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ABSTRACT We present and evaluate an IoT-enabled sensing and actuating system for localizing illegal
industrial harsh discharges of polluting wastewater in sewer networks. The special conditions of the sewer
environment bring special challenges for the design of an IoT system and of its real-time algorithm for
anomaly detection and localization in wastewater networks. The proposed design fulfills these requirements
by using a new IoT architecture pattern, which we generalize and name Hop-by-hop Anomaly Detection
and Actuation (HADA). The distributed anomaly detection and localization algorithm makes predictions
over previous sensor measurements, while taking into account seasonality effects of wastewater and noise
of the sensors. Based on simulations in a large network with three common illegal industrial wastewater
pollutants, the advantages and limitations of the proposed wastewater anomaly localization system are
discussed. The IoT system, including its anomaly detection and localization algorithm, was implemented
using in a low-power microcontroller and tested in flowing wastewater with different harsh industrial waste.

INDEX TERMS Anomaly detection, sewage network, wastewater, waste water, IoT, design pattern, archi-
tecture pattern, Internet of Things, low-computer computing, micromole, Hop-by-hop anomaly detection
and actuation.

I. INTRODUCTION
Discharges of sulfuric acid (H2SO4) to sewers could origi-
nate from applications, such as etching of semiconductors,
accumulator acid or the production of organic chemical sub-
stances [3]. Sodium hydroxide (NaOH) is widely used for
cleaning of surfaces in metal processing in industrial appli-
cations [4], whereas discharges of sodium sulfate (Na2SO4)
can be caused by the regeneration of cation exchange resins,
which are used for softening of water in industrial water treat-
ment [5]. Illegal discharges of such dangerous harsh indus-
trial waste into sewage networks could be harmful for the
biological stage of WasteWater Treatment Plants (WWTP),
its personnel, sewer pipes and the general public.

In order to detect such a dangerous discharge and to trig-
ger remediatory actions promptly, continuous monitoring of
wastewater characteristics is required.

Since not all illegal discharges of harsh industrial waste can
be detected at the influent of WWTPs due to dilution effects,
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monitoring as close as possible to the point of discharge is
necessary.

In this article, we present an IoT-enabled system - namely
the Micromole system - for autonomous monitoring and
sampling of harsh wastewater discharges in sewers’ main-
lines no smaller than 250 mm in diameter. The IoT system
was initially designed and developed by a consortium of
11 organizations in Europe in the EU-funded project H2020
Micromole [1] and later improved in the EU-funded project
H2020 SYSTEM [2]. The prototype is currently at Technol-
ogy Readiness Level (TRL) 7 according to the European stan-
dards concerning research and innovation project outcomes.

This article presents the following contributions:
1) A new hardware architecture for wastewater monitor-

ing IoT systems,
2) A distributed real-time algorithm for anomaly detection

and localization of harmful wastewater discharges for
constraint IoT devices,

3) A new IoT architecture pattern that can be reused
in other applications and environments with similar
constraints,
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TABLE 1. Notation table.

4) Results from verification and validation of the pro-
posed IoT solution through simulations and experi-
mentation by potential end-users in a real wastewater
environment.

This article is organized as follows. An overview of
the phenomena involving wastewater advection, dispersion
and diffusion in the sewer network is briefly explained
in Section II. A summary of existing commercial devices
and online algorithm for water anomaly detection is
given in Section III. We provide the hardware design
of the proposed IoT system devices and their electronic
components - including sensor, actuators and radio commu-
nications - in Section IV. The distributed data processing
algorithm used for automatic localization of harsh wastewater
sources is described in Section V. We analyze the IoT system
performance and its limitations, based on simulations with
large network in Section VI. Finally, the prototype demon-
stration and validation activities carried out during the H2020
Micromole project with real flowing wastewater and harsh
dangerous industrial waste are explained in Section VII.

II. BACKGROUND - WASTEWATER PROPAGATION AND
OFFLINE SOURCE DETERMINATION
There are two types of sewer systems. Combined sewers
are designed to drain both sewage and stormwater, whereas
separate sewers are used to drain sewage only. As long as
there is no stormwater flowing in combined sewers, the flow
and the water level inside the sewers is usually very low as can
be seen from Fig. 1. In such cases, the flow of wastewater
is induced by gravity and the slope of the sewers. It can
be described by the Colebrook-White-equation (1) for open
channel flow:

v = −2
√
2gdJE · lg

(
k

3.71d
+

2.51ν
d
√
2gdJE

)
(1)

where v is the velocity, k the hydraulic roughness, JE the slope
of the energy-line, ν the kinematic viscocity and d the inner
diameter of the sewer [6]. The notation used in this section is
summarised in Table 1.
Dissolved substances, that shall be detected or sampled

by the proposed IoT system are transported together with
the flowing wastewater, which is called advection. In grav-
ity sewers, a longitudinal stretching of solutes from areas
with a high concentration to areas with a low concentration

FIGURE 1. Cumulative Distribution of water level in a DN 350 sewer in the
course of one year (typical hydrological conditions for central Germany).

occurs which is refered to as dispersion. Dispersion is mainly
caused by differences in the flow velocity across the cross
section of the sewer. Furthermore, there is also a stretching
of solutes by Diffusion caused by concentration gradients,
which is, however, less important here. The entire process
can be described by the advection-dispersion equation (2),
where c is the concentration of dissolved substances and
x the distance between two locations [7]. While the first term
of this equation describes advection, the second describes the
sum of dispersion and diffusion.

∂c
∂t
+ v

∂c
∂x
=

∂

∂x

[
D ·

∂c
∂x

]
(2)

The discharge of a solute to the sewers will create a peak
of concentration of this substance. The aforementioned pro-
cess of dispersion is resulting in the broadening of such a
peak and a decrease of its height. Turbulences, occuring in
the manholes and other structures of a sewer system, will
further increase dispersion [6], [8]. The concentration will be
decreased also by the merge of multiple wastewater streams
and the caused dilution.

The broadening of a peak in terms of its standard
deviation σ , which is the peak width between its both inflec-
tion points, can be calculated as a function of the wastewater
flow v, the distance (time t) between two points and the
coefficient of dispersion D by the following equation:

σ 2
t = σ

2
0 + 2D

t
v2

(3)

Here, σ0 is the initial standard deviation of a peak and
σt is the standard deviation of this peak after travelling the
time t with the velocity v.

The coefficient of dispersion D represents the proportion-
ality between a given gradient in concentration of a solute and
in the velocity of flow and the resultingmass transfer between
the respective volume elements. The value of D is influenced
by properties such as the roughness of the sewer wall and the
presence of sediments in sewers and manholes [9].

The mass of a solute can be expressed as the product of
waste water flow and the concentration of the solute. The
measurements of concentration over time or distance give a
peak shaped signal. Based on the law of mass conservation it
can by derived that the change of height of a peak is inversely
proportional to the change of the peak width.
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The area, A, under a symmetrical peak can be approxi-
mated by a triangle defined by peak height h and peak width
at half peak height wh, as follows.

A = wh · h (4)

The error, caused by this approximation is in the range
of 3% [10]. For non symmetrical peaks, there are similar
approximations available taking into account the degree of
asymmetry [11].

