introduced to account

for the effects of the cross-section in the plastic range ( χL > 1 ). It may be interpreted

as a reduction of the originally valid cross-sectional capacity surface, leading to the use of

a new, “transition” surface for these cases. The procedure is schematically shown in figure

7.3 for the in-plane beam-column buckling case. As can be seen in the figure, the linear

approximation of the cross-sectional resistance (represented by ”NL −My,L” as well as χL)

is reduced to a new transition surface in the bent red line load path, so that in the original

space the limit for the achievable axial force is now given by equation (7.38).

N

”NL”
=

1

ξLG
(7.38)

The numerical parametric study has shown that it is indeed necessary to account for this

effect in stocky sections. For the representation of the transition behaviour it was chosen

to define the term ξLG as a linear function of the generalised global slenderness λG, with

an additional factor ρ to act as a calibration factor for different types of section. Equation

(7.39) expresses ξLG in the GSRM format.

1.0 ≤ ξLG = 1 + (χL − 1) ρλG ≤ χL (7.39)

For SHS and RHS, it was found that the effect could be limited to a transition from the

plastic range to the elastic range; this is represented by limiting ξLG by χL. With the added

term ξLG, the Ayrton-Perry’s quadratic equation is modified and results into equation (7.40)

with solution shown in equations (7.41) and (7.42).

ξLGχy,η0 + (ηy + ηimp) ·
ξLGχy,η0

1− χy,η0λ
2

y

= 1.0 (7.40)

χG =
1

φG +

√
φ2
G − βLGλ

2

G

(7.41)

φG =
1

2

(
βLG (1 + ηimp + ηy) + λ

2

G

)
(7.42)

with βLG =
ξLG
c0

(7.43)
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For the spatial case, i.e. for compression and biaxial buckling of SHS and RHS beam-columns,

two paths of buckling are considered as possible buckling modes, corresponding to the two

axes of bending, as in figure 7.3. The “in-plane” case treated in the previous section is one

of the two possible paths for flexural buckling and is defined as FBy,y for bending about

the major axis. The equation is only modified to account for the simultaneous presence of a

weak-axis bending moment. Similarly, the basic equation (i.e. the failure criterion) for the

out-of-plane buckling case is very similar to the in-plane case, provided that the out-of-plane

(weak-axis) flexural buckling slenderness is considered. The resulting limit state equation is

shown in (7.44).

ξLGχz,η0 + (ηz + ηimp) ·
ξLGχz,η0

1− χz,η0λ
2

z

+ ξLGηyχz,η0 = 1.0 (7.44)
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Fig. 7.3. a) Representation of the “transitional behaviour” for beam-columns with elasto-plastic, stocky
sections in the n−my space and b) in the n−my −mz space.

The accuracy of this calibration factor may be assessed by comparing the accuracy of the

GSRM prediction and the GMNIA results of the parametric study on global buckling,

described in section 5.3. The GMNIA results shall be represented in the GSRM format.

Thereby, the ratio Rb,GMNIA/(RelχL) is compared to the GSRM-χG from above.
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As is illustrated in figure 7.4, the behaviour of the GMNIA results is consistently described

by the GSRM formulation. 7.4a shows a class 1 SHS subjected to in-plane loading, with three

different eccentricity levels and a uniform bending moment diagram. The points represent

the GMNIA results while the curve shows the corresponding buckling curve according to the

developed and calibrated GSRM. In sub-plot b, similar results for a class 3 SHS subjected

to in-plane loading are shown. For the in-plane case, the combined accuracy of χG and

χL generally leads to quite precise results. The conservatism is more pronounced for HSS

cold-formed sections, where the EC3 imposes αEC3 = 0.49.
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Fig. 7.4. Comparison of GMNIA results (dots) and calibrated GSRM predictions (continuous lines) for
various levels of eccentricity and hot-finished SHS with various plate thickness values; a) plate slenderness
λp = 0.3 (class 1 section); b) λp = 0.6 (class 3 section).

Through calibration and the selection of satisfactorily safe and accurate strength predic-

tions, the following values of ρ were selected:

• ρ = 0.6 for hot-finished section

• ρ = 0.5 for cold-formed sections

The calibration of the GSRM parameters also produced accurate and satisfactorily safe-

sided results for RHS, both for the in-plane and out-of-plane cases. A few exemplary cases

are illustrated in figure 7.5. In sub-plot b), the effect of the local buckling conservatism is

eliminated from the representation by using a slightly different format of χG as defined in

equation (7.45). In this case, the value of the each GMNIA result is divided by the value of

the shortest member of the corresponding load case, and it can be noticed that the rather
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high conservatism of the GSRM predictions of the value in the global case of figure 24 a) is

mostly due to the predicted value of the cross-section capacity, which happens to be quite

conservative (by around 20%) for this particular cross-section.

χG =
Rb,GMNIA

Rb,GMNIA,SHORT

(7.45)
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Fig. 7.5. Class 3-4 RHS subjected to biaxial bending. In a) the traditional representation of the GMNIA
results in the GSRM format is shown; b) shows the results without the effects of the cross-section conservatism
of χL.

Finally, the last parameter that needed to be introduced for a more general implemen-

tation of the method accounts for the cases where the bending moment is not constant

along the member length. In the extensive parametric study several combinations of the

bending moment diagrams along the member length were applied, and a bending moment

factor Cm was introduced, in correspondence with the common use in Eurocode 3. This is

shown by example in the following. In 7.6a, the GMNIA results for the application of an

exemplary non-constant, linear bending moment diagram are plotted in the GSRM format.

In an attempt to diverge as little as possible from established EC3 design rules, the existing

formulae and tables for Cm were adapted, leading to the use of Cm,y for this particular case.

A schematic overview of the resulting accuracy for an SHS section and various levels of bend-

ing is given in the figure. Figure 7.6b contains the proposed values for some simple bending

moment cases. The final version of the global buckling calibrated formulation includes co-

efficients Cm,y and Cm,z, taken from EN1993-1-1, to account for the effects of the different
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bending moment diagrams in both directions. They enter the formulae by directly reducing

the maximum value of the bending moment along the member. In equation 7.46 and 7.48

the final versions of the GSRM formula for global buckling are given with the adoption of

all calibration factors, such as ρ, ξLG,y, ξLG,z, βLG,y, βLG,z, ηEC3,y, ηEC3,z, Cm,y and Cm,z.

N N

My,E

ΨMMy,E

ΨM=0

Moment Diagram C [-]m

a) b)

1.0

0.95

0.90

0.60+0.40ΨM

Fig. 7.6. In a) class 1 SHS subjected to in-plane linear bending moment (M2) over the length; in b) an
overview of the evaluated applied bending moment and a schematic representation of the ψM factor.

χG,y =
1

φG,y +
√
φ2
G,y − βLG,yλ

2

G,y

≤ 1.0 (7.46)

φG,y =
1

2

(
βLG,y (1 + ηEC3,y + ηyCm,y + ηzCm,z) + λ

2

G,y

)
(7.47)

χG,z =
1

φG,z +
√
φ2
G,z − βLG,z (1 + ηyCm,y)λ

2

G,z

≤ 1.0 (7.48)

φG,z =
1

2

(
βLG,z (1 + ηEC3,z + ηzCm,z + ηzCm,z) + λ

2

G,z

)
(7.49)
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7.5 Validation and verification with current test

standards

An overview of the results of the parametric study is necessary in order to validate the

GSRM formulation with respects to accuracy and safety, as well as to compare and verify

the efficiency of the method with the current European design standard. A much larger set

of points is used in the following, representative results, which will be grouped for members

of equal flexural buckling slenderness about the weak axis λZ , where:

λZ =

√
Afy
Ncr,Z

(7.50)

The chosen representation format is the so-called box plot format, which allows a graphical

evaluation of the statistical parameters in the plot. A box in red colour is used to represent

the area that contains 50% of the data for a certain slenderness, while the whiskers show

the 5% upper and lower bound of the data, and the “outliers” beyond this range are shown

as small black points. In figure 7.7a and b, the results of the GMNIA numerical campaign

on global buckling with constant bending moment along the member length are divided by

the strength prediction of the new GSRM formulation. The corresponding scatter bands

are shown for a) cold-formed sections and b) hot-finished sections. The scatter is higher for

cold-formed sections, reaching consistently about the same resistance of the GSRM prediction

with the 5% lower bound and 25% higher results with the 5% upper bound. Hot-finished

sections instead behave differently on the upper bound of the result distribution, with a

maximum of 20% of higher resistance for λZ = 1.2. Similar but slightly lower scatter is

found in figure 7.7c and d for both cold-formed and hot-finished sections, where the ratio

between the GSRM prediction over EC3 design value is shown. In general, the GSRM results

are fairly above the EC3 predictions except few points located in low slenderness range for

the cold-formed sections, where also the effect of the cross-section capacity is higher and

the prediction of the GSRM at a local level is on purpose lower than the Eurocode. On

hot-finished sections low predictions of the GSRM are uniformly distributed and the 5%

lower bound of the GSRM consistently lies on 97% of the Eurocode prediction. In figure

7.7e and f, the GMNIA results of non-constant bending moment diagrams are shown. Both

cold-formed and hot-finished sections demonstrate a higher scatter, owing to the diversity

of the diagrams of the applied bending moments. Nevertheless, the GSRM still predicts
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the GMNIA resistance fairly consistently over the slenderness and with sufficient accuracy.

Table 7.1 shows an overview of the mean values and standard deviation of both cases.

Sub-plot Mean
Standard De-
viation

Figure 7.7a 1.092 0.074
Figure 7.7b 1.067 0.51
Figure 7.7c 1.079 0.069
Figure 7.7d 1.054 0.071
Figure 7.7e 1.164 0.129
Figure 7.7f 1.159 0.141

Table 7.1: Overview of the tested cross-sections.
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a) b)

c) d)

e) f)

Fig. 7.7. Comparison of results through box plots; a) and b): GMNIA vs GSRM, compression and biaxial
uniform bending; c) and d): GSRM vs EC3 rules, biaxial uniform bending; e) and f): GMNIA vs GSRM,
compression and various bending moment diagrams.
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7.6 Reliability aspects, partial factors

As was already said in the previous chapter for the GSRM design rules for local buckling,

a detailed assessment of the reliability level and the necessary values of the partial factors

of safety (γMi in Eurocode terminology) was not the focus of this thesis. It shall only be

mentioned that the derived formulations for the GSRM for global buckling were shown to

have a consistent level of reliability and a partial factor of γM1 = 1.0 could be accepted, see

[73].

7.7 Summary of the GSRM design rules for member

buckling

In chapter 7 the GSRM design formulations for global buckling was described. Section 7.2

introduced the Ayrton-Perry and Eurocodes formulation, in section 7.2 GSRM design for-

mulae for global buckling of beam-columns were derived. New parameters were introduced,

in order to calibrate the new formulae against the numerical test campaign. Finally, a veri-

fication and comparison with the current standard was conducted, showing the advantages

and improvements of the GSRM rules. Figure 7.8 represents schematically the developed

design rules for SHS and RHS members.
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Fig. 7.8. GSRM design rules for global buckling, as given in [76].



Chapter 8

Further work on the GSRM

A brief summary of the previous chapter topics shows in this paragraph the chosen structure

of the presented work and may easily introduce the necessary steps for further work on the

GSRM. Chapter 3 described the approach and methodology of the GSRM. The format of the

design is only the last step in a methodology work-flow, where the experimental tests were

designed in order to provide sufficient data for the creation of an accurate and robust FEM-

model. The GMNIA results of a large experimental and numerical campaign described in

4 served as database for the derivation of mechanically-sound analytical formulae, and were

used to calibrate the design formulae in the GSRM format (chapters 6 and 7). Thus, a similar

approach is carried on for polygonal cross-sections, which were described in chapter 4, but

were not analysed in detail for the development of a GMNIA model and for the development

of predictive formulae calibrated on the results of a numerical campaign. Section 8.1 presents

a GMNIA model calibrated on the basis of the experimental tests and a parametric study for

the analysis of the cross-section behaviour of the polygonal sections. Section 8.2 proposes

a new and different approach for SHS and RHS, which is purely numerical and based on

machine learning techniques, and compares it with the GSRM in terms of accuracy and

reliability.

8.1 Initial numerical study on polygonal sections

The validation of a GMNIA-MEAS model for hexagonal sections was conducted in chapter

4, providing results for SHS, SHS-S, SHS-T and hexagonal sections. The validated GMNIA-

MEAS models had to be simplified with regards to the modelling of imperfections and
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material laws. Thus, a more generalized model, with a simplified definition of the material

law and the geometrical imperfections, yet the same FEM mesh size and element types as

the ones validated through the calibration to the experimental tests, was developed similarly

to the GMNIA model developed for the other cross-sections. Figure 8.1 shows the first

main assumption for the imperfection shape of the GMNIA model. This shape is derived

from a linear buckling analysis (LBA), to which a scaling factor is applied. The type of the

buckling shape is local and distortional, since the first buckling mode can occur at both levels,

affecting a single plate in case of local buckling or contiguous plates in case of distortional.

The choice of the imperfection is defined in equation (8.1) as the maximum between both

buckling modes.

max

(
B

400
; 0.1

√
Det

)
(8.1)

B

400
is the amplitude for local buckling, as was found all plated sections in the SHS/RHS

numerical campaign; 0.1
√
Det corresponds to the imperfection amplitude for distortional

buckling [54]. The latter formulation is derived from the analysis of circular hollow sections

(CHS), where D is the outer diameter, corresponding to the polygon circumcircle diameter.

In polygonal sections, the distortional buckling effect is more pronounced with an increasing

number cross-section sides. As the number of sides becomes smaller, the effect of distortional

buckling becomes larger and approximate better CHS, in terms of geometry and behaviour.

Different buckling types, local and distortional, are shown in figure 8.1a with the LBA

shape of two different polygonal sections subjected to different applied load combinations.

Figure 8.1b shows the analysed cross-sections in the parametric study and compares them

graphically. Figure 8.1c introduces graphically the material model assumption chosen for

the steel sections, the same models for cold-formed and hot-finished steels described in

chapter 3. Detailed information regarding the GMNIA-MEAS predictions can be found in

the Appendix.
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Fig. 8.1. LBA shape for the numerical input of the imperfections; b) cross-sections applied in the parametric
study; c) schematic representation of the material model.

With these calibrated, equivalent input parameters for the GMNIA, a numerical para-

metric study was conducted. An overview of the parameters for the numerical test campaign

is given in table 8.1, where the parameters were defined as in section 5.3.

Parameter Variable number Range

Thickness [mm] 7 0.5 - 12.0
L/Lcr 2 0.1 - 0.15
Steel Grade 2 S355 - S700
φy [°] 3 0 - 45 - 90
φz [°] 0 -
D [mm] 1 100
Manufacturing standard 1 EN10219

Table 8.1: Parameters of the parametric study on local buckling expressed in terms of number of
used variables for each parameters and range of application.