According to [10], the peak width at half peak height can
be calculated using the following expression.

wt = 2.354 · σ (5)

If we apply the law of mass conservation in terms of
peak area at different points in time, we yield the following
relationships:

At = A0 (6a)

wh,t · ht = wh,0 · h0 (6b)

2.354 · σt · ht = 2.354 · σ0 · h0 (6c)

ht =
σ0

σt
· h0 (6d)

Combining equations (6d) and (2), we define the following
relationship between the peaks’ height:

ht =
σ0 · h0√
σ 2
0 + 2D t

v2

(7)

The rate of change of the peak height with respect to the
elapsed time can be inferred from (7) by taking the first
derivative, as follows.

∂ht
∂t
= −

σ0h0D
v2

[
σ 2
0 + 2D

t
v2

]−3/2
(8)

Equation 8 shows that the rate of decay of the peak height
over time is significant for discharges where the initial peak
height magnitude is high. Nevertheless, discharges causing
broad peaks at the source point or fast velocities in the sewers
quickly reduce the decay rate of the peak height over time.
As a result it is possible to observe fast changes in the
concentration of the dissolved substance near its discharge
point. We will exploit this fact in the design of our anomaly
detection algorithm in Section V.

To illustrate this, based on numerical simulations of these
hydraulic effects, Fig. 2a shows the changes in pH and Elec-
trical Conductivity (EC) after an illegal discharge along the
sewer network shown in Fig. 2b. Hydraulic characteristics of
this network are summarized in Table 8. Fig. 2a demonstrates
how the height - and shape - of pH and EC measurements
would change for 9 sensors deployed along the flow path with
a length of 274 m in total. As it can be observed, pH and EC
signals caused by a polluting discharge tend to have a steep
start and a long returning tail over time. FIGURE 2. Example of dispersion along a sewer network.
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III. RELATED WORK
In this section we provide a survey of sensing systems
for monitoring of sewers or related sensing systems that
could be potentially adapted with little effort for monitoring
wastewater.

A. SENSOR DEVICES
Sensor devices used to monitor different stages in mechan-
ical, chemical and biological water treatment can also
be used to measure sewage characteristics in manholes,
if equipped with an appropriate mounting system. The
WaterTechw2 pH8000 Sensor [12] has been designed to pro-
vide pH and temperature measurements both for drinking
water and wastewater applications. The sensor uses a flat sur-
faced electrode which includes an extended reference path,
these features combine to provide a pH measurement, suit-
able for use in surface water, wastewater and drinking water
applications. The electrode uses field proven flat surface and
self-cleaning technology. The reference system is sustained
by the Extended Path Reference design which provides a path
to protect the reference in the presence of interacting ions
such as proteins, silver and sulphides.

The AMC-1400 [13] is suited for wastewater applications
as system for up to four sensor/transmitters, with a mon-
itoring panel that provides vacuum fluorescent display for
continuous gas concentration and alarm indication for each
of four sensors. Housed in a fiberglass enforced polyester
enclosure, the programmable AMC-1400 is designed to per-
mit the user to configure relays, alarms and timers to their
specific application. Engineering units are selectable from
an internal memory library, including ppm, ppb, %L.E.L,
and % volume. The AMC-1400 can be used with any of
the array of hazardous gas sensor/transmitters of Armstrong
Monitoring.

The Basic Ex 1 mobil sampler by ORI [14] includes the
Mlog, a multi-parameter sensor and data logging system.
It can also be equipped with sensors for pH/Redox, temper-
ature and Conductivity. The Mlog is able to communicate
with the sampler via Bluetooth or can trigger it by sending
text messages when both devices are equipped with a GSM
modem. The latter can also be used to send data to a cloud
based monitoring centre.

In Table 2, we summarise most of the cyber-physical
systems in the literature for monitoring or control of Water
Distribution Systems (WDS) and Wastewater Monitoring,
which we believe it could be of some application to the illegal
discharge of polluting wastewater.

To the best of our knowledge, the IoT-enabled smart sens-
ing system presented in this article - namely Micromole
- is the first and only wireless sensing system capable of
wastewater monitoring at any point within mainlines of sewer
networks, aiding in the precise localization of a building dis-
charging polluting wastewater illegally and collecting physi-
cal samples for further analysis.

B. ANOMALY DETECTION ALGORITHMS BASED ON
WATER QUALITY PARAMETERS
Table 3 summarises the most important anomaly detection
algorithms using water quality parameters that could be
potentially adapted for wastewater monitoring. We make use
of the nomenclature presented by Cook et al. in [23] concern-
ing anomaly detection using IoT systems.

The sensing systems proposed by Rekha et al. and
Saetta et al. in [24] and [21], respectively, use alarms trig-
gered by a distance-based anomaly detection algorithm, with
predefined fixed thresholds as the basic method for classi-
fication of a time-series of measurements as an anomaly.
Such methods may perform properly for drinking water dis-
tribution networks and the monitoring of physical parameters
of excreted urine, since no fluctuations in those physical
parameters are expected in those applications at any time
or point in the network in a normal context, viz., no data
seasonality. In contrast, our anomaly detection algorithm is
designed as to adapt the baseline to the normal fluctuation
of wastewater characteristics - such as EC and pH - during
the day, therefore, considering the seasonality of wastewater
fluctuations.

Zhang et al. in [27] propose the Dual Time-Moving
Windows Anomaly Detection algorithm, which extends the
Anomaly Detection and Anomaly Detection and Mitigation
algorithms of Hill and Minsker in [28]. In a nutshell, these
three algorithms keep a buffer of the past N measurements
in order to make an estimation of the next measurement.
A prediction is updated by considering the current prediction,
the new measurement and a learning rate parameter, namely
α, which is constant. As such, the running time for processing
a new measurement is O(N ). As the learning rate is constant
during the algorithm execution, the algorithm cannot adapt its
learning rate based on the gained confidence from previous
estimations. The anomaly detection algorithm presented in
this paper has a running time complexity of O(1).

The SIMONA sensor network nodes - refer to [17] and its
reference in Table 2 - have implemented in-built clustering
anomaly detection algorithms, proposed by Salvato et al.
in [26]. The immune based algorithms comprises two con-
secutive phases in its operational lifetime: a) a learning phase
- where the DBSCAN algorithm [29] is used for clustering the
first 200measurements - and, b) a classification phase - where
new measurements are classified as normal or abnormal and
the knowledge about the system is updated using immune
based rules. DBSCAN is a clustering algorithm that partitions
a set of N samples such that in each partition every sample
has at least minPts samples in a radius of ε, where minPts
and ε are parameters of the algorithm. Given N samples,
the DBSCAN algorithm has a running complexity of O(N )
and a requirement in the order of O(N ) for memory space.
Once clusters are formed by DBSCAN, the algorithm of
Salvato et al. classifies a new measurement by including it
to the closest cluster and updating immune based metrics of
the chosen cluster. Before processing a new measurement,
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TABLE 2. Different CPS propose in the literature for monitoring of water distribution systems and wastewater networks.