More than 600 numerical simulations (GMNIA+LBA) were conducted and were used as

the database for the development of the deep learning models and the GSRM design rules.

In figure 8.2 the results of the parametric study are represented. Sub-plot 8.2a illustrates the

results, differentiated by section, showing each section with a different colour and ranging
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the side number from 6 to 20. The scatter is homogeneous along the slenderness and the

different sections spread uniformly in the plot. Sub-plot 8.2b shows the three analysed

load cases, demonstrating a clear path for both the pure compression case φ = 0 and pure

bending φ = 90 around the y-axis. For the case of combined compression and bending the

scatter increases considerably, but a descending pattern for these results is still discernible.

The results are remarkably unaffected by the geometrical properties of the section. For the

a) b)

Fig. 8.2. Results of the parametric study on polygonal sections; sub-plot a) highlights the sections, and b)
the load-cases of pure compression, pure bending and combined compression and bending

cases of pure compression and pure bending the scatter of the results is low and a clear

pattern is shown. The GMNIA points lie respectively below and above the Winter-curve,

which is consistent with the results for SHS and RHS sections. The consistency and the

overall low scatter of the results divided into load cases is ought to the choice of the GSRM

representation. In general, these first results are encouraging, since they fit into the GSRM

design format of the Winter curve for the elastic range and show similar behaviour in the

stocky range, when compared to SHS and RHS. A possible design proposal may account for

a larger number of sections, with uneven side numbers, and more input parameter. Finding a

general design rule, which accounts for all effects of local buckling and all polygonal sections,

appears to be a feasible task.



128

8.2 AI-based design formulae

The latest approach to mention, which received in recent years increasingly attention in all

engineering fields, is machine learning, and its most developed techniques defined by the

general term of deep learning [77]. Machine Learning (ML) is a subgroup of algorithms

belonging to Artificial Intelligence (AI), which enables systems to learn from given data and

not just to execute or make actions, commands or decisions by explicit programming. DL

initially was a subgroup of ML dealing with Artificial Neural Nets (ANN). Deep learning uses

so-called artificial neural networks to recognize patterns and highly non-linear relationships

in data, providing a series of non-linear functions fitted to the input data, called train set.

The Deep Neural Network (DNN) is ”trained” on the train set, learn with complex algorithm

in a very efficient way to minimise the error between the DNN predictions and the data set.

After the training the DNN is applied to a new test set, to verify the prediction accuracy.

This kind of approach falls into the category of curve fitting formats, described in section

3.5.

Different DNN architectures were tested, and here only the results of one DNN archi-

tecture, which minimizes the mean square root of the error between local buckling GMNIA

results and predictions, will be presented. A prefixed architecture with one input layer of 24

dimensions (features from the FEM study), 5 dense hidden deep layers with dimensionality

of 150 nodes each and 1 output layer (ultimate load amplification factor) of dimension 1

was chosen. This type of structure is defined as dense (all nodes of consecutive layers are

connected), and all nodes share the same activation function type, for this case tanh was

chosen. For the training, the mean-squared-error (MSE) loss function was used together

with a L2-norm regulariser with scaling factor λ = 10−5 on the parameters of the DNN to

avoid overfitting. In figure 8.3 the predictions of the DNN model are shown and compared

to the GSRM predictions. The gains in accuracy are extremely high, when compared to

every developed method for the prediction of SHS and RHS resistance. The higher accuracy

of the predictions – measured through the standard deviation of the data – is in general one

order of magnitude greater than the previously described GSRM results. Figure 8.3a shows

very low scatter over the whole slenderness ranges, and extremely high accuracy. The aver-

age values and the standard deviation values are very similar, with differences between the

classes of 0.1%. Most importantly, the consistency of the results is valid throughout every

Eurocode class and slenderness range, even though in the DNN model inputs there was no

data describing the mechanical behaviour of the numerical results (e.g. Winter function,
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slenderness, elastic bifurcation load, etc.), as the model entirely relied on basic geometrical

and material input data. Even though the GSRM predictions in 8.3b are more accurate than

the Eurocode, they show larger scatter the the DNN results and a less uniform distribution

along the slenderness.

a) b)

++

b b b b

Fig. 8.3. a) GMNIA results on local buckling normalized by the GSRM predictions, and by the b) DNN
predictions.

This study represents only a first step, which shows the potential of the DNN architec-

tures, which demonstrate better results and very fast implementation. These methods are

not new, machine learning and curve fitting methods were continuously applied in various

fields of engineering for decades, but the developments of developer friendly libraries (such as

Tensorflow) and increasing processor capacity made DNN a very handy solution for problems

with a large database, providing robust algorithms and rapidly decreasing implementation

time. This positive note on DNN shall also put emphasis on the recommendation to use these

methods with extreme caution. The lack of a mechanical background for the development

of these methods may result into non-physical result predictions, which may decrease the

assessed safety. For this reason extensive research is recommended for the development of

any method based on DNN or ML.



Chapter 9

Summary, conclusions and outlook

9.1 Summary and conclusions

Current steel design codes are based on methods for the determination of the cross-section

and member resistance, that are not always sufficiently efficient or accurate. The effective

section method for the prediction of the resistance of slender sections is robust, but com-

plicated by several calculation steps and is made less efficient, since it does not analyse the

overall cross-section resistance, but considers the plate-by plate resistance. The Eurocode 3

provides robust and efficient rules for member buckling, based on the Ayrton-Perry approach,

but the interaction of the member resistance with the local buckling effects is neglected. The

primary objective of this thesis was therefore to develop a more rational and efficient design

method for SHS and RHS sections and members, while maintaining the consistency with

the Eurocode approach. This method was termed the ”Generalised Slenderness-based Re-

sistance Method” - GSRM. As the name implies, it is a method that formulates resistance

as a functions of a more general definition of slenderness. Where it was possible, similar

representation formats to the Eurocode were used, and the Ayrton-Perry and Winter repre-

sentation formats respectively for members and sections were adopted.
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The process of developing the proposed design method involved:

• reviewing existing design rules and current design methods for local buckling and global

buckling.

• conducting an extensive experimental test campaign.

• validating and calibrating numerical models reproducing the experimental test results

by focussing on key input parameters.

• creating an equivalent FEM-model for the generation of a large numerical dataset.

• developing design rules on the basis of the GSRM representation format.

These steps are described in detail in the thesis, which is organized in nine chapters and 3

Appendices. Chapter 1 contains the motivation and scope of the thesis and identifies the

publications that already resulted from the work carried out in the thesis project. It is

followed, in Chapter 2, by a review of the current state of the art in the design of sections

against local and global buckling in general, with a focus on hollow sections respectively

on the phenomena that most affect this type of section. Chapter 3 describes the general

methodology used in this thesis, in particular with regards to the considered, existing design

approaches (used as starting points for own developments), the experimental tests conducted

by the author of this thesis at the laboratory of Bundeswehr University Munich, the FEM

modelling and the used analytical approaches. In Chapter 4, the experimental campaign

and its use as the basis for the validation and verification of advanced numerical models is

described. The numerical campaign made possible by these numerical models is then de-

scribed in detail Chapter 5. Chapter 6 and 7 contain the key developments of the thesis: the

new GSRM formulations for local and global buckling, respectively, with their background

and validation. Some initial work on the expansion of the field of application of the GSRM

is presented in Chapter 8. Finally, Chapter 9 contains a summary and conclusions derived

from this thesis work. The Appendices contain further information on the physical tests and

the numerical analyses, including a sample input file.
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The following conclusions can be drawn from the work presented in this thesis:

1. The GSRM is able to capture some key aspects of the buckling resistance of hollow

sections that are not covered in a straightforward manner by other design rules. This

includes the fact that a cross-section level slenderness is far better able to describe the

susceptibility to local buckling than plate-by-plate methods as currently used e.g. in

the Eurocode. Furthermore, the method can accurately take into account the fact that

the buckling strength is actually continuous over slenderness, as opposed to behaving

distinctly in the three ranges described by the Eurocode cross-sections classes 1, 2, 3

and 4. Both of these aspects lead to predictions of the buckling strength that are far

more consistent and generally more economical than traditional approaches. Finally,

in the case of global buckling phenomena, the method’s ability to capture the precise

onset of the first yielding and include this point in the design methodology leads to

advantages in accuracy and consistency also in the case of member buckling.