TABLE 3. Literature on anomaly detection algorithms based on water quality parameters.

the immune based algorithm may perform re-clustering of
the samples and eliminate overlapping clusters. As a result,
during the classification phase, the online processing of
each sample has a worst-case running complexity of O(N )
and requires O(N ) of memory resources, where N is the
number of samples. DBSCAN is also used in [25]. In our
opinion, the immune base algorithm of Salvato et al. not
only detect abnormal measurements, but may also have the
capability of identifying the type of chemical substances in
a measurement, which unfortunately was not evaluated by
Salvato et al. in [26]. In our work, we provide an anomaly
detection algorithm of lower running andmemory complexity
without the possibilities of substance identification.

Another large set of works not included in Table 3 use
machine learning algorithms. Support-VectorMachine (SVM)
approaches - as discussed in [30]–[34] - have difficulties
in detecting a gradual anomalous change of sensor val-
ues in a time-series, as discussed in [30]. Other works -
e.g., [33], [35]–[37] - use Artificial Neural Networks (ANN)
for anomaly detection. In most cases, such machine learning
algorithms are trained in the cloud, and then run for classifica-
tion on the IoT edge nodes. The execution of machine learn-
ing classifiers in IoT resource-constrained devices should
be still carefully evaluated for energy demands and time
execution.

IV. HARDWARE ARCHITECTURE
The location of a harsh wastewater pollutant source can only
be determined with all certainty by monitoring the outgoing
wastewater from its private sewer pipe. Unfortunately, private
sewer pipes are too small (with diameters below 120mm) for
fitting a sensing device. Moreover, access to a private area –
even in the sewage network – is allowed only after permission
from the owner or a warrant issued by legal authorities.

In either case, organizations discharging illegal waste would
realise that their illegal activities will be monitored and take
measures to avoid harmful discharges being detected.

The solution presented in this article aims at indirectly
detecting such harmful discharges originated at a private inlet
by monitoring the changes of the composition of wastewater
in the sewer mainline before and after the private sewer pipe
inlet, as illustrated in Fig. 3. The IoT-enabled monitoring
system presented in this article - namely Micromole - is
designed to work in such a way.

Our IoT system is composed of three IoT devices mounted
in the mainline, and one IoT gateway device mounted at a
manhole, below its lid - as observed in Fig. 3 - Cloud Services
and an end-user application.

The construction of the hardware components for each one
of our IoT devices is modular: sensors and major electronic
components are isolated in their own housing, calledmodules,
each one providing different functionalities. Each module
has the same dimensions and a standardized wired interface
for wired communication with other modules residing in the
IoT device. The housings are streamlined as to reduce the
probability of sewer pipes clogging due to the flow of large
solids in wastewater. The composition of each IoT device in
terms of its modules is summarised in Table 4.

A. LOCALIZATION OF POLLUTING SOURCES IN SEWER
MAINLINES
The main operation principle used by Micromole for local-
ization of polluting sources in wastewater is the following.
The first two IoT devices (on the left part of Fig. 3) contain
a pH and EC sensor each. The first IoT device is positioned
before the private inlet that needs to be monitored, while the
second device is positioned just after the monitored private
inlet. The sensors located in these two IoT devices monitor
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TABLE 4. Micromole IoT devices and their physical modules.

FIGURE 3. The Micromole system is a Wireless Sensor and Actuator
Network (WSAN) composed of three IoT devices and an IoT gateway
operating in sewer lines.

the level of pH and EC every second on average. A significant
difference in the values in pH and EC between the two IoT
devices indicate the inflow of a suspiciouswastewater coming
from the monitored private inlet. More specifically, if the
second IoT device notices an abrupt and significant change
of pH or EC which was not observed by the first device, there
is a strong indication of a discharge of harmful wastewater
from the monitored private inlet. We refer to such approach
as anomaly localization via spatial correlation.

In case of an anomaly being detected and localized, the
third IoT device is immediately activated. The third IoT
device contains a sampling module. The sampling module is
capable of pumping and storing samples of flowing wastew-
ater in internal containers of approximately 2.5mL of volume
each, which is sufficient for high sensitive analytical tech-
niques such as Liquid Chromatography with tandem mass
spectrometry (LC-MS-MS) or Gas-Chromatography with
mass spectrometry (GC-MS). One sampling module contains
three of such containers, each one with its own separate
fluidic system for preventing sample cross-contamination.

FIGURE 4. Distribution of sewer diameters for a medium-sized city.

Wastewater samples can later be extracted from each con-
tainer of the sampling module in the third device for labo-
ratory for analysis. A description of the first version of the
sampling module can be found in [38].

B. REMOTE INSTALLATION AND EXTRACTION OF
MICROMOLE IoT DEVICES IN SEWER PIPES
Awastewater network is composed of sewer pipes of different
diameters. The diameter of the target pipes for theMicromole
system affect the dimensions of the IoT devices. We selected
DN250 as the minimum acceptable pipe diameter for the IoT
device after an analysis of the sewage pipe diameter distribu-
tion in a chosen city. Fig. 4 shows the distribution of the pipe
diameters in that city, which hosts 300.000 inhabitants. The
proposed sewage monitoring system is capable of fitting in
such small sewagemainlineswithout blocking thewastewater
flow.

Due to the small sewer pipe diameter, the Micromole IoT
devices are designed as to be installed by a robot in the main-
line. The company Pipeferret, Reykjavik, IS, has modified
one of its crawler robots - normally used for sewage mainline
inspection and industrial services such as pipe rehabilitation
by inliners - for carrying and installing the sewagemonitoring
devices. Such installation can be performed remotely even
from a manhole that is located 500 meters away from the
desired point of monitoring. Fig. 5a shows the robot that was
constructed together with two Micromole IoT devices.

Micromole IoT devices do not occupy more than 10% of
the cross-section area of a 250DN pipe, in order to prevent
sewage flow blocking and also to allow the transportation of
the monitoring device by the robot. As a consequence, the
thickness of the IoT monitoring devices shall not be larger
than 3 centimetres.
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FIGURE 5. The Micromole system and its crawler robot.

The thickness of the IoT monitoring device is of extreme
importance for the following two factors:

1) it defines the inner volume allowed for electronic com-
ponents, representing an important constraint in other
system parameters, such as: battery capacity, type of
sensor technology used and telecommunication tech-
nology used, which are presented below.

2) To monitor water quality in combined sewers, the
height of the modules has to take into account the
average low water level that is present at dry weather
conditions. Fig. 1 presents water level statistics of a
DN350 pipe.

C. SENSORS, TELECOMMUNICATIONS AND DATA
PROCESSING MODULE
The first two IoT devices must continuously monitor the
wastewater properties. For this, each one of these two devices
is equipped with a pH and conductivity sensor, each one of
these sensors is encapsulated in its own module. In [39], the
reader can find a description of these two sensors and their
housing for operating in the sewage environment.

Every IoT device contains a module for data gathering
from sensor modules, data processing and information trans-
mission, which we refer to as the main module in the Micro-
mole IoT device.

Since the housing for the main was streamlined and its
volume is small, commercially available boards - such as
Arduino or Raspberry Pi - cannot be used. Instead, we opted
for designing our own Printed Circuit Board containing only
the necessary electronic components for energy efficiency.
The main module hosts a low-power controller, a radio
transceiver and a 2Gb flash memory. The main module exe-
cutes the algorithm described in Section V.
The controller is a ARM Cortex-M4F controller running

at 48MHz clock frequency and is able to query data from
other modules using the IoT device bus. The controller is
programmed with the RIOT operative system [40].