2. At the same time, the development of new design rules carried out in this thesis demon-

strated that traditional formulations, such as the Winter curves for plate buckling and

the Ayrton-Perry approach for members, can be fruitfully used as the basis for design

also in newer concepts, such as the GSRM. This is inherent in the mechanical back-

ground of the method, but could be demonstrated quite effectively in the calibrations

carried out for the development of the GSRM.

3. More generally, the work carried out in this thesis has shown both the continuous rel-

evance of carrying out extensive physical test campaigns to understand buckling phe-

nomena, while nevertheless demonstrating the accuracy that can be achieved through

advanced numerical analyses, provided that one has insight in the material used and

can represent the specimens’ true geometry. Huge advances are currently taking place

in this field, so that it can be foreseen that advanced, non-linear numerical analysis

will take on increasing significance in practice as well in the near future.
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9.2 Outlook on future work

The GSRM has the potential for new and more general GSRM design rules to be developed

in the future. A similar investigation conducted for hollow sections may be done for open

cross-section, including also torsion and lateral torsional buckling effects in the experimental

and numerical models. New, robust and more efficient GSRM design rules could be easily

developed, thanks to the methodology described in this thesis and implemented during the

HOLLOSSTAB project. Rules for Circular Hollow Sections (CHS) were also developed

during the project [78]. Other sections, such as sections with grooves and polygonal sections,

were analysed in this thesis and described for promising future studies. A new course of

studies could be developed by focusing on open sections. The promising results of the

GSRM for this thesis could be applicable also for torsion-prone cross-sections, where lateral

torsional buckling plays an important role. The approach in this case should be tailored to

the specific sections: one aspect of the GSRM which could significantly change is the role of

the Linear Buckling Analysis (LBA), with regard to the determination of the critical buckling

load and imperfection shape. In fact, new buckling eigenmodes could be introduced, such as

distortional buckling and lateral torsional buckling at a global level, impacting significantly

the outcome of the analysis. Completing this necessary set of rules for a broad set of

sections could provide the background for a future implementation in the Eurocodes, possibly

integrating the method with other set of rules, such as the CSM design rules.

Another promising research area could be the implementation of the GSRM rules, while

accounting for the rotation capacity of the sections. The present thesis did not focus on

describing the rotation capacity of SHS and RHS. Integrating this parameter, both in the

numerical analysis and design curves could open up new applications, especially in the stocky

range, where plastic redistributions are possible. Further studies could bring to the imple-

mentation of these rules into finite elements. In this thesis, a direct relation between slen-

derness and cross-section and member resistance was found, and could be applied in a fast

and more efficient FEM model, combining GMNIA and GSRM design checks. Furthermore,

if the rotation capacity could be assessed as a function of the GSRM slenderness and im-

plemented as a parameter in a finite element, new GSRM-based numerical models could be

developed, improving significantly the design efficiency.

If new methods could be explored, certainly machine learning techniques represent a sub-

ject of debate. The recent increase in computation efficiency and the enormous growth of

open source material for machine and deep learning techniques, have made the development
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of predictive ”tools”, based on these techniques, quite an easy task. In many areas, re-

searchers produce what could be called ”fast-tools”, tailored to the given set of data, which

predict with exceptional accuracy the target/design data. In the filed of structural engi-

neering this could be an enormous advancement in developing predictive methods, such as

the GSRM, but it is currently hindered by the lack of precise assessment of the reliability of

these machine learning techniques. Unfortunately, these techniques, especially deep learning,

which is mostly used in AI and in more complex problems, work in many as a ”black-box”.

Convergence to the desired minima points is not generally guaranteed, and thus the reliabil-

ity of the results is hindered in terms of safety assessment. This should not stop the research

for structural engineers in this area, but should direct the efforts towards feasible solutions,

which account for possible application such as the Eurocodes.





References

1. Eurocode 3: Design of steel structures - Part 1-1: General rules and rules for buildings

Standard EN 1993-1-1 (CEN – European Committee for Standardization, Brussels,

2005).

2. Taras, A., Toffolon, A., Niko, I., Gardner, L., Meng, X., Camotim, D., Silvestre, N.,

Goncalves, R., Bureau, A., Beyer, A. & Dehan, V. Innovative buckling design rules

for structural hollow sections Deliverable 9.1 (HOLLOSSTAB, RFCS Grant No. 2015-

709892, Munich, 2019).

3. Szalai, J. & Papp, F. THEORY AND APPLICATION OF THE GENERAL METHOD

OF EUROCODE 3 PART 1-1 in Proceedings of EUROSTEEL 2011 (Jan. 2011).

4. Tankova, T., Marques, L., Andrade, A. & Simões da Silva, L. A consistent methodol-

ogy for the out-of-plane buckling resistance of prismatic steel beam-columns. English.

Journal of Constructional Steel Research 128, 839–852 (2017).

5. Yu, C. & Schafer, B. W. Distortional Buckling Tests on Cold-Formed Steel Beams.

Journal of Structural Engineering 132, 515–528 (2006).

6. Li, Z. & Schafer, B. Application of the finite strip method in cold-formed steel member

design. Journal of Constructional Steel Research 66, 971 –980 (2010).

7. Moen, C. D. & Schafer, B. W. Extending Direct Strength Design to Cold-formed Steel

Beams with Holes in International Specialty Conference on Cold-Formed Steel Struc-

tures. (2010).

8. Moen, C. D. & Schafer, B. W. Direct Strength Method for Design of Cold-Formed Steel

Columns with Holes. Journal of Structural Engineering 137, 559–570 (2011).

9. Torabian, S., Zheng, B. & Schafer, B. W. Development of a New Beam-Column De-

sign Method for Cold-Formed Steel Lipped Channel Members in International Specialty

Conference on Cold-Formed Steel Structures (2014).

10. Taras, A. Derivation of DSM-type resistance functions for in-plane global buckling of

steel beam-columns. Journal of Constructional Steel Research 125, 95–113 (Oct. 2016).

11. Schafer, B. Advances in the direct strength method of thin-walled steel design in Pro-

ceedings of the Eighth International Conference on Thin-Walled Structures (2018).

12. Schafer, B. W. Advances in the Direct Strength Method of cold-formed steel design.

Thin-Walled Structures 140, 533 –541 (2019).



136 REFERENCES

13. Gardner, L. The Continuous Strength Method. Proceedings of The Institution of Civil

Engineers-structures and Buildings - PROC INST CIVIL ENG-STRUCT B 161, 127–

133 (Jan. 2008).

14. Afshan, S. & Gardner, L. The continuous strength method for structural stainless steel

design. Thin-Walled Structures 68, 42 –49 (2013).