In order to avoid clogging of the sewer pipes, the
Micromole IoT devices should avoid protruding cables.

Therefore, an emphasis was made on providing wireless
communications between the Micromole devices. The radio
propagation conditions in an underground DN250 sewage
pipes were evaluated with both a) a signal generator operating
at different frequencies and a radio spectrum analyzer, and
b) different battery operated portable transceivers operat-
ing at different unlicensed frequencies in Europe: 2.4 GHz
(WiFi), 868 MHz (LoRa), 439 MHz (LoRa) and 169 MHz
(FSK modulation). The best overall signal was achieved with
the 169 MHz frequency due to its robustness against sewer
humidity. On average, the maximum distance between the
devices cannot exceed 10 meters when a +20dBm amplifier
is used for the 169 MHz radio, requiring a maximum of
250mWof electrical power during transmission. Fig. 6 shows
the received signal power for the 169 MHz radio.

A special radio driver was implemented to allow transmit-
ting the 802.15.4 frames over the 169MHz radio. Thanks to
this driver and the CoAP [41] and 6LoWPAN [42] libraries
of RIOT-OS, the three Micromole IoT devices and its gate-
way establish an autonomous 6LoWPAN Wireless Sensor
and Actuator Network (WSAN). In order to reduce energy
consumption, sensor measurements are compressed using the
algorithm described in [43].

In order to allow installing the system from a distant
manhole, the third Micromole device is equipped with an
optional optical communication module, allowing communi-
cations for 100 meters using a plastic optical fiber with the
Micromole IoT gateway.

The Micromole IoT gateway is equipped with a 4G mobile
communicationmodule in order to relay data and alarms from
the three devices in JSON format.

D. POWER AND BATTERY
Since there is no access to the power grid within the sewer
network, all micromole IoT devices and its gateway must
powered by batteries.

A 2600mAh battery is stored within a battery module.
To extend the lifetime of the system several battery modules
can be attached to one device, provided enough physical
space at the device.
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FIGURE 6. Received signal power in an DN250 sewage pipe three meters
below ground level.

TABLE 5. Estimated energy consumption of Micromole IoT device major
components per cycle of operation.

A Micromole IoT device takes a EC and pH sample and
processes them, as described in this article, every second.
Every 10 seconds, a keep-alive frame is sent to the neighbour-
ing devices. The currently implementation of the Micromole
IoT devices allows powering of one device for 25 hours with
one batterymodule.Most of the energy is currently consumed
by the EC sensor measurements and radio transmissions.

The authors are developing a new EC sensor of lower
energy consumption, which will be presented in a separate
publication. In parallel, we are implementing the 802.15.4
non-beacon enabled sleep modes. Table 5 shows an esti-
mation of the time and energy used per component when
considering the new EC module and radio sleep modes.

V. DISTRIBUTED ANOMALY LOCALIZATION ALGORITHM
OF HARMFUL WASTEWATER DISCHARGERS
In this section, we provide details about the distributed algo-
rithm used for our anomaly localization approach.

A. DISTRIBUTED IoT DEVICE-BASED PROCESSING
Following the diagram of Fig. 3, we hereinafter name the first
(left-most in the figure) monitoring IoT device - placed before

the monitored inlet - as the reference device. The second
monitoring IoT device - placed after the monitored inlet - is
named the master device. The third monitoring IoT device
(right-most in the figure) is named the sampler device.
As mentioned before, determining whether the harmful

wastewater originates from a particular monitored household
involves the comparison of two multivariate time-series of
observations, one provided by the reference device and the
second one provided by the master device. One IoT design
solution for this application could consist on using a Fog or
Edge computing approach [44] or Cloud approach, where all
measurements from both sensors at each device are trans-
ferred to a server in the Fog or Edge for data processing
and decision taking. Unfortunately, such an approach has the
following disadvantages for our application:

1) high energy consumption due to the necessity of
all samples transmissions in difficult radio propa-
gation conditions in underground sewer pipes (refer
to Section IV-C),

2) potential delays concerning the systems’ time-critical
decisions due to disruptions in the communication due
to fluctuating wastewater level, and passing objects
near the manhole’s lid.

With respect to the second point above, time-critical deci-
sions for the Micromole IoT system include triggering the
sampling module at the correct time: during the time the
illegal wastewater is flowing through the Micromole IoT
devices. If not performed promptly, the sampler device would
collect and fill containers without the targeted wastewater
flow. Due to similar reasons, unfortunately, approaches for
self-adaptive data sampling reduction - such as the one pre-
sented by Botero-Valencia et al. in [45] - may yield similar
outcomes.

Instead of using a Cloud-center or Fog-center design pat-
tern [46] for online anomaly detection,we opted for designing
a real-time algorithm by distributing the logic of analysing
the signal between both IoT devices in a way that minimizes
the number of data frames that are exchanged between both
IoT devices, hence, reducing overall energy consumption and
bounding the response-time.

Hosting the anomaly localization algorithm on the IoT
device implies the careful design of scalable resource-
constrained algorithms that work in real-time. Fig. 7 presents
the software architecture used for such functionality distri-
bution. Each one of the IoT devices have implemented a
sensor driver module that periodically queries the attached
pH and EC sensor for a measurement through the device
bus. Each measurement is collected by the anomaly detection
algorithm within each IoT device for detection of abnormal
suspicious patterns in the last sequence of measurements.
If the anomaly detection algorithm at the reference device
detects an anomaly, an alarm is sent to the source determi-
nation algorithm located at the master device. If the anomaly
detection algorithm in the master device detects an anomaly,
the alarm is passed internally to the source determination
algorithm (which is located in the same device). The source
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FIGURE 7. Software architecture of the distributed anomaly localization
algorithm of Micromole for wastewater networks.

determination algorithm is in charge, therefore, of comparing
and correlating both alarm notifications (if both are present)
in time and magnitude in order to determine whether a harm-
ful waste was disposed from the monitored inlet or before.
In this way, only the alarm indication needs to be passed
between devices, without the need of transmitting all mea-
surements. The design of each one of these two algorithms is
summarized in the remaining subsections.

B. ANOMALY DETECTION ALGORITHM
Anomaly detection is only possible if contextual information
is properly defined. Defining a normal context is complex for
wastewater sewage networks. It shall be considered that pH
and EC measurements are seasonal [23]: the level of pH and
conductivity of aggregated wastewater in the sewage network
changes slowly during the day in normal conditions. As it
can be observed in Fig. 8, the pH level and EC fluctuate
continuously during the day, caused by discharging waste by
users of sewage system. During the night, there is usually no
wastewater flow and both physical characteristics drop.

Due to this intrinsic fluctuation of the pH and conductivity
levels in the sewage, the anomaly detection algorithm pro-
posed in this article is predictive [23]. The anomaly detec-
tion algorithm calculates and constantly updates a baseline
used for prediction, which are calculated using a Kalman
filter. Thresholds for triggering alarms are set relative to this
baseline.

An outline of the anomaly detection algorithm used in our
solution can be seen in Algorithm 1.

We assume that there is no correlation between the baseline
values of pH and EC in time. As a consequence, our solution
uses two independent Kalman filters: one for calculation of
the baseline for pH, and another one for the EC baseline
calculation.