15. Su, M.-N., Young, B. & Gardner, L. The continuous strength method for the design of

aluminium alloy structural elements. Engineering Structures 122, 338 –348 (2016).

16. Buchanan, C., Gardner, L. & Liew, A. The continuous strength method for the design

of circular hollow sections. Journal of Constructional Steel Research 118, 207 –216

(2016).

17. Zhao, O., Afshan, S. & Gardner, L. Structural response and continuous strength method

design of slender stainless steel cross-sections. Engineering Structures 140, 14 –25

(2017).

18. Yun, X., Gardner, L. & Boissonnade, N. The Continuous Strength Method for The

Design of Hot-Rolled Steel Cross-Sections. Engineering Structures (Jan. 2018).

19. Theofanous, M., Propsert, T., Knobloch, M. & Gardner, L. The continuous strength

method for steel cross-section design at elevated temperatures. Thin-Walled Structures

98. Elevated temperature performance of thin-walled structures, 94 –102 (2016).

20. Boissonnade, N., Nseir, J. & Saloumi, E. The Overall Interaction Concept: an Alterna-

tive Approach to the Stability and Resistance of Steel Sections and Members in (Apr.

2013).

21. Boissonnade, N., Hayeck, M., Saloumi, E. & Nseir, J. An Overall Interaction Concept

for an alternative approach to steel members design. Journal of Constructional Steel

Research 135, 199 –212 (2017).

22. Toffolon, A. & Taras, A. Development of an OIC-Type local buckling design approach

for cold-formed unstiffened and groove-stiffened hollow sections. Thin-Walled Structures

144, 106266 (2019).

23. Toffolon, A., Meng, X., Taras, A. & Gardner, L. The generalized slenderness-based

resistance method for the design of SHS and RHS. Steel Construction 12, 327–341

(2019).



137

24. Taras, A. & Toffolon, A. Neuartige Bemessungsmethode fuer Hohlprofilquerschnitte

und -staebe. Stahlbau 89, 570–584 (2020).

25. Toffolon, A. & Taras, A. Numerical investigation of the local buckling behaviour of high

strength steel circular hollow sections in Proceedings of Eurosteel 2017 1 (2017).

26. Toffolon, A. & Taras, A. Numerical and Experimental Studies for the Development

of Direct Strength Design Rules for Locally in Proceedings of SSRC Conference 2018

(2018).

27. Toffolon, A. & Taras, A. Application of an OIC-type design apporach to the buckling

design of cold-formed, lip-stiffened hollow sections in Proceedings of the International

Colloquia on Stability and Ductility of Steel Structures SDSS 2019 (July 2018).

28. Toffolon, A. & Taras, A. Proposal of a design curve for the overall resistance of cold

formed RHS and SHS members in Proceedings of Nordic Steel 2019 3 (2019).

29. Toffolon, A., Müller, A., Niko, I. & Taras, A. Experimental and numerical analysis of

the local and interactive buckling behaviour of hollow sections in Proceedings of Nordic

Steel 2019 3 (Sept. 2019).

30. Toffolon, A., Taras, A., Müller, A. & Niko, I. Experimental and numerical analysis

of the local and interactive buckling behaviour of hollow sections in Proceedings of the

International Colloquia on Stability and Ductility of Steel Structures SDSS 2019 (Sept.

2019).

31. Toffolon, A. & Taras, A. Proposal of a design curve for the overall resistance of cold

formed RHS and SHS members in Proceedings of the International Colloquia on Stability

and Ductility of Steel Structures SDSS 2019 (Sept. 2019).

32. Toffolon, A., Niko, I. & Taras, A. FEM-based design of hollow sections against local,

global and interactive buckling – model verification and calibration against physical tests

in Proceedings of the 17th Internation Symposioum on Tubular Structures (Dec. 2019).

33. Toffolon, A. & Taras, A. Proposal of generalized slenderness-based resistance curves for

the local and interactive buckling of rectangular hollow sections in Proceedings of the

17th Internation Symposioum on Tubular Structures (Dec. 2019).

34. Toffolon, A. & Taras, A. New formulations for the cross-sectional strength of high-

strength steel rectangular and square hollow sections using a Generalized Slenderness-

Strength Method in Proceedings of SSRC 2020 (Apr. 2020).



138 REFERENCES

35. Taras, A. & Toffolon, A. Development of a generalized slenderness-based resistance

method for the design of high-strength steel hollow section beam-columns in Proceedings

of SSRC 2020 (Apr. 2020).

36. Timoshenko, S. & Gere, J. M. Theory of elastic stability. (McGraw-Hill International

Book Company, New York, 1985).
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Deliverables

No. Title Date completed/
submitted

D1.1 Meetings, Workplans, Correspondence Y3Q4
D2.1 Document containing current market trends Y1Q4
D2.2 Document describing the benchmark cases Y2Q1
D2.3 Benchmark cases Y3Q4
D3.1 Re-examine tests data on CHS Y2Q3
D3.2 Full Reporting of “numerical test” results - CHS Y3Q3
D3.3 Procurement / Delivery of test specimens - CHS Y1Q4
D4.1 Re-examine test data on RHS/SHS Y2Q3
D4.2 Full Reporting of “numerical test” results - RHS/SHS Y3Q3
D4.3 Procurement / Delivery of test specimens - RHS/SHS Y1Q4
D5.1 Reporting of re-examined experimental data - Beam-columns Y2Q3
D5.2 Full Reporting of “numerical test” results - Beam-columns Y3Q3
D5.3 Procurement / Delivery of test specimens - beam-columns Y1Q4
D6.1 Report on elastic buckling of SHS and RHS Y2Q3
D6.2 Report on elastic buckling of CHS and EHS Y3Q4
D6.3 Report on elastic buckling of RPHS Y2Q3
D7.1 Report on statistical data Y3Q4
D7.2 Report on the safety evaluation Y3Q4
D8.1 Guidelines for development of strength curves Y2Q3
D8.2 Report on proposals for SHS/RHS Y3Q4
D8.3 Report on proposals for CHS/EHS Y3Q4
D8.4 Report on Software tools Y3Q4
D9.1 Design Guidelines and Background Doc. Y3Q4
D9.2 Final Workshop Y3Q4

Final Report Y3Q4
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146 APPENDIX B. SELECTED TEST RESULTS
HOLLOSSTAB – RFCS 2015-709892 Deliverable D4.2 

ANNEX A – Tests at UBW  A-2 

Test No. T1-1 

 

SHS 140/140/4.0 

S355 - EN10219 

Test type T1 

e = 0 mm 

tMEAS = 4.0 mm 

 

FMax, Exp = 861,3 kN 

FMax, FEM = 906,8 kN 
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HOLLOSSTAB – RFCS 2015-709892 Deliverable D4.2 

ANNEX A – Tests at UBW  A-3 

 

 

 

Section B-B 

 

 
 

Section C-C 

 

Section D-D 

  



148 APPENDIX B. SELECTED TEST RESULTS
HOLLOSSTAB – RFCS 2015-709892 Deliverable D4.2 

ANNEX A – Tests at UBW  A-26 

Test T2-1 

 

SHS 140/140/4.0 

S355 - EN10219 

Test type T2 

e = 15 mm 

tMEAS = 4.0 mm 

 

FMax, Exp = 868,3 kN 

FMax, FEM = 859,4 kN 
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HOLLOSSTAB – RFCS 2015-709892 Deliverable D4.2 

ANNEX A – Tests at UBW  A-27 

 
 

 

 

Section B-B 

  

Section C-C 

 

Section D-D 



150 APPENDIX B. SELECTED TEST RESULTS
HOLLOSSTAB – RFCS 2015-709892 Deliverable D4.2 

ANNEX A – Tests at UBW  A-50 

Test T3-1 

 

SHS 140/140/4.0 

S355 - EN10219 

Test type T3 

e = 137 mm 

tMEAS = 4.0 mm 

 

FMax, Exp = 291,7 kN 

FMax, FEM = 282,6 kN 
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HOLLOSSTAB – RFCS 2015-709892 Deliverable D4.2 

ANNEX A – Tests at UBW  A-51 

  

 

 

Section B-B 

 

 

Section C-C 

 

Section D-D 

  



152 APPENDIX B. SELECTED TEST RESULTS
HOLLOSSTAB – RFCS 2015-709892 Deliverable D4.2 

ANNEX A – Tests at UBW  A-74 

Test T4-1 

 

SHS 140/140/4.0 

S355 - EN10219 

Test type T4 

e = 312 mm 

tMEAS = 4.0 mm 

 

FMax, Exp = 141,3 kN 

FMax, FEM = 137,6 kN 
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HOLLOSSTAB – RFCS 2015-709892 Deliverable D4.2 

ANNEX A – Tests at UBW  A-75 

 
 

 

 

Section B-B 

 

 

Section C-C 

 

Section D-D 



154 APPENDIX B. SELECTED TEST RESULTS
HOLLOSSTAB – RFCS 2015-709892 Deliverable D4.2 

ANNEX A – Tests at UBW  A-98 

Test T5-1 

 

SHS 140/140/4.0 

S355 - EN10219 

Test type T5 

e = 137 mm 

tMEAS = 4.0 mm 

 

FMax, Exp = 262,0 kN 

FMax, FEM = 259,7 kN 
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HOLLOSSTAB – RFCS 2015-709892 Deliverable D4.2 

ANNEX A – Tests at UBW  A-99 

  

 

 

Section B-B 

 

 

Section C-C 

 

Section D-D 

  



156 APPENDIX B. SELECTED TEST RESULTS
HOLLOSSTAB – RFCS 2015-709892 Deliverable D4.2 

ANNEX A – Tests at UBW  A-8 

Test No. T1-4 

 

SHS 200/200/4 

S500 - EN10219 

Test type T1 

e = 0 mm 

tMEAS = 4.1 mm 

 

FMax, Exp = 1111,2 kN 

FMax, FEM = 1144,1 kN 
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HOLLOSSTAB – RFCS 2015-709892 Deliverable D4.2 

ANNEX A – Tests at UBW  A-9 

  

 

 

Section B-B 

 

 

Section C-C 

 

Section D-D 

 



158 APPENDIX B. SELECTED TEST RESULTS
HOLLOSSTAB – RFCS 2015-709892 Deliverable D4.2 

ANNEX A – Tests at UBW  A-32 

Test T2-4 

 

SHS 200/200/4 

S500 - EN10219 

Test type T2 

e = 63 mm 

tMEAS = 4.1 mm 

 

FMax, Exp = 865,1 kN 

FMax, FEM = 894,4 kN 

 

 
 

 



159
HOLLOSSTAB – RFCS 2015-709892 Deliverable D4.2 

ANNEX A – Tests at UBW  A-33 

  

 

 

Section B-B 

 

 

Section C-C 

 

Section D-D 

  



160 APPENDIX B. SELECTED TEST RESULTS
HOLLOSSTAB – RFCS 2015-709892 Deliverable D4.2 

ANNEX A – Tests at UBW  A-56 

Test T3-4 

 

SHS 200/200/4 

S500 - EN10219 

Test type T3 

e = 107 mm 

tMEAS = 4.1 mm 

 

FMax, Exp = 622,6 kN 

FMax, FEM = 701,9 kN 
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HOLLOSSTAB – RFCS 2015-709892 Deliverable D4.2 

ANNEX A – Tests at UBW  A-57 

 
 

 

 

Section B-B 

 
 

Section C-C 

 

Section D-D 



162 APPENDIX B. SELECTED TEST RESULTS
HOLLOSSTAB – RFCS 2015-709892 Deliverable D4.2 

ANNEX A – Tests at UBW  A-80 

Test T4-4 

 

SHS 200/200/4 

S500 - EN10219 

Test type T4 

e = 457 mm 

tMEAS = 4.1 mm 

 

FMax, Exp = 212,1 kN 

FMax, FEM = 208,5 kN 
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HOLLOSSTAB – RFCS 2015-709892 Deliverable D4.2 

ANNEX A – Tests at UBW  A-81 

  

 

 

 

Section B-B 

 

 

Section C-C 

 

Section D-D 



164 APPENDIX B. SELECTED TEST RESULTS
HOLLOSSTAB – RFCS 2015-709892 Deliverable D4.2 

ANNEX A – Tests at UBW  A-104 

Test T5-4 

 

RHS 300/150/6 

S355 - EN10219 

Test type T5 

e = 57 mm 

tMEAS = 5.7 mm 

 

FMax, Exp = 1289,8 kN 

FMax, FEM = 1272,8 kN 
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HOLLOSSTAB – RFCS 2015-709892 Deliverable D4.2 

ANNEX A – Tests at UBW  A-105 

  

 

 

Section B-B 

 
 

Section C-C 

 

Section D-D 



166 APPENDIX B. SELECTED TEST RESULTS
HOLLOSSTAB – RFCS 2015-709892 Deliverable D4.2 

ANNEX A – Tests at UBW  A-12 

Test No. T1-6 

 

RHS 300/150/6 

S355 - EN10219 

Test type T1 

e = 0 mm 

tMEAS = 5.7 mm 

 

FMax, Exp = 1582,0 kN 

FMax, FEM = 1644,1 kN 
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HOLLOSSTAB – RFCS 2015-709892 Deliverable D4.2 

ANNEX A – Tests at UBW  A-13 

 
 

 

 

Section B-B 

  

Section C-C 

 

Section D-D 



168 APPENDIX B. SELECTED TEST RESULTS
HOLLOSSTAB – RFCS 2015-709892 Deliverable D4.2 

ANNEX A – Tests at UBW  A-36 

Test T2-6 

 

RHS 300/150/6 

S355 - EN10219 

Test type T2 

e = 18 mm 

tMEAS = 5.7 mm 

 

FMax, Exp = 1507,7 kN 

FMax, FEM = 1636,5 kN 
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HOLLOSSTAB – RFCS 2015-709892 Deliverable D4.2 

ANNEX A – Tests at UBW  A-37 

 
 

 

  



170 APPENDIX B. SELECTED TEST RESULTS
HOLLOSSTAB – RFCS 2015-709892 Deliverable D4.2 

ANNEX A – Tests at UBW  A-60 

Test T3-6 

 

RHS 300/150/6 

S355 - EN10219 

Test type T3 

e = 57 mm 

tMEAS = 5.7 mm 

 

FMax, Exp = 1309,9 kN 

FMax, FEM = 1268,0 kN 
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HOLLOSSTAB – RFCS 2015-709892 Deliverable D4.2 

ANNEX A – Tests at UBW  A-61 

 

 

 

Section B-B 

  

Section C-C 

 

Section D-D 



172 APPENDIX B. SELECTED TEST RESULTS
HOLLOSSTAB – RFCS 2015-709892 Deliverable D4.2 

ANNEX A – Tests at UBW  A-84 

Test T4-6 

 

RHS 300/150/6 

S355 - EN10219 

Test type T4 

e = 297 mm 

tMEAS = 5.7 mm 

 