We employ two-dimensional Kalman filters with the aim
of inferring not only the value of the measured EC (or pH),
but also the linear increase or decrease over time of these
measurements.We assume that ageing of the sensor, clogging

Algorithm 1 Real-Time Anomaly Detection Algorithm
Input: A measurement value yt
Output: alarm state z
1: if xt ≥ H1 or xt ≤ L1 then
2: Restart filter state
3: return no water
4: end if
5: Predict value of xt (baseline)
6: Set e← xt − yt
7: if |e| < K then
8: Correct Kalman filter using measurement xt
9: else
10: if e < L2 or e > H2 then
11: Notify Source Determination Algorithm
12: return anomaly detected alarm
13: end if
14: end if
15: return no alarm

and bio-film (due to the permanent contact of the electrodes
with wastewater) may cause a drift [23] in the observed
values over time, for which we must compensate.

Our state vector is defined as x =
[
x1
x2

]
, which indicates

the expected level of pH (or conductivity) in the first compo-
nent, x1, and the linear rate of change of the first component in
the second component, x2. Besides the state vector x, Kalman
filter also keeps a covariance matrix, P, which provides an
estimate of the accuracy of the estimation of the state vector.

Let F be the state transition matrix of our process, defined
as follows:

F =

[
1 1

h

0 1

]
, where (9)

h is the measurement rate of the sensor.
LetQ and R be the co-variance matrices of the process and

observation noise, respectively. For our application, they are
defined as follows:

Q =
[
q11 0
0 q22

]
(10)

R = r (11)

where r is the variance of the EC (or pH) over time in normal
conditions assuming a perfect sensing process, q11 is the
variance of the noise of the EC (or pH) sensor signals, and
q22 is the variance of the rate of change of EC (or pH) over
time.

We estimate the value of r as the variance of the EC
(or pH) values of the wastewater using high-precision lab-
oratory equipment. The value of q11 and q22 are estimated by
measuring the variance of the signals given by theMicromole
EC (or pH) sensor in a solution of known and stable EC
(or pH). The values ofF,Q andR are parameters of a Kalman
filter and, hence, constant during its execution.
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FIGURE 8. EC and pH measurements in a DN900 sewer pipe from Zissenbach, DE. Sept 9th to Sept 10th 2020. The sampling frequency for this
experiment was 1Hz . Calculated baseline indicated as a red line.

Kalman filters have two phases: a prediction phase and a
correction phase. In each phase the state variables and the
covariance matrix, viz. x and P, respectively, are updated in
constant running time.

For our application, the prediction phase computes a new
estimation of the state variable, named x̂, and of the covari-
ance matrix as follows:

x̂ = Fx (12a)

P = FPFT + Q (12b)

Once a new measurement z of pH (or EC) is collected,
the correction phase of the Kalman filter updates our state
variables and covariance matrix as follows.

K = P(P + R)−1 (13a)

x = x̂+ K(z− x̂) (13b)

P = (I − K)P (13c)

The variable K is named the Kalman gain, which can
be seen as a learning rate. The Kalman gain is calculated
based on the covariancematrix and the observation noise. The
Kalman gain weights how much of the previously predicted
estimate, x̂, versus how much of the new provided measure-
ment, z, should be considered during correction. The covari-
ance matrix is updated at the end by taking into account the
Kalman gain. In contrast to the learning rate of the algorithms
proposed in [27], [28], the learning rate of our algorithm
takes into account the confidence of the algorithm in previous
predictions.

As a result, for estimating the pH (or EC) values, the
Kalman filter requires a total of six variables to be kept
between calls: two for the state vector and four for the
covariance matrix. In contrast to the algorithms proposed
in [26]–[28], neither the run time nor the memory usage of
our algorithm scale with the number of previously considered
samples, making it more suitable for IoT resource-constraint
devices.

C. PAUSING AND RESUMING CORRECTIONS
In normal conditions, the baseline calculation is able to pre-
dict the upcoming measurement of EC (or pH), while com-
pensating for process and observation noise [23]. However,
if an illegal discharge of a substance with extreme values of
pH or EC is discharged for a large period of time, the Kalman
filter may improperly correct the Kalman state variables.
In order to overcome such an effect, we include thresholds
(constant K in Algorithm 1) for bypassing the current mea-
surement to the Kalman filter correction phase. If the differ-
ence between the predicted value of the Kalman filter and the
current measured value (variable e in Algorithm 1) is above
this threshold, the correction phase is not done; allowing the
baseline to continue the previously calculated trend (ignoring
the measured value for baseline update). In such situations,
we say that the Kalman filter is paused.

Once a measurement that is closely enough to the predicted
value by the baseline is obtained, the correction phase of
the Kalman filter is done. In such situations, we say that the
Kalman filter was resumed.
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In situations where the measured sensor signal is very
close to the threshold and the noise of the sensor, the
algorithm may toggle the Kalman filter states continuously.
In order to prevent such undesired effect in the algorithm,
we include a hysteresis control: the threshold for pausing the
Kalman correction step - named rising threshold - is differ-
ent from the threshold for resuming the Kalman correction
step - named falling threshold. This is not included in the
pseudo-code of Algorithm 1.
Not all changes in pH and EC may indicate the disposal of

harmful waste. For instance, the regeneration of a dishwasher
or the use of pipe cleaners may alter the level of EC and
pH in wastewater, but are allowed to be discharged in the
sewer systems. In such cases, it is desired to avoid corrections
of the Kalman filter baseline while preventing the system
from mistakenly identifying an anomaly. The sought illegal
discharges are characterised by an extremely high change in
pH and EC levels. Therefore, a second set of threshold values
(namely L2 andH2 in Algorithm 1) must be assigned in order
to be able to detect such harmful discharges, and discern
them from legal occasional legal discharges. These thresholds
are called anomaly thresholds. These thresholds are relative
to the baseline. The thresholds for local alarms must be
set higher than the threshold for pausing and resuming the
Kalman filter correction phase.

As it can be seen in the last measurements from Fig. 8, the
wastewater level may drop below the minimum acceptable
level for the electrodes. If the water level in sewage pipe is
not high enough to cover sensors’ electrodes, the described
procedure may falsely detect an anomaly, since a sudden drop
in EC was detected.

During our experiments, it was noticed from the physical
characteristic of the sought substances that alarms caused
by conductivity change may occur only when the change
was positive (rising conductivity), while drops below 500µScm
indicate that sensors’ electrodes are not covered fully with
water. In order to cope with such situations, every EC sample
is used for determining the presence of water. If the EC
value drops below 500µScm , every running instance of Kalman
filter used in data processing is stopped. The kalman filter
is resumed when a raise in the EC signal value is registered.
In Algorithm 1 these thresholds are generalized asH1 and L1.
The running time of the Kalman filter is proportional to

the size of the matrix, since its most complex operation
involves inverting the matrix A. Therefore, the running time
and memory footprint is constant for every provided input
measurement. In practice, the running time of the anomaly
detection phase, including baseline calculations and no water
detection (see next subsection), is below 1 millisecond per
sample when executed in the Micromole main controller.

D. SOURCE DETERMINATION ALGORITHM
As mentioned in Section V-A, the reference and master
devices communicate to the master device whenever it has
detected an abrupt change in the pH or conductivity of the

wastewater. The master device is in charge of identifying
situations where the reference device does not communicate
an anomaly, but the master device has detected it. In such
situations, the master device triggers the collection of a phys-
ical wastewater sample at the third device, as mentioned
in Section IV.
There are two aspects that should be taken into account for

proper functionality of the proposed IoT system.