FMax, Exp = 584.7 kN 

FMax, FEM = 558.6 kN 
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HOLLOSSTAB – RFCS 2015-709892 Deliverable D4.2 

ANNEX A – Tests at UBW  A-85 

  

 

 

Section B-B 

 
 

Section C-C 

 

Section D-D 



174 APPENDIX B. SELECTED TEST RESULTS
HOLLOSSTAB – RFCS 2015-709892 Deliverable D4.2 

ANNEX A – Tests at UBW  A-108 

Test T5-6 

 

HEX 250/8.5 

S355 - EN10210 

Test type T5 

e = 76 mm 

tMEAS = 8.5 mm 

 

FMax, Exp = 1484,8 kN 

FMax, FEM = 1443,3 kN 
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HOLLOSSTAB – RFCS 2015-709892 Deliverable D4.2 

ANNEX A – Tests at UBW  A-109 
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176 APPENDIX B. SELECTED TEST RESULTS
HOLLOSSTAB – RFCS 2015-709892 Deliverable D4.2 

ANNEX A – Tests at UBW  A-16 

Test No. T1-8 

 

VHPS 140/140/2.5 

S355 - EN10219 

Test type T1 

e = 0 mm 

tMEAS = 2.5 mm 

 

FMax, Exp = 623,1 kN 

FMax, FEM = 630,7 kN 
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HOLLOSSTAB – RFCS 2015-709892 Deliverable D4.2 

ANNEX A – Tests at UBW  A-17 
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178 APPENDIX B. SELECTED TEST RESULTS
HOLLOSSTAB – RFCS 2015-709892 Deliverable D4.2 

ANNEX A – Tests at UBW  A-40 

Test T2-8 

 

VHPS 140/140/2.5 

S355 - EN10219 

Test type T2 

e = 0 mm 

tMEAS = 2.5 mm 

 

FMax, Exp = 614,8 kN 

FMax, FEM = 604,9 kN 
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HOLLOSSTAB – RFCS 2015-709892 Deliverable D4.2 

ANNEX A – Tests at UBW  A-41 
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180 APPENDIX B. SELECTED TEST RESULTS
HOLLOSSTAB – RFCS 2015-709892 Deliverable D4.2 

ANNEX A – Tests at UBW  A-64 

Test T3-8 

 

VHPS 140/140/2.5 

S355 - EN10219 

Test type T3 

e = 138 mm 

tMEAS = 2.5 mm 

 

FMax, Exp = 205,4 kN 

FMax, FEM = 201,4 kN 
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HOLLOSSTAB – RFCS 2015-709892 Deliverable D4.2 

ANNEX A – Tests at UBW  A-65 

  

 

  



182 APPENDIX B. SELECTED TEST RESULTS
HOLLOSSTAB – RFCS 2015-709892 Deliverable D4.2 

ANNEX A – Tests at UBW  A-88 

Test T4-8 

 

VHPS 140/140/2.5 

S355 - EN10219 

Test type T4 

e = 312 mm 

tMEAS = 2.5 mm 

 

FMax, Exp = 98,8 kN 

FMax, FEM = 96,2 kN 
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HOLLOSSTAB – RFCS 2015-709892 Deliverable D4.2 

ANNEX A – Tests at UBW  A-89 
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184 APPENDIX B. SELECTED TEST RESULTS
HOLLOSSTAB – RFCS 2015-709892 Deliverable D4.2 

ANNEX A – Tests at UBW  A-20 

Test No. T1-10 

 

HEX 250/8.5 

S355 - EN10210 

Test type T1 

e = 0 mm 

tMEAS = 8.5 mm 

 

FMax, Exp = 2925,8 kN 

FMax, FEM = 2875,3 kN 
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HOLLOSSTAB – RFCS 2015-709892 Deliverable D4.2 

ANNEX A – Tests at UBW  A-21 
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186 APPENDIX B. SELECTED TEST RESULTS
HOLLOSSTAB – RFCS 2015-709892 Deliverable D4.2 

ANNEX A – Tests at UBW  A-44 

Test T2-10 

 

HEX 250/8.5 

S355 - EN10210 

Test type T2 

e = 63 mm 

tMEAS = 8.5 mm 

 

FMax, Exp = 2117,7 kN 

FMax, FEM = 2125,1 kN 
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HOLLOSSTAB – RFCS 2015-709892 Deliverable D4.2 

ANNEX A – Tests at UBW  A-45 
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188 APPENDIX B. SELECTED TEST RESULTS
HOLLOSSTAB – RFCS 2015-709892 Deliverable D4.2 

ANNEX A – Tests at UBW  A-68 

Test T3-10 

 

HEX 250/8.5 

S355 - EN10210 

Test type T3 

e = 76 mm 

tMEAS = 8.5 mm 

 

FMax, Exp = 1638,3 kN 

FMax, FEM = 1684,3 kN 
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HOLLOSSTAB – RFCS 2015-709892 Deliverable D4.2 

ANNEX A – Tests at UBW  A-69 
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190 APPENDIX B. SELECTED TEST RESULTS
HOLLOSSTAB – RFCS 2015-709892 Deliverable D4.2 

ANNEX A – Tests at UBW  A-92 

Test T4-10 

 

HEX 250/8.5 

S355 - EN10210 

Test type T4 

e = 426 mm 

tMEAS = 8.5 mm 

 

FMax, Exp = 457,1 kN 

FMax, FEM = 470,4 kN 
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HOLLOSSTAB – RFCS 2015-709892 Deliverable D4.2 

ANNEX A – Tests at UBW  A-93 
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192 APPENDIX B. SELECTED TEST RESULTS
HOLLOSSTAB – RFCS 2015-709892 Deliverable D4.2 

ANNEX A – Tests at UBW  A-22 

Test No. T1-11 

 

VHPT 140/140/2.5 

S355 - EN10219 

Test type T1 

e = 0 mm 

tMEAS = 2.5 mm 

 

FMax, Exp = 584,5 kN 

FMax, FEM = 588,4 kN 
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HOLLOSSTAB – RFCS 2015-709892 Deliverable D4.2 

ANNEX A – Tests at UBW  A-23 
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194 APPENDIX B. SELECTED TEST RESULTS
HOLLOSSTAB – RFCS 2015-709892 Deliverable D4.2 

ANNEX A – Tests at UBW  A-46 

Test T2-11 

 

VHPT 140/140/2.5 

S355 - EN10219 

Test type T2 

e = 10 mm 

tMEAS = 2.5 mm 

 

FMax, Exp = 594,1 kN 

FMax, FEM = 567,1 kN 
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HOLLOSSTAB – RFCS 2015-709892 Deliverable D4.2 

ANNEX A – Tests at UBW  A-47 
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196 APPENDIX B. SELECTED TEST RESULTS
HOLLOSSTAB – RFCS 2015-709892 Deliverable D4.2 

ANNEX A – Tests at UBW  A-70 

Test T3-11 

 

VHPT 140/140/2.5 

S355 - EN10219 

Test type T3 

e = 196 mm 

tMEAS = 2.5 mm 

 

FMax, Exp = 63.2 kN 

FMax, FEM = 59.9 kN 
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HOLLOSSTAB – RFCS 2015-709892 Deliverable D4.2 

ANNEX A – Tests at UBW  A-71 
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198 APPENDIX B. SELECTED TEST RESULTS
HOLLOSSTAB – RFCS 2015-709892 Deliverable D4.2 

ANNEX A – Tests at UBW  A-94 

Test T4-11 

 

VHPT 140/140/2.5 

S355 - EN10219 

Test type T4 

e = 371 mm 

tMEAS = 2.5 mm 

 

FMax, Exp = 63,2 kN 

FMax, FEM = 59,9 kN 
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ANNEX A – Tests at UBW  A-95 
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Appendix C

Sample Abaqus input file for GMNIA

*HEADING

**GMNIA INP FILE

********** Parameters for the calculation

*PARAMETER

ecc_My = 0.

ecc_Mz = 0.

H = 120

B = 180

t = 6.3

nu = 0.3

E = 210000.

fy = 355.0

fu = 470.0

L = 554.6500480036693

bound = 4

imperfection_factor = B/400.0

************************************************************

******************** GEOMETRY INPUTS

r_0 = 15.75

r_i = 9.45

r_m = (r_0+r_i)/2

bi = B-t-2*r_m

hi = H-t-2*r_m

Bi = B-t
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Hi = H-t

n_arc = 5

n_arc_tot = 16

n_ang = 180-360/n_arc_tot

bi05 = bi*0.5

hi05 = hi*0.5

Bi05 = Bi*0.5

Hi05 = Hi*0.5

************************************************************

******** LOAD INPUTS

**n = 1.3093073414159544

**my = 0.7559289460184545

**mz = 1.3093073414159542

N_pl = 1237160.5336378017

M_y_pl = 55805226.20597269

M_z_pl = 73636939.21510673

N = 1619823.3692020534

M_y = 42184785.82820237

M_z = 96413385.11373961

************************************************************

************************************************************

*NODE

1000021,0,<bi05>,-<hi05>

1000046,0,<bi05>,<hi05>

1000071,0,-<bi05>,<hi05>

1000096,0.,-<bi05>,-<hi05>

11 , 0., 0., 0.

21 , <L>, 0., 0.

********************************

**top-left

1001001,0.,-<bi05>,-<Hi05>

********************************

**top-right_1

1001021,0.,<bi05>,-<Hi05>

**top-right_2

1001026,0.,<Bi05>,-<hi05>
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********************************

**bottom-right 1

1001046,0.,<Bi05>,<hi05>

**bottom-right_2

1001051,0.,<bi05>,<Hi05>

*******************************

**bottom-left_1

1001071,0.,-<bi05>,<Hi05>

**bottom-left_2

1001076,0.,-<Bi05>,<hi05>

*******************************

**top-left_1

1001096,0.,-<Bi05>,-<hi05>

**top-left_2

1001101,0.,-<bi05>,-<Hi05>

************************************************************

*********Creation of reference lines************************

*NGEN,,NSET=Ntop

1001001,1001021,1

*NGEN,LINE=C, NSET=Ntop_right

1001021,1001026,1,1000021,0,<bi05>,-<hi05>,1,0,0

*NGEN,,NSET=Nright

1001026,1001046,1

*NGEN,LINE=C, NSET=Nbottom_right

1001046,1001051,1,1000046,0,<bi05>,<hi05>,1,0,0

*NGEN,,NSET=Nbottom

1001051,1001071,1

*NGEN,LINE=C, NSET=Nbottom_left

1001071,1001076,1,1000071,0,-<bi05>,<hi05>,1,0,0

*NGEN,,NSET=Nleft

1001076,1001096,1

*NGEN,LINE=C, NSET=Ntop_left

1001096,1001101,1,1000096,0,-<bi05>,-<hi05>,1,0,0

************************************************************

*Nset, nset=Bottom, GENERATE

1001001,1001101,1
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*Nset, nset=Middle, GENERATE

1101001,1101101,1

*ncopy,new set=Top,old set=Bottom,shift,change number=200000

<L>, 0, 0

0.0,0.0,0.0,0.0,0.0,0.0,0.0

*NFILL,NSET=Ntop

Bottom,Top,200,1000

*Element, type=S4R

1001001,1001001,1001002,1002002,1002001

*elgen,elset=arc_top_right

1001001,100,1,1,200,1000,1000

************************************************************

*NSET, nset=top_left_1, GENERATE

1002001,1200001,1000

*NSET, nset=top_left_2, GENERATE

1002101,1200101,1000

*Nset, nset=ref_11

11

*Surface, type=NODE, name=surface_section_bottom

Bottom,1

*Nset, nset=ref_21

21

*Surface, type=NODE, name=surface_section_top

Top,1

************************************************************

*********SECTION********************************************

*Shell Section, elset=arc_top_right, material=STEEL

<t>, 5

************************************************************

*********MPC BEAM*******************************************

*MPC

BEAM, Bottom, 11

*MPC

BEAM, Top, 21

************************************************************

*********MPC TIE********************************************
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*MPC

TIE,top_left_2,top_left_1

************************************************************

*********MATERIAL*******************************************

*MATERIAL,NAME=STEEL

*ELASTIC

<E>,<nu>

*PLASTIC

112.80000000000001,0

122.2,8.31730871333038e-07

131.6,1.428666989394204e-06

141.0,2.3640820241577903e-06

150.4,3.7867987320426176e-06

159.8,5.894859734312057e-06

169.20000000000002,8.947168922409298e-06

178.6,1.327692911544517e-05

188.0,1.9307023179544313e-05

197.4,2.7567488444156692e-05

206.8,3.8715236772490867e-05

216.20000000000002,5.355617507129943e-05

225.60000000000002,7.306988336743393e-05

235.0,9.843700984192225e-05

244.4,0.00013106954440296708

253.8,0.00017264413450263322

263.2,0.00022513860896293254

272.6,0.0002908718775797589

282.0,0.0003725473762215654

291.40000000000003,0.0004733002290372181

300.8,0.0005967483012372403

310.2,0.0007470473177174975

319.6,0.0009289502245568211

329.0,0.0011478709721424755

338.40000000000003,0.001409952900361915

347.8,0.0017221419079477848

357.2,0.0017784728490239244

366.6,0.002210734432717389
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376.0,0.00291558797062788

385.40000000000003,0.004263300205066824

394.8,0.006720486165804696

404.2,0.010832302281732185

413.6,0.01721202705165437

423.0,0.026533953035916585

432.40000000000003,0.039528127108269896

441.8,0.05697625143553327

451.20000000000005,0.07970837119118655

460.6,0.10860012511684931

470.0,0.1445704154002026

112.80000000000001,0.1447149858156028

************************************************************

*********BOUNDARY*******************************************

*BOUNDARY

21, 2, 3

**bottom boundary conditions; according to test setup.

11, 1, <bound>

************************************************************

********GMNIA***********************************************

*IMPERFECTION,FILE=LBA_H120_B180_t6.3_L0.15_fy355.0_phiy0.52359_phiz0.78539, Step = 1

1,<imperfection_factor>

*Step, name=GMNIA, nlgeom=YES

GMNIA

*Static

0.1, 1.,0.000025,0.4

************************************************************

*********LOAD*******************************************

*Cload

21,1,-<N>,

21,5,<M_y>,

21,6,<M_z>,

11,5,-<M_y>

11,6,-<M_z>

************************************************************

*********OUTPUT*********************************************
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** OUTPUT REQUESTS

*Restart, write, frequency=0

** FIELD OUTPUT: F-Output-1

*Output, field, variable=PRESELECT

** HISTORY OUTPUT: H-Output-1

*Output, history, variable=PRESELECT

*NODE PRINT, FREQ=1, NSET=Middle

U2,U3

*NODE PRINT, FREQ=1, NSET=ref_11

U

*NODE PRINT, FREQ=1, NSET=ref_11

RF

*NODE PRINT, FREQ=1, NSET=ref_21

U

*NODE PRINT, FREQ=1, NSET=ref_21

RF

*End Ste