1) SPECIFIC CHARACTERISTICS OF THE TARGETED PATTERN
SIGNALS FOR DETECTION
Depending on the specific application, the end-user may be
interested in detecting only events when pH and conduc-
tivity values abruptly changes in one specific direction. For
instance, a discharge of a large volume of salt in the sewage
system may cause an abrupt change in the signals given by
the conductivity sensor, but detecting large spills of salt may
not be of interest for the end-user.

2) PROPAGATION TIME OF THE WASTEWATER FLOW
In case the harmful wastewater is dumped before the ref-
erence device, the propagation time of the wastewater flow
causes that the reference device detects an anomaly before the
master device notices the abrupt change in the signal. There-
fore, the master device should store the information about the
anomaly from the reference device in a time-window - named
B - for further analysis and correlation.

The pseudo-code of this algorithm can be seen in
Algorithm 2.

Algorithm 2 Real-Time Source Determination Algorithm
Input: An alarm notification a from the IoT device i
Output: notification n
1: if i == master device then
2: if buffer B does not contain a notification from the

reference device then
3: Remove all notifications buffer B
4: return My localization to end-user
5: end if
6: end if
7: Remove from B notifications exceeding an age T
8: Include notification a in buffer B

E. CASCADE MONITORING - DENSE NETWORKS
The IoT architecture explained above can be easily extended
to an IoT system consisting of multiple IoT devices, allowing
the monitoring of a set of consecutive neighbouring inlets in
a sewer networks. In order to achieve this, the role of an IoT
device in a parrticular solution depends on its position with
respect to the monitored inlet. A single IoT device can take
the three roles - reference, master, and sampler - for three
different inlets.

As an example, in Fig. 9 we show a diagram of the
functionality of Micromole IoT devices. For an inlet located
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between Devices A and B, devices A, B and C are the refer-
ence, master and sampler devices, respectively. However, for
an inlet located between Devices B and C, devices B, C and
D are the reference, master and sampler devices, respectively.

In such scenarios, the source determination algorithm of a
master devices for an inlet passes a request for a sampling
action to the sampler devices. The sampler device - who may
be the master device for another inlet - can already determine
from such a request that the source of the wastewater flow is
not adjacent to it, but further upstream. In such a way, it is
possible to monitor and determine the source of pollution in
a sewer mainline with N consecutive inlets, using only N +1
Micromole IoT devices.

F. A NEW IoT ARCHITECTURE PATTERN
The communication restrictions in underground sewer pipes
- as discussed in Section IV-C - and the time-critical require-
ments needed for prompt action of the actuators in our solu-
tion (sampling module) - as discussed in Section V-A - are
the main aspects that motivated us for using the IoT software
architecture presented above. We have revised the list of IoT
architecture and design patters for common IoT problems
provided by Washizaki et al. in [47]. To the best of our
knowledge, none of the 143 IoT architecture patterns and IoT
design patters cited in [47] matches the characteristics of the
cascade monitoring for anomaly localization, as presented in
this section. We present below a generalization of the IoT
architecture pattern presented in this section, following the
nomenclature of Washizaki et al.
• Pattern Name: Hop-by-hop Anomaly Detection and
Actuation (HADA)

• Intent: Trigger an actuator as a real-time response to a
detected anomaly in a sensor and actuator network

• Context: There is a juxtaposition between the prop-
agation of the observed phenomena and the hop-by-
hop communication link of the IoT sensor and actuator
devices, in such a way that for every pair of devices
with direct link communications, the phenomena can
be observed sequentially across the network and the
anomaly can be detected mostly by using data collected
by local sensors

• Problem: Anomaly detection at the Edge or Cloud is
costly due to difficult communication conditions for
IoT sensing and actuating devices, or the latency of the
communication link with the Edge or Cloud is unac-
ceptably large or unreliable. The IoT system demands
a real-time signaling of IoT actuating devices as an
immediate response to a detected anomaly. Performance
of the anomaly detection process and reliability of the
actuator signal are of utmost importance.

• Solution: An anomaly detection algorithm is imple-
mented at each IoT device using local sensing data.
The outcome of the anomaly detection algorithm is
communicated to the next IoT device in direction of
the observed phenomena. Real-time triggering of the
actuating device occurs upon detection of an anomaly

that has not been detected by neighbouring nodes. Cloud
services are notified about the location of the anomaly
by the corresponding IoT actuating device

• Consequences: As measurements are not exchanged
between IoT devices, the amount of energy used for
data communications is low. IoT devices are capable of
triggering actuating components in real-time.

• Related Patterns: Cloud-on-the-loop [48], Device-to-
Device [48]

We consider that the HADA IoT architecture pattern can be
reused for the design of IoT systems in underwater or under-
ground environments, or in IoT applications for environmen-
tal monitoring where most of the deployed IoT devices do not
have a direct connection with the Internet or the connection
is unreliable, slow or costly.

G. HADA PERFORMANCE MODEL
Let us assume a dense cascade Micromole IoT network
of N devices, as described in the two previous subsections,
where each device requires α units of energy for sending
a frame and β units of time for processing an incoming
application message from the radio. Moreover, let γ be the
probability of successfully transmitting a frame.

Table 6 provides models of the transmission delay, prob-
ability of losing a frame and average consumed energy in
the network per detection event for the HADA architecture
and compares it to the traditional Edge-based and Cloud-
based architectures. The parameters ε and η represent the
delay and energy used for mobile network communications,
respectively.

As it can be seen, in an environment where IoT devices
have very limited connectivity with the Internet, HADA per-
forms better that Cloud and Edge-based solutions. Unfor-
tunately, processing in the IoT device does not provide the
strong computational capabilities of signal processing as
offered by Cloud and Edge-based solutions.

H. MULTI-HUB MONITORING - SPARSE NETWORKS
A set ofMicromole IoT devices connected to a single gateway
conform a cluster. Two or more clusters can exchange alarms
information using a dedicated Cloud or Fog service [44]
(see Fig. 9), as it is performed in the EU project H2020
SYSTEM [2].

This Cloud or Fog service can relay information from
the source determination algorithm of the last device of a
cluster to other clusters located further downstream in the
wastewater flow. In such a way, downstream clusters can
determine whether a source of pollution is located at some
point between the last IoT device of the first cluster and the
first IoT device of the next cluster. Such information could aid
investigators using the proposed solution in a more efficient
deployment in the future.

For the correct operation of the Micromole system, the
communication time between the last IoT device of the
upstream cluster and the first IoT device of the downstream
cluster must be smaller than the wastewater propagation

VOLUME 10, 2022 4677



F. Solano et al.: Internet-of-Things Enabled Smart System for Wastewater Monitoring

FIGURE 9. Software architecture of the distributed anomaly localization algorithm of Micromole for wastewater networks with multiple IoT devices and
clusters.

TABLE 6. Performance model for HADA vs. Cloud-based approaches.

TABLE 7. Substances used in simulations.

time between these two locations. This communication time
should consider the delay of the used mobile network and of
the processing in the Cloud or Fog.

VI. SIMULATION RESULTS
In this section, we evaluate the capabilities of the anomaly
detection algorithm of the proposed IoT system for localiza-
tion in a sewage networks.

All flow and discharge simulations were performed using
the software package ++SYSTEM Isar [49], which capa-
bilities were extended by a reaction and transport model
based on the concept of total alkalinity in the course of the
Micromole project [1]. The anomaly localization algorithm
was replicated as an R script, in order to process the flow and
discharge simulation output.

A. SUBSTANCES USED IN SIMULATED DISCHARGES
We simulated discharges with three types of industrial waste
substances in the real sewer network shown in Fig. 2b in order
to evaluate the feasibility of the algorithm used to trigger the
actuator of the IoT sampling device. The characteristics of the
three substances are presented in Table 10.

B. HYDRAULIC CONDITIONS LIMITING THE EFFICIENCY
OF THE ANOMALY LOCALIZATION ALGORITHM
The structure of the simulated network is shown in Fig. 2b.
The network consists of 42 buildings and 15manholes, where
manhole number 16 is the sink.

In order to describe the hydraulic situation in this network
immediately before the discharge event, Table 8 presents
starting and ending manhole, the flow rate, water level and
velocity for all sewers along the flow path for a discharge in
a building connected to manhole number 09 of the network.
The flow of wastewater was calculated based on the number
of inhabitants for all buildings connected to each sewer and
their freshwater consumption. The latter shows a typical daily
pattern as can be seen in Fig. 10. Using the flow of wastewater
at 03h00m of a day and the flow at 08h00m, we defined
a low and a high flow scenario. This allows us to take a
best-case and a worst-case view of transport and dilution
processes.

C. THRESHOLDS SETUP
In order to setup the threshold of the anomaly localization
algorithm, we considered the scenario when there is no dis-
charge in the network. From this scenario, we obtained one
time-series of EC and pH measurements for every manhole.
Then, we process each time-series using the anomaly local-
ization algorithm in R, varying the relative rising thresholds
from 1500µScm to 300µScm for EC alarms, and from 1.5 to
0.3 for pH. Each time the falling threshold were set at 80%
of the rising threshold, for hysteresis control. The anomaly
thresholds were set at the same value as the rising thresholds.
We verified that no simulated IoT device at any manhole
yields a positive detection at any threshold.

For the remaining simulations, which will be described
below, we set the rising threshold of alarms to 500µScm for EC
and 0.5 for pH.

D. DISCHARGE SIMULATION SETUP
We simulated the dilution behaviour of the sewage network
shown in Fig. 2b over time when industrial waste substances
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FIGURE 10. Diurnal pattern of freshwater consumption.

TABLE 8. Hydraulic characteristics of the modelled sewer network.

is discharged from each building separately. A simulated
event consists on the discharge of either 50L or 100L of a
substance from Table 10 in a selected building at either low
(3am) or high (8am) wastewater flow conditions. Therefore,
there are 504 different simulation scenarios, when consider-
ing all (42) buildings, (2) flow conditions, (3) substances and
(2) different discharged volumes.

From each simulated event, we obtained a set of time
series of EC and pH measurements as observed through the
traversingmanholes in the network. An experiment is defined
as a time-series of measurements of EC and pH at a single
manhole from a simulation. Since there are 285 combinations
of buildings and manholes, due to the flow directions of
the wastewater network, the total number of experiments
was 3420.

In addition to dispersion and dilution, chemical reactions
between the domestic sewage and the discharged waste occur
that influence the pH. The most important reactions are the
neutralisation of H3O+ ions (R1) and OH− ions (R2) by the
HCO−3 ions. The latter are present in the domestic sewage in
a concentration of about 6 mmol/l.

HCO−3 + H3O+ 
 CO2 + 2H2O (R1)

HCO−3 + OH− 
 CO2−
3 + H2O (R2)

Then, we processed the pH and EC time-series provided
by each experiment assuming that a Micromole IoT device is
installed in the corresponding manhole.

FIGURE 11. Percentage of detected experiments per discharged volume,
substance, wastewater flow conditions and sensor used to detect the
anomaly.

E. DETECTION RESULTS BY SUBSTANCE AND SENSOR
All simulated discharges were detected by at least one
IoT device, assuming that all manholes are equipped with an
IoT device. We proceed to analyze the likelihood of detecting
an event, assuming that there is only one IoT device installed
in the entire sewage network.

The percentage of simulated discharge experiments with
positive detection for all simulations can be seen in Fig. 11.
On average, 97% of the experiments corresponding to 50L
or 100L of discharges of Sulfuric Acid resulted in positive
detection using the EC sensor. Similarly, 82% of the experi-
ments corresponding to 50L or 100L of discharges of Sodium
Sulfate had positive detection results using the EC sensor.

Unfortunately, only 17% and 3% of the experiments
of 100L of Sodium Hydroxide had positive detection out-
comes using the pH sensor, if the wastewater flow conditions
are low and high, respectively. We observed that only 20%
of the IoT devices placed within 80 meters of the source are
able to detect a change in pH levels for Sodium Hydroxide.
No detection of changes in pH levels at larger distances was
possible.

Even though the pH level of Sulfuric Acid and
Sodium Sulfate are significantly different from the pH
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FIGURE 12. Signal-to-Noise Ratio vs. Estimated discharge dilution ratio.

of wastewater, the proposed IoT system was able to detect
only 3% of the discharges of Sulfuric Acid and none of
Sodium Sulfate.

F. DILUTION AND MICROMOLE LIMITATIONS
In order to understand better the limitations mentioned in
the previous subsection, we analyze the detection capabilities
of the Micromole IoT devices based on the signal-to-noise
ratio (SNR) and on the dilution ratio of the discharged volume
at the monitoring pipe.

First, we calculated the SNR for each experiment using the
method presented by Du et al. in [50] for Mass Spectrom-
etry qualitative analysis: using the Mexican-hat Continuous
Wavelet Transform to discover the peak amplitude and width,
and the noise of the overall signal.

Then, we estimated the dilution ratio for each discharge
at each sewer as follows. For this, we consider again the
generated experiments with no discharge event, as previously

FIGURE 13. Micromole IoT device assembly, testing and validation at
KWB in December 2018.

explained in Section VI-C. Let fe be the total wastewater
volume (in liters) traversing sewer e during the simulated
event, and φi,e the fraction of an unitary flow from source i
going through sewer e. The dilution ratio of a discharge of
volume V (in liters) from source i at sewer e, namely zi,e(V ),
was estimated as follows:

zi,e(V ) =
φi,e · V + fe

fe
. (14)

The SNR in decibels and dilution ratio for each experiment
can be seen in Fig. 12. As expected, we observe a correlation
with the SNR and the dilution ratio, with an SNR detection
threshold around 0 dB for EC and −10 dB for pH. However,
we also notice no correlation between the distance and the
detection outcome in most cases.

VII. SYSTEM VERIFICATION IN A REAL SEWAGE
ENVIRONMENT
In this section, we describe the validation process of a work-
ing Micromole IoT system with potential end-users.
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FIGURE 14. Micromole IoT device with pH and conductivity sensors measuring sewage wastewater physical parameters at
KWB in December 2018. Since the Micromole IoT devices do not transmit measurements using the radio (for energy
efficiency), a ribbon cable was connected to the main module of the IoT device for verification of the measurements and
the experiments results through a console. The ribbon cable is not needed for operational environments, as it can be seen
in Fig. 5b, since the Micromole IoT devices are completely wireless.

In order to validate the compliance with end-user require-
ments of the proposed IoT system with real wastewater, harsh
substances and under different hydraulic conditions, numer-
ous experiments were done at a test site at the Kompetenzzen-
trum Wasser Berlin (KWB) between May 2016 and Decem-
ber 2018. All of these experiments were guided and super-
vised by German and Polish Law Enforcement Agents (LEA)
as potential end-users. This section describes the latest exper-
imental setup, hydraulic conditions, discharge scenarios and
results.

A. SYSTEM CONFIGURATION
The test bed at KWB consists of a gravity sewer with a
nominal diameter of 350 mm and a length of 22 m. The
sewer is fed with wastewater from a pumping station through
a chopper pump. Thewastewater is amixture of industrial and
domestic wastewater drained in combination of a separate and
combined sewers. A regular check of the wastewater compo-
sition confirmed that no significant amounts of rainwater or
groundwater had penetrated the connected sewers during the
tests. Main indicating parameters such as Chemical Oxygen
Demand (COD), pH and Electrical Conductivity exhibited

quite constant values throughout all experiments. Electrical
Conductivity and pH level of the wastewater in normal condi-
tions (no discharge of harsh industrial wastewater) oscillated
around 1.4mScm and 8, respectively.

The Master device was placed approximately 2.5 m down-
stream from the Reference device. The Sampler device was
located 7 meters downstream from the Reference device.
The point of discharge was approximately 1 m upstream
from the Reference device, or at mid distance between the
Reference and Master device, depending on the experiment.
The discharge experiments were performed using a beaker
filled with the target solution.

B. HYDRAULIC CONDITIONS
During the tests, water level, flow rate and velocity could be
adjusted, in order to simulate hydraulic conditions that are
typical for municipal sewer systems. By adjusting flow rate
and velocity, dilution of discharged substances and flow time
between our IoT devices could be varied by LEAs. Flow rate
and velocity of the sewage were adjusted by weir discs and by
regulating the frequency of the pump according to the values
given in Table 9.
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TABLE 9. Definition of hydraulic scenarios for KWB experiments.

TABLE 10. Substances used for experiments in KWB experiments.

C. SUBSTANCES USED FOR SYSTEM VERIFICATION
The substances used for our experiments were chosen
so that pH and electric conductivity could be influenced
independently of one another. Therefore, any combination
of rising and falling pH could be achieved with or with-
out a simultaneous increase in conductivity as well as an
increase in electric conductivity without a significant change
in pH.

In total, LEAs chose seven different substances for our
experiments, three of which could be disposed by industrial
organizations and cause harm to WWTP. These substances
are listed in Table 10. The substances include acid and
alkaline solutions that mimic pH and electric conductivity
of typical harmful industrial wastewater of different origin
(IW1, IW2 and IW3 in the table) including those mentioned
in I. All other substances in the table were selected in order to
simulate events that could be caused by legal activities such
as using a washing machine, regenerating an ion exchange
resin for water softening or by cleaning of pipes with caustic
or acidic agents.

A total of 14 different discharge experiments were carried
out during the 5th and 6th of December 2018 with different
substances, points of discharge, and flow rates. In Table 11,
a description of all the executed discharge experiments is pre-
sented together with the outcome of the experiment. Almost
all of the experiments consisted of a discharge of 2 Liters in
a period of 15-17 seconds.

D. RESULTS ANALYSIS
In Fig. 15, the pH, EC and baselines of the reference and
master devices for discharge number eight of Table 11
can be observed. In this case, both devices detect the
anomaly - since the discharge was made in front of the
reference device - with a time difference of nearly 2 min-
utes - due to the low flow rate - and with different mag-
nitudes - due to the dilution effects previously explained.
Since both devices detected the event, the master device did
not request the sampling action from the sampling device.

FIGURE 15. Measurements, baselines, and anomaly detection events of
the Micromole Reference and Master IoT devices in KWB on 2018-12-06
following discharge number eight from Table 11.

The same outcome was achieved by discharges number 7, 12
and 14.

Discharges number 5, 6, 11, 12 and 13 - with Sodium
Chloride, dish washer and citric acid - did affect the pH or
ECmeasurements, however such measurements did not cross
the relative moving threshold set for detection. Therefore,
even though the substances were discharged closed and in
large quantities near the master device, no detection alarm
and sampling action was triggered.

For the discharges involving pipe cleaner, industrial
waste 1, 2 or 3 - i.e., discharges 1, 2, 3, 4, 9 and 10 - generated
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TABLE 11. Result of the discharge experiments carried out on 5th and 6th of December 2018 in KWB.

TABLE 12. Abbreviations used in this article.

a detection alarm when the discharge was made between the
Reference and Master device. Unfortunately, the difference
in pH and EC caused by either pipe cleaner or industrial
waste 1 of our experiments are similar. In both cases, the both
pH and EC rises above the thresholds. In all these cases, the
sampler device received a request to collect a sample from the
sewage successfully.

The thresholds for EC could be adjusted in order to fil-
ter out pipe cleaner discharges as anomaly events in future
experiments.

The potential end-users were asked about their level
of satisfaction with the evaluated system. The end-users
noted that the proposed IoT system is capable of cor-
rectly identifying harsh disposed substances in sewers
and promptly triggering the sampling device, as desired.

VIII. CONCLUSION
In this article we have presented the Micromole IoT system
and the distributed anomaly detection algorithm for localiza-
tion of harmful wastewater discharges in the sewage. The
anomaly localization algorithm has low running time and
memory footprint, and it is highly robust against the natural
fluctuations of pH and EC wastewater characteristics.

The unstable Internet connection in underground pipes, the
lack of power grid energy supply in sewage networks, and
the end-user’s need for triggering the IoT device actuators in
real-time brought special requirements for the design of our
anomaly detection and localization algorithm. Such require-
ments were fulfilled by using a new IoT architecture. The
new IoT architecture was generalized as an IoT architecture
pattern [47], with the name Hop-by-hop Anomaly Detection
andActuation (HADA), so it could be reused in other contexts
and applications.

The proposed IoT system was verified through simulations
in a large sewage network and also implemented. In addition,
potential end-users of the IoT system validated the system
in sewer pipes with discharges of harsh industrial waste and
real wastewater in KWB, Germany, several times between
May 2016 and February 2019. In December 2018, a total of
14 discharges weremade during the validation campaignwith
seven different substances at a short distance, including com-
mon domestic waste and illegal industrial waste. In all cases,
the proposed IoT system was able to successfully detect and
localize the source of harmful wastewater, promptly trigger-
ing the actuating device and notifying the end-user of the
alarm event.

In the future work, we plan to evaluate the system in
scenarios providing a different behaviour of the wastewater
parameters baseline, such as: melting snow in winter, intru-
sion of rainwater at different levels. Moreover, we plan to
evaluate the effect of heterogeneous discharge events, where
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the EC and pH vary over its volume. In order to provide
a better indication of illegal discharge events, we aim at
considering the correlation over time of pH, EC and flow
signals as a fingerprint of providing an indication of the type
of substance in wastewater.
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